WorldWideScience

Sample records for induces angiogenic responses

  1. Fibroblast nemosis induces angiogenic responses of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Enzerink, Anna, E-mail: anna.enzerink@helsinki.fi [Haartman Institute, University of Helsinki, P.O. BOX 21, FIN-00014 Helsinki (Finland); Rantanen, Ville, E-mail: ville.rantanen@helsinki.fi [Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Research Program, University of Helsinki, P.O. BOX 63, 00014 Helsinki (Finland); Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, University of Helsinki, P.O. BOX 21, FIN-00014 Helsinki (Finland)

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  2. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, Dhanya K. [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Rajamani, Paulraj [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Singh, Rana P., E-mail: rana_singh@mail.jnu.ac.in [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Life Sciences, Central University of Gujarat, Gandhinagar (India)

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic

  3. Effect of telmisartan on VEGF-induced and VEGF-independent angiogenic responsiveness of coronary endothelial cells in normal and streptozotocin (STZ)-induced diabetic rats.

    Science.gov (United States)

    Chaudagar, Kiranj K; Mehta, Anita A

    2014-01-01

    Telmisartan possesses endothelial protective effects due to angiotensin II type 1 receptor antagonist, peroxisome proliferator-activated receptor γ (PPARγ) agonist and antioxidant action. Therefore, our objective was to study effect of telmisartan on angiogenic responsiveness of coronary endothelial cells (cECs) of normal and diabetic rats. Male Wistar rats were divided into six groups, normal rats, diabetic rats 30 d. (30 days after administration of STZ), diabetic rats 60 ds. (60 days after administration of STZ), telmisartan-treated normal rats (2 mg/kg, p.o., for 15 days before isolation of hearts), telmisartan-treated diabetic rats 30 ds, and telmisartan-treated diabetic rats 60 ds. Each group was further divided into two subgroups, sham rat hearts and ischemia-reperfused rat hearts. After isolation of cEC from each subgroup, angiogenic responsiveness and nitric oxide releasing properties were studied using chorioallantoic membrane (CAM) assay and Griess method, respectively. cEC of normal rats showed significant increase in angiogenic responsiveness in presence of vascular endothelial growth factor (VEGF) but not in absence of it. This activity was attenuated by pretreatment of cEC with l-NAME, wortmannin and chelerythrine. Diabetes and ischemia reperfusion injury suppressed angiogenic responsiveness of cEC. Telmisartan treatment showed significant increase in VEGF-induced angiogenic responsiveness and nitric oxide releasing properties of cECs of all subgroups as compared to their respective non-treated subgroups. These effects of telmisartan were significantly inhibited by pretreatment of cECs with L-NAME and wortmannin but not with chelerythrine. Our data suggest that telmisartan improves VEGF-induced coronary angiogenic activity in normal and diabetic rats via stimulation of PI3K/eNOS/NO pathway.

  4. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Polive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases.

  5. Angiogenic effect induced by mineral fibres.

    Science.gov (United States)

    Carbonari, Damiano; Campopiano, Antonella; Ramires, Deborah; Strafella, Elisabetta; Staffolani, Sara; Tomasetti, Marco; Curini, Roberta; Valentino, Matteo; Santarelli, Lory; Amati, Monica

    2011-10-09

    Due to the toxic effect of asbestos, other materials with similar chemical-physical characteristics have been introduced to substitute it. We evaluate the angiogenic effect of certain asbestos substitute fibres such as glass fibres (GFs), ceramic fibres (CFs) and wollastonite fibres (WFs) and then compare angiogenic responses to those induced by crocidolite asbestos fibres (AFs). An in vitro model using human endothelial cells in small islands within a culture matrix of fibroblasts (Angio-Kit) was used to evaluate vessel formation. The release of IL-6, sIL-R6, IL-8, VEGF-A and their soluble receptors, sVEGFR-1, sVEGFR-2, was determined in the conditioning medium of Angio-Kit system after fibre treatment. ROS formation and cell viability were evaluated in cultured endothelial cells (HUVEC). To evaluate the involvement of intracellular mechanisms, EGFR signalling, ROS formation and nuclear factor-κB (NFκB) pathway were then inhibited by incubating HUVEC cells with AG1478, NAC and PDTC respectively, and the cytokine and growth factor release was analyzed in the culture medium after 7 days of fibre incubation. Among the mineral fibres tested, WFs markedly induced blood vessel formation which was associated with release of IL-6 and IL-8, VEGF-A and their soluble receptors. ROS production was observed in HUVEC after WFs treatment which was associated with cell cytotoxicity. The EGFR-induced ERK phosphorylation and ROS-mediated NFκB activation were involved in the cytokine and angiogenic factor release. However, only the EGFR activation was able to induce angiogenesis. The WFs are potential angiogenic agents that can induce regenerative cytokine and angiogenic factor production resulting in the formation of new blood vessels.

  6. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    Directory of Open Access Journals (Sweden)

    Michael S Rogers

    Full Text Available Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis.

  7. The classical pink-eyed dilution mutation affects angiogenic responsiveness.

    Science.gov (United States)

    Rogers, Michael S; Boyartchuk, Victor; Rohan, Richard M; Birsner, Amy E; Dietrich, William F; D'Amato, Robert J

    2012-01-01

    Angiogenesis is the process by which new blood vessels are formed from existing vessels. Mammalian populations, including humans and mice, harbor genetic variations that alter angiogenesis. Angiogenesis-regulating gene variants can result in increased susceptibility to multiple angiogenesis-dependent diseases in humans. Our efforts to dissect the complexity of the genetic diversity that regulates angiogenesis have used laboratory animals due to the availability of genome sequence for many species and the ability to perform high volume controlled breeding. Using the murine corneal micropocket assay, we have observed more than ten-fold difference in angiogenic responsiveness among various mouse strains. This degree of difference is observed with either bFGF or VEGF induced corneal neovascularization. Ongoing mapping studies have identified multiple loci that affect angiogenic responsiveness in several mouse models. In this study, we used F2 intercrosses between C57BL/6J and the 129 substrains 129P1/ReJ and 129P3/J, as well as the SJL/J strain, where we have identified new QTLs that affect angiogenic responsiveness. In the case of AngFq5, on chromosome 7, congenic animals were used to confirm the existence of this locus and subcongenic animals, combined with a haplotype-based mapping approach that identified the pink-eyed dilution mutation as a candidate polymorphism to explain AngFq5. The ability of mutations in the pink-eyed dilution gene to affect angiogenic response was demonstrated using the p-J allele at the same locus. Using this allele, we demonstrate that pink-eyed dilution mutations in Oca2 can affect both bFGF and VEGF-induced corneal angiogenesis.

  8. Hypoxia-Inducible Factor as an Angiogenic Master Switch

    Science.gov (United States)

    Hashimoto, Takuya; Shibasaki, Futoshi

    2015-01-01

    Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications

  9. Early Exercise Promotes Angiogenic Response in Mice Model of Myocardial Infarction

    Institute of Scientific and Technical Information of China (English)

    Wu Guifu; Du Zhimin; Hu Chenghen; Roger J. Laham

    2005-01-01

    Objectives Little is known about the mechanism of exercise-induced angiogenic response in ischemic myocardium. This study was designed to investigate the effects of exercise training on expression of vascular endothelial growth factor and angiogenesis in infarcted heart. Methods Fifty male FVB mice were divided into three subgroups to test various responses to exercise, including timedependent response of angiogenic factors to exercise training in intact heart (n=10) and infarcted heart (n=10), as well as exercise-induced angiogenic response in heart with myocardial infarction (MI) (n=30). The mice in the exercise-training groups were allowed to exercise daily at 1 hour per day for 7 days. Results VEGF protein expression was up-regulated by exercise training in time dependent fashion in mice with MI.Angiogenesis was evident by increased myocardial microvessels observed by PECAM-1 immunohistoc-hemical staining in post-MI exercise group (16.5±3.4)/0.4 mm2 versus post-MI sedentary mice ( 10±2.1 )/0.4 mm2 (P < 0.05). Cell proliferation assessment showed significantly higher (P < 0.05) number of BrdU positive cells in post MI mice in exercise group as opposed to sedentary post MI mice. 2%TTC staining disclosed a profound difference in the size of MI (18.25±2.93)% in exercise group vs sedentary group (29.26±7.64)% (P<0.05). Conclusions Activation and up-regulation of VEGF in infarcted mice heart may contributes the angiogenic response to exercise training at the early stage of myocardial infarction. This underscores the impact of exercise on angiogenesis in post myocardial infarction setting.

  10. Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice.

    Science.gov (United States)

    Li, Qing; Olsen, Bjorn R

    2004-08-01

    Endostatin, a proteolytic fragment of basement membrane-associated collagen XVIII, has been shown to be a potent angiogenesis inhibitor both in vivo and in vitro when given at high concentrations. The precise molecular mechanisms by which it functions and whether or not it plays a role in physiological regulation of angiogenesis are not clear. In mice with targeted null alleles of Col18a1, there appears to be no major abnormality in vascular patterns or capillary density in most organs. Furthermore, the growth of experimental tumors is not increased. However, a detailed analysis of induced angiogenesis in these mice has not been performed. Therefore, we compared the angiogenic responses induced by in vitro culture of aortic explants from collagen XVIII/endostatin-null mice (ko) to wild-type (wt) littermates. We found a twofold increase in microvessel outgrowth in explants from ko mice, relative to wt explants. This increased angiogenesis was reduced to the wt level by the addition of low levels (0.1 microg/ml) of recombinant mouse or human endostatin during the culture period. To address cellular/molecular mechanisms underlying this difference in angiogenic response between ko and wt mice, we isolated endothelial cells from both strains and compared their biological behavior. Proliferation assays showed no difference between the two types of endothelial cells. In contrast, adhesion assays showed a striking difference in their ability to adhere to fibronectin suggesting that collagen XVIII/endostatin may regulate interactions between endothelial cells and underlying basement membrane-associated components, including fibronectin, such that in the absence of collagen XVIII/endostatin, endothelial cells are more adhesive to fibronectin. In the aortic explant assay, characterized by dynamic processes of microvessel elongation and regression, this may result in stabilization of newly formed vessels, reduced regression, and a net increase in microvessel outgrowth in

  11. Hypoxia Affects the Structure of Breast Cancer Cell-Derived Matrix to Support Angiogenic Responses of Endothelial Cells.

    Science.gov (United States)

    Hielscher, Abigail; Qiu, Connie; Porterfield, Josh; Smith, Quinton; Gerecht, Sharon

    2013-01-01

    Hypoxia, a common feature of the tumor environment and participant in tumor progression, is known to alter gene and protein expression of several Extracellular Matrix (ECM) proteins, many of which have roles in angiogenesis. Previously, we reported that ECM deposited from co-cultures of Neonatal Fibroblasts (NuFF) with breast cancer cells, supported 3-dimensional vascular morphogenesis. Here, we sought to characterize the hypoxic ECM and to identify whether the deposited ECM induce angiogenic responses in Endothelial Cells (ECs). NuFF and MDA-MB-231 breast cancer cells were co-cultured, subjected to alternating cycles of 24 hours of 1% (hypoxia) and 21% (atmospheric) oxygen and de-cellularized for analyses of deposited ECM. We report differences in mRNA expression profiles of matrix proteins and crosslinking enzymes relevant to angiogenesis in hypoxia-exposed co-cultures. Interestingly, overt differences in the expression of ECM proteins were not detected in the de-cellularized ECM; however, up-regulation of the cell-binding fragment of fibronecin was observed in the conditioned media of hypoxic co-cultures. Ultrastructure analyses of the de-cellularized ECM revealed differences in fiber morphology with hypoxic fibers more compact and aligned, occupying a greater percent area and having larger diameter fibers than atmospheric ECM. Examining the effect of hypoxic ECM on angiogenic responses of ECs, morphological differences in Capillary-Like Structures (CLS) formed atop de-cellularized hypoxic and atmospheric ECM were not evident. Interestingly, we found that hypoxic ECM regulated the expression of angiogenic factors and matrix metalloproteinases in CLS. Overall, we report that in vitro, hypoxia does not alter the composition of the ECM deposited by co-cultures of NuFF/MDA-MB-231, but rather alters fiber morphology, and induces vascular expression of angiogenic growth factors and metalloproteinases. Taken together, these results have important implications for

  12. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  13. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue.

    Science.gov (United States)

    Walton, R Grace; Finlin, Brian S; Mula, Jyothi; Long, Douglas E; Zhu, Beibei; Fry, Christopher S; Westgate, Philip M; Lee, Jonah D; Bennett, Tamara; Kern, Philip A; Peterson, Charlotte A

    2015-06-01

    Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis. In skeletal muscle, exercise training stimulates angiogenesis and modulates transcription of VEGFA, Angpt1, and Angpt2. However, it remains unknown whether exercise training stimulates vessel growth in human adipose tissue, and it remains unknown whether adipose angiogenesis is mediated by angiopoietin signaling. We sought to determine whether insulin-resistant subjects would display an impaired angiogenic response to aerobic exercise training. Insulin-sensitive (IS, N = 12) and insulin-resistant (IR, N = 14) subjects had subcutaneous adipose and muscle (vastus lateralis) biopsies before and after 12 weeks of cycle ergometer training. In both tissues, we measured vessels and expression of pro-angiogenic genes. Exercise training did not increase insulin sensitivity in IR Subjects. In skeletal muscle, training resulted in increased vessels/muscle fiber and increased Angpt2:Angpt1 ratio in both IR and IS subjects. However, in adipose, exercise training only induced angiogenesis in IS subjects, likely due to chronic suppression of VEGFA expression in IR subjects. These results indicate that skeletal muscle of IR subjects exhibits a normal angiogenic response to exercise training. However, the same training regimen is insufficient to induce angiogenesis in adipose tissue of IR subjects, which may help to explain why we did not observe improved insulin sensitivity following aerobic training.

  14. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Karl Egan

    Full Text Available Thrombosis is common in ovarian cancer. However, the interaction of platelets with ovarian cancer cells has not been critically examined. To address this, we investigated platelet interactions in a range of ovarian cancer cell lines with different metastatic potentials [HIO-80, 59M, SK-OV-3, A2780, A2780cis]. Platelets adhered to ovarian cancer cells with the most significant adhesion to the 59M cell line. Ovarian cancer cells induced platelet activation [P-selectin expression] in a dose dependent manner, with the most significant activation seen in response to the 59M cell line. The platelet antagonists [cangrelor, MRS2179, and apyrase] inhibited 59M cell induced activation suggesting a P2Y12 and P2Y1 receptor mediated mechanism of platelet activation dependent on the release of ADP by 59M cells. A2780 and 59M cells potentiated PAR-1, PAR-4, and TxA2 receptor mediated platelet activation, but had no effect on ADP, epinephrine, or collagen induced activation. Analysis of gene expression changes in ovarian cancer cells following treatment with washed platelets or platelet releasate showed a subtle but valid upregulation of anti-apoptotic, anti-autophagy pro-angiogenic, pro-cell cycle and metabolic genes. Thus, ovarian cancer cells with different metastatic potential adhere and activate platelets differentially while both platelets and platelet releasate mediate pro-survival and pro-angiogenic signals in ovarian cancer cells.

  15. Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?

    Energy Technology Data Exchange (ETDEWEB)

    Azzariti, Amalia, E-mail: a.azzariti@oncologico.bari.it [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Porcelli, Letizia [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Mangia, Anita; Saponaro, Concetta [Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Quatrale, Anna E. [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Popescu, Ondina S. [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Strippoli, Sabino [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Simone, Gianni [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Paradiso, Angelo [Experimental Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Guida, Michele [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy)

    2014-02-15

    Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugs cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic approach

  16. Osteogenic and Angiogenic Response to Calcium Silicate-based Endodontic Sealers.

    Science.gov (United States)

    Costa, Fábio; Sousa Gomes, Pedro; Fernandes, Maria Helena

    2016-01-01

    Calcium silicate-based endodontic sealers are reported to favor the regeneration of periradicular tissues, a process requiring concerted osteogenic and angiogenic events. This study compared 4 calcium silicate-based sealers for the effects of their extracts on osteogenic and angiogenic cell behavior. Extracts from ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK), MTA Plus (Prevest Denpro Limited, Jammu City, India), MTA Fillapex (Angelus, Londrina, PR, Brazil), and Biodentine (Septodont, Saint-Maur-des-Fosses, France) were prepared from freshly mixed sealers (0.1 g/cm(2)/mL extraction medium) and diluted (1:2-1:20). The sealers were compared for the dose- and time-dependent effects on the proliferation and differentiation of human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs). An ex vivo osteogenic assay (regeneration of neonatal mice parietal bone defects) and an in vivo angiogenesis assay (chorioallantoic membrane assay) were performed. Diluted extracts from MTA ProRoot and MTA Plus had evident stimulatory effects on the proliferation of hMSCs, alkaline phosphatase activity, and ex vivo regeneration of bone defects. They also increased HUVEC growth; allowed normal tubularlike network organization; and, in vivo, did not affect angiogenesis. Comparatively, Biodentine also elicited a favorable response on hMSCs and HUVECs, but the overall osteogenic and angiogenic outcome was slightly lower. MTA Fillapex exhibited the highest toxicity in hMSCs and HUVECs and, unlike the other sealers, only allowed a partial regeneration of bone defects. The sealers caused dose- and time-dependent effects on the osteoblastic and endothelial response, eliciting similar cytocompatibility profiles. Results suggest that the induction of both osteogenic and angiogenic events may contribute to the sealers' regenerative outcome. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Myoglobin over-expression attenuates angiogenic response in hindlimb ischemia in mice

    Institute of Scientific and Technical Information of China (English)

    YANG Yao-guo; GUAN Heng; LIU Chang-wei; LI Yong-jun

    2009-01-01

    Background Myoglobin is expressed exclusively in striated skeletal muscles and has been implicated in nitric oxide scavenging. Accumulating data suggest a critical role for nitric oxide in both the endogenous and therapeutic angiogenic response to ischemia. A clear role for myoglobin in ischemic skeletal muscle is uncertain. We hypothesized that myoglobin overexpression has an adverse impact on the angiogenic response to ischemia.Methods Muscle-specific myoglobin over-expressing transgenic mice (MbTG, n=11), wild type littermates (WT, n=23) underwent unilateral femoral artery ligation and excision. Laser doppler perfusion imaging was used to monitor changes in hindlimb perfusion before surgery and weekly after surgery up to 28 days. Tissue ischemia was assessed by a necrosis incidence. Upon termination of the experiment (28 days after surgery), skeletal muscles (gastrocnemius, and tibialis anterior) were harvested, the distal part of the muscle was frozen and embedded for histology study, the proximal part was used either to detect vascular endothelial growth factor (VEGF) level with enzyme-linked immunosorbent assays (ELISA) or to determine the proliferation (proliferating call nuclear antigen (PCNA)) and apoptosis (Bax, and Bcl-2) condition in ischemic muscle by Western blotting. Capillaries were stained with endothelial phosphate alkaline staining and vascular density was expressed in capillaries/fiber.Results The recovery of perfusion in MbTG mice was similar to that of WT mice on day 7 (0.485±0.095 vs 0.500±0.084)but was significantly less on day 14 (0.536±0.086 vs 0.623±0.077, P <0.05), day 21 (0.588±0.082 vs 0.684±0.068, P <0.01) and day 28 (0.606±0.079 VS 0.733±0.093, P<0.01). The necrosis incidence was higher in MbTG than in WT (54.5% vs 21.6%). Vascular density was less in MbTG compared with that in WT (gastrocnemius 0.19±0.08 vs 0.30±0.08, P <0.05; tibialis anterior 0.22±0.11 vs 0.33±0.04, P<0.05). With ischemic injury, the VEGF level was

  18. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available BACKGROUND: Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM. CONCLUSIONS AND SIGNIFICANCE: These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  19. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Directory of Open Access Journals (Sweden)

    Skowronski Karolina

    2010-12-01

    Full Text Available Abstract Background Targeting tumor vasculature is a strategy with great promise in the treatment of many cancers. However, anti-angiogenic reagents that target VEGF/VEGFR2 signaling have met with variable results clinically. Among the possible reasons for this may be heterogeneous expression of the target protein. Methods Double immunofluorescent staining was performed on formalin-fixed paraffin embedded sections of treated and control SW480 (colorectal and WM239 (melanoma xenografts, and tissue microarrays of human colorectal carcinoma and melanoma. Xenografts were developed using RAG1-/- mice by injection with WM239 or SW480 cells and mice were treated with 20 mg/kg/day of cyclophosphamide in their drinking water for up to 18 days. Treated and control tissues were characterized by double immunofluorescence using the mural cell marker α-SMA and CD31, while the ratio of desmin/CD31 was also determined by western blot. Hypoxia in treated and control tissues were quantified using both western blotting for HIF-1α and immunohistochemistry of CA-IX. Results VEGFR2 is heterogeneously expressed in tumor vasculature in both malignant melanoma and colorectal carcinoma. We observed a significant decrease in microvascular density (MVD in response to low dose metronomic cyclophosphamide chemotherapy in both malignant melanoma (with higher proportion VEGFR2 positive blood vessels; 93% and colorectal carcinoma (with lower proportion VEGFR2 positive blood vessels; 60% xenografts. This reduction in MVD occurred in the absence of a significant anti-tumor effect. We also observed less hypoxia in treated melanoma xenografts, despite successful anti-angiogenic blockade, but no change in hypoxia of colorectal xenografts, suggesting that decreases in tumor hypoxia reflect a complex relationship with vascular density. Based on α-SMA staining and the ratio of desmin to CD31 expression as markers of tumor blood vessel functionality, we found evidence for increased

  20. High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries.

    Science.gov (United States)

    Silvennoinen, Mika; Rinnankoski-Tuikka, Rita; Vuento, Mikael; Hulmi, Juha J; Torvinen, Sira; Lehti, Maarit; Kivelä, Riikka; Kainulainen, Heikki

    2013-04-01

    High-fat diet (HFD) increases fatty acid oxidation in skeletal muscles. We hypothesized that this leads to increased oxygen demand and thus to increased capillarization. We determined the effects of high-fat diet on capillarization and angiogenic factors in skeletal muscles of mice that were either active or sedentary. Fifty-eight C57BL/6 J mice were divided into four groups: low-fat diet sedentary (LFS), low-fat diet active (LFA), high-fat diet sedentary (HFS), and high-fat diet active (HFA). The mice in active groups were housed in cages with running wheels and the sedentary mice were housed in similar cages without running wheels. After 19 weeks HFS, LFA and HFA had higher capillary density and capillary-to-fiber-ratio in quadriceps femoris muscles than LFS. Capillarization was similar in HFS and HFA. To reveal possible mechanisms of HFD induced angiogenesis, we measured protein and mRNA levels of angiogenic factors VEGF-A, HIF-1α, PGC-1α and ERRα. VEGF-A protein levels were higher in muscles of HFS, LFA and HFA compared to LFS. However, no significant differences were observed between HFA and HFS. Protein levels of HIF-1α, PGC-1α, and ERRα were similar in all groups. However, the mRNA expression of HIF-1α and VEGF-A was up-regulated in capillaries but not in muscle fibers of HFS. The sedentary and active mice groups had similar mRNA expression levels of angiogenesis regulators studied. We conclude that high-fat feeding induces angiogenesis in skeletal muscle and up-regulates the gene expression of HIF-1α and VEGF-A in capillaries.

  1. Post-immobilization eccentric training promotes greater hypertrophic and angiogenic responses than passive stretching in muscles of weanling rats.

    Science.gov (United States)

    Benedini-Elias, Priscila Cação Oliveira; Morgan, Mariana Calvente; Cornachione, Anabelle Silva; Martinez, Edson Z; Mattiello-Sverzut, Ana Claudia

    2014-04-01

    This study investigated how different types of remobilization after hind limb immobilization, eccentric exercise and passive static stretching, influenced the adaptive responses of muscles with similar function and fascicle size, but differing in their contractile characteristics. Female Wistar weanling rats (21 days old) were divided into 8 groups: immobilized for 10 days, maintaining the ankle in maximum plantar flexion; immobilized and submitted to eccentric training for 10 or 21 days on a declining treadmill for 40min; immobilized and submitted to passive stretching for 10 or 21 days for 40min by maintaining the ankle in maximum dorsiflexion; control of immobilized; and control of 10 or 21 days. The soleus and plantaris muscles were analyzed using fiber distribution, lesser diameter, capillary/fiber ratio, and morphology. Results showed that the immobilization reduced the diameter of all fiber types, caused changes in fiber distribution and decreased the number of transverse capillaries in both muscles. The recovery period of the soleus muscle is longer than that of the plantaris after detraining. Moreover, eccentric training induced greater hypertrophic and angiogenic responses than passive stretching, especially after 21 days of rehabilitation. Both techniques demonstrated positive effects for muscle rehabilitation with the eccentric exercise being more effective.

  2. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    Science.gov (United States)

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  3. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.

    Science.gov (United States)

    Van Hove, Amy H; Burke, Kathleen; Antonienko, Erin; Brown, Edward; Benoit, Danielle S W

    2015-11-10

    Therapeutic angiogenesis holds great potential for a myriad of tissue engineering and regenerative medicine approaches. While a number of peptides have been identified with pro-angiogenic behaviors, therapeutic efficacy is limited by poor tissue localization and persistence. Therefore, poly(ethylene glycol) hydrogels providing sustained, enzymatically-responsive peptide release were exploited for peptide delivery. Two pro-angiogenic peptide drugs, SPARC113 and SPARC118, from the Secreted Protein Acidic and Rich in Cysteine, were incorporated into hydrogels as crosslinking peptides flanked by matrix metalloproteinase (MMP) degradable substrates. In vitro testing confirmed peptide drug bioactivity requires sustained delivery. Furthermore, peptides retain bioactivity with residual MMP substrates present after hydrogel release. Incorporation into hydrogels achieved enzymatically-responsive bulk degradation, with peptide release in close agreement with hydrogel mass loss and released peptides retaining bioactivity. Interestingly, SPARC113 and SPARC118-releasing hydrogels had significantly different degradation time constants in vitro (1.16 and 8.77×10(-2) h(-1), respectively), despite identical MMP degradable substrates. However, upon subcutaneous implantation, both SPARC113 and SPARC118 hydrogels exhibited similar degradation constants of ~1.45×10(-2) h(-1), and resulted in significant ~1.65-fold increases in angiogenesis in vivo compared to controls. Thus, these hydrogels represent a promising pro-angiogenic approach for applications such as tissue engineering and ischemic tissue disorders.

  4. Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response.

    Science.gov (United States)

    Yoon, Jin-Soo; Kim, Hwa-Mi; Yadunandam, Anandam Kasin; Kim, Nan-Hee; Jung, Hyun-Ah; Choi, Jae-Sue; Kim, Chi-Yeon; Kim, Gun-Do

    2013-08-15

    Hepatocellular carcinoma (HCC) is one of the most aggressive malignant diseases and is highly resistant to conventional chemotherapy. Neferine, a major bisbenzylisoquinoline alkaloid derived from the embryos of Nelumbo nucifera, has been reported a few physiological activities. However, the mechanisms of anticancer effects are not well understood and its detailed activities on Hep3B cells have not been determined. Our results suggest that neferine exhibited cytotoxicity against HCC Hep3B cells, but not against HCC Sk-Hep1 and THLE-3, a normal human liver cell line. In addition, consistent with the induction of G1/S phase cell population in flow cytometry, downregulation of c-Myc, cyclin D1, D3, CDK4, E2F-1, as well as dephosphorlyation of cdc2 by western blot analysis, as evidenced by the appearance of cell cycle arrest, were observed in Hep3B cells treated with neferine. Our results demonstrated neferine induced ER stress and apoptosis, acting through multiple signaling cascades by the activation of Bim, Bid, Bax, Bak, Puma, caspases-3, -6, -7, -8 and PARP, and the protein expression levels of Bip, calnexin, PDI, calpain-2 and caspase-12 were also upregulated dramatically by neferine treatment. Overexpression of GFP-LC3B by neferine resulted in a diffuse cytosolic GFP fluorescence and the strong fluorescent spots, representing autophagosomes. The significant reduction of the migration in Hep3B cells and the capillary tube-like formation of HUVECs by neferine were also determined. These observations reveal that the therapeutic potential of neferine in treating HCC Hep3B cells, containing copies of hepatitis B virus (HBV) genomes.

  5. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    Directory of Open Access Journals (Sweden)

    Massoud Seifi

    2016-07-01

    Full Text Available Objective Orthodontically induced inflammatory root resorption (OIIRR is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF, respectively, positive control group (CP receiving an orthodontic appliance and injection of phosphate buffered saline (PBS and the negative control group (CN receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000. Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (P<0.05. Conclusion Tooth movement as the outcome of bone remodeling is concomitant with the formation of sterile necrosis in the periodontal ligament following blocked blood supply. Thus, bFGF can significantly decrease the risk of root resorption by providing more oxygen and angiogenesis.

  6. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Lotfi, Ali; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa; Bargrizan, Majid

    2016-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group (CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS) and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (Presorption by providing more oxygen and angiogenesis. PMID:27551674

  7. Insulin Like Growth Factor-1 (IGF-1 Causes Overproduction of IL-8, an Angiogenic Cytokine and Stimulates Neovascularization in Isoproterenol-Induced Myocardial Infarction in Rats

    Directory of Open Access Journals (Sweden)

    Nagaraja Haleagrahara

    2011-11-01

    Full Text Available Angiogenesis factors are produced in response to hypoxic or ischemic insult at the site of pathology, which will cause neovascularization. Insulin like growth factor-1 (IGF-1 exerts potent proliferative, angiogenic and anti-apoptotic effects in target tissues. The present study was aimed to evaluate the effects of IGF-1 on circulating level of angiogenic cytokine interleukin-8 (IL-8, in experimentally-induced myocardial ischemia in rats. Male Sprague-Dawley rats were divided into control, IGF-1 treated (2 µg/kg/day subcutaneously, for 5 and 10 days, isoproterenol (ISO treated (85 mg/kg, subcutaneously for two days and ISO with IGF-1 treated (for 5 and 10 days. Heart weight, serum IGF-1, IL-8 and cardiac marker enzymes (CK-MB and LDH were recorded after 5 and 10 days of treatment. Histopathological analyses of the myocardium were also done. There was a significant increase in serum cardiac markers with ISO treatment indicating myocardial infarction in rats. IGF-1 level increased significantly in ISO treated groups and the level of IGF-1 was significantly higher after 10 days of treatment. IL-8 level increased significantly after ISO treatment after 5 and 10 days and IGF-1 concurrent treatment to ISO rats had significantly increased IL-8 levels. Histopathologically, myocyte necrosis and nuclear pyknosis were reduced significantly in IGF-1 treated group and there were numerous areas of capillary sprouting suggestive of neovascularization in the myocardium. Thus, IGF-1 protects the ischemic myocardium with increased production of circulating angiogenic cytokine, IL-8 and increased angiogenesis.

  8. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway.

    Science.gov (United States)

    Zhang, Rong; Xu, Yingqian; Ekman, Niklas; Wu, Zhenhua; Wu, Jiong; Alitalo, Kari; Min, Wang

    2003-12-19

    Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.

  9. POTENTIAL OF INDUCED METABOLIC BIOLUMINESCENCE IMAGING TO UNCOVER METABOLIC EFFECTS OF ANTI-ANGIOGENIC THERAPY IN TUMORS

    Directory of Open Access Journals (Sweden)

    Stefano eIndraccolo

    2016-02-01

    Full Text Available Tumor heterogeneity at the genetic level has been illustrated by a multitude of studies on the genomics of cancer, but whether tumors can be heterogeneous at the metabolic level is an issue which has been less systematically investigated so far. A burning related question is whether the metabolic features of tumors can change either following natural tumor progression (i.e. in primary tumors versus metastasis or therapeutic interventions. In this regard, recent findings by independent teams indicate that anti-angiogenic drugs cause metabolic perturbations in tumors as well as metabolic adaptations associated with increased malignancy. Induced metabolic bioluminescence imaging (imBI is an imaging technique which enables detection of key metabolites associated with glycolysis, including lactate, glucose, pyruvate and ATP in tumor sections. Signals captured by imBI can be used to visualize the topographic distribution of these metabolites and quantify their absolute amount. ImBI can be very useful for metabolic classification of tumors as well as to track metabolic changes in the glycolytic pathway associated with certain therapies. Imaging of the metabolic changes induced by anti-angiogenic drugs in tumors by imBI or other emerging technologies is a valuable tool to uncover molecular sensors engaged by metabolic stress and offers an opportunity to understand how metabolism-based approaches could improve cancer therapy.

  10. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function......, the findings of simultaneously enhanced pro-angiogenic and angiostatic factors in response to acute exercise before training points to that the angiogenic process is highly regulated even when capillary growth is required. The attenuated response in some of the pro-angiogenic factors after training...... and a concurrent increase in the angiostatic factors occur when capillary growth no longer is required. Thus the balance of pro-angiogenic and angiostatic factors is a determining regulator of exercise-induced angiogenesis in human skeletal muscle....

  11. The anti-angiogenic role of discoidin domain receptor 2 (DDR2) in laser-induced choroidal neovascularization.

    Science.gov (United States)

    Zhu, Tong; Zhu, Jie; Bu, Xin; Zhao, Hu; Zhang, Shuya; Chang, Yuan; Li, Rong; Yao, Libo; Wang, Yusheng; Su, Jin

    2015-02-01

    Choroidal neovascularization (CNV), an aberrant growth of blood vessels in the choroid layer of the eye, is a major cause of vision loss. In view of our recent finding that discoidin domain receptor 2 (DDR2), a collagen-binding receptor tyrosine kinase, is involved in control of vascular endothelial activity and tumor angiogenesis, the present study aims to investigate whether and how DDR2 affects the pathogenesis of CNV. We initially found that a spontaneous DDR2 mutant mouse colony (slie) exhibited enhanced amplitude of laser-induced CNV. The inhibitory role of DDR2 in CNV development was further confirmed by experiments through intravitreous injection of DDR2 small interference RNA (siRNA) or DDR2-expressing adenovirus. Quantitative real-time polymerase chain reaction (qPCR) and immunoblot analysis showed that DDR2 regulates the expression of several major pro-angiogenic factors in the laser-injured choroid as well as in retinal pigment epithelium (RPE) cells. In addition, it was demonstrated that the CNV-induced increases in the phosphorylation levels of Akt and mTOR were affected by the upregulation or downregulation of DDR2. Thus, the data from this study for the first time revealed that DDR2 negatively regulates the development of experimental CNV in vivo, which may provide a novel target for preventing human pathological ocular neovascularization. Key messages: DDR2 does not affect retinal development. DDR2 inhibits laser-induced CNV. DDR2 regulates angiogenic factor expression in CNV lesion as well as in RPE cells. DDR2 is involved in modulation of CNV-induced activation of PI3K pathway.

  12. Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells.

    Directory of Open Access Journals (Sweden)

    Isabel Fernández-Pisonero

    Full Text Available Given that the bioactive lipid sphingosine 1-phosphate is involved in cardiovascular pathophysiology, and since lipid accumulation and inflammation are hallmarks of calcific aortic stenosis, the role of sphingosine 1-phosphate on the pro-inflammatory/pro-osteogenic pathways in human interstitial cells from aortic and pulmonary valves was investigated. Real-time PCR showed sphingosine 1-phosphate receptor expression in aortic valve interstitial cells. Exposure of cells to sphingosine 1-phosphate induced pro-inflammatory responses characterized by interleukin-6, interleukin-8, and cyclooxygenase-2 up-regulations, as observed by ELISA and Western blot. Strikingly, cell treatment with sphingosine 1-phosphate plus lipopolysaccharide resulted in the synergistic induction of cyclooxygenase-2, and intercellular adhesion molecule 1, as well as the secretion of prostaglandin E2, the soluble form of the intercellular adhesion molecule 1, and the pro-angiogenic factor vascular endothelial growth factor-A. Remarkably, the synergistic effect was significantly higher in aortic valve interstitial cells from stenotic than control valves, and was drastically lower in cells from pulmonary valves, which rarely undergo stenosis. siRNA and pharmacological analysis revealed the involvement of sphingosine 1-phosphate receptors 1/3 and Toll-like receptor-4, and downstream signaling through p38/MAPK, protein kinase C, and NF-κB. As regards pro-osteogenic pathways, sphingosine 1-phosphate induced calcium deposition and the expression of the calcification markers bone morphogenetic protein-2 and alkaline phosphatase, and enhanced the effect of lipopolysaccharide, an effect that was partially blocked by inhibition of sphingosine 1-phosphate receptors 3/2 signaling. In conclusion, the interplay between sphingosine 1-phosphate receptors and Toll-like receptor 4 signaling leads to a cooperative up-regulation of inflammatory, angiogenic, and osteogenic pathways in aortic valve

  13. Early response assessment in patients with multiple myeloma during anti-angiogenic therapy using arterial spin labelling: first clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Fenchel, Michael [Eberhard-Karls University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Eberhard-Karls University, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Konaktchieva, Marina [Eberhard-Karls University, Department of Internal Medicine, Gastroenterology, Tuebingen (Germany); Weisel, Katja; Kraus, Sabina [Eberhard-Karls University, Department of Internal Medicine, Hematology, Tuebingen (Germany); Brodoefel, Harald; Claussen, Claus D.; Horger, Marius [Eberhard-Karls University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2010-12-15

    To determine if arterial-spin-labelling (ASL) MRI can reliably detect early response to anti-angiogenic therapy in patients with multiple myeloma by comparison with clinical/haematological response. Nineteen consecutive patients (10 men; mean age 63.5 {+-} 9.1 years) were included in the present study. Inclusion criteria were diagnosis of stage III multiple myeloma and clinical indication for therapeutical administration of bortezomib or lenalidomide. We performed MRI on 3.0T MR in the baseline setting, 3 weeks after onset of therapy and after 8 weeks. Clinical responses were determined on the basis of international uniform response criteria in correlation with haematological parameters and medium-term patient outcome. MRI studies were performed after approval by the local institutional review board. Fifteen patients responded to anti-myeloma therapy; 4/19 patients were non-responders to therapy. Mean tumour perfusion assessed by ASL-MRI in a reference lesion was 220.7 {+-} 132.5 ml min{sup -1} 100 g{sup -1} at baseline, and decreased to 125.7 {+-} 86.3 (134.5 {+-} 150.9) ml min{sup -1} 100 g{sup -1} 3 (8) weeks after onset of therapy (P < 0.02). The mean decrease in paraproteinaemia at week 3 (8) was 52.3 {+-} 47.7% (58.2 {+-} 58.7%), whereas {beta}2-microglobulinaemia decreased by 20.3 {+-} 53.1% (23.3 {+-} 57.0%). Correlation of ASL perfusion with outcome was significant (P = 0.0037). ASL tumour perfusion measurements are a valuable surrogate parameter for early assessment of response to novel anti-angiogenic therapy. (orig.)

  14. Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Abcouwer Steve F

    2004-01-01

    Full Text Available Abstract Background The expression of pro-angiogenic cytokines, such as vascular endothelial growth factor (VEGF and interleukin-8/CXCL8 (IL-8, plays an important role in tumor growth and metastasis. Low oxygen tension within poorly-vascularized tumors is thought to be the prime stimulus causing the secretion of VEGF. The expression of IL-8 by solid tumors is thought to be primarily due to intrinsic influences, such as constitutive activation of nuclear factor kappa B (NF-κB. However, VEGF expression is responsive to glucose deprivation, suggesting that low concentrations of nutrients other than oxygen may play a role in triggering the pro-angiogenic phenotype. Glucose deprivation causes endoplasmic reticulum (ER stress and alters gene expression through the unfolded protein response (UPR signaling pathway. A branch of the UPR, known as the ER overload response (EOR, can cause NF-κB activation. Thus, we hypothesized that treatments that cause ER stress and deprivation of other nutrients, such as amino acids, would trigger the expression of angiogenic cytokines by breast cancer cell lines. Results We found that glutamine deprivation and treatment with a chemical inducer of ER stress (tunicamycin caused a marked induction of the secretion of both VEGF and IL-8 protein by a human breast adenocarcinoma cell line (TSE cells. Glutamine deprivation, glucose deprivation and several chemical inducers of ER stress increased VEGF and IL-8 mRNA expression in TSE and other breast cancer cell lines cultured under both normoxic and hypoxic conditions, though hypoxia generally diminished the effects of glucose deprivation. Of all amino acids tested, ambient glutamine availability had the largest effect on VEGF and IL-8 mRNA expression. The induction of VEGF mRNA expression, but not IL-8, was sustained and closely corresponded with the upregulated expression of the ER stress-responsive genes glucose-regulated protein 78 (GRP78 and growth arrest and DNA damage

  15. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  16. Resveratrol modulates the angiogenic response to exercise training in skeletal muscle of aged men

    DEFF Research Database (Denmark)

    Gliemann Hybholt, Lasse; Olesen, Jesper; Biensø, Rasmus S

    2014-01-01

    Aim: The polyphenol resveratrol has in animal studies been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Methods: Forty-three healthy...... physically inactive aged men (65±1 years) were divided into A) a training group that conducted 8 weeks of intense exercise training where half of the subjects received a daily intake of either 250 mg trans resveratrol (n=14) and the other half received placebo (n=13); and B) a non-training group...... that received either 250 mg trans resveratrol (n=9) or placebo (n=7). Results: The group that trained with placebo showed a ~20% increase in capillary to fiber (C:F) ratio, an increase in the muscle protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2, and tissue inhibitor of matrix...

  17. Adiponectinemia controls pro-angiogenic cell therapy.

    Science.gov (United States)

    Eren, Philippe; Camus, Stéphane; Matrone, Gianfranco; Ebrahimian, Téni G; François, Delphine; Tedgui, Alain; Sébastien Silvestre, Jean; Blanc-Brude, Olivier P

    2009-11-01

    Angiogenic cell therapy with the transplantation of endothelial progenitor cells (EPC) or bone marrow mononuclear cells (BM-MNC) receives considerable attention as an approach to revascularize ischemic tissues. Adiponectin is a circulating hormone produced by the apM1 gene in adipocytes. Adiponectin modulates lipid metabolism and obesity, and it was recently found to promote physiological angiogenesis in response to ischemia. Patients with multiple cardiovascular disease risk factors or myocardial infarction may benefit from progenitor cell therapy, but they display depressed adiponectinemia. We hypothesized that adiponectin stimulation of transplanted cells is critical for their pro-angiogenic function. We aimed to establish whether adiponectinemia in the cell donor or in the cell recipient determines the success of pro-angiogenic cell therapy. In vitro, we found that conditioned media derived from wild-type adipocytes (adipo-CM) or purified adiponectin strongly enhanced BM-MNC survival and proliferation and stimulated EPC differentiation, whereas adipo-CM from apM1-/- adipocytes was one-half less effective. On the other hand, wild-type and apM1-/- BM-MNC displayed similar resistance to apoptosis and proliferation rates. In vivo, wild-type, and apM1-/- BM-MNC induced similar angiogenic reactions in wild-type ischemic hindlimbs. In contrast, wild-type BM-MNC had much diminished effects in apM1-/- ischemic hindlimbs. We concluded that adiponectin enhances BM-MNC survival and proliferation, and adiponectinemia in the cell therapy recipient is essential for the pro-angiogenic benefits of cell therapy. These observations imply that progenitor cell transplantation might only induce angiogenesis in patients with high adiponectinemia.

  18. ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nowosielski, Martha; Tinkhauser, Gerd; Stockhammer, Guenther [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Recheis, Wolfgang; Schocke, Michael; Gotwald, Thaddaeus [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Goebel, Georg [Innsbruck Medical University, Department of Medical Statistics, Informatics and Health Economics, Innsbruck (Austria); Gueler, Oezguer [Innsbruck Medical University, 4D Visualization Laboratory, University Clinic of Oto-, Rhino- and Laryngology, Innsbruck (Austria); Kostron, Herwig [Innsbruck Medical University, Department of Neurosurgery, Innsbruck (Austria); Hutterer, Markus [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Paracelsus Medical University Salzburg-Christian Doppler Hospital, Department of Neurology, Salzburg (Austria)

    2011-04-15

    The purpose of this study is to evaluate apparent diffusion coefficient (ADC) maps to distinguish anti-vascular and anti-tumor effects in the course of anti-angiogenic treatment of recurrent high-grade gliomas (rHGG) as compared to standard magnetic resonance imaging (MRI). This retrospective study analyzed ADC maps from diffusion-weighted MRI in 14 rHGG patients during bevacizumab/irinotecan (B/I) therapy. Applying image segmentation, volumes of contrast-enhanced lesions in T1 sequences and of hyperintense T2 lesions (hT2) were calculated. hT2 were defined as regions of interest (ROI) and registered to corresponding ADC maps (hT2-ADC). Histograms were calculated from hT2-ADC ROIs. Thereafter, histogram asymmetry termed ''skewness'' was calculated and compared to progression-free survival (PFS) as defined by the Response Assessment Neuro-Oncology (RANO) Working Group criteria. At 8-12 weeks follow-up, seven (50%) patients showed a partial response, three (21.4%) patients were stable, and four (28.6%) patients progressed according to RANO criteria. hT2-ADC histograms demonstrated statistically significant changes in skewness in relation to PFS at 6 months. Patients with increasing skewness (n = 11) following B/I therapy had significantly shorter PFS than did patients with decreasing or stable skewness values (n = 3, median percentage change in skewness 54% versus -3%, p = 0.04). In rHGG patients, the change in ADC histogram skewness may be predictive for treatment response early in the course of anti-angiogenic therapy and more sensitive than treatment assessment based solely on RANO criteria. (orig.)

  19. Odontoblastic Differentiation, Inflammatory Response, and Angiogenic Potential of 4 Calcium Silicate-based Cements: Micromega MTA, ProRoot MTA, RetroMTA, and Experimental Calcium Silicate Cement.

    Science.gov (United States)

    Chang, Seok-Woo; Bae, Won-Jung; Yi, Jin-Kyu; Lee, Soojung; Lee, Deok-Won; Kum, Kee-Yeon; Kim, Eun-Cheol

    2015-09-01

    The aim of this study was to analyze the effects of different calcium silicate-based cements (CSCs) for pulp capping materials including MicroMega MTA (MMTA; MicroMega, Besanchon, France), RetroMTA (RMTA; BioMTA, Seoul, Korea), ProRoot MTA (PMTA; Dentsply, Tulsa, OK), and experimental CSC (ECSC) on odontoblastic differentiation, in vitro angiogenesis, and the inflammatory response in human dental pulp cells. Differentiation was evaluated by alkaline phosphatase activity, alizarin red staining, and reverse-transcriptase polymerase chain reaction (RT-PCR) for the marker genes. The levels of inflammatory mediators and cytokines were measured by RT-PCR and an enzyme-linked immunosorbent assay. In vitro angiogenesis was assessed by RT-PCR for angiogenic genes and an endothelial tube formation assay. PMTA, MMTA, and ECSC increased the alkaline phosphatase activity and mineralization nodule formation and up-regulated messenger RNA (mRNA) expression of odontoblastic markers compared with RMTA. In addition, PMTA, MMTA, and ECSC up-regulated the mRNA of angiogenic genes in human dental pulp cells and increased the capillary tube formation of endothelial cells compared with RMTA. However, all CSCs showed similar expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein as well as proinflammatory mediators such as nitric oxide, prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, and IL-8 mRNA. Taken together, our experimental results suggest that all CSCs are favorable materials for pulp capping, but PMTA, MMTA, and ECSC may be recommended over RMTA. Copyright © 2015 American Association of Endodontists. All rights reserved.

  20. Angiogenic Response to Major Lung Resection for Non-Small Cell Lung Cancer with Video-Assisted Thoracic Surgical and Open Access

    Directory of Open Access Journals (Sweden)

    Calvin S. H. Ng

    2012-01-01

    Full Text Available Background. Angiogenic factors following oncological surgery is important in tumor recurrence. Vascular endothelial growth factor (VEGF, angiopoietin 1 (Ang-1, Ang-2, soluble VEGF-receptor 1 (sVEGFR1 and sVEGFR2 may influence angiogenesis. This prospective study examined the influence of open and video-assisted thoracic surgery (VATS lung resections for early stage non-small cell lung cancer (NSCLC on postoperative circulating angiogenic factors. Methods. Forty-three consecutive patients underwent major lung resection through either VATS (=23 or Open thoracotomy (=20 over an 8-month period. Blood samples were collected preoperatively and postoperatively on days (POD 1 and 3 for enzyme linked immunosorbent assay determination of angiogenic factors. Results. Patient demographics were comparable. For all patients undergoing major lung resection, postoperative Ang-1 and sVEGFR2 levels were significantly decreased, while Ang-2 and sVEGFR1 levels markedly increased. No significant peri-operative changes in VEGF levels were observed. Compared with open group, VATS had significantly lower plasma levels of VEGF (VATS 170±93 pg/mL; Open 486±641 pg/mL; =0.04 and Ang-2 (VATS 2484±1119 pg/mL; Open 3379±1287 pg/mL; =0.026 on POD3. Conclusions. Major lung resection for early stage NSCLC leads to a pro-angiogenic status, with increased Ang-2 and decreased Ang-1 productions. VATS is associated with an attenuated angiogenic response with lower circulating VEGF and Ang-2 levels compared with open. Such differences in angiogenic factors may be important in lung cancer biology and recurrence following surgery.

  1. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans.

    Science.gov (United States)

    van der Veer, Willem M; Niessen, Frank B; Ferreira, José A; Zwiers, Peter J; de Jong, Etty H; Middelkoop, Esther; Molema, Grietje

    2011-01-01

    Previous research suggests that in hypertrophic scars (HSs), an excess of microvessels is present compared with normotrophic scars (NSs). The aim of our study was to quantify vascular densities in HSs and normotrophic scars and to provide an insight into the kinetics of changes in the expression of angiogenic factors in time during wound healing and HS formation. Human presternal wound healing after cardiothoracic surgery through a sternotomy incision was investigated in a standardized manner. Skin biopsies were collected at consecutive time points, i.e., during surgery and 2, 4, 6, 12, and 52 weeks postoperatively. The expression levels of angiopoietin-1, angiopoietin-2, Tie-2, vascular endothelial growth factor, and urokinase-type plasminogen activator were measured by real-time reverse transcription-polymerase chain reaction. Quantification of angiogenesis and cellular localization of the proteins of interest were based on immunohistochemical analysis. Microvessel densities were higher in the HSs compared with the normotrophic scars 12 weeks (p=0.017) and 52 weeks (p=0.030) postoperatively. Angiopoietin-1 expression was lower in the hypertrophic group (pdecrease in the angiopoietin-1/angiopoietin-2 ratio in the hypertrophic group 4 weeks (p=0.053), 12 weeks (pscars.

  2. Response to Plasmapheresis Measured by Angiogenic Factors in a Woman with Antiphospholipid Syndrome in Pregnancy

    Directory of Open Access Journals (Sweden)

    Karoline Mayer-Pickel

    2015-01-01

    Full Text Available An imbalance of angiogenic and antiangiogenic placental factors such as endoglin and soluble fms-like tyrosine kinase 1 has been implicated in the pathophysiology of preeclampsia. Extraction of these substances by plasmapheresis might be a therapeutical approach in cases of severe early-onset preeclampsia. Case Report. A 21-year-old primigravida with antiphospholipid syndrome developed early-onset preeclampsia at 18 weeks’ gestation. She was treated successfully with plasmapheresis in order to prolong pregnancy. Endoglin and sflt-1-levels were measured by ELISA before and after treatment. Endoglin levels decreased significantly after treatment (p < 0.05 and showed a significant decrease throughout pregnancy. A rerise of endoglin and sflt-1 preceded placental abruption 4 weeks before onset of incident. Conclusion. Due to the limited long-term therapeutical possibilities for pregnancies complicated by PE, plasmapheresis seems to be a therapeutical option. This consideration refers especially to pregnancies with early-onset preeclampsia, in which, after first conventional treatment of PE, prolongation of pregnancy should be above all.

  3. Loss of Thy-1 (CD90) antigen expression on mesenchymal stromal cells from hematologic malignancies is induced by in vitro angiogenic stimuli and is associated with peculiar functional and phenotypic characteristics.

    Science.gov (United States)

    Campioni, D; Lanza, F; Moretti, S; Ferrari, L; Cuneo, A

    2008-01-01

    Little is known about human mesenchymal stromal cell (hMSC) phenotypic and functional subsets in response to environmental stimuli. The strategy used in this study focused on defining hMSC functional subpopulations based in particular on their Thy-1 (CD90) antigen (Ag) surface expression. The effect of different in vitro microenvironmental conditions on the isolation and expansion of bone marrow-derived (BM) hMSC from hematologic malignancies (HM) and normal samples (NS) was assayed. hMSC clonogenic and differentiation potential, phenotypic profile and long-term capacity to sustain in vitro hemopoiesis were considered in relation to the different expansion protocols. The results showed that angiogenic supplements used in combination with low serum content gave rise to the appearance of Thy-1(-) HM-MSC with high proliferative potential, capable of restoring the typical HM stromal impairment. The expression of the CD271 was partially maintained. We further report an enhancement towards the osteogenic and adipogenic differentiation capacity by the Thy-1(-) HM-MSC subset. Despite the angiogenic treatment, the Thy-1(-) MSC stopped short of full endothelial differentiation. In this paper we provide evidence that in vitro angiogenic stimuli generate HM-MSC lacking CD90 Ag expression. The Thy-1(-) MSC subset is characterized by peculiar functional and phenotypic characteristics, thus supporting the role played by the microenvironment in selecting particular hMSC subsets maintaining normal tissue homeostasis or inducing pathologic processes.

  4. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    Science.gov (United States)

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  5. Dual-Energy CT in Patients Treated with Anti-Angiogenic Agents for Non-Small Cell Lung Cancer: New Method of Monitoring Tumor Response?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Na; Lee, Ho Yun; Lee, Kyung Soo; Chung, Myung Jin; Ahn, Myung Ju; Park, Keun Chil; Kim, Tae Sung; Yi, Chin A [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Seo, Joon Beom [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To evaluate tumor responses in patients treated with anti-angiogenic agents for non-small cell lung cancer (NSCLC) by assessing intratumoral changes using a dual-energy CT (DECT) (based on Choi's criteria) and to compare it to traditional Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Ten NSCLC patients treated with bevacizumab underwent DECT. Tumor responses to anti-angiogenic therapy were assessed and compared with the baseline CT results using both RECIST (size changes only) and Choi's criteria (reflecting net tumor enhancement). Kappa statistics was used to evaluate agreements between tumor responses assessed by RECIST and Choi's criteria. The weighted {kappa} value for the comparison of tumor responses between the RECIST and Choi's criteria was 0.72. Of 31 target lesions (21 solid nodules, 8 lymph nodes, and two ground-glass opacity nodules [GGNs]), five lesions (16%) showed discordant responses between RECIST and Choi's criteria. Iodine-enhanced images allowed for a distinction between tumor enhancement and hemorrhagic response (detected in 14% [4 of 29, excluding GGNs] of target lesions on virtual nonenhanced images). DECT may serve as a useful tool for response evaluation after anti-angiogenic treatment in NSCLC patients by providing information on the net enhancement of target lesions without obtaining non-enhanced images.

  6. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators.

    Science.gov (United States)

    Smith, Andria N; Muffley, Lara A; Bell, Austin N; Numhom, Surawej; Hocking, Anne M

    2012-09-01

    Mesenchymal stem cells (MSC) represent emerging cell-based therapies for diabetes and associated complications. Ongoing clinical trials are using exogenous MSC to treat type 1 and 2 diabetes, cardiovascular disease and non-healing wounds due to diabetes. The majority of these trials are aimed at exploiting the ability of these multipotent mesenchymal stromal cells to release soluble mediators that reduce inflammation and promote both angiogenesis and cell survival at sites of tissue damage. Growing evidence suggests that MSC secretion of soluble factors is dependent on tissue microenvironment. Despite the contribution of fatty acids to the metabolic environment of type 2 diabetes, almost nothing is known about their effects on MSC secretion of growth factors and cytokines. In this study, human bone marrow-derived MSC were exposed to linoleic acid, an omega-6 polyunsaturated fatty acid, or oleic acid, a monounsaturated fatty acid, for seven days in the presence of 5.38 mM glucose. Outcomes measured included MSC proliferation, gene expression, protein secretion and chemotaxis. Linoleic and oleic acids inhibited MSC proliferation and altered MSC expression and secretion of known mediators of angiogenesis. Both unsaturated fatty acids induced MSC to increase secretion of interleukin-6, VEGF and nitric oxide. In addition, linoleic acid but not oleic acid induced MSC to increase production of interleukin-8. Collectively these data suggest that exposure to fatty acids may have functional consequences for MSC therapy. Fatty acids may affect MSC engraftment to injured tissue and MSC secretion of cytokines and growth factors that regulate local cellular responses to injury.

  7. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat

    Science.gov (United States)

    Lanza, Gregory M.; Jenkins, John; Schmieder, Anne H.; Moldobaeva, Aigul; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Zhong, Qiong; Keupp, Jochen; Sergin, Ismail; Paranandi, Krishna S.; Eldridge, Lindsey; Allen, John S.; Williams, Todd; Scott, Michael J.; Razani, Babak; Wagner, Elizabeth M.

    2017-01-01

    Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3+ CD45+ leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a

  8. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation.

    Science.gov (United States)

    Lanier, Viola; Gillespie, Corey; Leffers, Merle; Daley-Brown, Danielle; Milner, Joy; Lipsey, Crystal; Webb, Nia; Anderson, Leonard M; Newman, Gale; Waltenberger, Johannes; Gonzalez-Perez, Ruben Rene

    2016-10-01

    Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin's effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.

  9. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: a potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing.

    Science.gov (United States)

    Schürmann, Christoph; Goren, Itamar; Linke, Andreas; Pfeilschifter, Josef; Frank, Stefan

    2014-03-28

    Type-2 diabetes mellitus (T2D) represents an important metabolic disorder, firmly connected to obesity and low level of chronic inflammation caused by deregulation of fat metabolism. The convergence of chronic inflammatory signals and nutrient overloading at the endoplasmic reticulum (ER) leads to activation of ER-specific stress responses, the unfolded protein response (UPR). As obesity and T2D are often associated with impaired wound healing, we investigated the role of UPR in the pathologic of diabetic-impaired cutaneuos wound healing. We determined the expression patterns of the three UPR branches during normal and diabetes-impaired skin repair. In healthy and diabetic mice, injury led to a strong induction of BiP (BiP/Grp78), C/EBP homologous protein (CHOP) and splicing of X-box-binding protein (XBP)1. Diabetic-impaired wounds showed gross and sustained induction of UPR associated with increased expression of the pro-inflammatory chemokine macrophage inflammatory protein (MIP)2 as compared to normal healing wounds. In vitro, treatment of RAW264.7 macrophages with tunicamycin, and subsequently stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ enhances MIP2 mRNA und protein expression compared to proinflammatory stimulation alone. However, LPS/IFNγ induced vascular endothelial growth factor (VEGF) production was blunted by tunicamycin induced-ER stress. Hence, UPR is activated following skin injury, and functionally connected to the production of proinflammatory mediators. In addition, prolongation of UPR in diabetic non-healing wounds aggravates ER stress and weakens the angiogenic phenotype of wound macrophages.

  10. Insulin-Like Growth Factor-1 (IGF-1 Reduces ischemic changes and increases circulating angiogenic factors in experimentally - induced myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Lisa Mathews

    2011-06-01

    Full Text Available Abstract Background Coronary artery disease is a global health concern in the present day with limited therapies. Extensive efforts have been devoted to find molecular therapies to enhance perfusion and function of the ischemic myocardium. Aim of the present study was to look into the effects of insulin like growth factor -1 (IGF-1 on circulating angiogenic factors after myocardial ischemia in rats. Methods Adult male Sprague-Dawley rats were randomly divided into 10-days control, myocardial infarction, IGF-1 alone (2 μg/rat/day and ISO+IGF-1 groups. Isoproterenol (ISO, a synthetic catecholamine was used to induce myocardial infarction. Serum transforming growth factor-β (TGF-β and vascular endothelial growth factor (VEGF levels were checked after 10-days of IGF-1 administration. Results There was a significant increase in heart weight after IGF-1 treatment. A significant increase in cardiac enzyme level (CK-MB and LDH was seen in isoproterenol treated rats when compared to control group. IGF-1treatment induced a significant increase in serum angiogenic factors, IGF-1, VEGF and TGF beta levels. IGF-1 also reduced the ischemic changes in the myocardium when compared to the isoproterenol alone treated group. Conclusions In conclusion, treatment with insulin-like growth factor-1 (IGF-1 in myocardial infarction significantly increased circulating angiogenic growth factors like IGF-1, VEGF and TGF beta thus, protecting against myocardial ischemia.

  11. Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment.

    Science.gov (United States)

    Ardelean, Daniela S; Jerkic, Mirjana; Yin, Melissa; Peter, Madonna; Ngan, Bo; Kerbel, Robert S; Foster, F Stuart; Letarte, Michelle

    2014-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients. To investigate the systemic angiogenic phenotype of Endoglin and Alk1 mutant mice and their response to anti-VEGF therapy, we assessed microvessel density (MVD) in multiple organs after treatment with an antibody to mouse VEGF or vehicle. Lungs were the only organ showing an angiogenic defect, with reduced peripheral MVD and secondary right ventricular hypertrophy (RVH), yet distinctly associated with a fourfold increase in thrombospondin-1 (TSP-1) in Eng (+/-) versus a rise in angiopoietin-2 (Ang-2) in Alk1 (+/-) mice. Anti-VEGF treatment did reduce lung VEGF levels but interestingly, led to an increase in peripheral pulmonary MVD and attenuation of RVH; it also normalized TSP-1 and Ang-2 expression. Hepatic MVD, unaffected in mutant mice, was reduced by anti-VEGF therapy in heterozygous and wild type mice, indicating a liver-specific effect of treatment. Contrast-enhanced micro-ultrasound demonstrated a reduction in hepatic microvascular perfusion after anti-VEGF treatment only in Eng (+/-) mice. Our findings indicate that the mechanisms responsible for the angiogenic imbalance and the response to anti-VEGF therapy differ between Eng and Alk1 heterozygous mice and raise the need for systemic monitoring of anti-angiogenic therapy effects in HHT patients.

  12. Angiogenic response to passive movement and active exercise in individuals with peripheral arterial disease

    DEFF Research Database (Denmark)

    Høier, Birgitte; Walker, Meegan; Passos, Madla

    2013-01-01

    -one PAD patients and 17 aged controls were randomly assigned to either a passive movement or an active exercise study. Interstitial fluid microdialysate and tissue samples were obtained from the thigh skeletal muscle. Muscle dialysate vascular endothelial growth factor (VEGF) levels were modestly...... increased in response to either passive movement or active exercise in both subject groups. The basal muscle dialysate level of the angiostatic factor trombospondin-1 protein (TSP-1) was markedly higher (P...

  13. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs.

    Science.gov (United States)

    Vincenti, Sara; Brillante, Nadia; Lanza, Vincenzo; Bozzoni, Irene; Presutti, Carlo; Chiani, Francesco; Etna, Marilena Paola; Negri, Rodolfo

    2011-05-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either repression of translation or RNA degradation. They have been shown to be involved in a variety of biological processes such as development, differentiation and cell cycle control, but little is known about their involvement in the response to irradiation. We showed here that in human umbilical vein endothelial cells (HUVEC) some miRNAs previously shown to have a crucial role in vascular biology are transiently modulated in response to a clinically relevant dose of ionizing radiation. In particular we identified an early transcriptional induction of several members of the microRNA cluster 17-92 and other microRNAs already known to be related to angiogenesis. At the same time we observed a peculiar behavior of the miR-221/222 cluster, suggesting an important role of these microRNAs in HUVEC homeostasis. We observed an increased efficiency in the formation of capillary-like structures in irradiated HUVEC. These results could lead to a new interpretation of the effect of ionizing radiation on endothelial cells and on the response of tumor endothelial bed cells to radiotherapy.

  14. Perfusion CT allows prediction of therapy response in non-small cell lung cancer treated with conventional and anti-angiogenic chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tacelli, Nunzia; Santangelo, Teresa; Remy, Jacques [University of Lille Nord de France, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); Scherpereel, Arnaud; Cortot, Alexis; Wallyn, Frederic [University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); University of Lille Nord de France, Department of Pulmonary and Thoracic Oncology, Lille (France); Duhamel, Alain; Deken, Valerie [University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); University of Lille Nord de France, Department of Medical Statistics, Lille (France); Klotz, Ernst [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Lafitte, Jean-Jacques [University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); University of Lille Nord de France, Department of Pulmonary and Thoracic Oncology, Lille (France); Pasteur Institute of Lille, INSERM unit 1019, CIIL, Lille (France); Remy-Jardin, Martine [University of Lille Nord de France, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); Hospital Calmette, Department of Thoracic Imaging, Lille cedex (France)

    2013-08-15

    To determine whether CT can depict early perfusion changes in lung cancer treated by anti-angiogenic drugs, allowing prediction of response. Patients with non-small cell lung cancer, treated by conventional chemotherapy with (Group 1; n = 17) or without (Group 2; n = 23) anti-vascular endothelial growth factor (anti-VEGF) drug (bevacizumab) underwent CT perfusion before (TIME 0) and after 1 (TIME 1), 3 (TIME 2) and 6 (TIME 3) cycles of chemotherapy. The CT parameters evaluated included: (1) total tumour vascular volume (TVV) and total tumour extravascular flow (TEF); (2) RECIST (Response Evaluation Criteria in Solid Tumours) measurements. Tumour response was also assessed on the basis of the clinicians' overall evaluation. In Group 1, significant reduction in perfusion was identified between baseline and: (1) TIME 1 (TVV, P = 0.0395; TEF, P = 0.015); (2) TIME 2 (TVV, P = 0.0043; TEF, P < 0.0001); (3) TIME 3 (TVV, P = 0.0034; TEF, P = 0.0005) without any significant change in Group 2. In Group 1: (1) the reduction in TVV at TIME 1 was significantly higher in responders versus non-responders at TIME 2 according to RECIST (P = 0.0128) and overall clinicians' evaluation (P = 0.0079); (2) all responders at TIME 2 had a concurrent decrease in TVV and TEF at TIME 1. Perfusion CT demonstrates early changes in lung cancer vascularity under anti-angiogenic chemotherapy that may help predict therapeutic response. (orig.)

  15. Angiogenic properties of adult human thymus fat.

    Science.gov (United States)

    Salas, Julián; Montiel, Mercedes; Jiménez, Eugenio; Valenzuela, Miguel; Valderrama, José Francisco; Castillo, Rafael; González, Sergio; El Bekay, Rajaa

    2009-11-01

    The endogenous proangiogenic properties of adipose tissue are well recognized. Although the adult human thymus has long been known to degenerate into fat tissue, it has never been considered as a potential source of angiogenic factors. We have investigated the expression of diverse angiogenic factors, including vascular endothelial growth factor A and B, angiopoietin 1, and tyrosine-protein kinase receptor-2 (an angiopoietin receptor), and then analyzed their physiological role on endothelial cell migration and proliferation, two relevant events in angiogenesis. The detection of the gene and protein expression of the various proteins has been performed by immunohistochemistry, Western blotting, and quantitative real-time polymerase chain reaction. We show, for the first time, that adult thymus fat produces a variety of angiogenic factors and induces the proliferation and migration of human umbilical cord endothelial cells. Based on these findings, we suggest that this fat has a potential angiogenic function that might affect thymic function and ongoing adipogenesis within the thymus.

  16. Graphene Oxides Show Angiogenic Properties.

    Science.gov (United States)

    Mukherjee, Sudip; Sriram, Pavithra; Barui, Ayan Kumar; Nethi, Susheel Kumar; Veeriah, Vimal; Chatterjee, Suvro; Suresh, Kattimuttathu Ittara; Patra, Chitta Ranjan

    2015-08-05

    Angiogenesis, a process resulting in the formation of new capillaries from the pre-existing vasculature plays vital role for the development of therapeutic approaches for cancer, atherosclerosis, wound healing, and cardiovascular diseases. In this report, the synthesis, characterization, and angiogenic properties of graphene oxide (GO) and reduced graphene oxide (rGO) have been demonstrated, observed through several in vitro and in vivo angiogenesis assays. The results here demonstrate that the intracellular formation of reactive oxygen species and reactive nitrogen species as well as activation of phospho-eNOS and phospho-Akt might be the plausible mechanisms for GO and rGO induced angiogenesis. The results altogether suggest the possibilities for the development of alternative angiogenic therapeutic approach for the treatment of cardiovascular related diseases where angiogenesis plays a significant role.

  17. Current protein-based anti-angiogenic therapeutics.

    Science.gov (United States)

    Chakrabarti, Sanjukta; Barrow, Colin J; Kanwar, Rupinder K; Ramana, Venkata; Kanwar, Jagat R

    2014-01-01

    Angiogenesis is a multistep process for the formation of new blood vessels. Interactions between several cellular factors including growth factors, cytokines and hematopoietic factors lead to activation of various cellular pathways finally resulting in the extracellular matrix (ECM) degradation, endothelial cell proliferation, survival and migration. Normally, angiogenesis is an essential requirement for vascular development in growing embryos as well as in adult tissues where this process depends on the intricate balance between the activities of the pro- and anti-angiogenic factors. Abnormal angiogenesis results in aberrant vasculature leading to various pathological conditions. The most important factor implicated in angiogenic processes is vascular endothelial growth factor (VEGF) and its family of ligands and receptors. Several anti-angiogenic drugs have been developed and many more are currently in different phases of clinical trials, which target various angiogenesis-inducing agents including VEGF, VEGF receptors, angiopoietins and ECM components such as integrins. Anti-angiogenic therapy can be divided into gene-based therapy and protein-based therapy. Gene-based therapies include the use of antisense oligonucleotides, siRNA, aptamers, catalytic oligonucleotides including ribozymes and DNAzymes and transcription decoys. Protein-based therapeutics includes monoclonal antibodies, peptidomimetics, fusion proteins and decoy receptors. The later class of therapeutics has several advantages over gene-based and small molecule drugs, including specificity and complexity in functions, better tolerability, less interference with normal biological processes and lesser adverse effects due to decreased immune response by virtue of being mostly body's natural proteins. This review provides a comprehensive overview of angiogenesis and on the current protein-based anti-angiogenic therapeutics under research and in the clinic.

  18. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  19. Vaccination approach to anti-angiogenic treatment of cancer.

    Science.gov (United States)

    Wentink, Madelon Q; Huijbers, Elisabeth J M; de Gruijl, Tanja D; Verheul, Henk M W; Olsson, Anna-Karin; Griffioen, Arjan W

    2015-04-01

    Improvement of patient survival by anti-angiogenic therapy has proven limited. A vaccination approach inducing an immune response against the tumor vasculature combines the benefits of immunotherapy and anti-angiogenesis, and may overcome the limitations of current anti-angiogenic drugs. Strategies to use whole endothelial cell vaccines and DNA- or protein vaccines against key players in the VEGF signaling axis, as well as specific markers of tumor endothelial cells, have been tested in preclinical studies. Current clinical trials are now testing the promise of this specific anti-cancer vaccination approach. This review will highlight the state-of-the-art in this exciting field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Liposomal angiogenic peptides for ischemic limb perfusion: comparative study between different administration methods.

    Science.gov (United States)

    Hwang, Hyosook; Kim, Hyeon-Soo; Jeong, Hwan-Seok; Rajasaheb, Bagalkot Tarique; Kim, Minjoo; Oh, Phil-Sun; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2016-11-01

    We investigated the therapeutic effectiveness of PEGylated liposomes loaded with angiogenic peptides for treating hindlimb ischemia. Rats received a femoral artery occlusion. Red blood cells collected from the animals were labeled with technetium-99m. Limb perfusion gamma imaging was performed. PEGylated liposomes loaded with angiogenic peptides were administered intra-arterially. Technetium-99m red blood cell imaging was repeated 1 week later. The animals were sacrificed the next day. The expression of angiogenic proteins was studied. Later, changes in limb perfusion after intra-arterial infusion versus intra-muscular injection were also compared to determine the therapeutic effectiveness of different administration methods. Femoral artery occlusion dramatically reduced ischemic limb perfusion (by an average of 69%, compared to contralateral limb). This was not different among groups (p > 0.05). Liposomes loaded with angiogenic peptides significantly improved ischemic limb perfusion, compared to controls (210% of baseline, versus 100% of baseline in control; p perfusion was accompanied by an increased expression of CD 31 (an average of 1.6-fold increase of controls; p perfusion (liposomes alone: 100% of baseline; peptides alone: 120% of baseline; p > 0.05 versus controls, respectively) or the angiogenic response (1.1-fold of controls in liposomes alone; 1.0-fold of controls in peptides alone; p > 0.05 versus controls, respectively). Intra-muscular injection induced similar liposomal treatment effects on ischemic limb perfusion (230% of baseline) as those by intra-arterial infusion (210% of baseline; p perfusion and promoted angiogenic responses. Liposomal angiogenic treatment via intra-arterial infusion resulted in an equally effective therapeutic efficacy compared to that of intra-muscular injection. These results show the therapeutic potential of our liposomal strategy for treating peripheral limb ischemia.

  1. Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Baeuerle, Tobias [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: t.baeuerle@dkfz-heidelberg.de; Bartling, Soenke [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: s.bartling@dkfz-heidelberg.de; Berger, Martin [Unit of Chemotherapy and Toxicology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: m.berger@dkfz-heidelberg.de; Schmitt-Graeff, Annette [Institute of Pathology, University of Freiburg, Postfach 214, 79002 Freiburg (Germany)], E-mail: annette.schmitt-graeff@uniklinik-freiburg.de; Hilbig, Heidegard [Institute of Anatomy, University of Leipzig, Liebigstrasse 13, 04103 Leipzig (Germany)], E-mail: Heidegard.Hilbig@medizin.uni-leipzig.de; Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, Radiologische Klinik, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany)], E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de; Delorme, Stefan [Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: s.delorme@dkfz-heidelberg.de; Kiessling, Fabian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Experimental Molecular Imaging, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany)], E-mail: fkiessling@ukaachen.de

    2010-02-15

    As current classification systems for the assessment of treatment response in bone metastasis do not meet the needs of oncologists, new imaging biomarkers are desirable. Therefore, the diagnostic impact of dynamic contrast enhanced (DCE)-volumetric computed tomography (VCT) (descriptive analysis), DCE-MRI (two-compartment model) and diffusion weighted imaging (DWI) for monitoring anti-angiogenic therapy effects of the VEGF antibody bevacizumab in breast cancer bone metastases in rats was studied. Nude rats (n = 8 animals treated with bevacizumab and n = 9 untreated control rats) with site-specific osteolytic bone metastasis of the hind leg were imaged with a 1.5 T clinical MRI-scanner in an animal coil as well as in a volumetric CT-scanner at days 30, 40, 50 and 60 after inoculation of MDA-MB-231 human breast cancer cells. From these data, osteolytic lesion size (OLS), peak enhancement (PE), area under the curve (AUC), amplitude (A), exchange rate constant (k{sub ep}) and apparent diffusion coefficient (ADC) were determined in bone metastases. Prior to changes in OLS (p {<=} 0.05 at days 50 and 60) there was already a significant decrease in PE, AUC and A (p {<=} 0.05 at days 40-60) in treated animals compared to controls. However, for k{sub ep} and ADC there were no significant differences between the groups at any time point (p > 0.05 at days 40-60). In conclusion, anti-angiogenic treatment response in osteolytic breast cancer bone metastases can be assessed early with surrogate markers of vascularization, while DWI appears to be insensitive.

  2. Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Kyoto University,Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Kyoto University, Kyoto (Japan)

    2013-08-16

    Highlights: •Angiogenic activities were reduced in iPSECs from MMD patients. •Many mitosis-regulated genes were downregulated in iPSECs from MMD patients. •RNF213 R4810K downregulated Securin and inhibited angiogenic activity. •Securin suppression by siRNA reduced angiogenic activities of iPSECs and HUVECs. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p < 0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p < 0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.

  3. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Kristen S Hill

    Full Text Available At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.

  4. Can the Lung Cancer Pie Be Divided into Angiogenic Slices?

    Science.gov (United States)

    Cascone, Tina; Heymach, John V

    2015-12-01

    There are no validated markers for predicting benefit from angiogenesis inhibitors or classifying tumors with distinct angiogenic phenotypes. In patients with non-small cell lung cancer treated with bevacizumab and erlotinib, Franzini and colleagues find that angiogenesis- and hypoxia-associated gene expression signatures predict tumor response and/or clinical outcome, and may define distinct angiogenic patterns.

  5. Is human fracture hematoma inherently angiogenic?

    LENUS (Irish Health Repository)

    Street, J

    2012-02-03

    This study attempts to explain the cellular events characterizing the changes seen in the medullary callus adjacent to the interfragmentary hematoma during the early stages of fracture healing. It also shows that human fracture hematoma contains the angiogenic cytokine vascular endothelial growth factor and has the inherent capability to induce angiogenesis and thus promote revascularization during bone repair. Patients undergoing emergency surgery for isolated bony injury were studied. Raised circulating levels of vascular endothelial growth factor were seen in all injured patients, whereas the fracture hematoma contained significantly higher levels of vascular endothelial growth factor than did plasma from these injured patients. However, incubation of endothelial cells in fracture hematoma supernatant significantly inhibited the in vitro angiogenic parameters of endothelial cell proliferation and microtubule formation. These phenomena are dependent on a local biochemical milieu that does not support cytokinesis. The hematoma potassium concentration is cytotoxic to endothelial cells and osteoblasts. Subcutaneous transplantation of the fracture hematoma into a murine wound model resulted in new blood vessel formation after hematoma resorption. This angiogenic effect is mediated by the significant concentrations of vascular endothelial growth factor found in the hematoma. This study identifies an angiogenic cytokine involved in human fracture healing and shows that fracture hematoma is inherently angiogenic. The differences between the in vitro and in vivo findings may explain the phenomenon of interfragmentary hematoma organization and resorption that precedes fracture revascularization.

  6. Sustained systemic response paralleled with ovarian metastasis progression by sunitinib in metastatic renal cell carcinoma: Is this an anti-angiogenic potentiation of cancer?

    Directory of Open Access Journals (Sweden)

    Uttam K Mete

    2015-01-01

    Full Text Available Metastatic renal cell cancer is associated with poor prognosis and survival and is resistant to conventional chemotherapy. Therapeutic targeting of molecular pathways for tumor angiogenesis and other specific activation mechanisms offers improved tumor response and prolonged survival. A 48-year-old, female patient presented with large right renal mass with features suggesting of renal cell cancer without metastasis on contrast enhanced computed tomography (CT. Right radical nephrectomy was done. After 9 months of surgery, she got metastasis in lung, liver and ovary. The patient received sunitinib via an expanded access program. After eight 6-week cycles of sunitinib, a reassessment CT scan confirmed an excellent partial response with the almost complete disappearance (90% of liver and lung metastasis but the adnexal mass had increased in size (>10 times and the possibility was thought of second malignancy. Excision of the mass performed. Histopathology of the mass depicted metastatic renal cell cancer. There is possibility of a ′site-specific anti-angiogenic potentiation mechanism′ of malignancy in relation to sunitinib based upon the preclinical studies, in reference to the index case. Regression of one site with concurrent progression is possible. The exact mechanism of site-specific response, especially organ specific progression by vascular endothelial growth factor inhibitors in metastatic renal cell cancer warrants further study.

  7. Inflammation and N-formyl peptide receptors mediate the angiogenic activity of human vitreous humour in proliferative diabetic retinopathy.

    Science.gov (United States)

    Rezzola, Sara; Corsini, Michela; Chiodelli, Paola; Cancarini, Anna; Nawaz, Imtiaz M; Coltrini, Daniela; Mitola, Stefania; Ronca, Roberto; Belleri, Mirella; Lista, Liliana; Rusciano, Dario; De Rosa, Mario; Pavone, Vincenzo; Semeraro, Francesco; Presta, Marco

    2017-04-01

    Angiogenesis and inflammation characterise proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus. However, the impact of inflammation on the pathogenesis of PDR neovascularisation has not been elucidated. Here, we assessed the capacity of PDR vitreous fluid to induce pro-angiogenic/proinflammatory responses in endothelium and the contribution of the inflammation-related pattern recognition N-formyl peptide receptors (FPRs) in mediating these responses. Pooled and individual pars plana vitrectomy-derived PDR vitreous fluid ('PDR vitreous') samples were assessed in endothelial cell proliferation, motility, sprouting and morphogenesis assays, and for the capacity to induce proinflammatory transcription factor activation, reactive oxygen species production, intercellular junction disruption and leucocyte-adhesion molecule upregulation in these cells. In vivo, the pro-angiogenic/proinflammatory activity of PDR vitreous was tested in murine Matrigel plug and chick embryo chorioallantoic membrane (CAM) assays. Finally, the FPR inhibitors Boc-Phe-Leu-Phe-Leu-Phe (Boc-FLFLF) and Ac-L-Arg-Aib-L-Arg-L-Cα(Me)Phe-NH2 tetrapeptide (UPARANT) were evaluated for their capacity to affect the biological responses elicited by PDR vitreous. PDR vitreous activates a pro-angiogenic/proinflammatory phenotype in endothelial cells. Accordingly, PDR vitreous triggers a potent angiogenic/inflammatory response in vivo. Notably, the different capacity of individual PDR vitreous samples to induce neovessel formation in the CAM correlates with their ability to recruit infiltrating CD45(+) cells. Finally, the FPR inhibitor Boc-FLFLF and the novel FPR antagonist UPARANT inhibit neovessel formation and inflammatory responses triggered by PDR vitreous in the CAM assay. This study provides evidence that inflammation mediates the angiogenic activity of PDR vitreous and paves the way for the development of FPR-targeting anti-inflammatory/anti-angiogenic approaches for PDR

  8. Angiogenic biomarkers in pregnancy

    DEFF Research Database (Denmark)

    Rasmussen, Lene G; Lykke, Jacob A; Staff, Anne C

    2015-01-01

    We review diagnostic and predictive roles of the angiogenic proteins placental growth factor, soluble fms-like tyrosine kinase 1, and soluble endoglin in preeclampsia, and their association with future cardiovascular disease, diabetes, and breast cancer. Specific patterns of these proteins repres...

  9. Phenylboronic acid-sugar grafted polymer architecture as a dual stimuli-responsive gene carrier for targeted anti-angiogenic tumor therapy.

    Science.gov (United States)

    Kim, Jinhwan; Lee, Yeong Mi; Kim, Hyunwoo; Park, Dongsik; Kim, Jihoon; Kim, Won Jong

    2016-01-01

    We present a cationic polymer architecture composed of phenylboronic acid (PBA), sugar-installed polyethylenimine (PEI), and polyethylene glycol (PEG). The chemical bonding of PBA with the diol in the sugar enabled the crosslinking of low-molecular-weight (MW) PEI to form high-MW PEI, resulting in strong interaction with anionic DNA for gene delivery. Inside the cell, the binding of PBA and sugar was disrupted by either acidic endosomal pH or intracellular ATP, so gene payloads were released effectively. This dual stimuli-responsive gene release drove the polymer to deliver DNA for high transfection efficiency with low cytotoxicity. In addition, PBA moiety with PEGylation facilitated the binding of polymer/DNA polyplexes to sialylated glycoprotein which is overexpressed on the tumor cell membrane, and thus provided high tumor targeting ability. Therapeutic application of our polymer was demonstrated as an anti-angiogenic gene delivery agent for tumor growth inhibition. Our judicious designed polymer structure based on PBA provides enormous potential as a gene delivery agent for effective gene therapy by stimuli-responsiveness and tumor targeting.

  10. Tumour biology: Herceptin acts as an anti-angiogenic cocktail

    Science.gov (United States)

    Izumi, Yotaro; Xu, Lei; di Tomaso, Emmanuelle; Fukumura, Dai; Jain, Rakesh K.

    2002-03-01

    Malignant tumours secrete factors that enable them to commandeer their own blood supply (angiogenesis), and blocking the action of these factors can inhibit tumour growth. But because tumours may become resistant to treatments that target individual angiogenic factors by switching over to other angiogenic molecules, a cocktail of multiple anti-angiogenic agents should be more effective. Here we show that herceptin, a monoclonal antibody against the cell-surface receptor HER2 (for human epidermal growth factor receptor-2; ref. 4), induces normalization and regression of the vasculature in an experimental human breast tumour that overexpresses HER2 in mice, and that it works by modulating the effects of different pro- and anti-angiogenic factors. As a single agent that acts against multiple targets, herceptin, or drugs like it, may offer a simple alternative to combination anti-angiogenic treatments.

  11. 缺氧诱导因子-1α对创伤性脑损伤大鼠炎性反应和血管生成因子表达的影响%Effect of hypoxia-inducible factor-1α on inflammatory response and angiogenic factor expression in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    靳春杰; 方贵龙; 权伟; 江荣才; 张建宁

    2016-01-01

    目的 探讨大鼠创伤性脑损伤(TBI)后缺氧诱导因子-1α(HIF-1α)表达对神经血管的保护作用. 方法 液压打击仪建立大鼠TBI模型,按随机数字表法将600只大鼠分为假手术组、TBI组、TBI+ HIF-1α沉默表达组及TBI+对照病毒颗粒组,每组150只.TBI组利用液压打击造成大鼠脑组织脑挫裂伤模型;假手术组只开颅不进行打击;HIF-α沉默表达组打击前24h注射携带HIF-α沉默基因的病毒颗粒;对照病毒颗粒组打击前24h注射未携带HIF-α沉默基因的病毒颗粒.TBI后3,7,14d观察:(1)HE染色观察TBI脑组织损伤水肿面积和损伤区形态结构变化;(2) Western blot检测大鼠血管内皮细胞标记物(vWF)和HIF-1 α的表达变化;(3)酶联免疫吸附(ELISA)法检测外周血及脑组织血管内皮生长因子(VEGF)、基质金属蛋白酶-9(MMP-9)、核因子-κB(NF-κB)、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)的表达变化;(4)使用改良大鼠神经功能缺损评分(mNSS)对大鼠的神经功能变化进行动态评估. 结果 (1)HE染色:HIF-1沉默组脑组织损伤水肿面积伤后3~14 d均大于TBI组(P<0.05).(2)Western blot检测:与假手术组、对照病毒颗粒组比较,TBI组HIF-1α表达逐渐升高,至伤后7,14 d水平仍较高(P<0.05);与TBI组比较,HIF-1α沉默组3个时相点vWF表达均降低(P<0.05),抑制血管形成.(3) ELISA法检测:与TBI组比较,HIF-1α沉默组VEGF显著降低(P<0.05),而TNF-α、IL-6、NF-κB均表达升高(P<0.05),MMP-9在7~14 d表达亦升高(P<0.05).(4) mNSS评分:与TBI组比较,HIF-1 α沉默组7~14d差异有统计学意义(P<0.05). 结论 TBI后大鼠HIF-1α高表达,利于血管形成和抑制炎性反应相关因子表达,从而减轻脑水肿和脑损伤.促HIF-1 α表达可能为改善TBI后神经血管损伤提供新的手段.%Objective To investigate the protective effect of hypoxia-inducible factor-1α(HIF-1 α) on the neurovascular unit in rats with traumatic

  12. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  13. hCG stimulates angiogenic signals in lymphatic endothelial and circulating angiogenic cells.

    Science.gov (United States)

    Schanz, Andrea; Lukosz, Margarete; Hess, Alexandra P; Baston-Büst, Dunja M; Krüssel, Jan S; Heiss, Christian

    2015-08-01

    Human chorionic gonadotropin (hCG) has long been associated with the initiation and maintenance of pregnancy, where angiogenesis plays an important role. However, the function of hCG in angiogenesis and the recruitment of vascular active cells are not fully understood. In this study, the role of hCG and its receptor in circulating angiogenic and human endothelial cells, including lymphatic, uterine microvascular, and umbilical vein endothelial cells, was examined. Immunohistochemistry and immunoblot analysis were used to detect LH/hCG receptor expression and the expression of hCG-induced angiogenic molecules. HIF-1α was determined via ELISA and downstream molecules, such as CXCL12 and CXCR4, via real-time PCR. Chemotaxis was analyzed using Boyden chambers. Our results show that the LH/hCG receptor was present in all tested cells. Furthermore, hCG was able to stimulate LH/hCG-receptor-specific migration in a dose-dependent fashion and induce key angiogenic molecules, including HIF-1α, CXCL12, and CXCR4. In conclusion, our findings underscore the importance of hCG as one of the first angiogenic molecules produced by the conceptus. hCG itself alters endothelial motility, recruitment, and expression of pro-angiogenic molecules and may therefore play an important role in vascular adaption during implantation and early placental formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Angiogenic efficacy of Heparin on chick chorioallantoic membrane

    Directory of Open Access Journals (Sweden)

    Rema Reji

    2012-04-01

    Full Text Available Abstract Heparin is an anticoagulant agent known to have diverse effects on angiogenesis with some reports suggesting that it can induce angiogenesis while a few have indicated of its inhibitory property. Cancer patients treated for venous thromboembolism with low molecular heparin had a better survival than the unfractionated heparin (UFH. Heparin is known to interact with various angiogenic growth factors based on its sulfation modifications within the glycosaminoglycan chains. Therefore it is important to study the mechanism of action of heparin of different molecular weight to understand its angiogenic property. In this concern, we examined the angiogenic response of higher molecular weight Heparin (15 kDa of different concentrations using late CAM assay. Growth of blood vessels in terms of their length and size was measured and thickness of the CAM was calculated morphometrically. The observed increase in the thickness of the CAM is suggestive of the formation of capillary like structures at the treated region. Analysis of the diffusion pattern showed internalized action of heparin that could affect gene expression leading to proliferation of endothelial cells. Angiogenesis refers to formation of new blood vessels from the existing ones and occurrence of new blood vessels at the treated area strongly confirms that heparin of 15 kDa molecular weight has the ability to induce angiogenesis on CAM vascular bed in a dose dependent manner. The results demonstrate the affinity of heparin to induce angiogenesis and provide a novel mechanism by which heparin could be used in therapeutics such as in wound healing process.

  15. Angiogenic factors in relation to embryo implantation

    Directory of Open Access Journals (Sweden)

    Azadeh Bagheri

    2014-08-01

    Full Text Available Disturbances in uterine blood supply are associated with higher perinatal morbidity and mortality caused by preterm delivery, preeclampsia or intrauterine growth restriction. Adaptation of the uterine vasculature to the rising needs of the fetus occurs through both vasodilation and development of new vessels. Angiogenesis is the process of neovascularization from pre-existing blood vessels in response to hypoxic condition of tissues. The endometrium, decidua and placenta are rich sources of angiogenic growth factors. In general, the angiogenic process is initiated by growth factors such as VEGF, placental growth factor (PlGF or bFGF. Through a complex signal transduction machinery mediated by respective receptor-tyrosine kinases, an increase in the permeability of the maternal vessels is achieved to permit growth and invasion of endothelial cells. Their chemotactic migration, formation of a vessel lumen, and functional maturation of new capillaries complete the angiogenic process that involves the expression of specific adhesion receptors and extracellular matrix-degrading proteases. During vasculogenesis, endothelial progenitor cells--angioblasts--form a primitive vascular network. This process occurs mainly during fetal development, although recruitment of angioblasts from bone marrow and peripheral blood in response to ischemic insult have been described in adults. In this review article we have described a recent complication related to angiogenic involvement in embryo implantation. [Int J Reprod Contracept Obstet Gynecol 2014; 3(4.000: 872-879

  16. The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Kim, Min-Young; Shin, Soon Shik; Yoon, Michung

    2016-02-03

    Melissa officinalis L. (Labiatae; lemon balm) has been used traditionally and contemporarily as an anti-stress herb. Current hypotheses suggest that not only chronic stress promotes angiogenesis, but angiogenesis also modulates adipogenesis and obesity. Because the herbal extract ALS-L1023 from M. officinalis L. (Labiatae; lemon balm) has an anti-angiogenic activity, we hypothesized that ALS-L1023 could inhibit adipogenesis and adipocyte hypertrophy. ALS-L1023 was prepared by a two-step organic solvent fractionation from M. officinalis. The effects of ALS-L1023 on adipogenesis in 3T3-L1 adipocytes and adipocyte hypertrophy in high fat diet (HFD)-fed obese mice were measured using in vivo and in vitro approaches. ALS-L1023 inhibited angiogenesis in a dose-dependent manner in the HUVEC tube formation assay in vitro. Treatment of cells with ALS-L1023 inhibited lipid accumulation and adipocyte-specific gene expression caused by troglitazone or MDI differentiation mix. ALS-L1023 reduced mRNA expression of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9) in differentiated cells. In contrast, mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) increased. Protease activity, as measured by zymography, showed that activity of MMP-2 and MMP-9 decreased in ALS-L1023-treated cells. ALS-L1023 also inhibited MMP-2 and MMP-9 reporter gene expression in the presence of the MMP inducer phorbol 12-myristate 13-acetate. An in vivo study showed that ALS-L1023 not only decreased adipose tissue mass and adipocyte size, but also reduced mRNA levels of adipose tissue angiogenic factors and MMPs in HFD-fed obese mice. These results suggest that the anti-angiogenic herbal extract ALS-L1023 suppresses adipogenesis and adipocyte hypertrophy, and this effect may be mediated by inhibiting angiogenesis and MMP activities. Thus, by curbing adipogenesis, anti-angiogenic ALS-L1023 yields a possible therapeutic choice for the prevention and treatment of human obesity and

  17. COLORECTAL CANCER WITH LIVER METASTASIS AND TREATMENT WITH ANTI-ANGIOGENIC DRUGS: RESPONSE EVALUATION WITH DIFFUSION-WEIGHTED MRI

    Directory of Open Access Journals (Sweden)

    Iside Alessi

    2012-03-01

    Full Text Available Colorectal cancer is the third most common malignancy and the third leading cause of cancer-related death worldwide. Recently, the introduction of novel drugs (antiangiogenic drugs has led to a significant improvement in the survival rates of patients with metastatic colorectal cancer. The RECIST (Response Evaluation Criteria for Solid Tumors parameters cannot adequately detect important effects of treatment and response to the application of these new drugs. New radiologic methods, such as diffusionweighted MRI, could help to assess the quality and quantity of the response more accurately. Diffusion-weighted MRI imaging is based on a technique sensitive to the Brownian motion of water molecules over short distances. This article describes our experience with this method in patients with liver metastasis from colorectal cancer after treatment with bevacizumab.

  18. KSHV Induction of Angiogenic and Lymphangiogenic Phenotypes

    Directory of Open Access Journals (Sweden)

    Terri A. DiMiao

    2012-03-01

    Full Text Available Kaposi’s Sarcoma is a highly vascularized tumor supporting large amounts of neo-angiogenesis. The major cell type in KS tumors is the spindle cell, a cell that expresses markers of lymphatic endothelium. KSHV, the etiologic agent of KS, is found in the spindle cells of all KS tumors. Considering the extreme extent of angiogenesis in KS tumors at all stages it has been proposed that KSHV directly induces angiogenesis in a paracrine fashion. In accordance with this theory, KSHV infection of endothelial cells in culture induces a number of host pathways involved in activation of angiogenesis and a number of KSHV genes themselves can induce pathways involved in angiogenesis. Because spindle cells are phenotypically endothelial in nature, activation through the induction of angiogenic and/or lymphangiogenic phenotypes by the virus may also be directly involved in spindle cell growth and tumor induction. Accordingly, KSHV infection of endothelial cells induces cell autonomous angiogenic phenotypes to activate host cells. KSHV infection can also reprogram blood endothelial cells to lymphatic endothelium. However, KSHV induces some blood endothelial specific genes upon infection of lymphatic endothelial cells creating a phenotypic intermediate between blood and lymphatic endothelium. Induction of pathways involved in angiogenesis and lymphangiogenesis are likely to be critical for tumor cell growth and spread. Thus, induction of both cell autonomous and non-autonomous changes in angiogenic and lymphangiogenic pathways by KSHV likely plays a key role in the formation of KS tumors.

  19. The angiogenic response to PLL-g-PEG-mediated HIF-1α plasmid DNA delivery in healthy and diabetic rats.

    Science.gov (United States)

    Thiersch, Markus; Rimann, Markus; Panagiotopoulou, Vasiliki; Öztürk, Ece; Biedermann, Thomas; Textor, Marcus; Lühmann, Tessa C; Hall, Heike

    2013-05-01

    Impaired angiogenesis is a major clinical problem and affects wound healing especially in diabetic patients. Improving angiogenesis is a reasonable strategy to increase diabetes-impaired wound healing. Recently, our lab described a system of transient gene expression due to pegylated poly-l-lysine (PLL-g-PEG) polymer-mediated plasmid DNA delivery in vitro. Here we synthesized peptide-modified PLL-g-PEG polymers with two functionalities, characterized them in vitro and utilized them in vivo via a fibrin-based delivery matrix to induce dermal wound angiogenesis in diabetic rats. The two peptides were 1) a TG-peptide to covalently bind these nanocondensates to the fibrin matrix (TG-peptide) for a sustained release and 2) a polyR peptide to improve cellular uptake of these nanocondensates. In order to induce angiogenesis in vivo we condensed modified and non-modified polymers with plasmid DNA encoding a truncated form of the therapeutic candidate gene hypoxia-inducible transcription factor 1α (HIF-1α). HIF-1α is the primarily oxygen-dependent regulated subunit of the heterodimeric transcription factor HIF-1, which controls angiogenesis among other physiological pathways. The truncated form of HIF-1α lacks the oxygen-dependent degradation domain (ODD) and therefore escapes degradation under normoxic conditions. PLL-g-PEG polymer-mediated HIF-1α-ΔODD plasmid DNA delivery was found to lead to a transiently induced gene expression of angiogenesis-related genes Acta2 and Pecam1 as well as the HIF-1α target gene Vegf in vivo. Furthermore, HIF-1α gene delivery was shown to enhance the number endothelial cells and smooth muscle cells - precursors for mature blood vessels - during wound healing. We show that - depending on the selection of the therapeutic target gene - PLL-g-PEG nanocondensates are a promising alternative to viral DNA delivery approaches, which might pose a risk to health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor

    NARCIS (Netherlands)

    Ferreras, C.; Rushton, G.; Cole, C.L.; Babur, Muhammad; Telfer, B.A.; Kuppevelt, A.H. van; Gardiner, J.M.; Williams, K.J.; Jayson, G.C.; Avizienyte, E.

    2012-01-01

    Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF(165)) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FG

  1. Clinical observation on hypertension induced by anti-angiogenic agents for cancer%肿瘤抗血管生成药物致高血压的临床观察

    Institute of Scientific and Technical Information of China (English)

    杨柳青; 陈映霞; 秦叔逵; 王琳; 华海清; 刘秀峰; 王耀

    2014-01-01

    antihypertensive therapy was conducted. The risk factor for the occurrence of hypertension was evaluated by u-sing univariate analysis and Logistic regression analysis. Results The incidence of hypertension was 29�0% in 169 patients receiving anti-angiogenic agents, and among of which, incidence of gradeⅢwas 44�9%. The earlist medium time from the initiation of treatment to the occurrence of hypertension was 4�5 days and that of the grade Ⅲ hypertension was 11�0 days. The hypertension was controlled well after antihypertensive treatment. No serious hypertensive crisis was observed. The risk of hypertension medical history and kidney cancer had advantages at 4�494- and 2�541-fold as independent factors for predicting hypertension with statistical differences ( P<0�05) . Conclusion The incidence of hypertension induced by anti-angiogenic agents was high. The severity of hypertension was most-ly moderate, and the response to antihypertensive treatment is satisfying. Hypertension medical history and kidney cancer were inde-pendent predictor factors for the occurrence of hypertension after anti-angiogenic treatment.

  2. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  3. The inhibition of MAPK potentiates the anti-angiogenic efficacy of mTOR inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Dormond-Meuwly, Anne; Roulin, Didier; Dufour, Marc; Benoit, Michael; Demartines, Nicolas [Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Pavillon 3, Av. de Beaumont, 1011 Lausanne (Switzerland); Dormond, Olivier, E-mail: olivier.dormond@chuv.ch [Department of Visceral Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Pavillon 3, Av. de Beaumont, 1011 Lausanne (Switzerland)

    2011-04-22

    Highlights: {yields} Targeting mTOR in endothelial cell activates MAPK. {yields} Blocking MAPK enhances the anti-angiogenic effects of mTOR inhibitors. {yields} The anti-angiogenic efficacy of ATP-competitive inhibitors of mTOR is superior to that of rapamycin. -- Abstract: The mammalian target of rapamycin (mTOR) which is part of two functionally distinct complexes, mTORC1 and mTORC2, plays an important role in vascular endothelial cells. Indeed, the inhibition of mTOR with an allosteric inhibitor such as rapamycin reduces the growth of endothelial cell in vitro and inhibits angiogenesis in vivo. Recent studies have shown that blocking mTOR results in the activation of other prosurvival signals such as Akt or MAPK which counteract the growth inhibitory properties of mTOR inhibitors. However, little is known about the interactions between mTOR and MAPK in endothelial cells and their relevance to angiogenesis. Here we found that blocking mTOR with ATP-competitive inhibitors of mTOR or with rapamycin induced the activation of the mitogen-activated protein kinase (MAPK) in endothelial cells. Downregulation of mTORC1 but not mTORC2 had similar effects showing that the inhibition of mTORC1 is responsible for the activation of MAPK. Treatment of endothelial cells with mTOR inhibitors in combination with MAPK inhibitors reduced endothelial cell survival, proliferation, migration and tube formation more significantly than either inhibition alone. Similarly, in a tumor xenograft model, the anti-angiogenic efficacy of mTOR inhibitors was enhanced by the pharmacological blockade of MAPK. Taken together these results show that blocking mTORC1 in endothelial cells activates MAPK and that a combined inhibition of MAPK and mTOR has additive anti-angiogenic effects. They also provide a rationale to target both mTOR and MAPK simultaneously in anti-angiogenic treatment.

  4. Evaluation of the in vitro and in vivo angiogenic effects of exendin-4

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye-Min [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Kang, Yujung; Chun, Hyung J. [Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (United States); Jeong, Joo-Won [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Park, Chan, E-mail: psychan@khu.ac.kr [Department of Anatomy and Neurobiology, Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2013-04-26

    Highlights: •We investigated the effects of exendin-4 on the angiogenic process. •Exendin-4 increased migration, sprouting, and tube formation by HUVECs in in vitro. •Exendin-4 increased sprouts in aortic rings and induced new vessels in Matrigel in in vivo. •Exendin-4 may be of potential use for the treatment of vascular complications of diabetes. -- Abstract: Exendin-4, an analog of glucagon-like peptide (GLP)-1, has beneficial effects on cardiovascular disease induced by diabetes mellitus (DM). Recently, exendin-4 was reported to induce the proliferation of endothelial cells. However, its angiogenic effect on endothelial cells has not been clearly evaluated. Therefore, we investigated the effects of exendin-4 on the angiogenic process with respect to migration, sprouting, and neovascularization using in vitro and in vivo assays. Treatment with exendin-4 increased the migration of human umbilical vein endothelial cells (HUVECs) in in vitro scratch wound assays, as well as the number of lumenized vessels sprouting from HUVECs in in vitro 3D bead assays. These responses were abolished by co-treatment with exendin (9–39), a GLP-1 receptor antagonist, which suggests that exendin-4 regulates endothelial cell migration and tube formation in a GLP-1 receptor-dependent manner. In an ex vivo assay, treatment of aortic rings with exendin-4 increased the sprouting of endothelial cells. Exendin-4 also significantly increased the number of new vessels and induced blood flow in Matrigel plugs in in vivo assays. Our results provide clear evidence for the angiogenic effect of exendin-4 in in vitro and in vivo assays and provide a mechanism underlying the cardioprotective effects of exendin-4.

  5. Ras activation in Hirudo medicinalis angiogenic process

    Directory of Open Access Journals (Sweden)

    R Valvassori

    2013-02-01

    Full Text Available In some leeches like Hirudo medicinalis, any kind of stimulation (surgical wound or growth factor injection provokes the botryoidal tissue response. This peculiar tissue, localized in the loose connective tissue between gut and body wall, is formed by granular botryoidal cells and flattened endothelial-like cells. Under stimulation, the botryoidal tissue changes its shape to form new capillaries. In mammals, the molecular regulation of the angiogenic phenotype requires coordinated input from a number of signalling molecules: among them the GTPase Ras is one of the major actor. In our current study, we determine whether Ras activation alone would be sufficient to drive vessels formation from leech botryoidal tissue. Our findings indicate that assembly and disassembly of actin filaments regulated by Ras protein is involved in morphological modification of botryoidal tissue cells during leech angiogenic process.

  6. Genetic Variant of BDNF (Val66Met) Polymorphism Attenuates Stroke-Induced Angiogenic Responses by Enhancing Anti-Angiogenic Mediator CD36 Expression

    OpenAIRE

    Qin, Luye; Kim, Eunhee; Ratan, Rajiv; Lee, Francis S.; Cho, Sunghee

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to be necessary and sufficient for post-stroke recovery in rodents. From these observations, we and others have hypothesized that a common single nucleotide polymorphism (SNP) in the pro-domain of bdnf that leads to a methionine (Met) substitution for valine (Val) at codon 66 (Val66Met) will affect stroke outcome. Here we investigate the effect of the BDNF genetic variant on ischemic outcome by using mice with a genetic knock-in of the h...

  7. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  8. SIRT1 Inhibition Affects Angiogenic Properties of Human MSCs

    Directory of Open Access Journals (Sweden)

    Botti Chiara

    2014-01-01

    Full Text Available Human mesenchymal stem cells (hMSCs are attractive for clinical and experimental purposes due to their capability of self-renewal and of differentiating into several cell types. Autologous hMSCs transplantation has been proven to induce therapeutic angiogenesis in ischemic disorders. However, the molecular mechanisms underlying these effects remain unclear. A recent report has connected MSCs multipotency to sirtuin families, showing that SIRT1 can regulate MSCs function. Furthermore, SIRT1 is a critical modulator of endothelial angiogenic functions. Here, we described the generation of an immortalized human mesenchymal bone marrow-derived cell line and we investigated the angiogenic phenotype of our cellular model by inhibiting SIRT1 by both the genetic and pharmacological level. We first assessed the expression of SIRT1 in hMSCs under basal and hypoxic conditions at both RNA and protein level. Inhibition of SIRT1 by sirtinol, a cell-permeable inhibitor, or by specific sh-RNA resulted in an increase of premature-senescence phenotype, a reduction of proliferation rate with increased apoptosis. Furthermore, we observed a consistent reduction of tubule-like formation and migration and we found that SIRT1 inhibition reduced the hypoxia induced accumulation of HIF-1α protein and its transcriptional activity in hMSCs. Our findings identify SIRT1 as regulator of hypoxia-induced response in hMSCs and may contribute to the development of new therapeutic strategies to improve regenerative properties of mesenchymal stem cells in ischemic disorders through SIRT1 modulation.

  9. Leptin’s Pro-Angiogenic Signature in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Ruben Rene, E-mail: rgonzalez@msm.edu; Lanier, Viola; Newman, Gale [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW., Atlanta, GA 30310 (United States)

    2013-09-06

    Obesity is linked to increased incidence of breast cancer. The precise causes and mechanisms of these morbid relationships are unknown. Contradictory data on leptin angiogenic actions have been published. However, accumulating evidence would suggest that leptin’s pro-angiogenic effects in cancer play an essential role in the disease. Leptin, the main adipokine secreted by adipose tissue, is also abnormally expressed together with its receptor (OB-R) by breast cancer cells. Leptin induces proliferation and angiogenic differentiation of endothelial cells upregulates VEGF/VEGFR2 and transactivates VEGFR2 independent of VEGF. Leptin induces two angiogenic factors: IL-1 and Notch that can increase VEGF expression. Additionally, leptin induces the secretion and synthesis of proteases and adhesion molecules needed for the development of angiogenesis. Leptin’s paracrine actions can further affect stromal cells and tumor associated macrophages, which express OB-R and secrete VEGF and IL-1, respectively. A complex crosstalk between leptin, Notch and IL-1 (NILCO) that induces VEGF/VEGFR2 is found in breast cancer. Leptin actions in tumor angiogenesis could amplify, be redundant and/or compensatory to VEGF signaling. Current failure of breast cancer anti-angiogenic therapies emphasizes the necessity of targeting the contribution of other pro-angiogenic factors in breast cancer. Leptin’s impact on tumor angiogenesis could be a novel target for breast cancer, especially in obese patients. However, more research is needed to establish the importance of leptin in tumor angiogenesis. This review is focused on updated information on how leptin could contribute to tumor angiogenesis.

  10. Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Daniela S. Ardelean

    2015-02-01

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular dysplastic disorder, characterized by recurrent nosebleeds (epistaxis, multiple telangiectases and arteriovenous malformations (AVMs in major organs. Mutations in Endoglin (ENG or CD105 and Activin receptor-like kinase 1 (ACVRL1 or ALK1 genes of the TGF-β superfamily receptors are responsible for HHT1 and HHT2 respectively and account for the majority of HHT cases. Haploinsufficiency in ENG and ALK1 is recognized at the underlying cause of HHT. However, the mechanisms responsible for the predisposition to and generation of AVMs, the hallmark of this disease, are poorly understood. Recent data suggest that dysregulated angiogenesis contributes to the pathogenesis of HHT and that the vascular endothelial growth factor, VEGF, may be implicated in this disease, by modulating the angiogenic balance in the affected tissues. Hence, anti-angiogenic therapies that target the abnormal vessels and restore the angiogenic balance are candidates for treatment of HHT. Here we review the experimental evidence for dysregulated angiogenesis in HHT, the anti-angiogenic therapeutic strategies used in animal models and some patients with HHT and the potential benefit of the anti-angiogenic treatment for ameliorating this severe, progressive vascular disease.

  11. A subset of patients with acute myeloid leukemia has leukemia cells characterized by chemokine responsiveness and altered expression of transcriptional as well as angiogenic regulators

    Directory of Open Access Journals (Sweden)

    Annette Katharina Brenner

    2016-05-01

    Full Text Available Acute myeloid leukemia (AML is an aggressive and heterogeneous bone marrow malignancy, the only curative treatment being intensive chemotherapy eventually in combination with allogeneic stem cell transplantation. Both the AML and their neighboring stromal cells show constitutive chemokine release, but chemokines seem to function as regulators of AML cell proliferation only for a subset of patients. Chemokine targeting is therefore considered not only for immunosuppression in allotransplanted patients, but also as a possible antileukemic strategy in combination with intensive chemotherapy or as part of disease-stabilizing treatment at least for the subset of patients with chemokine-responsive AML cells. In this study we characterized more in detail the leukemia cell phenotype of the chemokine-responsive patients. We investigated primary AML cells derived from 79 unselected patients. Standardized in vitro suspension cultures were used to investigate AML cell proliferation, and global gene expression profiles were compared for chemokine responders and non-responders identified through the proliferation assays. CCL28-induced growth modulation was used as marker of chemokine responsiveness, and 38 patients were then classified as chemokine- responsive. The effects of exogenous CCL28 (growth inhibition/enhancement/no effect thus differed among patients and was also dependent on the presence of exogenous hematopoietic growth factors as well as constitutive AML cell cytokine release. The effect of CCR1 inhibition in the presence of chemokine-secreting mesenchymal stem cells also differed among patients. Chemokine-responsive AML cells showed altered expression of genes important for (i epigenetic transcriptional regulation, particularly lysine acetylation; (ii helicase activity, especially DExD/H RNA helicases; and (iii angioregulatory proteins important for integrin-binding. Thus, chemokine responsiveness is part of a complex AML cell phenotype with

  12. Angiogenic profile of uveal melanoma.

    NARCIS (Netherlands)

    Notting, I.C.; Missotten, G.S.; Sijmons, B.; Boonman, Z.F.; Keunen, J.E.E.; Pluijm, G. van der

    2006-01-01

    Uveal melanoma develops in one of the most capillary-rich tissues of the body and is disseminated hematogenously. Knowledge of the nature and the spatiotemporal expression of angiogenic factors in uveal melanoma is essential to the development of new treatment strategies, especially with regard to i

  13. Angiogenic activity of latex from Euphorbia tirucalli Linnaeus 1753 (Plantae, Euphorbiaceae).

    Science.gov (United States)

    Bessa, G; Melo-Reis, P R; Araújo, L A; Mrué, F; Freitas, G B; Brandão, M L; Silva Júnior, N J

    2015-08-01

    To assess the pro-angiogenic activity of Euphorbia tirucalli, commonly known as "avelós" plant, we performed a series of tests by applying an aqueous E. tirucalli latex solution (10 mg/mL) to the chorioallantoic membranes (CAMs) of 80 fertilized chicken eggs incubated in a temperature- and humidity-controlled automatic incubator. The results indicated that the aqueous latex solution increased vascular network formation compared to that with the negative control (p latex solution induced an inflammatory response leading to neoangiogenesis.

  14. Angiogenic activity of latex from Euphorbia tirucalliLinnaeus 1753 (Plantae, Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    G Bessa

    Full Text Available AbstractTo assess the pro-angiogenic activity of Euphorbia tirucalli, commonly known as “avelós” plant, we performed a series of tests by applying an aqueous E. tirucalli latex solution (10 mg/mL to the chorioallantoic membranes (CAMs of 80 fertilized chicken eggs incubated in a temperature- and humidity-controlled automatic incubator. The results indicated that the aqueous latex solution increased vascular network formation compared to that with the negative control (p < 0.05 and the inhibitor control (p < 0.05. This suggests that under the experimental conditions tested, the aqueous latex solution induced an inflammatory response leading to neoangiogenesis.

  15. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation.

    Directory of Open Access Journals (Sweden)

    Joanne E McBane

    Full Text Available Islet transplantation to treat type 1 diabetes (T1D has shown varied long-term success, due in part to insufficient blood supply to maintain the islets. In the current study, collagen and collagen:chitosan (10:1 hydrogels, +/- circulating angiogenic cells (CACs, were compared for their ability to produce a pro-angiogenic environment in a streptozotocin-induced mouse model of T1D. Initial characterization showed that collagen-chitosan gels were mechanically stronger than the collagen gels (0.7 kPa vs. 0.4 kPa elastic modulus, respectively, had more cross-links (9.2 vs. 7.4/µm(2, and were degraded more slowly by collagenase. After gelation with CACs, live/dead staining showed greater CAC viability in the collagen-chitosan gels after 18 h compared to collagen (79% vs. 69%. In vivo, collagen-chitosan gels, subcutaneously implanted for up to 6 weeks in a T1D mouse, showed increased levels of pro-angiogenic cytokines over time. By 6 weeks, anti-islet cytokine levels were decreased in all matrix formulations ± CACs. The 6-week implants demonstrated increased expression of VCAM-1 in collagen-chitosan implants. Despite this, infiltrating vWF(+ and CXCR4(+ angiogenic cell numbers were not different between the implant types, which may be due to a delayed and reduced cytokine response in a T1D versus non-diabetic setting. The mechanical, degradation and cytokine data all suggest that the collagen-chitosan gel may be a suitable candidate for use as a pro-angiogenic ectopic islet transplant site.

  16. Computational systems biology approaches to anti-angiogenic cancer therapeutics.

    Science.gov (United States)

    Finley, Stacey D; Chu, Liang-Hui; Popel, Aleksander S

    2015-02-01

    Angiogenesis is an exquisitely regulated process that is required for physiological processes and is also important in numerous diseases. Tumors utilize angiogenesis to generate the vascular network needed to supply the cancer cells with nutrients and oxygen, and many cancer drugs aim to inhibit tumor angiogenesis. Anti-angiogenic therapy involves inhibiting multiple cell types, molecular targets, and intracellular signaling pathways. Computational tools are useful in guiding treatment strategies, predicting the response to treatment, and identifying new targets of interest. Here, we describe progress that has been made in applying mathematical modeling and bioinformatics approaches to study anti-angiogenic therapeutics in cancer.

  17. Immunomodulatory Glc/Man-directed Dolichos lablab Lectin (DLL) evokes anti-tumor response in-vivo by counteracting angiogenic gene expressions.

    Science.gov (United States)

    Vigneshwaran, V; Thirusangu, Prabhu; Br, Vijay Avin; Krishna, V; Pramod, Siddanakoppalu N; Prabhakar, B T

    2017-03-07

    Neovascularization and jeopardized immunity has been critically emphasized for the establishment of malignant progression. Lectins are the diverse class of carbohydrate interacting proteins having great potential as immunopotentiating and anticancer agents. The present investigation sought to demonstrate the antiproliferative activity of Dolichos lablab lectin (DLL) encompassing immunomodulatory attribute. DLL specific to glucose and mannose carbohydrate moieties has been purified to homogeneity from the common dietary legume Dolichos lablab. Results elucidated that DLL nonspecifically agglutinated blood cells and displayed striking mitogenecity to human and murine lymphocytes in-vitro with IL-2 production. The DLL conditioned medium exerted cytotoxicity towards malignant cells and neoangiogenesis in-vitro. Similarly, in-vivo antitumor investigation of DLL elucidated the regressed proliferation of ascitic and solid tumor cells which was paralleled with blockade of tumor neovasculature. DLL treated mice showed an upregulated immunoregulatory cytokine IL-2 in contrast to severely declined levels in control mice. Mechanistic validation revealed that DLL has abrogated the microvessel formation by weakening the proangiogenic signals specifically NF-κB, HIF-1 α, MMP-2&9 and VEGF in malignant cells leading to tumor regression. In summary, it is evident that the dietary lectin DLL potentially dampens the malignant establishment by mitigating neo-angiogenesis and immune shutdown. This study for the first time dictates the critical role of DLL as an immunostimulatory and anti-angiogenic molecule in cancer therapeutics. This article is protected by copyright. All rights reserved.

  18. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    National Research Council Canada - National Science Library

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    ... (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed...

  19. Polychlorinated biphenyls target Notch/Dll and VEGF R2 in the mouse placenta and human trophoblast cell lines for their anti-angiogenic effects

    Science.gov (United States)

    Kalkunte, Satyan; Huang, Zheping; Lippe, Eliana; Kumar, Sunil; Robertson, Larry W.; Sharma, Surendra

    2017-01-01

    The intrauterine environment is particularly vulnerable to environmental exposures. We previously established a mouse model that provided evidence for pregnancy complications and placental anti-angiogenesis in response to Aroclor 1254 (A-1254), a mixture of polychlorinated biphenyls (PCBs). Importantly, these effects were observed in IL-10−/−, but not wild type, mice, suggesting that IL-10 deficiency predisposes to pregnancy disruptive effects of environmental toxicants. However, the mechanisms by which PCBs cause anti-angiogenic effects are unclear. Here, we evaluated PCB-mediated anti-angiogenic effects by diverse but complementary approaches, including HUVEC-mediated trophoblast invasion in nude mice, in vitro three-dimensional capillary tube formation involving HUVEC and/or HTR8 trophoblasts, and aortic ring endothelial cell outgrowth/sprouting. Taken together, our data suggest that PCBs act as potent anti-angiogenic agents. Importantly, we show that treatment of pregnant IL-10−/− mice with A-1254 resulted in placental activation of the Notch/Delta-like ligand (Dll) pathway, a master regulator of cell-cell interaction and vascular patterning. Similar results were obtained with HUVEC and HTR8 trophoblasts. Rescue of A-1254-induced disruption of HUVEC-based tube formation by γ-secretase inhibitor L1790 confirmed the critical role of the Notch/Dll pathway. Our data suggest that PCBs impart pregnancy disruptive functions by activating the Notch/Dll pathway and by inducing anti-angiogenic effects at the maternal-fetal interface. PMID:28071720

  20. Design principles for therapeutic angiogenic materials

    Science.gov (United States)

    Briquez, Priscilla S.; Clegg, Lindsay E.; Martino, Mikaël M.; Gabhann, Feilim Mac; Hubbell, Jeffrey A.

    2016-01-01

    Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

  1. First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE Analysis: First PIGE Organic Fluorine Imaging

    Directory of Open Access Journals (Sweden)

    Gérard Déléris

    2011-03-01

    Full Text Available PET (Positron Emission Tomography allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose. 18F only allows a relatively poor spatial resolution (2-3 mm which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and pathologic processes and is, for instance, involved in modern anticancer approaches. Thus ability to visualize angiogenesis could allow early diagnosis and help to monitor the response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are required to assess the localization of fluorinated compounds at a micrometric scale. Multimodality imaging approaches could provide accurate information on the metabolic activity of the target tissue. In this article, PIGE method (Particle Induced Gamma-ray Emission was used to determine fluorinated tracers by the nuclear reaction of 19F(p,p′γ19F in tissues. The feasibility of this approach was assessed on polyfluorinated model glucose compounds and novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue and tumor tissue.

  2. First Quantitative Imaging of Organic Fluorine within Angiogenic Tissues by Particle Induced Gamma-Ray Emission (PIGE) Analysis: First PIGE Organic Fluorine Imaging.

    Science.gov (United States)

    Lavielle, Sébastien; Gionnet, Karine; Ortega, Richard; Devès, Guillaume; Kilarski, Victor; Wehbe, Katia; Bikfalvi, Andreas; Déléris, Gérard

    2011-03-09

    PET (Positron Emission Tomography) allows imaging of the in vivo distribution of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG (2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-3 mm) which does not allow imaging of small tumors or specific small size tissues, e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and pathologic processes and is, for instance, involved in modern anticancer approaches. Thus ability to visualize angiogenesis could allow early diagnosis and help to monitor the response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are required to assess the localization of fluorinated compounds at a micrometric scale. Multimodality imaging approaches could provide accurate information on the metabolic activity of the target tissue. In this article, PIGE method (Particle Induced Gamma-ray Emission) was used to determine fluorinated tracers by the nuclear reaction of 19F(p,p'γ)19F in tissues. The feasibility of this approach was assessed on polyfluorinated model glucose compounds and novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue and tumor tissue.

  3. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  4. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  5. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Science.gov (United States)

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  6. Glycation: the angiogenic paradox in aging and age-related disorders and diseases.

    Science.gov (United States)

    Roca, F; Grossin, N; Chassagne, P; Puisieux, F; Boulanger, E

    2014-05-01

    Angiogenesis is generally a quiescent process which, however, may be modified by different physiological and pathological conditions. The "angiogenic paradox" has been described in diabetes because this disease impairs the angiogenic response in a manner that differs depending on the organs involved and disease evolution. Aging is also associated with pro- and antiangiogenic processes. Glycation, the post-translational modification of proteins, increases with aging and the progression of diabetes. The effect of glycation on angiogenesis depends on the type of glycated proteins and cells involved. This complex link could be responsible for the "angiogenic paradox" in aging and age-related disorders and diseases. Using diabetes as a model, the present work has attempted to review the age-related angiogenic paradox, in particular the effects of glycation on angiogenesis during aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Short-term hypoxia/reoxygenation activates the angiogenic pathway in rat caudate putamen

    Indian Academy of Sciences (India)

    F Molina; A Rus; Ma Peinado; ML del Moral

    2013-06-01

    In response to hypoxia, tissues have to implement numerous mechanisms to enhance oxygen delivery, including the activation of angiogenesis. This work investigates the angiogenic response of the hypoxic caudate putamen after several recovery times. Adult Wistar rats were submitted to acute hypoxia and analysed after 0 h, 24 h and 5 days of reoxygenation. Expression of hypoxia-inducible factor-1 alfa (HIF-1) and angiogenesis-related genes including vascular endothelial growth factor (VEGF), adrenomedullin (ADM) and transforming growth factor-beta 1 (TGF-1) was determined by both RT-PCR and ELISA. For vessel labelling, lectin location and expression were analysed using histochemical and image processing techniques (fractal dimension). Expression of Hif-1, Vegf, Adm and Tgf- 1 mRNA rose immediately after hypoxia and this increase persisted in some cases after 5 days post-hypoxia. While VEGF and TGF-1 protein levels increased parallel to mRNA expression, ADM remained unaltered. The quantification of the striatal vessel network showed a significant augmentation at 24 h of reoxygenation. These results reveal that not only short-term hypoxia, but also the subsequent reoxygenation period, up-regulate the angiogenic pathway in the rat caudate putamen as a neuroprotective mechanism to hypoxia that seeks to maintain a proper blood supply to the hypoxic tissue, thereby minimizing the adverse effects of oxygen deprivation.

  8. Characterization of neuritin as a novel angiogenic factor

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dingding; Qin, Bo; Liu, Guoqing; Liu, Tingting; Ji, Guoqing; Wu, Yanhua [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Yu, Long, E-mail: longyu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Neuritin protein has no effect on the endothelial cell proliferation and adhesion. Black-Right-Pointing-Pointer Neuritin protein increases endothelial cell migration. >Neuritin does not increase tumor cell proliferation in vitro. Black-Right-Pointing-Pointer Overexpression of neuritin induces tumor angiogenesis. >Overexpression of neuritin inhibits tumorigenesis. -- Abstract: Neuritin (NRN1), a neurotrophic factor, plays an important role in neurite growth and neuronal survival. In this study, we identify a new function of neuritin as a novel angiogenic factor in vitro and in vivo. Recombinant neuritin protein had no effect on the proliferation and adhesion of human umbilical vein endothelial cells (HUVEC), but it dose-dependently increased endothelial cell migration. Furthermore, overexpression of neuritin significantly promoted tumor angiogenesis, and surprisingly, it inhibited tumor growth in a xenograft tumor model. Thus, our results indicate that neuritin may act as an important angiogenic factor and serve as a potential target for cancer therapy.

  9. The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2011-06-01

    The angiogenic properties of micron-sized (m-BG) and nano-sized (n-BG) bioactive glass (BG) filled poly(D,L lactide) (PDLLA) composites were investigated. On the basis of cell culture work investigating the secretion of vascular endothelial growth factor (VEGF) by human fibroblasts in contact with composite films (0, 5, 10, 20 wt %), porous 3D composite scaffolds, optimised with respect to the BG filler content capable of inducing angiogenic response, were produced. The in vivo vascularisation of the scaffolds was studied in a rat animal model and quantified using stereological analyses. The prepared scaffolds had high porosities (81-93%), permeability (k = 5.4-8.6 × 10-9 m2) and compressive strength values (0.4-1.6 MPa) all in the range of trabecular bone. On composite films containing 20 wt % m-BG or n-BG, human fibroblasts produced 5 times higher VEGF than on pure PDLLA films. After 8 weeks of implantation, m-BG and n-BG containing scaffolds were well-infiltrated with newly formed tissue and demonstrated higher vascularisation and percentage blood vessel to tissue (11.6-15.1%) than PDLLA scaffolds (8.5%). This work thus shows potential for the regeneration of hard-soft tissue defects and increased bone formation arising from enhanced vascularisation of the construct. © 2011 Elsevier Ltd.

  10. Angiogenic Effect of Intercellular Adhesion Molecule-1

    Institute of Scientific and Technical Information of China (English)

    DENG Chenguo; ZHANG Duanlian; SHAN Shengguo; WU Jingwen; YANG Hong; YU Ying

    2007-01-01

    In order to investigate the angiogenic effect of intercellular adhesion molecule-1 (ICAM-1), two parts of experiment were performed. Chick embryo chorioallantoic membrane (CAM) assay was used for in vivo angiogenic research. The chick embryos were divided into 4 groups: ICAM-1 group (divided into 3 subgroups, Ⅰ, Ⅱ and Ⅲ) for screening the angiogenic effect of ICAM-1 by adding different concentrations of ICAM-1 (0.1, 0.2 and 0.3 μg/μL) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup; Anti-ICAM-1 group A (divided into 2 subgroups, Ⅰ and Ⅱ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 10 after incubation for every subgroup to evaluate the effect of ICAM-1 on the survival of microvessels through observing whether Anti-ICAM-1 could induce involution of the microvessels on CAMs; Anti-ICAM-1 group B (divided into 2 subgroups, Ⅰ and Ⅱ ) by adding different concentrations of Anti-ICAM-1 (1:100, 1:50) 5 μL into the chick embryo CAMs on the day 6 after incubation for every subgroup to evaluate whether ICAM-1 involved in embryonic angiogenesis through observing the growth of microvessels on CAMs; Control group: ICAM-1 or Anti-ICAM-1 was substituted by PBS 5 μL on the day 10 or day 6 after incubation. Three days later, the CAMs were photographed in vivo, excised, sectioned and the number of microvessels was counted. In ICAM-1 group, there was increased number of microvessels arranged radially with "spoked-wheel" pattern around the gelatin sponges. The new microvessels growing perpendicularly to gelatin sponges were observed. The number of the microvessels growing in the CAM mesenchymes around the sponges in 3 subgroups was higher than that in control group (P<0.01), however, there was no significant difference among the 3 subgroups (P>0.05). In anti-ICAM-1 group A, the radially arranged microvessels were very unclear around the sponges contrast to that of ICAM

  11. Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia.

    Science.gov (United States)

    Silasi, Michelle; Cohen, Bruce; Karumanchi, S Ananth; Rana, Sarosh

    2010-06-01

    Preeclampsia is a common complication of pregnancy with potentially devastating consequences to both the mother and the baby.It is the leading cause of maternal deaths in developing countries. In developed countries it is the major cause of iatrogenic premature delivery and contributes significantly to increasing health care cost associated with prematurity. There is currently no known treatment for preeclampsia; ultimate treatment involves delivery of the placenta. Although there are several risk factors (such as multiple gestation or chronic hypertension), most patients present with no obvious risk factors. The molecular pathogenesis of preeclampsia is just now being elucidated. It has been proposed that abnormal placentation and an imbalance in angiogenic factors lead to the clinical findings and complications seen in preeclampsia. Preeclampsia is characterized by high levels of circulating antiangiogenic factors such as soluble fms-like tyrosine kinase-1 and soluble endoglin, which induce maternal endothelial dysfunction. These soluble factors are altered not only at the time of clinical disease but also several weeks before the onset of clinical signs and symptoms. Many methods of prediction and surveillance have been proposed to identify women who will develop preeclampsia, but studies have been inconclusive. With the recent discovery of the role of angiogenic factors in preeclampsia, novel methods of prediction and diagnosis are being developed to aid obstetricians and midwives in clinical practice. This article discusses the role of angiogenic factors in the pathogenesis, prediction, diagnosis, and possible treatment of preeclampsia.

  12. Radiation-induced gene responses

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  13. Roles of main pro-and anti-angiogenic factors in tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Zhi Huang; Shi-Deng Bao

    2004-01-01

    Tumor growth without size restriction depends on vascular supply. The ability of tumor to induce new blood-vessel formation has been a major focus of cancer research over the past decade. It is now known that members of the vascular endothelial growth factor and angiopoietin families,mainly secreted by tumor cells, induce tumor angiogenesis,whereas other endogenous angiogenic inhibitors, including thrombospondin-1 and angiostatin, keep tumor in dormancy.Experimental and clinical evidence has suggested that the process of tumor metastasis depends on angiogenesis or lymphangiogenesis. This article summarizes the recent research progress for some basic pro- or anti-angiogenic factors in tumor angiogenesis.

  14. Anti-angiogenic property of edible berries.

    Science.gov (United States)

    Roy, Sashwati; Khanna, Savita; Alessio, Helaine M; Vider, Jelena; Bagchi, Debasis; Bagchi, Manashi; Sen, Chandan K

    2002-09-01

    Recent studies show that edible berries may have potent chemopreventive properties. Anti-angiogenic approaches to prevent and treat cancer represent a priority area in investigative tumor biology. Vascular endothelial growth factor (VEGF) plays a crucial role for the vascularization of tumors. The vasculature in adult skin remains normally quiescent. However, skin retains the capacity for brisk initiation of angiogenesis during inflammatory skin diseases such as psoriasis and skin cancers. We sought to test the effects of multiple berry extracts on inducible VEGF expression by human HaCaT keratinocytes. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seed, and strawberry) and a grape seed proanthocyanidin extract (GSPE) were studied. The extracts and uptake of their constituents by HaCaT were studied using a multi-channel HPLC-CoulArray approach. Antioxidant activity of the extracts was determined by ORAC. Cranberry, elderberry and raspberry seed samples were observed to possess comparable ORAC values. The antioxidant capacity of these samples was significantly lower than that of the other samples studied. The ORAC values of strawberry powder and GSPE were higher than cranberry, elderberry or raspberry seed but significantly lower than the other samples studied. Wild bilberry and blueberry extracts possessed the highest ORAC values. Each of the berry samples studied significantly inhibited both H2O2 as well as TNF alpha induced VEGF expression by the human keratinocytes. This effect was not shared by other antioxidants such as alpha-tocopherol or GSPE but was commonly shared by pure flavonoids. Matrigel assay using human dermal microvascular endothelial cells showed that edible berries impair angiogenesis.

  15. Angiogenic properties of human dental pulp stem cells.

    Directory of Open Access Journals (Sweden)

    Annelies Bronckaers

    Full Text Available Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, plasminogen activator inhibitor-1 (PAI-1 and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1, but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions.

  16. Ovarian cancer cell heparan sulfate 6-O-sulfotransferases regulate an angiogenic program induced by heparin-binding epidermal growth factor (EGF)-like growth factor/EGF receptor signaling.

    Science.gov (United States)

    Cole, Claire L; Rushton, Graham; Jayson, Gordon C; Avizienyte, Egle

    2014-04-11

    Heparan sulfate (HS) is a component of cell surface and extracellular matrix proteoglycans that regulates numerous signaling pathways by binding and activating multiple growth factors and chemokines. The amount and pattern of HS sulfation are key determinants for the assembly of the trimolecular, HS-growth factor-receptor, signaling complex. Here we demonstrate that HS 6-O-sulfotransferases 1 and 2 (HS6ST-1 and HS6ST-2), which perform sulfation at 6-O position in glucosamine in HS, impact ovarian cancer angiogenesis through the HS-dependent HB-EGF/EGFR axis that subsequently modulates the expression of multiple angiogenic cytokines. Down-regulation of HS6ST-1 or HS6ST-2 in human ovarian cancer cell lines results in 30-50% reduction in glucosamine 6-O-sulfate levels in HS, impairing HB-EGF-dependent EGFR signaling and diminishing FGF2, IL-6, and IL-8 mRNA and protein levels in cancer cells. These cancer cell-related changes reduce endothelial cell signaling and tubule formation in vitro. In vivo, the development of subcutaneous tumor nodules with reduced 6-O-sulfation is significantly delayed at the initial stages of tumor establishment with further reduction in angiogenesis occurring throughout tumor growth. Our results show that in addition to the critical role that 6-O-sulfate moieties play in angiogenic cytokine activation, HS 6-O-sulfation level, determined by the expression of HS6ST isoforms in ovarian cancer cells, is a major regulator of angiogenic program in ovarian cancer cells impacting HB-EGF signaling and subsequent expression of angiogenic cytokines by cancer cells.

  17. The induction of pro-angiogenic processes within a collagen scaffold via exogenous estradiol and endometrial epithelial cells.

    Science.gov (United States)

    Pence, Jacquelyn C; Clancy, Kathryn B H; Harley, Brendan A C

    2015-10-01

    Nutrient transport remains a major limitation in the design of biomaterials. One approach to overcome this constraint is to incorporate features to induce angiogenesis-mediated microvasculature formation. Angiogenesis requires a temporal presentation of both pro- and anti-angiogenic factors to achieve stable vasculature, leading to increasingly complex biomaterial design scheme. The endometrium, the lining of the uterus and site of embryo implantation, exemplifies a non-pathological model of rapid growth, shedding, and re-growth of dense vascular networks regulated by the dynamic actions of estradiol and progesterone. In this study, we examined the individual and combined response of endometrial epithelial cells and human umbilical vein endothelial cells to exogenous estradiol within a three-dimensional collagen scaffold. While endothelial cells did not respond to exogenous estradiol, estradiol directly stimulated endometrial epithelial cell transduction pathways and resulted in dose-dependent increases in endogenous VEGF production. Co-culture experiments using conditioned media demonstrated estradiol stimulation of endometrial epithelial cells can induce functional changes in endothelial cells within the collagen biomaterial. We also report the effect of direct endometrial epithelial and endothelial co-culture as well as covalent immobilization of estradiol within the collagen biomaterial. These efforts establish the suitability of an endometrial-inspired model for promoting pro-angiogenic events within regenerative medicine applications. These results also suggest the potential for developing biomaterial-based models of the endometrium. © 2015 Wiley Periodicals, Inc.

  18. Future options ofanti-angiogenic cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yihai Cao

    2016-01-01

    In human patients, drugs that block tumor vessel growth are widely used to treat a variety of cancer types. Many rigorous phase 3 clinical trials have demonstrated signiifcant survival beneifts; however, the addition of an anti-angio-genic component to conventional therapeutic modalities has generally produced modest survival beneifts for cancer patients. Currently, it is unclear why these clinically available drugs targeting the same angiogenic pathways produce dissimilar effects in preclinical models and human patients. In this article, we discuss possible mechanisms of various anti-angiogenic drugs and the future development of optimized treatment regimens.

  19. Physiological responses induced by pleasant stimuli.

    Science.gov (United States)

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  20. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh

    2013-01-01

    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  1. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis

    NARCIS (Netherlands)

    Hermann, L.M.; Pinkerton, M.; Jennings, K.; Yang, L.; Grom, A.; Sowders, D.; Kersten, A.H.; Witte, D.P.; Hirsch, R.; Thornton, S.

    2005-01-01

    Our previous studies of gene expression profiling during collagen-induced arthritis (CIA) indicated that the putative angiogenic factor Angptl4 was one of the most highly expressed mRNAs early in disease. To investigate the potential involvement of Angptl4 in CIA pathogenesis, Angptl4 protein levels

  2. Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype

    Directory of Open Access Journals (Sweden)

    Susana Bulnes

    2012-01-01

    Full Text Available The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies.

  3. Angiogenic Signalling Pathways Altered in Gliomas: Selection Mechanisms for More Aggressive Neoplastic Subpopulations with Invasive Phenotype

    Science.gov (United States)

    Bulnes, Susana; Bengoetxea, Harkaitz; Ortuzar, Naiara; Argandoña, Enrike G.; Garcia-Blanco, Álvaro; Rico-Barrio, Irantzu; Lafuente, José V.

    2012-01-01

    The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies. PMID:22852079

  4. Angiogenic Factors and Renal Disease in Pregnancy

    Directory of Open Access Journals (Sweden)

    Julie S. Rhee

    2011-01-01

    Full Text Available Background. Preeclampsia is difficult to diagnose in patients with underlying renal disease and proteinuria. Prior studies show that there is an angiogenic factor imbalance with elevated levels of antiangiogenic proteins soluble fms-like tyrosine kinase 1 (sFlt1 and soluble endoglin (sEng and reduced levels of the proangiogenic protein, placental growth factor (PlGF in women with preeclampsia. These angiogenic biomarkers may be useful in distinguishing preeclampsia from other conditions of pregnancy, which may present with overlapping clinical characteristics. Cases. Case 1: A multiparous woman at 18 weeks gestation with nephrotic syndrome presented with hypertensive emergency and worsening renal insufficiency. She underwent induction of labor for severe preeclampsia. Her sFlt1 and sEng levels were at the 97 percentile while her PlGF level was undetectable (less than the 1st percentile. Case 2: A nulliparous woman with lupus nephritis at 22 weeks gestation presented with fetal demise and heart failure. Three weeks previously, the patient had developed thrombocytopenia and hypertensive urgency. She underwent dilation and evacuation. Her angiogenic profile was consistent with severe preeclampsia. Conclusion. Angiogenic factors may provide evidence to support a diagnosis of preeclampsia in patients with preexisting renal disease and proteinuria, conditions in which the classical definition of hypertension and proteinuria cannot be used.

  5. Bacterial toxins: A hope towards angiogenic ailments.

    Science.gov (United States)

    Khandia, Rekha; Munjal, Ashok Kumar; Dhama, Kuldeep; Malik, Yashpal Singh

    2017-09-11

    Angiogenesis is a vital physiological process essential for growth and maintenance of the body. It plays an important role during embryonic development and generally absent in adults with some exceptions like during wound repair and menstrual cycle in women. Excess as well as deficiency in angiogenesis, result in pathological conditions. It is a tightly regulated process; rely on cascade of several molecular signalling pathways involving many effectors like VEGF, FGF, PDGF, IGF etc. Excessive angiogenesis is associated with disorders like tumor, atherosclerosis, rheumatoid arthritis, diabetic retinopathy, endometriosis, psoriasis, adiposity. Reduced angiogenesis also result in several ailments like cardiac ischemia, low capillary density in brain of Alzheimer's patients and delayed wound healing. So both angio-proliferative and anti-angiogenic approaches may be of useful in developing therapeutics. Bacterial toxins are usually proteinaceous in nature and may exert their function in multiple ways. These may modulate the process of angiogenesis by mimicking pro-angiogenic factors and competing with them; inactivating the receptors and keeping the receptors in ON status etc., hence can be conquered to treat angiogenic disorders. Due to ease in the handling and cultivation as well as scientific ability to manipulate the toxins structure enabled bacteria as an ideal choice for therapeutic development. Present review elucidates the molecular mechanism of fewest bacteria through which these alter the level of angiogenesis and confers the idea about their usage as therapeutics against angiogenic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Angiogenic factors and renal disease in pregnancy.

    Science.gov (United States)

    Rhee, Julie S; Young, Brett C; Rana, Sarosh

    2011-01-01

    Background. Preeclampsia is difficult to diagnose in patients with underlying renal disease and proteinuria. Prior studies show that there is an angiogenic factor imbalance with elevated levels of antiangiogenic proteins soluble fms-like tyrosine kinase 1 (sFlt1) and soluble endoglin (sEng) and reduced levels of the proangiogenic protein, placental growth factor (PlGF) in women with preeclampsia. These angiogenic biomarkers may be useful in distinguishing preeclampsia from other conditions of pregnancy, which may present with overlapping clinical characteristics. Cases. Case 1: A multiparous woman at 18 weeks gestation with nephrotic syndrome presented with hypertensive emergency and worsening renal insufficiency. She underwent induction of labor for severe preeclampsia. Her sFlt1 and sEng levels were at the 97 percentile while her PlGF level was undetectable (less than the 1st percentile). Case 2: A nulliparous woman with lupus nephritis at 22 weeks gestation presented with fetal demise and heart failure. Three weeks previously, the patient had developed thrombocytopenia and hypertensive urgency. She underwent dilation and evacuation. Her angiogenic profile was consistent with severe preeclampsia. Conclusion. Angiogenic factors may provide evidence to support a diagnosis of preeclampsia in patients with preexisting renal disease and proteinuria, conditions in which the classical definition of hypertension and proteinuria cannot be used.

  7. Angiogenic activity of sesamin through the activation of multiple signal pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung-Hee [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of); Lee, Jung Joon [Center for Molecular Cancer Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Kim, Jong-Dai [Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon (Korea, Republic of); Jeoung, Dooil; Lee, Hansoo [Division of Life Sciences, Kangwon National University, Chuncheon (Korea, Republic of); Choe, Jongseon; Ha, Kwon-Soo [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of); Kwon, Young-Geun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon (Korea, Republic of)

    2010-01-01

    The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125{sup FAK}-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.

  8. Endothelial cell-derived pentraxin 3 limits the vasoreparative therapeutic potential of circulating angiogenic cells.

    Science.gov (United States)

    O'Neill, Christina L; Guduric-Fuchs, Jasenka; Chambers, Sarah E J; O'Doherty, Michelle; Bottazzi, Barbara; Stitt, Alan W; Medina, Reinhold J

    2016-12-01

    Circulating angiogenic cells (CACs) promote revascularization of ischaemic tissues although their underlying mechanism of action and the consequences of delivering varying number of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation. CACs at low (2 × 10(5) cells/mL) and mid (2 × 10(6) cells/mL) cellular densities significantly enhanced endothelial cell tube formation in vitro, while high density (HD) CACs (2 × 10(7) cells/mL) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and HD CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the HD CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo. Importantly, our data revealed that the anti-angiogenic effect observed in HD CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to HD CACs. In addition, we confirmed that PTX3 inhibits fibroblast growth factor (FGF) 2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects. Endothelium, when exposed to HD CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischaemic disease. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  9. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression

    Directory of Open Access Journals (Sweden)

    Luque Ana

    2008-09-01

    Full Text Available Abstract Background Formation of haemorrhagic neovessels in the intima of developing atherosclerotic plaques is thought to significantly contribute to plaque instability resulting in thrombosis. C-reactive protein (CRP is an acute phase reactant whose expression in the vascular wall, in particular, in reactive plaque regions, and circulating levels increase in patients at high risk of cardiovascular events. Although CRP is known to induce a pro-inflammatory phenotype in endothelial cells (EC a direct role on modulation of angiogenesis has not been established. Results Here, we show that CRP is a powerful inducer of angiogenesis in bovine aortic EC (BAEC and human coronary artery EC (HCAEC. CRP, at concentrations corresponding to moderate/high risk (1–5 μg/ml, induced a significant increase in proliferation, migration and tube-like structure formation in vitro and stimulated blood vessel formation in the chick chorioallantoic membrane assay (CAM. CRP treated with detoxi-gel columns retained such effects. Western blotting showed that CRP increased activation of early response kinase-1/2 (ERK1/2, a key protein involved in EC mitogenesis. Furthermore, using TaqMan Low-density Arrays we identified key pro-angiogenic genes induced by CRP among them were vascular endothelial cell growth factor receptor-2 (VEGFR2/KDR, platelet-derived growth factor (PDGF-BB, notch family transcription factors (Notch1 and Notch3, cysteine-rich angiogenic inducer 61 (CYR61/CCN1 and inhibitor of DNA binding/differentiation-1 (ID1. Conclusion This data suggests a role for CRP in direct stimulation of angiogenesis and therefore may be a mediator of neovessel formation in the intima of vulnerable plaques.

  10. Diminished oligomerization in the synthesis of new anti-angiogenic cyclic peptide using solution instead of solid-phase cyclization.

    Science.gov (United States)

    Rubio, Sandra; Clarhaut, Jonathan; Péraudeau, Elodie; Vincenzi, Marian; Soum, Claire; Rossi, Filomena; Guillon, Jean; Papot, Sébastien; Ronga, Luisa

    2016-05-01

    The design and synthesis of novel peptides that inhibit angiogenesis is an important area for anti-angiogenic drug development. Cyclic and small peptides present several advantages for therapeutic application, including stability, solubility, increased bio-availability and lack of immune response in the host cell. We describe here the synthesis and biological evaluations of a new cyclic peptide analog of CBO-P11: cyclo(RIKPHE), designated herein as CBO-P23M, a hexamer peptide encompassing residues 82 to 86 of VEGF which are involved in the interaction with VEGF receptor-2. CBO-P23M was prepared using in solution cyclization, therefore reducing the peptide cyclodimerization occurred during solid-phase cyclization. The cyclic dimer of CBO-P23M, which was obtained as the main side product during synthesis of the corresponding monomer, was also isolated and investigated. Both peptides markedly reduce VEGF-A-induced phosphorylation of VEGFR-2 and Erk1/2. Moreover, they exhibit anti-angiogenic activity in an in vitro morphogenesis study. Therefore CBO-P23M and CBO-P23M dimer appear as attractive candidates for the development of novel angiogenesis inhibitors for the treatment of cancer and other angiogenesis-related diseases. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 368-375, 2016.

  11. Regulation of angiogenesis in human skeletal muscle with specific focus on pro- angiogenic and angiostatic factors

    DEFF Research Database (Denmark)

    Høier, Birgitte

    It is well established that acute exercise promotes an angiogenic response and that a period of exercise training results in capillary growth. Skeletal muscle angiogenesis is a complex process that requires a coordinated interplay of multiple factors and compounds to ensure proper vascular function...

  12. Senescent profile of angiogenic T cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    López, Patricia; Rodríguez-Carrio, Javier; Martínez-Zapico, Aleida; Caminal-Montero, Luis; Suarez, Ana

    2016-03-01

    The chronic inflammatory environment associated with systemic lupus erythematosus can lead to an accelerated immunosenescence responsible for the endothelial damage and increased cardiovascular risk observed in these patients. The present study analyzed two populations with opposite effects on vascular endothelium, angiogenic T cells and the senescent CD4(+)CD28(null) subset, in 84 systemic lupus erythematosus patients and 46 healthy controls. Also, 48 rheumatoid arthritis patients and 72 individuals with traditional cardiovascular risk factors participated as disease controls. Phenotypic characterization of CD28(+) and CD28(null) cells was performed by analyzing markers of senescence (CCR7, CD27, CD57) and cytotoxicity (CD56, perforin, granzyme B, IFN-γ). IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17A, IFN-α, IFN-γ, TNF-α, B lymphocyte stimulator, and GM-CSF serum levels were analyzed in systemic lupus erythematosus patients and healthy controls. CD4(+)CD28(null) cells were notably increased in the systemic lupus erythematosus patients and disease controls compared with healthy controls. In contrast, angiogenic T cells were only reduced in the disease controls (those with rheumatoid arthritis or traditional cardiovascular risk factors). Nevertheless, an anomalous presence of CD28(null)-angiogenic T cells, with cytotoxic and senescent characteristics, was noted in systemic lupus erythematosus patients in association with anti-dsDNA titer, anti-SSA/Ro antibodies and circulating TNF-α, IL-8, IFN-α, and B lymphocyte stimulator amounts. This subset was also detected in those with traditional cardiovascular risk factors but not in the rheumatoid arthritis patients. In contrast, CD28(+)-angiogenic T cells were reduced in the systemic lupus erythematosus patients with cardiovascular disorders. In conclusion, CD28 expression must be used to redefine the angiogenic T cell population, because in pathologic conditions, a senescent CD28(null)-angiogenic T cell subset with

  13. Angiogenesis and Anti-Angiogenic Treatments

    Directory of Open Access Journals (Sweden)

    Ersin Demirer

    2013-10-01

    Full Text Available Blood vessels in our body is developed by vasculogenesis and angiogenesis. There have been new advances in molecular pathology and tumor biology areas in recent years. Angiogenesis is modulated by the balance between angiogenic and anti-angiogenic factors. Angiogenesis plays a key role in tumor growth. Drugs inhibiting angiogenesis have been in use in various malign or non-malign diseases. Inhibition of angiogenesis in malign diseases is a very attractive subject in medicine and studies are going on about long term affects and toxicities. Inhibition of angiogenesis is not an only treatment choice alone. It is a supplemental treatment option applied with conventional chemotherapy, radiotherapy, surgery, immunotherapy and hormonal therapy. It has been used in colorectal carcinoma, renal cell carcinoma, non-small cell lung cancer, glioblastoma, heoatocellular carcinoma, pancreatic neuroendocrine tumor, tyroid medullary cancer.

  14. Angiogenic activity of Synadenium umbellatum Pax latex

    Directory of Open Access Journals (Sweden)

    PR. Melo-Reis

    Full Text Available Synadenium umbellatum Pax, popularly known as "cola-nota", is a medicinal plant that grows in tropical regions. Latex of this plant is used to treat various diseases such as diabetes mellitus, Hansen´s disease, tripanosomiases, leukemia and several malignant tumors. In the present study, the angiogenic activity of S. umbellatum latex was evaluated using the chick embryo chorioallantoic membrane (CAM assay. Results showed significant increase of the vascular net (p < 0.05 compared to the negative control (H2O. The histological analysis was in accordance with the results obtained. In conclusion, our data indicate that S. umbellatum latex, under the conditions of this research, presented angiogenic effect.

  15. Interactions between aboveground and belowground induced responses against phytophages

    NARCIS (Netherlands)

    Dam, van N.M.; Harvey, J.A.; Waeckers, F.L.; Bezemer, T.M.; Putten, van der W.H.; Vet, L.E.M.

    2003-01-01

    Since their discovery about thirty years ago, induced plant responses have mainly been studied in interactions of plants with aboveground (AG) pathogens, herbivores and their natural enemies. Many induced responses, however, are known to be systemic and thus it is likely that responses induced by AG

  16. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Kristoffer Myczek

    Full Text Available Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer's, Parkinson's, and Huntington's disease and brain traumas (stroke, epilepsy, and traumatic brain injury. One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DT(A mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.

  17. Fire-Induced Response in Foam Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Borek, T.T.; Chu, T.Y.; Erickson, K.L.; Gill, W.; Hobbs, M.L.; Humphries, L.L.; Renlund, A.M.; Ulibarri, T.A.

    1999-04-02

    The paper provides a concise overview of a coordinated experimental/theoretical/numerical program at Sandia National Laboratories to develop an experimentally validated model of fire-induced response of foam-filled engineered systems for nuclear and transportation safety applications. Integral experiments are performed to investigate the thermal response of polyurethane foam-filled systems exposed to fire-like heat fluxes. A suite of laboratory experiments is performed to characterize the decomposition chemistry of polyurethane. Mass loss and energy associated with foam decomposition and chemical structures of the virgin and decomposed foam are determined. Decomposition chemistry is modeled as the degradation of macromolecular structures by bond breaking followed by vaporization of small fragments of the macromolecule with high vapor pressures. The chemical decomposition model is validated against the laboratory data. Data from integral experiments is used to assess and validate a FEM foam thermal response model with the chemistry model developed from the decomposition experiments. Good agreement was achieved both in the progression of the decomposition front and the in-depth thermal response.

  18. Penduliflaworosin, a Diterpenoid from Croton crassifolius, Exerts Anti-Angiogenic Effect via VEGF Receptor-2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yeyin Liang

    2017-01-01

    Full Text Available Anti-angiogenesis targeting vascular endothelial growth factor receptor-2 (VEGFR-2 has been considered as an important strategy for cancer therapy. Penduliflaworosin is a diterpenoid isolated from the plant Croton crassifolius. Our previous study showed that this diterpenoid possesses strong anti-angiogenic activity by inhibiting vessel formation in zebrafish. This study was conducted to further investigate the anti-angiogenic activity and mechanism of penduliflaworosin. Results revealed that penduliflaworosin significantly inhibited VEGF-induced angiogenesis processes including proliferation, invasion, migration, and tube formation of human umbilical vein endothelial cells (HUVECs. Moreover, it notably inhibited VEGF-induced sprout formation of aortic rings and blocked VEGF-induced vessel formation in mice. Western blotting studies showed that penduliflaworosin inhibited phosphorylation of the VEGF receptor-2 and its downstream signaling mediators in HUVECs, suggesting that the anti-angiogenic activity was due to an interference with the VEGF/VEGF receptor-2 pathway. In addition, molecular docking simulation indicated that penduliflaworosin could form hydrogen bonds within the ATP-binding region of the VEGF receptor-2 kinase unit. Finally, cytotoxicity assay showed that penduliflaworosin possessed little toxicity toward both cancer and normal cells. Taken together, our findings demonstrate that penduliflaworosin exerts its anti-angiogenic effect via the VEGF receptor-2 signaling pathway. The anti-angiogenic property and low cytotoxicity of penduliflaworosin suggest that it may be useful in cancer treatments.

  19. Evidence for Pro-angiogenic Functions of VEGF-Ax.

    Science.gov (United States)

    Xin, Hong; Zhong, Cuiling; Nudleman, Eric; Ferrara, Napoleone

    2016-09-22

    The VEGF-A isoforms play a crucial role in vascular development, and the VEGF signaling pathway is a clinically validated therapeutic target for several pathological conditions. Alternative mRNA splicing leads to the generation of multiple VEGF-A isoforms, including VEGF165. A recent study reported the presence of another isoform, VEGF-Ax, arising from programmed readthrough translation. Compared to VEGF165, VEGF-Ax has a 22-amino-acid extension in the COOH terminus and has been reported to function as a negative regulator of VEGF signaling in endothelial cells, with potent anti-angiogenic effects. Here, we show that, contrary to the earlier report, VEGF-Ax stimulates endothelial cell mitogenesis, angiogenesis, as well as vascular permeability. Accordingly, VEGF-Ax induces phosphorylation of key tyrosine residues in VEGFR-2. Notably, VEGF-Ax was less potent than VEGF165, consistent with its impaired binding to the VEGF co-receptor neuropilin-1.

  20. Structural Determinant and Its Underlying Molecular Mechanism of STPC2 Related to Anti-Angiogenic Activity

    Science.gov (United States)

    Hu, Min; Cui, Ning; Bo, Zhixiang; Xiang, Feixiang

    2017-01-01

    In this study, we aimed to use different strategies to further uncover the anti-angiogenic molecular mechanism of a fucoidan-like polysaccharide STPC2, isolated from brown alga Sargassum thunbergii. A desulfated derivative, STPC2-DeS, was successfully prepared and identified. The native polysaccharide and desulfated product were subjected to evaluate their anti-angiogenic effects. In the tube formation assay, STPC2 showed dose-dependent inhibition. In addition, STPC2 could distinctly inhibit the permeation of HUVEC cells into the lower chamber. Moreover, a significant reduction of microvessel density was observed in chick chorioallantoic membrane assay treated with STPC2. Meanwhile, STPC2 was found to repress the VEGF-induced neovessel formation in the matrigel plug assay in vivo. However, STPC2-DeS failed to suppress the anti-angiogenic activity via these in vitro and in vivo strategies. In addition, we demonstrated that STPC2 could significantly downregulate the phosphorylation of VEGFR2 and its related downstream Src family kinase, focal adhesion kinase, and AKT kinase. Furthermore, surface plasmon resonance assay revealed that STPC2 bound strongly to VEGF to interfere with VEGF–VEGFR2 interaction. Taken together, these results evidently demonstrated that STPC2 exhibited a potent anti-angiogenic activity through binding to VEGF via sulfated groups to impede VEGF–VEGFR2 interaction, thus affected the downstream signaling molecules. PMID:28230794

  1. Structural Determinant and Its Underlying Molecular Mechanism of STPC2 Related to Anti-Angiogenic Activity.

    Science.gov (United States)

    Hu, Min; Cui, Ning; Bo, Zhixiang; Xiang, Feixiang

    2017-02-21

    In this study, we aimed to use different strategies to further uncover the anti-angiogenic molecular mechanism of a fucoidan-like polysaccharide STPC2, isolated from brown alga Sargassum thunbergii. A desulfated derivative, STPC2-DeS, was successfully prepared and identified. The native polysaccharide and desulfated product were subjected to evaluate their anti-angiogenic effects. In the tube formation assay, STPC2 showed dose-dependent inhibition. In addition, STPC2 could distinctly inhibit the permeation of HUVEC cells into the lower chamber. Moreover, a significant reduction of microvessel density was observed in chick chorioallantoic membrane assay treated with STPC2. Meanwhile, STPC2 was found to repress the VEGF-induced neovessel formation in the matrigel plug assay in vivo. However, STPC2-DeS failed to suppress the anti-angiogenic activity via these in vitro and in vivo strategies. In addition, we demonstrated that STPC2 could significantly downregulate the phosphorylation of VEGFR2 and its related downstream Src family kinase, focal adhesion kinase, and AKT kinase. Furthermore, surface plasmon resonance assay revealed that STPC2 bound strongly to VEGF to interfere with VEGF-VEGFR2 interaction. Taken together, these results evidently demonstrated that STPC2 exhibited a potent anti-angiogenic activity through binding to VEGF via sulfated groups to impede VEGF-VEGFR2 interaction, thus affected the downstream signaling molecules.

  2. Structural Determinant and Its Underlying Molecular Mechanism of STPC2 Related to Anti-Angiogenic Activity

    Directory of Open Access Journals (Sweden)

    Min Hu

    2017-02-01

    Full Text Available In this study, we aimed to use different strategies to further uncover the anti-angiogenic molecular mechanism of a fucoidan-like polysaccharide STPC2, isolated from brown alga Sargassum thunbergii. A desulfated derivative, STPC2-DeS, was successfully prepared and identified. The native polysaccharide and desulfated product were subjected to evaluate their anti-angiogenic effects. In the tube formation assay, STPC2 showed dose-dependent inhibition. In addition, STPC2 could distinctly inhibit the permeation of HUVEC cells into the lower chamber. Moreover, a significant reduction of microvessel density was observed in chick chorioallantoic membrane assay treated with STPC2. Meanwhile, STPC2 was found to repress the VEGF-induced neovessel formation in the matrigel plug assay in vivo. However, STPC2-DeS failed to suppress the anti-angiogenic activity via these in vitro and in vivo strategies. In addition, we demonstrated that STPC2 could significantly downregulate the phosphorylation of VEGFR2 and its related downstream Src family kinase, focal adhesion kinase, and AKT kinase. Furthermore, surface plasmon resonance assay revealed that STPC2 bound strongly to VEGF to interfere with VEGF–VEGFR2 interaction. Taken together, these results evidently demonstrated that STPC2 exhibited a potent anti-angiogenic activity through binding to VEGF via sulfated groups to impede VEGF–VEGFR2 interaction, thus affected the downstream signaling molecules.

  3. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs.

    Science.gov (United States)

    Chen, Wenchuan; Liu, Xian; Chen, Qianmin; Bao, Chongyun; Zhao, Liang; Zhu, Zhimin; Xu, Hockin H K

    2017-01-18

    Angiogenesis is a limiting factor in regenerating large bone defects. The objective of this study was to investigate angiogenic and osteogenic effects of co-culture on calcium phosphate cement (CPC) scaffold using human umbilical vein endothelial cells (hUVECs) and mesenchymal stem cells (MSCs) from different origins for the first time. hUVECs were co-cultured with four types of cell: human umbilical cord MSCs (hUCMSCs), human bone marrow MSCs (hBMSCs) and MSCs from induced pluripotent stem cells (hiPSC-MSCs) and embryonic stem cells (hESC-MSCs). Constructs were implanted in 8 mm cranial defects of rats for 12 weeks. CPC without cells served as control 1. CPC with hBMSCs served as control 2. Microcapillary-like structures were successfully formed on CPC in vitro in all four co-cultured groups. Microcapillary lengths increased with time (p cultured cells increased with time (p cultured groups were much greater than controls (p animal study. hUVECs co-cultured with hUCMSCs, hiPSC-MSCs and hESC-MSCs achieved new bone and vessel density similar to hUVECs co-cultured with hBMSCs (p > 0.1). Therefore, hUCMSCs, hiPSC-MSCs and hESC-MSCs could serve as alternative cell sources to hBMSCs, which require an invasive procedure to harvest. In conclusion, this study showed for the first time that co-cultures of hUVECs with hUCMSCs, hiPSC-MSCs, hESC-MSCs and hBMSCs delivered via CPC scaffold achieved excellent osteogenic and angiogenic capabilities in vivo. The novel co-culture constructs are promising for bone reconstruction with improved angiogenesis for craniofacial/orthopaedic applications. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Anti-angiogenic activity of Morinda citrifolia extracts and its chemical constituents.

    Science.gov (United States)

    Beh, Hooi-Kheng; Seow, Lay-Jing; Asmawi, Mohd Zaini; Abdul Majid, Amin Malik Shah; Murugaiyah, Vikneswaran; Ismail, Norhayati; Ismail, Zhari

    2012-01-01

    Morinda citrifolia L. has been used for the treatment of a wide variety of diseases, including cancer. This study was undertaken to evaluate the anti-angiogenic effect of M. citrifolia fruits and leaves. Anti-angiogenic activity was evaluated in vivo using the chick chorioallantoic membrane assay. Bioactivity-guided fractionation and isolation were performed to identify the active constituent, and high-performance liquid chromatography analysis was then used to quantify the amount of this active constituent in the active extracts and fraction. The methanol extracts of fruits and leaves of M. citrifolia and the subsequent chloroform fraction of the fruit methanolic extract were found to have potential anti-angiogenic activity and were more potent compared to suramin. Scopoletin was identified as one of the chemical constituents that may be partly responsible for the anti-angiogenic activity of M. citrifolia fruits. The present findings further support the use of M. citrifolia in cancer or other pathological conditions related to angiogenesis.

  5. Anti-angiogenic and cytotoxicity studies of some medicinal plants.

    Science.gov (United States)

    Ng, Kwok-Wen; Salhimi, Salizawati Muhamad; Majid, Amin Malik; Chan, Kit-Lam

    2010-06-01

    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation.

  6. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery.

    Science.gov (United States)

    Evensen, Lasse; Micklem, David R; Link, Wolfgang; Lorens, James B

    2010-01-01

    The successful progression to the clinic of angiogenesis inhibitors for cancer treatment has spurred interest in developing new classes of anti-angiogenic compounds. The resulting surge in available candidate therapeutics highlights the need for robust, high-throughput angiogenesis screening systems that adequately capture the complexity of new vessel formation while providing quantitative evaluation of the potency of these agents. Available in vitro angiogenesis assays are either cumbersome, impeding adaptation to high-throughput screening formats, or inadequately model the complex multistep process of new vessel formation. We therefore developed an organotypic endothelial-mural cell co-culture assay system that reflects several facets of angiogenesis while remaining compatible with high-throughput/high-content image screening. Co-culture of primary human endothelial cells (EC) and vascular smooth muscle cells (vSMC) results in assembly of a network of tubular endothelial structures enveloped with vascular basement membrane proteins, thus, comprising the three main components of blood vessels. Initially, EC are dependent on vSMC-derived VEGF and sensitive to clinical anti-angiogenic therapeutics. A subsequent phenotypic VEGF-switch renders EC networks resistant to anti-VEGF therapeutics, demarcating a mature vascular phenotype. Conversely, mature EC networks remain sensitive to vascular disrupting agents. Therefore, candidate anti-angiogenic compounds can be interrogated for their relative potency on immature and mature networks and classified as either vascular normalizing or vascular disrupting agents. Here, we demonstrate that the EC-vSMC co-culture assay represents a robust high-content imaging high-throughput screening system for identification of novel anti-angiogenic agents. A pilot high-throughput screening campaign was used to define informative imaging parameters and develop a follow-up dose-response scheme for hit characterization. High

  7. Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Danilo Millimaggi

    2007-04-01

    Full Text Available Matrix metalloproteinase (MMP degradation of extracellular matrix is thought to play an important role in invasion, angiogenesis, tumor growth, and metastasis. Several studies have demonstrated that CD147/ extracellular MMP inducer, a membrane-spanning molecule highly expressed in tumor cells, may be involved in the progression of malignancies by regulating expression of MMP in peritumoral stromal cells. In the present study we show that CD147 is expressed in microvesicles derived from epithelial ovarian cancer cells and that CD147-positive vesicles may promote an angiogenic phenotype in endothelial cells in vitro. Vesicles shed by human ovarian carcinoma cell lines OVCAR3, SKOV3, and A2780 expressed different levels of CD147 and stimulated proangiogenic activities of human umbilical vein endothelial cells (HUVECs in a CD147-dependent fashion (OVCAR3 > SKOV3 > A2780. Moreover, vesicles shed by ovarian carcinoma cell line CABA I with low CD147 expression had no significant effect on the development of angiogenic phenotype in HUVECs. The treatment of OVCAR3 cells with small interfering RNA against CD147 suppressed the angiogenic potential of OVCAR3-derived microvesicles. However, transfection of CD147 cDNA into the CABA I cell line enabled CABA I-derived vesicles to induce angiogenesis and to promote MMP genes expression in HUVECs. We therefore conclude that vesicles shed by ovarian cancer cells may induce proangiogenic activities of HUVECs by a CD147-mediated mechanism.

  8. Angiogenic activity of sera from extrinsic allergic alveolitis patients in relation to clinical, radiological, and functional pulmonary changes.

    Science.gov (United States)

    Zielonka, Tadeusz M; Demkow, Urszula; Filewska, Małgorzata; Bialas, Beata; Zycinska, Katarzyna; Radzikowska, Elzbieta; Wardyn, Andrzej K; Skopinska-Rozewska, Ewa

    2010-10-01

    Extrinsic allergic alveolitis (EAA) caused by inhaled organic environmental allergens can progress to a fibrotic end-stage lung disease. Neovascularization plays an important role in pathogenesis of pulmonary fibrosis. The aim of this study was to assess the effect of sera from EAA patients on the angiogenic capability of normal peripheral human mononuclear cells (MNC) in relation to the clinical, radiological, and functional changes. The study population consisted of 30 EAA patients and 16 healthy volunteers. Routine pulmonary function tests were undertaken using ERS standards. As an angiogenic test, leukocyte-induced angiogenesis assay according to Sidky and Auerbach was used. Compared with sera from healthy volunteers, sera from our EAA patients significantly stimulated angiogenesis (P < 0.001). However, sera from healthy donors also stimulated angiogenesis compared to PBS (P < 0.001). No correlation was found between serum angiogenic activity and clinical symptoms manifested by evaluated patients. A decrease in DLco and in lung compliance in EAA patients was observed but no significant correlation between pulmonary functional tests and serum angiogenic activity measured by the number of microvessels or an angiogenesis index was found. However, the proangiogenic effect of sera from EAA patients differed depending on the stage of the disease and was stronger in patients with fibrotic changes. The present study suggests that angiogenesis plays a role in the pathogenesis of EAA. It could be possible that the increase in the angiogenic activity of sera from EAA patients depends on the phase of the disease.

  9. Enhanced activity of meprin-α, a pro-migratory and pro-angiogenic protease, in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Lottaz

    Full Text Available Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF-induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer.

  10. Studies on tumor induced angiogenesis.

    Science.gov (United States)

    Ambrus, J L; Ambrus, C M; Forgach, P; Stadler, S; Halpern, J; Sayyid, S; Niswander, P; Toumbis, C

    1992-01-01

    Methods were developed to test angiogenic response to human tumor implants and various biologic agents in the cornea of rabbits and non-human primates (Macaca arctoides). Crude PDGF preparations were found to have significant angiogenic effect. Purified, recombinant PDGF preparations were also effective inhibitors (e.g. pentoxifylline (Px) (which also were found to release PgI2 and t-PA) inhibited human tumor implant induced angiogenesis and reduced spontaneous metastases in 3 transplantable murine tumors (Furth-Columbia Wilms' tumor in Furth-Wistar rats, C-1300 neuroblastoma in A/J mice and HM-Kim mammary carcinoma in Wistar rats) but not in the NIH adenocarcinoma in Balb/c mice. Sodium diethyldithiocarbamate (DDTC), a metal complexing agent with special affinity to copper and anti-thyroid as well as, immune stimulating activity was shown to be anti-angiogenic and to potentiate the effect of Px. The anti-fibrinolytic agents epsilon amino caproic acid (EACA) and tranaxamic acid (t-AMCHA) were anti-angiogenic. DDTC and Px were synergistic from this point of view.

  11. Angiogenic balance (sFlt-1/PlGF) and preeclampsia.

    Science.gov (United States)

    Lecarpentier, Edouard; Tsatsaris, Vassilis

    2016-06-01

    Preeclampsia is a hypertensive disorder of pregnancy associated with important maternal and perinatal mortality and morbidity. Although symptomatic management has improved, there is currently no curative treatment, and only childbirth and delivery of the placenta, usually prematurely, alleviate the mother's symptoms. Placental insufficiency plays a central role in the pathophysiology of preeclampsia. Abnormal placentation during the first trimester leads to defective remodeling of the uterine vascularization. This results progressively in placental hypoperfusion, which induces trophoblast dysfunction and the release in maternal circulation of trophoblastic factors leading to an excessive inflammatory response, endothelial dysfunction and glomerular damage. Among these factors, the most important is sFlt-1, which is a soluble form of the VEGF and PlGF receptor. sFlt-1 binds to free VEGF and PlGF in the maternal circulation, thus reducing their bioavailability for their membrane receptor. The result is inhibition of the effects of VEGF and PlGF on maternal endothelial cells and podocytes. The sFlt-1/PlGF ratio reflects the circulating angiogenic balance and is correlated with severity of the disease.

  12. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    Science.gov (United States)

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  13. Early pregnancy angiogenic markers and spontaneous abortion

    DEFF Research Database (Denmark)

    Andersen, Louise B; Dechend, Ralf; Karumanchi, S Ananth

    2016-01-01

    BACKGROUND: Spontaneous abortion is the most commonly observed adverse pregnancy outcome. The angiogenic factors soluble Fms-like kinase 1 and placental growth factor are critical for normal pregnancy and may be associated to spontaneous abortion. OBJECTIVE: We investigated the association between...... maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor, and subsequent spontaneous abortion. STUDY DESIGN: In the prospective observational Odense Child Cohort, 1676 pregnant women donated serum in early pregnancy, gestational week ..., interquartile range 71-103). Concentrations of soluble Fms-like kinase 1 and placental growth factor were determined with novel automated assays. Spontaneous abortion was defined as complete or incomplete spontaneous abortion, missed abortion, or blighted ovum

  14. The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells.

    Science.gov (United States)

    Barcz, E; Sommer, E; Sokolnicka, I; Gawrychowski, K; Roszkowska-Purska, K; Janik, P; Skopinska-Rózewska, E

    1998-01-01

    Angiogenesis plays an important role in ovarian cancer growth and metastasis formation. Adenosine is one of the most potent stimulator of neovascularisation. The aim of present study was to determine if theobromine, adenosine receptor antagonist, influences angiogenic activity and proangiogenic cytokines production. Theobromine caused significant inhibition of angiogenic activity of ovarian cancer cells. In in vivo and in vitro cultures theobromine diminished vascular endothelial growth factor (VEGF) production. Production of basic fibroblast growth factor (bFGF) and interleukin-8 (IL-8) was not altered by the examined drug. These findings suggest that theobromine might be a potent inhibitor of angiogenesis induced by ovarian cancer cells and its mechanism of action is related to inhibition of VEGF production.

  15. In vitro and in vivo anti-angiogenic activities of Panduratin A.

    Directory of Open Access Journals (Sweden)

    Siew-Li Lai

    Full Text Available BACKGROUND: Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA, a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays. METHODOLOGY/PRINCIPAL FINDINGS: PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs with IC(50 value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2 secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

  16. Assessment of angiogenic properties of biomaterials using the chicken embryo chorioallantoic membrane assay.

    Science.gov (United States)

    Azzarello, Joseph; Ihnat, Michael A; Kropp, Bradley P; Warnke, Linda A; Lin, Hsueh-Kung

    2007-06-01

    The angiogenic potential of a biomaterial is a critical factor for successful graft intake in tissue engineering. We developed a modified, rapid and reproducible chicken embryo chorioallantoic membrane (CAM) assay to evaluate the ability of biomaterials in inducing blood vessel density. Five biomaterials including one-layer porcine small intestinal submucosa (SIS), two-layer SIS, four-layer vacuum pressed (VP) SIS, polyglycolic acid (PGA) and PGA modified with poly(lactic-co-glycolic acid) (PLGA) were analyzed. A circular section (1.2 mm diameter) of each biomaterial was placed near a group of blood vessels in the CAM. Blood vessels around the biomaterials were captured with black and white images at 96 h post implantation; and the images were subjected to densitometry evaluation. One-layer SIS induced a significant increase in blood vessel density as compared to the cellulose nitrate negative control, and had the greatest increase in blood vessel density as compared to four-layer VP SIS, PGA, or PLGA modified PGA. Although two-layer SIS has enhanced physical structure for surgical manipulation, its induction in blood vessel density was significantly lower than the one-layer SIS. Stripping the SIS proteins or incubating one-layer SIS with neutralizing antibodies against basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) resulted in decreased angiogenesis. Consistent with results obtained from bladder augmentation animal models, these results confirmed that angiogenic growth factors were present in SIS and affected the angiogenic potential of biomaterials. These data also demonstrated that the CAM assay can be used to ascertain methodically the angiogenic potential of biomaterials.

  17. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  18. CPU-12, a novel synthesized oxazolo[5,4-d]pyrimidine derivative, showed superior anti-angiogenic activity.

    Science.gov (United States)

    Liu, Jiping; Deng, Ya-Hui; Yang, Ling; Chen, Yijuan; Lawali, Manzo; Sun, Li-Ping; Liu, Yu

    2015-09-01

    Angiogenesis is a crucial requirement for malignant tumor growth, progression and metastasis. Tumor-derived factors stimulate formation of new blood vessels which actively support tumor growth and spread. Various of drugs have been applied to inhibit tumor angiogenesis. CPU-12, 4-chloro-N-(4-((2-(4-methoxyphenyl)-5-methyloxazolo[5,4-d] pyrimidin-7-yl)amino)phenyl)benzamide, is a novel oxazolo[5,4-d]pyrimidine derivative that showed potent activity in inhibiting VEGF-induced angiogenesis in vitro and ex-vivo. In cell toxicity experiments, CPU-12 significantly inhibited the human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner with a low IC50 value at 9.30 ± 1.24 μM. In vitro, CPU-12 remarkably inhibited HUVEC's migration, chemotactic invasion and capillary-like tube formation in a dose-dependent manner. In ex-vivo, CPU-12 effectively inhibited new microvessels sprouting from the rat aortic ring. In addition, the downstream signalings of vascular endothelial growth factor receptor-2 (VEGFR-2), including the phosphorylation of PI3K, ERK1/2 and p38 MAPK, were effectively down-regulated by CPU-12. These evidences suggested that angiogenic response via the induction of VEGFR through distinct signal transduction pathways regulating proliferation, migration and tube formation of endothelial cells was significantly inhibited by the novel small molecule compound CPU-12 in vitro and ex-vivo. In conclusion, CPU-12 showed superior anti-angiogenic activity in vitro. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Comparison of angiogenic and proliferative effects of three commonly used agents for pulmonary artery hypertension (sildenafil, iloprost, bosentan): is angiogenesis always beneficial?

    Science.gov (United States)

    Doganci, S; Yildirim, V; Yesildal, F; Erol, G; Kadan, M; Ozkan, G; Avcu, F; Ozgurtas, T

    2015-05-01

    Pulmonary artery hypertension (PAH) is devastating disease that has very serious outcomes. Dysregulated angiogenesis is one of the main responsible courses in pathophysiology of disease. Our experimental research intends to find out and compare the angiogenic effects of medications used sildenafil, iloprost, and bosentan in the treatment of PAH. This study was performed in Department of Biochemistry and Cancer and Stem Cell Research Laboratory of our institutes between August and October 2014. Angiogenic activity of sildenafil, iloprost, and bosentan were examined in vivo in chick chorioallantoic membrane (CAM) model and in vitro tube formation assay of human umbilical vein endothelial cells (HUVECs). Proliferative activity of these three agents was also determined through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on HUVECs. In CAM assay, when compared to the control and drug groups, treatment with sildenafil solutions resulted in a significant dose-dependent increase (budding, sprouting, extravasation) on CAM vessel growth. While there was no significant proliferative effect with iloprost and bosentan, presence of sildenafil caused a statistically significant proliferation on HUVECs following 24 and 48 h incubation (p Iloprost and bosentan did not show a significant effect. The results provide evidence that sildenafil but not iloprost and bosentan induces angiogenesis in vitro and in vivo. Dysregulated angiogenesis, as an important pathophysiological part in the progression of PAH, may be triggered by the chronic ingestion of sildenafil in the long treatment period and may cause negative effects.

  20. Cyclic strain alters the expression and release of angiogenic factors by human tendon cells.

    Science.gov (United States)

    Mousavizadeh, Rouhollah; Khosravi, Shahram; Behzad, Hayedeh; McCormack, Robert G; Duronio, Vincent; Scott, Alex

    2014-01-01

    Angiogenesis is associated with the tissue changes underlying chronic overuse tendinopathy. We hypothesized that repetitive, cyclic loading of human tendon cells would lead to increased expression and activity of angiogenic factors. We subjected isolated human tendon cells to overuse tensile loading using an in vitro model (1 Hz, 10% equibiaxial strain). We found that mechanically stimulated human tendon cells released factors that promoted in vitro proliferation and tube formation by human umbilical vein endothelial cells (HUVEC). In response to cyclic strain, there was a transient increase in the expression of several angiogenic genes including ANGPTL4, FGF-2, COX-2, SPHK1, TGF-alpha, VEGF-A and VEGF-C, with no change in anti-angiogenic genes (BAI1, SERPINF1, THBS1 and 2, TIMP1-3). Cyclic strain also resulted in the extracellular release of ANGPTL4 protein by tendon cells. Our study is the first report demonstrating the induction of ANGPTL4 mRNA and release of ANGPTL4 protein in response to cyclic strain. Tenocytes may contribute to the upregulation of angiogenesis during the development of overuse tendinopathy.

  1. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors.

    Science.gov (United States)

    Bai, Huai; Forrester, John V; Zhao, Min

    2011-07-01

    Small direct current (DC) electric fields direct some important angiogenic responses of vascular endothelial cells. Those responses indicate promising use of electric fields to modulate angiogenesis. We sought to determine the regulation of electric fields on transcription and expression of a serial of import angiogenic factors by endothelial cells themselves. Using semi-quantitative PCR and ELISA we found that electric stimulation upregulates the levels of mRNAs and proteins of a number of angiogenic proteins, most importantly VEGF165, VEGF121 and IL-8 in human endothelial cells. The up-regulation of mRNA levels might be specific, as the mRNA encoding bFGF, TGF-beta and eNOS are not affected by DC electric stimulation at 24h time-point. Inhibition of VEGF receptor (VEGFR1 or VEGFR2) signaling significantly decreased VEGF production and completely abolished IL-8 production. DC electric stimulation selectively regulates production of some growth factors and cytokines important for angiogenesis through a feed-back loop mediated by VEGF receptors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Significance and nature of bystander responses induced by various agents.

    Science.gov (United States)

    Verma, Neha; Tiku, Ashu Bhan

    2017-07-01

    Bystander effects in a biological system are the responses shown by non-targeted neighbouring cells/tissues/organisms. These responses are triggered by factors released from targeted cells when exposed to a stress inducing agent. The biological response to stress inducing agents is complex, owing to the diversity of mechanisms and pathways activated in directly targeted and bystander cells. These responses are highly variable and can be either beneficial or hazardous depending on the cell lines tested, dose of agent used, experimental end points and time course selected. Recently non-targeted cells have even been reported to rescue the directly exposed cells by releasing protective signals that might be induced by non-targeted bystander responses. The nature of bystander signal/s is not yet clear. However, there are evidences suggesting involvement of ROS, RNS, protein factors and even DNA molecules leading to the activation of a number of signaling pathways. These can act independently or in a cascade, to induce events leading to changes in gene expression patterns that could elicit detrimental or beneficial effects. Many review articles on radiation induced bystander responses have been published. However, to the best of our knowledge, a comprehensive review on bystander responses induced by other genotoxic chemicals and stress inducing agents has not been published so far. Therefore, the aim of the present review is to give an overview of the literature on different aspects of bystander responses: agents that induce these responses, factors that can modulate bystander responses and the mechanisms involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta;

    2013-01-01

    nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy.......Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon...... nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes...

  4. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines.

    Science.gov (United States)

    Atmaca, Harika; Bozkurt, Emir

    2016-03-01

    Plants, due to their remarkable composition, are considered as natural resources of bioactive compounds with specific biological activities. Salvia genus (Lamiaceae) has been used around the world in complementary medicine since ancient times. We investigated the cytotoxic, apoptotic and anti-angiogenic effects of methanolic Salvia triloba extract (STE) in prostate cancer cells. Cell viability was evaluated by XTT; apoptosis was investigated by DNA fragmentation and caspase 3/7 activity assays. Changes in the angiogenic cytokine levels were investigated by human angiogenesis antibody array. Scratch assay was used to determine the cell motility. STE induced cytotoxicity and apoptosis in a concentration-dependent manner in both cancer cells; however, it was not cytotoxic to normal cells. Cell motility was reduced in PC-3, DU-145 and HUVEC cells by STE treatment. ANG, ENA-78, bFGF, EGF, IGF-1 and VEGF-D levels were significantly decreased by -2.9, -3.7, -1.7, -1.7, -2.0 and -1.8 fold in STE-treated DU-145 cells, however, ANG, IL-8, LEP, RANTES, TIMP-1, TIMP-2 and VEGF levels were significantly decreased by -5.1, -2.0, -2.4, -3.1, -1.5, -2.0 and -2.5 fold in PC-3 cells. These data suggest that STE might be a promising candidate for anti-tumor and anti-angiogenic treatment of prostate cancer.

  5. Axitinib induces DNA damage response leading to senescence, mitotic catastrophe, and increased NK cell recognition in human renal carcinoma cells.

    Science.gov (United States)

    Morelli, Maria Beatrice; Amantini, Consuelo; Santoni, Matteo; Soriani, Alessandra; Nabissi, Massimo; Cardinali, Claudio; Santoni, Angela; Santoni, Giorgio

    2015-11-03

    Tyrosine kinase inhibitors (TKIs) including axitinib have been introduced in the treatment of renal cell carcinoma (RCC) because of their anti-angiogenic properties. However, no evidence are presently available on a direct cytotoxic anti-tumor activity of axitinib in RCC.Herein we reported by western blot analysis that axitinib treatment induces a DNA damage response (DDR) initially characterized by γ-H2AX phosphorylation and Chk1 kinase activation and at later time points by p21 overexpression in A-498 and Caki-2 RCC cells although with a different potency. Analysis by immunocytochemistry for the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine in cellular DNA and flow cytometry using the redox-sensitive fluorescent dye DCFDA, demonstrated that DDR response is accompanied by the presence of oxidative DNA damage and reactive oxygen species (ROS) generation. This response leads to G2/M cell cycle arrest and induces a senescent-like phenotype accompanied by enlargement of cells and increased senescence-associated β-galactosidase activity, which are abrogated by N-acetyl cysteine (NAC) pre-treatment. In addition, axitinib-treated cells undergo to cell death through mitotic catastrophe characterized by micronucleation and abnormal microtubule assembly as assessed by fluorescence microscopy.On the other hand, axitinib, through the DDR induction, is also able to increase the surface NKG2D ligand expression. Accordingly, drug treatment promotes NK cell recognition and degranulation in A-498 RCC cells in a ROS-dependent manner.Collectively, our results indicate that both cytotoxic and immunomodulatory effects on RCC cells can contribute to axitinib anti-tumor activity.

  6. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  7. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs

    OpenAIRE

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico; Page, Clive

    2016-01-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levo...

  8. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs

    OpenAIRE

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico; Page, Clive

    2016-01-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levo...

  9. [Gender and emotional response induced by imagery].

    Science.gov (United States)

    Lasa Aristu, Amaia; Vallejo Pareja, M A; Domínguez Sánchez, Javier

    2007-05-01

    The aim of this study is to explore gender differences in emotional expression: Do men benefit from their stereotyped response pattern to some negative affects such as sadness? Do women benefit less than men from positive affect? We studied sadness and happiness in the laboratory, using imagery induction with some temporal proximity, and registering physiological, facial, and cognitive responses. The results show a complex panorama in which the differences depend on the emotional content and presentation order. The results are in accordance with the educational theories that postulate prototypical emotional education, and indicate a way to reduce the problems related to women's sensitization to sadness, using the beneficial effects of positive experiences.

  10. Emerald ash borer responses to induced plant volatiles

    Science.gov (United States)

    Cesar Rodriguez-Saona; Therese M. Poland; James Miller; Lukasz Stelinski; Linda Buchan; Gary Grant; Peter de Groot; Linda MacDonald

    2007-01-01

    Herbivore feeding and methyl jasmonate, a volatile derivative of the stress-eliciting plant hormone, jasmonic acid, induce responses in plants which include the synthesis and emission of volatiles. These induced volatiles can serve to attract or repel herbivores; therefore, they may have potential use in pest management programs. The exotic emerald ash borer (EAB),...

  11. Androgen deprivation modulates the inflammatory response induced by irradiation

    Directory of Open Access Journals (Sweden)

    Lin Paul-Yang

    2009-03-01

    Full Text Available Abstract Background The aim of this study was to determine whether radiation (RT-induced inflammatory responses and organ damage might be modulated by androgen deprivation therapies. Methods The mRNA and tissue sections obtained from the lungs, intestines and livers of irradiated mice with or without androgen deprivation were analyzed by real-time PCR and histological analysis. Activation of NF-kappa B was examined by measuring nuclear protein levels in the intestine and lung 24 h after irradiation. We also examined the levels of cyclooxygenase-2 (COX-2, TGF-β1 and p-AKT to elucidate the related pathway responsible to irradiation (RT -induced fibrosis. Results We found androgen deprivation by castration significantly augmented RT-induced inflammation, associated with the increase NF-κB activation and COX-2 expression. However, administration of flutamide had no obvious effect on the radiation-induced inflammation response in the lung and intestine. These different responses were probably due to the increase of RT-induced NF-κB activation and COX-2 expression by castration or lupron treatment. In addition, our data suggest that TGF-β1 and the induced epithelial-mesenchymal transition (EMT via the PI3K/Akt signaling pathway may contribute to RT-induced fibrosis. Conclusion When irradiation was given to patients with total androgen deprivation, the augmenting effects on the RT-induced inflammation and fibrosis should take into consideration for complications associated with radiotherapy.

  12. Anti-angiogenic activity of inositol hexaphosphate (IP6).

    Science.gov (United States)

    Vucenik, Ivana; Passaniti, Antonino; Vitolo, Michele I; Tantivejkul, Kwanchanit; Eggleton, Paul; Shamsuddin, Abulkalam M

    2004-11-01

    A significant anticancer activity of the naturally occurring carbohydrate inositol hexaphosphate (IP(6)) has been reported against numerous cancer models. Since tumors require angiogenesis for growth and metastasis, we hypothesize that IP(6) reduces tumor growth by inhibiting angiogenesis. Because angiogenesis depends on the interaction between endothelial and tumor cells, we investigated the effect of IP(6) on both. IP(6) inhibited the proliferation and induced the differentiation of endothelial cells in vitro; the growth of bovine aortic endothelial cells (BAECs) evaluated by MTT proliferation assay was inhibited in a dose-dependent manner (IC(50) = 0.74 mM). The combination of IP(6) and vasostatin, a calreticulin fragment with anti-angiogenic activity, was synergistically superior in growth inhibition than either compound. IP(6) inhibited human umbilical vein endothelial cell (HUVEC) tube formation (in vitro capillary differentiation) on a reconstituted extracellular matrix, Matrigel, and disrupted pre-formed tubes. IP(6) significantly reduced basic fibroblast growth factor (bFGF)-induced vessel formation (P < 0.01) in vivo in Matrigel plug assay. Exposure of HepG2, a human hepatoma cell line, to IP(6) for 8 h, resulted in a dose-dependent decrease in the mRNA levels of vascular endothelial growth factor (VEGF), as assessed by RT-PCR. IP(6) treatment of HepG2 cells for 24 h also significantly reduced the VEGF protein levels in conditioned medium, in a concentration-dependent manner (P = 0.012). Thus, IP(6) has an inhibitory effect on induced angiogenesis.

  13. Therapeutic application of anti-angiogenic nanomaterials in cancers

    Science.gov (United States)

    Mukherjee, Sudip; Patra, Chitta Ranjan

    2016-06-01

    Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the

  14. Transport induced inflammatory responses in horses.

    Science.gov (United States)

    Wessely-Szponder, J; Bełkot, Z; Bobowiec, R; Kosior-Korzecka, U; Wójcik, M

    2015-01-01

    Deleterious response to road transport is an important problem in equine practice. It determines different physiological, immunological and metabolic changes which lead to increased susceptibility to several disorders such as pneumonia, diarrhea, colics, laminitis, injuries and rhabdomyolisis. The aim of our study was to look for possible relationships between transportation of female young and older horses over a long and short distance and an inflammatory state reflected by an increase of acute phase protein concentration, oxidative stress and muscle injury. The study was conducted on 24 cold-blooded female horses divided into four groups. Six fillies aged 6-18 months and six mares aged 10-12 years were transported over the distance of about 550 km, six fillies aged 6-18 months and six mares aged 10-12 years were transported over the distance of about 50 km. Plasma and serum were obtained from blood samples taken before transportation (T0), immediately after transportation (T1) and at an abattoir during slaughter (T2). In these samples fibrinogen, MDA, AST and CK were assessed. Fibrinogen increased in all studied groups especially in fillies after long distance transportation, where it reached 205±7.07 mg/dl before transportation, 625±35.35 mg/dl after transportation, and 790±14.14 mg/dl during slaughter. MDA concentrations rose after transportation and reached the maximal level during slaughter. CK activity was more elevated after short transportation in younger horses, whereas initial activity of AST was higher in older horses. We estimated that intensified responses from acute phase, oxidative stress and muscle injury parameters indicated an inflammatory state.

  15. EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation

    Directory of Open Access Journals (Sweden)

    Petra Minder

    2015-08-01

    Full Text Available Many malignant characteristics of cancer cells are regulated through pathways induced by the tyrosine kinase activity of the epidermal growth factor receptor (EGFR. Herein, we show that besides directly affecting the biology of cancer cells per se, EGFR also regulates the primary tumor microenvironment. Specifically, our findings demonstrate that both the expression and signaling activity of EGFR are required for the induction of a distinct intratumoral vasculature capable of sustaining tumor cell intravasation, a critical rate-limiting step in the metastatic cascade. An intravasation-sustaining mode of intratumoral angiogenic vessels depends on high levels of tumor cell EGFR and the interplay between EGFR-regulated production of interleukin 8 by tumor cells, interleukin-8–induced influx of tumor-infiltrating neutrophils delivering their unique matrix metalloproteinase-9, and neutrophil matrix metalloproteinase-9–dependent release of the vascular permeability and endothelial growth factor, VEGF. Our data indicate that through VEGF-mediated disruption of endothelial layer integrity and increase of intratumoral vasculature permeability, EGFR activity significantly facilitates active intravasation of cancer cells. Therefore, this study unraveled an important but overlooked function of EGFR in cancer, namely, its ability to create an intravasation-sustaining microenvironment within the developing primary tumor by orchestrating several interrelated processes required for the initial steps of cancer metastasis through vascular routes. Our findings also suggest that EGFR-targeted therapies might be more effective when implemented in cancer patients with early-staged primary tumors containing a VEGF-dependent angiogenic vasculature. Accordingly, early EGFR inhibition combined with various anti-VEGF approaches could synergistically suppress tumor cell intravasation through inhibiting the highly permeable angiogenic vasculature induced by EGFR

  16. Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis.

    Science.gov (United States)

    Daleprane, Julio Beltrame; Freitas, Vanessa da Silva; Pacheco, Alejandro; Rudnicki, Martina; Faine, Luciane Aparecida; Dörr, Felipe Augusto; Ikegaki, Masaharu; Salazar, Luis Antonio; Ong, Thomas Prates; Abdalla, Dulcinéia Saes Parra

    2012-06-01

    Propolis is a polyphenol-rich resinous substance extensively used to improve health and prevent diseases. The effects of polyphenols from different sources of propolis on atherosclerotic lesions and inflammatory and angiogenic factors were investigated in LDL receptor gene (LDLr-/-) knockout mice. The animals received a cholesterol-enriched diet to induce the initial atherosclerotic lesions (IALs) or advanced atherosclerotic lesions (AALs). The IAL or AAL animals were divided into three groups, each receiving polyphenols from either the green, red or brown propolis (250 mg/kg per day) by gavage. After 4 weeks of polyphenol treatment, the animals were sacrificed and their blood was collected for lipid profile analysis. The atheromatous lesions at the aortic root were also analyzed for gene expression of inflammatory and angiogenic factors by quantitative real-time polymerase chain reaction and immunohistochemistry. All three polyphenol extracts improved the lipid profile and decreased the atherosclerotic lesion area in IAL animals. However, only polyphenols from the red propolis induced favorable changes in the lipid profiles and reduced the lesion areas in AAL mice. In IAL groups, VCAM, MCP-1, FGF, PDGF, VEGF, PECAM and MMP-9 gene expression was down-regulated, while the metalloproteinase inhibitor TIMP-1 gene was up-regulated by all polyphenol extracts. In contrast, for advanced lesions, only the polyphenols from red propolis induced the down-regulation of CD36 and the up-regulation of HO-1 and TIMP-1 when compared to polyphenols from the other two types of propolis. In conclusion, polyphenols from propolis, particularly red propolis, are able to reduce atherosclerotic lesions through mechanisms including the modulation of inflammatory and angiogenic factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum

    Science.gov (United States)

    Marinval, Nicolas; Saboural, Pierre; Haddad, Oualid; Maire, Murielle; Bassand, Kevin; Geinguenaud, Frederic; Djaker, Nadia; Ben Akrout, Khadija; Lamy de la Chapelle, Marc; Robert, Romain; Oudar, Olivier; Guyot, Erwan; Laguillier-Morizot, Christelle; Sutton, Angela; Chauvierre, Cedric; Chaubet, Frederic; Charnaux, Nathalie; Hlawaty, Hanna

    2016-01-01

    Herein we investigate the structure/function relationships of fucoidans from Ascophyllum nodosum to analyze their pro-angiogenic effect and cellular uptake in native and glycosaminoglycan-free (GAG-free) human endothelial cells (HUVECs). Fucoidans are marine sulfated polysaccharides, which act as glycosaminoglycans mimetics. We hypothesized that the size and sulfation rate of fucoidans influence their ability to induce pro-angiogenic processes independently of GAGs. We collected two fractions of fucoidans, Low and Medium Molecular Weight Fucoidan (LMWF and MMWF, respectively) by size exclusion chromatography and characterized their composition (sulfate, fucose and uronic acid) by colorimetric measurement and Raman and FT-IR spectroscopy. The high affinities of fractionated fucoidans to heparin binding proteins were confirmed by Surface Plasmon Resonance. We evidenced that LMWF has a higher pro-angiogenic (2D-angiogenesis on Matrigel) and pro-migratory (Boyden chamber) potential on HUVECs, compared to MMWF. Interestingly, in a GAG-free HUVECs model, LMWF kept a pro-angiogenic potential. Finally, to evaluate the association of LMWF-induced biological effects and its cellular uptake, we analyzed by confocal microscopy the GAGs involvement in the internalization of a fluorescent LMWF. The fluorescent LMWF was mainly internalized through HUVEC clathrin-dependent endocytosis in which GAGs were partially involved. In conclusion, a better characterization of the relationships between the fucoidan structure and its pro-angiogenic potential in GAG-free endothelial cells was required to identify an adapted fucoidan to enhance vascular repair in ischemia. PMID:27763505

  18. Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum

    Directory of Open Access Journals (Sweden)

    Nicolas Marinval

    2016-10-01

    Full Text Available Herein we investigate the structure/function relationships of fucoidans from Ascophyllum nodosum to analyze their pro-angiogenic effect and cellular uptake in native and glycosaminoglycan-free (GAG-free human endothelial cells (HUVECs. Fucoidans are marine sulfated polysaccharides, which act as glycosaminoglycans mimetics. We hypothesized that the size and sulfation rate of fucoidans influence their ability to induce pro-angiogenic processes independently of GAGs. We collected two fractions of fucoidans, Low and Medium Molecular Weight Fucoidan (LMWF and MMWF, respectively by size exclusion chromatography and characterized their composition (sulfate, fucose and uronic acid by colorimetric measurement and Raman and FT-IR spectroscopy. The high affinities of fractionated fucoidans to heparin binding proteins were confirmed by Surface Plasmon Resonance. We evidenced that LMWF has a higher pro-angiogenic (2D-angiogenesis on Matrigel and pro-migratory (Boyden chamber potential on HUVECs, compared to MMWF. Interestingly, in a GAG-free HUVECs model, LMWF kept a pro-angiogenic potential. Finally, to evaluate the association of LMWF-induced biological effects and its cellular uptake, we analyzed by confocal microscopy the GAGs involvement in the internalization of a fluorescent LMWF. The fluorescent LMWF was mainly internalized through HUVEC clathrin-dependent endocytosis in which GAGs were partially involved. In conclusion, a better characterization of the relationships between the fucoidan structure and its pro-angiogenic potential in GAG-free endothelial cells was required to identify an adapted fucoidan to enhance vascular repair in ischemia.

  19. Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells.

    Science.gov (United States)

    Kondo, Seiji; Tanaka, Noriko; Kubota, Satoshi; Mukudai, Yoshiki; Yosimichi, Gen; Sugahara, Toshio; Takigawa, Masaharu

    2006-01-01

    Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

  20. Latest Results for Anti-Angiogenic Drugs in Cancer Treatment

    DEFF Research Database (Denmark)

    Frandsen, Sofie; Kopp, Sascha; Wehland, Markus;

    2016-01-01

    BACKGROUND: Angiogenesis is a mechanism, which tumors use to recruit oxygen and nutrients in order to maintain growth. The vascular endothelial growth factor family is the primary mediator of this process. For the last couple of decades, inhibition of angiogenesis has been the subject of extensiv...... mechanisms are necessary. Moreover, biomarker studies in future clinical investigations are important for the development of the next generation of anti-angiogenic drugs....... research, but so far anti-angiogenic drugs have only shown a modest effect. METHODS: This paper reviews four relevant anti-angiogenic drugs: bevacizumab, ramucirumab, nintedanib and sunitinib. The primary focus will be recent trials investigating the effects of the drugs in lung, breast...... and gastrointestinal cancers. Furthermore, there will be a discussion of unsolved problems, such as lack of biomarkers, drug resistance, and adverse events, for which a solution is necessary in order to improve the benefit of anti-angiogenic drugs in the future. RESULTS: Anti-angiogenic therapy is extensively used...

  1. Combination of PDT and topical angiogenic inhibitor for treatment of port wine stain (PWS) birthmarks: a novel approach

    Science.gov (United States)

    Yuan, Kaihua; Huang, Qiaobing; Huang, Zheng

    2009-06-01

    Port wine stain (PWS) birthmarks are a congenital cutaneous vascular malformation involving ecstatic post-capillary venules. Current standard treatment for PWS is the pulsed dye laser (PDL). Vascular-targeted photodynamic therapy (PDT) has been used for the treatment of PWS in China since the early 1990's. Both can achieve a certain degree of color blanching in various types of PWS lesions. However, the majority of PWS lesions require multiple treatments. Some PWS lesions can recur or become darker after successful treatment. Recently, it has been proposed that this phenomenon might be initiated by neoangiogenesis that can be caused by treatment via wound healing response. The combined use of photothermolysis and a topical application of an angiogenic inhibitor such as Imiquimod and Rapamycin, were evaluated in several pilot studies. It is well-known that PDT can induce various host immune responses VEGF overexpression. Recent clinical data also show that improved clinical outcomes are obtained through the combination of ocular PDT and anti-VEGF therapy. This article will discuss rationales and implications of using such a combination modality and highlight recent progress based on our clinical experience and published data.

  2. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp

    Institute of Scientific and Technical Information of China (English)

    Jin Sun; Yong-Hui Shi; Guo-Wei Le; Xi-Yi Ma

    2005-01-01

    AIM: To analyze the distinct immune responses induced by Lactobacillus peptidoglycan (PG).METHODS: BALB/c mice were intraperitoneally injected with PG once a day for three consecutive days. Peritoneal macrophage and splenocyte mRNA was extracted and the gene expression profile was studied using high-density oligonucleotide microarrays. Inhibitory effects of Lactobacillus PG on colon tumor tissue were studied in vitro and in vivo.RESULTS: The gene expression profiles revealed that the TLR-NF-κB and Jak-STAT signaling pathways were highly activated. An inflammatory phenotype was induced when peritoneal macrophages were initially exposed to Lactobacillus PG and switched to a more complex phenotype when BALB/c mice were treated with three doses of Lactobacillus PG. A protective physiological inflammatory response was induced after three consecutive days of PG treatment. It was tending toward Th1 dominant immune response. Lactobacillus PG also appeared to induce a significantin vivo anti-colon tumor effect.CONCLUSION: Lactobacillus PG is responsible for certain immune responses induced by Lactobacilli. Anti-tumor effects of Lactobacilli are likely to attribute to the activation of macrophages by PG expressed on the bacterial cell surface.

  3. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    Science.gov (United States)

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix.

  4. Nanomaterial Induced Immune Responses and Cytotoxicity.

    Science.gov (United States)

    Ali, Ashraf; Suhail, Mohd; Mathew, Shilu; Shah, Muhammad Ali; Harakeh, Steve M; Ahmad, Sultan; Kazmi, Zulqarnain; Alhamdan, Mohammed Abdul Rahman; Chaudhary, Adeel; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq

    2016-01-01

    Nanomaterials are utilized in a wide array of end user products such as pharmaceuticals, electronics, clothes and cosmetic products. Due to its size (< 100 nm), nanoparticles have the propensity to enter through the airway and skin, making its path perilous with the potential to cause damages of varying severity. Once within the body, these particles have unconstrained access to different tissues and organs including the brain, liver, and kidney. As a result, nanomaterials may cause the perturbation of the immune system eliciting an inflammatory response and cytotoxicity. This potential role is dependent on many factors such as the characteristics of the nanomaterials, presence or absence of diseases, and genetic predisposition. Cobalt and nickel nanoparticles, for example, were shown to have inflammogenic properties, while silver nanoparticles were shown to reduce allergic inflammation. Just as asbestos fibers, carbon nanotubes were shown to cause lungs damage. Some nanomaterials were shown, based on animal studies, to result in cell damage, leading to the formation of pre-cancerous lesions. This review highlights the impact of nanomaterials on immune system and its effect on human health with toxicity consideration. It recommends the development of suitable animal models to study the toxicity and bio-clearance of nanomaterials and propose safety guidelines.

  5. Use of Culture Geometry to Control Hypoxia-Induced Vascular Endothelial Growth Factor Secretion from Adipose-Derived Stem Cells: Optimizing a Cell-Based Approach to Drive Vascular Growth

    Science.gov (United States)

    Skiles, Matthew L.; Sahai, Suchit; Rucker, Lindsay

    2013-01-01

    Adipose-derived stem cells (ADSCs) possess potent angiogenic properties and represent a source for cell-based approaches to delivery of bioactive factors to drive vascularization of tissues. Hypoxic signaling appears to be largely responsible for triggering release of these angiogenic cytokines, including vascular endothelial growth factor (VEGF). Three-dimensional (3D) culture may promote activation of hypoxia-induced pathways, and has furthermore been shown to enhance cell survival by promoting cell–cell interactions while increasing angiogenic potential. However, the development of hypoxia within ADSC spheroids is difficult to characterize. In the present study, we investigated the impact of spheroid size on hypoxia-inducible transcription factor (HIF)-1 activity in spheroid cultures under atmospheric and physiological oxygen conditions using a fluorescent marker. Hypoxia could be induced and modulated by controlling the size of the spheroid; HIF-1 activity increased with spheroid size and with decreasing external oxygen concentration. Furthermore, VEGF secretion was impacted by the hypoxic status of the culture, increasing with elevated HIF-1 activity, up to the point at which viability was compromised. Together, these results suggest the ability to use 3D culture geometry as a means to control output of angiogenic factors from ADSCs, and imply that at a particular environmental oxygen concentration an optimal culture size for cytokine production exists. Consideration of culture geometry and microenvironmental conditions at the implantation site will be important for successful realization of ADSCs as a pro-angiogenic therapy. PMID:23668629

  6. Measles virus-induced suppression of immune responses

    Science.gov (United States)

    Griffin, Diane E.

    2010-01-01

    Summary Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells are susceptible to infection and can transmit infection to lymphocytes. MV-infected dendritic cells are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity. PMID:20636817

  7. Ozone-Induced Hypertussive Responses in Rabbits and Guinea Pigs.

    Science.gov (United States)

    Clay, Emlyn; Patacchini, Riccardo; Trevisani, Marcello; Preti, Delia; Branà, Maria Pia; Spina, Domenico; Page, Clive

    2016-04-01

    Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits. This response was inhibited by the established antitussive drugs codeine and levodropropizine. In contrast to the guinea pig, hypertussive responses in the rabbit were not inhibited by bronchodilator drugs (β2 agonists or muscarinic receptor antagonists), suggesting that the observed hypertussive state was not secondary to bronchoconstriction in this species. The ozone-induced hypertussive response in the rabbit was inhibited by chronic pretreatment with capsaicin, suggestive of a sensitization of airway sensory nerve fibers. However, we could find no evidence for a role of TRPA1 in this response, suggesting that ozone was not sensitizing airway sensory nerves via activation of this receptor. Whereas the ozone-induced hypertussive response was accompanied by a significant influx of neutrophils into the airway, the hypertussive response was not inhibited by the anti-inflammatory phosphodiesterase 4 inhibitor roflumilast at a dose that clearly exhibited anti-inflammatory activity. In summary, our results suggest that ozone-induced hypertussive responses to citric acid may provide a useful model for the investigation of novel drugs for the treatment of cough, but some important differences were noted between the two species with respect to sensitivity to bronchodilator drugs.

  8. Vitamin D restores angiogenic balance and decreases tumor necrosis factor-α in a rat model of pre-eclampsia.

    Science.gov (United States)

    Song, Jing; Li, Yue; An, Ruifang

    2017-01-01

    Deficiency of vitamin D is correlated with pre-eclampsia (PE), a hypertensive disorder of pregnancy, and is characterized by angiogenic imbalance and inflammation. The aim of this study was to investigate whether vitamin D supplementation can restore the angiogenic balance and ameliorate inflammation in a rat model of PE. PE was induced using l-nitroarginine methylester. Normal pregnant and PE-induced rats were supplemented with vitamin D on gestation days 14-19. Blood pressure was significantly increased in PE-induced rats compared with normal pregnant rats (P factor (VEGF; P factor-α (TNF-α; P < 0.01 for both) compared with the normal pregnant group. The vitamin D treatment group had significantly increased VEGF, and reduced sFlt-1 and TNF-α compared with the untreated PE group. Moreover, vitamin D supplementation was able to reduce the oxidative stress by lowering the plasma oxidative stress marker malondialdehyde. Vitamin D supplementation plays an important role in restoring angiogenic balance and reducing inflammation in pregnancy-induced hypertension. © 2016 Japan Society of Obstetrics and Gynecology.

  9. Suppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfone.

    Science.gov (United States)

    Skopinski, Piotr; Szaflik, Jerzy; Duda-Król, Barbara; Nartowska, Jadwiga; Sommer, Ewa; Chorostowska-Wynimko, Joanna; Demkow, Urszula; Skopinska-Rózewska, Ewa

    2004-10-01

    Angiogenesis, the process of new blood vessel formation, is the key event in the mechanism of several pathological processes including diabetic retinopathy. The physiological control of angiogenesis depends on the balance between stimulatory and inhibitory factors. Therefore, a number of anti-angiogenic approaches has been developed, many of them based on the inhibition of the functional activity of pro-angiogenic factors. The aim of the present study was to compare the anti-angiogenic effectiveness of sulindac sulfone and some herbal compounds in the serum-induced angiogenesis test performed in Balb/c mice. Pooled sera from 35 patients with diabetes type 2 and retinopathy were used as pro-angiogenic stimuli. The strongest inhibitory effect was observed for the sulindac sulfone and ursolic acid in the highest concentration of 200 micro g/ml, as well as for the low-dosage concomitant treatment with 2 micro g/ml of epigallocatechin gallate (EGCG, green tea flavanol), ursolic acid (plant-derived triterpenoid), sulindac sulfone and convalamaroside (steroidal saponin). Combination treatment was significantly more effective than monotherapy with medium (20 micro g/ml) or lowest doses of tested compounds. The present study is the first to demonstrate the potent anti-angiogenic effect of the combination therapy comprising of plant-derived extracts and sulindac sulfone, as tested in the in vivo angiogenesis experimental model with sera of non-proliferative diabetic retinopathy patients used as the pro-angiogenic stimuli. We think that it might be the first step toward application of some of these compounds, in the future, in preventive anti-angiogenic therapy of these patients, as well, as in the treatment of later, proliferative stage of this disease.

  10. The association of depressed angiogenic factors with reduced capillary density in the Rhesus monkey model of myocardial ischemia.

    Science.gov (United States)

    Zhang, Wenjing; Zhao, Xinmei; Xiao, Ying; Chen, Jianmin; Han, Pengfei; Zhang, Jingyao; Fu, Haiying; James Kang, Y

    2016-07-13

    Depressed capillary density is associated with myocardial ischemic infarction, in which hypoxia-inducible factor 1α (HIF-1α) is increased. The present study was undertaken to examine changes in the angiogenic factors whose expression is regulated by HIF-1 and their relation to the depressed capillary density in the Rhesus monkey model of myocardial ischemic infarction. Male Rhesus monkeys 2-3 years old were subjected to myocardial ischemia by permanent ligation of left anterior descending (LAD) artery leading to the development of myocardial infarction. Eight weeks after LAD ligation, copper concentrations, myocardial histological changes and capillary density were examined, along with Western blot and immunohistochemical analysis of angiogenic factors and detection of HIF-1 activity. Capillary density was significantly decreased but the concentrations of HIF-1α and HIF-1β were significantly increased in the infarct area. However, the levels of mRNA and protein for VEGF and VEGFR1 were significantly decreased. Other HIF-1 regulated angiogenic factors, including Tie-2, Ang-1 and FGF-1, were also significantly depressed, but vascular destabilizing factor Ang-2 was significantly increased. Copper concentrations were depressed in the infarct area. Copper-independent HIF-1 activity was increased shown by the elevated mRNA level of IGF-2, a HIF-1 target gene. Removal of copper by a copper chelator, tetraethylenepentamine, from primary cultures of neonatal rat cardiomyocytes also suppressed the expression of HIF-1 regulated VEGF and BNIP3, but not IGF-2. The data suggest that under ischemic conditions, copper loss suppressed the expression of critical angiogenic genes regulated by HIF-1, but did not affect copper-independent HIF-1 activation of gene expression. This copper-dependent dysregulation of angiogenic gene expression would contribute to the pathogenesis of myocardial ischemic infarction.

  11. Allergen-induced changes in airway responsiveness are related to baseline airway responsiveness

    NARCIS (Netherlands)

    deBruinWeller, MS; Weller, FR; RijssenbeekNouwens, LHM; Jansen, HM; deMonchy, JGR

    1996-01-01

    In the literature, bronchial allergen challenge is usually reported to result in an increase in histamine-induced airway responsiveness (AR). The present study investigated the relation between baseline AR and allergen-induced changes in AR. The effect of allergen challenge on AR was investigated in

  12. Allergen-induced changes in airway responsiveness are related to baseline airway responsiveness

    NARCIS (Netherlands)

    deBruinWeller, MS; Weller, FR; RijssenbeekNouwens, LHM; Jansen, HM; deMonchy, JGR

    1996-01-01

    In the literature, bronchial allergen challenge is usually reported to result in an increase in histamine-induced airway responsiveness (AR). The present study investigated the relation between baseline AR and allergen-induced changes in AR. The effect of allergen challenge on AR was investigated in

  13. Allergen-induced changes in airway responsiveness are related to baseline airway responsiveness

    NARCIS (Netherlands)

    deBruinWeller, MS; Weller, FR; RijssenbeekNouwens, LHM; Jansen, HM; deMonchy, JGR

    In the literature, bronchial allergen challenge is usually reported to result in an increase in histamine-induced airway responsiveness (AR). The present study investigated the relation between baseline AR and allergen-induced changes in AR. The effect of allergen challenge on AR was investigated in

  14. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Cidália D Pereira

    2014-08-01

    Full Text Available Consuming a high-fructose diet induces metabolic syndrome (MS-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC in 10% fructose-fed Sprague-Dawley rats (FRUCT. Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.

  15. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  16. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, and N-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  17. Hypobaric intermittent hypoxia attenuates hypoxia-induced depressor response.

    Directory of Open Access Journals (Sweden)

    Fang Cui

    Full Text Available BACKGROUND: Hypobaric intermittent hypoxia (HIH produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP, heart rate (HR and renal sympathetic nerve activity (RSNA were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K(+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K(+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.

  18. The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells

    Directory of Open Access Journals (Sweden)

    Mansfield Kristen

    2011-06-01

    Full Text Available Abstract Background Dendritic cells (DCs are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM components. Results Herewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS or commercially available endothelial medium (EGM-2. We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses. Conclusions Altogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.

  19. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  20. Vertebrate embryos as tools for anti-angiogenic drug screening and function.

    Science.gov (United States)

    Beedie, Shaunna L; Diamond, Alexandra J; Fraga, Lucas Rosa; Figg, William D; Vargesson, Neil

    2016-11-22

    The development of new angiogenic inhibitors highlights a need for robust screening assays that adequately capture the complexity of vessel formation, and allow for the quantitative evaluation of the teratogenicity of new anti-angiogenic agents. This review discusses the use of screening assays in vertebrate embryos, specifically focusing upon chicken and zebrafish embryos, for the detection of anti-angiogenic agents.

  1. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  2. Tumor Necrosis Factor Type α , a Potent Inhibitor of Endothelial Cell Growth in vitro, is Angiogenic in vivo

    Science.gov (United States)

    Frater-Schroder, Marijke; Risau, Werner; Hallmann, Rupert; Gautschi, Peter; Bohlen, Peter

    1987-08-01

    Tumor necrosis factor type α (TNF-α ) inhibits endothelial cell proliferation in vitro. Basal cell growth (in the absence of exogenously added growth factor) and fibroblast growth factor (FGF)-stimulated cell proliferation are inhibited in a dose-dependent manner from 0.1 to 10 ng/ml with half-maximal inhibition occurring at 0.5-1.0 ng of TNF-α per ml. Bovine aortic and brain capillary endothelial and smooth muscle cells are similarly affected. TNF-α is a noncompetitive antagonist of FGF-stimulated cell proliferation. Its action on endothelial cells is reversible and noncytotoxic. Surprisingly, TNF-α does not seem to inhibit endothelial cell proliferation in vivo. In the rabbit cornea, even a high dose of TNF-α (10 μ g) does not suppress angiogenesis induced by basic FGF. On the contrary, in this model system TNF-α stimulates neovascularization. The inflammatory response that is seen in the cornea after TNF-α implantation suggests that the angiogenic properties of this agent may be a consequence of leukocyte infiltration.

  3. Mutagenesis of aspartic acid-116 enhances the ribonucleolytic activity and angiogenic potency of angiogenin.

    Science.gov (United States)

    Harper, J W; Vallee, B L

    1988-01-01

    Site-specific mutagenesis of the blood vessel-inducing protein angiogenin has been used to further explore both its homology to pancreatic ribonuclease and the functional roles of particular residues. Replacement of Asp-116 in angiogenin by either asparagine (D116N), alanine (D116A), or histidine (D116H) markedly enhances both its ribonucleolytic activity and angiogenic potency. Activity toward tRNA is 8-, 15-, and 18-fold greater than native angiogenin for D116N-, D116A-, and D116H-angiogenin, respectively. The enzymatic specificity of angiogenin, however, has been maintained. Thus, cleavage of 18S and 28S rRNA by the most active His-116 mutant yields the same pattern of polynucleotide products as from angiogenin, whereas there are only minor alterations in activity with cytidylyl(3',5')adenosine and uridylyl(3',5')-adenosine. Extensive biological assays on the chicken embryo chorioallantoic membrane demonstrate that D116H-angiogenin is one to two orders of magnitude more potent in inducing neovascularization than native angiogenin, which correlates well with enhanced enzymatic action. These results support the proposition that the enzymatic and angiogenic activities on angiogenin are interrelated. PMID:2459697

  4. Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles.

    Science.gov (United States)

    Munster, Michal; Fremder, Ella; Miller, Valeria; Ben-Tsedek, Neta; Davidi, Shiri; Scherer, Stefan J; Shaked, Yuval

    2014-01-01

    Tumor derived microparticles (TMPs) have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs). Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.

  5. Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles.

    Directory of Open Access Journals (Sweden)

    Michal Munster

    Full Text Available Tumor derived microparticles (TMPs have recently been shown to contribute to tumor re-growth partially by inducing the mobilization and tumor homing of specific bone marrow derived pro-angiogenic cells (BMDCs. Since antiangiogenic drugs block proangiogenic BMDC mobilization and tumor homing, we asked whether TMPs from cells exposed to an antiangiogenic drug may affect BMDC activity and trafficking. Here we show that the level of VEGF-A is reduced in TMPs from EMT/6 breast carcinoma cells exposed to the anti-VEGF-A antibody, B20. Consequently, these TMPs exhibit reduced angiogenic potential as evaluated by a Matrigel plug and Boyden chamber assays. Consistently, BMDC mobilization, tumor angiogenesis, microvessel density and BMDC-colonization in growing tumors are reduced in mice inoculated with TMPs from B20-exposed cells as compared to mice inoculated with control TMPs. Collectively, our results suggest that the neutralization of VEGF-A in cultured tumor cells can block TMP-induced BMDC mobilization and colonization of tumors and hence provide another mechanism of action by which antiangiogenic drugs act to inhibit tumor growth and angiogenesis.

  6. Characterization of capsaicin induced responses in mice vas deferens

    DEFF Research Database (Denmark)

    Sheykhzade, Majid; Gupta, Saurabh; Sørensen, Tinne;

    2011-01-01

    Calcitonin gene-related peptide (CGRP) is extensively distributed in primary afferent sensory nerves, including those innervating the genitourinary tract. Capsaicin can stimulate the release of CGRP from intracellular stores of these nerves, but this phenomenon has not been investigated in......-depth in isolated preparations. The present study sets out to study and characterize the capsaicin as well as CGRP-induced responses in isolated mouse vas deferens. The effects of capsaicin and CGRP family of peptides were studied on electrically-induced twitch responses in the absence or presence of transient...... receptor potential cation channel vanilloid subfamily member 1 (TRPV1) antagonist and CGRP receptor antagonists. Twitch responses were attenuated by capsaicin (1nM-30nM) and CGRP family of peptides. The potency order was CGRP>intermedin-long (IMDL)~[Cys(Et)(2,7)]aCGRP~adrenomedullin (AM)>[Cys(ACM)(2,7)]a...

  7. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  8. Chotosan (Diaoteng San-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8 involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain

    Directory of Open Access Journals (Sweden)

    Tanaka Ken

    2011-09-01

    Full Text Available Abstract Background Chotosan (CTS, Diaoteng San, a Kampo medicine (ie Chinese medicine formula, is reportedly effective in the treatment of patients with cerebral ischemic insults. This study aims to evaluate the therapeutic potential of CTS in cognitive deficits and investigates the effects and molecular mechanism(s of CTS on learning and memory deficits and emotional abnormality in an animal aging model, namely 20-week-old senescence-accelerated prone mice (SAMP8, with and without a transient ischemic insult (T2VO. Methods Age-matched senescence-resistant inbred strain mice (SAMR1 were used as control. SAMP8 received T2VO (T2VO-SAMP8 or sham operation (sham-SAMP8 at day 0. These SAMP8 groups were administered CTS (750 mg/kg, p.o. or water daily for three weeks from day 3. Results Compared with the control group, both sham-SAMP8 and T2VO-SAMP8 groups exhibited cognitive deficits in the object discrimination and water maze tests and emotional abnormality in the elevated plus maze test. T2VO significantly exacerbated spatial cognitive deficits of SAMP8 elucidated by the water maze test. CTS administration ameliorated the cognitive deficits and emotional abnormality of sham- and T2VO-SAMP8 groups. Western blotting and immunohistochemical studies revealed a marked decrease in the levels of phosphorylated forms of neuroplasticity-related proteins, N-methyl-D-aspartate receptor 1 (NMDAR1, Ca2+/calmodulin-dependent protein kinase II (CaMKII, cyclic AMP responsive element binding protein (CREB and brain-derived neurotrophic factor (BDNF in the frontal cortices of sham-SAMP8 and T2VO-SAMP8. Moreover, these animal groups showed significantly reduced levels of vasculogenesis/angiogenesis factors, vascular endothelial growth factor (VEGF, VEGF receptor type 2 (VEGFR2, platelet-derived growth factor-A (PDGF-A and PDGF receptor α (PDGFRα. CTS treatment reversed the expression levels of these factors down-regulated in the brains of sham- and T2VO-SAMP8

  9. Acute Pyelonephritis during Pregnancy Changes the Balance of Angiogenic and Anti-Angiogenic Factors in Maternal Plasma

    Science.gov (United States)

    Chaiworapongsa, Tinnakorn; Romero, Roberto; Gotsch, Francesca; Kusanovic, Juan Pedro; Mittal, Pooja; Kim, Sun Kwon; Erez, Offer; Vaisbuch, Edi; Mazaki-Tovi, Shali; Kim, Chong Jai; Dong, Zhong; Yeo, Lami; Hassan, Sonia S

    2012-01-01

    Objective Angiogenic factors have been implicated in the pathophysiology of sepsis. In experimental models of sepsis (endotoxemia and/or cecal ligation puncture), there is increased expression of vascular endothelial growth factors (VEGF) and the administration of exogenous soluble VEGF receptor (sVEGFR)-1, an antagonist to VEGF, reduces morbidity and mortality. Moreover, a dramatic elevation in sVEGFR-1 has been demonstrated in human sepsis. Although a balance between angiogenic and anti-angiogenic factors is essential for feto-placental development, the changes of angiogenic factors during pregnancy in the context of infection have never been explored. Angiogenic factors also play crucial roles in the pathophysiology of preeclampsia. This study was conducted to determine if maternal plasma concentrations of placental growth factor (PlGF), sVEGFR-2 and soluble endoglin (sEng) change in pregnancies complicated by acute pyelonephritis (AP) compared to normal pregnancy and preeclampsia (PE). Study Design A case-control study was conducted in patients with AP, normal pregnant women (NP) and patients with PE (n=36 for each group) matched for gestational age. AP was diagnosed in the presence of fever (temperature ≥ 38°C), clinical signs of infection, and a positive urine culture for micro-organisms. Plasma concentrations of PlGF, sVEGFR-2 and sEng were determined by ELISA. The results of plasma sVEGFR-1 concentrations has previously been reported before, but were included in this study to provide a complete picture of the angiogenic/anti-angiogenic profiles. Serum concentrations of interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, interferon (IFN)-γ, Granulocyte macrophage colony stimulating factor (GM-CSF), and tumor necrosis factor (TNF)-α were also determined using high sensitivity multiplexed immunoassays in patients with AP and NP. Results AP was associated with a lower median plasma concentration of PlGF and sVEGFR-2 than NP

  10. Angiogenic factors stimulate growth of adult neural stem cells.

    Directory of Open Access Journals (Sweden)

    Andreas Androutsellis-Theotokis

    Full Text Available BACKGROUND: The ability to grow a uniform cell type from the adult central nervous system (CNS is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4 and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2. These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes. CONCLUSIONS/SIGNIFICANCE: We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration.

  11. Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors.

    Science.gov (United States)

    Takahashi, Yoshifumi; Saga, Yasushi; Koyanagi, Takahiro; Takei, Yuji; Machida, Shizuo; Taneichi, Akiyo; Mizukami, Hiroaki; Sato, Yasufumi; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-05-01

    Vasohibin-1 (VASH1) is a negative feedback regulator of angiogenesis, the first to be discovered, and was identified in vascular endothelial growth factor (VEGF)-stimulated vascular endothelial cells. Vasohibin-1 inhibits abnormal vascularization induced by various angiogenic factors including fibroblast growth factor and platelet-derived growth factor (PDGF), in addition to VEGF. By focusing on this characteristic of VASH1, we investigated the antitumor effects of VASH1 expression on ovarian cancer cells that produce different angiogenic factors. By using a high VEGF-producing ovarian cancer cell line, SHIN-3, and a high PDGF-producing ovarian cancer cell line, KOC-2S, the cells were transfected with either a VEGF antagonist, soluble VEGF receptor-1 (sVEGFR-1, or sFlt-1), or VASH1 genes to establish their respective cellular expression. The characteristics of these transfectants were compared with controls. We previously reported that the expression of sFlt-1 inhibited tumor vascularization and growth of high VEGF-producing ovarian cancer cells, reduced peritoneal dissemination and ascites development, and prolonged the survival time of the host. However, in the current study, the expression of sFlt-1 had no such effect on the high PDGF-producing ovarian cancer cells used here, whereas VASH1 expression inhibited tumor vascularization and growth, not only in high VEGF-producing cells, but also in high PDGF-producing cells, reduced their peritoneal dissemination and ascites, and prolonged the survival time of the host. These results suggest that VASH1 is an effective treatment for ovarian cancer cells that produce different angiogenic factors.

  12. Angiogenic potential of endothelial progenitor cells and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rae Peter C

    2011-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs by direct differentiation using EC-conditioned medium (ECCM. Results The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. Conclusions We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.

  13. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors.

    Directory of Open Access Journals (Sweden)

    Hiroto Iwasaki

    Full Text Available RATIONALE: Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM cells, recent clinical trials have revealed less benefit from these therapies than expected. OBJECTIVE: We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF, a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity. METHODS AND RESULTS: Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1(+/Lin(- (SL BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage. CONCLUSIONS: Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.

  14. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  15. Localizing evoked and induced responses to faces using magnetoencephalography.

    Science.gov (United States)

    Perry, Gavin; Singh, Krish D

    2014-05-01

    A rich pattern of responses in frequency, time and space are known to be generated in the visual cortex in response to faces. Recently, a number of studies have used magnetoencephalography (MEG) to try to record these responses non-invasively - in many cases using source analysis techniques based on the beamforming method. Here we sought both to characterize best practice for measuring face-specific responses using MEG beamforming, and to determine whether the results produced by the beamformer match evidence from other modalities. We measured activity to visual presentation of face stimuli and phase-scrambled control stimuli, and performed source analyses of both induced and evoked responses using Synthetic Aperture Magnetometry. We localized the gamma-band response to bilateral lateral occipital cortex, and both the gamma-band response and the M170-evoked response to the right fusiform gyrus. Differences in the gamma-band response between faces and scrambled stimuli were confined to the frequency range 50-90 Hz; gamma-band activity at higher frequencies did not differ between the two stimulus categories. We additionally identified a component of the M220-evoked response - localized to the parieto-occipital sulcus - which was enhanced for scrambled vs. unscrambled faces. These findings help to establish that MEG beamforming can localize face-specific responses in time, frequency and space with good accuracy (when validated against established findings from functional magnetic resonance imaging and intracranial recordings), as well as contributing to the establishment of best methodological practice for the use of the beamformer method to measure face-specific responses.

  16. Anti inflammatory and anti angiogenic effect of black raspberry extract on human esophageal and intestinal microvascular endothelial cells.

    Science.gov (United States)

    Medda, Rituparna; Lyros, Orestis; Schmidt, Jamie L; Jovanovic, Nebojsa; Nie, Linghui; Link, Benjamin J; Otterson, Mary F; Stoner, Gary D; Shaker, Reza; Rafiee, Parvaneh

    2015-01-01

    Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat's digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively. HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial cell-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways. BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations. BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer.

  17. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  18. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  19. Lithium treatment induces a hypersensitive-like response in tobacco.

    Science.gov (United States)

    Naranjo, Miguel A; Romero, Carlos; Bellés, José M; Montesinos, Consuelo; Vicente, Oscar; Serrano, Ramón

    2003-07-01

    Treatment of tobacco ( Nicotiana tabacum L.) plants with lithium induces the formation of necrotic lesions and leaf curling as in the case of incompatible pathogen interactions. Further similarities at the molecular level include accumulation of ethylene and of salicylic and gentisic acids, and induced expression of pathogenesis-related PR-P, PR5 and PR1 genes. With the exception of PR1 induction, lithium produced the same effects in transgenic tobacco plants that do not accumulate salicylate because of overexpression of the bacterial hydroxylase gene nahG. On the other hand, inhibition of ethylene biosynthesis with aminoethoxyvinylglycine prevented lithium-induced cell death and PR5 expression. These results suggest that lithium triggers a hypersensitive-like response where ethylene signalling is essential.

  20. IL-12 induces T helper 1-directed antitumor response.

    Science.gov (United States)

    Tsung, K; Meko, J B; Peplinski, G R; Tsung, Y L; Norton, J A

    1997-04-01

    Although IL-12 possesses the most potent single-cytokine antitumor efficacy, the mechanism by which IL-12 exerts its antitumor activities remains unclear. Using a complete tumor regression model induced by IL-12 treatment, we demonstrate that the antitumor response induced by IL-12 is mediated by a Th1 cell-directed process, with the macrophage as the effector cell and nitric oxide produced by the activated macrophage as the effector molecule. The induction of the Th1 response by IL-12 depends on the existence of a host T cell response to the tumor before IL-12 administration. IL-12 treatment causes the complete regression of 10-day established s.c. tumors (4-8 mm). Associated with the induction of tumor necrosis, activated macrophages expressing high levels of inducible nitric oxide synthase were found surrounding the tumor. The importance of nitric oxide as the effector molecule was further confirmed by the delay and loss of tumor regression in the presence of a nitric oxide synthase inhibitor in vivo. Examination of tumor-associated T cells indicates that IL-12 induces production of the Th1 cytokine IFN-gamma and suppresses production of IL-2, IL-4, and IL-10 at the tumor site, where these are found to be the predominant cytokines produced by tumor-associated T cells before IL-12 treatment. These findings demonstrate that IL-12 plays an essential role in the induction of an effective Th1 type of cell-mediated immune response against established tumors.

  1. Infection with Mycobacterium ulcerans Induces Persistent Inflammatory Responses in Mice

    Science.gov (United States)

    Oliveira, Martinha S.; Fraga, Alexandra G.; Torrado, Egídio; Castro, António G.; Pereira, João P.; Filho, Adhemar Longatto; Milanezi, Fernanda; Schmitt, Fernando C.; Meyers, Wayne M.; Portaels, Françoise; Silva, Manuel T.; Pedrosa, Jorge

    2005-01-01

    Buruli ulcer (BU) is a devastating, necrotizing, tropical skin disease caused by infections with Mycobacterium ulcerans. In contrast to other mycobacterioses, BU has been associated with minimal or absent inflammation. However, here we show that in the mouse M. ulcerans induces persistent inflammatory responses with virulence-dependent patterns. Mycolactone-positive, cytotoxic strains are virulent for mice and multiply progressively, inducing both early and persistent acute inflammatory responses. The cytotoxicity of these strains leads to progressive destruction of the inflammatory infiltrates by postapoptotic secondary necrosis, generating necrotic acellular areas with extracellular bacilli released by the lysis of infected phagocytes. The necrotic areas, always surrounded by acute inflammatory infiltrates, expand through the progressive invasion of healthy tissues around the initial necrotic lesions by bacteria and by newly recruited acute inflammatory cells. Our observations show that the lack of inflammatory infiltrates in the extensive areas of necrosis seen in advanced infections results from the destruction of continuously produced inflammatory infiltrates and not from M. ulcerans-induced local or systemic immunosuppression. Whether this is the mechanism behind the predominance of minimal or absent inflammatory responses in BU biopsies remains to be elucidated. PMID:16177301

  2. A novel polypeptide from shark cartilage with potent anti-angiogenic activity.

    Science.gov (United States)

    Zheng, Lanhong; Ling, Peixue; Wang, Zheng; Niu, Rongli; Hu, Chaoxin; Zhang, Tianmin; Lin, Xiukun

    2007-05-01

    Using guanidine-HCl extraction, acetone precipitation, ultra-filtration and chromatography, a novel polypeptide with potent anti-angiogenic activity was purified from cartilage of the shark, Prionace glauca. N-terminal amino acid sequence analysis and SDS-PAGE revealed that the substance is a novel polypeptide with MW 15500 (PG155). The anti-angiogenic effects of PG155 were evaluated using zebrafish embryos model in vivo. Treatment of the embryos with 20 microg/ml PG155 resulted in a significant reduction in the growth of subintestinal vessels (SIVs). A higher dose resulted in almost complete inhibition of SIV growth, as observed by endogenous alkaline phosphatase (EAP) staining assay. An in vitro transwell experiment revealed that the polypeptide inhibited vascular endothelial growth factor (VEGF) induced migration and tubulogenesis of human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs in 20 microg/ml PG155 significantly decreased the density of migrated cells. Almost complete inhibition of cell migration was found when HUVECs were treated with 40-80 microg/ml PG155. PG155 (20 microg/ml) markedly inhibited the tube formation of HUVECs and a dose-dependent effect was also found when treatment of HUVECs with PG155 at the concentration from 20-160 microg/ml.

  3. Identification and Biological Characterization of Angiogenic and Tumor Growth Inhibitors derived from Sinica cetorhinus maximum Cartilage

    Directory of Open Access Journals (Sweden)

    Binghua Jiao

    2004-02-01

    Full Text Available Abstract: Shark (Sinica cetorhinus maximum cartilage was extracted in 1 mol/L Gu-HCl guanidine. Two purified active proteins with apparent molecular weights of 15.2x103 Da and 8.0×103 Da (designated as Sp15 and Sp8, respectively were obtained through ultrafiltration and Superdex 75 chromatography. The activities of the samples were studied in terms of their potential inhibition of vascular endothelial cell growth in vitro, of angiogenesis both in rabbit cornea and chick embryo chorioallantoic membrane (CAM assay models in vivo, and of growth of transplanted S180 sarcoma in mice in vivo. The results showed that Sp15 expressed a typical lysozymatic activity up to 223,000 U/mg and its N-terminus was highly homologous to lysozymes of various mammalian origins. Sp15 exhibited a strong anti-angiogenic activity only in vitro, whereas Sp8 shared this effect both in vitro and in vivo. Both Sp15 and Sp8 provided an effective anti-tumor activity in mice bearing transplanted S180 sarcoma. These results suggest that Sp15 is a shark cartilage-derived lysozyme that participates in the defense to bacterial invasion to the body, while Sp8 is an angiogenic inhibitor that mediates at least part of the anti-tumor activity associated with shark cartilage probably through the inhibition of tumor-induced angiogenesis.

  4. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    Science.gov (United States)

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity.

  5. The anti-angiogenic herbal extracts Ob-X from Morus alba, Melissa officinalis, and Artemisia capillaris suppresses adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Hong, Yeonhee; Kim, Min-Young; Yoon, Michung

    2011-08-01

    Growing adipose tissue is thought to require adipogenesis, angiogenesis, and extracellular matrix (ECM) remodeling. Close examination of developing adipose tissue microvasculature reveals that angiogenesis often precedes adipogenesis. Since our previous study demonstrated that Ob-X, the anti-angiogenic herbal composition composed of Melissa officinalis L. (Labiatae), Morus alba L. (Moraceae), and Artemisia capillaris Thunb. (Compositae), reduced adipose tissue mass in obese mice, we hypothesized that adipogenesis can be inhibited by Ob-X. To investigate the effects of the anti-angiogenic herbal extracts Ob-X on adipogenesis in 3T3-L1 adipocytes. After differentiated 3T3-L1 adipocytes were treated with Ob-X, we studied the effects of Ob-X on triglyceride accumulation and expression of genes involved in adipogenesis, angiogenesis, and ECM remodeling. Treatment of cells with Ob-X inhibited lipid accumulation and adipocyte-specific gene expression caused by troglitazone or monocyte differentiation-inducing (MDI) mix. Ob-X reduced mRNA levels of angiogenic factors (vascular endothelial growth factor-A, -B, -C, -D, and fibroblast growth factor-2) and matrix metalloproteinases (MMPs; MMP-2 and MMP-9), whereas it increased mRNA levels of angiogenic inhibitors [(thrombospondin-1, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2)] in differentiated cells. MMP-2 and MMP-9 activities were also decreased in Ob-X-treated cells. These results suggest that the anti-angiogenic herbal composition Ob-X inhibits differentiation of preadipocytes into adipocytes. These events may be mediated by changes in the expression of genes involved in lipogenesis, angiogenesis, and the MMP system. Thus, by reducing adipogenesis, anti-angiogenic Ob-X provides a possible therapeutic approach for the prevention and treatment of human obesity and its related disorders.

  6. Anti-Angiogenic Action of Neutral Endopeptidase

    Science.gov (United States)

    2007-11-01

    kidney , intestine, endometrium, adrenal glands, and lung. This enzyme cleaves peptide bonds on the amino side of hydrophobic amino acids and inactivates...Kintscher U et al. Leptin induces endothelial cell migration through Akt, which is inhibited by PPARgamma-ligands. Hypertension 2002; 40: 748–754

  7. Sonic-boom-induced building structure responses including damage.

    Science.gov (United States)

    Clarkson, B. L.; Mayes, W. H.

    1972-01-01

    Concepts of sonic-boom pressure loading of building structures and the associated responses are reviewed, and results of pertinent theoretical and experimental research programs are summarized. The significance of sonic-boom load time histories, including waveshape effects, are illustrated with the aid of simple structural elements such as beams and plates. Also included are discussions of the significance of such other phenomena as three-dimensional loading effects, air cavity coupling, multimodal responses, and structural nonlinearities. Measured deflection, acceleration, and strain data from laboratory models and full-scale building tests are summarized, and these data are compared, where possible, with predicted values. Damage complaint and claim experience due both to controlled and uncontrolled supersonic flights over communities are summarized with particular reference to residential, commercial, and historic buildings. Sonic-boom-induced building responses are compared with those from other impulsive loadings due to natural and cultural events and from laboratory simulation tests.

  8. Fetal responses to induced maternal relaxation during pregnancy

    Science.gov (United States)

    DiPietro, Janet A.; Costigan, Kathleen A.; Nelson, Priscilla; Gurewitsch, Edith D.; Laudenslager, Mark L.

    2008-01-01

    Fetal responses to induced maternal relaxation during the 32nd week of pregnancy were recorded in 100 maternal-fetal pairs using a digitized data collection system. The 18-minute guided imagery relaxation manipulation generated significant changes in maternal heart rate, skin conductance, respiration period, and respiratory sinus arrhythmia. Significant alterations in fetal neurobehavior were observed, including decreased fetal heart rate (FHR), increased FHR variability, suppression of fetal motor activity (FM), and increased FM-FHR coupling. Attribution of the two fetal cardiac responses to the guided imagery procedure itself, as opposed to simple rest or recumbency, is tempered by the observed pattern of response. Evaluation of correspondence between changes within individual maternal-fetal pairs revealed significant associations between maternal autonomic measures and fetal cardiac patterns, lower umbilical and uterine artery resistance and increased FHR variability, and declining salivary cortisol and FM activity. Potential mechanisms that may mediate the observed results are discussed. PMID:17919804

  9. In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane

    Science.gov (United States)

    Liu, Xi; Wang, Xiumei; Horii, Akihiro; Wang, Xiujuan; Qiao, Lin; Zhang, Shuguang; Cui, Fu-Zhai

    2012-03-01

    The rapid promotion of angiogenesis is critical for tissue engineering and regenerative medicine. The angiogenic activity of tissue-engineered scaffolds has already been the major criterion for choosing and designing ideal biological materials. We here report systematic in vivo studies on the angiogenic activity of two functionalized self-assembling peptides PRG (Ac-(RADA)4GPRGDSGYRGDS-CONH2) and KLT (Ac-(RADA)4G4KLTWQELYQLKYKGI-CONH2) using the chicken embryo chorioallantoic membrane (CAM) assay. 3D migration/sprouting bead assays showed that the two functional motifs PRGDSGYRGDS and KLTWQELYQLKYKGI improved the bioactivities of the self-assembling peptide RADA16-I (Ac-(RADA)4-CONH2) dramatically and provided ideal synthetic microenvironments for endothelial cell migration and cordlike structure sprout formation. A CAM assay was carried out to assess the efficiency of various peptide scaffolds in inducing capillary invasion in vivo. Among these three peptide scaffolds, the functionalized peptide scaffold RAD/KLT presented a significantly better angiogenic activity inducing CAM tissue invasion and new capillary vessel formation within the scaffolds in the absence of VEGF. With the addition of VEGF, more newly formed vessel lumen could be observed in all peptide scaffolds. Our results suggested that the functionalized peptide scaffolds had satisfactory angiogenic properties, and may also have wide potential applications in tissue regeneration.

  10. Enhanced oxidative stress is responsible for TRPV4-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Zhiwen Hong

    2016-10-01

    Full Text Available Transient receptor potential vanilloid 4 (TRPV4 has been reported to be responsible for neuronal injury in pathological conditions. Excessive oxidative stress can lead to neuronal damage, and activation of TRPV4 increases the production of reactive oxygen species and nitric oxide (NO in many types of cells. The present study explored whether TRPV4-induced neuronal injury is mediated through enhancing oxidative stress. We found that intracerebroventricular injection of the TRPV4 agonist GSK1016790A increased the content of methane dicarboxylic aldehyde (MDA and NO in the hippocampus, which was blocked by administration of the TRPV4 specific antagonist HC-067047. The activities of catalase (CAT and glutathione peroxidase (GSH-Px were decreased by GSK1016790A, whereas the activity of superoxide dismutase remained unchanged. Moreover, the protein level and activity of neuronal nitric oxide synthase (nNOS were increased by GSK1016790A, and the GSK1016790A-induced increase in NO content was blocked by an nNOS specific antagonist ARL-17477. The GSK1016790A-induced modulations of CAT, GSH-Px and nNOS activities and the protein level of nNOS were significantly inhibited by HC-067047. Finally, GSK1016790A-induced neuronal death and apoptosis in the hippocampal CA1 area were markedly attenuated by administration of a reactive oxygen species scavenger Trolox or ARL-17477. We conclude that activation of TRPV4 enhances oxidative stress by inhibiting CAT and GSH-Px and increasing nNOS, which is responsible, at least in part, for TRPV4-induced neurotoxicity.

  11. PKCε ACTIVATION PROMOTES FGF-2 EXOCYTOSIS AND INDUCES ENDOTHELIAL CELL PROLIFERATION AND SPROUTING

    Science.gov (United States)

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-01-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2−/− endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling. PMID:23880610

  12. Cardiovascular responses induced by obstructive apnea are enhanced in hypertensive rats due to enhanced chemoreceptor responsivity.

    Directory of Open Access Journals (Sweden)

    Juliana M M Angheben

    Full Text Available Spontaneously hypertensive rats (SHR, like patients with sleep apnea, have hypertension, increased sympathetic activity, and increased chemoreceptor drive. We investigated the role of carotid chemoreceptors in cardiovascular responses induced by obstructive apnea in awake SHR. A tracheal balloon and vascular cannulas were implanted, and a week later, apneas of 15 s each were induced. The effects of apnea were more pronounced in SHR than in control rats (Wistar Kyoto; WKY. Blood pressure increased by 57±3 mmHg during apnea in SHR and by 28±3 mmHg in WKY (p<0.05, n = 14/13. The respiratory effort increased by 53±6 mmHg in SHR and by 34±5 mmHg in WKY. The heart rate fell by 209±19 bpm in SHR and by 155±16 bpm in WKY. The carotid chemoreceptors were then inactivated by the ligation of the carotid body artery, and apneas were induced two days later. The inactivation of chemoreceptors reduced the responses to apnea and abolished the difference between SHR and controls. The apnea-induced hypertension was 11±4 mmHg in SHR and 8±4 mmHg in WKY. The respiratory effort was 15±2 mmHg in SHR and 15±2 mmHg in WKY. The heart rate fell 63±18 bpm in SHR and 52±14 bpm in WKY. Similarly, when the chemoreceptors were unloaded by the administration of 100% oxygen, the responses to apnea were reduced. In conclusion, arterial chemoreceptors contribute to the responses induced by apnea in both strains, but they are more important in SHR and account for the exaggerated responses of this strain to apnea.

  13. The association between angiogenic markers and fetal sex

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Jørgensen, J S; Herse, F

    2016-01-01

    factor (PlGF), and sFlt-1/PlGF ratio in first and second-third trimester in women with/without preeclampsia, and the impact of fetal sex on the prognostic value of angiogenic markers for preeclampsia. STUDY DESIGN: Observational study in a prospective, population-based cohort of 2110 singleton......OBJECTIVE: Current research suggests sexual dimorphism between the male and female fetoplacental units, but with unknown relevance for preeclampsia. We investigated the association between fetal sex and concentrations of the angiogenic markers soluble Fms-like kinase 1 (sFlt-1), placental growth...... (preeclampsia cases) associated with fetal sex in adjusted analyses (psex (all, p=0.028; preeclampsia, p=0.067) In receiver operating curve analysis, prediction of early-onset preeclampsia by sFlt-1/PlGF tended to be superior...

  14. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  15. The role of angiogenic and wound-healing factors after spinal cord injury in mammals.

    Science.gov (United States)

    Kundi, Sarina; Bicknell, Roy; Ahmed, Zubair

    2013-01-01

    Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Angiogenic Potential of Human Neonatal Foreskin Stromal Cells in the Chick Embryo Chorioallantoic Membrane Model

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Vishnubalaji

    2015-01-01

    Full Text Available Several studies have demonstrated the multipotentiality of human neonatal foreskin stromal cells (hNSSCs as being able to differentiate into adipocytes and osteoblasts and potentially other cell types. Recently, we demonstrated that hNSSCs play a role during in vitro angiogenesis and appear to possess a capacity to differentiate into endothelial-like cells; however, their angiogenic potential within an ex vivo environment remains unclear. Current study shows hNSSCs to display significant migration potential in the undifferentiated state and high responsiveness in the in vitro wound healing scratch assay. When hNSSCs were seeded onto the top of the CAM, human von Willebrand factor (hVWF, CD31, smooth muscle actin (SMA, and factor XIIIa positive cells were observed in the chick endothelium. CAMs transplanted with endothelial-differentiated hNSSCs displayed a higher number of blood vessels containing hNSSCs compared to CAMs transplanted with undifferentiated hNSSCs. Interestingly, undifferentiated hNSSCs showed a propensity to differentiate towards ectoderm with indication of epidermal formation with cells positive for CD1a, CK5/6, CK19, FXIIIa, and S-100 cells, which warrant further investigation. Our findings imply a potential angiogenic role for hNSSCs ex vivo in the differentiated and undifferentiated state, with potential contribution to blood vessel formation and potential application in tissue regeneration and vascularization.

  17. Prognostic value of serum angiogenic activity in colorectal cancer patients.

    Science.gov (United States)

    Gonzalez, Francisco-Jesus; Quesada, Ana-Rodriguez; Sevilla, Isabel; Baca, Juan-Javier; Medina, Miguel-Angel; Amores, Jose; Diaz, Juan Miguel; Rius-Diaz, Francisca; Marques, Eduardo; Alba, Emilio

    2007-01-01

    Angiogenesis, resulting from an imbalance between angiogenic activator factors and inhibitors, is required for tumour growth and metastasis. The determination of the circulating concentration of all angiogenic factors (activators and inhibitors) is not feasible at present. We have evaluated diagnostic and prognostic values of the measurement of serum angiogenic activity in colorectal carcinoma (CRC) patients. Serum proliferative activity (PA) on human umbilical vein endothelial cells (HUVEC) in vitro, and serum vascular endothelial growth factor (VEGF) levels were determined by ELISA in 53 patients with primary CRC, 16 subjects with non-neoplastic gastrointestinal disease (SC) and 34 healthy individuals. Data were compared with clinical outcome of the patients. Although serum from CRC patients significantly increased the PA of HUVEC, compared to culture control (HUVEC in medium + 10% foetal bovine serum (FBS); P < 0.001); our results indicate that serum PA in CRC patients was similar to that of SC or healthy individuals. There was no correlation between serum PA and circulating VEGF concentrations. Surgery produced a decrease of PA at 8 hrs after tumour resection in CRC patients compared to pre-surgery values (186 +/- 47 versus 213 +/- 41, P < 0.001). However, an increase in serum VEGF values was observed after surgery (280 [176-450] versus 251 [160-357] pg/ml, P = 0.004). Patients with lower PA values after surgery showed a worse outcome that those with higher PA values. Therefore, this study does not support a diagnostic value for serum angiogenic activity measured by proliferative activity on HUVEC but suggests it could have a prognostic value in CRC patients.

  18. Prevention of the Angiogenic Switch in Human Breast Cancer

    Science.gov (United States)

    2009-03-01

    chronic myeloid leukaemia | colorectal cancer | Down syndrome | infantile haemangiomas | multiple myeloma | non-small-cell lung cancer | rheumatoid...Human Breast Cancer PRINCIPAL INVESTIGATOR: Donald Ingber, M.D., Ph.D. CONTRACTING ORGANIZATION: Children’s Hospital...From - To) 15 FEB 2004 - 14 FEB 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prevention of the Angiogenic Switch in Human Breast Cancer 5b

  19. Natural and Induced Humoral Responses to MUC1

    Energy Technology Data Exchange (ETDEWEB)

    Mensdorff-Pouilly, Silvia von, E-mail: s.vonmensdorff@vumc.nl; Moreno, Maria [Department of Obstetrics and Gynecology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV (Netherlands); Verheijen, René H. M. [Department of Woman & Baby, Division of Surgical & Oncological Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA (Netherlands)

    2011-07-29

    MUC1 is a membrane-tethered mucin expressed on the ductal cell surface of glandular epithelial cells. Loss of polarization, overexpression and aberrant glycosylation of MUC1 in mucosal inflammation and in adenocarcinomas induces humoral immune responses to the mucin. MUC1 IgG responses have been associated with a benefit in survival in patients with breast, lung, pancreatic, ovarian and gastric carcinomas. Antibodies bound to the mucin may curb tumor progression by restoring cell-cell interactions altered by tumor-associated MUC1, thus preventing metastatic dissemination, as well as counteracting the immune suppression exerted by the molecule. Furthermore, anti-MUC1 antibodies are capable of effecting tumor cell killing by antibody-dependent cell-mediated cytotoxicity. Although cytotoxic T cells are indispensable to achieve anti-tumor responses in advanced disease, abs to tumor-associated antigens are ideally suited to address minimal residual disease and may be sufficient to exert adequate immune surveillance in an adjuvant setting, destroying tumor cells as they arise or maintaining occult disease in an equilibrium state. Initial evaluation of MUC1 peptide/glycopeptide mono and polyvalent vaccines has shown them to be immunogenic and safe; anti-tumor responses are scarce. Progress in carbohydrate synthesis has yielded a number of sophisticated substrates that include MUC1 glycopeptide epitopes that are at present in preclinical testing. Adjuvant vaccination with MUC1 glycopeptide polyvalent vaccines that induce strong humoral responses may prevent recurrence of disease in patients with early stage carcinomas. Furthermore, prophylactic immunotherapy targeting MUC1 may be a strategy to strengthen immune surveillance and prevent disease in subjects at hereditary high risk of breast, ovarian and colon cancer.

  20. Trypanosomiasis-induced Th17-like immune responses in carp.

    Directory of Open Access Journals (Sweden)

    Carla M S Ribeiro

    Full Text Available BACKGROUND: In mammalian vertebrates, the cytokine interleukin (IL-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of the pathogen associated molecular pattern (PAMP recognized by, for example TLR2, leading to a preferential production of IL-23. IL-23 production promotes a Th17-mediated immune response characterized by the production of IL-17A/F and several chemokines, important for neutrophil recruitment and activation. For the cold blooded vertebrate common carp, only the IL-12 subunits have been described so far. METHODOLOGY/PRINCIPAL FINDINGS: Common carp is the natural host of two protozoan parasites: Trypanoplasma borreli and Trypanosoma carassii. We found that these parasites negatively affect p35 and p40a gene expression in carp. Transfection studies of HEK293 and carp macrophages show that T. carassii-derived PAMPs are agonists of carp TLR2, promoting p19 and p40c gene expression. The two protozoan parasites induce different immune responses as assessed by gene expression and histological studies. During T. carassii infections, in particular, we observed a propensity to induce p19 and p40c gene expression, suggestive of the formation of IL-23. Infections with T. borreli and T. carassii lead to an increase of IFN-γ2 gene expression whereas IL-17A/F2 gene expression was only observed during T. carasssii infections. The moderate increase in the number of splenic macrophages during T. borreli infection contrasts the marked increase in the number of splenic neutrophilic granulocytes during T. carassii infection, along with an increased gene expression of metalloproteinase-9 and chemokines. CONCLUSION/SIGNIFICANCE: This is the first study that provides evidence for a Th17-like immune response in fish in response to infection with a protozoan parasite.

  1. Natural and Induced Humoral Responses to MUC1

    Directory of Open Access Journals (Sweden)

    Silvia Von Mensdorff-Pouilly

    2011-07-01

    Full Text Available MUC1 is a membrane-tethered mucin expressed on the ductal cell surface of glandular epithelial cells. Loss of polarization, overexpression and aberrant glycosylation of MUC1 in mucosal inflammation and in adenocarcinomas induces humoral immune responses to the mucin. MUC1 IgG responses have been associated with a benefit in survival in patients with breast, lung, pancreatic, ovarian and gastric carcinomas. Antibodies bound to the mucin may curb tumor progression by restoring cell-cell interactions altered by tumor-associated MUC1, thus preventing metastatic dissemination, as well as counteracting the immune suppression exerted by the molecule. Furthermore, anti-MUC1 antibodies are capable of effecting tumor cell killing by antibody-dependent cell-mediated cytotoxicity. Although cytotoxic T cells are indispensable to achieve anti-tumor responses in advanced disease, abs to tumor-associated antigens are ideally suited to address minimal residual disease and may be sufficient to exert adequate immune surveillance in an adjuvant setting, destroying tumor cells as they arise or maintaining occult disease in an equilibrium state. Initial evaluation of MUC1 peptide/glycopeptide mono and polyvalent vaccines has shown them to be immunogenic and safe; anti-tumor responses are scarce. Progress in carbohydrate synthesis has yielded a number of sophisticated substrates that include MUC1 glycopeptide epitopes that are at present in preclinical testing. Adjuvant vaccination with MUC1 glycopeptide polyvalent vaccines that induce strong humoral responses may prevent recurrence of disease in patients with early stage carcinomas. Furthermore, prophylactic immunotherapy targeting MUC1 may be a strategy to strengthen immune surveillance and prevent disease in subjects at hereditary high risk of breast, ovarian and colon cancer.

  2. Immunological aspects of the immune response induced by mosquito allergens.

    Science.gov (United States)

    Cantillo, José Fernando; Fernández-Caldas, Enrique; Puerta, Leonardo

    2014-01-01

    Allergies caused by mosquito bites may produce local or systemic reactions. The inhalation of mosquito allergens may also cause asthma and/or allergic rhinoconjunctivitis in sensitized individuals. The mechanisms implicated in the development of these immune responses involve IgE antibodies, different subtypes of IgG and proinflammatory cytokines as well as basophils, eosinophils and mast cells. Several allergenic components have been identified in the saliva and bodies of mosquitoes and some of these are present in different mosquito species. The most common species implicated in allergic reactions belong to the genera Aedes, Culex and Anopheles. Several Aedes aegypti allergens have been cloned and sequenced. The recombinant molecules show IgE reactivity similar to that of the native allergens, making them good candidates for the diagnosis of mosquito allergies. Allergen-specific immunotherapy with mosquito extracts induces a protective response characterized by a decreased production of IgE antibodies, increased IgG levels, a reduction in the severity of cutaneous and respiratory symptoms and the need for medication. The aims of this review are to summarize the progress made in the characterization of mosquito allergens and discuss the types of immune responses induced by mosquito bites and the inhalation of mosquito allergens in atopic individuals.

  3. Platelets protect lung from injury induced by systemic inflammatory response

    Science.gov (United States)

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  4. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    Science.gov (United States)

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  5. Decrease in membrane phospholipid unsaturation induces unfolded protein response.

    Science.gov (United States)

    Ariyama, Hiroyuki; Kono, Nozomu; Matsuda, Shinji; Inoue, Takao; Arai, Hiroyuki

    2010-07-16

    Various kinds of fatty acids are distributed in membrane phospholipids in mammalian cells and tissues. The degree of fatty acid unsaturation in membrane phospholipids affects many membrane-associated functions and can be influenced by diet and by altered activities of lipid-metabolizing enzymes such as fatty acid desaturases. However, little is known about how mammalian cells respond to changes in phospholipid fatty acid composition. In this study we showed that stearoyl-CoA desaturase 1 (SCD1) knockdown increased the amount of saturated fatty acids and decreased that of monounsaturated fatty acids in phospholipids without affecting the amount or the composition of free fatty acid and induced unfolded protein response (UPR), evidenced by increased expression of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78) mRNAs and splicing of Xbox-binding protein 1 (XBP1) mRNA. SCD1 knockdown-induced UPR was rescued by various unsaturated fatty acids and was enhanced by saturated fatty acid. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), which incorporates preferentially polyunsaturated fatty acids into phosphatidylcholine, was up-regulated in SCD1 knockdown cells. Knockdown of LPCAT3 synergistically enhanced UPR with SCD1 knockdown. Finally we showed that palmitic acid-induced UPR was significantly enhanced by LPCAT3 knockdown as well as SCD1 knockdown. These results suggest that a decrease in membrane phospholipid unsaturation induces UPR.

  6. Key tissue targets responsible for anthrax toxin-induced-lethality

    Science.gov (United States)

    Liu, Shihui; Zhang, Yi; Moayeri, Mahtab; Liu, Jie; Crown, Devorah; Fattah, Rasem; Wein, Alexander N.; Yu, Zu-Xi; Finkel, Toren; Leppla, Stephen H.

    2014-01-01

    Summary Bacillus anthracis, the causative agent of anthrax disease, is lethal due to the actions of two exotoxins, anthrax lethal toxin (LT) and edema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occur through damage to distinct cell-types; while targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Surprisingly, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not appear to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems. PMID:23995686

  7. SOS response induces persistence to fluoroquinolones in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tobias Dörr

    2009-12-01

    Full Text Available Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an active and inducible mechanism of persister formation mediated by the SOS response, challenging the prevailing view that persisters are pre-existing and formed purely by stochastic means. SOS-induced persistence is a novel mechanism by which cells can counteract DNA damage and promote survival to fluoroquinolones. This unique survival mechanism may be an important factor influencing the outcome of antibiotic therapy in vivo.

  8. Radioadaptive response for protection against radiation-induced teratogenesis.

    Science.gov (United States)

    Okazaki, Ryuji; Ootsuyama, Akira; Norimura, Toshiyuki

    2005-03-01

    To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.

  9. Tobacco carcinogen mediated up-regulation of AP-1 dependent pro-angiogenic cytokines in head and neck carcinogenesis.

    Science.gov (United States)

    Swenson, Wade G; Wuertz, Beverly R K; Ondrey, Frank G

    2011-09-01

    Tobacco is notably genotoxic and associated with head and neck carcinogenesis. Cigarette carcinogens have the capacity to alter early response gene expression in tobacco-related malignancies via genes such as nuclear factor kappa B (NFκB). A number of early response gene activation events are also facilitated by fos/jun activator protein 1 (AP-1) associated pathways. In the present study, we hypothesize that tobacco products may induce microenvironment alterations, promoting angiogenesis and providing a permissive environment for head and neck cancer progression. In an in vitro analysis, we employed immortalized oral keratinocyte (HOK-16B) and laryngeal squamous carcinoma (UM-SCC-11A) cells to investigate interleukin (IL)-8 and vascular endothelial growth factor (VEGF) induction by cigarette smoke condensate (CSC). IL-8 and VEGF expression is based on interactions between NFκB, AP-1, and NF-IL6. We identified at least 1.5-fold dose-dependent induction of AP-1, VEGF, and IL-8 promoter/reporter gene activity after 24 h exposure to CSC. Next, we stably transfected UM-SCC-11A cells with A-Fos, a dominant negative AP-1 protein. Treatment with CSC of the A-Fos cell lines compared to empty vector controls significantly down-regulated AP-1, VEGF, and IL-8 promoter/reporter gene expression. We also performed ELISAs and discovered significant up-regulation of IL-8 and VEGF secretion by UMSCC 11A after treatment with phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, and CSC, which was down-regulated by the A-Fos dominant negative protein. We conclude tobacco carcinogens up-regulate AP-1 activity and AP-1 dependent IL-8 and VEGF gene expression in head and neck cancer. This up-regulation may promote an angiogenic phenotype favoring invasion in both premalignant and squamous cancer cells of the head and neck.

  10. Enhanced in vitro angiogenic behaviour of human umbilical vein endothelial cells on thermally oxidized TiO2 nanofibrous surfaces

    Science.gov (United States)

    Tan, Ai Wen; Liau, Ling Ling; Chua, Kien Hui; Ahmad, Roslina; Akbar, Sheikh Ali; Pingguan-Murphy, Belinda

    2016-02-01

    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.

  11. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  12. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  13. Angiogenic Effects of Collagen/Mesoporous Nanoparticle Composite Scaffold Delivering VEGF165

    Directory of Open Access Journals (Sweden)

    Joong-Hyun Kim

    2016-01-01

    Full Text Available Vascularization is a key issue for the success of tissue engineering to repair damaged tissue. In this study, we report a composite scaffold delivering angiogenic factor for this purpose. Vascular endothelial growth factor (VEGF was loaded on mesoporous silica nanoparticle (MSN, which was then incorporated within a type I collagen sponge, to produce collagen/MSN/VEGF (CMV scaffold. The CMV composite scaffold could release VEGF sustainably over the test period of 28 days. The release of VEGF improved the cell proliferation. Moreover, the in vivo angiogenesis of the scaffold, as studied by the chick chorioallantoic membrane (CAM model, showed that the VEGF-releasing scaffold induced significantly increased number of blood vessel complexes when compared with VEGF-free scaffold. The composite scaffold showed good biocompatibility, as examined in rat subcutaneous tissue. These results demonstrate that the CMV scaffold with VEGF-releasing capacity can be potentially used to stimulate angiogenesis and tissue repair.

  14. Endorphin responses to stress induced by competitive swimming event.

    Science.gov (United States)

    Carrasco, L; Villaverde, C; Oltras, C M

    2007-06-01

    The aim of the present study was to investigate the changes in endorphins (END) induced by swimming competitive practice. Twenty-three males, (13 trained swimmers [experimental group] and 10 sedentary and healthy students [age-matched comparison group]) took part in this investigation. The swimmers were assessed at 3 points: basal conditions, pre- and postswimming competition (100 m freestyle), whereas subjects from the control group only undertook the basal trial. The variables analysed were anxiety level, plasma END and lactate concentrations. No statistical differences were observed in END basal levels between groups. An evident END response to precompetition psychological stress was observed in the experimental group, since the plasma END concentration rose from 36.3+/-2.9 pg/mL (basal conditions) to 51.8+/-3.2 pg/mL (P=0.05). The END response to the competitive effort produced a remarkable increase in its plasma concentration (128.6+/-18.1 pg/mL), showed statistical differences from precompetition (P=orSwimming competition (short-term maximal type of effort) induces a psychological and physiological stress, which stimulates the secretion of END. END are secreted to counter the negative effects of competitive stress, although more research is needed to accurate the relationship between END and anxiety levels during exercise.

  15. Cell geometry dictates TNFα-induced genome response.

    Science.gov (United States)

    Mitra, Aninda; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Shivashankar, G V

    2017-05-16

    Cells in physiology integrate local soluble and mechanical signals to regulate genomic programs. Whereas the individual roles of these signals are well studied, the cellular responses to the combined chemical and physical signals are less explored. Here, we investigated the cross-talk between cellular geometry and TNFα signaling. We stabilized NIH 3T3 fibroblasts into rectangular anisotropic or circular isotropic geometries and stimulated them with TNFα and analyzed nuclear translocation of transcription regulators -NFκB (p65) and MKL and downstream gene-expression patterns. We found that TNFα induces geometry-dependent actin depolymerization, which enhances IκB degradation, p65 nuclear translocation, nuclear exit of MKL, and sequestration of p65 at the RNA-polymerase-II foci. Further, global transcription profile of cells under matrix-TNFα interplay reveals a geometry-dependent gene-expression pattern. At a functional level, we find cell geometry affects TNFα-induced cell proliferation. Our results provide compelling evidence that fibroblasts, depending on their geometries, elicit distinct cellular responses for the same cytokine.

  16. OH* imager response to turbulence-induced temperature fluctuations

    Science.gov (United States)

    Gardner, Chester S.; Vargas, Fabio A.

    2016-12-01

    The layer of the excited state hydroxyl radical (OH*) is formed in the mesopause region by the reaction of ozone (O3) and atomic hydrogen (H). We derive the theoretical expressions for the OH* brightness and rotational temperature (T*) responses to high-frequency atmospheric temperature perturbations. The theory is used to calculate the 1-D and 2-D horizontal wave number spectra of the OH* and T* image fluctuations induced by atmospheric turbulence. By applying the theory to images of a breaking gravity wave packet, acquired by the Utah State University Advanced Mesospheric Temperature Mapper, we show that existing infrared OH* imager technology can observe the evolution of gravity wave breakdown and characterize the resulting turbulent eddies in the source region and in the inertial subrange of the turbulence spectrum. For the example presented here, the RMS OH* brightness fluctuations induced by the gravity wave packet was 2.90% and by the associated turbulence was 1.07%. Unfortunately, the T* fluctuations induced by turbulence are usually too small to be observed in the OH* rotational temperature maps.

  17. Tourniquet-induced systemic inflammatory response in extremity surgery.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    BACKGROUND: Tourniquet-induced reperfusion injury in animals produces significant systemic inflammatory effects. This study investigated whether a biologic response occurs in a clinically relevant model of tourniquet-induced reperfusion injury. METHODS: Patients undergoing elective knee arthroscopy were prospectively randomized into controls (no tourniquet) and subjects (tourniquet-controlled). The effects of tourniquet-induced reperfusion on monocyte activation state, neutrophil activation state, and transendothelial migration (TEM) were studied. Changes in the cytokines implicated in reperfusion injury, tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-10 were also determined. RESULTS: After 15 minutes of reperfusion, neutrophil and monocyte activation were significantly increased. Pretreatment of neutrophils with pooled subject (ischemia-primed) plasma significantly increased TEM. In contrast, TEM was not significantly altered by ischemia-primed plasma pretreatment of the endothelial monolayer. Significant elevation of tumor necrosis factor-alpha and IL-1beta were observed in subjects compared with controls after 15 minutes of reperfusion. There was no significant difference in serum IL-10 levels between the groups at all the time points studied. CONCLUSION: These results indicate a transient neutrophil and monocyte activation after tourniquet-ischemia that translates into enhanced neutrophil transendothelial migration with potential for tissue injury.

  18. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  19. Aquaporin-1 Facilitates Angiogenic Invasion in the Pathologic Neovasculature that Accompanies Cirrhosis

    Science.gov (United States)

    Huebert, Robert C.; Vasdev, Meher M.; Shergill, Uday; Das, Amitava; Huang, Bing Q.; Charlton MR, Michael R.; LaRusso, Nicholas F.; Shah, Vijay H.

    2010-01-01

    Increasing evidence suggests that hepatic fibrosis and pathologic angiogenesis are inter-dependent processes that occur in parallel. Endothelial cell invasion is requisite for angiogenesis and thus studies of the mechanisms governing liver endothelial cell (LEC) invasion during cirrhosis are of great importance. Emerging research implicates amoeboid-type motility and membrane blebbing as features that may facilitate invasion through matrix-rich microenvironments. Aquaporins (AQPs) are integral membrane water channels, recognized for their importance in epithelial secretion and absorption. However, recent studies also suggest links between water transport and cell motility / invasion. Therefore, the purpose of this study was to test the hypothesis that AQP-1 is involved in amoeboid motility and angiogenic invasion during cirrhosis. AQP-1 expression and localization was examined in normal and cirrhotic liver tissues derived from human and mouse. AQP-1 levels were modulated in LEC using retroviral overexpression or siRNA knockdown and functional effects on invasion, membrane blebbing dynamics, and osmotic water permeability were assayed. Results demonstrate that AQP-1 is up-regulated in the small, angiogenic, neo-vasculature within the fibrotic septa of cirrhotic liver. AQP-1 overexpression promotes FGF-induced dynamic membrane blebbing in LEC which is sufficient to augment invasion through extracellular matrix. Additionally, AQP-1 localizes to plasma membrane blebs where it increases osmotic water permeability and locally facilitates the rapid, trans-membrane flux of water. CONCLUSION AQP-1 enhances osmotic water permeability and FGF-induced dynamic membrane blebbing in LEC and thereby drives invasion and pathologic angiogenesis during cirrhosis PMID:20578142

  20. [The role of angiogenic factors in preeclampsia].

    Science.gov (United States)

    Alasztics, Bálint; Gullai, Nóra; Molvarec, Attila; Rigó, János

    2014-11-23

    Preeclampsia is one of the most common and most serious complications of pregnancy and the management of this condition still challenges obstetricians. Despite intensive research the etiology of preeclampsia still remains unclear. At the beginning of the 2000s preeclampsia-related research was directed towards factors that influence angiogenesis. Most studies have been carried out on the placental growth factor and soluble fms-like tyrosine kinase-1. Most publications confirm the increased concentrations of antiangiogenic factors and decreased concentrations of proangiogenic factors in maternal blood samples in preeclampsia even before the onset of clinical symptoms. According to our current knowledge antiangiogenic proteins are responsible for the endothelial dysfunction in the symptomatic stage of the disease. Placental growth factor and soluble fms-like tyrosine kinase-1 may have important roles in the prediction and treatment of the disease. The point of care detection of placental growth factor and soluble fms-like tyrosine kinase-1 may be used to predict preeclampsia. Rapid tests are available to determine the serum levels of the two proteins. Removal of soluble fms-like tyrosine kinase-1 from maternal circulation is a potential treatment option for early onset preeclampsia.

  1. Angiogenic synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in an in vitro quantitative microcarrier-based three-dimensional fibrin angiogenesis system

    Institute of Scientific and Technical Information of China (English)

    Xi-Tai Sun; Yi-Tao Ding; Xiao-Gui Yan; Ling-Yun Wu; Qiang Li; Ni Cheng; Yu-Dong Qiu; Min-Yue Zhang

    2004-01-01

    AIM: To develop an in vitro three-dimensional (3-D)angiogenesis system to analyse the capillary sprouts induced in response to the concentration ranges of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) and to quantify their synergistic activity.METHODS: Microcarriers (MCs) coated with human microvascular endothelial cells (HMVECs) were embedded in fibrin gel and cultured in 24-well plates with assay media. The growth factors bFGF, or VEGF, or both were added to the system. The wells (n = 8/group) were digitally photographed and the average length of capillary-like sprouts (ALS) from each microcarrier was quantitated.RESULTS: In aprotinin-stabilized fibrin matrix, human microvascular endothelial cells on the MCs invaded fibrin,forming sprouts and capillary networks with lumina. The angiogenic effects of bFGF or VEGF were dose-dependent in the range from 10 to 40 ng/mL. At d 1, 10 ng/mL of bFGF and VEGF induced angiogenesis with an ALS of 32.13±16.6 μm and 43.75±27.92 μm, respectively, which were significantly higher than that of the control (5.88±4.45 μm, P<0.01),and the differences became more significant as the time increased. In addition, the combination of 10 ng/mL of bFGF and VEGF each induced a more significant effect than the summed effects of bFGF (10 ng/mL) alone and VEGF (10 ng/mL) alone when analyzed using SPSS system for general linear model (GLM) (P= 0.011), and that also exceeded the effects by 20 ng/mL of either bFGF or VEGF.CONCLUSION: A microcarrier-based in vitro threedimensional angiogenesis model can be developed in fibrin.It offers a unique system for quantitative analysis of angiogenesis. Both bFGF and VEGF exert their angiogenic effects on HMVECs synergistically and in a dose-dependent manner.

  2. Perforated Gastric Ulcer Associated with Anti-Angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Diogo Libânio

    2017-08-01

    Full Text Available Anti-angiogenic therapy with bevacizumab, an inhibitor of vascular endothelial growth factor, is commonly used in metastatic colorectal cancer and is rarely associated with gastrointestinal perforation, perforation being more frequent in the primary tumor site or at the anastomotic level. We present the case of a 64-year-old male with stage IV rectal adenocarcinoma who was on palliative chemotherapy with FOLFOX and bevacizumab. After the 4th chemotherapy cycle, our patient started fever and epigastric pain. He was hemodynamically stable, and signs of peritoneal irritation were absent. There were no alterations in the abdominal X-ray, and C-reactive protein was markedly elevated. A CT scan revealed a de novo thickness in the gastric antrum. Upper digestive endoscopy showed an ulcerated 40-mm lesion in the angulus, with a 20-mm orifice communicating with an exsudative cavity revested by the omentum. A conservative approach was decided including fasting, broad-spectrum intravenous antibiotics, and proton-pump inhibitors. Subsequent gastroduodenal series showed no contrast extravasation, allowing the resumption of oral nutrition. Esophagogastroduodenoscopy after 8 weeks showed perforation closure. Biopsies did not show neoplastic cells or Heliobacter pylori infection. Although the success in the conservative management of perforation allowing the maintenance of palliative chemotherapy (without bevacizumab, the patient died after 4 months due to liver failure. The reported case shows an uncommon endoscopic finding due to a rare complication of anti-angiogenic therapy. Additionally, it reminds clinicians that a history of gastroduodenal ulcers should be actively sought before starting anti-angiogenic treatment and that suspicion for perforation should be high in these cases.

  3. Inflammatory Mediators and Angiogenic Factors in Choroidal Neovascularization: Pathogenetic Interactions and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Claudio Campa

    2010-01-01

    Full Text Available Choroidal neovascularization (CNV is a common and severe complication in heterogeneous diseases affecting the posterior segment of the eye, the most frequent being represented by age-related macular degeneration. Although the term may suggest just a vascular pathological condition, CNV is more properly definable as an aberrant tissue invasion of endothelial and inflammatory cells, in which both angiogenesis and inflammation are involved. Experimental and clinical evidences show that vascular endothelial growth factor is a key signal in promoting angiogenesis. However, many other molecules, distinctive of the inflammatory response, act as neovascular activators in CNV. These include fibroblast growth factor, transforming growth factor, tumor necrosis factor, interleukins, and complement. This paper reviews the role of inflammatory mediators and angiogenic factors in the development of CNV, proposing pathogenetic assumptions of mutual interaction. As an extension of this concept, new therapeutic approaches geared to have an effect on both the vascular and the extravascular components of CNV are discussed.

  4. Cytotoxicity, anti-angiogenic, apoptotic effects and transcript profiling of a naturally occurring naphthyl butenone, guieranone A

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-06-01

    Full Text Available Abstract Background Malignant diseases are responsible of approximately 13% of all deaths each year in the world. Natural products represent a valuable source for the development of novel anticancer drugs. The present study was aimed at evaluating the cytotoxicity of a naphtyl butanone isolated from the leaves of Guiera senegalensis, guieranone A (GA. Results The results indicated that GA was active on 91.67% of the 12 tested cancer cell lines, the IC50 values below 4 μg/ml being recorded on 83.33% of them. In addition, the IC50 values obtained on human lymphoblastic leukemia CCRF-CEM (0.73 μg/ml and its resistant subline CEM/ADR5000 (1.01 μg/ml and on lung adenocarcinoma A549 (0.72 μg/ml cell lines were closer or lower than that of doxorubicin. Interestingly, low cytotoxicity to normal hepatocyte, AML12 cell line was observed. GA showed anti-angiogenic activity with up to 51.9% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail embryo. Its also induced apotosis and cell cycle arrest. Ingenuity Pathway Analysis identified several pathways in CCRF-CEM cells and functional group of genes regulated upon GA treatment (P , the Cell Cycle: G2/M DNA Damage Checkpoint Regulation and ATM Signaling pathways being amongst the four most involved functional groups. Conclusion The overall results of this work provide evidence of the cytotoxic potential of GA and supportive data for its possible use in cancer chemotherapy.

  5. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression

    Science.gov (United States)

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A.; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact. PMID:27594842

  6. Sequential plasma angiogenic factors levels in women with suspected preeclampsia.

    Science.gov (United States)

    Baltajian, Kedak; Bajracharya, Surichhya; Salahuddin, Saira; Berg, Anders H; Geahchan, Carl; Wenger, Julia B; Thadhani, Ravi; Karumanchi, S Ananth; Rana, Sarosh

    2016-07-01

    Alterations in circulating angiogenic factors are associated with the diagnosis of preeclampsia and correlate with adverse perinatal outcomes during the third trimester. Analysis of the sequential levels of plasma angiogenic factors among patients admitted for evaluation of preeclampsia. We performed an observational study among women with singleton pregnancies admitted to Beth Israel Deaconess Medical Center, Boston, Massachusetts, for evaluation of preeclampsia at less than 37 weeks of gestation. Plasma samples were collected on admission and daily for the first 3 days and then weekly until delivery. Doppler ultrasound was performed on admission (within 48 hours) and then weekly (within 24 hours of blood collection) to evaluate uteroplacental and umbilical blood flows. Maternal demographics, hospital course, mode of delivery, diagnosis of hypertensive disorder, adverse maternal outcomes (elevated liver function enzymes, low platelet count, pulmonary edema, cerebral hemorrhage, convulsion, acute renal insufficiency, or maternal death), and adverse fetal/neonatal outcomes (small for gestational age, abnormal umbilical artery Doppler, fetal death, and neonatal death) were recorded. Circulating angiogenic factors (soluble fms-like tyrosine kinase and placental growth factor were measured on automated platform in a single batch after delivery and in a blinded fashion. Data are presented as median (25th to 75th centile), mean, or proportions as appropriate. During the study period, data from 100 women were analyzed for the study, and 43 had adverse outcomes. Women with adverse outcomes had lower gestational age of delivery, higher systolic and diastolic blood pressures during hospitalization, and lower birthweight and placental weight (all P preeclampsia, women at risk for adverse pregnancy outcomes have higher soluble fms-like tyrosine kinase/placental growth factor ratio on admission, which continued to rise until delivery. Women with high soluble fms-like tyrosine

  7. The Immune Response Induced by Hepatitis B Virus Principal Antigens

    Institute of Scientific and Technical Information of China (English)

    Chien-Fu Huang; Shih-Shen Lin; Yung-Chyuan Ho; Fong-Ling Chen; Chi-Chiang Yang

    2006-01-01

    Hepatitis B virus (HBV) infection occurs primarily in hepatocytes in the liver with release of infectious virions and non-infectious empty surface antigen particles into the bloodstream. HBV replication is non-cytopathic. Transient infections run a course of several months, and chronic infections are often life-long. Chronic infections can lead to liver failure with cirrhosis and hepatocellular carcinoma. It is generally accepted that neutralizing anti-HBs antibodies plays a key role in recovery from HBV infection by containing the spread of infection in the infected host and facilitating the removal and destruction of viral particles. However, the immune response initiated by the T-cell response to viral antigens is also important for viral clearance and disease pathogenesis in HBV infection.The three structural forms of the viral proteins, the HBsAg, the particulate HBcAg, and the nonparticulate HBeAg,may preferentially elicit different Th cell subsets. The different IgG subclass profiles of anti-HBs, anti-HBc, and anti-HBe in different HBV infection status were revealed. Moreover, the different IgG subclass profiles in chronic carriers did not change with different ALT and AST levels and may reflect the difference between stimulating antigens, immune response, and the stages of viral disease and provide the basis for the use of vaccines and prophylactic treatments for individuals at high risk of human HBV infection. This review elucidates the detailed understanding of the immune responses induced during transient and persistent infection, and the development of immunotherapy and immunodiagnosis in patients with HBV infection, and possible means of reducing the liver damage.

  8. Exercise-induced ROS in heat shock proteins response.

    Science.gov (United States)

    Dimauro, Ivan; Mercatelli, Neri; Caporossi, Daniela

    2016-09-01

    Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental

  9. An investigation of response competition in retrieval-induced forgetting

    Directory of Open Access Journals (Sweden)

    Gina A. Glanc

    2015-12-01

    Full Text Available It has been demonstrated that retrieval practice on a subset of studied items can cause forgetting of different related studied items. This retrieval-induced forgetting (the RIF effect has been demonstrated in a variety of recall studies and has been attributed to an inhibitory mechanism activated during retrieval practice by competition for a shared retrieval cue. The current study generalizes the RIF effect to recognition memory and investigates this competition assumption. Experiment 1 demonstrated an effect of RIF effect in item recognition with incidental encoding of category-exemplar association during the study phase. Experiment 2 demonstrated evidence of RIF with use of an independent retrieval cue during retrieval practice. Results from this study indicate that response competition may occur outside of the retrieval-practice phase, or may not be limited to situations where there is an overt link to a shared category cue.

  10. Dynamic response of shear thickening fluid under laser induced shock

    Science.gov (United States)

    Wu, Xianqian; Zhong, Fachun; Yin, Qiuyun; Huang, Chenguang

    2015-02-01

    The dynamic response of the 57 vol./vol. % dense spherical silica particle-polyethylene glycol suspension at high pressure was investigated through short pulsed laser induced shock experiments. The measured back free surface velocities by a photonic Doppler velocimetry showed that the shock and the particle velocities decreased while the shock wave transmitted in the shear thickening fluid (STF), from which an equation of state for the STF was obtained. In addition, the peak stress decreased and the absorbed energy increased rapidly with increasing the thickness for a thin layer of the STF, which should be attributed to the impact-jammed behavior through compression of particle matrix, the deformation or crack of the hard-sphere particles, and the volume compression of the particles and the polyethylene glycol.

  11. Constitutive Response of Microbial Induced Calcite Precipitation Cemented Sands

    Science.gov (United States)

    Feng, Kai

    In the last decade, microbial induced calcite precipitation (MICP) emerged as a novel technique for implementing soil improvement in an environmentally-friendly and economically beneficial manner. However, the mechanical behavior and constitutive response of these materials are still not fully explored by researchers. In this dissertation, the characteristics of MICP cemented sands are investigated through numerical modelling and experimental tests, including macro and micro tests under both static and dynamic loading. In the first part, the mechanical behavior of MICP cemented sands were probed using monotonic load testing and the existence of calcite precipitation was verified by scanning electron microscopy, with this behavior compared to traditionally cemented soil and naturally cemented soil. Both MICP cementation and traditional cementation were verified to be effective in the increase of stiffness and strength, and unique characteristic of MICP cemented soil was highlighted.

  12. Local inflammation induces complement crosstalk which amplifies the antimicrobial response.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2009-01-01

    Full Text Available By eliciting inflammatory responses, the human immunosurveillance system notably combats invading pathogens, during which acute phase proteins (CRP and cytokines are elevated markedly. However, the Pseudomonas aeruginosa is a persistent opportunistic pathogen prevalent at the site of local inflammation, and its acquisition of multiple antibiotic-resistance factors poses grave challenges to patient healthcare management. Using blood samples from infected patients, we demonstrate that P. aeruginosa is effectively killed in the plasma under defined local infection-inflammation condition, where slight acidosis and reduced calcium levels (pH 6.5, 2 mM calcium typically prevail. We showed that this powerful antimicrobial activity is provoked by crosstalk between two plasma proteins; CRPratioL-ficolin interaction led to communication between the complement classical and lectin pathways from which two amplification events emerged. Assays for C4 deposition, phagocytosis, and protein competition consistently proved the functional significance of the amplification pathways in boosting complement-mediated antimicrobial activity. The infection-inflammation condition induced a 100-fold increase in CRPratioL-ficolin interaction in a pH- and calcium-sensitive manner. We conclude that the infection-induced local inflammatory conditions trigger a strong interaction between CRPratioL-ficolin, eliciting complement-amplification pathways which are autonomous and which co-exist with and reinforce the classical and lectin pathways. Our findings provide new insights into the host immune response to P. aeruginosa infection under pathological conditions and the potential development of new therapeutic strategies against bacterial infection.

  13. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble VEGF receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small-for-gestational-age neonate

    Science.gov (United States)

    Romero, Roberto; Nien, Jyh Kae; Espinoza, Jimmy; Todem, David; Fu, Wenjiang; Chung, Hwan; Kusanovic, Juan Pedro; Gotsch, Francesca; Erez, Offer; Mazaki-tovi, Shali; Gomez, Ricardo; Edwin, Sam; Chaiworapongsa, Tinnakorn; Levine, Richard J.; Karumanchi, Ananth

    2008-01-01

    plasma concentration of this analyte became detectable later among patients with pregnancy complications, compared to normal pregnant women; 4) there were no significant differences in the plasma concentrations of sVEGFR-1 between patients destined to deliver an SGA neonate and those with normal pregnancies; 5) patients destined to develop preterm and term PE had a significantly higher plasma concentration of sVEGFR-1 at 26 and 29 weeks of gestation than controls (p=0.009 and p=0.0199, respectively); and 6) there was no significant difference in the increment of sVEGFR-1 between control patients and those who delivered an SGA neonate (p=0.147 at 25 weeks and p=0.8285 at 40 weeks). Conclusions 1) Changes in the maternal plasma concentration of s-Eng, sVEGFR-1 and PlGF precede the clinical presentation of PE, but only changes in s-Eng and PlGF precede the delivery of an SGA neonate; and 2) differences in the profile of pro-angiogenic and anti-angiogenic response to intrauterine insults may determine whether a patient will deliver an SGA neonate, develop PE, or both. PMID:18175241

  14. Mitochondrial myopathy induces a starvation-like response.

    Science.gov (United States)

    Tyynismaa, Henna; Carroll, Christopher J; Raimundo, Nuno; Ahola-Erkkilä, Sofia; Wenz, Tina; Ruhanen, Heini; Guse, Kilian; Hemminki, Akseli; Peltola-Mjøsund, Katja E; Tulkki, Valtteri; Oresic, Matej; Moraes, Carlos T; Pietiläinen, Kirsi; Hovatta, Iiris; Suomalainen, Anu

    2010-10-15

    Mitochondrial respiratory chain (RC) deficiency is among the most common causes of inherited metabolic disease, but its physiological consequences are poorly characterized. We studied the skeletal muscle gene expression profiles of mice with late-onset mitochondrial myopathy. These animals express a dominant patient mutation in the mitochondrial replicative helicase Twinkle, leading to accumulation of multiple mtDNA deletions and progressive subtle RC deficiency in the skeletal muscle. The global gene expression pattern of the mouse skeletal muscle showed induction of pathways involved in amino acid starvation response and activation of Akt signaling. Furthermore, the muscle showed induction of a fasting-related hormone, fibroblast growth factor 21 (Fgf21). This secreted regulator of lipid metabolism was also elevated in the mouse serum, and the animals showed widespread changes in their lipid metabolism: small adipocyte size, low fat content in the liver and resistance to high-fat diet. We propose that RC deficiency induces a mitochondrial stress response, with local and global changes mimicking starvation, in a normal nutritional state. These results may have important implications for understanding the metabolic consequences of mitochondrial myopathies.

  15. Phosphine-induced physiological and biochemical responses in rice seedlings.

    Science.gov (United States)

    Mi, Lina; Niu, Xiaojun; Lu, Meiqing; Ma, Jinling; Wu, Jiandong; Zhou, Xingqiu

    2014-04-01

    Paddy fields have been demonstrated to be one of the major resources of atmospheric phosphine and may have both positive and negative effects on rice plants. To elucidate the physiological and biochemical responses of rice plants to phosphine, rice seedlings (30 d old) were selected as a model plant and were treated with different concentrations of phosphine (0, 1.4, 4.2, and 7.0 mg m(-3)). Antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and lipid peroxidation measured via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seedlings to phosphine exposure. Increasing concentrations of phosphine treatment enhanced the activity of SOD, POD, and CAT. In addition, the MDA content increased with increasing concentrations of phosphine. These results suggested that antioxidant enzymes played important roles in protecting rice seedlings from ROS damage. Moreover, rice seedlings were able to cope with the oxidative stress induced by low concentrations of phosphine via an increase in antioxidant enzymatic activities. However, oxidative stress may not fully be prevented when the plants were exposed to higher concentrations of phosphine.

  16. Ethanol-induced stress response of Staphylococcus aureus.

    Science.gov (United States)

    Pando, Jasmine M; Pfeltz, Richard F; Cuaron, Jesus A; Nagarajan, Vijayaraj; Mishra, Mukti N; Torres, Nathanial J; Elasri, Mohamed O; Wilkinson, Brian J; Gustafson, John E

    2017-09-01

    Transcriptional profiles of 2 unrelated clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates were analyzed following 10% (v/v) ethanol challenge (15 min), which arrested growth but did not reduce viability. Ethanol-induced stress (EIS) resulted in differential gene expression of 1091 genes, 600 common to both strains, of which 291 were upregulated. With the exception of the downregulation of genes involved with osmotic stress functions, EIS resulted in the upregulation of genes that contribute to stress response networks, notably those altered by oxidative stress, protein quality control in general, and heat shock in particular. In addition, genes involved with transcription, translation, and nucleotide biosynthesis were downregulated. relP, which encodes a small alarmone synthetase (RelP), was highly upregulated in both MRSA strains following ethanol challenge, and relP inactivation experiments indicated that this gene contributed to EIS growth arrest. A number of persistence-associated genes were also upregulated during EIS, including those that encode toxin-antitoxin systems. Overall, transcriptional profiling indicated that the MRSA investigated responded to EIS by entering a state of dormancy and by altering the expression of elements from cross protective stress response systems in an effort to protect preexisting proteins.

  17. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  18. Anti-Angiogenic Properties of Cafestol and Kahweol Palmitate Diterpene Esters.

    Science.gov (United States)

    Moeenfard, Marzieh; Cortez, Alice; Machado, Vera; Costa, Raquel; Luís, Carla; Coelho, Pedro; Soares, Raquel; Alves, Arminda; Borges, Nuno; Santos, Alejandro

    2016-12-01

    Epidemiological studies support the association of coffee-specific diterpenes, with various beneficial health effects. Although anti-antiangiogenic properties of free cafestol and kahweol have been recently described, available data regarding their esterified form, in particular palmitate esters as the main diterpene esters present in coffee, are still rare. Given that angiogenesis plays an important role in many pathological conditions, including cancer growth and metastasis, this study aimed to assess and compare the potential anti-angiogenic effects of cafestol palmitate (CP) and kahweol palmitate (KP) in an in vitro angiogenesis model. According to our findings, both compounds inhibited angiogenesis steps on human microvascular endothelial cells (HMVECs), although a more significant effect was observed for KP. Compared to control, HMVECs viability decreased in a dose-dependent manner upon incubation either with CP or KP. Concentrations of 75 and 100 μM of each compound were cytotoxic. Cell proliferation was also dramatically reduced by both diterpene esters at 50 μM, although KP had a stronger inhibitory effect. However, CP and KP did not induce apoptosis on HMVECs. Both compounds reduced cell migration, but this effect was only statistically significant after KP incubation. Inhibition of VEGFR2 expression and its downstream effector Akt, but not Erk, was also observed in CP- and KP-treated HMVECs. These findings were confirmed using ELISA assay for phosphorylated (active) VEGFR-2. Taken together, these data indicate that both CP and KP can be considered potent compounds against angiogenesis-dependent disorders. Our findings further indicate that KP exerts more potent anti-angiogenic effects than CP, in most of assays. J. Cell. Biochem. 117: 2748-2756, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone.

    Directory of Open Access Journals (Sweden)

    Emmanuel Tadjuidje

    Full Text Available Eyes Absents (EYA are multifunctional proteins best known for their role in organogenesis. There is accumulating evidence that overexpression of EYAs in breast and ovarian cancers, and in malignant peripheral nerve sheath tumors, correlates with tumor growth and increased metastasis. The EYA protein is both a transcriptional activator and a tyrosine phosphatase, and the tyrosine phosphatase activity promotes single cell motility of mammary epithelial cells. Since EYAs are expressed in vascular endothelial cells and cell motility is a critical feature of angiogenesis we investigated the role of EYAs in this process. Using RNA interference techniques we show that EYA3 depletion in human umbilical vein endothelial cells inhibits transwell migration as well as Matrigel-induced tube formation. To specifically query the role of the EYA tyrosine phosphatase activity we employed a chemical biology approach. Through an experimental screen the uricosuric agents Benzbromarone and Benzarone were found to be potent EYA inhibitors, and Benzarone in particular exhibited selectivity towards EYA versus a representative classical protein tyrosine phosphatase, PTP1B. These compounds inhibit the motility of mammary epithelial cells over-expressing EYA2 as well as the motility of endothelial cells. Furthermore, they attenuate tubulogenesis in matrigel and sprouting angiogenesis in the ex vivo aortic ring assay in a dose-dependent fashion. The anti-angiogenic effect of the inhibitors was also demonstrated in vivo, as treatment of zebrafish embryos led to significant and dose-dependent defects in the developing vasculature. Taken together our results demonstrate that the EYA tyrosine phosphatase activity is pro-angiogenic and that Benzbromarone and Benzarone are attractive candidates for repurposing as drugs for the treatment of cancer metastasis, tumor angiogenesis, and vasculopathies.

  20. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.

    Science.gov (United States)

    Chan, Yuk-Kit; Zhang, Huoming; Liu, Pei; Tsao, Sai-Wah; Lung, Maria Li; Mak, Nai-Ki; Ngok-Shun Wong, Ricky; Ying-Kit Yue, Patrick

    2015-10-15

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1 and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future.

  1. Pedestrian induced vertical vibrations: Response to running using the Response Spectrum Method

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos

    2010-01-01

    , such as the randomness of crowds travelling across the footbridge. Moreover, the codes, for most of the part, do not deal with pedestrian loading other than walking, even though running and jumping can often produce larger loads and vibration amplitudes. In this paper, an investigation inot the response of footbridges......Footbridges are increasingly prone to vibrations and designers are generally unable to predict pedestrian-induced vertical vibrations. Many aspects of human loading are infact not properly taken into account for in the load models employed by the international codes of practice...

  2. Metabolic response to light exercise after exercise-induced rhabdomyolysis.

    Science.gov (United States)

    Sayers, Stephen P; Clarkson, Priscilla; Patel, Jehangir J

    2002-01-01

    Inherent compromises in substrate metabolism, or impaired perfusion of muscle may contribute to the occurrence of exercise-induced rhabdomyolysis. In this study, the lactate response of the elbow flexor muscles to light exercise was examined in eight subjects (five males, three females) who previously demonstrated rhabdomyolysis with extreme swelling (ES; n = 4) or no swelling (NS; n = 4) of the upper arm after eccentric exercise. Subjects performed identical light exercise bouts (45 s of rapid isotonic biceps curls consisting of both concentric and eccentric actions at 25% of maximum voluntary contraction force) using their previously eccentrically exercised arm (E-ARM) and control arm, which was not used previously to perform eccentric exercise (C-ARM). Blood lactate concentration ([La]b) was assessed 1.5, 3, 4.5, 6, and 9 min post-exercise. Peak [La]b and the area under the curve (AUC) were compared between the E-ARM of the ES and NS groups and between the C-ARM and E-ARM of the ES group. The AUC did not differ between the E-ARM of the ES and NS groups (P > 0.05) or between the C-ARM and E-ARM of the ES group (P > 0.05). In the ES group, the increase in [La]b after light exercise with the C-ARM [mean (SD) change, delta: 1.98 (0.7) mmol/l] was not different from the increase after exercising the E-ARM [delta: 2.10 (0.7) mmol/l; P>0.05]. Comparing the response of the E-ARM between groups, the increase in [La]b of the NS group [delta: 1.40 (0.4) mmol/l] was not different than that observed in the ES group [delta: 2.10 (0.7) mmol/l; P>0.05). Thus, subjects who had previously exhibited signs of exercise-induced rhabdomyolysis did not show an abnormal response to low-intensity anaerobic exercise.

  3. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  4. A review on pro- and anti-angiogenic factors as targets of clinical intervention

    NARCIS (Netherlands)

    Bouis, D; Kusumanto, Y; Meijer, C; Mulder, NH; Hospers, GAP

    2006-01-01

    Angiogenesis plays an important role in physiology and pathology. It is a tightly regulated process, influenced by the microenvironment and modulated by a multitude of pro- and anti-angiogenic factors. A thorough understanding of the angiogenic process may lead to novel therapies to target ischemic

  5. Food-induced brain responses and eating behaviour.

    Science.gov (United States)

    Smeets, Paul A M; Charbonnier, Lisette; van Meer, Floor; van der Laan, Laura N; Spetter, Maartje S

    2012-11-01

    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques that could be used to address these. The brain responses associated with sensory stimulation (sight, olfaction and taste), gastric distension, gut hormone administration and food consumption are the subject of increasing investigation. Nevertheless, only few studies have examined relations between brain responses and eating behaviour. However, the neural circuits underlying eating behaviour are to a large extent generic, including reward, self-control, learning and decision-making circuitry. These limbic and prefrontal circuits interact with the hypothalamus, a key homeostatic area. Target areas for further elucidating the regulation of food intake are: (eating) habit and food preference formation and modification, the neural correlates of self-control, nutrient sensing and dietary learning, and the regulation of body adiposity. Moreover, to foster significant progress, data from multiple studies need to be integrated. This requires standardisation of (neuroimaging) measures, data sharing and the application and development of existing advanced analysis and modelling techniques to nutritional neuroscience data. In the next 20 years, nutritional neuroscience will have to prove its potential for providing insights that can be used to tackle detrimental eating behaviour.

  6. Inducing a humoral immune response to pancreatic cancer antigen.

    Science.gov (United States)

    Seifert, Michael; Seifert, Gabriel; Wolff-Vorbeck, Guido; Langenmair, Elia; Hopt, Ulrich T; Wittel, Uwe A

    2016-12-01

    Patients with pancreatic carcinoma have a grim prognosis. Here, we examine the induction of an in vitro antibody response of human B cells to pancreatic carcinoma antigens. Cells of five cultured pancreatic ductal adenocarcinoma lines were lysed and their plasma membrane fragments isolated in an aqueous two-phase-system. The plasma membrane fragments were then added to cultures of isolated peripheral blood mononuclear cells from healthy volunteers for 14 days to act as a tumor antigen. Also, we added combinations of IL-2, IL-4, IL-21, anti-CD40 mAb and varying protein concentrations of the plasma membrane fragments to these cultures. We then tested characteristics and binding of resulting IgG and IgM against aforementioned tumor plasma membrane fragments and their respective cells using ELISAs. The combination of IL-2, IL-4 and anti-CD40 mAb elicited IgM production showing significant binding (pBxPC3 plasma membrane fragments showed inhibitory effects on IgG binding BxPC3 antigens (p<0.05). A human anti-tumor antibody formation can be induced in vitro using PANC-1 antigens and B cell stimulating agents. This response has the potential to generate antibodies specific to PANC-1 antigens. PRéCIS: The concept presented is novel and a promising approach to eliciting a specific B cell response to tumor antigen. The method may prove useful in understanding and developing anti-tumor immunity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Environmental toxicants-induced immune responses in the olfactory mucosa

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2016-11-01

    Full Text Available Olfactory sensory neurons (OSNs are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa of the nasal cavity, OSN axons directly project to the olfactory bulb that is a component of the central nervous system (CNS. Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the olfactory bulb via the olfactory mucosa, and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the olfactory mucosa, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the olfactory bulb after inflammation has subsided. It is now known that immune cells and cytokines in the olfactory mucosa play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the olfactory mucosa affects the pathophysiology of OSNs.

  8. Angiogenic gene therapy does not cause retinal pathology.

    Science.gov (United States)

    Prokosch, Verena; Stupp, Tobias; Spaniol, Kristina; Pham, Emmanuel; Nikol, Sigrid

    2014-01-01

    The potential negative influence of angiogenic gene therapy on the development or progression of retinal pathologies such as diabetic retinopathy (DR) or age-related macular degeneration (AMD) has led to the systematic exclusion of affected patients from trials. We investigated the role of nonviral fibroblast factor 1 (NV1FGF) in two phase II, multinational, double-blind, randomized, placebo-controlled, gene therapy trials (TALISMAN 201 and 211). One hundred and fifty-two subjects with critical limb ischemia or claudication were randomized to receive eight intramuscular injections of 2.5 ml of NV1FGF at 0.2 mg/ml or 0.4 mg/dl or placebo. One hundred and fifty-two patients received a plasmid dose of NV1FGF of up to 32 mg or placebo. All patients underwent a systematic ophthalmologic examination at baseline and at 3, 6 or 12 months following gene therapy. Twenty-six of these patients (Münster subgroup) received a retinal fluorescence angiography at baseline and at final examination. Among those 26 patients, four of nine patients with diabetes suffered from nonproliferative DR. Three patients showed non-exsudative AMD. No change of retinal morphology or function was observed in Münster subgroup of both TALISMAN trials independent of the intramuscular NV1FGF dosage applied. Angiogenic gene therapy using NV1FGF is safe even in diabetics. Copyright © 2014 John Wiley & Sons, Ltd.

  9. The impact of laser surgery on angiogenic and anti-angiogenic factors in twin-twin transfusion syndrome: a prospective study().

    Science.gov (United States)

    Chon, Andrew H; Chavira, Emiliano R; Wilson, Melissa L; Ingles, Sue A; Llanes, Arlyn; Chmait, Ramen H

    2017-04-03

    To examine the effect of laser surgery on angiogenic and anti-angiogenic factors in patients with twin-twin transfusion syndrome (TTTS). Cases of TTTS and uncomplicated monochorionic diamniotic twin pregnancies between 16 and 26 weeks' gestation were prospectively enrolled into the study. Maternal blood samples were obtained to measure angiogenic factors (vascular endothelial growth factor-A [VEGF], placental-derived growth factor [PlGF], and endothelin) and anti-angiogenic factors (soluble fms-like tyrosine kinase (sFlt-1), soluble endoglin (sEng), and sFlt-1/PlGF ratio). For cases, these factors were measured at visit 1 (pre-operatively), visit 2 (postoperative day one), and visit 3 (at least 3 weeks after surgery). In controls, the factors were measured at visit 1 (enrollment) and visit 2 (at least 3 weeks later). Levels of angiogenic and anti-angiogenic factors between cases and controls were compared. At enrollment, the TTTS cases demonstrated an anti-angiogenic state with significantly higher sFlt-1, sEng, sFlt-1/PlGF ratio, and lower PlGF. Laser surgery, comparing visit 1-3, had a partial corrective effect on TTTS cases. sFlt-1 significantly decreased several weeks after surgery. The other factors (PlGF, endothelin, sFlt-1, sEng, and sFlt-1/PlGF ratio) were not statistically significantly different by visit 3. Laser surgery partially corrected the angiogenic profile in patients with TTTS.

  10. Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir.

    Science.gov (United States)

    Prado, Maria Rosa Machado; Boller, Christian; Zibetti, Rosiane Guetter Mello; de Souza, Daiany; Pedroso, Luciana Lopes; Soccol, Carlos Ricardo

    2016-11-01

    The search for new bioactive molecules is a driving force for research pharmaceutical industries, especially those molecules obtained from fermentation. The molecules possessing angiogenic and anti-inflammatory attributes have attracted attention and are the focus of this study. Angiogenic activity from kefir polysaccharide extract, via chorioallantoic membrane assay, exhibited a pro-angiogenic effect compared with vascular endothelial factor (pro-angiogenic) and hydrocortisone (anti-angiogenic) activity as standards with an EC50 of 192ng/mL. In terms of anti-inflammatory activity determined via hyaluronidase enzyme assay, kefir polysaccharide extract inhibited the enzyme with a minimal activity of 2.08mg/mL and a maximum activity of 2.57mg/mL. For pharmaceutical purposes, kefir polysaccharide extract is considered to be safe because it does not inhibit VERO cells in cytotoxicity assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Pro-Angiogenic Effects of Chalcone Derivatives in Zebrafish Embryos in Vivo.

    Science.gov (United States)

    Chen, Yau-Hung; Chang, Chao-Yuan; Chang, Chiung-Fang; Chen, Po-Chih; Lee, Ya-Ting; Chern, Ching-Yuh; Tsai, Jen-Ning

    2015-07-09

    The aim of this study was to investigate novel chalcones with potent angiogenic activities in vivo. Chalcone-based derivatives were evaluated using a transgenic zebrafish line with fluorescent vessels to real-time monitor the effect on angiogenesis. Results showed that the chalcone analogues did not possess anti-angiogenic effect on zebrafish vasculatures; instead, some of them displayed potent pro-angiogenic effects on the formation of the sub-intestinal vein. Similar pro-angiogenic effects can also be seen on wild type zebrafish embryos. Moreover, the expression of vegfa, the major regulator for angiogenesis, was also upregulated in their treatment. Taken together, we have synthesized and identified a series of novel chalcone-based derivatives as potent in vivo pro-angiogenic compounds. These novel compounds hold potential for therapeutic angiogenesis.

  12. Angiogenically stimulated alternative monocytes maintain their pro-angiogenic and non-inflammatory phenotype in long-term co-cultures with HUVEC.

    Science.gov (United States)

    Krüger, Anne; Mayer, Anke; Roch, Toralf; Schulz, Christian; Lendlein, Andreas; Jung, Friedrich

    2014-01-01

    Angiogenically stimulated alternative monocytes (aMO2) could be established as cellular release system accelerating the endothelialization of polymers rendering their surfaces hemocompatibility in a short-term study. However, for their clinical application it is essential that aMO2 do not switch back to the MO1 state sustaining their capability as cellular release system over an extended period of time. We explored whether aMO2 can maintain their differentiation state over 21 days in a mono- and in a co-culture with HUVEC. In comparison, the influence of recombinant VEGF-A165 on the endothelialization of biomaterials was assessed including endothelial cell (HUVEC) density, organisation of the endothelial cytoskeleton, cytokine secretion profile and release of prostacyclin, thromboxane A2 and matrix metalloproteinases. In mono-culture aMO2 secreted high amounts of VEGF and other growth factors/cytokines. Co-cultured with HUVEC, aMO2 accelerated the formation of a confluent HUVEC monolayer. Furthermore, no pro-inflammatory cytokines were found, neither in aMO2-mono, nor in co-cultures with HUVEC indicating that the majority of the aMO2 remained stable in their aMO2 state during the 21 days of cultivation. In contrast, the addition of recombinant VEGF-A165 instead of the co-culture with aMO2 resulted in the formation of stress fibres, dissociated marginal filament bands, and a detachment of HUVEC. In addition, the profile of bioactive agents of HUVEC (e.g. prostacyclin, thromboxane A2, matrix metalloproteinases, IFN-γ and TNF-α) was influenced by the VEGF-A165 treatment inducing the detachment of HUVEC. In conclusion, in co-culture with HUVEC aMO2 remained stable in their type 2 state over 21 days confirming the suitability of aMO2 as biological release system for the endothelialization of biomaterial surfaces with constant release of angiogenic factors but without secretion of pro-inflammatory cytokines over three weeks. Therefore, this endothelialization approach

  13. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  14. Low intracellular ATP levels exacerbate carcinogen-induced inflammatory stress response and inhibit in vitro tubulogenesis in human brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Tahanian

    2011-01-01

    Full Text Available Elizabeth Tahanian, Sabrina Peiro, Borhane AnnabiLaboratoire d'Oncologie Moléculaire, Centre de Recherche BioMED, Département de Chimie, Université du Québec à Montréal, Montréal, Québec, CanadaAbstract: Solid tumor development requires angiogenesis and is correlated to the expression of inflammatory markers through cellular metabolic and energetic adaptation. While high glycolysis rates enable the cancer cell compartment to generate adenosine triphosphate (ATP, very little is known about the impact of low intracellular ATP concentrations within the vascular endothelial cell compartment, which is responsible for tumor angiogenesis. Here, we investigated the effect of 2-deoxy-D-glucose (2-DG, a glucose analog that inhibits glycolysis through intracellular ATP depletion, on human brain microvascular endothelial cell (HBMEC angiogenic properties. While preformed capillaries remained unaffected, we found that in vitro tubulogenesis was dose-dependently decreased by 2-DG and that this correlated with reduced intracellular ATP levels. Procarcinogenic signaling was induced with phorbol 12-myristate 13-acetate (PMA and found to trigger the proinflammatory marker cyclooxygenase-2 (COX-2 and endoplasmic reticulum (ER stress marker GRP78 expression, whose inductions were potentiated when PMA was combined with 2-DG treatment. Inversely, PMA-induced matrix-metalloproteinase-9 (MMP-9 gene expression and protein secretion were abrogated in the presence of 2-DG, and this can be partially explained by reduced nuclear factor-κB signaling. Collectively, we provide evidence for an intracellular ATP requirement in order for tubulogenesis to occur, and we link increases in ER stress to inflammation. A better understanding of the metabolic adaptations of the vascular endothelial cells that mediate tumor vascularization will help the development of new drugs and therapies.Keywords: endoplasmic reticulum stress, MMP-9, COX-2, 2-deoxy-D-glucose, endothelial

  15. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  16. Enhancement of radiation response with bevacizumab

    Directory of Open Access Journals (Sweden)

    Hoang Tien

    2012-04-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF plays a critical role in tumor angiogenesis. Bevacizumab is a humanized monoclonal antibody that neutralizes VEGF. We examined the impact on radiation response by blocking VEGF signaling with bevacizumab. Methods Human umbilical vein endothelial cell (HUVEC growth inhibition and apoptosis were examined by crystal violet assay and flow cytometry, respectively. In vitro HUVEC tube formation and in vivo Matrigel assays were performed to assess the anti-angiogenic effect. Finally, a series of experiments of growth inhibition on head and neck (H&N SCC1 and lung H226 tumor xenograft models were conducted to evaluate the impact of bevacizumab on radiation response in concurrent as well as sequential therapy. Results The anti-angiogenic effect of bevacizumab appeared to derive not only from inhibition of endothelial cell growth (40% but also by interfering with endothelial cell function including mobility, cell-to-cell interaction and the ability to form capillaries as reflected by tube formation. In cell culture, bevacizumab induced a 2 ~ 3 fold increase in endothelial cell apoptosis following radiation. In both SCC1 and H226 xenograft models, the concurrent administration of bevacizumab and radiation reduced tumor blood vessel formation and inhibited tumor growth compared to either modality alone. We observed a siginificant tumor reduction in mice receiving the combination of bevacizumab and radiation in comparison to mice treated with bevacizumab or radiation alone. We investigated the impact of bevacizumab and radiation treatment sequence on tumor response. In the SCC1 model, tumor response was strongest with radiation followed by bevacizumab with less sequence impact observed in the H226 model. Conclusions Overall, these data demonstrate enhanced tumor response when bevacizumab is combined with radiation, supporting the emerging clinical investigations that are combining anti-angiogenic

  17. Estrogen-Induced Monocytic Response Correlates with Temporomandibular Disorder Pain.

    Science.gov (United States)

    Ribeiro-Dasilva, M C; Fillingim, R B; Wallet, S M

    2017-03-01

    Temporomandibular disorders (TMD) are a set of conditions characterized by pain and dysfunction in the temporomandibular joint and muscles of mastication. These pain conditions are associated with considerable morbidity, societal costs, and reduced quality of life. The prevalence varies between 4% and 10%, with females at higher risk, and a higher prevalence occurs during reproductive years. The increased prevalence of TMD in females and low prevalence in childhood reinforce that sex hormones, like estrogen, play an important, complex role in the pathophysiology of these disorders. The goal of this study was to determine whether women with TMD exhibit a monocytic hyperinflammatory response compared with control women, and to examine associations of monocytic inflammatory responses with clinical pain. Eighteen women, aged 18 to 35 y, were seen during their follicular menstrual phase. A blood sample was collected, a clinical questionnaire about pain history was administered, and a Research Diagnostic Criteria (RDC) exam was performed. Extracted monocytes were stimulated with the toll-like receptor (TLR)-4 ligand, lipopolysaccharide (LPS), in the presence and absence of estrogen, and the levels of IL6 expression evaluated. Women with TMD showed a systemic hyperinflammatory phenotype, manifested by an increased monocytic release of cytokines after an inflammatory insult, and this was further increased by estrogen. In addition, monocytes from participants who self-reported more pain on the VAS scale produced higher levels of IL6 compared with those from participants who self-reported lower pain sensitivity. These data suggest that an estrogen-induced hyperinflammatory phenotype in women with TMD may at least in part contribute to heightened clinical pain, perhaps via central sensitization.

  18. The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions

    Directory of Open Access Journals (Sweden)

    Hendrik Gremmels

    2017-01-01

    Full Text Available Background. Endothelial colony forming cells (ECFCs have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS. The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods. Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN. Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays. Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion. The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.

  19. The Anti-Inflammatory Cytokine Interleukin-19 Is Expressed in and Angiogenic for Human Endothelial Cells

    Science.gov (United States)

    Jain, Surbhi; Gabunia, Khatuna; Kelemen, Sheri E.; Panetti, Tracee S.; Autieri, Michael V.

    2010-01-01

    OBJECTIVE The expression and effects of anti-inflammatory interleukins on endothelial cell (EC) activation and development of angiogenesis is uncharacterized. The purpose of this study is to characterize the expression and function of Interleukin-19 (IL-19), a recently described Th2 anti-inflammatory interleukin on EC pathophysiology. METHODS and RESULTS We demonstrate by immunohistochemistry and immunoblot that IL-19 is expressed in inflamed, but not normal human coronary endothelium, and can be induced in cultured human EC by serum and bFGF. IL-19 is mitogenic, chemotactic, and promotes cell EC spreading. IL-19 activates the signaling proteins STAT3, p44/42, and Rac1. In functional ex vivo studies, IL-19 promotes cord-like structure formation of cultured EC and also enhances microvessel sprouting in the mouse aortic ring assay. IL-19 induces tube formation in matrigel plugs in vivo. CONCLUSIONS These data are the first to report expression of the anti-inflammatory interleukin IL-19 in EC, and the first to indicate that IL-19 is mitogenic and chemotactic for EC, and can induce the angiogenic potential of EC. PMID:20966397

  20. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats

    Science.gov (United States)

    Semionatto, Isadora Ferraz; Raminelli, Adrieli Oliveira; Alves, Angelica Cristina; Capitelli, Caroline Santos; Chriguer, Rosangela Soares

    2017-01-01

    Background Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. Objective To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. Methods We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. Results No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). Discussion The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. Conclusion These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. PMID:28099586

  1. Beryllium-induced immune response in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Bice, D.E.; Nikula, K.J. [and others

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  2. Marrow fat cell: response to x-ray induced aplasia

    Energy Technology Data Exchange (ETDEWEB)

    Bathija, A.; Ohanian, M.; Davis, S.; Trubowitz, S.

    1979-09-11

    Adipose tissue is an integral structural component of normal rabbit marrow and is believed to behave primarily as a cushion in response to hemopoietic proliferation, accommodating to changes in hemopoiesis by change in either size or number or both of the fat cells in order to maintain constancy of the marrow volume. To test this hypothesis, aplasia of the right femur of New Zealand white rabbits was induced by x irradiation with 8000 rads; the left unirradiated limb served as control. Twenty-four hours before sacrifice 50 ..mu..Ci of palmitate-114C was administered intravenously and the marrow of both femurs removed. Samples of perinephric fat were taken for comparison. Fat cell volume, C14 palmitate turnover and fatty acid composition were determined. The total number of fat cells in the entire marrow of both femurs was calculated. The measurements showed no difference in size or fatty acid turnover of the fat cells in the irradiated aplastic marrow from the cells of the control marrow. The number of fat cells in both the irradiated and the unirradiated control femurs was essentially the same. These findings do not support the view that marrow fat cells respond to diminished hematopoiesis by either increase in their volume or number. In addition, the findings suggest that both marrow and subcutaneous fat cells are fairly resistant to high doses of x-ray irradiation.

  3. Anti-angiogenic effects of a mutant endostatin: a new prospect for treating retinal and choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Yujing Bai

    Full Text Available Pathological fundus angiogenesis is a major cause of vision loss in retina diseases. Endostatin, a C-terminal fragment of collagen XVIII, is an endogenous anti-angiogenic protein. The present study aimed to investigate the in vitro and in vivo anti-angiogenic properties of two proteins: an N-terminal H1D/H3D mutant endostatin (M-ES and a polyethylene glycol propionaldehyde (PEG covalent M-ES (PEG-M-ES.M-ES and PEG-M-ES properties were characterized in vitro using a zinc ion binding assay and a stability test. Activity assays, including migration, proliferation, and tube formation assays, were performed with human retinal microvascular endothelial cells (HRMECs and human umbilical vein endothelial cells (HUVECs. Mouse oxygen-induced retinopathy (OIR and choroidal neovascularization (CNV models were used to evaluate in vivo anti-angiogenic effects. In addition, a rabbit model was used to study the retinal pharmacokinetic profile following an intravitreal injection.The results indicated that the H1D/H3D mutations of endostatin reduced the zinc binding capacity of M-ES and facilitated PEG covalent binding. PEG-M-ES was more stable and persisted longer in the retina compared with M-ES. The in vitro studies demonstrated that M-ES and PEG-M-ES inhibited HRMEC and HUVEC proliferation, migration, and tube formation more efficiently than ES. In vivo, a single intravitreal injection of M-ES and PEG-M-ES significantly decreased neovascularization in both the OIR and CNV animal models.The present study demonstrated for the first time that PEG-M-ES exhibits a long-term inhibitory effect on neovascularization in vitro and in vivo. These data suggest that PEG-M-ES may represent an innovative therapeutic strategy to prevent fundus neovascularization.

  4. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    NARCIS (Netherlands)

    Jansen, J.J.; Van Dam, N.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2009-01-01

    Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favor

  5. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    NARCIS (Netherlands)

    Jansen, J.J.; van Dam, N.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2009-01-01

    Background: Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favo

  6. Obesity and Cancer: An Angiogenic and Inflammatory Link.

    Science.gov (United States)

    Fukumura, Dai; Incio, Joao; Shankaraiah, Ram C; Jain, Rakesh K

    2016-04-01

    With the current epidemic of obesity, a large number of patients diagnosed with cancer are overweight or obese. Importantly, this excess body weight is associated with tumor progression and poor prognosis. The mechanisms for this worse outcome, however, remain poorly understood. We review here the epidemiological evidence for the association between obesity and cancer, and discuss potential mechanisms focusing on angiogenesis and inflammation. In particular, we will discuss how the dysfunctional angiogenesis and inflammation occurring in adipose tissue in obesity may promote tumor progression, resistance to chemotherapy, and targeted therapies such as anti-angiogenic and immune therapies. Better understanding of how obesity fuels tumor progression and therapy resistance is essential to improve the current standard of care and the clinical outcome of cancer patients. To this end, we will discuss how an anti-diabetic drug such as metformin can overcome these adverse effects of obesity on the progression and treatment resistance of tumors. © 2016 John Wiley & Sons Ltd.

  7. Anti-angiogenic agents in metastatic colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Colorectal cancer (CRC) is a major public health concernbeing the third leading cause of cancer mortality inthe United States. The availability of better therapeuticoptions has led to a decline in cancer mortality in thesepatients. Surgical resection should be considered in allstages of the disease. The use of conversion therapyhas made surgery a potentially curative option even inpatients with initially unresectable metastatic disease.In this review we discuss the role of various antiangiogenicagents in patients with metastatic CRC(mCRC). We describe the mechanism of action of theseagents, and the rationale for their use in combinationwith chemotherapy. We also review important clinicalstudies that have evaluated the safety and efficacy ofthese agents in mCRC patients. Despite the discoveryof several promising anti-angiogenic agents, mCRCremains an incurable disease with a median overallsurvival of just over 2 years in patients exposed to allavailable treatment regimens. Further insights intotumor biology and tumor microenvironment may helpimprove outcomes in these patients.

  8. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects.

    Science.gov (United States)

    Li, Dong; Xie, Kun; Zhang, Longzhen; Yao, Xuejing; Li, Hongwen; Xu, Qiaoyu; Wang, Xin; Jiang, Jing; Fang, Jianmin

    2016-07-28

    Both vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF or FGF-2) are potent pro-angiogenic factors and play a critical role in cancer development and progression. Clinical anti-VEGF therapy trials had a major challenge due to upregulated expression of other pro-angiogenic factor, like FGF-2. This study developed a novel chimeric decoy receptor VF-Trap fusion protein to simultaneously block activity of both VEGF and FGF pathways in order to achieve an additive or synergistic anti-tumor effect. Our in vitro data showed that VF-Trap potently blocked proliferation and migration of both VEGF- and FGF-2-induced vascular endothelial cells. In animal models, treatment of xenograft tumors with VF-Trap resulted in significant inhibition of tumor growth compared to blockage of the single molecule, like VEGF or FGF blocker. In addition, VF-Trap was also more potent in inhibition of ocular angiogenesis in a mouse oxygen-induced retinopathy (OIR) model. These data demonstrated the potent anti-angiogenic effects of this novel VF-Trap fusion protein on blockage of VEGF and FGF-2 activity in vitro and in animal models. Further study will assess its effects in clinic as a therapeutic agent for angiogenesis-related disorders, such as cancer and ocular vascular diseases.

  9. Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects on In Vitro Endothelial Cells and on an In Vivo CT-26 Colon Carcinoma Animal Model.

    Science.gov (United States)

    Yoo, Ki Hyun; Park, Jong-Hwa; Lee, Dae Young; Hwang-Bo, Jeon; Baek, Nam In; Chung, In Sik

    2015-05-01

    We describe the anti-angiogenic and anti-lymphangiogenic effects of corosolic acid, a pentacyclic triterpenoid isolated from Cornus kousa Burg. A mouse colon carcinoma CT-26 animal model was employed to determine the in vivo anti-angiogenic and anti-lymphangiogenic effects of corosolic acid. Corosolic acid induced apoptosis in CT-26 cells, mediated by the activation of caspase-3. In addition, it reduced the final tumor volume and the blood and lymphatic vessel densities of tumors, indicating that it suppresses in vivo angiogenesis and lymphangiogenesis. Corosolic acid inhibited the proliferation and tube formation of human umbilical vein endothelial cells and human dermal lymphatic microvascular endothelial cells. In addition, corosolic acid decreased the proliferation and migration of human umbilical vein endothelial cells stimulated by angiopoietin-1. Pretreatment with corosolic acid decreased the phosphorylation of focal adhesion kinase (FAK) and ERK1/2, suggesting that corosolic acid contains anti-angiogenic activity that can suppress FAK signaling induced by angiopoietin-1.

  10. Methylnaltrexone Potentiates the Anti-Angiogenic Effects of mTOR Inhibitors

    Directory of Open Access Journals (Sweden)

    Moreno-Vinasco Liliana

    2010-02-01

    Full Text Available Abstract Background Recent cancer therapies include drugs that target both tumor growth and angiogenesis including mammalian target of rapamycin (mTOR inhibitors. Since mTOR inhibitor therapy is associated with significant side effects, we examined potential agents that can reduce the therapeutic dose. Methods Methylnaltrexone (MNTX, a peripheral mu opioid receptor (MOR antagonist, in combination with the mTOR inhibitors temsirolimus and/or rapamycin, was evaluated for inhibition of VEGF-induced human pulmonary microvascular endothelial cell (EC proliferation and migration as well as in vivo angiogenesis (mouse Matrigel plug assay. Results MNTX inhibited VEGF-induced EC proliferation and migration with an IC50 of ~100 nM. Adding 10 nM MNTX to EC shifted the IC50 of temsirolimus inhibition of VEGF-induced proliferation and migration from ~10 nM to ~1 nM and from ~50 to ~10 nM respectively. We observed similar effects with rapamycin. On a mechanistic level, we observed that MNTX increased EC plasma membrane-associated tyrosine phosphate activity. Inhibition of tyrosine phosphatase activity (3,4-dephostatin blocked the synergy between MNTX and temsirolimus and increased VEGF-induced tyrosine phosphorylation of Src with enhanced PI3 kinase and mTOR Complex 2-dependent phosphorylation of Akt and subsequent activation of mTOR Complex 1 (rapamycin and temsirolimus target, while silencing Src, Akt or mTOR complex 2 components blocked VEGF-induced angiogenic events. Conclusions Our data indicate that MNTX exerts a synergistic effect with rapamycin and temsirolimus on inhibition of VEGF-induced human EC proliferation and migration and in vivo angiogenesis. Therefore, addition of MNTX could potentially lower the dose of mTOR inhibitors which could improve therapeutic index.

  11. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction.

    Science.gov (United States)

    Hatanaka, Kazuaki; Ito, Kenta; Shindo, Tomohiko; Kagaya, Yuta; Ogata, Tsuyoshi; Eguchi, Kumiko; Kurosawa, Ryo; Shimokawa, Hiroaki

    2016-09-01

    We have previously demonstrated that low-energy extracorporeal cardiac shock wave (SW) therapy improves myocardial ischemia through enhanced myocardial angiogenesis in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris. However, the detailed molecular mechanisms for the SW-induced angiogenesis remain unclear. In this study, we thus examined the effects of SW irradiation on intracellular signaling pathways in vitro. Cultured human umbilical vein endothelial cells (HUVECs) were treated with 800 shots of low-energy SW (1 Hz at an energy level of 0.03 mJ/mm(2)). The SW therapy significantly upregulated mRNA expression and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The SW therapy also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphorylation of caveolin-1 and the expression of HUTS-4 that represents β1-integrin activity. These results suggest that caveolin-1 and β1-integrin are involved in the SW-induced activation of angiogenic signaling pathways. To further examine the signaling pathways involved in the SW-induced angiogenesis, HUVECs were transfected with siRNA of either β1-integrin or caveolin-1. Knockdown of either caveolin-1 or β1-integrin suppressed the SW-induced phosphorylation of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown of either caveolin-1 or β1-integrin also suppressed SW-induced enhancement of HUVEC migration in scratch assay. These results suggest that activation of mechanosensors on cell membranes, such as caveolin-1 and β1-integrin, and subsequent phosphorylation of Erk and Akt may play pivotal roles in the SW-induced angiogenesis.

  12. Research of the degradation products of chitosan's angiogenic function

    Science.gov (United States)

    Wang, Jianyun; Chen, Yuanwei; Ding, Yulong; Shi, Guoqi; Wan, Changxiu

    2008-11-01

    Angiogenesis is of great importance in tissue engineering and has gained large attention in the past decade. But how it will be influenced by the biodegradable materials, especially their degradation products, remains unknown. Chitosan (CS) is a kind of naturally occurred polysaccharide which can be degraded in physiological environment. In order to gain some knowledge of the influences of CS degradation products on angiogenesis, the interaction of vascular endothelial cells with the degradation products was investigated in the present study. The CS degradation products were prepared by keeping CS sample in physiological saline aseptically at 37 °C for 120 days. Endothelial cells were co-cultured with the degradation products and the angiogenic cell behaviors, including cell proliferation, migration and tube-like structure (TLS) formation, were tested by MTT assay, cell migration quantification method (CMQM), and tube-like structure quantification method (TLSQM) respectively. Furthermore, mRNA expressions of vascular endothelial growth factor (VEGF) and matrix metallo proteinase (MMP-2) were determined by real-time reverse transcriptional polymerase chain reaction (RT-PCR). Physiological saline served as a negative control. As the results showed, the degradation products obtained from 20th to 60th day significantly inhibited the proliferation, migration, and TLS formation of endothelial cells. However, degradation products of the first 14 days and the last 30 days were found to be proangiogenic. At the molecular level, the initial results indicated that the mRNA expressions of VEGF and MMP-2 were increased by the degradation products of 7th day, but were decreased by the ones of 60th day. According to all the results, it could be concluded that the angiogenic behaviors of endothelial cells at both cellular and molecular level could be significantly stimulated or suppressed by the degradation products of CS and the influences are quite time-dependent.

  13. Cytisine induces autonomic cardiovascular responses via activations of different nicotinic receptors.

    Science.gov (United States)

    Li, Yi-Fan; Lacroix, Carly; Freeling, Jessica

    2010-04-19

    Nicotinic cholinergic receptors mediate autonomic transmission at ganglia. However, whether different subtypes of nicotinic cholinergic receptors expressed in autonomic ganglia elicit distinct roles in mediating sympathetic and parasympathetic regulations remain to be defined. In this study, we observed that different subtypes of nicotinic receptors were responsible for the sympathetic and parasympathetic cardiovascular responses. In urethane anesthetized mice, intravenous injection with cytisine, a non-selective nicotinic agonist, induced a brief but pronounced decrease in heart rate, followed by increases in heart rate and arterial blood pressure. The bradycardic response was blocked by atropine, and the pressor response was blocked by prazosin, confirming that these responses were parasympathetic and sympathetic activities, respectively. Hexamethonium, a ganglionic blocker, blocked both sympathetic and parasympathetic responses. Pretreatment with methyllycaconitine citrate, a selective alpha7 nicotinic receptor antagonist, significantly attenuated cytisine-induced sympathetic response with little effect on the parasympathetic response. In contrast, pretreatment with dihydro-beta-erythroidine hydrobromide, a selective alpha4beta2 nicotinic receptor antagonist, blocked cytisine-induced parasympathetic response but not the sympathetic response. Pretreatment with dihydro-beta-erythroidine hydrobromide also blocked baroreflex associated parasympathetic bradycardic response. Moreover, treatment with nicotine induced a bradycardic response without a significant pressor response, which was also attenuated by dihydro-beta-erythroidine hydrobromide. Collectively, these data suggest that different nicotinic receptors play distinct roles in sympathetic and parasympathetic ganglia. Specifically, activations of alpha7 and alpha4beta2 nicotinic receptors are involved in cytisine-induced cardiovascular sympathetic and parasympathetic responses, respectively.

  14. Water drinking-related muscle contraction induces the pressor response via mechanoreceptors in conscious rats.

    Science.gov (United States)

    Abe, Chikara; Iwata, Chihiro; Morita, Hironobu

    2013-01-01

    Water drinking is known to induce the pressor response. The efferent pathway in this response involves sympathoexcitation, because the pressor response was completely abolished by ganglionic blockade or an α(1)-adrenergic antagonist. However, the afferent pathway in this response has not been identified. In the present study, we hypothesized that water itself stimulates the upper digestive tract to induce the pressor response, and/or drinking-related muscle contraction induces the pressor response via mechanoreceptors. To examine this hypothesis, we evaluated the pressor response induced by spontaneous or passive water drinking in conscious rats. Since the baroreflex modulates and obscures the pressor response, the experiments were conducted using rats with sinoaortic denervation. The pressor response was not suppressed by 1) transient oral surface anesthesia using lidocaine, 2) bilateral denervation of the glossopharyngeal nerve and sensory branch of the superior laryngeal nerve, or 3) denervation of the tunica adventitia in the esophagus. However, the pressor response was significantly suppressed (by -52%) by intravenous gadolinium chloride administration. Electrical stimulation of the hypoglossal nerve induced the pressor response, which was significantly suppressed (by -57%) by intravenous gadolinium chloride administration and completely abolished by severing the distal end of this nerve. These results indicate that afferent signals from mechanoreceptors in drinking-related muscles are involved in the water drinking-induced pressor response.

  15. Changes in circulating angiogenic factors after an acute training bout before and after resistance training with or without whole-body-vibration training

    Science.gov (United States)

    Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre

    2012-07-01

    Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and

  16. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection

    Directory of Open Access Journals (Sweden)

    Baldellou Maribel

    2009-03-01

    Full Text Available Abstract Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive and inactive (CD105/Flt-1 minus (n=5 micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC was examined following oxygen-glucose deprivation (OGD. Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM, matrix metalloproteinase-2 (MMP-2, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, hepatocyte growth factor-alpha (HGF-alpha, monocyte chemottractant protein-1 (MCP-1 and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these

  17. Cytomegalovirus pp71 protein is expressed in human glioblastoma and promotes pro-angiogenic signaling by activation of stem cell factor.

    Directory of Open Access Journals (Sweden)

    Lisa A Matlaf

    Full Text Available Glioblastoma multiforme (GBM is a highly malignant primary central nervous system neoplasm characterized by tumor cell invasion, robust angiogenesis, and a mean survival of 15 months. Human cytomegalovirus (HCMV infection is present in >90% of GBMs, although the role the virus plays in GBM pathogenesis is unclear. We report here that HCMV pp71, a viral protein previously shown to promote cell cycle progression, is present in a majority of human GBMs and is preferentially expressed in the CD133+, cancer stem-like cell population. Overexpression of pp71 in adult neural precursor cells resulted in potent induction of stem cell factor (SCF, an important pro-angiogenic factor in GBM. Using double immunofluorescence, we demonstrate in situ co-localization of pp71 and SCF in clinical GBM specimens. pp71 overexpression in both normal and transformed glial cells increased SCF secretion and this effect was specific, since siRNA mediated knockdown of pp71 or treatment with the antiviral drug cidofovir resulted in decreased expression and secretion of SCF by HCMV-infected cells. pp71- induced upregulation of SCF resulted in downstream activation of its putative endothelial cell receptor, c-kit, and angiogenesis as measured by increased capillary tube formation in vitro. We demonstrate that pp71 induces a pro-inflammatory response via activation of NFΚB signaling which drives SCF expression. Furthermore, we show that pp71 levels and NFKB activation are selectively augmented in the mesenchymal subtype of human GBMs, characterized by worst patient outcome, suggesting that HCMV pp71-induced paracrine signaling may contribute to the aggressive phenotype of this human malignancy.

  18. Myopes Show Greater Visually Induced Postural Responses Than Emmetropes.

    Science.gov (United States)

    Sayah, Diane N; Asaad, Kristin; Hanssens, Jean-Marie; Giraudet, Guillaume; Faubert, Jocelyn

    2016-02-01

    The literature already establishes that vision plays a crucial role in postural control and that this visual dependence shows intra- and interindividual variability. However, does ametropia also have an effect on postural control? This question leads to our study, which aims primarily to determine if myopes and emmetropes behave differently in terms of postural control when subjected to visual stimulation, and secondarily, if this difference persists in the presence of barrel and pincushion distortions. The results could lead, among other things, to improved lens design. Twenty-four subjects (12 myopes of -2.00 to -9.00 diopters [D] and 12 emmetropes of -0.50 to +0.50 D), between 19 and 35 years of age, participated in the study after comprehensive eye examinations were carried out. Of the 12 myopes, the preferred type of correction was divided equally within the group. While standing in front of a projection system and fixating on an immobile point, a checkerboard stimulus was displayed in their peripheral visual field, in either a static or dynamic state. Three conditions of optical distortion (plan, pincushion, and barrel distortions) were presented to the subjects. Their postural response was measured and recorded using a system of infrared cameras and optical sensors positioned on a helmet. The results show that postural instability induced by a dynamic peripheral stimulus is higher for myopes compared with emmetropes (ANOVA Refractive Error, F1,22 = 5.92, P = 0.0235). When exposed to optical distortions, the two groups also have significant differences in postural behaviors (ANOVA Refractive Error*Optical Distortion, F2,44 = 5.67, P = 0.0064). These results suggest that refractive error could be a factor in explaining individual variations of the role of vision in postural control.

  19. Ethephon induced abscission in mango: physiological fruitlet responses

    Directory of Open Access Journals (Sweden)

    Michael Helmut Hagemann

    2015-09-01

    Full Text Available Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 ppm, 7200 ppm during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at one day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at one, two and three days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day two and MiERS1 in the pedicel at days two and three were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at two days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets.

  20. Spectral induced polarization (SIP) response of mine tailings.

    Science.gov (United States)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Ethanol enhances tumor angiogenesis in vitro induced by low-dose arsenic in colon cancer cells through hypoxia-inducible factor 1 alpha pathway.

    Science.gov (United States)

    Wang, Lei; Son, Young-Ok; Ding, Songze; Wang, Xin; Hitron, John Andrew; Budhraja, Amit; Lee, Jeong-Chae; Lin, Qinchen; Poyil, Pratheeshkumar; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-12-01

    Health effects due to environmental exposure to arsenic are a major global health concern. Arsenic has been known to induce carcinogenesis and enhance tumor development via complex and unclear mechanism. Ethanol is also a well-established risk factor for many malignancies. However, little is known about the effects of coexposure to arsenic and ethanol in tumor development. In this study, we investigate the signaling and angiogenic effect of coexposure of arsenic and ethanol on different colon cancer cell lines. Results show that ethanol markedly enhanced arsenic-induced tumor angiogenesis in vitro. These responses are related to intracellular reactive oxygen species (ROS) generation, NADPH oxidase activation, and upregulation of PI3K/Akt and hypoxia-inducible factor 1 alpha (HIF-1α) signaling. We have also found that ethanol increases the arsenic-induced expression and secretion of angiogenic signaling molecules such as vascular endothelial growth factor, which further confirmed the above observation. Antioxidant enzymes inhibited arsenic/ethanol-induced tumor angiogenesis, demonstrating that the responsive signaling pathways of coexposure to arsenic and ethanol are related to ROS generation. We conclude that ethanol is able to enhance arsenic-induced tumor angiogenesis in colorectal cancer cells via the HIF-1α pathway. These results indicate that alcohol consumption should be taken into consideration in the investigation of arsenic-induced carcinogenesis in arsenic-exposed populations.

  2. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay.

  3. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats

    Directory of Open Access Journals (Sweden)

    Isadora Ferraz Semionatto

    Full Text Available Abstract Background: Isotonic blood volume expansion (BVE induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. Objective: To evaluate the effect of saline or serotonergic agonist (DOI administration in the hypothalamic paraventricular nucleus (PVN on cardiovascular responses after BVE. Methods: We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP, systolic (SBP and diastolic blood pressure (DBP, heart rate (HR and the sympathetic-vagal ratio (LF/HF of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. Results: No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17; SBP (147.23±14.31 vs 129.39±10.70; DBP (98.01 ±4.91 vs 87.31±8.61; HR (421.02±43.32 vs 356.35±41.99; and LF/HF ratio (2.32±0.80 vs 0.27±0.32. Discussion: The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. Conclusion: These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats.

  4. AN EXTRACT OF PENICILLIUM CHRYSOGENUM INDUCES DOSE-DEPENDENT ALLERGIC ASTHMA RESPONSES IN MICE

    Science.gov (United States)

    Rationale: Penicillium chrysogenum, a common indoor mold, is known to have several allergens and can induce allergic responses in a mouse model of allergic penicilliosis. Our hypothesis is that soluble components of P. chrysogenum (PCE) can dose-dependently induce responses typ...

  5. Glycer-AGEs-RAGE signaling enhances the angiogenic potential of hepatocellular carcinoma by upregulating VEGF expression

    Institute of Scientific and Technical Information of China (English)

    Junichi Takino; Shoichi Yamagishi; Masayoshi Takeuchi

    2012-01-01

    AIM:To investigate the effect of glyceraldehyde-derived advanced glycation end-products (Glycer-AGEs)on hepatocellular carcinoma (HCC) cells.METHODS:Two HCC cell lines (Hep3B and HepG2cells) and human umbilical vein endothelial cells (HUVEC) were used.Cell viability was determined using the WST-8 assay.Western blotting,enzyme linked immunosorbent assay,and real-time reverse transcriptionpolymerase chain reactions were used to detect protein and mRNA.Angiogenesis was evaluated by assessing the proliferation,migration,and tube formation of HUVEC.RESULTS:The receptor for AGEs (RAGE) protein was detected in Hep3B and HepG2 cells.HepG2 cells were not affected by the addition of Glycer-AGEs.GlycerAGEs markedly increased vascular endothelial growth factor (VEGF) mRNA and protein expression,which is one of the most potent angiogenic factors.Compared with the control unglycated bovine serum albumin (BSA)treatment,VEGF mRNA expression levels induced by the Glycer-AGEs treatment were 1.00 ± 0.10 vs 1.92± 0.09 (P < 0.01).Similarly,protein expression levels induced by the Glycer-AGEs treatment were 1.63 ± 0.04ng/mL vs 2.28 ± 0.17 ng/mL for the 24 h treatment and 3.36 ± 0.10 ng/mL vs 4.79 ± 0.31 ng/mL for the 48 h treatment,respectively (P < 0.01).Furthermore,compared with the effect of the control unglycated BSA-treated conditioned medium,the Glycer-AGEstreated conditioned medium significantly increased the proliferation,migration,and tube formation of HUVEC,with values of 122.4% ± 9.0% vs 144.5% ± 11.3% for cell viability,4.29 ± 1.53 vs 6.78 ± 1.84 for migration indices,and 71.0 ± 7.5 vs 112.4 ± 8.0 for the number of branching points,respectively (P < 0.01).CONCLUSION:These results suggest that Glycer-AGEs-RAGE signaling enhances the angiogenic potential of HCC cells by upregulating VEGF expression.

  6. IGFBP-4 Anti-Angiogenic and Anti-Tumorigenic Effects Are Associated with Anti-Cathepsin B Activity

    Directory of Open Access Journals (Sweden)

    María J Moreno

    2013-05-01

    Full Text Available Insulin-like growth factor-binding protein 4 (IGFBP-4/IBP-4 has potent IGF-independent anti-angiogenic and antitumorigenic effects. In this study, we demonstrated that these activities are located in the IGFBP-4 C-terminal protein fragment (CIBP-4, a region containing a thyroglobulin type 1 (Tg1 domain. Proteins bearing Tg1 domains have been shown to inhibit cathepsins, lysosomal enzymes involved in basement membrane degradation and implicated in tumor invasion and angiogenesis. In our studies, CIBP-4 was shown to internalize and co-localize with lysosomal-like structures in both endothelial cells (ECs and glioblastoma U87MG cells. CIBP-4 also inhibited both growth factor-induced EC tubulogenesis in Matrigel and the concomitant increases in intracellular cathepsin B (CatB activity. In vitro assays confirmed CIBP-4 capacity to block recombinant CatB activity. Biodistribution analysis of intravenously injected CIBP-4-Cy5.5 in a glioblastoma tumor xenograft model indicated targeted accumulation of CIBP-4 in tumors. Most importantly, CIBP-4 reduced tumor growth in this animal model by 60%. Pleiotropic anti-angiogenic and anti-tumorigenic activities of CIBP-4 most likely underlie its observed therapeutic potential against glioblastoma.

  7. Angiogenic inhibitors delivered by the type III secretion system of tumor-targeting Salmonella typhimurium safely shrink tumors in mice.

    Science.gov (United States)

    Shi, Lei; Yu, Bin; Cai, Chun-Hui; Huang, Jian-Dong

    2016-12-01

    Despite of a growing number of bacterial species that apparently exhibit intrinsic tumor-targeting properties, no bacterium is able to inhibit tumor growth completely in the immunocompetent hosts, due to its poor dissemination inside the tumors. Oxygen and inflammatory reaction form two barriers and restrain the spread of the bacteria inside the tumors. Here, we engineered a Salmonella typhimurium strain named ST8 which is safe and has limited ability to spread beyond the anaerobic regions of tumors. When injected systemically to tumor-bearing immunocompetent mice, ST8 accumulated in tumors at levels at least 100-fold greater than parental obligate anaerobic strain ST4. ST8/pSEndo harboring therapeutic plasmids encoding Endostatin fused with a secreted protein SopA could target vasculature at the tumor periphery, can stably maintain and safely deliver a therapeutic vector, release angiogenic inhibitors through a type III secretion system (T3SS) to interfere with the pro-angiogenic action of growth factors in tumors. Mice with murine CT26 colon cancer that had been injected with ST8/pSEndo showed efficient tumor suppression by inducing more severe necrosis and inhibiting blooding vessel density within tumors. Our findings provide a therapeutic platform for indirectly acting therapeutic strategies such as anti-angiogenesis and immune therapy.

  8. Anti-angiogenic activity and antitumor efficacy of amphiphilic twin drug from ursolic acid and low molecular weight heparin

    Science.gov (United States)

    Cheng, Wenming; Zohra Dahmani, Fatima; Zhang, Juan; Xiong, Hui; Wu, Yuanyuan; Yin, Lifang; Zhou, Jianping; Yao, Jing

    2017-02-01

    Heparin, a potential blood anti-coagulant, is also known for its binding ability to several angiogenic factors through electrostatic interactions due to its polyanionic character. However, the clinical application of heparin for cancer treatment is limited by several drawbacks, such as unsatisfactory therapeutic effects and severe anticoagulant activity that could induce hemorrhaging. Herein, low molecular weight heparin (LMWH) was conjugated to ursolic acid (UA), which is also an angiogenesis inhibitor, by binding the amine group of aminoethyl-UA (UA-NH2) with the carboxylic groups of LMWH. The resulting LMWH-UA conjugate as an amphiphilic twin drug showed reduced anticoagulant activity and could also self-assemble into nanomicelles with a mean particle size ranging from 200-250 nm. An in vitro endothelial tubular formation assay and an in vivo Matrigel plug assay were performed to verify the anti-angiogenic potential of LMWH-UA. Meanwhile, the in vivo antitumor effect of LMWH-UA was also evaluated using a B16F10 mouse melanoma model. LMWH-UA nanomicelles were shown to inhibit angiogenesis both in vitro and in vivo. In addition, the i.v. administration of LMWH-UA to the B16F10 tumor-bearing mice resulted in a significant inhibition of tumor growth as compared to the free drug solutions. These findings demonstrate the therapeutic potential of LMWH-UA as a new therapeutic remedy for cancer therapy.

  9. Inducing magneto-electric response in topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lunwu, E-mail: 163.sin@163.com [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Song, Runxia [Jiangsu Key Laboratory for Intelligent Agricultural Equipment, College of Engineering, Nanjing Agricultural University, Nanjing 210031 (China); Zeng, Jing [Faculty of Business and Economics, Macquarie University, NSW 2122 (Australia)

    2013-02-15

    Utilizing electric potential and magnetic scalar potential formulas, which contain zero-order Bessel functions of the first kind and the constitutive relations of topological insulators, we obtained the induced magnetic scalar potentials and induced magnetic monopole charges which are induced by a point charge in topological insulators. The results show that infinite image magnetic monopole charges are generated by a point electric charge. The magnitude of the induced magnetic monopole charges are determined not only by the point electric charge, but also by the material parameters. - Highlights: Black-Right-Pointing-Pointer Electric potential and magnetic scalar potential which contain zero-order Bessel function of the first kind were derived. Black-Right-Pointing-Pointer Boundary conditions of topological insulator were built. Black-Right-Pointing-Pointer Induced monopole charges were worked out.

  10. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Reichenbach, Andreas; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE) cells. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1

  11. Osmotic Induction of Angiogenic Growth Factor Expression in Human Retinal Pigment Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Moritz Veltmann

    Full Text Available Although systemic hypertension is a risk factor of age-related macular degeneration, antihypertensive medications do not affect the risk of the disease. One condition that induces hypertension is high intake of dietary salt resulting in increased blood osmolarity. In order to prove the assumption that, in addition to hypertension, high osmolarity may aggravate neovascular retinal diseases, we determined the effect of extracellular hyperosmolarity on the expression of angiogenic cytokines in cultured human retinal pigment epithelial (RPE cells.Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Hypoxia and oxidative stress were induced by the addition of the hypoxia mimetic CoCl2 and H2O2, respectively. Alterations in gene expression were determined with real-time RT-PCR. Secretion of bFGF was evaluated by ELISA. Cell viability was determined by trypan blue exclusion. Nuclear factor of activated T cell 5 (NFAT5 expression was knocked down with siRNA. Hyperosmolarity induced transcriptional activation of bFGF, HB-EGF, and VEGF genes, while the expression of other cytokines such as EGF, PDGF-A, TGF-β1, HGF, and PEDF was not or moderately altered. Hypoxia induced increased expression of the HB-EGF, EGF, PDGF-A, TGF-β1, and VEGF genes, but not of the bFGF gene. Oxidative stress induced gene expression of HB-EGF, but not of bFGF. The hyperosmotic expression of the bFGF gene was dependent on the activation of p38α/β MAPK, JNK, PI3K, and the transcriptional activity of NFAT5. The hyperosmotic expression of the HB-EGF gene was dependent on the activation of p38α/β MAPK, ERK1/2, and JNK. The hyperosmotic expression of bFGF, HB-EGF, and VEGF genes was reduced by inhibitors of TGF-β1 superfamily activin receptor-like kinase receptors and the FGF receptor kinase, respectively. Hyperosmolarity induced secretion of bFGF that was reduced by inhibition of autocrine/paracrine TGF-β1 signaling and by NFAT5 si

  12. Chronic Inflammation and Angiogenic Signaling Axis Impairs Differentiation of Dental-Pulp Stem Cells: e113419

    National Research Council Canada - National Science Library

    Michael Boyle; Crystal Chun; Chelsee Strojny; Raghuvaran Narayanan; Amelia Bartholomew; Premanand Sundivakkam; Satish Alapati

    2014-01-01

      Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin...

  13. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  14. Clinical outcome, proteome kinetics and angiogenic factors in serum after thermoablation of colorectal liver metastases

    NARCIS (Netherlands)

    Wertenbroek, Marieke W. J. L. A. E.; Schepers, Marianne; Kamminga-Rasker, Hannetta J.; Bottema, Jan T.; Kobold, Anneke C. Muller; Roelofsen, Han; de Jong, Koert P.

    2013-01-01

    Background: Thermoablation is used to treat patients with unresectable colorectal liver metastases (CRLM). We analyze clinical outcome, proteome kinetics and angiogenic markers in patients treated by cryosurgical ablation (CSA) or radiofrequency ablation (RFA). Methods: 205 patients underwent CSA (n

  15. Angiogenic factors in superimposed preeclampsia: a longitudinal study of women with chronic hypertension during pregnancy.

    Science.gov (United States)

    Perni, Uma; Sison, Cristina; Sharma, Vijay; Helseth, Geri; Hawfield, Amret; Suthanthiran, Manikkam; August, Phyllis

    2012-03-01

    Imbalances in circulating angiogenic factors contribute to the pathogenesis of preeclampsia. To characterize levels of angiogenic factors in pregnant women with chronic hypertension, we prospectively followed 109 women and measured soluble fms-like tyrosine kinase 1 (sFlt1), soluble endoglin, and placental growth factor at 12, 20, 28, and 36 weeks' gestation and postpartum. Superimposed preeclampsia developed in 37 (34%) and was early onset (hypertension. We conclude that alterations in angiogenic factors are detectable before and at the time of clinical diagnosis of early onset superimposed preeclampsia, whereas alterations were observed only at the time of diagnosis in women with late-onset superimposed preeclampsia. Longitudinal measurements of angiogenic factors may help anticipate early onset superimposed preeclampsia and facilitate diagnosis of superimposed preeclampsia in women with chronic hypertension.

  16. Adipose stem cells can secrete angiogenic factors that inhibit hyaline cartilage regeneration

    National Research Council Canada - National Science Library

    Lee, Christopher Sd; Burnsed, Olivia A; Raghuram, Vineeth; Kalisvaart, Jonathan; Boyan, Barbara D; Schwartz, Zvi

    2012-01-01

    Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration...

  17. Clinical outcome, proteome kinetics and angiogenic factors in serum after thermoablation of colorectal liver metastases

    NARCIS (Netherlands)

    Wertenbroek, Marieke W. J. L. A. E.; Schepers, Marianne; Kamminga-Rasker, Hannetta J.; Bottema, Jan T.; Kobold, Anneke C. Muller; Roelofsen, Han; de Jong, Koert P.

    2013-01-01

    Background: Thermoablation is used to treat patients with unresectable colorectal liver metastases (CRLM). We analyze clinical outcome, proteome kinetics and angiogenic markers in patients treated by cryosurgical ablation (CSA) or radiofrequency ablation (RFA). Methods: 205 patients underwent CSA (n

  18. Genetic effects on source level evoked and induced oscillatory brain responses in a visual oddball task.

    Science.gov (United States)

    Antonakakis, Marios; Zervakis, Michalis; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; De Geus, Eco J C; Micheloyannis, Sifis; Smit, Dirk J A

    2016-02-01

    Stimuli in simple oddball target detection paradigms cause evoked responses in brain potential. These responses are heritable traits, and potential endophenotypes for clinical phenotypes. These stimuli also cause responses in oscillatory activity, both evoked responses phase-locked to stimulus presentation and phase-independent induced responses. Here, we investigate whether phase-locked and phase-independent oscillatory responses are heritable traits. Oscillatory responses were examined in EEG recordings from 213 twin pairs (91 monozygotic and 122 dizygotic twins) performing a visual oddball task. After group Independent Component Analysis (group-ICA) and time-frequency decomposition, individual differences in evoked and induced oscillatory responses were compared between MZ and DZ twin pairs. Induced (phase-independent) oscillatory responses consistently showed the highest heritability (24-55%) compared to evoked (phase-locked) oscillatory responses and spectral energy, which revealed lower heritability at 1-35.6% and 4.5-32.3%, respectively. Since the phase-independent induced response encodes functional aspects of the brain response to target stimuli different from evoked responses, we conclude that the modulation of ongoing oscillatory activity may serve as an additional endophenotype for behavioral phenotypes and psychiatric genetics.

  19. Anti-metastatic and anti-angiogenic properties of potential new anti-cancer drugs based on metal complexes of selenosemicarbazones.

    Science.gov (United States)

    Zec, Manja; Srdic-Rajic, Tatjana; Konic-Ristic, Aleksandra; Todorovic, Tamara; Andjelkovic, Katarina; Filipovic-Ljeskovic, Ivana; Radulovic, Sinisa

    2012-11-01

    Our previous studies showed that zinc (II), cadmium (II) and nickel (II) complexes with 2-formylpyridine selenosemicarbazone induce apoptosis in cancer cells via activation of mitochondrial pathway. Herein, we reported their antimetastatic properties. Nickel (II), and zinc (II) complexes exhibited the strongest inhibitory potential towards MMP-2/9, while all investigated compounds significantly decreased proteolytic activity of MMP-2/9 in human breast cancer MDA-MB-361 cells. As shown by in vitro transmembrane assays, nickel (II) complex was the most effective in inhibiting invasion of MDA-MB-361 cells, while the cadmium (II) complex was the most active in inhibiting HeLa cells invasion. In malignant cells, the complexes inhibited intracellular accumulation of reactive oxygen species, known for its pro-angiogenic properties via VEGF signaling, but no reduction in total cellular amount of VEGF was found. Furthermore, tubulogenesis test showed anti-angiogenic effect of the complexes in treated endothelial cells. Data indicate multiple mechanisms of the complexes' anti-angiogenic properties. In addition, they could modulate metastatic phenotype of tumor cells. Nickel (II) complex with 2-formylpyridine selenosemicarbazone revealed to be the most potent.

  20. Angiogenic and signalling proteins correlate with sensitivity to sequential treatment in renal cell cancer

    Science.gov (United States)

    Rosa, R; Damiano, V; Nappi, L; Formisano, L; Massari, F; Scarpa, A; Martignoni, G; Bianco, R; Tortora, G

    2013-01-01

    Background: We aimed to study key signalling proteins involved in angiogenesis and proliferation on the response to inhibitors of tyrosine kinases and mammalian target of rapamycin in first- and in second-line treatment of renal cell carcinoma (RCC). Methods: In a panel of human RCC tumours, in vitro and in nude mice, we evaluated the effect of sunitinib, sorafenib and everolimus, alone and in sequence, on tumour growth and expression of signalling proteins involved in proliferation and resistance to treatment. Results: We demonstrated that, as single agents, sunitinib, sorafenib and everolimus share similar activity in inhibiting cell proliferation, signal transduction and vascular endothelial growth factor (VEGF) secretion in different RCC models, both in vitro and in tumour xenografts. Pre-treatment with sunitinib reduced the response to subsequent sunitinib and sorafenib but not to everolimus. Inability by sunitinib to persistently inhibit HIF-1, VEGF and pMAPK anticipated treatment resistance in xenografted tumours. After first-line sunitinib, second-line treatment with everolimus was more effective than either sorafenib or rechallenge with sunitinib in interfering with signalling proteins, VEGF and interleukin-8, translating into a significant advantage in tumour growth inhibition and mice survival. Conclusion: We demonstrated that a panel of angiogenic and signalling proteins can correlate with the onset of resistance to sunitinib and the activity of everolimus in second line. PMID:23839492

  1. Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice.

    Science.gov (United States)

    Audet, Gerald N; Meek, Thomas H; Garland, Theodore; Olfert, I Mark

    2011-11-01

    Selective breeding for high voluntary wheel running in untrained mice has resulted in a 'mini muscle' (MM) phenotype, which has increased skeletal muscle capillarity compared with muscles from non-selected control lines. Vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) are essential mediators of skeletal muscle angiogenesis; thus, we hypothesized that untrained MM mice with elevated muscle capillarity would have higher basal VEGF expression and lower basal TSP-1 expression, and potentially an exaggerated VEGF response to acute exercise. We examined skeletal muscle morphology and skeletal muscle protein expression of VEGF and TSP-1 in male mice from two (untrained) mouse lines selectively bred for high exercise capacity (MM and Non-MM), as well as one non-selected control mouse line (normal aerobic capacity). In the MM mice, gastrocnemius (GA) and plantaris (PLT) muscle capillarity (i.e. capillary-to-fibre ratio and capillary density) were greater compared with control mice (P capillarity in PLT was greater than in control mice (P capillarity among groups. In the GA, MM mice had 58% greater basal VEGF (P capillarity is associated with altered balance between positive and negative angiogenic regulators (i.e. VEGF versus TSP-1, respectively). Based on the greater capillarity and significant VEGF response to exercise in MM mice, these data suggest that VEGF expression may, at least in part, be genetically determined.

  2. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    Science.gov (United States)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  3. [Anti(lymph)angiogenic Strategies to Improve Corneal Graft Survival].

    Science.gov (United States)

    Bock, Felix; Cursiefen, Claus

    2017-05-01

    Corneal transplantation (keratoplasty) is the most frequently performed form of transplantation worldwide. A rejection reaction against the transplant is the main complication occurring after transplantation in an already vascularized, so-called "high-risk" recipient eye. Our group has shown that clinically invisible lymphatic vessels play a crucial role in the induction of a rejection reaction against the corneal graft, and that anti-(lymph)angiogenic therapies in the mouse model of keratoplasty can significantly improve transplant survival. The underlying mechanisms, which improve transplant survival through anti-lymphangiogenic therapies have not been well understood. We assume that the blockade of lymph vessel sprouting leads to a tolerance (and not to a simple ignorance) of the transplant, in which the antigen-presenting cells are held longer in the cornea and, thus, an immunomodulation of these cells occurs. Therefore, an important goal of our project is to find out whether and when transplant tolerance comes from a corneal anti-lymphangiogenic therapy. We assume that the antigen-presenting cells will have a different maturity level and that more tolerogenic effector cells (regulatory T cells, Tregs) develop in the absence of lymphatic vessels. Current anti(lymph)angiogenic therapies have the disadvantage that they are primarily effective on actively growing vessels. Most patients who receive high-risk keratoplasty often present in the clinic with already established, mature corneal blood and lymphatic vessels. At present, there are no lymph vessel regressing strategies, and the mechanisms regulating the maturation of the lymphatics are largely unknown. Therefore, our second goal is to develop new strategies for the regression of existing, pathological lymphatic vessels in the cornea. We are testing both destructive strategies, such as photodynamic therapy and diathermy as well as strategies for the molecular destabilization of the lymph vessel endothelium

  4. Cytokines, angiogenic, and antiangiogenic factors and bioactive lipids in preeclampsia.

    Science.gov (United States)

    Das, Undurti N

    2015-09-01

    Preeclampsia is a low-grade systemic inflammatory condition in which oxidative stress and endothelial dysfunction occurs. Plasma levels of soluble receptor for vascular endothelial growth factor (VEGFR)-1, also known as sFlt1 (soluble fms-like tyrosine kinase 1), an antiangiogenic factor have been reported to be elevated in preeclampsia. It was reported that pregnant mice deficient in catechol-O-methyltransferase (COMT) activity show a preeclampsia-like phenotype due to a deficiency or absence of 2-methoxyoestradiol (2-ME), a natural metabolite of estradiol that is elevated during the third trimester of normal human pregnancy. Additionally, autoantibodies (AT1-AAs) that bind and activate the angiotensin II receptor type 1 a (AT1 receptor) also have a role in preeclampsia. None of these abnormalities are consistently seen in all the patients with preeclampsia and some of them are not specific to pregnancy. Preeclampsia could occur due to an imbalance between pro- and antiangiogenic factors. VEGF, an angiogenic factor, is necessary for the transport of polyunsaturated fatty acids (PUFAs) to endothelial cells. Hence reduced VEGF levels decrease the availability of PUFAs to endothelial cells. This leads to a decrease in the formation of anti-inflammatory and angiogenic factors: lipoxins, resolvins, protectins, and maresins from PUFAs. Lipoxins, resolvins, protectins, maresins, and PUFAs suppress insulin resistance; activation of leukocytes, platelets, and macrophages; production of interleukin-6 and tumor necrosis factor-α; and oxidative stress and endothelial dysfunction; and enhance production of prostacyclin and nitric oxide (NO). Estrogen enhances the formation of lipoxin A4 and NO. PUFAs also augment the production of NO and inhibit the activity of angiotensin-converting enzyme and antagonize the actions of angiotensin II. Thus, PUFAs can prevent activation of angiotensin II receptor type 1 a (AT1 receptor). Patients with preeclampsia have decreased plasma

  5. Heme oxygenase and angiogenic activity of endothelial cells: stimulation by carbon monoxide and inhibition by tin protoporphyrin-IX.

    Science.gov (United States)

    Józkowicz, Alicja; Huk, Ihor; Nigisch, Anneliese; Weigel, Guenter; Dietrich, Wolf; Motterlini, Roberto; Dulak, Józef

    2003-04-01

    The activity of heme oxygenase enzymes (HOs) is responsible for the endogenous source of carbon monoxide (CO). Their activities can be inhibited by tin protoporphyrin-IX (SnPPIX). Recent data indicate the involvement of HOs in the regulation of angiogenesis. Here, we investigated the role of the HO pathway in the production and angiogenic activity of vascular endothelial growth factor (VEGF) in endothelial cells treated with SnPPIX, or cultured in the presence of a CO-releasing molecule (CO-RM). Addition of CO-RM or induction of HO-1 by hemin resulted in a threefold elevation in CO production in culture medium (up to 20.3 microg/L) and was associated with a 30% increase in VEGF synthesis. Much higher levels of CO (up to 60 microg/L) and a further increase in VEGF production (by 277%) were measured in cells treated with prostaglandin-J(2), a potent activator of HO-1. SnPPIX prevented the induction of CO generation and inhibited VEGF synthesis. Moreover, SnPPIX reduced the VEGF-elicited angiogenic activities of endothelial cells by decreasing their proliferation (by 26%), migration (by 46%), formation of tubes on Matrigel (by 48%), and outgrowth of capillaries from endothelial spheroids (by 30%). In contrast, overexpression of HO-1 or incubation of cells with CO-RM led to an increase in capillary sprouting. Thus, HO activity up-regulates VEGF production and augments the capability of endothelial cells to respond to exogenous stimulation.

  6. Systems microscopy to unravel cellular stress response signalling in drug induced liver injury

    NARCIS (Netherlands)

    Wink, Steven

    2015-01-01

    Toxicological insults are met by cellular adaptive stress response pathway activation. We find that activation of adaptive stress responses occur well before the typical ultimate outcome of chemical cell injury. To increase our understanding of chemically-induced adaptive stress response pathway act

  7. Stochastic procedures for extreme wave induced responses in flexible ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Andersen, Ingrid Marie Vincent; Seng, Sopheak

    2014-01-01

    estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects....

  8. Vaccine-induced antibody responses in relation to season

    NARCIS (Netherlands)

    Termorshuizen F; Sleijffers A; Hof S van den; Melker H de; Garssen J; Boland GJ; Hattum J van; Gruijl FR de; Loveren H van; LPI

    2001-01-01

    The effect of season on the antibody response after Hepatitis B (HB), Measles and Rubella vaccination in humans was investigated. In view of the immunosuppressive effects of ultraviolet radiation (UVR), especially the B-waveband (UVB), it was hypothesised that a lower antibody response after vaccina

  9. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Saptak Banerjee

    Full Text Available We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  10. Neem Leaf Glycoprotein Prophylaxis Transduces Immune Dependent Stop Signal for Tumor Angiogenic Switch within Tumor Microenvironment

    Science.gov (United States)

    Banerjee, Saptak; Ghosh, Tithi; Barik, Subhasis; Das, Arnab; Ghosh, Sarbari; Bhuniya, Avishek

    2014-01-01

    We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation. PMID:25391149

  11. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition.

    Science.gov (United States)

    Abusnina, Abdurazzag; Keravis, Thérèse; Zhou, Qingwei; Justiniano, Hélène; Lobstein, Annelise; Lugnier, Claire

    2015-02-01

    Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition.

  12. Akt mediates an angiogenic switch in transformed keratinocytes.

    Science.gov (United States)

    Segrelles, Carmen; Ruiz, Sergio; Santos, Mirentxu; Martínez-Palacio, Jesús; Lara, M Fernanda; Paramio, Jesús M

    2004-07-01

    Akt signaling is involved in tumorigenesis via a number of different mechanisms that result in increased proliferation and decreased apoptosis. Previous data have demonstrated that Akt-mediated signaling is functionally involved in keratinocyte transformation. This work investigates the involvement of angiogenesis as a mediator of tumorigenesis in Akt-transformed keratinocytes. Tumors produced by subcutaneous injection of the latter showed increased angiogenic profiles associated with increased vascular endothelial growth factor (VEGF) protein levels. However, in contrast to v-ras(Ha)-transformed keratinocytes, VEGF mRNA levels were not increased. The induction of VEGF protein by Akt is associated with increased phosphorylation and thus activation of p70S6K and eIF4E-binding protein 1, leading to increased VEGF translation. In addition, we observed increased metaloproteinases 2 and 9 expression, but not thrombospondin 1, in tumors derived from Akt-transformed keratinocytes. Collectively, these results demonstrate that Akt is an important mediator of angiogenesis in malignant keratinocytes through a post-transcriptional mechanism.

  13. Anti-angiogenic and anti-metastatic activity of synthetic phosphoethanolamine.

    Directory of Open Access Journals (Sweden)

    Adilson Kleber Ferreira

    Full Text Available BACKGROUND: Renal cell carcinoma (RCC is the most common type of kidney cancer, and represents the third most common urological malignancy. Despite the advent of targeted therapies for RCC and the improvement of the lifespan of patients, its cost-effectiveness restricted the therapeutic efficacy. In a recent report, we showed that synthetic phosphoethanolamine (Pho-s has a broad antitumor activity on a variety of tumor cells and showed potent inhibitor effects on tumor progress in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We show that murine renal carcinoma (Renca is more sensitive to Pho-s when compared to normal immortalized rat proximal tubule cells (IRPTC and human umbilical vein endothelial cells (HUVEC. In vitro anti-angiogenic activity assays show that Pho-s inhibits endothelial cell proliferation, migration and tube formation. In addition, Pho-s has anti-proliferative effects on HUVEC by inducing a cell cycle arrest at the G2/M phase. It causes a decrease in cyclin D1 mRNA, VEGFR1 gene transcription and VEGFR1 receptor expression. Pho-s also induces nuclear fragmentation and affects the organization of the cytoskeleton through the disruption of actin filaments. Additionally, Pho-s induces apoptosis through the mitochondrial pathway. The putative therapeutic potential of Pho-s was validated in a renal carcinoma model, on which our remarkable in vivo results show that Pho-s potentially inhibits lung metastasis in nude mice, with a superior efficacy when compared to Sunitinib. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings provide evidence that Pho-s is a compound that potently inhibits lung metastasis, suggesting that it is a promising novel candidate drug for future developments.

  14. Anti-angiogenic and anti-metastatic activity of synthetic phosphoethanolamine.

    Science.gov (United States)

    Ferreira, Adilson Kleber; Freitas, Vanessa Morais; Levy, Débora; Ruiz, Jorge Luiz Mária; Bydlowski, Sergio Paulo; Rici, Rose Eli Grassi; Filho, Otaviano Mendonça R; Chierice, Gilberto Orivaldo; Maria, Durvanei Augusto

    2013-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer, and represents the third most common urological malignancy. Despite the advent of targeted therapies for RCC and the improvement of the lifespan of patients, its cost-effectiveness restricted the therapeutic efficacy. In a recent report, we showed that synthetic phosphoethanolamine (Pho-s) has a broad antitumor activity on a variety of tumor cells and showed potent inhibitor effects on tumor progress in vivo. We show that murine renal carcinoma (Renca) is more sensitive to Pho-s when compared to normal immortalized rat proximal tubule cells (IRPTC) and human umbilical vein endothelial cells (HUVEC). In vitro anti-angiogenic activity assays show that Pho-s inhibits endothelial cell proliferation, migration and tube formation. In addition, Pho-s has anti-proliferative effects on HUVEC by inducing a cell cycle arrest at the G2/M phase. It causes a decrease in cyclin D1 mRNA, VEGFR1 gene transcription and VEGFR1 receptor expression. Pho-s also induces nuclear fragmentation and affects the organization of the cytoskeleton through the disruption of actin filaments. Additionally, Pho-s induces apoptosis through the mitochondrial pathway. The putative therapeutic potential of Pho-s was validated in a renal carcinoma model, on which our remarkable in vivo results show that Pho-s potentially inhibits lung metastasis in nude mice, with a superior efficacy when compared to Sunitinib. Taken together, our findings provide evidence that Pho-s is a compound that potently inhibits lung metastasis, suggesting that it is a promising novel candidate drug for future developments.

  15. Anti-Angiogenic and Anti-Metastatic Activity of Synthetic Phosphoethanolamine

    Science.gov (United States)

    Ferreira, Adilson Kleber; Freitas, Vanessa Morais; Levy, Débora; Ruiz, Jorge Luiz Mária; Bydlowski, Sergio Paulo; Rici, Rose Eli Grassi; Filho, Otaviano Mendonça R.; Chierice, Gilberto Orivaldo; Maria, Durvanei Augusto

    2013-01-01

    Background Renal cell carcinoma (RCC) is the most common type of kidney cancer, and represents the third most common urological malignancy. Despite the advent of targeted therapies for RCC and the improvement of the lifespan of patients, its cost-effectiveness restricted the therapeutic efficacy. In a recent report, we showed that synthetic phosphoethanolamine (Pho-s) has a broad antitumor activity on a variety of tumor cells and showed potent inhibitor effects on tumor progress in vivo. Methodology/Principal Findings We show that murine renal carcinoma (Renca) is more sensitive to Pho-s when compared to normal immortalized rat proximal tubule cells (IRPTC) and human umbilical vein endothelial cells (HUVEC). In vitro anti-angiogenic activity assays show that Pho-s inhibits endothelial cell proliferation, migration and tube formation. In addition, Pho-s has anti-proliferative effects on HUVEC by inducing a cell cycle arrest at the G2/M phase. It causes a decrease in cyclin D1 mRNA, VEGFR1 gene transcription and VEGFR1 receptor expression. Pho-s also induces nuclear fragmentation and affects the organization of the cytoskeleton through the disruption of actin filaments. Additionally, Pho-s induces apoptosis through the mitochondrial pathway. The putative therapeutic potential of Pho-s was validated in a renal carcinoma model, on which our remarkable in vivo results show that Pho-s potentially inhibits lung metastasis in nude mice, with a superior efficacy when compared to Sunitinib. Conclusions/Significance Taken together, our findings provide evidence that Pho-s is a compound that potently inhibits lung metastasis, suggesting that it is a promising novel candidate drug for future developments. PMID:23516420

  16. cyclooxygenase inhibitors and the exercise-induced stress response

    African Journals Online (AJOL)

    were significantly higher than pre-exercise temperature values on placebo (p ... and temperature response to exercise. ... cerebral blood vessels and thus easily accessed by blood- ..... regulation and the pyresis that occurs in the absence.

  17. Stochastic procedures for extreme wave induced responses in flexible ships

    Directory of Open Access Journals (Sweden)

    Jensen Jørgen Juncher

    2014-12-01

    Full Text Available Different procedures for estimation of the extreme global wave hydroelastic responses in ships are discussed. Firstly, stochastic procedures for application in detailed numerical studies (CFD are outlined. The use of the First Order Reliability Method (FORM to generate critical wave episodes of short duration, less than 1 minute, with prescribed probability content is discussed for use in extreme response predictions including hydroelastic behaviour and slamming load events. The possibility of combining FORM results with Monte Carlo simulations is discussed for faster but still very accurate estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects.

  18. Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses.

    Science.gov (United States)

    Tsai, Tsung-Hsien; Chuang, Lu-Te; Lien, Tsung-Jung; Liing, Yau-Rong; Chen, Wei-Yu; Tsai, Po-Jung

    2013-04-01

    Propionibacterium acnes is a key pathogen involved in the progression of acne inflammation. The development of a new agent possessing antimicrobial and anti-inflammatory activity against P. acnes is therefore of interest. In this study, we investigated the inhibitory effect of rosemary (Rosmarinus officinalis) extract on P. acnes-induced inflammation in vitro and in vivo. The results showed that ethanolic rosemary extract (ERE) significantly suppressed the secretion and mRNA expression of proinflammatory cytokines, including interleukin (IL)-8, IL-1β, and tumor necrosis factor-α in P. acnes-stimulated monocytic THP-1 cells. In an in vivo mouse model, concomitant intradermal injection of ERE attenuated the P. acnes-induced ear swelling and granulomatous inflammation. Since ERE suppressed the P. acnes-induced nuclear factor kappa-B (NF-κB) activation and mRNA expression of Toll-like receptor (TLR) 2, the suppressive effect of ERE might be due, at least partially, to diminished NF-κB activation and TLR2-mediated signaling pathways. Furthermore, three major constituents of ERE, carnosol, carnosic acid, and rosmarinic acid, exerted different immumodulatory activities in vitro. In brief, rosmarinic acid significantly suppressed IL-8 production, while the other two compounds inhibited IL-1β production. Further study is needed to explore the role of bioactive compounds of rosemary in mitigation of P. acnes-induced inflammation.

  19. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response

    NARCIS (Netherlands)

    Kleinnijenhuis, J.; Oosting, M.; Plantinga, T.S.; Meer, J.W.M. van der; Joosten, L.A.B.; Crevel, R. van; Netea, M.G.

    2011-01-01

    Both autophagy and pro-inflammatory cytokines are involved in the host defence against mycobacteria, but little is known regarding the effect of autophagy on Mycobacterium tuberculosis (MTB)-induced cytokine production. In the present study, we assessed the effect of autophagy on production of monoc

  20. Effects of exercise on vaccine-induced immune responses

    OpenAIRE

    Edwards, Kate M.; Booy, Robert

    2013-01-01

    The role of exercise in health is well known; here we discuss the specific role of exercise in vaccination responses. Chronic exercise or high levels of physical activity have been shown to be related to improved vaccination responses in older adults, illustrating improved immune function, and conferring potentially significant public health benefit. Acute exercise has recently been examined as a potential adjuvant to vaccination; its promise for clinical use warrants further investigation, g...

  1. Salidroside exerts angiogenic and cytoprotective effects on human bone marrowderived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways

    Science.gov (United States)

    Tang, Yubo; Vater, Corina; Jacobi, Angela; Liebers, Cornelia; Zou, Xuenong; Stiehler, Maik

    2014-01-01

    Background and Purpose With the increase of age, increased susceptibility to apoptosis and senescence may contribute to proliferative and functional impairment of endothelial progenitor cells (EPCs). The aim of this study was to investigate whether salidroside (SAL) can induce angiogenic differentiation and inhibit oxidative stress-induced apoptosis in bone marrow-derived EPCs (BM-EPCs), and if so, through what mechanism. Experimental Approach BM-EPCs were isolated and treated with different concentrations of SAL for up to 4 days. Cell proliferation, migration and tube formation ability were detected by DNA content quantification, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were assessed by qRT-PCR and Western blot respectively. Key Results Treatment with SAL promoted cellular proliferation and angiogenic differentiation of BM-EPCs, and increased VEGF and NO secretion, which in turn mediated the enhanced angiogenic differentiation of BM-EPCs. Furthermore, SAL significantly attenuated hydrogen peroxide (H2O2)-induced cell apoptosis, reduced the intracellular level of reactive oxygen species and restored the mitochondrial membrane potential of BM-EPCs. Moreover, SAL stimulated the phosphorylation of Akt, mammalian target of rapamycin and p70 S6 kinase, as well as ERK1/2, which is associated with cell migration and capillary tube formation. Additionally, SAL reversed the phosphorylation of JNK and p38 MAPK induced by H2O2 and suppressed the changes in the Bax/Bcl-xL ratio observed after stimulation with H2O2. Conclusions and Implications These findings identify novel mechanisms that regulate EPC function and suggest that SAL has therapeutic potential as a new agent to enhance vasculogenesis as well as protect against oxidative endothelial injury. PMID:24471788

  2. A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae)

    NARCIS (Netherlands)

    Uesugi, A.; Poelman, E.H.; Kessler, A.

    2013-01-01

    Plant-induced responses to multiple herbivores can mediate ecological interactions among herbivore species, thereby influencing herbivore community composition in nature. Several studies have indicated high specificity of induced responses to different herbivore species. In addition, there may be ge

  3. A test of genotypic variation in specificity of herbivore-induced responses in Solidago altissima L. (Asteraceae)

    NARCIS (Netherlands)

    Uesugi, A.; Poelman, E.H.; Kessler, A.

    2013-01-01

    Plant-induced responses to multiple herbivores can mediate ecological interactions among herbivore species, thereby influencing herbivore community composition in nature. Several studies have indicated high specificity of induced responses to different herbivore species. In addition, there may be

  4. MiR-492 impairs the angiogenic potential of endothelial cells

    DEFF Research Database (Denmark)

    Patella, Francesca; Leucci, Eleonora; Evangelista, Monica

    2013-01-01

    was able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind m....... To identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression......RNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors...

  5. Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway.

    Science.gov (United States)

    Ikeda, Yasumasa; Hamano, Hirofumi; Satoh, Akiho; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Aihara, Ken-Ichi; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-11-01

    Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.

  6. Angiogenesis Assays for the Evaluation of Angiogenic Properties of Orthopaedic Biomaterials - A General Review.

    Science.gov (United States)

    Liu, Wai Ching; Chen, Shihui; Zheng, Lizhen; Qin, Ling

    2017-03-01

    Vascularization is an essential process in bone formation, remodeling and regeneration during both bone development and fracture repair. Vascularization remains a big challenge directly leading to the final success of newly regenerated bone. In this review, the advantages and disadvantages of different angiogenesis assays and bone defect models are described in details for investigating revascularization of materials of interest. Unlike conventional angiogenesis study with growth factors or pharmaceutical molecules performed in two-dimension, special considerations are taken into account whether these assays can be translated for testing three-dimensional implantable devices. Over the years, accurate and quantifiable in vitro, ex vivo and in vivo assays have been extensively demonstrated to be useful in examining how new blood vessels grow. These methods can contribute to the fundamental understanding of angiogenic properties of the materials, but a bone defect model is still pivotal in order to understand the cascade actions of angiogenesis along with bone formation. Finally, angiogenesis and osteogenesis are both complex processes interacting with each other, the choice of which assay to be performed should adequately address the clinical relevance and reflect the sequence of responses of revascularization of the test materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Anti-angiogenic therapy (bevacizumab) in the management of oral lichen planus.

    Science.gov (United States)

    Mahmoud, Maha M; Afifi, Marwa M

    2016-04-01

    Oral lichen planus (OLP), a mucocutaneous chronic inflammatory disease, is conventionally managed using topical corticosteroid therapy. Given the fact that OLP is strongly linked to angiogenesis, anti-angiogenic drugs, such as bevacizumab, might be introduced as an alternative treatment for contraindicated, non-responsive patients. The aim of the present study was to report the short-term effectiveness and safety of intralesional bevacizumab injection in the management of atrophic/erosive OLP. A case series study was conducted in patients with atrophic/erosive OLP in the buccal mucosa, assigned to receive either 2.5 mg of bevacizumab, by intralesional injection (n = 20, test), or topical 0.1% triamcinolone acetonide ointment (n = 20, control). The size, score, and pain intensity of the lesions were assessed pre- and post-treatment. Tissue biopsies were collected for histopathologic, immunohistochemical, and ultrastructural examination. After 1 wk, the test group had significant reductions both in lesion seize and in pain scores compared with controls. A marked decrease in vascular endothelial growth factor (VEGF) and interleukin-8 immunoexpression was noted in tissue biopsies from bevacizumab-treated lesions compared with control lesions. Furthermore, ultrastructural examination of OLP tissue specimens revealed significant healing signs associated with bevacizumab treatment. Short-term data suggest that intralesional bevacizumab injection effectively and safely achieved resolution of atrophic/erosive OLP lesions without disease exacerbations during a 3-month follow-up period.

  8. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda;

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  9. Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Pilgaard, Linda

    2011-01-01

    Transplantation of mesenchymal stromal cells (MSC), including adipose tissue-derived stem cells (ASC), is a promising option in the treatment of vascular disease. Short-term hypoxic culture of MSC augments secretion of anti-apoptotic and angiogenic cytokines. We hypothesized that prolonged hypoxic...... (1% and 5% oxygen) culture and trypsinization would augment ASC expression of anti-apoptotic and angiogenic cytokines and increase the angiogenic potential of ASC-conditioned media....

  10. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2S availability

    Science.gov (United States)

    Terzuoli, E; Monti, M; Vellecco, V; Bucci, M; Cirino, G; Ziche, M; Morbidelli, L

    2015-01-01

    Background and Purpose Hydrogen sulfide (H2S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2S availability. Experimental Approach HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. Key Results Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP) channels, the molecular target that mediates part of the vascular functions of H2S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2S response to H2S and KATP activation. Conclusions and Implications Zofenoprilat induced a constant production of H2S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced. PMID:25631232

  11. Protective Effects of Fluticasone on Allergen-Induced Airway Responses and Sputum Inflammatory Markers

    Directory of Open Access Journals (Sweden)

    Krishnan Parameswaran

    2000-01-01

    Full Text Available BACKGROUND: A direct comparison of the protective effects of single and regular doses of inhaled glucocorticoid on allergen-induced asthmatic responses and inflammation has not been made.

  12. Ventilation and Perfusion Lung Scintigraphy of Allergen-Induced Airway Responses in Atopic Asthmatic Subjects

    Directory of Open Access Journals (Sweden)

    Krishnan Parameswaran

    2007-01-01

    Full Text Available BACKGROUND: Both ventilation (V and perfusion (Q of the lungs are altered in asthma, but their relationships with allergen-induced airway responses and gas exchange are not well described.

  13. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    National Research Council Canada - National Science Library

    Zhang, Shuo; Liang, Mifang; Gu, Wen; Li, Chuan; Miao, Fang; Wang, Xiaofang; Jin, Cong; Zhang, Li; Zhang, Fushun; Zhang, Quanfu; Jiang, Lifang; Li, Mengfeng; Li, Dexin

    2011-01-01

    .... Vaccination with virus-like particles (VLPs) has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated...

  14. Maternally induced intraclutch cannibalism: an adaptive response to predation risk?

    Science.gov (United States)

    Tigreros, Natasha; Norris, Rachel H; Wang, Eugenia H; Thaler, Jennifer S

    2017-04-01

    Theory on condition-dependent risk-taking indicates that when prey are in poor condition, their anti-predator responses should be weak. However, variation in responses resulting from differences in condition is generally considered an incidental by-product of organisms living in a heterogeneous environment. Using Leptinotarsa decemlineata beetles and stinkbug (Podisus maculiventris) predators, we hypothesised that in response to predation risk, parents improve larval nutritional condition and expression of anti-predator responses by promoting intraclutch cannibalism. We showed that mothers experiencing predation risk increase production of unviable trophic eggs, which assures provisioning of an egg meal to the newly hatched offspring. Next, we experimentally demonstrated that egg cannibalism reduces L. decemlineata vulnerability to predation by improving larval nutritional condition and expression of anti-predator responses. Intraclutch cannibalism in herbivorous insects might be a ubiquitous strategy, aimed to overcome the dual challenge of feeding on protein-limited diets while living under constant predation threat. © 2017 John Wiley & Sons Ltd/CNRS.

  15. Synthesis, biological evaluation, and docking studies of new 2-furylbenzimidazoles as anti-angiogenic agents: part II.

    Science.gov (United States)

    Temirak, Ahmed; Shaker, Yasser M; Ragab, Fatma A F; Ali, Mamdouh M; Soliman, Salwa M; Mortier, Jeremie; Wolber, Gerhard; Ali, Hamed I; El Diwani, Hoda I

    2014-04-01

    The 2-(5-methyl-2-furyl)-1H-benzimidazole moiety has shown promising activity against vascular endothelial growth factor (VEGF)-induced angiogenesis. In part I of this study, we have synthesized new analogs and tested their anti-angiogenic potentials. Here, we continue our previous study with different new analogs. Some compounds show promising cytotoxic activity against the human breast cancer cell line MCF-7, with IC50 in the range of 7.80-13.90 µg/mL, and exhibited remarkable in vitro inhibition against VEGF in the MCF-7 cancer cell line, with 95-98% of inhibition in comparison to tamoxifen as reference (IC50: 8.00 µg/mL, % of inhibition = 98%). Additionally, a molecular docking study was carried out to gain insight into plausible binding modes and to understand the structure-activity relationships of the synthesized compounds.

  16. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  17. Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1

    Science.gov (United States)

    Sarkar, Kakali; Semenza, Gregg L.

    Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.

  18. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm.

    Science.gov (United States)

    Wang, Zhihong; Yao, Yingbang; Wang, Xianbin; Yue, Weisheng; Chen, Longqing; Zhang, Xi Xiang

    2013-11-04

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

  19. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

    KAUST Repository

    Wang, Zhihong

    2013-11-04

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr 0.52 Ti 0.48)O 3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

  20. Serotoninergic Modulation of Basal Cardiovascular Responses and Responses Induced by Isotonic Extracellular Volume Expansion in Rats.

    Science.gov (United States)

    Semionatto, Isadora Ferraz; Raminelli, Adrieli Oliveira; Alves, Angelica Cristina; Capitelli, Caroline Santos; Chriguer, Rosangela Soares

    2017-02-01

    Isotonic blood volume expansion (BVE) induced alterations of sympathetic and parasympathetic activity in the heart and blood vessels, which can be modulated by serotonergic pathways. To evaluate the effect of saline or serotonergic agonist (DOI) administration in the hypothalamic paraventricular nucleus (PVN) on cardiovascular responses after BVE. We recorded pulsatile blood pressure through the femoral artery to obtain the mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and the sympathetic-vagal ratio (LF/HF) of Wistar rats before and after they received bilateral microinjections of saline or DOI into the PVN, followed by BVE. No significant differences were observed in the values of the studied variables in the different treatments from the control group. However, when animals are treated with DOI followed by BVE there is a significant increase in relation to the BE control group in all the studied variables: MBP (114.42±7.85 vs 101.34±9.17); SBP (147.23±14.31 vs 129.39±10.70); DBP (98.01 ±4.91 vs 87.31±8.61); HR (421.02±43.32 vs 356.35±41.99); and LF/HF ratio (2.32±0.80 vs 0.27±0.32). The present study showed that the induction of isotonic BVE did not promote alterations in MAP, HR and LF/HF ratio. On the other hand, the injection of DOI into PVN of the hypothalamus followed by isotonic BVE resulted in a significant increase of all variables. These results suggest that serotonin induced a neuromodulation in the PVN level, which promotes an inhibition of the baroreflex response to BVE. Therefore, the present study suggests the involvement of the serotonergic system in the modulation of vagal reflex response at PVN in the normotensive rats. Expansão de volume extracelular (EVEC) promove alterações da atividade simpática e parassimpática no coração e vasos sanguíneos, os quais podem ser moduladas por vias serotoninérgicas. Avaliar o efeito da administração de salina ou agonista serotonin

  1. Hypoxia induces a hedgehog response mediated by HIF-1 alpha

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Groot, Angelique P.; Oduro, Jeremiah P.; Franken, Rutger J.; Schoenmakers, Saskia H. H. F.; Peppelenbosch, Maikel P.; Spek, C. Arnold

    2009-01-01

    Recently, it has become clear that the developmental hedgehog pathway is activated in ischaemic adult tissue where it aids in salvaging damaged tissue. The exact driving force for the initial hedgehog response is unclear and as most physiological and cellular processes are disturbed in ischaemic tis

  2. Wave-induced Hydroelastic response of fast monohull ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1996-01-01

    High-speed ships are weight sensitive structures and high strength steel, aluminium or composites are preferred building materials. it is characteristic for these materials that they result in larger hull flexibility than more conventional materials. Therefore, for large fast ships the lowest...... to the hull flexibility due to the high zero crossing periods associated with the extreme responses....

  3. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  4. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  5. Trypanosomiasis-induced Th17-like immune responses in carp

    NARCIS (Netherlands)

    Ribeiro, C.M.S.; Pontes, M.J.S.L.; Bird, S.; Chadzinska, M.K.; Scheer, M.H.; Verburg-van Kemenade, B.M.L.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2010-01-01

    Background - In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of th

  6. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional M

  7. New approaches in angiogenic targeting for colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Colorectal carcinoma (CRC) is one of the leading causes of cancer death worldwide. In the last decade, the addition of irinotecan and oxaliplatin to standard fluorouracil-based chemotherapy regimens have set the new benchmark of survival for patients with metastatic CRC at approximately 20 mo. Despite these advances in the management of CRC, there is a strong medical need for more effective and well-tolerated therapies. The dependence of tumor growth and metastasis on blood vessels makes angiogenesis a rational target for therapy. One of the major pathways involved in this process is the vascular endothelial growth factor (VEGF) and its receptors (VEGFR). In 2004, the first agent targeting angiogenesis, bevacizumab (BV), was approved as an adjunct to first-line cytotoxic treatment of metastatic CRC. The role of BV as part of adjuvant treatment and in combination with other targeted therapies is the subject of ongoing trials. However, BV is associated with an increase in the risk of arterial thromboembolic events, hypertension and gastrointestinal perforations and its use must be cautious. Novel VEGFR TK inhibitors with different ranges of nanomolar potencies, selectivities, and pharmacokinetic properties are entering phase Ⅲ trials for the treatment of cancer. Conversely, one of these novel agents, vatalanib, has been shown not to confer survival benefit in first and second-line treatment of advanced CRC. The basis of these findings is being extensively evaluated. Ongoing and new well-designed trials will define the optimal clinical application of the actual antiangiogenic agents, and, on the other hand, intensive efforts in basic research will identify new agents with different antiangiogenic approaches for the treatment of CRC. In this review we discuss and highlight current and future approaches in angiogenic targeting for CRC.

  8. Automated quantification reveals hyperglycemia inhibits endothelial angiogenic function.

    Directory of Open Access Journals (Sweden)

    Anthony R Prisco

    Full Text Available Diabetes Mellitus (DM has reached epidemic levels globally. A contributing factor to the development of DM is high blood glucose (hyperglycemia. One complication associated with DM is a decreased angiogenesis. The Matrigel tube formation assay (TFA is the most widely utilized in vitro assay designed to assess angiogenic factors and conditions. In spite of the widespread use of Matrigel TFAs, quantification is labor-intensive and subjective, often limiting experiential design and interpretation of results. This study describes the development and validation of an open source software tool for high throughput, morphometric analysis of TFA images and the validation of an in vitro hyperglycemic model of DM.Endothelial cells mimic angiogenesis when placed onto a Matrigel coated surface by forming tube-like structures. The goal of this study was to develop an open-source software algorithm requiring minimal user input (Pipeline v1.3 to automatically quantify tubular metrics from TFA images. Using Pipeline, the ability of endothelial cells to form tubes was assessed after culture in normal or high glucose for 1 or 2 weeks. A significant decrease in the total tube length and number of branch points was found when comparing groups treated with high glucose for 2 weeks versus normal glucose or 1 week of high glucose.Using Pipeline, it was determined that hyperglycemia inhibits formation of endothelial tubes in vitro. Analysis using Pipeline was more accurate and significantly faster than manual analysis. The Pipeline algorithm was shown to have additional applications, such as detection of retinal vasculature.

  9. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  10. Trigeminally induced cardiovascular reflex responses in spinalized rats.

    Science.gov (United States)

    Ideguchi, S; Hotta, H; Suzuki, A; Umino, M

    2000-03-15

    The effects on cardiovascular functions of noxious stimulation to the orofacial areas innervated by trigeminal afferent nerves were analyzed in urethane-anesthetized, spinal cord-intact rats and in rats acutely spinalized at the second cervical level. In the spinal cord-intact rats, pinching of the upper lip produced increases in both heart rate (HR) and mean arterial pressure (MAP). Both responses were considered to be due to activation of sympathetic efferent nerves to the cardiovascular organs. Both responses were attenuated but did not disappear after spinalization at the C2 level. In spinalized rats, sympathetic preganglionic neurons emerging from the thoracolumbar spinal cord could not receive any neural influences from the brain. The HR response in the spinal rats was abolished after either bilateral vagotomy or intravenous injection of a peripherally acting muscarinic cholinergic receptor antagonist, methylatropine. This suggests that the increase in HR was elicited via vagal cholinergic efferent fibers, probably by decreasing tonic activity of vagus nerves to the heart. In spinal rats, neither vagotomy nor cholinergic blockade affected the increase in MAP, but i.v. injection of the vasopressin V1 receptor antagonist, OPC-21268, abolished the response of MAP. This suggests that the response of MAP was due to peripheral vasoconstriction elicited by vasopressin secreted from the posterior pituitary lobe. The present study demonstrated that, in rats acutely spinalized at the C2 level, noxious stimulation of orofacial areas innervated by the trigeminal nerve could produce reflex increases both in HR, by decreasing cholinergic vagal nerve activity to the heart, and blood pressure, by secreting vasopressin from the pituitary gland, even though sympathetic efferent innervation to the cardiovascular organs could not be directly affected by trigeminal afferent nerve excitation.

  11. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure.

    Directory of Open Access Journals (Sweden)

    Branka Stancevic

    Full Text Available These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT. Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x, and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors.

  12. Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.

    Science.gov (United States)

    Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz

    2017-08-22

    Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion-injury (I/R-Injury) during surgery. Due to similarities between the pathophysiological formation of I/R-injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species and increased pro-inflammatory signaling, the purpose of the present study was to investigate whether IPC performed prior to eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric only (ECC) (n=9) or eccentric proceeded by IPC group (IPC+ECC) (n=10). The exercise protocol consisted of bilateral biceps curls (3x10 repetitions at 80% of the concentric 1RM). In IPC+ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mmHg) immediately prior to the exercise (3x5 minutes of occlusion, separated by 5 minutes of reperfusion). Creatine Kinase (CK), arm circumference, subjective pain (VAS score) and radial displacement (Tensiomyography, Dm) were assessed before IPC, pre-exercise, post-exercise, 20 minutes-, 2 hours-, 24 hours-, 48 hours- and 72 hours post-exercise. CK differed from baseline only in ECC at 48h (pexercise. After 24h, 48h and 72h, CK was increased in ECC compared to IPC+ECC (between groups: 24h: p=0.004, 48h: pexercise, when compared to IPC+ECC (between groups: all pexercise days in ECC (all peccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain, while maintaining the contractile properties of the muscle.

  13. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    Energy Technology Data Exchange (ETDEWEB)

    Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Futuro Neto, H.A. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil); Pires, J.G.P. [Escola de Medicina da Empresa Brasileira de Ensino, Pesquisa e Extensão, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Gonçalves, W.L.S. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Tiradentes, R.V.; Gouvea, S.A.; Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2011-11-18

    The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8 per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg{sup −1}·day{sup −1}, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.

  14. Sertraline inhibits formalin-induced nociception and cardiovascular responses

    Directory of Open Access Journals (Sweden)

    C.H. Santuzzi

    2012-01-01

    Full Text Available The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g were divided into 4 groups (N = 8/per group: sertraline-treated group (Sert + Saline (Sal and Sert + Formalin (Form; 3 mg·kg-1·day-1, ip, for 7 days and saline-treated group (Sal + Sal and Sal + Form. The rats were injected with 5% (50 µL formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency, assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%, mean arterial pressure (+1.4 ± 3 mmHg, heart rate (+13 ± 6.8 bpm, respiratory frequency (+4.6 ± 5 cpm and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05. These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.

  15. [Assessment on the criminal responsibility of drug-induced mental disorders: a questionnaire survey].

    Science.gov (United States)

    Zhang, Sheng-yu; Zhao, Hai; Tang, Tao; Guan, Wei

    2014-12-01

    To understand the assessment on the criminal responsibility of drug-induced mental disorders and judicial experts' opinions. The judicial experts from institutes of forensic psychiatry in Shanghai were selected. They were asked to finish a self-made questionnaire of assessment on the criminal responsibility of drug-induced mental disorders by letters and visits. Most of experts knew the special regulation, "not suitable for evaluation" towards the criminal responsibility of drug-induced mental disorders of the guideline promulgated by Ministry of Justice. Before and after the guideline was issued, no expert made a no-responsibility opinion in such cases. After the guideline was issued, some experts made a full-responsibility or limited-responsibility opinion in such cases. There was a little disagreement among the experts in the case that the crime was unrelated with mental symptoms or the criminals used drugs even though he knew it could induced insanity. But there were still many obvious disagreements among experts in the case that crime was related to such symptoms and person was no ability to debate. Most experts agreed to settle the disagreements with improved legislative perfection. Most experts are not strictly complying with the assessment guidelines during their practice, and there is still an obvious disagreement towards the criminal responsibility of drug-induced mental disorders.

  16. Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.

  17. Independent anti-angiogenic capacities of coagulation factors X and Xa.

    Science.gov (United States)

    Lange, Soledad; Gonzalez, Ibeth; Pinto, Mauricio P; Arce, Maximiliano; Valenzuela, Rodrigo; Aranda, Evelyn; Elliot, Matias; Alvarez, Marjorie; Henriquez, Soledad; Velasquez, Ethel V; Orge, Felipe; Oliva, Barbara; Gonzalez, Pamela; Villalon, Manuel; Cautivo, Kelly M; Kalergis, Alexis M; Pereira, Karla; Mendoza, Camila; Saez, Claudia; Kato, Sumie; Cuello, Mauricio A; Parborell, Fernanda; Irusta, Griselda; Palma, Veronica; Allende, Miguel L; Owen, Gareth I

    2014-11-01

    Knockout models have shown that the coagulation system has a role in vascular development and angiogenesis. Herein, we report for the first time that zymogen FX and its active form (FXa) possess anti-angiogenic properties. Both the recombinant FX and FXa inhibit angiogenesis in vitro using endothelial EA.hy926 and human umbilical cord vascular endothelial cells (HUVEC). This effect is dependent on the Gla domain of FX. We demonstrate that FX and FXa use different mechanisms: the use of Rivaroxaban (RX) a specific inhibitor of FXa attenuated its anti-angiogenic properties but did not modify the anti-angiogenic effect of FX. Furthermore, only the anti-angiogenic activity of FXa is PAR-1dependent. Using in vivo models, we show that FX and FXa are anti-angiogenic in the zebrafish intersegmental vasculature (ISV) formation and in the chick embryo chorioallantoic membrane (CAM) assays. Our results provide further evidence for the non-hemostatic functions of FX and FXa and demonstrate for the first time a biological role for the zymogen FX.

  18. ANGIOGENES: knowledge database for protein-coding and noncoding RNA genes in endothelial cells.

    Science.gov (United States)

    Müller, Raphael; Weirick, Tyler; John, David; Militello, Giuseppe; Chen, Wei; Dimmeler, Stefanie; Uchida, Shizuka

    2016-09-01

    Increasing evidence indicates the presence of long noncoding RNAs (lncRNAs) is specific to various cell types. Although lncRNAs are speculated to be more numerous than protein-coding genes, the annotations of lncRNAs remain primitive due to the lack of well-structured schemes for their identification and description. Here, we introduce a new knowledge database "ANGIOGENES" (http://angiogenes.uni-frankfurt.de) to allow for in silico screening of protein-coding genes and lncRNAs expressed in various types of endothelial cells, which are present in all tissues. Using the latest annotations of protein-coding genes and lncRNAs, publicly-available RNA-seq data was analyzed to identify transcripts that are expressed in endothelial cells of human, mouse and zebrafish. The analyzed data were incorporated into ANGIOGENES to provide a one-stop-shop for transcriptomics data to facilitate further biological validation. ANGIOGENES is an intuitive and easy-to-use database to allow in silico screening of expressed, enriched and/or specific endothelial transcripts under various conditions. We anticipate that ANGIOGENES serves as a starting point for functional studies to elucidate the roles of protein-coding genes and lncRNAs in angiogenesis.

  19. Genomic counter-stress changes induced by the relaxation response.

    Directory of Open Access Journals (Sweden)

    Jeffery A Dusek

    Full Text Available Mind-body practices that elicit the relaxation response (RR have been used worldwide for millennia to prevent and treat disease. The RR is characterized by decreased oxygen consumption, increased exhaled nitric oxide, and reduced psychological distress. It is believed to be the counterpart of the stress response that exhibits a distinct pattern of physiology and transcriptional profile. We hypothesized that RR elicitation results in characteristic gene expression changes that can be used to measure physiological responses elicited by the RR in an unbiased fashion.We assessed whole blood transcriptional profiles in 19 healthy, long-term practitioners of daily RR practice (group M, 19 healthy controls (group N(1, and 20 N(1 individuals who completed 8 weeks of RR training (group N(2. 2209 genes were differentially expressed in group M relative to group N(1 (p<0.05 and 1561 genes in group N(2 compared to group N(1 (p<0.05. Importantly, 433 (p<10(-10 of 2209 and 1561 differentially expressed genes were shared among long-term (M and short-term practitioners (N(2. Gene ontology and gene set enrichment analyses revealed significant alterations in cellular metabolism, oxidative phosphorylation, generation of reactive oxygen species and response to oxidative stress in long-term and short-term practitioners of daily RR practice that may counteract cellular damage related to chronic psychological stress. A significant number of genes and pathways were confirmed in an independent validation set containing 5 N(1 controls, 5 N(2 short-term and 6 M long-term practitioners.This study provides the first compelling evidence that the RR elicits specific gene expression changes in short-term and long-term practitioners. Our results suggest consistent and constitutive changes in gene expression resulting from RR may relate to long term physiological effects. Our study may stimulate new investigations into applying transcriptional profiling for accurately measuring

  20. The effect of induced multipoles on the fifth-order Raman response

    NARCIS (Netherlands)

    la Cour Jansen, T.; Duppen, K.; Snijders, J. G.

    2003-01-01

    In our previous work we developed the Finite Field method in order to calculate the fifth-order Raman response. The method was applied to calculate various polarization components of the two-dimensional response of liquid CS2. So far, all calculations relied on the dipole-induced dipole. Accurate ti

  1. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.

    NARCIS (Netherlands)

    Janssen, T.W.; Hopman, M.T.E.

    2003-01-01

    OBJECTIVES: To compare the effect of electric stimulation (ES)-induced twitch with tetanic leg muscle contractions on blood flow responses and to assess blood flow responses in the contralateral inactive leg. DESIGN: Intervention with within-subject comparisons. SETTING: University research laborato

  2. Induced response of tomato plants to injury by green and red strains of Tetranychus urticae

    NARCIS (Netherlands)

    Takabayashi, J.; Shimoda, T.; Dicke, M.; Ashihara, W.; Takafuji, A.

    2000-01-01

    We studied the induced response of tomato plants to the green strain and the red strain of the spider mite Tetranychus urticae. We focused on the olfactory response of the predatory mite Phytoseiulus persimilis to volatiles from T. urticae-infested tomato leaves in a Y-tube olfactometer. Tomato leav

  3. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    N.J. Paine; C. Ring; J.A. Bosch; M.T. Drayson; S. Aldred; J.J.C.S. Veldhuijzen van Zanten

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  4. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration.

    Science.gov (United States)

    Nakashima, Misako; Iohara, Koichiro; Sugiyama, Masahiko

    2009-01-01

    Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.

  5. Anti-Angiogenic Treatment (Sunitinib for Disseminated Malignant Haemangiopericytoma: A Case Study and Review of the Literature

    Directory of Open Access Journals (Sweden)

    M. Delgado

    2011-02-01

    Full Text Available Introduction: A meningeal haemangiopericytoma (HP is a mesenchymal tumour that makes up less than 1% of all CNS tumours. HPs arise from pericytes and present high rates of recurrence and distant metastasis. The primary treatment option is surgery. When the disease is disseminated, chemotherapy produces a weak and short-lived response; therefore, new drugs are needed. Case Presentation: We describe the case of a 65-year-old woman with a 13-year history of recurrent HP. After local treatment with radiotherapy, she developed metastases that required systemic treatment, and treatment with sunitinib, an oral inhibitor of the vascular endothelial growth factor receptor and the platelet-derived growth factor receptor, was initiated. As a result, radiological stabilisation of the systemic disease was maintained for over 12 months. Conclusions: Anti-angiogenic agents can be useful for treating disseminated HP, but further studies are needed to confirm their possible role in controlling metastatic disease.

  6. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Eriksen, Jesper Grau; Broholm, Helle

    2010-01-01

    Several recent studies have demonstrated a beneficial effect of anti-angiogenic treatment with the vascular endothelial growth factor-neutralizing antibody bevacizumab in recurrent high-grade glioma. In the current study, immunohistochemical evaluation of biomarkers involved in angiogenesis......, hypoxia and mediators of the epidermal growth factor receptor (EGFR) pathway were investigated. Tumor tissue was obtained from a previous phase II study, treating recurrent primary glioblastoma multiforme (GBM) patients with the EGFR inhibitor cetuximab in combination with bevacizumab and irinotecan....... Of the 37 patients with available tumor tissue, 29 were evaluable for response. We concurrently performed immunohistochemical stainings on tumor tissue from 21 GBM patients treated with bevacizumab and irinotecan. We found a tendency of correlation between the hypoxia-related markers, indicating...

  7. Hypothalamic neuronal histamine modulates febrile response but not anorexia induced by lipopolysaccharide.

    Science.gov (United States)

    Chiba, Seiichi; Itateyama, Emi; Oka, Kyoko; Masaki, Takayuki; Sakata, Toshiie; Yoshimatsu, Hironobu

    2005-05-01

    This study examined the contribution of hypothalamic neuronal histamine (HA) to the anorectic and febrile responses induced by lipopolysaccharide (LPS), an exogenous pyrogen, and the endogenous pyrogens interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Intraperitoneal (ip) injection of LPS, IL-1beta, or TNF-alpha suppressed 24-hr cumulative food intake and increased rectal temperature in rats. To analyze the histaminergic contribution, rats were pretreated with intracerebroventricular (icv) injection of 2.44 mmol/kg or ip injection of 244 mmol/kg of alpha-fluoromethylhistidine (FMH), a suicide inhibitor of histidine decarboxylase (HDC), to deplete neural HA. The depletion of neural HA augmented the febrile response to ip injection of LPS and IL-1beta and alleviated the anorectic response to ip injection of IL-1beta. However, the depletion of neural HA did not modify the LPS-induced anorectic response or TNF-alpha-induced febrile and anorectic responses. Consistent with these results, the rate of hypothalamic HA turnover, assessed by the accumulation of tele-methylhistamine (t-MH), was elevated with ip injections of LPS and IL-1beta, but unaffected by TNF-alpha at equivalent doses. This suggests that (i) LPS and IL-1beta activate hypothalamic neural HA turnover; (ii) hypothalamic neural HA suppresses the LPS- and IL-1beta-induced febrile responses and accelerates the IL-1beta-induced anorectic response; and (iii) TNF-alpha modulates the febrile and anorectic responses via a neural HA-independent pathway. Therefore, hypothalamic neural HA is involved in the IL-1beta-dominant pathway, rather than the TNF-alpha-dominant pathway, preceding the systemic inflammatory response induced by exogenous pyrogens, such as LPS. Further research on this is needed.

  8. Fasciola hepatica Kunitz type molecule decreases dendritic cell activation and their ability to induce inflammatory responses.

    Directory of Open Access Journals (Sweden)

    Cristian R Falcón

    Full Text Available The complete repertoire of proteins with immunomodulatory activity in Fasciola hepatica (Fh has not yet been fully described. Here, we demonstrated that Fh total extract (TE reduced LPS-induced DC maturation, and the DC ability to induce allogeneic responses. After TE fractionating, a fraction lower than 10 kDa (F<10 kDa was able to maintain the TE properties to modulate the DC pro- and anti-inflammatory cytokine production induced by LPS. In addition, TE or F<10 kDa treatment decreased the ability of immature DC to stimulate the allogeneic responses and induced a novo allogeneic CD4+CD25+Foxp3+ T cells. In contrast, treatment of DC with T/L or F<10 kDa plus LPS (F<10/L induced a regulatory IL-27 dependent mechanism that diminished the proliferative and Th1 and Th17 allogeneic responses. Finally, we showed that a Kunitz type molecule (Fh-KTM, present in F<10 kDa, was responsible for suppressing pro-inflammatory cytokine production in LPS-activated DC, by printing tolerogenic features on DC that impaired their ability to induce inflammatory responses. These results suggest a modulatory role for this protein, which may be involved in the immune evasion mechanisms of the parasite.

  9. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells.

    Directory of Open Access Journals (Sweden)

    Kazumasa Nakamura

    Full Text Available BACKGROUND: The hedgehog (Hh pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC. Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s that are responsive to Hh signaling remained unknown. Since Hh signaling plays a crucial role during embryonic and postnatal vasculogenesis, we speculated that Hh ligand may act on tumor vasculature specifically focusing on bone marrow (BM-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: Cyclopamine was utilized to inhibit the Hh pathway in human PDAC cell lines and their xenografts. BM transplants, co-culture systems of tumor cells and BM-derived pro-angiogenic cells (BMPCs were employed to assess the role of tumor-derived Hh in regulating the BM compartment and the contribution of BM-derived cells to angiogenesis in PDAC. Cyclopamine administration attenuated Hh signaling in the stroma rather than in the cancer cells as reflected by decreased expression of full length Gli2 protein and Gli1 mRNA specifically in the compartment. Cyclopamine inhibited the growth of PDAC xenografts in association with regression of the tumor vasculature and reduced homing of BM-derived cells to the tumor. Host-derived Ang-1 and IGF-1 mRNA levels were downregulated by cyclopamine in the tumor xenografts. In vitro co-culture and matrigel plug assays demonstrated that PDAC cell-derived Shh induced Ang-1 and IGF-1 production in BMPCs, resulting in their enhanced migration and capillary morphogenesis activity. CONCLUSIONS/SIGNIFICANCE: We identified the BMPCs as alternative stromal targets of Hh-ligand in PDAC suggesting that the tumor vasculature is an attractive therapeutic target of Hh blockade. Our data is consistent with the emerging concept that BM-derived cells make important contributions to epithelial

  10. Wind-induced baroclinic response of Lake Constance

    Directory of Open Access Journals (Sweden)

    Y. Wang

    Full Text Available We present results of various circulation scenarios for the wind-induced three-dimensional currents in Lake Constance, obtained with the aid of a semi-spectral semi-implicit finite difference code developed in Haidvogel et al. and Wang and Hutter. Internal Kelvin and Poincaré-type oscillations are demonstrated in the numerical results, whose periods depend upon the stratification and the geometry of the basin and agree well with measured data. By solving the eigenvalue problem of the linearized shallow water equations in the two-layered stratified Lake Constance, the interpretation of the oscillations as Kelvin and Poincaré-type waves is corroborated.

    Key words: Oceanography: general (limnology; numerical modeling – Oceanography: physical (internal and inertial waves

  11. Sirt2 suppresses inflammatory responses in collagen-induced arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiangtao [Department of Orthopaedics, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Department of Orthopaedics, Yantaishan Hospital, 91 Jiefang Road, Yantai, Shandong 264001 (China); Sun, Bing; Jiang, Chuanqiang; Hong, Huanyu [Department of Orthopaedics, Yantaishan Hospital, 91 Jiefang Road, Yantai, Shandong 264001 (China); Zheng, Yanping, E-mail: yanpingzheng@yahoo.com [Department of Orthopaedics, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2013-11-29

    Highlights: •Sirt2 expression decreases in collagen-induced arthritis (CIA). •Sirt2 knockout aggravates severity of arthritis in mice with CIA. •Sirt2 knockout increases levels of pro-inflammatory factors in the serum. •Sirt2 deacetylates p65 and inhibits pro-inflammatory factors expression. •Sirt2 rescue abates severity of arthritis in mice with CIA. -- Abstract: Arthritis is a common autoimmune disease that is associated with progressive disability, systemic complications and early death. However, the underling mechanisms of arthritis are still unclear. Sirtuins are a NAD{sup +}-dependent class III deacetylase family, and regulate cellular stress, inflammation, genomic stability, carcinogenesis, and energy metabolism. Among the sirtuin family members, Sirt1 and Sirt6 are critically involved in the development of arthritis. It remains unknown whether other sirtuin family members participate in arthritis. Here in this study, we demonstrate that Sirt2 inhibits collagen-induced arthritis (CIA) using in vivo and in vitro evidence. The protein and mRNA levels of Sirt2 significantly decreased in joint tissues of mice with CIA. When immunized with collagen, Sirt2-KO mice showed aggravated severity of arthritis based on clinical scores, hind paw thickness, and radiological and molecular findings. Mechanically, Sirt2 deacetylated p65 subunit of nuclear factor-kappa B (NF-κB) at lysine 310, resulting in reduced expression of NF-κB-dependent genes, including interleukin 1β (IL-1β), IL-6, monocyte chemoattractant protein 1(MCP-1), RANTES, matrix metalloproteinase 9 (MMP-9) and MMP-13. Importantly, our rescue experiment showed that Sirt2 re-expression abated the severity of arthritis in Sirt2-KO mice. Those findings strongly indicate Sirt2 as a considerably inhibitor of the development of arthritis.

  12. The role of ER stress response on ionizing radiation-induced apoptosis in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Kim, Kwang Seok; Woo, Sang Keun; Lee, Yong Jin; Jeong, Jae Hoon; Lee, Yoon Jin; Kang, Seong Man; Lim, Young Bin [Laboratory of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2014-04-15

    Apoptosis in the intestinal epithelium is the primary pathologic factor that initiates radiation-induced intestinal injury. However, mechanism involved in ionizing radiation (IR)-induced apoptosis in the intestinal epithelium is not clearly understood. The endoplasmic reticulum (ER) stress is triggered by perturbation of the ER functions, leading to the activation of the unfolded protein response (UPR), an adaptive signaling cascade aimed at restoring ER homeostasis by facilitating the degradation of misfolded proteins and expanding the protein folding capacity of the cell. Recently, IR has also been shown to induce ER stress, thereby activating the UPR signaling pathway in intestinal epithelial cells. In this study, we report the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhance IR-induced caspase3 activation. Knockdown of xbp1 or atf6 with siRNA leads to inhibition of IR-induced caspase3 activation. Taken together, our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Our findings could contribute to the development of new strategies based on modulating ER stress responses to prevent IR-induced intestinal injury.

  13. PD-1 blockade induces responses by inhibiting adaptive immune resistance

    Science.gov (United States)

    Tumeh, Paul C.; Harview, Christina L.; Yearley, Jennifer H.; Shintaku, I. Peter; Taylor, Emma J. M.; Robert, Lidia; Chmielowski, Bartosz; Spasic, Marko; Henry, Gina; Ciobanu, Voicu; West, Alisha N.; Carmona, Manuel; Kivork, Christine; Seja, Elizabeth; Cherry, Grace; Gutierrez, Antonio; Grogan, Tristan R.; Mateus, Christine; Tomasic, Gorana; Glaspy, John A.; Emerson, Ryan O.; Robins, Harlan; Pierce, Robert H.; Elashoff, David A.; Robert, Caroline; Ribas, Antoni

    2014-01-01

    Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance. PMID:25428505

  14. Angiogenic activity of breast cancer patients' monocytes reverted by combined use of systems modeling and experimental approaches.

    Directory of Open Access Journals (Sweden)

    Nicolas Guex

    2015-03-01

    Full Text Available Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an

  15. Characterizing the Response of Composite Panels to a Pyroshock Induced Environment Using Design of Experiments Methodology

    Science.gov (United States)

    Parsons, David S.; Ordway, David; Johnson, Kenneth

    2013-01-01

    This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.

  16. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    Science.gov (United States)

    Lee, Jong Suk; Shukla, Shruti; Kim, Jung-Ae; Kim, Myunghee

    2015-01-01

    Nelumbo nucifera Gaertn (Nymphaeaceae) has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs) by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS) in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1), and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1) and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1), respectively. N. nucifera leaf extracts (10-100 μg ml(-1)) exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs, confirming

  17. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    Directory of Open Access Journals (Sweden)

    Jong Suk Lee

    Full Text Available Nelumbo nucifera Gaertn (Nymphaeaceae has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1, and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1 and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1, respectively. N. nucifera leaf extracts (10-100 μg ml(-1 exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs

  18. A subcytotoxic dose of subtilase cytotoxin prevents lipopolysaccharide-induced inflammatory responses, depending on its capacity to induce the unfolded protein response.

    Science.gov (United States)

    Harama, Daisuke; Koyama, Kensuke; Mukai, Mai; Shimokawa, Naomi; Miyata, Masanori; Nakamura, Yuki; Ohnuma, Yuko; Ogawa, Hideoki; Matsuoka, Shuji; Paton, Adrienne W; Paton, James C; Kitamura, Masanori; Nakao, Atsuhito

    2009-07-15

    Subtilase cytotoxin (SubAB) is the prototype of a newly identified family of AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. SubAB specifically cleaves the essential endoplasmic reticulum (ER) chaperone BiP (GRP78), resulting in the activation of ER stress-induced unfolded protein response (UPR). We have recently shown that the UPR following ER stress can suppress cellular responses to inflammatory stimuli during the later phase, in association with inhibition of NF-kappaB activation. These findings prompted us to hypothesize that SubAB, as a selective UPR inducer, might have beneficial effects on inflammation-associated pathology via a UPR-dependent inhibition of NF-kappaB activation. The pretreatment of a mouse macrophage cell line, RAW264.7, with a subcytotoxic dose of SubAB-triggered UPR and inhibited LPS-induced MCP-1 and TNF-alpha production associated with inhibition of NF-kappaB activation. SubA(A272)B, a SubAB active site mutant that cannot induce UPR, did not show such effects. In addition, pretreatment with a sublethal dose of SubAB, but not SubA(A272)B, protected the mice from LPS-induced endotoxic lethality associated with reduced serum MCP-1 and TNF-alpha levels and also prevented the development of experimental arthritis induced by LPS in mice. Collectively, although SubAB has been identified originally as a toxin associated with the pathogenesis of hemolytic uremic syndrome, the unique ability of SubAB to selectively induce the UPR may have the potential to prevent LPS-associated inflammatory pathology under subcytotoxic conditions.

  19. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2008-05-01

    Full Text Available African trypanosomes of the Trypanosoma brucei species are extra-cellular parasites that cause human African trypanosomiasis (HAT as well as infections in game animals and livestock. Trypanosomes are known to evade the immune response of their mammalian host by continuous antigenic variation of their surface coat. Here, we aim to demonstrate that in addition, trypanosomes (i cause the loss of various B cell populations, (ii disable the hosts' capacity to raise a long-lasting specific protective anti-parasite antibody response, and (iii abrogate vaccine-induced protective response to a non-related human pathogen such as Bordetella pertussis. Using a mouse model for T. brucei, various B cell populations were analyzed by FACS at different time points of infection. The results show that during early onset of a T. brucei infection, spleen remodeling results in the rapid loss of the IgM(+ marginal zone (IgM(+MZ B cell population characterized as B220(+IgM(HighIgD(Int CD21(HighCD23(LowCD1d(+CD138(-. These cells, when isolated during the first peak of infection, stained positive for Annexin V and had increased caspase-3 enzyme activity. Elevated caspase-3 mRNA levels coincided with decreased mRNA levels of the anti-apoptotic Bcl-2 protein and BAFF receptor (BAFF-R, indicating the onset of apoptosis. Moreover, affected B cells became unresponsive to stimulation by BCR cross-linking with anti-IgM Fab fragments. In vivo, infection-induced loss of IgM(+ B cells coincided with the disappearance of protective variant-specific T-independent IgM responses, rendering the host rapidly susceptible to re-challenge with previously encountered parasites. Finally, using the well-established human diphtheria, tetanus, and B. pertussis (DTPa vaccination model in mice, we show that T. brucei infections abrogate vaccine-induced protective responses to a non-related pathogen such as B. pertussis. Infections with T. brucei parasites result in the rapid loss of T

  20. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses.

    Science.gov (United States)

    Radwanska, Magdalena; Guirnalda, Patrick; De Trez, Carl; Ryffel, Bernard; Black, Samuel; Magez, Stefan

    2008-05-30

    African trypanosomes of the Trypanosoma brucei species are extra-cellular parasites that cause human African trypanosomiasis (HAT) as well as infections in game animals and livestock. Trypanosomes are known to evade the immune response of their mammalian host by continuous antigenic variation of their surface coat. Here, we aim to demonstrate that in addition, trypanosomes (i) cause the loss of various B cell populations, (ii) disable the hosts' capacity to raise a long-lasting specific protective anti-parasite antibody response, and (iii) abrogate vaccine-induced protective response to a non-related human pathogen such as Bordetella pertussis. Using a mouse model for T. brucei, various B cell populations were analyzed by FACS at different time points of infection. The results show that during early onset of a T. brucei infection, spleen remodeling results in the rapid loss of the IgM(+) marginal zone (IgM(+)MZ) B cell population characterized as B220(+)IgM(High)IgD(Int) CD21(High)CD23(Low)CD1d(+)CD138(-). These cells, when isolated during the first peak of infection, stained positive for Annexin V and had increased caspase-3 enzyme activity. Elevated caspase-3 mRNA levels coincided with decreased mRNA levels of the anti-apoptotic Bcl-2 protein and BAFF receptor (BAFF-R), indicating the onset of apoptosis. Moreover, affected B cells became unresponsive to stimulation by BCR cross-linking with anti-IgM Fab fragments. In vivo, infection-induced loss of IgM(+) B cells coincided with the disappearance of protective variant-specific T-independent IgM responses, rendering the host rapidly susceptible to re-challenge with previously encountered parasites. Finally, using the well-established human diphtheria, tetanus, and B. pertussis (DTPa) vaccination model in mice, we show that T. brucei infections abrogate vaccine-induced protective responses to a non-related pathogen such as B. pertussis. Infections with T. brucei parasites result in the rapid loss of T

  1. Trypanosomiasis-Induced B Cell Apoptosis Results in Loss of Protective Anti-Parasite Antibody Responses and Abolishment of Vaccine-Induced Memory Responses

    Science.gov (United States)

    Radwanska, Magdalena; Guirnalda, Patrick; De Trez, Carl; Ryffel, Bernard; Black, Samuel; Magez, Stefan

    2008-01-01

    African trypanosomes of the Trypanosoma brucei species are extra-cellular parasites that cause human African trypanosomiasis (HAT) as well as infections in game animals and livestock. Trypanosomes are known to evade the immune response of their mammalian host by continuous antigenic variation of their surface coat. Here, we aim to demonstrate that in addition, trypanosomes (i) cause the loss of various B cell populations, (ii) disable the hosts' capacity to raise a long-lasting specific protective anti-parasite antibody response, and (iii) abrogate vaccine-induced protective response to a non-related human pathogen such as Bordetella pertussis. Using a mouse model for T. brucei, various B cell populations were analyzed by FACS at different time points of infection. The results show that during early onset of a T. brucei infection, spleen remodeling results in the rapid loss of the IgM+ marginal zone (IgM+MZ) B cell population characterized as B220+IgMHighIgDInt CD21HighCD23LowCD1d+CD138−. These cells, when isolated during the first peak of infection, stained positive for Annexin V and had increased caspase-3 enzyme activity. Elevated caspase-3 mRNA levels coincided with decreased mRNA levels of the anti-apoptotic Bcl-2 protein and BAFF receptor (BAFF-R), indicating the onset of apoptosis. Moreover, affected B cells became unresponsive to stimulation by BCR cross-linking with anti-IgM Fab fragments. In vivo, infection-induced loss of IgM+ B cells coincided with the disappearance of protective variant-specific T-independent IgM responses, rendering the host rapidly susceptible to re-challenge with previously encountered parasites. Finally, using the well-established human diphtheria, tetanus, and B. pertussis (DTPa) vaccination model in mice, we show that T. brucei infections abrogate vaccine-induced protective responses to a non-related pathogen such as B. pertussis. Infections with T. brucei parasites result in the rapid loss of T–cell independent IgM+MZ B

  2. Stress induced hypertensive response: should it be evaluated more carefully?

    Directory of Open Access Journals (Sweden)

    Kucukler Nagehan

    2011-08-01

    Full Text Available Abstract Various diagnostic methods have been used to evaluate hypertensive patients under physical and pharmacological stress. Several studies have shown that exercise hypertension has an independent, adverse impact on outcome; however, other prognostic studies have shown that exercise hypertension is a favorable prognostic indicator and associated with good outcome. Exercise hypertension may be encountered as a warning signal of hypertension at rest and future hypertensive left ventricular hypertrophy. The results of diagnostic stress tests support that hypertensive response to exercise is frequently associated with high rate-pressure product in hypertensives. In addition to the observations on high rate-pressure product and enhanced ventricular contractility in patients with hypertension, evaluation of myocardial contractility by Doppler tissue imaging has shown hyperdynamic myocardial function under pharmacological stress. These recent quantitative data in hypertensives suggest that hyperdynamic myocardial function and high rate-pressure product response to stress may be related to exaggerated hypertension, which may have more importance than that it has been already given in clinical practice.

  3. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    Science.gov (United States)

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd.

  4. Donepezil-induced response of Spirulina supplemented rat urinary bladder.

    Science.gov (United States)

    Nurullahoglu-Atalik, K E; Okudan, N; Gokbel, H; Nurullahoglu, Z U

    2013-01-01

    At present, very little is known about the effects of donepezil on vascular reactivity. The aim of the present study was to evaluate the responses of rat urinary bladder to donepezil (10-10-3x10-4 M) and the role of Spirulina supplementation in these effects. Animals were divided into the two groups of six animals in each group. The first group received only distilled water daily as vehicle for six weeks and served as the control. The second group received Spirulina 750 mg kg -1 orally, daily for six weeks and served as the spirulina group. Preparations of rat urinary bladder were used from both groups. Donepezil produced concentration dependent relaxation of rat urinary bladder preparations pre-contracted with KCl.The pIC50 value, but not the maximal response of donepezil, was significantly lower (pSpirulina supplemented group. These results demonstrated for the first time that spirulina treatment can affect urinary bladder activity (Fig. 1, Ref. 20).

  5. Photodynamic therapy induces an immune response against a bacterial pathogen

    Science.gov (United States)

    Huang, Ying-Ying; Tanaka, Masamitsu; Vecchio, Daniela; Garcia-Diaz, Maria; Chang, Julie; Morimoto, Yuji; Hamblin, Michael R

    2012-01-01

    Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin®. PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to noninvasively monitor murine bacterial arthritis and found that PDT with intra-articular methylene blue was not only effective, but when used before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease. PMID:22882222

  6. Memory CD4+ T cells induce innate responses independently of pathogen.

    Science.gov (United States)

    Strutt, Tara M; McKinstry, K Kai; Dibble, John P; Winchell, Caylin; Kuang, Yi; Curtis, Jonathan D; Huston, Gail; Dutton, Richard W; Swain, Susan L

    2010-05-01

    Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4(+) T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4(+) T cell-induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (T(H)1) or T(H)17 polarized but are independent of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4(+) T cells induce an early innate response that enhances immune protection against pathogens.

  7. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays.

    Science.gov (United States)

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-11-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.

  8. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis.

    Science.gov (United States)

    Flamini, Valentina; Jiang, Wen G; Lane, Jane; Cui, Yu-Xin

    2016-04-01

    Cancer conveys profound social and economic consequences throughout the world. Metastasis is responsible for approximately 90% of cancer-associated mortality and, when it occurs, cancer becomes almost incurable. During metastatic dissemination, cancer cells pass through a series of complex steps including the establishment of tumour-associated angiogenesis. The human endothelial progenitor cells (hEPCs) are a cell population derived from the bone marrow which are required for endothelial tubulogenesis and neovascularization. They also express abundant inflammatory cytokines and paracrine angiogenic factors. Clinically hEPCs are highly correlated with relapse, disease progression, metastasis and treatment response in malignancies such as breast cancer, ovarian cancer and non-small-cell lung carcinoma. It has become evident that the hEPCs are involved in the angiogenesis-required progression and metastasis of tumours. However, it is not clear in what way the signalling pathways, controlling the normal cellular function of human BM-derived EPCs, are hijacked by aggressive tumour cells to facilitate tumour metastasis. In addition, the actual roles of hEPCs in tumour angiogenesis-mediated metastasis are not well characterised. In this paper we reviewed the clinical relevance of the hEPCs with cancer diagnosis, progression and prognosis. We further summarised the effects of tumour microenvironment on the hEPCs and underlying mechanisms. We also hypothesized the roles of altered hEPCs in tumour angiogenesis and metastasis. We hope this review may enhance our understanding of the interaction between hEPCs and tumour cells thus aiding the development of cellular-targeted anti-tumour therapies.

  9. Angiogenic activity in patients with psoriasis is significantly decreased by Goeckerman's therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andrys, C.; Borska, L.; Pohl, D.; Fiala, Z.; Hamakova, K.; Krejsek, J. [Faculty Hospital, Hradec Kralove (Czech Republic). Dept. of Clinical Immunology & Allergy

    2007-03-15

    Goeckerman's therapy (GT) of psoriasis is based on daily application of pharmacy grade coal tar on affected skin with subsequent exposure to UV light. Goeckerman's therapy is still the first line therapy of psoriasis in the Czech Republic because of its low cost and long-term efficacy. Disturbances in angiogenic activity are characteristic for the immunopathogenesis of psoriasis. An abnormal spectrum of cytokines, growth factors and proangiogenic mediators is produced by keratinocytes and inflammatory cells in patients suffering from the disease. The aim of this study was to evaluate the influence of GT of psoriasis on angiogenic activities by comparing serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in 44 patients with psoriasis in peripheral blood samples collected before and after therapy. It was found that the angiogenic potential which is abnormally increased in patients with psoriasis is significantly alleviated by GT.

  10. The emerging role of angiogenic factor dysregulation in the pathogenesis of polycystic ovarian syndrome.

    Science.gov (United States)

    Tal, Reshef; Seifer, David B; Arici, Aydin

    2015-05-01

    Polycystic ovarian syndrome (PCOS) is a common endocrine disorder in reproductive age affecting 5 to 7% of women. It is characterized by anovulatory infertility, hyperandrogenism, and polycystic ovaries. Angiogenesis in the ovary is critical for follicular growth, ovulation, and the subsequent development and regression of the corpus luteum. Accumulating evidence suggests that multiple angiogenic factors are dysregulated in PCOS, including vascular endothelial growth factor, angiopoietins, platelet-derived growth factor, transforming growth factor-β, and basic fibroblast growth factor. This angiogenic factor imbalance likely underlies the increased stromal vascularity observed in PCOS. Angiogenic factor dysregulation may play an important role in the pathophysiology of PCOS and may contribute to ovulatory dysfunction, subfertility, and ovarian hyperstimulation syndrome, which are commonly seen in women with PCOS. Further experimental studies are needed to gain a better understanding of the growth factors that are involved in normal and pathological ovarian angiogenesis, and to assess the potential of angiogenesis-based treatment strategies in PCOS.

  11. The cellular response to curvature-induced stress

    Science.gov (United States)

    Biton, Y. Y.; Safran, S. A.

    2009-12-01

    We present a theoretical model to explain recent observations of the orientational response of cells to unidirectional curvature. Experiments show that some cell types when plated on a rigid cylindrical surface tend to reorient their shape and stress fibers along the axis of the cylinder, while others align their stress fibers perpendicular to that axis. Our model focuses on the competition of the shear stress—that results from cell adhesion and active contractility—and the anisotropic bending stiffness of the stress fibers. We predict the cell orientation angle that results from the balance of these two forces in a mechanical equilibrium. The conditions under which the different experimental observations can be obtained are discussed in terms of the theory.

  12. Responses of Cancer Cells Induced by Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Toshihiro Kushibiki

    2013-01-01

    Full Text Available Photodynamic therapy (PDT involves the administration of a photosensitizer, followed by local irradiation of tumor tissues using a laser of an appropriate wavelength to activate the photosensitizer. Since multiple cellular signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic effect, understanding the responses of cancer cells to PDT will aid in the development of new interventions. This review describes the possible cell-death signaling pathways initiated by PDT. In addition, we describe our latest findings regarding the induction of expression of miRNAs specific to apoptosis in cancer cells and the induction of antitumor immunity following PDT against cancer cells. A more detailed understanding of the molecular mechanisms related to PDT will potentially improve long-term survival of PDT treated patients.

  13. Preliminary studies on differential defense responses induced during plant communication

    Institute of Scientific and Technical Information of China (English)

    Jin Ying PENG; Zhong Hai LI; Hui XIANG; Jian Hua HUANG; Shi Hai JIA; Xue Xia MIAO; Yong Ping HUANG

    2005-01-01

    We compared the expression patterns of three representative genes in undamaged tomato and tobacco plants in response to exposure to either tomato or tobacco fed on by Helicoverpa armigera (cotton bollworm). When tomato and tobacco, two species of one family, were incubated in the chambers with the tomato plants damaged by the cotton bollworm, the expression of the PR1, BGL2, and PAL genes was up-regulated in leaves of both plants. However, the levels of gene expression were significantly higher in the tomato than that in the tobacco. In addition, the activities of enzymes, peroxidase, polyphenol oxidase, and lipoxygenase were found to be higher in the tomato than those in the tobacco. Similar results were obtained when the damaged plants were replaced by the tobacco.

  14. Improved in vitro angiogenic behavior on anodized titanium dioxide nanotubes.

    Science.gov (United States)

    Beltrán-Partida, Ernesto; Valdéz-Salas, Benjamín; Moreno-Ulloa, Aldo; Escamilla, Alan; Curiel, Mario A; Rosales-Ibáñez, Raúl; Villarreal, Francisco; Bastidas, David M; Bastidas, José M

    2017-01-31

    Neovascularization over dental implants is an imperative requisite to achieve successful osseointegration onto implanted materials. The aim of this study was to investigate the effects on in vitro angiogenesis of anodized 70 nm diameter TiO2 nanotubes (NTs) on Ti6Al4V alloy synthesized and disinfected by means of a novel, facile, antibacterial and cost-effective method using super oxidized water (SOW). We also evaluated the role of the surface roughness and chemical composition of materials of materials on angiogenesis. The Ti6Al4V alloy and a commercially pure Ti were anodized using a solution constituted by SOW and fluoride as electrolyte. An acid-etched Ti6Al4V was evaluated to compare the effect of micro-surface roughness. Mirror-polished materials were used as control. Morphology, roughness, chemistry and wettability were assessed by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy (EDX) and using a professional digital camera. Bovine coronary artery endothelial cells (BCAECs) were seeded over the experimental surfaces for several incubation times. Cellular adhesion, proliferation and monolayer formation were evaluated by means of SEM. BCAEC viability, actin stress fibers and vinculin cellular organization, as well as the angiogenic receptors vascular endothelial growth factor 2 (VEGFR2) and endothelial nitric oxide synthase (eNOS) were measured using fluorescence microscopy. The anodization process significantly increased the roughness, wettability and thickness of the oxidized coating. EDX analysis demonstrated an increased oxygen (O) and decreased carbon (C) content on the NTs of both materials. Endothelial behavior was solidly supported and improved by the NTs (without significant differences between Ti and alloy), showing that endothelial viability, adhesion, proliferation, actin arrangement with vinculin expression and monolayer development were

  15. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  16. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress.

    Science.gov (United States)

    Azevedo, Rosana F F; Souza, Roberta K F; Braga, Gilberto U L; Rangel, Drauzio E N

    2014-12-01

    Entomopathogenic fungi are predisposed to ROS induced by heat and UV-A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM.

  17. Induced responses to herbivory and jasmonate in three milkweed species.

    Science.gov (United States)

    Rasmann, Sergio; Johnson, M Daisy; Agrawal, Anurag A

    2009-11-01

    We studied constitutive and induced defensive traits (latex exudation, cardenolides, proteases, and C/N ratio) and resistance to monarch caterpillars (Danaus plexippus) in three closely related milkweed species (Asclepias angustifolia, A. barjoniifolia and A. fascicularis). All traits showed significant induction in at least one of the species. Jasmonate application only partially mimicked the effect of monarch feeding. We found some correspondence between latex and cardenolide content and reduced larval growth. Larvae fed cut leaves of A. angustifolia grew better than larvae fed intact plants. Addition of the cardenolide digitoxin to cut leaves reduced larval growth but ouabain (at the same concentration) had no effect. We, thus, confirm that latex and cardenolides are major defenses in milkweeds, effective against a specialist herbivore. Other traits such as proteases and C/N ratio additionally may be integrated in the defense scheme of those plants. Induction seems to play an important role in plants that have an intermediate level of defense, and we advocate incorporating induction as an additional axis of the plant defense syndrome hypothesis.

  18. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  19. Vixapatin (VP12, a C-Type Lectin-Protein from Vipera xantina palestinae Venom: Characterization as a Novel Anti-angiogenic Compound

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2012-10-01

    Full Text Available A C-type lectin-like protein (CTL, originally identified as VP12 and lately named Vixapatin, was isolated and characterized from Israeli viper Vipera xantina palestinae snake venom. This CTL was characterized as a selective α2β1 integrin inhibitor with anti-melanoma metastatic activity. The major aim of the present study was to prove the possibility that this protein is also a potent novel anti-angiogenic compound. Using an adhesion assay, we demonstrated that Vixapatin selectively and potently inhibited the α2 mediated adhesion of K562 over-expressing cells, with IC50 of 3 nM. 3 nM Vixapatin blocked proliferation of human dermal microvascular endothelial cells (HDMEC; 25 nM inhibited collagen I induced migration of human fibrosarcoma HT-1080 cells; and 50 nM rat C6 glioma and human breast carcinoma MDA-MB-231 cells. 1 µM Vixapatin reduced HDMEC tube formation by 75% in a Matrigel assay. Furthermore, 1 µM Vixapatin decreased by 70% bFGF-induced physiological angiogenesis, and by 94% C6 glioma-induced pathological angiogenesis, in shell-less embryonic quail chorioallantoic membrane assay. Vixapatin’s ability to inhibit all steps of the angiogenesis process suggest that it is a novel pharmacological tool for studying α2β1 integrin mediated angiogenesis and a lead compound for the development of a novel anti-angiogenic/angiostatic/anti-cancer drug.

  20. A Novel Natural Product-Derived Compound, Vestaine A1, Exerts both Pro-Angiogenic and Anti-Permeability Activity via a Different Pathway from VEGF

    Directory of Open Access Journals (Sweden)

    Yoko Ishimoto

    2016-10-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF is a key molecule in the regulation of both angiogenesis and vascular permeability. However, it is known that overproduction of VEGF induces abnormal blood vessel formation and these vessels cause several disease pathologies, such as diabetic retinopathy. The purpose of this study was to find novel vasoactive compounds which have different properties from VEGF. Methods/Results: We screened a natural product library using a co-culture angiogenic assay of endothelial cells and fibroblasts. By focusing on morphological changes of endothelial cells, we isolated the novel compounds vestaine A1 and vestaine B1 from the cultured broth of an actinomycete strain, Streptomyces sp. SANK 63697. Vestaine A1 enhanced tube formation of endothelial cells in Matrigel and suppressed cell death induced by serum deprivation. Vestaine A1 activated both MEK1/2 and PI-3 kinase pathways independently of the VEGF pathway in a dose- and time-dependent fashion. Finally, vestaine A1 potently suppressed VEGF-induced vascular permeability both in vitro and in vivo. Conclusion: Vestaine A1 has the potential to exhibit both pro-angiogenic and anti-permeability properties, and would therefore be useful for therapeutic treatment for abnormal vascular permeability-related diseases.

  1. Thymus fat as an attractive source of angiogenic factors in elderly subjects with myocardial ischemia.

    Science.gov (United States)

    Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Salas, Julian; Mayas, Maria Dolores; Delgado-Lista, Javier; Tinahones, Francisco; El Bekay, Rajaa

    2013-08-01

    Aging negatively affects angiogenesis which is found to be linked to declined vascular endothelial growth factor (VEGF) production. Adult human thymus degenerates into fat tissue (thymus adipose tissue (TAT)). Recently, we described that TAT from cardiomyopathy ischemic subjects has angiogenic properties. The goal of our study was to analyze whether aging could also impair angiogenic properties in TAT as in other adipose tissue such as subcutaneous (subcutaneous adipose tissue (SAT)). SAT and TAT specimens were obtained from 35 patients undergoing cardiac surgery, making these tissues readily available as a prime source of adipose tissue. Patients were separated into two age-dependent groups; middle-aged (n = 18) and elderly (n = 17). Angiogenic, endothelial, and adipogenic expression markers were analyzed in both tissues from each group and correlations were examined between these parameters and also with age. There were no significant differences in subjects from either group in clinical or biological variables. Angiogenic markers VEGF-A, B, C, and D and adipogenic parameters, peroxisome proliferator-activated receptors (PPARγ2), FABP4, and ADRP showed elevated expression levels in TAT from elderly patients compared to the middle-aged group, while in SAT, expression levels of these isoforms were significantly decreased in elderly patients. VEGF-R1, VEGF-R2, VEGF-R3, Thy1, CD31, CD29, and VLA1 showed increased levels in TAT from the elderly compared to the middle-aged, while in SAT these levels displayed a decline with aging. Also, in TAT, angiogenic and endothelial parameters exhibited strong positive correlations with age. TAT appears to be the most appropriate source of angiogenic and endothelial factors in elderly cardiomyopathy subjects compared to SAT.

  2. Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing.

    Science.gov (United States)

    Bárcia, Rita N; Santos, Jorge M; Teixeira, Mariana; Filipe, Mariana; Pereira, Ana Rita S; Ministro, Augusto; Água-Doce, Ana; Carvalheiro, Manuela; Gaspar, Maria Manuela; Miranda, Joana P; Graça, Luis; Simões, Sandra; Santos, Susana Constantino Rosa; Cruz, Pedro; Cruz, Helder

    2017-03-01

    The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX(®). Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells.

    Science.gov (United States)

    Liu, C Y; Sturek, M

    1996-06-01

    Although tyrosine kinases play an important role in cell growth and have been implicated in regulation of smooth muscle contraction, their role in agonist-induced myoplasmic Ca2+ responses is unclear. We examined effects of the tyrosine kinase inhibitors genistein and methyl 2,5-dihydroxycinnamate (MDHC) on the endothelin-1 (ET-1)-induced Ca2+ response and determined underlying mechanisms for the effects. Freshly isolated smooth muscle cells from porcine coronary arteries were loaded with fura 2 ester, and myoplasmic free Ca2+ (Ca2+ (m)) concentration was estimated with fura 2 microfluorometry. Both genistein and MDHC inhibited the initial transient Cam2+ response to ET by 54 and 81%, respectively (P latent period from ET-1 application to the beginning of the Cam2+ response being increased from 1.08 +/- 0.17 to 2.65 +/- 0.52 min (P < 0.05). In the absence of extracellular Ca2+, genistein inhibited the ET-1-induced Cam2+ response by 93% (P < 0.05). The Cam2+ responses to caffeine (5 mM) or inositol trisphosphate (IP3) applied intracellularly via a patch-clamp pipette were not affected by genistein. Both genistein and MDHC also abolished the sustained Cam2+ response to ET-1. However, the Cam2+ response to depolarization by 80 mM K+ was not inhibited by MDHC and only inhibited 22% by genistein (P < 0.05). These results indicate that 1) activation of tyrosine kinases is an important regulatory mechanism for the ET-1-induced Cam2+ response in vascular smooth muscle and 2) tyrosine kinases mediate ET-1-induced Ca2+ release with no direct effect on IP3-mediated Ca2+ release. Thus ET-1-mediated signaling upstream of IP3 interaction with the Ca2+ stores is regulated by tyrosine kinases.

  4. Beneficial Effects of Fractions of Nardostachys jatamansi on Lipopolysaccharide-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Gi-Sang Bae

    2014-01-01

    Full Text Available It has been previously shown that Nardostachys jatamansi (NJ exhibits anti-inflammatory properties against lipopolysaccharide (LPS challenges. However, the potency of NJ constituents against LPS-induced inflammatory responses has not been examined. In this present study, we determined which NJ extract fractions exhibit inhibitory effects against LPS-induced inflammatory responses. Among the NJ fractions, NJ-1, NJ-3, NJ-4, and NJ-6 inhibited LPS-induced production of NO. The NJ-3, NJ-4, and NJ-6 fractions also inhibited the production of cytokines, such as IL-1β, IL-6, and TNF-α. However, NJ-1, NJ-3, NJ-4, and NJ-6 showed differential inhibitory mechanisms against LPS-induced inflammatory responses. NJ-1, NJ-3, and NJ-4 inhibited LPS-induced activation of c-jun NH2-terminal kinase (JNK and p38 but did not affect activation of extracellular signal-regulated kinase (ERK or NF-κB. On the other hand, NJ-6 inhibited activation of MAPKs and NF-κB. In addition, in vivo experiments revealed that administration of NJ-1, NJ-3, NJ-4, and NJ-6 reduced LPS-induced endotoxin shock, with NJ-6 especially showing a marked protective effect. Taken together, these results provide the evidence for the potential of selective NJ fractions against LPS-induced inflammation. Thus, it will be advantageous to further isolate and determine single effective compounds from these potent fractions.

  5. STING agonists induce an innate antiviral immune response against hepatitis B virus.

    Science.gov (United States)

    Guo, Fang; Han, Yanxing; Zhao, Xuesen; Wang, Jianghua; Liu, Fei; Xu, Chunxiao; Wei, Lai; Jiang, Jian-Dong; Block, Timothy M; Guo, Ju-Tao; Chang, Jinhong

    2015-02-01

    Chronicity of hepatitis B virus (HBV) infection is due to the failure of a host to mount a sufficient immune response to clear the virus. The aim of this study was to identify small-molecular agonists of the pattern recognition receptor (PRR)-mediated innate immune response to control HBV infection. To achieve this goal, a coupled mouse macrophage and hepatocyte culture system mimicking the intrahepatic environment was established and used to screen small-molecular compounds that activate macrophages to produce cytokines, which in turn suppress HBV replication in a hepatocyte-derived stable cell line supporting HBV replication in a tetracycline-inducible manner. An agonist of the mouse stimulator of interferon (IFN) genes (STING), 5,6-dimethylxanthenone-4-acetic acid (DMXAA), was found to induce a robust cytokine response in macrophages that efficiently suppressed HBV replication in mouse hepatocytes by reducing the amount of cytoplasmic viral nucleocapsids. Profiling of cytokines induced by DMXAA and agonists of representative Toll-like receptors (TLRs) in mouse macrophages revealed that, unlike TLR agonists that induced a predominant inflammatory cytokine/chemokine response, the STING agonist induced a cytokine response dominated by type I IFNs. Moreover, as demonstrated in an HBV hydrodynamic mouse model, intraperitoneal administration of DMXAA significantly induced the expression of IFN-stimulated genes and reduced HBV DNA replication intermediates in the livers of mice. This study thus proves the concept that activation of the STING pathway induces an antiviral cytokine response against HBV and that the development of small-molecular human STING agonists as immunotherapeutic agents for treatment of chronic hepatitis B is warranted.

  6. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?

    Science.gov (United States)

    Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K

    2013-12-01

    Angiogenesis and the acquisition of an angiogenic phenotype is important for cancer cell proliferation. Copper in an essential trace element that participates in many enzymatic complexes like the cytochrome c, superoxide dismutase and lysyl oxidase and it is involved in processes, like embryogenesis, growth, angiogenesis and carcinogenesis. In particular, its involvement in carcinogenesis was described for the first time in oral submucous fibrosis, where fibroblasts produce large amounts of collagen in the presence of copper. Copper's action in carcinogenesis is two-fold: (1) it participates in reactions with an increased redox potential that result in the production of oxidative products and oxidative stress. Through this mechanism, copper may cause DNA mutations in the nucleus and mitochondria or alterations to membrane phospholipids, (2) it participates in angiogenesis even in the absence of angiogenic molecules, as it was reported for the first time in rabbit cornea models with copolymer pellets charged with PGE1. Copper chelation regimens like penicillamine and tetrathiomolybdate are being described in the literature as having anti-angiogenic, anti-fibrotic and anti-inflammatory actions. Animal models of brain cancer that evaluated the anti-angiogenic properties of copper, have proven evidence of the reduction of tumor's microvascular supply, tumor volume and vascular permeability after plasma copper levels reduction. Interestingly, plasma copper levels reduction was shown to suppress micrometastases generation in mice models of breast cancer. We hypothesize that copper chelation therapy: increases oxidative stress in cancer cells to a level that does not allow survival because of the reduction of anti-oxidative enzymes production. It may also result in inhibition of angiogenesis and of the initiation of the