WorldWideScience

Sample records for induced pluripotent reprogramming

  1. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Hu, Kejin

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vect...

  2. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  3. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.

    Science.gov (United States)

    Rony, I K; Baten, A; Bloomfield, J A; Islam, M E; Billah, M M; Islam, K D

    2015-04-01

    Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.

  4. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    Science.gov (United States)

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  5. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi

    Institute of Scientific and Technical Information of China (English)

    Jai-Hee Moon; June Seok Heo; Jun Sung Kim; Eun Kyoung Jun; Jung Han Lee; Aeree Kim; Jonggun Kim

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4,Sox2,and Klf4 in combination with c-Myc.Recently,Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells.Here,we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells,and,in combination with Oct4,can replace Sox2,Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells.Furthermore,activation of sonic hedgehog signaling (by Shh,purmorphamine,or oxysterol) compensates for the effects of Bmil,and,in combination with Oct4,reprograms mouse embryonic and adult fibroblasts into iPS cells.One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile,epigenetic status,and in vitro and in vivo differentiation into all three germ layers,as well as teratoma formation and germline transmission in vivo.These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2,KIf4,and N-Myc allows iPS generation via the addition of Oct4.

  6. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies

    NARCIS (Netherlands)

    Brouwer, M.; Zhou, Huiqing; Nadif Kasri, N.

    2016-01-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are

  7. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    Science.gov (United States)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  8. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells

    NARCIS (Netherlands)

    Carey, B.W.; Markoulaki, S.; Hanna, J.H.; Faddah, D.A.; Buganim, Y.; Kim, J.; Ganz, K.; Steine, E.J.; Cassady, J.P.; Creyghton, M.P.; Welstead, G.G.; Gao, Q.; Jaenisch, R.

    2011-01-01

    We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pl

  9. Manipulating Somatic Cells to Remove Barriers in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Chung, Julia

    2013-01-01

    Development leads unidirectionally towards a more restricted cell fate that is usually stable. However, it has been proven that developmental systems are reversible by the success of animal cloning of a differentiated somatic genome through somatic cell nuclear transfer (SCNT). Recently, reprogramming of somatic cells to a pluripotent embryonic stem cell (ESC)-like state by introducing defined transcripton factor has been achieved, resulting in the generation of induced pluripotent stem cells...

  10. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells

    Science.gov (United States)

    Hung, Sandy S.C.; Van Bergen, Nicole J.; Jackson, Stacey; Liang, Helena; Mackey, David A.; Hernández, Damián; Lim, Shiang Y.; Hewitt, Alex W.; Trounce, Ian; Pébay, Alice; Wong, Raymond C.B.

    2016-01-01

    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology. PMID:27127184

  11. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  12. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells.

    Science.gov (United States)

    Ruiz, Sergio; Diep, Dinh; Gore, Athurva; Panopoulos, Athanasia D; Montserrat, Nuria; Plongthongkum, Nongluk; Kumar, Sachin; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M; Zaehres, Holm; Kan, Natalia G; Schöler, Hans Robert; Mercola, Mark; Zhang, Kun; Izpisua Belmonte, Juan Carlos

    2012-10-02

    Generation of human induced pluripotent stem cells (hiPSCs) by the expression of specific transcription factors depends on successful epigenetic reprogramming to a pluripotent state. Although hiPSCs and human embryonic stem cells (hESCs) display a similar epigenome, recent reports demonstrated the persistence of specific epigenetic marks from the somatic cell type of origin and aberrant methylation patterns in hiPSCs. However, it remains unknown whether the use of different somatic cell sources, encompassing variable levels of selection pressure during reprogramming, influences the level of epigenetic aberrations in hiPSCs. In this work, we characterized the epigenomic integrity of 17 hiPSC lines derived from six different cell types with varied reprogramming efficiencies. We demonstrate that epigenetic aberrations are a general feature of the hiPSC state and are independent of the somatic cell source. Interestingly, we observe that the reprogramming efficiency of somatic cell lines inversely correlates with the amount of methylation change needed to acquire pluripotency. Additionally, we determine that both shared and line-specific epigenetic aberrations in hiPSCs can directly translate into changes in gene expression in both the pluripotent and differentiated states. Significantly, our analysis of different hiPSC lines from multiple cell types of origin allow us to identify a reprogramming-specific epigenetic signature comprised of nine aberrantly methylated genes that is able to segregate hESC and hiPSC lines regardless of the somatic cell source or differentiation state.

  13. KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    Shin-Il Kim

    2015-04-01

    Full Text Available As the quintessential reprogramming model, OCT3/4, SOX2, KLF4, and c-MYC re-wire somatic cells to achieve induced pluripotency. Yet, subtle differences in methodology confound comparative studies of reprogramming mechanisms. Employing transposons, we systematically assessed cellular and molecular hallmarks of mouse somatic cell reprogramming by various polycistronic cassettes. Reprogramming responses varied in the extent of initiation and stabilization of transgene-independent pluripotency. Notably, the cassettes employed one of two KLF4 variants, differing only by nine N-terminal amino acids, which generated dissimilar protein stoichiometry. Extending the shorter variant by nine N-terminal amino acids or augmenting stoichiometry by KLF4 supplementation rescued both protein levels and phenotypic disparities, implicating a threshold in determining reprogramming outcomes. Strikingly, global gene expression patterns elicited by published polycistronic cassettes diverged according to each KLF4 variant. Our data expose a Klf4 reference cDNA variation that alters polycistronic factor stoichiometry, predicts reprogramming hallmarks, and guides comparison of compatible public data sets.

  14. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech;

    2012-01-01

    transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous....... Despite the ability for some endogenous genes to be expressed in these lines, the piPSC-like cells still cannot be maintained without doxycycline, indicating that the culture system of piPSCs may not be optimal or that the reprogramming factor combination used may not currently be optimal for maintaining...

  15. HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks.

    Directory of Open Access Journals (Sweden)

    Sandeep N Shah

    Full Text Available BACKGROUND: Although recent studies have identified genes expressed in human embryonic stem cells (hESCs that induce pluripotency, the molecular underpinnings of normal stem cell function remain poorly understood. The high mobility group A1 (HMGA1 gene is highly expressed in hESCs and poorly differentiated, stem-like cancers; however, its role in these settings has been unclear. METHODS/PRINCIPAL FINDINGS: We show that HMGA1 is highly expressed in fully reprogrammed iPSCs and hESCs, with intermediate levels in ECCs and low levels in fibroblasts. When hESCs are induced to differentiate, HMGA1 decreases and parallels that of other pluripotency factors. Conversely, forced expression of HMGA1 blocks differentiation of hESCs. We also discovered that HMGA1 enhances cellular reprogramming of somatic cells to iPSCs together with the Yamanaka factors (OCT4, SOX2, KLF4, cMYC - OSKM. HMGA1 increases the number and size of iPSC colonies compared to OSKM controls. Surprisingly, there was normal differentiation in vitro and benign teratoma formation in vivo of the HMGA1-derived iPSCs. During the reprogramming process, HMGA1 induces the expression of pluripotency genes, including SOX2, LIN28, and cMYC, while knockdown of HMGA1 in hESCs results in the repression of these genes. Chromatin immunoprecipitation shows that HMGA1 binds to the promoters of these pluripotency genes in vivo. In addition, interfering with HMGA1 function using a short hairpin RNA or a dominant-negative construct blocks cellular reprogramming to a pluripotent state. CONCLUSIONS: Our findings demonstrate for the first time that HMGA1 enhances cellular reprogramming from a somatic cell to a fully pluripotent stem cell. These findings identify a novel role for HMGA1 as a key regulator of the stem cell state by inducing transcriptional networks that drive pluripotency. Although further studies are needed, these HMGA1 pathways could be exploited in regenerative medicine or as novel therapeutic

  16. Induced pluripotent stem cells (iPSCs)--a new era of reprogramming.

    Science.gov (United States)

    Kang, Lan; Kou, Zhaohui; Zhang, Yu; Gao, Shaorong

    2010-07-01

    Embryonic stem cells (ESCs) derived from the early embryos possess two important characteristics: self-renewal and pluripotency, which make ESCs ideal seed cells that could be potentially utilized for curing a number of degenerative and genetic diseases clinically. However, ethical concerns and immune rejection after cell transplantation limited the clinical application of ESCs. Fortunately, the recent advances in induced pluripotent stem cell (iPSC) research have clearly shown that differentiated somatic cells from various species could be reprogrammed into pluripotent state by ectopically expressing a combination of several transcription factors, which are highly enriched in ESCs. This ground-breaking achievement could circumvent most of the limitations that ESCs faced. However, it remains challenging if the iPS cell lines, especially the human iPSCs lines, available are fully pluripotent. Therefore, it is prerequisite to establish a molecular standard to distinguish the better quality iPSCs from the inferior ones.

  17. Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors

    Directory of Open Access Journals (Sweden)

    Aline C Planello

    2014-01-01

    Full Text Available The conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs differs from that of embryonic stem cells (ESCs. Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown. In order to help resolve this critical question, we generated human iPSCs from a common fibroblast cell source using either the Yamanaka factors (OCT4, SOX2, KLF4 and cMYC or the Thomson factors (OCT4, SOX2, NANOG and LIN28, and determined their genome-wide DNA methylation profiles. In addition to shared DNA methylation aberrations present in all our iPSCs, we identified Yamanaka-iPSC (Y-iPSC-specific and Thomson-iPSC (T-iPSC-specific recurrent aberrations. Strikingly, not only were the genomic locations of the aberrations different but also their types: reprogramming with Yamanaka factors mainly resulted in failure to demethylate CpGs, whereas reprogramming with Thomson factors mainly resulted in failure to methylate CpGs. Differences in the level of transcripts encoding DNMT3b and TET3 between Y-iPSCs and T-iPSCs may contribute partially to the distinct types of aberrations. Finally, de novo aberrantly methylated genes in Y-iPSCs were enriched for NANOG targets that are also aberrantly methylated in some cancers. Our study thus reveals that the choice of reprogramming factors influences the amount, location, and class of DNA methylation aberrations in iPSCs. These findings may provide clues into how to produce human iPSCs with fewer DNA methylation abnormalities.

  18. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Jiameng Dan; Bingfeng Zuo; Minshu Li; Qian Zhang; Na Liu; Lingyi Chen; Xinghua Pan,; Sarantis Gagos; David L Keefe; Lin Liu; Yu Yin; Xiaoying Ye; Kai Liu; Haiying Zhu; Lingling Wang; Maria Chiourea; Maja Okuka; Guangzhen Ji

    2012-01-01

    Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs).Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive.We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage,and suggest that these differences likely result from multiple potential factors,including the telomerase machinery,teiomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors.Using a genetic model of telomerase-deficient (Terc-/- and Terc+/-) cells for derivation and passages of iPSCs,we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs.Further,telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required,but not sufficient.Together,several aspects of telomere biology may account for the variable telomere dynamics in iPSCs.Notably,the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells.These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.

  19. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    Science.gov (United States)

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  20. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  1. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech

    2012-01-01

    Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression are unde......Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression...... pluripotency in the pig. This may help to explain the difficulties in producing stable piPSCs and bona fide embryonic stem cell lines in this species....

  2. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine.

    Science.gov (United States)

    Gomes, Kátia Maria Sampaio; Costa, Ismael Cabral; Santos, Jeniffer Farias Dos; Dourado, Paulo Magno Martins; Forni, Maria Fernanda; Ferreira, Julio Cesar Batista

    2017-02-01

    Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed into an embryonic-like pluripotent state by the expression of specific transcription factors. iPSC technology is expected to revolutionize regenerative medicine in the near future. Despite the fact that these cells have the capacity to self-renew, they present low efficiency of reprogramming. Recent studies have demonstrated that the previous somatic epigenetic signature is a limiting factor in iPSC performance. Indeed, the process of effective reprogramming involves a complete remodeling of the existing somatic epigenetic memory, followed by the establishment of a "new epigenetic signature" that complies with the new type of cell to be differentiated. Therefore, further investigations of epigenetic modifications associated with iPSC reprogramming are required in an attempt to improve their self-renew capacity and potency, as well as their application in regenerative medicine, with a new strategy to reduce the damage in degenerative diseases. Our review aimed to summarize the most recent findings on epigenetics and iPSC, focusing on DNA methylation, histone modifications and microRNAs, highlighting their potential in translating cell therapy into clinics.

  3. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine

    Directory of Open Access Journals (Sweden)

    Kátia Maria Sampaio Gomes

    Full Text Available Summary Induced pluripotent stem cells (iPSCs are somatic cells reprogrammed into an embryonic-like pluripotent state by the expression of specific transcription factors. iPSC technology is expected to revolutionize regenerative medicine in the near future. Despite the fact that these cells have the capacity to self-renew, they present low efficiency of reprogramming. Recent studies have demonstrated that the previous somatic epigenetic signature is a limiting factor in iPSC performance. Indeed, the process of effective reprogramming involves a complete remodeling of the existing somatic epigenetic memory, followed by the establishment of a "new epigenetic signature" that complies with the new type of cell to be differentiated. Therefore, further investigations of epigenetic modifications associated with iPSC reprogramming are required in an attempt to improve their self-renew capacity and potency, as well as their application in regenerative medicine, with a new strategy to reduce the damage in degenerative diseases. Our review aimed to summarize the most recent findings on epigenetics and iPSC, focusing on DNA methylation, histone modifications and microRNAs, highlighting their potential in translating cell therapy into clinics.

  4. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors

    Institute of Scientific and Technical Information of China (English)

    Lei Bao; Lei Qian; Yijun Gu; Huimin Dai; Xun Xu; Jinqiu Zhou; Wen Wang; Chun Cui; Lei Xiao; Lixiazi He; Jijun Chen; Zhao Wu; Jing Liao; Lingjun Rao; Jiangtao Ren; Hui Li; Hui Zhu

    2011-01-01

    Reprogramming of somatic cells in the enucleated egg made Dolly, the sheep, the first successfully cloned mammal in 1996. However, the mechanism of sheep somatic cell reprogramming has not yet been addressed. Moreover, sheep embryonic stem (ES) cells are still not available, which limits the generation of precise gene-modified sheep, in this study, we report that sheep somatic cells can be directly reprogrammed to induced pluripotent stem (iPS) cells using defined factors (Oct4, Sox2, c-Myc, KIf4, Nanog, Lin28, SV40 large T and hTERT). Our observations indicated that somatic cells from sheep are more difficult to reprogram than somatic cells from other species, in which iPS cells have been reported. We demonstrated that sheep iPS cells express ES cell markers, including alkaline phosphatase, Oct4, Nanog, Sox2, Rexl, stage-specific embryonic antigen-l, TRA-1-60, TRA-1-81 and E-cadherin. Sheep iPS cells exhibited normal karyotypes and were able to differentiate into all three germ layers both in vitro and in teratomas.Our study may help to reveal the mechanism of somatic cell reprogramming in sheep and provide a platform to explore the culture conditions for sheep ES cells. Moreover, sheep iPS cells may be directly used to generate precise gene-modified sheep.

  5. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases.

    Science.gov (United States)

    Li, Rui; Bai, Ye; Liu, Tongtong; Wang, Xiaoqun; Wu, Qian

    2013-06-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specifi c iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.

  6. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    Science.gov (United States)

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies.

  7. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology.

    Science.gov (United States)

    Rawat, N; Singh, M K

    2017-06-01

    Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs) paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.

  8. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology

    Directory of Open Access Journals (Sweden)

    N. Rawat

    2017-06-01

    Full Text Available Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.

  9. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  10. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC.

  11. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  12. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  13. Totipotency, pluripotency and nuclear reprogramming.

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don

    2009-01-01

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  14. Totipotency, Pluripotency and Nuclear Reprogramming

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  15. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    Science.gov (United States)

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-08

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.

  16. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ras Trokovic

    2015-07-01

    Full Text Available Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  17. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells.

    Science.gov (United States)

    Trokovic, Ras; Weltner, Jere; Noisa, Parinya; Raivio, Taneli; Otonkoski, Timo

    2015-07-01

    Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC) by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  18. Reprogramming of adult human neural stem cells into induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    XIE Li-qian; SUN Hua-ping; WANG Tian; TANG Hai-liang; WANG Pu; ZHU Jian-hong; YAO Zheng-wei

    2013-01-01

    Background Since an effective method for generating induced pluripotent stem cells (iPSCs) from human neural stem cells (hNSCs) can offer us a promising tool for studying brain diseases,here we reported direct reprogramming of adult hNSCs into iPSCs by retroviral transduction of four defined factors.Methods NSCs were successfully isolated and cultured from the hippocampus tissue of epilepsy patients.When combined with four factors (OCT3/4,SOX2,KLF4,and c-MYC),iPSCs colonies were successfully obtained.Results Morphological characterization and specific genetic expression confirmed that these hNSCs-derived iPSCs showed embryonic stem cells-like properties,which include the ability to differentiate into all three germ layers both in vitro and in vivo.Conclusion Our method would be useful for generating human iPSCs from NSCs and provide an important tool for studying neurological diseases.

  19. Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?

    Directory of Open Access Journals (Sweden)

    Stéphanie Boué

    Full Text Available After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanaka's group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs are truly functionally equivalent to embryonic stem cells (ESCs and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the

  20. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation.

    Science.gov (United States)

    Hu, Qirui; Friedrich, Amy M; Johnson, Lincoln V; Clegg, Dennis O

    2010-11-01

    Induced pluripotent stem (iPS) cells have been generated from a variety of somatic cell types via introduction of transcription factors that mediate pluripotency. However, it is unknown that all cell types can be reprogrammed and whether the origin of the parental cell ultimately determines the behavior of the resultant iPS cell line. We sought to determine whether human retinal-pigmented epithelial (RPE) cells could be reprogrammed, and to test the hypothesis that reprogrammed cells retain a "memory" of their origin in terms of propensity for differentiation. We reprogrammed primary fetal RPE cells via lentiviral expression of OCT4, SOX2, LIN28, and Nanog. The iPS cell lines derived from RPE exhibited morphologies similar to human embryonic stem cells and other iPS cell lines, expressed stem cell markers, and formed teratomas-containing derivatives of all three germ layers. To test whether these iPS cells retained epigenetic imprints from the parental RPE cells, we analyzed their propensity for spontaneous differentiation back into RPE after removal of FGF2. We found that some, but not all, iPS lines exhibited a marked preference for redifferentiation into RPE. Our results show that RPE cells can be reprogrammed to pluripotency, and suggest that they often retain a memory of their previous state of differentiation.

  1. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming.

    Science.gov (United States)

    Ji, Pengfei; Manupipatpong, Sasicha; Xie, Nina; Li, Yujing

    2016-01-01

    Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.

  2. Messenger RNA- versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity.

    Science.gov (United States)

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne

    2014-06-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications.

  3. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming

    Directory of Open Access Journals (Sweden)

    Pengfei Ji

    2016-01-01

    Full Text Available Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC, have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (dedifferentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs, generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.

  4. Human lymphoblastoid B-cell lines reprogrammed to EBV-free induced pluripotent stem cells.

    Science.gov (United States)

    Rajesh, Deepika; Dickerson, Sarah J; Yu, Junying; Brown, Matthew E; Thomson, James A; Seay, Nicholas J

    2011-08-18

    Generation of patient-specific induced pluripotent cells (iPSCs) holds great promise for regenerative medicine. Epstein-Barr virus immortalized lymphoblastoid B-cell lines (LCLs) can be generated from a minimal amount of blood and are banked worldwide as cellular reference material for immunologic or genetic analysis of pedigreed study populations. We report the generation of iPSCs from 2 LCLs (LCL-iPSCs) via a feeder-free episomal method using a cocktail of transcription factors and small molecules. LCL-derived iPSCs exhibited normal karyotype, expressed pluripotency markers, lost oriP/EBNA-1 episomal vectors, generated teratomas, retained donor identity, and differentiated in vitro into hematopoietic, cardiac, neural, and hepatocyte-like lineages. Significantly, although the parental LCLs express viral EBNA-1 and other Epstein-Barr virus latency-related elements for their survival, their presence was not detectable in LCL-iPSCs. Thus, reprogramming LCLs could offer an unlimited source for patient-specific iPSCs.

  5. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Hidehito Saito

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs that express programmed cell death protein-1 (PD-1 are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.

  6. Pluripotency and nuclear reprogramming

    OpenAIRE

    Yamanaka, Shinya

    2008-01-01

    Embryonic stem cells are promising donor cell sources for cell transplantation therapy, which may in the future be used to treat various diseases and injuries. However, as is the case for organ transplantation, immune rejection after transplantation is a potential problem with this type of therapy. Moreover, the use of human embryos presents serious ethical difficulties. These issues may be overcome if pluripotent stem cells are generated from patients' somatic cells. Here, we review the mole...

  7. Evaluating the potential of poly(beta-amino ester nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bhise NS

    2013-12-01

    Full Text Available Nupura S Bhise,1,* Karl J Wahlin,2,* Donald J Zack,2–4 Jordan J Green1,21Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, 2Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 3Solomon H Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, and Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 4Institut de la Vision, Paris, France*These authors contributed equally to this workBackground: Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs from human fibroblasts.Methods: A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling.Results: 1-(3-aminopropyl-4-methylpiperazine end-terminated poly(1,4-butanediol diacrylate-co-4-amino-1-butanol polymer (B4S4E7 self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available

  8. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

    Science.gov (United States)

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  9. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  10. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Animal embryonic stem cells (ESCs provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs, have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.

  11. Production of Induced Pluripotent Stem Cells by Reprogramming of Blood Cells

    Directory of Open Access Journals (Sweden)

    Sadia Zia

    2011-06-01

    Full Text Available Blood cells are the simple, efficient and economical source for the production of induced pluripotent cells. The discovery of induced pluripotent cells was not novel; it was pedestal on the scientific principals and technologies which have been developed over last six decades. These are nuclear transfer and the cloning of Animals, Pluripotent cell lines and fusion hybrids and Transcription Factors and lineage switching. The use of human embryonic stem cells in regenerative medicines was a breakthrough but make use of these cells arise ethical issues as they are obtained from human embryos. An alternative advancement using induced pluripotent stem cells, which mimics the embryonic stem cells has the significant gain that they replaced the embryonic stem cells. The pluripotent cells can be induced from terminally differentiated somatic cells by the Induction of only four defined factors including c-Myc, klf4, Oct4 and Sox2 which are enough to alter the fate of cell.

  12. Reprogramming of mouse neural stem cells to induced pluripotent stem cells using Oct4 combined with microRNA

    Institute of Scientific and Technical Information of China (English)

    Qiuyue Yan; Jie Xu; Yanqiang Zhan; Zhouping Tang; Suming Zhang

    2011-01-01

    microRNA is important for maintaining characteristics of embryonic stem cells,and microRNA302a (MiR-302a) has been shown to exert important effects on cell reprogramming.Therefore,the present study used miR294 and miR302a,in combination with Oct4,to induce mouse neural stem cells (NSCs) into induced pluripotent stem (iPS) cells.Following identification of iPS cells,the effects of microRNA on cell reprogramming were analyzed.Results suggested that reprogramming efficiency with Oct4 + miR-294 + miR-302a was 7-fold greater than Oct4 alone (0.1% vs.0.014%).The iPS cells were undifferentiated and positive for alkaline phosphatase,SSEA-1,and Oct4.These findings demonstrated that microRNAs play an important role in cell reprogramming and provide a safe and efficient induction system for cellular reprogramming.

  13. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.

    Science.gov (United States)

    Bazley, Faith A; Liu, Cyndi F; Yuan, Xuan; Hao, Haiping; All, Angelo H; De Los Angeles, Alejandro; Zambidis, Elias T; Gearhart, John D; Kerr, Candace L

    2015-11-15

    Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.

  14. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    Directory of Open Access Journals (Sweden)

    Lough John W

    2010-08-01

    Full Text Available Abstract Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development.

  15. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells.

    Science.gov (United States)

    Utikal, Jochen; Maherali, Nimet; Kulalert, Warakorn; Hochedlinger, Konrad

    2009-10-01

    Induced pluripotent stem cells (iPSCs) have been derived at low frequencies from different cell types through ectopic expression of the transcription factors Oct4 and Sox2, combined with either Klf4 and c-Myc or Lin28 and Nanog. In order to generate iPSCs more effectively, it will be crucial to identify somatic cells that are easily accessible and possibly require fewer factors for conversion into iPSCs. Here, we show that both human and mouse melanocytes give rise to iPSCs at higher efficiencies than fibroblasts. Moreover, we demonstrate that a mouse malignant melanoma cell line, which has previously been reprogrammed into embryonic stem cells by nuclear transfer, remains equally amenable to reprogramming into iPSCs by these transcription factors. In contrast to skin fibroblasts, melanocytes and melanoma cells did not require ectopic Sox2 expression for conversion into iPSCs. iPSC lines from melanocytic cells expressed pluripotency markers, formed teratomas and contributed to viable chimeric mice with germ line transmission. Our results identify skin melanocytes as an alternative source for deriving patient-specific iPSCs at increased efficiency and with fewer genetic elements. In addition, our results suggest that cancer cells remain susceptible to transcription factor-mediated reprogramming, which should facilitate the study of epigenetic changes in human cancer.

  16. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  17. Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Briggs, Sharon F; Dominguez, Antonia A; Chavez, Shawn L; Reijo Pera, Renee A

    2015-06-01

    The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well-understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte-to-embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4-cell stage, coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally, we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however, expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells.

  18. Induced Pluripotent Stem Cells With Six Reprogramming Factors From Prairie Vole, Which Is an Animal Model for Social Behaviors.

    Science.gov (United States)

    Katayama, Masafumi; Hirayama, Takashi; Horie, Kengo; Kiyono, Tohru; Donai, Kenichiro; Takeda, Satoru; Nishimori, Katsuhiko; Fukuda, Tomokazu

    2016-01-01

    Prairie voles show strong pair bonding with their mating partners, and they demonstrate parental behavior toward their infants, indicating that the prairie vole is a unique animal model for analysis of molecular mechanisms of social behavior. Until a recent study, the signaling pathway of oxytocin was thought to be critical for the social behavior of prairie voles, but neuron-specific functional research may be necessary to identify the molecular mechanisms of social behavior. Prairie vole pluripotent stem cells of high quality are essential to elucidate the molecular mechanisms of social behaviors. Generation of high-quality induced pluripotent stem cells (iPSCs) would help to establish a genetically modified prairie vole, including knockout and knock-in models, based on the pluripotency of iPSCs. Thus, we attempted to establish high-quality prairie vole-derived iPSCs (pv-iPSCs) in this study. We constructed a polycistronic reprogramming vector, which included six reprograming factors (Oct3/4, Sox2, Klf4, c-myc, Lin28, and Nanog). Furthermore, we evaluated the effect of six reprogramming factors, which included Oct3/4 with the transactivation domain (TAD) of MyoD. Implantation of the pv-iPSCs into immunodeficient mice caused a teratoma with three germ layers. Furthermore, the established pv-iPSCs tested positive for stem cell markers, including alkaline phosphatase activity (ALP), stage-specific embryonic antigen (SSEA)-1, and dependence on leukemia inhibitory factor (LIF). Our data indicate that our newly established pv-iPSCs may be a useful tool for genetic analysis of social behavior.

  19. Self-Renewal and Pluripotency Acquired through Somatic Reprogramming to Human Cancer Stem Cells.

    OpenAIRE

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by...

  20. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells.

    Science.gov (United States)

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Yuan, Ziao; Hu, Pengfei; Wang, Hui; Liu, Changqing; Guan, Weijun; Ma, Yuehui

    2016-09-01

    Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers.

  1. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  2. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells.

    Science.gov (United States)

    Ezashi, Toshihiko; Matsuyama, Haruyo; Telugu, Bhanu Prakash V L; Roberts, R Michael

    2011-10-01

    During reprogramming of porcine mesenchymal cells with a four-factor (POU5F1/SOX2/KLF4/MYC) mixture of vectors, a fraction of the colonies had an atypical phenotype and arose earlier than the recognizable porcine induced pluripotent stem (iPS) cell colonies. Within days after each passage, patches of cells with an epithelial phenotype formed raised domes, particularly under 20% O(2) conditions. Relative to gene expression of the iPS cells, there was up-regulation of genes for transcription factors associated with trophoblast (TR) lineage emergence, e.g., GATA2, PPARG, MSX2, DLX3, HAND1, GCM1, CDX2, ID2, ELF5, TCFAP2C, and TEAD4 and for genes required for synthesis of products more typical of differentiated TR, such as steroids (HSD17B1, CYP11A1, and STAR), pregnancy-associated glycoproteins (PAG6), and select cytokines (IFND, IFNG, and IL1B). Although POU5F1 was down-regulated relative to that in iPS cells, it was not silenced in the induced TR (iTR) cells over continued passage. Like iPS cells, iTR cells did not senesce on extended passage and displayed high telomerase activity. Upon xenografting into immunodeficient mice, iTR cells formed nonhemorrhagic teratomas composed largely of layers of epithelium expressing TR markers. When cultured under conditions that promoted embryoid body formation, iTR cells formed floating spheres consisting of a single epithelial sheet whose cells were tethered laterally by desmosome-like structures. In conclusion, reprogramming of porcine fibroblasts to iPS cells generates, as a by-product, colonies composed of self-renewing populations of TR cells, possibly containing TR stem cells.

  3. Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming

    OpenAIRE

    Talluri, Thirumala R.; Kumar, Dharmendra; Glage, Silke; Garrels, Wiebke; Ivics, Zoltan; Debowski, Katharina; Behr, Rüdiger; Niemann, Heiner; Kues, Wilfried A.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a seminal breakthrough in stem cell research and are promising tools for advanced regenerative therapies in humans and reproductive biotechnology in farm animals. iPSCs are particularly valuable in species in which authentic embryonic stem cell (ESC) lines are yet not available. Here, we describe a nonviral method for the derivation of bovine iPSCs employing Sleeping Beauty (SB) and piggyBac (PB) transposon systems encoding different combinations of ...

  4. Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Cesar A Sommer

    Full Text Available Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs. We demonstrate that residual expression of the Yamanaka factors prevents iPSCs from acquiring the transcriptional program exhibited by embryonic stem cells (ESCs and that the expression profiles of iPSCs generated with and without c-Myc are indistinguishable. After vector excision, we find 36% of iPSC clones show normal methylation of the Gtl2 region, an imprinted locus that marks ESC-equivalent iPSC lines. Furthermore, we show that the reprogramming factor Klf4 binds to the promoter region of Gtl2. Regardless of Gtl2 methylation status, we find similar endodermal and hepatocyte differentiation potential comparing syngeneic Gtl2(ON vs Gtl2(OFF iPSC clones. Our findings provide new insights into the reprogramming process and emphasize the importance of generating iPSCs free of any residual transgene expression.

  5. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    M.K. Høffding

    2015-01-01

    Here, we integrate a panel of morphological approaches with gene expression analyses to visualize the dynamics of episomal reprogramming of human fibroblasts to iPSCs. We provide the first ultrastructural analysis of human fibroblasts at various stages of episomal iPSC reprogramming, as well as the first real-time live cell visualization of a MET occurring during reprogramming. The results indicate that the MET manifests itself approximately 6–12 days after electroporation, in synchrony with the upregulation of early pluripotency markers, and resembles a reversal of the Epithelial-to-Mesenchymal Transition (EMT which takes place during mammalian gastrulation.

  6. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.

    Science.gov (United States)

    Heng, Boon Chin; Fussenegger, Martin

    2014-01-01

    Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.

  7. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    Science.gov (United States)

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  8. CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniel Gómez-Cabello

    2017-02-01

    Full Text Available Acquired genomic instability is one of the major concerns for the clinical use of induced pluripotent stem cells (iPSCs. All reprogramming methods are accompanied by the induction of DNA damage, of which double-strand breaks are the most cytotoxic and mutagenic. Consequently, DNA repair genes seem to be relevant for accurate reprogramming to minimize the impact of such DNA damage. Here, we reveal that reprogramming is associated with high levels of DNA end resection, a critical step in homologous recombination. Moreover, the resection factor CtIP is essential for cell reprogramming and establishment of iPSCs, probably to repair reprogramming-induced DNA damage. Our data reveal a new role for DNA end resection in maintaining genomic stability during cell reprogramming, allowing DNA repair fidelity to be retained in both human and mouse iPSCs. Moreover, we demonstrate that reprogramming in a resection-defective environment has long-term consequences on stem cell self-renewal and differentiation.

  9. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification.

    Science.gov (United States)

    Deng, Wenwen; Cao, Xia; Wang, Yan; Yu, Qingtong; Zhang, Zhijian; Qu, Rui; Chen, Jingjing; Shao, Genbao; Gao, Xiangdong; Xu, Ximing; Yu, Jiangnan

    2016-02-17

    Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification.

  10. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone.

    Science.gov (United States)

    Meng, Xianmei; Neises, Amanda; Su, Rui-Jun; Payne, Kimberly J; Ritter, Linda; Gridley, Daila S; Wang, Jun; Sheng, Matilda; Lau, K-H William; Baylink, David J; Zhang, Xiao-Bing

    2012-02-01

    The reprogramming of cord blood (CB) cells into induced pluripotent stem cells (iPSCs) has potential applications in regenerative medicine by converting CB banks into iPSC banks for allogeneic cell replacement therapy. Therefore, further investigation into novel approaches for efficient reprogramming is necessary. Here, we show that the lentiviral expression of OCT4 together with SOX2 (OS) driven by a strong spleen focus-forming virus (SFFV) promoter in a single vector can convert 2% of CB CD34(+) cells into iPSCs without additional reprogramming factors. Reprogramming efficiency was found to be critically dependent upon expression levels of OS. To generate transgene-free iPSCs, we developed an improved episomal vector with a woodchuck post-transcriptional regulatory element (Wpre) that increases transgene expression by 50%. With this vector, we successfully generated transgene-free iPSCs using OS alone. In conclusion, high-level expression of OS alone is sufficient for efficient reprogramming of CB CD34(+) cells into iPSCs. This report is the first to describe the generation of transgene-free iPSCs with the use of OCT4 and SOX2 alone. These findings have important implications for the clinical applications of iPSCs.

  11. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells.

    Science.gov (United States)

    Bermejo-Álvarez, P; Ramos-Ibeas, P; Park, K E; Powell, A P; Vansandt, L; Derek, Bickhart; Ramirez, M A; Gutiérrez-Adán, A; Telugu, B P

    2015-09-02

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus.

  12. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  13. Abnormalities in human pluripotent cells due to reprogramming mechanisms.

    Science.gov (United States)

    Ma, Hong; Morey, Robert; O'Neil, Ryan C; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D; Hariharan, Manoj; Nery, Joseph R; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P; Ecker, Joseph R; Laurent, Louise C; Mitalipov, Shoukhrat

    2014-07-10

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

  14. Telomere dynamics in human cells reprogrammed to pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: Human induced pluripotent stem cells (IPSCs have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell "rejuvenation." METHODOLOGY/PRINCIPAL FINDINGS: We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5, telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs. In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres. CONCLUSIONS/SIGNIFICANCE: While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.

  15. EXPRESSION OF PLURIPOTENCY MARKERS IN REPROGRAMMING WITH TRANSPOSON SYSTEM MURINE FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. V. Malysheva

    2013-10-01

    Full Text Available The search for effective and safe methods to generate induced pluripotent stem cells is especially urgent. In the paper murine embryonic fibro blasts were reprogrammed towards actively proliferating colonies with typical induced pluripotent stem cells morphology by means of Sleeping beauty transposon-based vector system. The obtained clones were checked for the expression of various pluripotency markers: alkaline phosphatase, Oct4 and Sox2 genes, SSEA-1 expression in various clones was evaluated. Also the reactivation of endogenous pluripotency factors Nanog and Rex1 was indicated. The data obtained is analyzed and compared to the established pluripotent stem cell line. It is shown that somatic cells are reprogrammed towards pluripotency by means of Sleeping beauty transposon system. Therefore, the system is a new perspective biotechnological tool to generate pluripotent cells.

  16. New balance in pluripotency: reprogramming with lineage specifiers.

    Science.gov (United States)

    Ben-David, Uri; Nissenbaum, Jonathan; Benvenisty, Nissim

    2013-05-23

    Induction of pluripotency in somatic cells has been achieved by myriad combinations of transcription factors that belong to the core pluripotency circuitry. In this issue, Shu et al. report reprogramming with lineage specifiers, lending support to the view of the pluripotent state as a fine balance between competing differentiation forces.

  17. Methods of Reprogramming to Induced Pluripotent Stem Cell Associated with Chromosomal Integrity and Delineation of a Chromosome 5q Candidate Region for Growth Advantage.

    Science.gov (United States)

    Sobol, Maria; Raykova, Doroteya; Cavelier, Lucia; Khalfallah, Ayda; Schuster, Jens; Dahl, Niklas

    2015-09-01

    Induced pluripotent stem cells (iPSCs) have brought great promises for disease modeling and cell-based therapies. One concern related to the use of reprogrammed somatic cells is the loss of genomic integrity and chromosome stability, a hallmark for cancer and many other human disorders. We investigated 16 human iPSC lines reprogrammed by nonintegrative Sendai virus (SeV) and another 16 iPSC lines generated by integrative lentivirus for genetic changes. At early passages we detected cytogenetic rearrangements in 44% (7/16) of iPSC lines generated by lentiviral integration whereas the corresponding figure was 6% (1/16) using SeV-based delivery. The rearrangements were numerical and/or structural with chromosomes 5 and 12 as the most frequently involved chromosomes. Three iPSC lines with chromosome 5 aberrations were derived from one and the same donor. We present in this study the aberrant karyotypes including a duplication of chromosome 5q13q33 that restricts a candidate region for growth advantage. Our results suggest that the use of integrative lentivirus confers a higher risk for cytogenetic abnormalities at early passages when compared to SeV-based reprogramming. In combination, our findings expand the knowledge on acquired cytogenetic aberrations in iPSC after reprogramming and during culture.

  18. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Corominas-Faja, Bruna; Cufi, Sílvia; Vellon, Luciano; Oliveras-Ferraros, Cristina; Menendez, Octavio J; Joven, Jorge; Lupu, Ruth; Menendez, Javier A

    2013-01-15

    Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic β-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The

  19. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  20. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  1. Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Chung

    Full Text Available Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs. Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to

  2. Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.

    Science.gov (United States)

    Chung, Kyung-Min; Kolling, Frederick W; Gajdosik, Matthew D; Burger, Steven; Russell, Alexander C; Nelson, Craig E

    2014-01-01

    Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs). Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to provide a precise

  3. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    Science.gov (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  4. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Induced pluripotent stem cells (iPSCs are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs. They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs, using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4. Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i, naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.

  5. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Shogo Nagata

    Full Text Available Human induced pluripotent stem cells (iPSCs are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  6. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    Science.gov (United States)

    Nagata, Shogo; Hirano, Kunio; Kanemori, Michele; Sun, Liang-Tso; Tada, Takashi

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  7. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    NARCIS (Netherlands)

    Á. Muñoz-López (Álvaro); D. Romero-Moya (Damià); C. Prieto (Cristina); Ramos-Mejía, V. (Verónica); Agraz-Doblas, A. (Antonio); I. Varela (Ignacio); Buschbeck, M. (Marcus); Palau, A. (Anna); Carvajal-Vergara, X. (Xonia); Giorgetti, A. (Alessandra); Ford, A. (Anthony); M. Lako (Majlinda); Granada, I. (Isabel); Ruiz-Xivillé, N. (Neus); Rodríguez-Perales, S. (Sandra); Torres-Ruíz, R. (Raul); R.W. Stam (Ronald); Fuster, J.L. (Jose Luis); M.F. Fraga (Mario F.); Nakanishi, M. (Mahito); G. Cazzaniga (Gianni); Bardini, M. (Michela); Cobo, I. (Isabel); Bayon, G.F. (Gustavo F.); A.F. Fernández (Agustin F.); C. Bueno (C.); P. Menéndez (Pablo)

    2016-01-01

    textabstractInduced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies gen

  8. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kang

    Full Text Available Human-induced pluripotent stem cells (iPSCs are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines", 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines", and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV, loss of heterozygosity (LOH and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic

  9. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kang, Xiangjin; Yu, Qian; Huang, Yuling; Song, Bing; Chen, Yaoyong; Gao, Xingcheng; He, Wenyin; Sun, Xiaofang; Fan, Yong

    2015-01-01

    Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines"), 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines"), and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV), loss of heterozygosity (LOH) and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture) database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP) calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic aberrations

  10. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    Alvaro Muñoz-López

    2016-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.

  11. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte

    2013-01-01

    the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (i...

  12. Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    Ulf Tiemann

    2014-03-01

    Full Text Available Differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs after overexpressing four transcription factors, of which Oct4 is essential. To elucidate the role of Oct4 during reprogramming, we investigated the immediate transcriptional response to inducible Oct4 overexpression in various somatic murine cell types using microarray analysis. By downregulating somatic-specific genes, Oct4 induction influenced each transcriptional program in a unique manner. A significant upregulation of pluripotent markers could not be detected. Therefore, OCT4 facilitates reprogramming by interfering with the somatic transcriptional network rather than by directly initiating a pluripotent gene-expression program. Finally, Oct4 overexpression upregulated the gene Mgarp in all the analyzed cell types. Strikingly, Mgarp expression decreases during the first steps of reprogramming due to a KLF4-dependent inhibition. At later stages, OCT4 counteracts the repressive activity of KLF4, thereby enhancing Mgarp expression. We show that this temporal expression pattern is crucial for the efficient generation of iPSCs.

  13. Reprogramming of HUVECs into Induced Pluripotent Stem Cells (HiPSCs), Generation and Characterization of HiPSC-Derived Neurons and Astrocytes

    Science.gov (United States)

    Boakye, Paul A.; Baker, Glen; Smith, Peter A.; Murray, Allan G.; Giuliani, Fabrizio; Jahroudi, Nadia

    2015-01-01

    Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC) technology has provided novel opportunities in disease modeling, drug development, screening, and the potential for “patient-matched” cellular therapies in neurodegenerative diseases. In this study, with the objective of establishing reliable tools to study neurodegenerative diseases, we reprogrammed human umbilical vein endothelial cells (HUVECs) into iPSCs (HiPSCs). Using a novel and direct approach, HiPSCs were differentiated into cells of central nervous system (CNS) lineage, including neuronal, astrocyte and glial cells, with high efficiency. HiPSCs expressed embryonic genes such as nanog, sox2 and Oct-3/4, and formed embryoid bodies that expressed markers of the 3 germ layers. Expression of endothelial-specific genes was not detected in HiPSCs at RNA or protein levels. HiPSC-derived neurons possess similar morphology but significantly longer neurites compared to primary human fetal neurons. These stem cell-derived neurons are susceptible to inflammatory cell-mediated neuronal injury. HiPSC-derived neurons express various amino acids that are important for normal function in the CNS. They have functional receptors for a variety of neurotransmitters such as glutamate and acetylcholine. HiPSC-derived astrocytes respond to ATP and acetylcholine by elevating cytosolic Ca2+ concentrations. In summary, this study presents a novel technique to generate differentiated and functional HiPSC-derived neurons and astrocytes. These cells are appropriate tools for studying the development of the nervous system, the pathophysiology of various neurodegenerative diseases and the development of potential drugs for their

  14. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  15. Reprogramming of human cancer cells to pluripotency for models of cancer progression

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-01-01

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. PMID:25712212

  16. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    NARCIS (Netherlands)

    Hamada, M.; Malureanu, L.A.; Wijshake, T.; Zhou, W.; Deursen, J.M.A. van

    2012-01-01

    The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem

  17. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  18. Macrohistone Variants Preserve Cell Identity by Preventing the Gain of H3K4me2 during Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    María J. Barrero

    2013-04-01

    Full Text Available Transcription-factor-induced reprogramming of somatic cells to pluripotency is a very inefficient process, probably due to the existence of important epigenetic barriers that are imposed during differentiation and that contribute to preserving cell identity. In an effort to decipher the molecular nature of these barriers, we followed a genome-wide approach, in which we identified macrohistone variants (macroH2A as highly expressed in human somatic cells but downregulated after reprogramming to pluripotency, as well as strongly induced during differentiation. Knockdown of macrohistone variants in human keratinocytes increased the efficiency of reprogramming to pluripotency, whereas overexpression had opposite effects. Genome-wide occupancy profiles show that in human keratinocytes, macroH2A.1 preferentially occupies genes that are expressed at low levels and are marked with H3K27me3, including pluripotency-related genes and bivalent developmental regulators. The presence of macroH2A.1 at these genes prevents the regain of H3K4me2 during reprogramming, imposing an additional layer of repression that preserves cell identity.

  19. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation

    Directory of Open Access Journals (Sweden)

    Youngkyun Kim

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs. In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  20. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation.

    Science.gov (United States)

    Kim, Youngkyun; Rim, Yeri Alice; Yi, Hyoju; Park, Narae; Park, Sung-Hwan; Ju, Ji Hyeon

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs). In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  1. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  2. Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system.

    Science.gov (United States)

    Zhang, Yu; Wei, Chao; Zhang, Pengfei; Li, Xia; Liu, Tong; Pu, Yong; Li, Yunsheng; Cao, Zubing; Cao, Hongguo; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs). They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs) lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs), using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4). Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i), naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP) staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.

  3. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Yakubov, Eduard [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Rechavi, Gidi [Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rozenblatt, Shmuel [Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv (Israel); Givol, David, E-mail: david.givol@weizmann.ac.il [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  4. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  5. Induced pluripotent stem cells: advances to applications

    Directory of Open Access Journals (Sweden)

    Timothy J Nelson

    2009-12-01

    Full Text Available Timothy J Nelson1, Almudena Martinez-Fernandez1, Satsuki Yamada1, Yasuhiro Ikeda2, Carmen Perez-Terzic1, Andre Terzic11Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; 2Department of Molecular Medicine; Mayo Clinic, Rochester, Minnesota, USAAbstract: Induced pluripotent stem cell (iPS technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms.Keywords: iPS, regenerative medicine, individualized medicine, stem cell therapy

  6. Induced pluripotent stem cells for regenerative medicine.

    Science.gov (United States)

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  7. Advances and applications of induced pluripotent stem cells.

    Science.gov (United States)

    Pietronave, Stefano; Prat, Maria

    2012-03-01

    Direct reprogramming of somatic cells into pluripotent cells is an emerging technology for creating patient-specific cells, and potentially opens new scenarios in medical and pharmacological fields. From the discovery of Shinya Yamanaka, who first obtained pluripotent cells from fibroblasts by retrovirus-derived ectopic expression of defined embryonic transcription factors, new methods have been developed to generate safe induced pluripotent stem (iPS) cells without genomic manipulations. This review will focus on the recent advances in iPS technology and their application in pharmacology and medicine.

  8. Induced pluripotent stem cells for cardiac repair.

    Science.gov (United States)

    Zwi-Dantsis, Limor; Gepstein, Lior

    2012-10-01

    Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.

  9. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  10. Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors

    Directory of Open Access Journals (Sweden)

    Nils Pfaff

    2017-04-01

    Thus, conducting a full library miRNA screen we here describe a miRNA family, which markedly reduces generation of iPSC and upon inhibition in turn enhances reprogramming. These miRNAs, at least in part, exert their functions through repression of the epigenetic modulators p300 and Jarid1a, highlighting these two molecules as an endogenous epigenetic roadblock during iPSC generation.

  11. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Kotaro [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194 (Japan); Semi, Katsunori [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507 (Japan); Yamada, Yasuhiro, E-mail: y-yamada@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507 (Japan)

    2014-12-05

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotency in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo.

  12. Induced pluripotent stem cells: Mechanisms, achievementsand perspectives in farm animals

    Institute of Scientific and Technical Information of China (English)

    Dharmendra Kumar; Thirumala R Talluri; Taruna Anand; Wilfried A Kues

    2015-01-01

    Pluripotent stem cells are unspecialized cells withunlimited self-renewal, and they can be triggered todifferentiate into desired specialized cell types. Thesefeatures provide the basis for an unlimited cell sourcefor innovative cell therapies. Pluripotent cells also allowto study developmental pathways, and to employ themor their differentiated cell derivatives in pharmaceuticaltesting and biotechnological applications. Via blastocystcomplementation, pluripotent cells are a favoured toolfor the generation of genetically modified mice. Therecently established technology to generate an inducedpluripotency status by ectopic co-expression of thetranscription factors Oct4, Sox2, Klf4 and c-Myc allowsto extending these applications to farm animal species,for which the derivation of genuine embryonic stemcells was not successful so far. Most induced pluripotentstem (iPS) cells are generated by retroviral or lentiviraltransduction of reprogramming factors. Multiple viralintegrations into the genome may cause insertionalmutagenesis and may increase the risk of tumourformation. Non-integration methods have been reportedto overcome the safety concerns associated withretro and lentiviral-derived iPS cells, such as transientexpression of the reprogramming factors using episomalplasmids, and direct delivery of reprogrammingmRNAs or proteins. In this review, we focus on themechanisms of cellular reprogramming and currentmethods used to induce pluripotency. We also highlightproblems associated with the generation of iPS cells. Anincreased understanding of the fundamental mechanismsunderlying pluripotency and refining the methodology ofiPS cell generation will have a profound impact on futuredevelopment and application in regenerative medicineand reproductive biotechnology of farm animals.

  13. Reprogramming to pluripotency: from frogs to stem cells.

    Science.gov (United States)

    Rossant, Janet

    2009-09-18

    This year's Albert Lasker Basic Medical Research Award goes to John Gurdon and Shinya Yamanaka for their contributions to our understanding of how to reprogram adult cells back to early embryonic states.

  14. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture

    NARCIS (Netherlands)

    Willmann, Charlotte A; Hemeda, Hatim; Pieper, Lisa A; Lenz, Michael; Qin, Jie; Joussen, Sylvia; Sontag, Stephanie; Wanek, Paul; Denecke, Bernd; Schüler, Herdit M; Zenke, Martin; Wagner, Wolfgang

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). Given that fully reprogrammed cells are highly proliferative and escape from cellul

  15. Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells

    NARCIS (Netherlands)

    Ma, Ming-San; Czepiel, Marcin; Krause, Tina; Schaefer, Karl-Herbert; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to reprogr

  16. Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells

    NARCIS (Netherlands)

    Ma, Ming-San; Czepiel, Marcin; Krause, Tina; Schaefer, Karl-Herbert; Boddeke, Erik; Copray, Sjef

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to

  17. The future of induced pluripotent stem cells for cardiac therapy and drug development

    OpenAIRE

    Sampaolesi, Maurilio; Thorrez, Lieven

    2011-01-01

    The field of stem cell research was revolutionized with the advent of induced pluripotent stem cells. By reprogramming somatic cells to pluripotent stem cells, most ethical concerns associated with the use of embryonic stem cells are overcome, such that many hopes from the stem cell field now seem a step closer to reality. Several methods and cell sources have been described to create induced pluripotent stem cells and we discuss their characteristics in terms of feasibility and efficiency. F...

  18. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.

    Science.gov (United States)

    Gaber, Naila; Gagliardi, Mark; Patel, Pranali; Kinnear, Caroline; Zhang, Cindy; Chitayat, David; Shannon, Patrick; Jaeggi, Edgar; Tabori, Uri; Keller, Gordon; Mital, Seema

    2013-09-01

    Hypoplastic left heart syndrome (HLHS) is a severe cardiac malformation characterized by left ventricle (LV) hypoplasia and abnormal LV perfusion and oxygenation. We studied hypoxia-associated injury in fetal HLHS and human pluripotent stem cells during cardiac differentiation to assess the effect of microenvironmental perturbations on fetal cardiac reprogramming. We studied LV myocardial samples from 32 HLHS and 17 structurally normal midgestation fetuses. Compared with controls, the LV in fetal HLHS samples had higher nuclear expression of hypoxia-inducible factor-1α but lower angiogenic growth factor expression, higher expression of oncogenes and transforming growth factor (TGF)-β1, more DNA damage and senescence with cell cycle arrest, fewer cardiac progenitors, myocytes and endothelial lineages, and increased myofibroblast population (P cells (SMCs) had less DNA damage compared with endothelial cells and myocytes. We recapitulated the fetal phenotype by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation. DNA damage was prevented by treatment with a TGF-β1 inhibitor (P cells). The hypoplastic LV in fetal HLHS samples demonstrates hypoxia-inducible factor-1α up-regulation, oncogene-associated cellular senescence, TGF-β1-associated fibrosis and impaired vasculogenesis. The phenotype is recapitulated by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation and rescued by inhibition of TGF-β1. This finding suggests that hypoxia may reprogram the immature heart and affect differentiation and development.

  19. Reprogramming somatic cells to pluripotency: a fresh look at Yamanaka's model.

    Science.gov (United States)

    Li, Yangxin; Shen, Zhenya; Shelat, Harnath; Geng, Yong-Jian

    2013-12-01

    In 2006, Dr Shinya Yamanaka succeeded to reprogram somatic cells into pluripotent stem cells (iPSC) by delivering the genes encoding Oct4, Sox2, Klf4, and c-Myc. This achievement represents a fundamental breakthrough in stem cell biology and opens up a new era in regenerative medicine. However, the molecular processes by which somatic cells are reprogrammed into iPSC remain poorly understood. In 2009, Yamanaka proposed the elite and stochastic models for reprogramming mechanisms. To date, many investigators in the field of iPSC research support the concept of stochastic model, i.e., somatic cell reprogramming is an event of epigenetic transformation. A mathematical model, f (Cd, k), has also been proposed to predict the stochastic process. Here we wish to revisit the Yamanaka model and summarize the recent advances in this research field.

  20. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells

    OpenAIRE

    Raya, Ángel; Rodríguez-Pizà, Ignasi; Guenechea, Guillermo; Vassena, Rita; Navarro, Susana; Barrero, María José; Consiglio, Antonella; Castellà, Maria; Río, Paula; Sleep, Eduard; González, Federico; Tiscornia, Gustavo; Garreta, Elena; Aasen, Trond; Veiga, Anna

    2009-01-01

    The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells....

  1. The effect of aging on human induced pluripotent stem cells

    OpenAIRE

    Sardo, Valentina Lo; Ferguson, William; Erikson, Galina A.; Topol, Eric J; Baldwin, Kristin K; Torkamani, Ali

    2016-01-01

    Induced pluripotent stem cells (iPSCs) are being developed as a source for autologous cell therapies, many of which aim to treat aged patients1?5. To explore the impact of age on iPSC quality, we produced iPSCs from blood cells of 16 donors aged 21?100. We find that while reprogramming resets most of the epigenome, iPSCs retain an epigenetic signature of age that diminishes with passaging. Reprogramming via clonal expansion also exposes somatic mutations present in individual donor cells, whi...

  2. Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells*

    Science.gov (United States)

    Ruiz, Sergio; Panopoulos, Athanasia D.; Montserrat, Nuria; Multon, Marie-Christine; Daury, Aurélie; Rocher, Corinne; Spanakis, Emmanuel; Batchelder, Erika M.; Orsini, Cécile; Deleuze, Jean-François; Izpisua Belmonte, Juan Carlos

    2012-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency. PMID:23019325

  3. Hematopoietic Development from Human Induced Pluripotent Stem Cells

    OpenAIRE

    2009-01-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells.Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g. circ...

  4. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective

    Institute of Scientific and Technical Information of China (English)

    Gaoyang Liang; Yi Zhang

    2013-01-01

    Pluripotent stem cells,like embryonic stem cells (ESCs),have specialized epigenetic landscapes,which are important for pluripotency maintenance.Transcription factor-mediated generation of induced pluripotent stem cells (iPSCs)requires global change of somatic cell epigenetic status into an ESC-like state.Accumulating evidence indicates that epigenetic mechanisms not only play important roles in the iPSC generation process,but also affect the properties of reprogrammed iPSCs.Understanding the roles of various epigenetic factors in iPSC generation contributes to our knowledge of the reprogramming mechanisms.

  5. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    Science.gov (United States)

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications.

  6. Generation of human-induced pluripotent stem cells.

    Science.gov (United States)

    Park, In-Hyun; Lerou, Paul H; Zhao, Rui; Huo, Hongguang; Daley, George Q

    2008-01-01

    Pluripotent cells, such as embryonic stem cells, are invaluable tools for research and can potentially serve as a source of cell- and tissue-replacement therapy. Rejection after transplantation of cells and tissue derived from embryonic stem cells is a significant obstacle to their clinical use. Recently, human somatic cells have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Human iPS cells are a potential source of patient-specific pluripotent stem cells that would bypass immune rejection. iPS cells can also be used to study diseases for which there are no adequate human in vitro or animal models. In this protocol, we describe how to establish primary human fibroblasts lines and how to derive iPS cells by retroviral transduction of reprogramming factors. Overall, it takes 2 months to complete reprogramming human primary fibroblasts starting from biopsy.

  7. Peripheral blood derived induced pluripotent stem cells (iPSCs from a female with familial hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Samantha Barratt Ross

    2017-04-01

    Full Text Available Induced pluripotent stem cells (iPSCs were generated from peripheral blood mononuclear cells (PBMCs obtained from a 62-year-old female with familial hypertrophic cardiomyopathy (HCM. PBMCs were reprogrammed to a pluripotent state following transfection with non-integrative episomal vectors carrying reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotency markers, possess trilineage differentiation potential, carry rare variants identified in DNA isolated directly from the patient's whole blood, have a normal karyotype and no longer carry episomal vectors for reprogramming. This line is a useful resource for identifying unknown genetic causes of HCM.

  8. Mechanism of Induction: Induced Pluripotent Stem Cells (iPSCs).

    Science.gov (United States)

    Singh, Vimal Kishor; Kumar, Neeraj; Kalsan, Manisha; Saini, Abhishek; Chandra, Ramesh

    2015-01-01

    Induced Pluripotent Stem Cells (iPSCs) are self renewable and can differentiate to different types of adult cells, which has shown great promises in the field of regenerative medicine. iPSCs are reprogrammed from human somatic cells through ectopic expression of various transcription factors viz. Oct4, Sox2, Klf4, and c-Myc (OSKM). This novel technology enables derivation of patient specific cells, which possess a potential cure for many diseases. During the last decade, significant progresses have been achieved in enhancing the reprogramming efficiency, safety of iPSCs derivation, development of different delivery techniques by various research groups. Nevertheless, it is important to resolve and define the mechanism underlying the pluripotent stem cells. Major bottleneck which arises during iPSCs generation is the availability of source material (cells/tissues), difficulty to deliver transcription factors with no aberrant genetic modifications and limited reprogramming efficiency. Reprogramming may be achieved by employing different cocktails with number of different transcription factors, application of miRNA and some small molecules such as (Valproic acid, CHiR99021, Sodium butyrate, Vitamin C, Parnate etc). Similarly, various starting source materials have been demonstrated for iPSC based therapies including fibroblasts, cord blood, peripheral blood, keritinocytes, urine, etc., with their specific uses and limitations. Moreover, with the advent of many new reprogramming techniques, various direct delivery methods have been introduced such as using synthetic mRNA expressing pluripotent gene network has been shown to be an appropriate technique to deliver transcription factors and a dozen of small molecules which can replace transcription factors or enhance reprogramming efficiency. This article addresses the iPSCs technology mechanisms, progresses and current perspectives in the field.

  9. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte;

    2013-01-01

    the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (iPS...... of the 3 germ layers. Upon injection of putative iPS cells under the skin of immunodeficient mice, we observed teratomas in 3 of 6 cases. These results form the basis for in-depth studies toward the derivation of porcine iPS cells, which hold great promise for preclinical testing of novel cell therapies......The domestic pig is an important large animal model for preclinical testing of novel cell therapies. Recently, we produced pluripotency reporter pigs in which the Oct4 promoter drives expression of the enhanced green fluorescent protein (EGFP). Here, we reprogrammed Oct4-EGFP fibroblasts employing...

  10. Induced Pluripotent Stem Cells from Nonhuman Primates.

    Science.gov (United States)

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  11. Hematopoietic development from human induced pluripotent stem cells.

    Science.gov (United States)

    Lengerke, Claudia; Grauer, Matthias; Niebuhr, Nina I; Riedt, Tamara; Kanz, Lothar; Park, In-Hyun; Daley, George Q

    2009-09-01

    A decade of research on human embryonic stem cells (ESC) has paved the way for the discovery of alternative approaches to generating pluripotent stem cells. Combinatorial overexpression of a limited number of proteins linked to pluripotency in ESC was recently found to reprogram differentiated somatic cells back to a pluripotent state, enabling the derivation of isogenic (patient-specific) pluripotent stem cell lines. Current research is focusing on improving reprogramming protocols (e.g., circumventing the use of retroviral technology and oncoproteins), and on methods for differentiation into transplantable tissues of interest. In mouse ESC, we have previously shown that the embryonic morphogens BMP4 and Wnt3a direct blood formation via activation of Cdx and Hox genes. Ectopic expression of Cdx4 and HoxB4 enables the generation of mouse ESC-derived hematopoietic stem cells (HSC) capable of multilineage reconstitution of lethally irradiated adult mice. Here, we explore hematopoietic development from human induced pluripotent stem (iPS) cells generated in our laboratory. Our data show robust differentiation of iPS cells to mesoderm and to blood lineages, as shown by generation of CD34(+)CD45(+) cells, hematopoietic colony activity, and gene expression data, and suggest conservation of blood patterning pathways between mouse and human hematopoietic development.

  12. BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence

    Science.gov (United States)

    Hayashi, Yohei; Hsiao, Edward C.; Sami, Salma; Lancero, Mariselle; Schlieve, Christopher R.; Nguyen, Trieu; Yano, Koyori; Nagahashi, Ayako; Ikeya, Makoto; Matsumoto, Yoshihisa; Nishimura, Ken; Fukuda, Aya; Hisatake, Koji; Tomoda, Kiichiro; Asaka, Isao; Toguchida, Junya; Conklin, Bruce R.; Yamanaka, Shinya

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) patients carry a missense mutation in ACVR1 [617G > A (R206H)] that leads to hyperactivation of BMP-SMAD signaling. Contrary to a previous study, here we show that FOP fibroblasts showed an increased efficiency of induced pluripotent stem cell (iPSC) generation. This positive effect was attenuated by inhibitors of BMP-SMAD signaling (Dorsomorphin or LDN1931890) or transducing inhibitory SMADs (SMAD6 or SMAD7). In normal fibroblasts, the efficiency of iPSC generation was enhanced by transducing mutant ACVR1 (617G > A) or SMAD1 or adding BMP4 protein at early times during the reprogramming. In contrast, adding BMP4 at later times decreased iPSC generation. ID genes, transcriptional targets of BMP-SMAD signaling, were critical for iPSC generation. The BMP-SMAD-ID signaling axis suppressed p16/INK4A-mediated cell senescence, a major barrier to reprogramming. These results using patient cells carrying the ACVR1 R206H mutation reveal how cellular signaling and gene expression change during the reprogramming processes. PMID:27794120

  13. Two-step generation of induced pluripotent stem cells from mouse fibroblasts using Id3 and Oct4

    Institute of Scientific and Technical Information of China (English)

    Jai-Hee Moon; Byung Sun Yoon; Seungkwon You; June Seok Heo; Suhyun Kwon; Jihyun Kirn; Jihye Hwang; Phil Jun Kang; Aeree Kim; Hyun Ok Kim; Kwang Youn Whang

    2012-01-01

    Dear Editor,Somatic cells can be reprogrammed into pluripotent stem cells,called induced pluripotent stem cells (iPSCs),by defined transcription factors (Takahashi et al.,2006).The reprogramming of somatic cells may be a continuous stochastic process in which nearly all somatic donor cells have the ability to give rise to iPSCs with continuous passaging and the expression of defined factors (Hanna et al.,2009).

  14. Induced Pluripotent Stem Cells in Cardiovascular Medicine

    Directory of Open Access Journals (Sweden)

    Toru Egashira

    2011-01-01

    Full Text Available Induced pluripotent stem (iPS cells are generated by reprogramming human somatic cells through the forced expression of several embryonic stem (ES cell-specific transcription factors. The potential of iPS cells is having a significant impact on regenerative medicine, with the promise of infinite self-renewal, differentiation into multiple cell types, and no problems concerning ethics or immunological rejection. Human iPS cells are currently generated by transgene introduction principally through viral vectors, which integrate into host genomes, although the associated risk of tumorigenesis is driving research into nonintegration methods. Techniques for pluripotent stem cell differentiation and purification to yield cardiomyocytes are also advancing constantly. Although there remain some unsolved problems, cardiomyocyte transplantation may be a reality in the future. After those problems will be solved, applications of human iPS cells in human cardiovascular regenerative medicine will be envisaged for the future. Furthermore, iPS cell technology has generated new human disease models using disease-specific cells. This paper summarizes the progress of iPS cell technology in cardiovascular research.

  15. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells

    Science.gov (United States)

    Bharathan, Sumitha Prameela; Manian, Kannan Vrindavan; Aalam, Syed Mohammed Musheer; Palani, Dhavapriya; Deshpande, Prashant Ajit; Pratheesh, Mankuzhy Damodaran; Srivastava, Alok

    2017-01-01

    ABSTRACT Low efficiency of somatic cell reprogramming and heterogeneity among human induced pluripotent stem cells (hiPSCs) demand extensive characterization of isolated clones before their use in downstream applications. By monitoring human fibroblasts undergoing reprogramming for their morphological changes and expression of fibroblast (CD13), pluripotency markers (SSEA-4 and TRA-1-60) and a retrovirally expressed red fluorescent protein (RV-RFP), we compared the efficiency of these features to identify bona fide hiPSC colonies. The co-expression kinetics of fibroblast and pluripotency markers in the cells being reprogrammed and the emerging colonies revealed the heterogeneity within SSEA-4+ and TRA-1-60+ cells, and the inadequacy of these commonly used pluripotency markers for the identification of bona fide hiPSC colonies. The characteristic morphological changes in the emerging hiPSC colonies derived from fibroblasts expressing RV-RFP showed a good correlation between hiPSC morphology acquisition and silencing of RV-RFP and facilitated the easy identification of hiPSCs. The kinetics of retroviral silencing and pluripotency marker expression in emerging colonies suggested that combining both these markers could demarcate the stages of reprogramming with better precision than with pluripotency markers alone. Our results clearly demonstrate that the pluripotency markers that are routinely analyzed for the characterization of established iPSC colonies are not suitable for the isolation of pluripotent cells in the early stages of reprogramming, and silencing of retrovirally expressed reporter genes helps in the identification of colonies that have attained a pluripotent state and the morphology of human embryonic stem cells (hESCs). PMID:28089995

  16. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  17. Human induced pluripotent stem cells: A disruptive innovation.

    Science.gov (United States)

    De Vos, J; Bouckenheimer, J; Sansac, C; Lemaître, J-M; Assou, S

    2016-01-01

    This year (2016) will mark the 10th anniversary of the discovery of induced pluripotent stem cells (iPSCs). The finding that the transient expression of four transcription factors can radically remodel the epigenome, transcriptome and metabolome of differentiated cells and reprogram them into pluripotent stem cells has been a major and groundbreaking technological innovation. In this review, we discuss the major applications of this technology that we have grouped in nine categories: a model to study cell fate control; a model to study pluripotency; a model to study human development; a model to study human tissue and organ physiology; a model to study genetic diseases in a dish; a tool for cell rejuvenation; a source of cells for drug screening; a source of cells for regenerative medicine; a tool for the production of human organs in animals.

  18. Induced pluripotent stem cells: a new revolution for clinical neurology?

    Science.gov (United States)

    Mattis, Virginia B; Svendsen, Clive N

    2011-04-01

    Why specific neuronal populations are uniquely susceptible in neurodegenerative diseases remains a mystery. Brain tissue samples from patients are rarely available for testing, and animal models frequently do not recapitulate all features of a specific disorder; therefore, pathophysiological investigations are difficult. An exciting new avenue for neurological research and drug development is the discovery that patients' somatic cells can be reprogrammed to a pluripotent state; these cells are known as induced pluripotent stem cells. Once pluripotency is reinstated, cell colonies can be expanded and differentiated into specific neural populations. The availability of these cells enables the monitoring in vitro of temporal features of disease initiation and progression, and testing of new drug treatments on the patient's own cells. Hence, this swiftly growing area of research has the potential to contribute greatly to our understanding of the pathophysiology of neurodegenerative and neurodevelopmental diseases.

  19. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  20. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  1. TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation

    Directory of Open Access Journals (Sweden)

    Marta Klimczak

    2017-08-01

    Full Text Available Cellular reprogramming proceeds in a stepwise pathway initiated by binding and transcription of pluripotency factors followed by genome-wide epigenetic changes. Priming events, such as erasure of DNA methylation and chromatin remodeling determines the success of pluripotency acquisition later. Therefore, growing efforts are made to understand epigenetic regulatory network that makes reprogramming possible and efficient. Here, we analyze the role of transcriptional corepressor TRIM28, involved in heterochromatin formation, during the process of reprogramming of mouse somatic cells into induced pluripotent stem cells (iPS cells. We demonstrate that Trim28 knockdown (Trim28 KD causes that emerging iPS cells differentiate immediately back into MEFs therefore they fail to yield stable iPS cell colonies. To better comprehend the mechanism of TRIM28 action in reprogramming, we performed a reverse-phase protein array (RPPA using in excess of 300 different antibodies and compared the proteomic profiles of wild-type and Trim28 KD cells during reprogramming. We revealed the differences in the dynamics of reprogramming of wild-type and Trim28 KD cells. Interestingly, proteomic profile of Trim28 KD cells at the final stage of reprogramming resembled differentiated state rather than maintenance of pluripotency and self-renewal, strongly suggesting spontaneous differentiation of Trim28 KD cells back to their parental cell type. We also observed that action of TRIM28 in reprogramming is accompanied by differential enrichment of proteins involved in cell cycle, adhesion and stemness. Collectively, these results suggest that regulation of epigenetic modifications coordinated by TRIM28 plays a crucial role in reprogramming process.

  2. Reprogramming human amniotic fluid stem cells to functional pluripotency by manipulation of culture conditions.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dafni Moschidou & Pascale V Guillot ### Abstract Pluripotent stem cells have potential applications in regenerative medicine, disease modelling and drug screening. Induced pluripotent stem (iPS) cells have first been generated from fibroblasts using retroviral insertion of OCT4A, SOX2, c-MYC and KLF4. Since then, a number of methods have been developed to avoid the random integration of ectopic factors in the genome and the low efficiency of the process. Those include alt...

  3. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes

    DEFF Research Database (Denmark)

    Menzorov, Aleksei G; Matveeva, Natalia M.; Markakis, Marios Nektarios

    2015-01-01

    BACKGROUND: Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells....... The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. RESULTS: We report the generation of 10 mink ES and 22 i......PS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas...

  4. Concise Review: The Dynamics of Induced Pluripotency and Its Behavior Captured in Gene Network Motifs

    NARCIS (Netherlands)

    Muraro, M.J.; Kempe, H.; Verschure, P.J.

    2013-01-01

    The flexibility of cellular identity is clearly demonstrated by the possibility to reprogram fully differentiated somatic cells to induced pluripotent stem (iPS) cells through forced expression of a set of transcription factors. The generation of iPS cells is of great interest as they provide a trem

  5. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Stummann, Tina C.; Madsen, Helena Borland

    2016-01-01

    The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method...

  6. High-efficient generation of induced pluripotent stem cells from human astrocytes.

    Science.gov (United States)

    Ruiz, Sergio; Brennand, Kristen; Panopoulos, Athanasia D; Herrerías, Aída; Gage, Fred H; Izpisua-Belmonte, Juan Carlos

    2010-12-09

    The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells, including fibroblasts, keratinocytes and peripheral blood cells, with variable reprogramming efficiencies and kinetics. Here, we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells, with similar efficiencies to keratinocytes, which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.

  7. High-efficient generation of induced pluripotent stem cells from human astrocytes.

    Directory of Open Access Journals (Sweden)

    Sergio Ruiz

    Full Text Available The reprogramming of human somatic cells to induced pluripotent stem (hiPS cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells, including fibroblasts, keratinocytes and peripheral blood cells, with variable reprogramming efficiencies and kinetics. Here, we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS cells, with similar efficiencies to keratinocytes, which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.

  8. Methods of induced pluripotent stem cells for clinicalapplication

    Institute of Scientific and Technical Information of China (English)

    Tomohisa Seki; Keiichi Fukuda

    2015-01-01

    Reprograming somatic cells using exogenetic geneexpression represents a groundbreaking step inregenerative medicine. Induced pluripotent stem cells(iPSCs) are expected to yield novel therapies withthe potential to solve many issues involving incurablediseases. In particular, applying iPSCs clinically holds thepromise of addressing the problems of immune rejectionand ethics that have hampered the clinical applicationsof embryonic stem cells. However, as iPSC research hasprogressed, new problems have emerged that need tobe solved before the routine clinical application of iPSCscan become established. In this review, we discuss thecurrent technologies and future problems of human iPSCgeneration methods for clinical use.

  9. Induced pluripotent stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  10. Generation of human induced pluripotent stem cells from dermal fibroblasts.

    Science.gov (United States)

    Lowry, W E; Richter, L; Yachechko, R; Pyle, A D; Tchieu, J; Sridharan, R; Clark, A T; Plath, K

    2008-02-26

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ectopic expression of the defined transcription factors KLF4, OCT4, SOX2, and C-MYC. The resultant cell lines are morphologically indistinguishable from human embryonic stem cells (HESC) generated from the inner cell mass of a human preimplantation embryo. Consistent with these observations, human iPS cells share a nearly identical gene-expression profile with two established HESC lines. Importantly, DNA fingerprinting indicates that the human iPS cells were derived from the donor material and are not a result of contamination. Karyotypic analyses demonstrate that reprogramming of human cells by defined factors does not induce, or require, chromosomal abnormalities. Finally, we provide evidence that human iPS cells can be induced to differentiate along lineages representative of the three embryonic germ layers indicating the pluripotency of these cells. Our findings are an important step toward manipulating somatic human cells to generate an unlimited supply of patient-specific pluripotent stem cells. In the future, the use of defined factors to change cell fate may be the key to routine nuclear reprogramming of human somatic cells.

  11. Advances in the study on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Shuang; DUAN EnKui

    2008-01-01

    Recently, the study on "induced pluripotent stem cells" (iPS cells) has made a great breakthrough, and it is considered as a new milestone in the history of life science. This progress has updated our traditional concepts about pluripotency control, and provided people with a brand-new strategy for somatic cell nuclear reprogramming. In virtue of its availability and stability, this method holds great potential in both biological and clinical research. In order to introduce this rising field of study, this paper starts with an overview of the development of iPS cell establishment, describes the key steps in generating iPS cells, elaborates several relevant scientific issues, and evaluates its current restrictions and promises in future research.

  12. Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamaguchi

    Full Text Available Fair comparison of reprogramming efficiencies and in vitro differentiation capabilities among induced pluripotent stem cell (iPSC lines has been hampered by the cellular and genetic heterogeneity of de novo infected somatic cells. In order to address this problem, we constructed a single cassette all-in-one inducible lentiviral vector (Ai-LV for the expression of three reprogramming factors (Oct3/4, Klf4 and Sox2. To obtain multiple types of somatic cells having the same genetic background, we generated reprogrammable chimeric mice using iPSCs derived from Ai-LV infected somatic cells. Then, hepatic cells, hematopoietic cells and fibroblasts were isolated at different developmental stages from the chimeric mice, and reprogrammed again to generate 2nd iPSCs. The results revealed that somatic cells, especially fetal hepatoblasts were reprogrammed 1200 times more efficiently than adult hepatocytes with maximum reprogramming efficiency reaching 12.5%. However, we found that forced expression of c-Myc compensated for the reduced reprogramming efficiency in aged somatic cells without affecting cell proliferation. All these findings suggest that the Ai-LV system enables us to generate a panel of iPSC clones derived from various tissues with the same genetic background, and thus provides an invaluable tool for iPSC research.

  13. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig.

    Directory of Open Access Journals (Sweden)

    Kwang-Hwan Choi

    Full Text Available Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs, authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC. Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming. Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig.

  14. SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells.

    Science.gov (United States)

    Pan, Chuanying; Hicks, Amy; Guan, Xuan; Chen, Hong; Bishop, Colin E

    2010-04-01

    Induced pluripotent stem (iPS) cells can be derived from human somatic cells by cellular reprogramming. This technology provides a potential source of non-controversial therapeutic cells for tissue repair, drug discovery, and opportunities for studying the molecular basis of human disease. Normally, mouse embryonic fibroblasts (MEFs) are used as feeder layers in the initial derivation of iPS lines. The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentiviral expressed reprogramming factors. In our study, iPS cells expressed common pluripotency markers, displayed human embryonic stem cells (hESCs) morphology and unmethylated promoters of NANOG and OCT4. These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.

  15. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    Science.gov (United States)

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  16. Induced pluripotent stem cells: from Nobel Prizes to clinical applications.

    Science.gov (United States)

    Rashid, S Tamir; Alexander, Graeme J M

    2013-03-01

    Advances in basic hepatology have been constrained for many years by the inability to culture primary hepatocytes in vitro, until just over five years ago when the scientific playing field was changed beyond recognition with the demonstration that human skin fibroblasts could be reprogrammed to resemble embryonic cells. The reprogrammed cells, known as induced pluripotent stem cells (iPSCs), were then shown to have the capacity to re-differentiate into almost any human cell type, including hepatocytes. The unlimited number and isogenic nature of the cells that can be generated from tiny fragments of tissue have massive implications for the study of human liver diseases in vitro. Of more immediate clinical importance were recent data demonstrating precision gene therapy on patient specific iPSCs, which opens up the real and exciting possibility of autologous hepatocyte transplantation as a substitute for allogeneic whole liver transplantation, which has been an effective approach to end-stage liver disease, but one that has now been outstripped by demand. In this review, we describe the historical development, current technology and potential clinical applications of induced pluripotency, concluding with a perspective on possible future directions in this dynamic field.

  17. Few single nucleotide variations in exomes of human cord blood induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Rui-Jun Su

    Full Text Available The effect of the cellular reprogramming process per se on mutation load remains unclear. To address this issue, we performed whole exome sequencing analysis of induced pluripotent stem cells (iPSCs reprogrammed from human cord blood (CB CD34(+ cells. Cells from a single donor and improved lentiviral vectors for high-efficiency (2-14% reprogramming were used to examine the effects of three different combinations of reprogramming factors: OCT4 and SOX2 (OS, OS and ZSCAN4 (OSZ, OS and MYC and KLF4 (OSMK. Five clones from each group were subject to whole exome sequencing analysis. We identified 14, 11, and 9 single nucleotide variations (SNVs, in exomes, including untranslated regions (UTR, in the five clones of OSMK, OS, and OSZ iPSC lines. Only 8, 7, and 4 of these, respectively, were protein-coding mutations. An average of 1.3 coding mutations per CB iPSC line is remarkably lower than previous studies using fibroblasts and low-efficiency reprogramming approaches. These data demonstrate that point nucleotide mutations during cord blood reprogramming are negligible and that the inclusion of genome stabilizers like ZSCAN4 during reprogramming may further decrease reprogramming-associated mutations. Our findings provide evidence that CB is a superior source of cells for iPSC banking.

  18. The Histone Acetyltransferase MOF Promotes Induces Generation of Pluripotent Stem Cells.

    Science.gov (United States)

    Mu, Xupeng; Yan, Shaohua; Fu, Changhao; Wei, Anhui

    2015-08-01

    Histone modification plays an important role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). The histone acetyltransferase MOF is a key regulator of ESCs; however, the role of MOF in the process of reprogramming back to induced pluripotent stem cells (iPSCs) remains unclear. In this study, we investigated the function of MOF on the generation of iPSCs. We show that iPSCs contain high levels of MOF mRNA, and the expression level of MOF protein is dramatically upregulated following reprogramming. Most importantly, overexpression of MOF improves reprogramming efficiency and facilitates the formation of iPSCs, whereas small hairpin RNA (shRNA)-mediated knockdown of MOF impairs iPSCs generation during reprogramming. Further investigation reveals that MOF interacts with the H3K4 methyltransferase Wdr5 to promote endogenous Oct4 expression during the reprogramming process. Knockdown of MOF reduces H4K16ac and H3K4me3 modification at the Oct4 promoter. In conclusion, our data indicate that MOF is an important epigenetic regulator that is critical for efficient reprogramming.

  19. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  20. Induced pluripotent stem cells and neurological disease models.

    Science.gov (United States)

    Cai, Sa; Chan, Ying-Shing; Shum, Daisy Kwok-Yan

    2014-02-25

    The availability of human stem cells heralds a new era for in vitro cell-based modeling of neurodevelopmental and neurodegenerative diseases. Adding to the excitement is the discovery that somatic cells of patients can be reprogrammed to a pluripotent state from which neural lineage cells that carry the disease genotype can be derived. These in vitro cell-based models of neurological diseases hold promise for monitoring of disease initiation and progression, and for testing of new drug treatments on the patient-derived cells. In this review, we focus on the prospective applications of different stem cell types for disease modeling and drug screening. We also highlight how the availability of patient-specific induced pluripotent stem cells (iPS cells) offers a unique opportunity for studying and modeling human neurodevelopmental and neurodegenerative diseases in vitro and for testing small molecules or other potential therapies for these disorders. Finally, the limitations of this technology from the standpoint of reprogramming efficiency and therapeutic safety are discussed.

  1. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    Science.gov (United States)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  2. YAP Induces Human Naive Pluripotency

    Directory of Open Access Journals (Sweden)

    Han Qin

    2016-03-01

    Full Text Available The human naive pluripotent stem cell (PSC state, corresponding to a pre-implantation stage of development, has been difficult to capture and sustain in vitro. We report that the Hippo pathway effector YAP is nuclearly localized in the inner cell mass of human blastocysts. Overexpression of YAP in human embryonic stem cells (ESCs and induced PSCs (iPSCs promotes the generation of naive PSCs. Lysophosphatidic acid (LPA can partially substitute for YAP to generate transgene-free human naive PSCs. YAP- or LPA-induced naive PSCs have a rapid clonal growth rate, a normal karyotype, the ability to form teratomas, transcriptional similarities to human pre-implantation embryos, reduced heterochromatin levels, and other hallmarks of the naive state. YAP/LPA act in part by suppressing differentiation-inducing effects of GSK3 inhibition. CRISPR/Cas9-generated YAP−/− cells have an impaired ability to form colonies in naive but not primed conditions. These results uncover an unexpected role for YAP in the human naive state, with implications for early human embryology.

  3. Nuclear reprogramming by nuclear transplantation and defined transcription factors

    Institute of Scientific and Technical Information of China (English)

    WANG YiXuan; LIU Sheng; LAI LiangXue; GAO ShaoRong

    2009-01-01

    In the past ten years,great breakthroughs have been achieved in the nuclear reprogramming area.It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state,which indicates that differentiated cell fate is not irreversible.Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing repro-gramming of differentiated somatic cell genome.In the present review,we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose.

  4. The effect of aging on human induced pluripotent stem cells

    Science.gov (United States)

    Sardo, Valentina Lo; Ferguson, William; Erikson, Galina A.; Topol, Eric J; Baldwin, Kristin K; Torkamani, Ali

    2017-01-01

    Induced pluripotent stem cells (iPSCs) are being developed as a source for autologous cell therapies, many of which aim to treat aged patients1–5. To explore the impact of age on iPSC quality, we produced iPSCs from blood cells of 16 donors aged 21–100. We find that while reprogramming resets most of the epigenome, iPSCs retain an epigenetic signature of age that diminishes with passaging. Reprogramming via clonal expansion also exposes somatic mutations present in individual donor cells, which are missed by other methods. We find that exomic mutations in iPSCs increase linearly with age and each iPSC line analyzed carries at least one gene-disrupting mutation, of which several have previously been linked to cancer or dysfunction. Unexpectedly, elderly donors (>90 yrs) harbor fewer mutations than predicted and their distribution suggests that blood in elderly donors derives from a contracted progenitor pool. These studies show that harnessing clonal expansion during reprogramming can uncover age-associated processes relevant to the clinical use of iPSCs. PMID:27941802

  5. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gourronc, Francoise A. [Department of Microbiology, University of Iowa (United States); Klingelhutz, Aloysius J., E-mail: al-klingelhutz@uiowa.edu [Department of Microbiology, University of Iowa (United States)

    2012-02-01

    It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.

  6. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  7. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  8. Derivation of induced pluripotent stem cells from pig somatic cells.

    Science.gov (United States)

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  9. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.

    Science.gov (United States)

    Mali, Prashant; Chou, Bin-Kuan; Yen, Jonathan; Ye, Zhaohui; Zou, Jizhong; Dowey, Sarah; Brodsky, Robert A; Ohm, Joyce E; Yu, Wayne; Baylin, Stephen B; Yusa, Kosuke; Bradley, Allan; Meyers, David J; Mukherjee, Chandrani; Cole, Philip A; Cheng, Linzhao

    2010-04-01

    We report here that butyrate, a naturally occurring fatty acid commonly used as a nutritional supplement and differentiation agent, greatly enhances the efficiency of induced pluripotent stem (iPS) cell derivation from human adult or fetal fibroblasts. After transient butyrate treatment, the iPS cell derivation efficiency is enhanced by 15- to 51-fold using either retroviral or piggyBac transposon vectors expressing 4 to 5 reprogramming genes. Butyrate stimulation is more remarkable (>100- to 200-fold) on reprogramming in the absence of either KLF4 or MYC transgene. Butyrate treatment did not negatively affect properties of iPS cell lines established by either 3 or 4 retroviral vectors or a single piggyBac DNA transposon vector. These characterized iPS cell lines, including those derived from an adult patient with sickle cell disease by either the piggyBac or retroviral vectors, show normal karyotypes and pluripotency. To gain insights into the underlying mechanisms of butyrate stimulation, we conducted genome-wide gene expression and promoter DNA methylation microarrays and other epigenetic analyses on established iPS cells and cells from intermediate stages of the reprogramming process. By days 6 to 12 during reprogramming, butyrate treatment enhanced histone H3 acetylation, promoter DNA demethylation, and the expression of endogenous pluripotency-associated genes, including DPPA2, whose overexpression partially substitutes for butyrate stimulation. Thus, butyrate as a cell permeable small molecule provides a simple tool to further investigate molecular mechanisms of cellular reprogramming. Moreover, butyrate stimulation provides an efficient method for reprogramming various human adult somatic cells, including cells from patients that are more refractory to reprogramming.

  10. Regeneration and reprogramming compared

    Directory of Open Access Journals (Sweden)

    Robles Vanesa

    2010-01-01

    Full Text Available Abstract Background Dedifferentiation occurs naturally in mature cell types during epimorphic regeneration in fish and some amphibians. Dedifferentiation also occurs in the induction of pluripotent stem cells when a set of transcription factors (Oct4, Sox2, Klf4 and c-Myc is over expressed in mature cell types. Results We hypothesised that there are parallels between dedifferentiation or reprogramming of somatic cells to induced pluripotent stem cells and the natural process of dedifferentiation during epimorphic regeneration. We analysed expression levels of the most commonly used pluripotency associated factors in regenerating and non-regenerating tissue and compared them with levels in a pluripotent reference cell. We found that some of the pluripotency associated factors (oct4/pou5f1, sox2, c-myc, klf4, tert, sall4, zic3, dppa2/4 and fut1, a homologue of ssea1 were expressed before and during regeneration and that at least two of these factors (oct4, sox2 were also required for normal fin regeneration in the zebrafish. However these factors were not upregulated during regeneration as would be expected if blastema cells acquired pluripotency. Conclusions By comparing cells from the regeneration blastema with embryonic pluripotent reference cells we found that induced pluripotent stem and blastema cells do not share pluripotency. However, during blastema formation some of the key reprogramming factors are both expressed and are also required for regeneration to take place. We therefore propose a link between partially reprogrammed induced pluripotent stem cells and the half way state of blastema cells and suggest that a common mechanism might be regulating these two processes.

  11. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture.

    Directory of Open Access Journals (Sweden)

    Charlotte A Willmann

    Full Text Available Induced pluripotent stem cells (iPSCs are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs. Given that fully reprogrammed cells are highly proliferative and escape from cellular senescence, it is conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs with episomal plasmid vectors. Colony frequency was higher and size was larger when using murine embryonic fibroblasts (MEFs as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs. We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs revealed similar in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs - this is of relevance for standardization and automation of cell culture procedures.

  12. Transcriptional signature and memory retention of human-induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Maria C N Marchetto

    Full Text Available Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs. Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.

  13. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture.

    Science.gov (United States)

    Willmann, Charlotte A; Hemeda, Hatim; Pieper, Lisa A; Lenz, Michael; Qin, Jie; Joussen, Sylvia; Sontag, Stephanie; Wanek, Paul; Denecke, Bernd; Schüler, Herdit M; Zenke, Martin; Wagner, Wolfgang

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). Given that fully reprogrammed cells are highly proliferative and escape from cellular senescence, it is conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs) with episomal plasmid vectors. Colony frequency was higher and size was larger when using murine embryonic fibroblasts (MEFs) as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs). We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs revealed similar in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs - this is of relevance for standardization and automation of cell culture procedures.

  14. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  15. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective.

    Science.gov (United States)

    Bai, Qiang; Desprat, Romain; Klein, Bernard; Lemaître, Jean-Marc; De Vos, John

    2013-04-01

    Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are two types of pluripotent stem cells that hold great promise for biomedical research and medical applications. iPSCs were initially favorably compared to ESCs. This view was first based on ethical arguments (the generation of iPSCs does not require the destruction of an embryo) and on immunological reasons (it is easier to derive patient HLA-matched iPSCs than ESCs). However, several reports suggest that iPSCs might be characterized by higher occurrence of epigenetic and genetic aberrations than ESCs as a consequence of the reprogramming process. We focus here on the DNA integrity of pluripotent stem cells and examine the three main sources of genomic abnormalities in iPSCs: (1) genomic variety of the parental cells, (2) cell reprogramming, and (3) in vitro cell culture. Recent reports claim that it is possible to generate mouse or human iPSC lines with a mutation level similar to that of the parental cells, suggesting that "genome-friendly" reprogramming techniques can be developed. The issue of iPSC DNA integrity clearly highlights the crucial need of guidelines to define the acceptable level of genomic integrity of pluripotent stem cells for biomedical applications. We discuss here the main issues that such guidelines should address.

  16. KAJIAN INDUCED PLURIPOTENT STEMCELL (iPS (HARAPAN DAN TANTANGAN

    Directory of Open Access Journals (Sweden)

    Masagus Zainuri

    2014-05-01

    Full Text Available AbstractInduced Pluripotent Stemcell (iPS are adult cells which the genetic information in the nucleus of those cells being reprogrammed (reprogram by inserting exogenous pluripotential genes. The exogenous gene transduction is using vectors, such as lentivirus, retrovirus, or adenovirus, which suppressed the gene expression of the original cells, so they will express the transduced exogenous gene. Viral vectors are then used to reprogramming and producing iPS clones that are pluripotent. iPS derived from adult cells of patient with certain diseases will be used as a tool to study the mechanisms of those specific diseases and the effects of selected drugs against the diseases. Several previous studies have shown that iPS clones developed from specific genetic disease have its original genotype and retain the character of the response to the drug that similar as the original adult cells. Opportunities for the utilization of autologous iPS cell therapy in the future is wide open as expected iPS transplant will not be rejected when transplanted back to the patient. Behind all its potential, iPS production is still facing some problems to be applicable clinically. The use of viruses as vectors may cause problems due to virus gene sequences may be integrated into the genome of the DNA donor cell, thereby causing mutations of the iPS clones. Several subsequent studies have succeeded in replacing the use of viruses as vectors, but the level of efficiency obtained is still very low. Another problem that arises is that epigenetic changes may occur in iPS cultures. Many advanced research related to iPS may be developed in Indonesia and is necessary to improve the production efficiency of iPS and solve iPS clones epigenetic changes problems in the future.Keywords: iPS, pluripotency, transduction, transfection.AbstrakInduced Pluripotent Stemcell (iPS adalah sel somatic dewasa yang informasi genetika dalam inti selnyadiprogram ulang (reprogram dengan cara

  17. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal. CONCLUSIONS/SIGNIFICANCE: These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  18. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency

    Science.gov (United States)

    Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup

    2010-03-01

    Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.

  19. MicroRNA profiling of human-induced pluripotent stem cells.

    Science.gov (United States)

    Wilson, Kitchener D; Venkatasubrahmanyam, Shivkumar; Jia, Fangjun; Sun, Ning; Butte, Atul J; Wu, Joseph C

    2009-06-01

    MicroRNAs (miRNAs) are a newly discovered endogenous class of small noncoding RNAs that play important posttranscriptional regulatory roles by targeting mRNAs for cleavage or translational repression. Accumulating evidence now supports the importance of miRNAs for human embryonic stem cell (hESC) self-renewal, pluripotency, and differentiation. However, with respect to induced pluripotent stem cells (iPSC), in which embryonic-like cells are reprogrammed from adult cells using defined factors, the role of miRNAs during reprogramming has not been well-characterized. Determining the miRNAs that are associated with reprogramming should yield significant insight into the specific miRNA expression patterns that are required for pluripotency. To address this lack of knowledge, we use miRNA microarrays to compare the "microRNA-omes" of human iPSCs, hESCs, and fetal fibroblasts. We confirm the presence of a signature group of miRNAs that is up-regulated in both iPSCs and hESCs, such as the miR-302 and 17-92 clusters. We also highlight differences between the two pluripotent cell types, as in expression of the miR-371/372/373 cluster. In addition to histone modifications, promoter methylation, transcription factors, and other regulatory control elements, we believe these miRNA signatures of pluripotent cells likely represent another layer of regulatory control over cell fate decisions, and should prove important for the cellular reprogramming field.

  20. MicroRNA Expression Profiling of Human Induced Pluripotent and Embryonic Stem Cells

    OpenAIRE

    Sharma, Amit; Wu, Joseph C.

    2013-01-01

    Clinical implications of induced pluripotent stem (iPS) cell technology are enormous for personalized medicine. However, extensive use of viral approach for ectopic expression of reprogramming factors is a major hurdle in realization of its true potential. Non-viral methods for making iPS cells, although plausible, are impractical because of high cost. MicroRNAs are important cellular modulators that have been shown to rival transcription factors and are important players in embryonic develop...

  1. The future of induced pluripotent stem cells for cardiac therapy and drug development.

    Science.gov (United States)

    Thorrez, Lieven; Sampaolesi, Maurilio

    2011-10-01

    The field of stem cell research was revolutionized with the advent of induced pluripotent stem cells. By reprogramming somatic cells to pluripotent stem cells, most ethical concerns associated with the use of embryonic stem cells are overcome, such that many hopes from the stem cell field now seem a step closer to reality. Several methods and cell sources have been described to create induced pluripotent stem cells and we discuss their characteristics in terms of feasibility and efficiency. From these cells, cardiac progenitors and cardiomyocytes can be derived by several protocols and most recent advances as well as remaining limitations are being discussed. However, in the short time period this technology has been around, evidence emerges that induced pluripotent stem cells may be more prone to genetic defects and maintain an epigenetic memory and thus may not be entirely the same as embryonic stem cells. Despite the lack of a complete fundamental understanding of stem cell biology, and even more of ways how to coax them into defined cell types, the technology is quickly adopted by industry. This paper gives an overview of the current applications of induced pluripotent stem cells in cardiovascular drug development and highlights active areas of research towards functional repair of the damaged heart. Adult stem cells have already been taken to clinical trials and we discuss these results in light of potential and hurdles to be taken to move induced pluripotent stem cells to the clinic.

  2. Different developmental potential of pluripotent stem cells generated by different reprogramming strategies

    Institute of Scientific and Technical Information of China (English)

    Jing Jiang; Yixue Li; Jiarui Wu; Jinsong Li; Guohui Ding; Jiangwei Lin; Man Zhang; Linyu Shi; Wenjian Lv; Hui Yang; Huasheng Xiao; Gang Pei

    2011-01-01

    @@ Dear Editor, Recent studies show that induced pluripotent stem cells (iPSCs) generated through ectopic expression of transcription factors retain an epigenetic memory of their original somatic cells (Kim et al., 2010; Polo et al., 2010) or aberrant silencing of a single imprinted gene cluster (Liu et al.,2010; Stadtfeld et al., 2010), which affects their developmental and differentiation potentials.In contrast, nuclear transfer can more faithfully reprogramme somatic cells into embryonic stem (ES)cells (nuclear transfer ES cells, ntESCs)(Brambrink et al., 2006; Wakayama et al.,2006).

  3. Induced pluripotent stem cells in dermatology: potentials, advances, and limitations.

    Science.gov (United States)

    Bilousova, Ganna; Roop, Dennis R

    2014-11-03

    The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) has raised the possibility of producing truly personalized treatment options for numerous diseases. Similar to embryonic stem cells (ESCs), iPSCs can give rise to any cell type in the body and are amenable to genetic correction by homologous recombination. These ESC properties of iPSCs allow for the development of permanent corrective therapies for many currently incurable disorders, including inherited skin diseases, without using embryonic tissues or oocytes. Here, we review recent progress and limitations of iPSC research with a focus on clinical applications of iPSCs and using iPSCs to model human diseases for drug discovery in the field of dermatology.

  4. Generation of induced pluripotent stem cells from human cord blood.

    Science.gov (United States)

    Haase, Alexandra; Olmer, Ruth; Schwanke, Kristin; Wunderlich, Stephanie; Merkert, Sylvia; Hess, Christian; Zweigerdt, Robert; Gruh, Ina; Meyer, Johann; Wagner, Stefan; Maier, Lars S; Han, Dong Wook; Glage, Silke; Miller, Konstantin; Fischer, Philipp; Schöler, Hans R; Martin, Ulrich

    2009-10-02

    Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.

  5. Induced pluripotent stem cell models of lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Daniel K. Borger

    2017-06-01

    Full Text Available Induced pluripotent stem cells (iPSCs have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research.

  6. Concise Review: LIN28/let-7 Signaling, a Critical Double-Negative Feedback Loop During Pluripotency, Reprogramming, and Tumorigenicity.

    Science.gov (United States)

    Farzaneh, Maryam; Attari, Farnoosh; Khoshnam, Seyed Esmaeil

    2017-08-28

    MicroRNAs (miRNAs) with 20-30 nucleotides have recently emerged as the multidimensional regulators of cell fate decisions. Recent improvement in high-throughput sequencing has highlighted the potential role of LIN28/let-7 regulatory network in several developmental events. It was proposed that this pathway might represent a functional signature in cell proliferation, transition between commitment and pluripotency, and regulation of cancer and tumorigenicity. LIN28/let-7 regulatory pathway is one of the excellent examples of the relationship between an miRNA and mRNAs. This review article highlights the potentials of LIN28/let-7 signaling in gene regulatory pathways during pluripotency, reprogramming, and tumorigenicity.

  7. Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences.

    Science.gov (United States)

    Hussein, Samer M I; Elbaz, Judith; Nagy, Andras A

    2013-03-01

    In 2006, Shinya Yamanaka and colleagues discovered how to reprogram terminally differentiated somatic cells to a pluripotent stem cell state. The resulting induced pluripotent stem cells (iPSCs) made a paradigm shift in the field, further nailing down the disproval of the long-held dogma that differentiation is unidirectional. The prospect of using iPSCs for patient-specific cell-based therapies has been enticing. This promise, however, has been questioned in the last two years as several studies demonstrated intrinsic epigenetic and genomic anomalies in these cells. Here, we not only review the recent critical studies addressing the genome integrity during the reprogramming process, but speculate about the underlying mechanisms that could create de novo genome damage in iPSCs. Finally, we discuss how much an elevated mutation load really matters considering the safety of future therapies with cells heavily cultured in vitro.

  8. Prolonged Proteasome Inhibition Cyclically Upregulates Oct3/4 and Nanog Gene Expression, but Reduces Induced Pluripotent Stem Cell Colony Formation

    Science.gov (United States)

    Floyd, Elizabeth Z.; Staszkiewicz, Jaroslaw; Power, Rachel A.; Kilroy, Gail; Kirk-Ballard, Heather; Barnes, Christian W.; Strickler, Karen L.; Rim, Jong S.; Harkins, Lettie L.; Gao, Ru; Kim, Jeong

    2015-01-01

    Abstract There is ample evidence that the ubiquitin–proteasome system is an important regulator of transcription and its activity is necessary for maintaining pluripotency and promoting cellular reprogramming. Moreover, proteasome activity contributes to maintaining the open chromatin structure found in pluripotent stem cells, acting as a transcriptional inhibitor at specific gene loci generally associated with differentiation. The current study was designed to understand further the role of proteasome inhibition in reprogramming and its ability to modulate endogenous expression of pluripotency-related genes and induced pluripotent stem cells (iPSCs) colony formation. Herein, we demonstrate that acute combinatorial treatment with the proteasome inhibitors MG101 or MG132 and the histone deacetylase (HDAC) inhibitor valproic acid (VPA) increases gene expression of the pluripotency marker Oct3/4, and that MG101 alone is as effective as VPA in the induction of Oct3/4 mRNA expression in fibroblasts. Prolonged proteasome inhibition cyclically upregulates gene expression of Oct3/4 and Nanog, but reduces colony formation in the presence of the iPSC induction cocktail. In conclusion, our results demonstrate that the 26S proteasome is an essential modulator in the reprogramming process. Its inhibition enhances expression of pluripotency-related genes; however, efficient colony formation requires proteasome activity. Therefore, discovery of small molecules that increase proteasome activity might lead to more efficient cell reprogramming and generation of pluripotent cells. PMID:25826722

  9. Generation of human induced pluripotent stem cells using genome integrating or non-integrating methods.

    Science.gov (United States)

    Šimara, P; Tesařová, L; Padourová, S; Koutná, I

    2014-01-01

    Preclinical studies have demonstrated the promising potential of human induced pluripotent stem cells (hiPSCs) for clinical application. To fulfil this goal, efficient and safe methods to generate them must be established. Various reprogramming techniques were presented during seven years of hiPSCs research. Genome non-integrating and completely xeno-free protocols from the first biopsy to stable hiPSC clones are highly preferable in terms of future clinical application. In this short communication, we summarize the reprogramming experiments performed in our laboratories. We successfully generated hiPSCs using STEMCCA lentivirus, Sendai virus or episomal vectors. Human neonatal fibroblasts and CD34(+) blood progenitors were used as cell sources and were maintained either on mouse embryonic feeder cells or in feeder-free conditions. The reprogramming efficiency was comparable for all three methods and both cell types, while the best results were obtained in feeder-free conditions.

  10. Induced pluripotent stem cells and their implication for regenerative medicine.

    Science.gov (United States)

    Csobonyeiova, Maria; Polak, Stefan; Koller, Jan; Danisovic, Lubos

    2015-06-01

    In 2006 Yamanaka's group showed that stem cells with properties similar to embryonic stem cells could be generated from mouse fibroblasts by introducing four genes. These cells were termed induced pluripotent stem cells (iPSCs). Because iPSCs avoid many of ethical concerns associated with the use of embryonic material, they have great potential in cell-based regenerative medicine. They are suitable also for other various purposes, including disease modelling, personalized cell therapy, drug or toxicity screening and basic research. Moreover, in the future, there might become possible to generate organs for human transplantation. Despite these progresses, several studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to immunogenicity of some cells differentiated from iPSCs. Recent methodological improvements are increasing the ease and efficacy of reprogramming, and reducing the genomic modification. However, to minimize or eliminate genetic alternations in the derived iPSC line creation, factor-free human iPSCs are necessary. In this review we discuss recent possibilities of using iPSCs for clinical applications and new advances in field of their reprogramming methods. The main goal of present article was to review the current knowledge about iPSCs and to discuss their potential for regenerative medicine.

  11. Induced pluripotent stem cells: origins, applications, and future perspectives.

    Science.gov (United States)

    Zhao, Jing; Jiang, Wen-jie; Sun, Chen; Hou, Cong-zhe; Yang, Xiao-Mei; Gao, Jian-gang

    2013-12-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, cell therapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cell sources. To circumvent ethical disputes, great efforts have been taken to generate ES cell-like cells, which are not derived from the inner cell mass of blastocyst-stage embryos. In 2006, Yamanaka et al. first reprogrammed mouse embryonic fibroblasts into ES cell-like cells called induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of cell types. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cell sources. Now iPS cells have been used for cell therapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  12. Induced pluripotent stem cells:origins, applications, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jing ZHAO; Wen-jie JIANG; Chen SUN; Cong-zhe HOU; Xiao-mei YANG; Jian-gang GAO

    2013-01-01

    Embryonic stem (ES) cells are widely used for different purposes, including gene targeting, celltherapy, tissue repair, organ regeneration, and so on. However, studies and applications of ES cells are hindered by ethical issues regarding cellsources. To circumvent ethical disputes, great efforts have been taken to generate ES cel-like cells, which are not derived from the inner cellmass of blastocyst-stage embryos. In 2006, Yamanaka et al. first re-programmed mouse embryonic fibroblasts into ES cell-like cells cal ed induced pluripotent stem (iPS) cells. About one year later, Yamanaka et al. and Thomson et al. independently reprogrammed human somatic cells into iPS cells. Since the first generation of iPS cells, they have now been derived from quite a few different kinds of celltypes. In particular, the use of peripheral blood facilitates research on iPS cells because of safety, easy availability, and plenty of cellsources. Now iPS cells have been used for celltherapy, disease modeling, and drug discovery. In this review, we describe the generations, applications, potential issues, and future perspectives of iPS cells.

  13. Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Motosugi, Nami; Fujimoto, Takafumi; Arai, Katsutoshi; Kinoshita, Masato; Hashimoto, Hisashi; Ozato, Kenjiro; Wakamatsu, Yuko

    2007-12-01

    Reprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.7% of the reconstructed embryos grew into adults that expressed GFP in various tissues in the same pattern as in the donor fish. Moreover, these fish were diploid, fertile and capable of passing the marker gene to the next generation in Mendelian fashion. We hesitate to call these fish 'clones' because we used non-enucleated eggs as recipients; in effect, they may be chimeras consisting of cells derived from diploid recipient nuclei and donor nuclei. In either case, fish adult somatic cell nuclei were reprogrammed to pluripotency and differentiated into a variety of cell types including germ cells via the use of diploidized recipient eggs.

  14. Translational prospects for human induced pluripotent stem cells.

    Science.gov (United States)

    Csete, Marie

    2010-07-01

    The pace of research on human induced pluripotent stem (iPS) cells is frantic worldwide, based on the enormous therapeutic potential of patient-specific pluripotent cells free of the ethical and political issues that plagued human embryonic stem cell research. iPS cells are now relatively easy to isolate from somatic cells and reprogramming can be accomplished using nonmutagenic technologies. Access to iPS cells is already paying dividends in the form of new disease-in-a-dish models for drug discovery and as scalable sources of cells for toxicology. For translation of cell therapies, the major advantage of iPS cells is that they are autologous, but for many reasons, perfect immunologic tolerance of iPS-based grafts should not be assumed. This article focuses on the functional identity of iPS cells, anticipated safety and technical issues in their application, as well as a survey of the progress likely to be realized in clinical applications in the next decade.

  15. FAS-Based Cell Depletion Facilitates the Selective Isolation of Mouse Induced Pluripotent Stem Cells

    Science.gov (United States)

    Warlich, Eva; Schambach, Axel; Lock, Dominik; Wedekind, Dirk; Glage, Silke; Eckardt, Dominik; Bosio, Andreas; Knöbel, Sebastian

    2014-01-01

    Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC) opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF) and mouse pluripotent stem cells (PSC). Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM) and stage-specific embryonic antigen 1 (SSEA1) were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues. PMID:25029550

  16. FAS-based cell depletion facilitates the selective isolation of mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Eva Warlich

    Full Text Available Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF and mouse pluripotent stem cells (PSC. Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM and stage-specific embryonic antigen 1 (SSEA1 were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues.

  17. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  18. Assessment of porcine-induced pluripotent stem cells by in vivo assays

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Freude, Karla Kristine; Petkov, Stoyan Gueorguiev

    Concerted efforts have been expended in deriving porcine induced pluripotent stem cells (piPSC) which are envisaged to more faithfully mimic human physiology than existing rodent-derived iPSC lines. While initial piPSC lines, first generated in 2009, exhibit the majority of hallmarks displayed by i......, human and murine episomal reprogramming approaches lead to integration of such transgenes. Thirdly, current culturing conditions fail to support the maintenance of either porcine embryonic stem cells (pESC) or piPSC. Lastly, piPSC are unable to reproducibly contribute to chimeric embryos as demonstrated......PSCs derived from other mammalian species, this is not without some caveats. Firstly, all existing piPSC-like cells are afflicted by insufficient activation of endogenous pluripotency genes. Secondly and associated with this, lack of silencing of exogenous pluripotency genes is a general drawback: in contrast...

  19. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  20. Efficient method to create integration-free, virus-free, Myc and Lin28-free human induced pluripotent stem cells from adherent cells.

    Science.gov (United States)

    Kamath, Anant; Ternes, Sara; McGowan, Stephen; English, Anthony; Mallampalli, Rama; Moy, Alan B

    2017-08-01

    Nonviral induced pluripotent stem cell (IPSC) reprogramming is not efficient without the oncogenes, Myc and Lin28. We describe a robust Myc and Lin28-free IPSC reprogramming approach using reprogramming molecules. IPSC colony formation was compared in the presence and absence of Myc and Lin28 by the mixture of reprogramming molecules and episomal vectors. While more colonies were observed in cultures transfected with the aforementioned oncogenes, the Myc and Lin28-free method achieved the same reprogramming efficiency as reports that used these oncogenes. Further, all colonies were fully reprogrammed based on expression of SSEA4, even in the absence of Myc and Lin28. This approach satisfies an important regulatory pathway for developing IPSC cell therapies with lower clinical risk.

  1. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters.

    Science.gov (United States)

    Chen, Hao; Zuo, Qisheng; Wang, Yingjie; Song, Jiuzhou; Yang, Huilin; Zhang, Yani; Li, Bichun

    2017-02-13

    Traditional approaches for generating goat pluripotent stem cells (iPSCs) suffer from complexity and low preparation efficiency. Therefore, we tried to derive goat iPSCs with a new method by transfecting exogenous Oct4, Sox2, Klf4 and c-Myc mRNAs into goat embryonic fibroblasts (GEFs), and explore the mechanisms regarding the transcription regulation of the reprogramming factors in goat iPSCs induction. mRNAs of the four reprogramming factors were transfected into GEFs, and were localized in nucleus with approximately 90% transfection efficiency. After five consecutive transfections, GEFs tended to aggregate by day 10. Clones appeared on day 15-18, and typical embryonic stem cell -like clones formed on day 20. One thousand AKP staining positive clones were achieved in 10(4) GEFs, with approximately 1.0% induction efficiency. Immunofluorescence staining and qRT-PCR detection of the ESCs markers confirmed the properties of the goat iPSCs. The achieved goat iPSCs could be cultured to 22nd passage, which showed normal karyotype. The goat iPSCs were able to differentiate into embryoid bodies with three germ layers. qRT-PCR and western blot showed activated endogenous pluripotent factors expression in the later phase of mRNA-induced goat iPSCs induction. Epigenetic analysis of the endogenous pluripotent gene Nanog revealed its demethylation status in derived goat iPSCs. Core promoter regions of the four reprogramming factors were determined. Transcription factor binding sites, including Elf-1, AP-2, SP1, C/EBP and MZF1, were identified to be functional in the core promoter regions of these reprogramming genes. Demethylation and deacetylation of the promoters enhanced their transcription activities. We successfully generated goat iPSCs by transfection of Oct4, Sox2, Klf4 and c-Myc mRNAs into GEFs, which initiated the endogenous reprogramming network and altered the methylation status of pluripotent genes. Core promoter regions and functional transcription binding sites of

  2. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes.

    Science.gov (United States)

    Bui, Hong-Thuy; Kwon, Deug-Nam; Kang, Min-Hui; Oh, Mi-Hye; Park, Mi-Ryung; Park, Woo-Jin; Paik, Seung-Sam; Van Thuan, Nguyen; Kim, Jin-Hoi

    2012-12-01

    Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.

  3. Identification of the early and late responder genes during the generation of induced pluripotent stem cells from mouse fibroblasts.

    Science.gov (United States)

    Park, Jihwan; Kwon, Yoo-Wook; Ham, Seokjin; Hong, Chang-Pyo; Seo, Seonghye; Choe, Moon Kyung; Shin, So-I; Lee, Choon-Soo; Kim, Hyo-Soo; Roh, Tae-Young

    2017-01-01

    The generation of induced pluripotent stem cell (iPSC), a substitute for embryonic stem cell (ESC), requires the proper orchestration of a transcription program at the chromatin level. Our recent approach for the induction of pluripotent stem cells from fibroblasts using protein extracts from mouse ESCs could overcome the potential tumorigenicity risks associated with random retroviral integration. Here, we examine the epigenetic modifications and the transcriptome of two types of iPSC and of partially reprogrammed iPSCs (iPSCp) generated independently from adult cardiac and skin fibroblasts to assess any perturbations of the transcription program during reprogramming. The comparative dissection of the transcription profiles and histone modification patterns at lysines 4 and 27 of histone H3 of the iPSC, iPSCp, ESC, and somatic cells revealed that the iPSC was almost completely comparable to the ESC, regardless of their origins, whereas the genes of the iPSCp were dysregulated to a larger extent. Regardless of the origins of the somatic cells, the fibroblasts induced using the ESC protein extracts appear to be completely reprogrammed into pluripotent cells, although they show unshared marginal differences in their gene expression programs, which may not affect the maintenance of stemness. A comparative investigation of the iPSCp generated by unwanted reprogramming showed that the two groups of genes on the pathway from somatic cells to iPSC might function as sequential reprogramming-competent early and late responders to the induction stimulus. Moreover, some of the divergent genes expressed only in the iPSCp were associated with many tumor-related pathways. Faithful transcriptional reprogramming should follow epigenetic alterations to generate induced pluripotent stem cells from somatic cells. This genome-wide comparison enabled us to define the early and late responder genes during the cell reprogramming process to iPSC. Our results indicate that the cellular

  4. DNA methylation dynamics in human induced pluripotent stem cells over time.

    Directory of Open Access Journals (Sweden)

    Koichiro Nishino

    2011-05-01

    Full Text Available Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs. Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell and five human embryonic stem cell (ESC lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.

  5. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.

    Science.gov (United States)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-12-20

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.

  6. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr.

    Science.gov (United States)

    Agu, Chukwuma A; Soares, Filipa A C; Alderton, Alex; Patel, Minal; Ansari, Rizwan; Patel, Sharad; Forrest, Sally; Yang, Fengtang; Lineham, Jonathan; Vallier, Ludovic; Kirton, Christopher M

    2015-10-13

    The collection sites of human primary tissue samples and the receiving laboratories, where the human induced pluripotent stem cells (hIPSCs) are derived, are often not on the same site. Thus, the stability of samples prior to derivation constrains the distance between the collection site and the receiving laboratory. To investigate sample stability, we collected blood and held it at room temperature for 5, 24, or 48 hr before isolating peripheral blood mononuclear cells (PBMCs) and reprogramming into IPSCs. Additionally, PBMC samples at 5- and 48-hr time points were frozen in liquid nitrogen for 4 months and reprogrammed into IPSCs. hIPSC lines derived from all time points were pluripotent, displayed no marked difference in chromosomal aberration rates, and differentiated into three germ layers. Reprogramming efficiency at 24- and 48-hr time points was 3- and 10-fold lower, respectively, than at 5 hr; the freeze-thaw process of PBMCs resulted in no obvious change in reprogramming efficiency.

  7. MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling

    Directory of Open Access Journals (Sweden)

    Chingiz Underbayev

    2012-01-01

    Full Text Available Human disease animal models are absolutely invaluable tools for our understanding of mechanisms involved in both physiological and pathological processes. By studying various genetic abnormalities in these organisms we can get a better insight into potential candidate genes responsible for human disease development. To this point a mouse represents one of the most used and convenient species for human disease modeling. Hundreds if not thousands of inbred, congenic, and transgenic mouse models have been created and are now extensively utilized in the research labs worldwide. Importantly, pluripotent stem cells play a significant role in developing new genetically engineered mice with the desired human disease-like phenotype. Induced pluripotent stem (iPS cells which represent reprogramming of somatic cells into pluripotent stem cells represent a significant advancement in research armament. The novel application of microRNA manipulation both in the generation of iPS cells and subsequent lineage-directed differentiation is discussed. Potential applications of induced pluripotent stem cell—a relatively new type of pluripotent stem cells—for human disease modeling by employing human iPS cells derived from normal and diseased somatic cells and iPS cells derived from mouse models of human disease may lead to uncovering of disease mechanisms and novel therapies.

  8. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.

    Science.gov (United States)

    Deng, Yanfei; Liu, Qingyou; Luo, Chan; Chen, Shibei; Li, Xiangping; Wang, Caizhu; Liu, Zhenzhen; Lei, Xiaocan; Zhang, Huina; Sun, Hongliang; Lu, Fenghua; Jiang, Jianrong; Shi, Deshun

    2012-09-01

    Ectopically, expression of defined factors could reprogram mammalian somatic cells into induced pluripotent stem cells (iPSCs), which initiates a new strategy to obtain pluripotent stem cell lines. Attempts have been made to generate buffalo pluripotent stem cells by culturing primary germ cells or inner cell mass, but the efficiency is extremely low. Here, we report a successful method to reprogram buffalo fetal fibroblasts (BFFs) into pluripotent stem cells [buffalo induced pluripotent stem cell (biPSCs)] by transduction of buffalo defined factors (Oct4, Sox2, Klf4, and c-Myc) using retroviral vectors. The established biPSCs displayed typical morphological characteristics of pluripotent stem cells, normal karyotype, positive staining of alkaline phosphatase, and expressed pluripotent markers including Oct4, Sox2, Nanog, Lin28, E-Cadherin, SSEA-1, SSEA-4, TRA-1-81, STAT3, and FOXD3. They could form embryoid bodies (EBs) in vitro and teratomas after injecting into the nude BALB/C mice, and 3 germ layers were identified in the EBs and teratomas. Methylation assay revealed that the promoters of Oct4 and Nanog were hypomethylated in biPSCs compared with BFFs and pre-biPSCs, while the promoters of Sox2 and E-Cadherin were hypomethylated in both BFFs and biPSCs. Further, inhibiting p53 expression by coexpression of SV40 large T antigen and buffalo defined factors in BFFs or treating BFFs with p53 inhibitor pifithrin-a (PFT) could increase the efficiency of biPSCs generation up to 3-fold, and nuclear transfer embryos reconstructed with biPSCs could develop to blastocysts. These results indicate that BFFs can be reprogrammed into biPSCs by buffalo defined factors, and the generation efficiency of biPSCs can be increased by inhibition of p53 expression. These efforts will provide a feasible approach for investigating buffalo stem cell signal pathways, establishing buffalo stem cell lines, and producing genetic modification buffaloes in the future.

  9. Induced Pluripotent Stem Cells from Ataxia-Telangiectasia Recapitulate the Cellular Phenotype

    Science.gov (United States)

    Nayler, Sam; Gatei, Magtouf; Kozlov, Sergei; Gatti, Richard; Mar, Jessica C.; Wells, Christine A.

    2012-01-01

    Pluripotent stem cells can differentiate into every cell type of the human body. Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) therefore provides an opportunity to gain insight into the molecular and cellular basis of disease. Because the cellular DNA damage response poses a barrier to reprogramming, generation of iPSCs from patients with chromosomal instability syndromes has thus far proven to be difficult. Here we demonstrate that fibroblasts from patients with ataxia-telangiectasia (A-T), a disorder characterized by chromosomal instability, progressive neurodegeneration, high risk of cancer, and immunodeficiency, can be reprogrammed to bona fide iPSCs, albeit at a reduced efficiency. A-T iPSCs display defective radiation-induced signaling, radiosensitivity, and cell cycle checkpoint defects. Bioinformatic analysis of gene expression in the A-T iPSCs identifies abnormalities in DNA damage signaling pathways, as well as changes in mitochondrial and pentose phosphate pathways. A-T iPSCs can be differentiated into functional neurons and thus represent a suitable model system to investigate A-T-associated neurodegeneration. Collectively, our data show that iPSCs can be generated from a chromosomal instability syndrome and that these cells can be used to discover early developmental consequences of ATM deficiency, such as altered mitochondrial function, that may be relevant to A-T pathogenesis and amenable to therapeutic intervention. PMID:23197857

  10. The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    Directory of Open Access Journals (Sweden)

    Juli J. Unternaehrer

    2014-11-01

    Full Text Available Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs entails a mesenchymal to epithelial transition (MET. While attempting to dissect the mechanism of MET during reprogramming, we observed that knockdown (KD of the epithelial-to-mesenchymal transition (EMT factor SNAI1 (SNAIL paradoxically reduced, while overexpression enhanced, reprogramming efficiency in human cells and in mouse cells, depending on strain. We observed nuclear localization of SNAI1 at an early stage of fibroblast reprogramming and using mouse fibroblasts expressing a knockin SNAI1-YFP reporter found cells expressing SNAI1 reprogrammed at higher efficiency. We further demonstrated that SNAI1 binds the let-7 promoter, which may play a role in reduced expression of let-7 microRNAs, enforced expression of which, early in the reprogramming process, compromises efficiency. Our data reveal an unexpected role for the EMT factor SNAI1 in reprogramming somatic cells to pluripotency.

  11. Defining Differentially Methylated Regions Specific for the Acquisition of Pluripotency and Maintenance in Human Pluripotent Stem Cells via Microarray

    OpenAIRE

    2014-01-01

    Background Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylati...

  12. Generation of induced pluripotent stem cells from domestic goats.

    Science.gov (United States)

    Sandmaier, Shelley E S; Nandal, Anjali; Powell, Anne; Garrett, Wesley; Blomberg, Leann; Donovan, David M; Talbot, Neil; Telugu, Bhanu P

    2015-09-01

    The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high-priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long-sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN-28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus-1 2A (P2A) self-cleaving peptides that allowed for tri-cistronic expression from each vector. The lentiviral-transduced cells were cultured on irradiated mouse feeder cells in a semi-defined, serum-free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs-that is, well-defined borders, a high nuclear-to-cytoplasmic ratio, a short cell-cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint-free iPSC from ruminants. Mol. Reprod. Dev. 82: 709-721, 2015. © 2015 Wiley Periodicals, Inc.

  13. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid.

    Science.gov (United States)

    Verma, R; Holland, M K; Temple-Smith, P; Verma, P J

    2012-01-01

    Induced pluripotency is a new approach to produce embryonic stem-like cells from somatic cells that provides a unique means to understand both pluripotency and lineage assignment. To investigate whether this technology could be applied to endangered species, where the limited availability of gametes makes production and research on embryonic stem cells difficult, we attempted generation of induced pluripotent stem (iPS) cells from snow leopard (Panthera uncia) fibroblasts by retroviral transfection with Moloney-based retroviral vectors (pMXs) encoding four factors (OCT4, SOX2, KLF4 and cMYC). This resulted in the formation of small colonies of cells, which could not be maintained beyond four passages (P4). However, addition of NANOG, to the transfection cocktail produced stable iPS cell colonies, which formed as early as D3. Colonies of cells were selected at D5 and expanded in vitro. The resulting cell line was positive for alkaline phosphatase (AP), OCT4, NANOG, and Stage-Specific embryonic Antigen-4 (SSEA-4) at P14. RT-PCR also confirmed that endogenous OCT4 and NANOG were expressed by snow leopard iPS cells from P4. All five human transgenes were transcribed at P4, but OCT4, SOX2 and NANOG transgenes were silenced as early as P14; therefore, reprogramming of the endogenous pluripotent genes had occurred. When injected into immune-deficient mice, snow leopard iPS cells formed teratomas containing tissues representative of the three germ layers. In conclusion, this was apparently the first derivation of iPS cells from the endangered snow leopard and the first report on induced pluripotency in felid species. Addition of NANOG to the reprogramming cocktail was essential for derivation of iPS lines in this felid. The iPS cells provided a unique source of pluripotent cells with utility in conservation through cryopreservation of genetics, as a source of reprogrammed donor cells for nuclear transfer or for directed differentiation to gametes in the future.

  14. Deciphering the Molecular Basis of Cellular Reprogramming by Mass Spectrometry-based Proteomics

    NARCIS (Netherlands)

    Benevento, M.

    2014-01-01

    In 2006, Yamanaka and co-workers announced a milestone finding that somatic cells can be reprogrammed into a pluripotent, embryonic-like state. These “artificial” pluripotent cells, called “induced pluripotent stem cells” (iPSCs), have a tremendous impact on the stem cell biology field, revolutioniz

  15. Generation of integration-free induced pluripotent stem cells from a patient with Familial Mediterranean Fever (FMF

    Directory of Open Access Journals (Sweden)

    Kerem Fidan

    2015-11-01

    Full Text Available Fibroblasts from a Familial Mediterranean Fever (FMF patient were reprogrammed with episomal vectors by using the Neon Transfection System for the generation of integration-free induced pluripotent stem cells (iPSCs. The resulting iPSC line was characterized to determine the expression of pluripotency markers, proper differentiation into three germ layers, the presence of normal chromosomal structures as well as the lack of genomic integration. A homozygous missense mutation in the MEFV gene (p.Met694Val, which lead to typical FMF phenotype, was shown to be present in the generated iPSC line.

  16. Episomal plasmid-based generation of induced pluripotent stem cells from fetal femur-derived human mesenchymal stromal cells.

    Science.gov (United States)

    Megges, Matthias; Oreffo, Richard O C; Adjaye, James

    2016-01-01

    Human bone mesenchymal stromal cells derived from fetal femur 55 days post-conception were reprogrammed to induced pluripotent stem cells using episomal plasmid-based expression of OCT4, SOX2, NANOG, LIN28, SV40LT, KLF4 and c-MYC and supplemented with the following pathway inhibitors - TGFβ receptor inhibitor (A-83-01), MEK inhibitor (PD325901), GSK3β inhibitor (CHIR99021) and ROCK inhibitor (HA-100). Successful induction of pluripotency in two iPS-cell lines was demonstrated in vitro and by the Pluritest.

  17. Generation of integration-free induced pluripotent stem cells from a patient with Familial Mediterranean Fever (FMF).

    Science.gov (United States)

    Fidan, Kerem; Kavaklıoğlu, Gülnihal; Ebrahimi, Ayyub; Özlü, Can; Ay, Nur Zeynep; Ruacan, Arzu; Gül, Ahmet; Önder, Tamer T

    2015-11-01

    Fibroblasts from a Familial Mediterranean Fever (FMF) patient were reprogrammed with episomal vectors by using the Neon Transfection System for the generation of integration-free induced pluripotent stem cells (iPSCs). The resulting iPSC line was characterized to determine the expression of pluripotency markers, proper differentiation into three germ layers, the presence of normal chromosomal structures as well as the lack of genomic integration. A homozygous missense mutation in the MEFV gene (p.Met694Val), which lead to typical FMF phenotype, was shown to be present in the generated iPSC line. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Crane

    2015-04-01

    Full Text Available Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources—potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC lines. We then utilized zinc-finger nucleases (ZFNs, designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR. We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.

  19. Immunological considerations for embryonic and induced pluripotent stem cell banking.

    Science.gov (United States)

    Taylor, Craig J; Bolton, Eleanor M; Bradley, J Andrew

    2011-08-12

    Recent advances in stem cell technology have generated enthusiasm for their potential to study and treat a diverse range of human disease. Pluripotent human stem cells for therapeutic use may, in principle, be obtained from two sources: embryonic stem cells (hESCs), which are capable of extensive self-renewal and expansion and have the potential to differentiate into any somatic tissue, and induced pluripotent stem cells (iPSCs), which are derived from differentiated tissue such as adult skin fibroblasts and appear to have the same properties and potential, but their generation is not dependent upon a source of embryos. The likelihood that clinical transplantation of hESC- or iPSC-derived tissues from an unrelated (allogeneic) donor that express foreign human leucocyte antigens (HLA) may undergo immunological rejection requires the formulation of strategies to attenuate the host immune response to transplanted tissue. In clinical practice, individualized iPSC tissue derived from the intended recipient offers the possibility of personalized stem cell therapy in which graft rejection would not occur, but the logistics of achieving this on a large scale are problematic owing to relatively inefficient reprogramming techniques and high costs. The creation of stem cell banks comprising HLA-typed hESCs and iPSCs is a strategy that is proposed to overcome the immunological barrier by providing HLA-matched (histocompatible) tissue for the target population. Estimates have shown that a stem cell bank containing around 10 highly selected cell lines with conserved homozygous HLA haplotypes would provide matched tissue for the majority of the UK population. These simulations have practical, financial, political and ethical implications for the establishment and design of stem cell banks incorporating cell lines with HLA types that are compatible with different ethnic populations throughout the world.

  20. More synergetic cooperation of Yamanaka factors in in-duced pluripotent stem cells than in embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Jinyan Huang; Taotao Chen; Xiaosong Liu; Jing Jiang; Jinsong Li; Dangsheng Li; X Shirley Liu; Wei Li; Jiuhong Kang; Gang Pei

    2009-01-01

    The role of Yamanaka factors as the core regulators in the induction of pluripotency during somatic cell repro-gramming has been discovered recently. Our previous study found that Yamanaka factors regulate a developmental signaling network in maintaining embryonic stem (ES) cell pluripotency. Here, we established completely repro-grammed induced pluripotent stem (iPS) cells and analyzed the global promoter occupancy of Yamanaka factors in these cells by ChiP-chip assays. We found that promoters of 565 genes were co-bound by four Yamanaka factors in iPS cells, a 10-fold increase when compared with their binding in ES cells. The promoters occupied by a single Ya-manaka factor distributed equally in activated and repressed genes in iPS cells, while in ES cells Oct4, Sox2, or Klf4 distributed mostly in repressed genes and c-Myc in activated ones. Pathway analysis of the ChIP-chip data revealed that Yamanaka factors regulated 16 developmental signaling pathways in iPS cells, among which 12 were common and 4 were unique compared to pathways regulated in ES cells. We further analyzed another recently published ChiP-chip dataset in iPS cells and observed similar results, showing the power of ChIP-chip plus pathway analysis for revealing the nature of pluripotency maintenance and regeneration. Next, we experimentally tested one of the repressive signaling pathways and found that its inhibition indeed improved efficiency of cell reprogramming. Taken together, we proposed that there is a core developmental signaling network necessary for pluripotency, with TGF-β, Hedgehog, Wnt, p53 as repressive (Yin) regulators and Jak-STAT, cell cycle, focal adhesion, adherens junction as ac-tive (Yang) ones; and Yamanaka factors synergistically regulate them in a Yin-Yang balanced way to induce pluripo-tency.

  1. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  2. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco|info:eu-repo/dai/nl/328200859; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  3. Very Rapid and Efficient Generation of Induced Pluripotent Stem Cells from Mouse Pre-B Cells.

    Science.gov (United States)

    Di Stefano, Bruno; Graf, Thomas

    2016-01-01

    One of the major obstacles in generating induced pluripotent stem (iPS) cells suitable for therapeutic application is the low efficiency of the process and the long time required, with many iPS lines acquiring genomic aberrations. In this chapter we describe a highly efficient iPS reprogramming system based on the transient expression in pre-B cells of the transcription factor C/EBPα, followed by the induction of the four Yamanaka factors (OSKM). In addition, the process is very rapid, yielding Oct4 positive cells within 2 days and Nanog-positive iPS cell colonies within a week.

  4. Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling.

    Science.gov (United States)

    Sivapatham, Renuka; Zeng, Xianmin

    2016-01-01

    One major hurdle to the development of effective treatments to many diseases is the lack of suitable human model systems. The ability to reprogram human somatic cells to induced pluripotent stem cells (iPSC) offers an excellent opportunity to generate human disease models with primary cells. Currently, several methods to generate iPSC lines exist, and iPSC can be generated from various tissue sources including skin fibroblasts, blood, hair follicles, dental tissue, and urine. In this chapter we describe the generation and characterization of iPSC from blood or fibroblast on a routine base and focus on the integration-free methodologies.

  5. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

    DEFF Research Database (Denmark)

    Hansen, Susanne K; Stummann, Tina C; Borland, Helena;

    2016-01-01

    The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC) lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method...... displaying synchronized spontaneous calcium oscillations within 28days of maturation, and expressed the mature neuronal markers NeuN and Synapsin 1 implying a relatively advanced state of maturity, although not comparable to that of the adult human brain. Interestingly, we were not able to recapitulate...

  6. Human finger-prick induced pluripotent stem cells facilitate the development of stem cell banking.

    Science.gov (United States)

    Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A; Loh, Yuin-Han

    2014-05-01

    Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.

  7. Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Youssef Hibaoui

    2015-04-01

    Full Text Available Down syndrome (DS, trisomy 21, is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming.

  8. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells.

    Science.gov (United States)

    Hirata, Tetsuya; Amano, Tomokazu; Nakatake, Yuhki; Amano, Misa; Piao, Yulan; Hoang, Hien G; Ko, Minoru S H

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) by the forced expression of defined transcription factors in somatic cells holds great promise for the future of regenerative medicine. However, the initial reprogramming mechanism is still poorly understood. Here we show that Zscan4, expressed transiently in2-cell embryos and embryonic stem cells (ESCs), efficiently produces iPSCs from mouse embryo fibroblasts when coexpressed with Klf4, Oct4, and Sox2. Interestingly, the forced expression of Zscan4 is required onlyfor the first few days of iPSC formation. Microarray analysis revealed transient and early induction of preimplantation-specific genes in a Zscan4-dependent manner. Our work indicates that Zscan4 is a previously unidentified potent natural factor that facilitates the reprogramming process and reactivates early embryonic genes.

  9. Clinical Potentials of Cardiomyocytes Derived from Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kwong-Man Ng

    2014-10-01

    Full Text Available The lack of appropriate human cardiomyocyte-based experimental platform has largely hindered the study of cardiac diseases and the development of therapeutic strategies. To date, somatic cells isolated from human subjects can be reprogramed into induced pluripotent stem cells (iPSCs and subsequently differentiated into functional cardiomyocytes. This powerful reprogramming technology provides a novel in vitro human cell-based platform for the study of human hereditary cardiac disorders. The clinical potential of using iPSCs derived from patients with inherited cardiac disorders for therapeutic studies have been increasingly highlighted. In this review, the standard procedures for generating patient-specific iPSCs and the latest commonly used cardiac differentiation protocols will be outlined. Furthermore, the progress and limitations of current applications of iPSCs and iPSCs-derived cardiomyocytes in cell replacement therapy, disease modeling, drug-testing and toxicology studies will be discussed in detail.

  10. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase

    NARCIS (Netherlands)

    Buganim, Y.; Faddah, D.A.; Cheng, A.W.; Itskovich, E.; Markoulaki, S.; Ganz, K.; Klemm, S.L.; van Oudenaarden, A.; Jaenisch, R.

    2012-01-01

    During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene

  11. Induced pluripotent stem cells and Parkinson's disease: modelling and treatment.

    Science.gov (United States)

    Xu, Xiaoyun; Huang, Jinsha; Li, Jie; Liu, Ling; Han, Chao; Shen, Yan; Zhang, Guoxin; Jiang, Haiyang; Lin, Zhicheng; Xiong, Nian; Wang, Tao

    2016-02-01

    Many neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by progressive neuronal loss in different regions of the central nervous system, contributing to brain dysfunction in the relevant patients. Stem cell therapy holds great promise for PD patients, including with foetal ventral mesencephalic cells, human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Moreover, stem cells can be used to model neurodegenerative diseases in order to screen potential medication and explore their mechanisms of disease. However, related ethical issues, immunological rejection and lack of canonical grafting protocols limit common clinical use of stem cells. iPSCs, derived from reprogrammed somatic cells, provide new hope for cell replacement therapy. In this review, recent development in stem cell treatment for PD, using hiPSCs, as well as the potential value of hiPSCs in modelling for PD, have been summarized for application of iPSCs technology to clinical translation for PD treatment. © 2016 John Wiley & Sons Ltd.

  12. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    CHEN LingYi; Liu Lin

    2009-01-01

    Induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of few transcription factors. Like embryonic stem (ES) cells, iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body. iPS cells hold great promise for regenerative medicine,because iPS ceils circumvent not only immunological rejection but also ethical issues. Since the first report on the derivation of iPS cells in 2006, many laboratories all over the world started research on iPS cells and have made significant progress. This paper reviews recent progress in iPS cell research,Including the methods to generate iPS cells, the molecular mechanism of reprogramming in the formation of iPS ceils, and the potential applications of iPS cells in cell replacement therapy. Current problems that need to be addressed and the prospects for iPS research are also discussed.

  13. Current progress and prospects of induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Induced pluripotent stem(iPS) cells are derived from somatic cells by ectopic expression of few transcription factors.Like embryonic stem(ES) cells,iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body.iPS cells hold great promise for regenerative medicine,because iPS cells circumvent not only immunological rejection but also ethical issues.Since the first report on the derivation of iPS cells in 2006,many laboratories all over the world started research on iPS cells and have made significant progress.This paper reviews recent progress in iPS cell research,including the methods to generate iPS cells,the molecular mechanism of reprogramming in the formation of iPS cells,and the potential applications of iPS cells in cell replacement therapy.Current problems that need to be addressed and the prospects for iPS research are also discussed.

  14. Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4

    OpenAIRE

    Nemajerova, A; Kim, S. Y.; Petrenko, O.; Moll, U.M.

    2012-01-01

    Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and functional heterogeneity represents a major hurdle for mechanistic studies aimed at defining the molecular nature of cellular plasticity. We show that reducing the complexity of MEFs by flow cytometry allows th...

  15. A new era of disease modeling and drug discovery using induced pluripotent stem cells.

    Science.gov (United States)

    Suh, Wonhee

    2017-01-01

    In 2006, Shinya Yamanaka first reported that in vitro reprogramming of somatic cells toward pluripotency was achieved by simple induction of specific transcription factors. Induced pluripotent stem cell (iPSC) technology has since revolutionized the ways in which we explore the mechanisms of human diseases and develop therapeutics. Here, I describe the recent advances in human iPSC-based disease modeling and drug discovery and discuss the current challenges. Additionally, I outline potential future applications of human iPSCs in classifying patients based on their response to drugs in clinical trials and elucidating optimal patient-specific therapeutic strategies, which will contribute to reduced attrition rates and the development of precision medicine.

  16. Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming

    OpenAIRE

    Burridge, Paul W.; Keller, Gordon; Gold, Joseph D.; Wu, Joseph C

    2012-01-01

    Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted method developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent ...

  17. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    Science.gov (United States)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  18. Engineering bone tissue substitutes from human induced pluripotent stem cells

    National Research Council Canada - National Science Library

    Giuseppe Maria de Peppo; Iván Marcos-Campos; David John Kahler; Dana Alsalman; Linshan Shang; Gordana Vunjak-Novakovic; Darja Marolt

    2013-01-01

    ...) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling...

  19. Induced pluripotent stem cells: opportunities as research and development tools in 21st century drug discovery.

    Science.gov (United States)

    Rowntree, Rebecca K; McNeish, John D

    2010-07-01

    Pluripotent embryonic stem cells (ESCs), when compared with transformed, primary or engineered cells, have unique characteristics and advantages that have resulted in the development of important cell-based tools in modern drug discovery. However, a key limitation has been the availability of human ESCs from patients with specific medical needs and the broad range of genetic variation represented worldwide. Induced pluripotent stem (iPS) cells are derived from somatic cells that are reprogrammed to a pluripotent stem cell state and have functional characteristics similar to ESCs. The demonstration that human iPS cells can be derived, with relative ease, through the introduction of transcription factor combinations has allowed the generation of disease-specific iPS cell lines. Therefore, iPS cell technology may deliver robust, human pluripotent cell lines from a wide range of clinical phenotypes and genotypes. Although human iPS cell technology is still a new tool in drug discovery, the promise that this technology will impact the discovery of new therapies can be projected based on the uptake of stem cell applications in biopharmaceutical sciences. Here, the near-term opportunities that iPS cells may deliver to drug discoverers to generate and test hypotheses will be discussed, with a focus on the specific strengths and weaknesses of iPS cell technology. Finally, the future perspective will address novel opportunities iPS cells could uniquely deliver to the preclinical development of new drug therapies.

  20. Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2011-08-01

    Full Text Available BACKGROUND: Less than a decade ago the prospect for reprogramming the human somatic cell looked bleak at best. It seemed that the only methods at our disposal for the generation of human isogenic pluripotent cells would have to involve somatic cell nuclear transfer (SCNT. Shinya Yamanaka in August 2006 in his publication (Cell promised to change everything by showing that it was apparently very simple to revert the phenotype of a differentiated cell to a pluripotent one by overexpressing four transcription factors in murine fibroblasts. CONTENT: Mouse and human somatic cells can be genetically reprogrammed into induced pluripotent stem cells (iPSCs by the expression of a defined set of factors (Oct4, Sox2, c-Myc, and Klf4, as well as Nanog and LIN28. iPSCs could be generated from mouse and human fibroblasts as well as from mouse liver, stomach, pancreatic, neural stem cells, and keratinocytes. Similarity of iPSCs and embryonic stem cells (ESCs has been demonstrated in their morphology, global expression profiles, epigenetic status, as well as in vitro and in vivo differentiation potential for both mouse and human cells. Many techniques for human iPSCs (hiPSCs derivation have been developed in recent years, utilizing different starting cell types, vector delivery systems, and culture conditions. A refined or perfected combination of these techniques might prove to be the key to generating clinically applicable hiPSCs. SUMMARY: iPSCs are a revolutionary tool for generating in vitro models of human diseases and may help us to understand the molecular basis of epigenetic reprogramming. Progress of the last four years has been truly amazing, almost verging on science fiction, but if we can learn to produce such cells cheaply and easily, and control their differentiation, our efforts to understand and fight disease will become more accessible, controllable and tailored. Ability to safely and efficiently derive hiPSCs may be of decisive importance to

  1. Generation of induced pluripotent stem cells (iPSCs from a Bernard–Soulier syndrome patient carrying a W71R mutation in the GPIX gene

    Directory of Open Access Journals (Sweden)

    Lourdes Lopez-Onieva

    2016-05-01

    Full Text Available We generated an induced pluripotent stem cell (iPSC line from a Bernard–Soulier Syndrome (BSS patient carrying the mutation p.Trp71Arg in the GPIX locus (BSS1-PBMC-iPS4F4. Peripheral blood mononuclear cells (PBMCs were reprogrammed using heat sensitive non-integrative Sendai viruses containing the reprogramming factors Oct3/4, SOX2, KLF4 and c-MYC. Successful silencing of the exogenous reprogramming factors was checked by RT-PCR. Characterization of BSS1-PBMC-iPS4F4 included mutation analysis of GPIX locus, Short Tandem Repeats (STR profiling, alkaline phosphatase enzymatic activity, analysis of conventional pluripotency-associated factors at mRNA and protein level and in vivo differentiation studies. BSS1-PBMC-iPS4F4 will provide a powerful tool to study BSS.

  2. A Dishful of a Troubled Mind: Induced Pluripotent Stem Cells in Psychiatric Research

    Directory of Open Access Journals (Sweden)

    Sára Kálmán

    2016-01-01

    Full Text Available Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neurons in vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical, the widespread use of genome editing methods, and single-cell techniques. A major challenge awaiting in vitro disease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.

  3. Human induced pluripotent stem cells for monogenic disease modelling and therapy

    Institute of Scientific and Technical Information of China (English)

    Paola; Spitalieri; Valentina; Rosa; Talarico; Michela; Murdocca; Giuseppe; Novelli; Federica; Sangiuolo

    2016-01-01

    Recent and advanced protocols are now available toderive human induced pluripotent stem cells(hi PSCs)from patients affected by genetic diseases.No curative treatments are available for many of these diseases;thus,hiP SCs represent a major impact on patient’health.hiP SCs represent a valid model for the in vitro study of monogenic diseases,together with a better comprehension of the pathogenic mechanisms of the pathology,for both cell and gene therapy protocol applications.Moreover,these pluripotent cells represent a good opportunity to test innovative pharmacological treatments focused on evaluating the efficacy and toxicity of novel drugs.Today,innovative gene therapy protocols,especially gene editingbased,are being developed,allowing the use of these cells not only as in vitro disease models but also as an unlimited source of cells useful for tissue regeneration and regenerative medicine,eluding ethical and immune rejection problems.In this review,we will provide an upto-date of modelling monogenic disease by using hiP SCs and the ultimate applications of these in vitro models for cell therapy.We consider and summarize some peculiar aspects such as the type of parental cells used for reprogramming,the methods currently used to induce the transcription of the reprogramming factors,and the type of iP SC-derived differentiated cells,relating them to the genetic basis of diseases and to their inheritance model.

  4. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  5. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation.

    Science.gov (United States)

    Cantone, Irene; Dharmalingam, Gopuraja; Chan, Yi-Wah; Kohler, Anne-Celine; Lenhard, Boris; Merkenschlager, Matthias; Fisher, Amanda G

    2017-01-25

    Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.

  6. Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors

    Science.gov (United States)

    Roberts, Casey L.; Chen, Silvia S.; Murchison, Angela C.; Ogle, Rebecca A.; Francis, Michael P.; Ogle, Roy C.

    2017-01-01

    While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells' origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2–6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPARγ but similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells. PMID:28250775

  7. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-02-14

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  8. Thinking outside the liver: induced pluripotent stem cells for hepatic applications.

    Science.gov (United States)

    Subba Rao, Mekala; Sasikala, Mitnala; Nageshwar Reddy, D

    2013-06-14

    The discovery of induced pluripotent stem cells (iPSCs) unraveled a mystery in stem cell research, after identification of four re-programming factors for generating pluripotent stem cells without the need of embryos. This breakthrough in generating iPSCs from somatic cells has overcome the ethical issues and immune rejection involved in the use of human embryonic stem cells. Hence, iPSCs form a great potential source for developing disease models, drug toxicity screening and cell-based therapies. These cells have the potential to differentiate into desired cell types, including hepatocytes, under in vitro as well as under in vivo conditions given the proper microenvironment. iPSC-derived hepatocytes could be useful as an unlimited source, which can be utilized in disease modeling, drug toxicity testing and producing autologous cell therapies that would avoid immune rejection and enable correction of gene defects prior to cell transplantation. In this review, we discuss the induction methods, role of reprogramming factors, and characterization of iPSCs, along with hepatocyte differentiation from iPSCs and potential applications. Further, we discuss the location and detection of liver stem cells and their role in liver regeneration. Although tumor formation and genetic mutations are a cause of concern, iPSCs still form a promising source for clinical applications.

  9. Generation of germ cells in vitro in the era of induced pluripotent stem cells.

    Science.gov (United States)

    Imamura, Masanori; Hikabe, Orie; Lin, Zachary Yu-Ching; Okano, Hideyuki

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future. © 2013 Wiley Periodicals, Inc.

  10. Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells.

    Science.gov (United States)

    Trokovic, Ras; Weltner, Jere; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Salomaa, Veikko; Jalanko, Anu; Otonkoski, Timo; Kyttälä, Aija

    2014-12-01

    Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking.

  11. Epigenetic memory in somatic cell nuclear transfer and induced pluripotency: evidence and implications.

    Science.gov (United States)

    Firas, Jaber; Liu, Xiaodong; Polo, Jose M

    2014-07-01

    Six decades ago, seminal work conducted by John Gurdon on genome conservation resulted in major advancements towards nuclear reprogramming technologies such as somatic cell nuclear transfer (SCNT), cell fusion and transcription factor mediated reprogramming. This revolutionized our views regarding cell fate conversion and development. These technologies also shed light on the role of the epigenome in cellular identity, and how the memory of the cell of origin affects the reprogrammed cell. This review will discuss recent work on epigenetic memory retained in pluripotent cells derived by SCNT and transcription factor mediated reprogramming, and the challenges attached to it.

  12. Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector.

    Science.gov (United States)

    Sommer, Andreia Gianotti; Rozelle, Sarah S; Sullivan, Spencer; Mills, Jason A; Park, Seon-Mi; Smith, Brenden W; Iyer, Amulya M; French, Deborah L; Kotton, Darrell N; Gadue, Paul; Murphy, George J; Mostoslavsky, Gustavo

    2012-10-31

    Through the ectopic expression of four transcription factors, Oct4, Klf4, Sox2 and cMyc, human somatic cells can be converted to a pluripotent state, generating so-called induced pluripotent stem cells (iPSCs)(1-4). Patient-specific iPSCs lack the ethical concerns that surround embryonic stem cells (ESCs) and would bypass possible immune rejection. Thus, iPSCs have attracted considerable attention for disease modeling studies, the screening of pharmacological compounds, and regenerative therapies(5). We have shown the generation of transgene-free human iPSCs from patients with different lung diseases using a single excisable polycistronic lentiviral Stem Cell Cassette (STEMCCA) encoding the Yamanaka factors(6). These iPSC lines were generated from skin fibroblasts, the most common cell type used for reprogramming. Normally, obtaining fibroblasts requires a skin punch biopsy followed by expansion of the cells in culture for a few passages. Importantly, a number of groups have reported the reprogramming of human peripheral blood cells into iPSCs(7-9). In one study, a Tet inducible version of the STEMCCA vector was employed(9), which required the blood cells to be simultaneously infected with a constitutively active lentivirus encoding the reverse tetracycline transactivator. In contrast to fibroblasts, peripheral blood cells can be collected via minimally invasive procedures, greatly reducing the discomfort and distress of the patient. A simple and effective protocol for reprogramming blood cells using a constitutive single excisable vector may accelerate the application of iPSC technology by making it accessible to a broader research community. Furthermore, reprogramming of peripheral blood cells allows for the generation of iPSCs from individuals in which skin biopsies should be avoided (i.e. aberrant scarring) or due to pre-existing disease conditions preventing access to punch biopsies. Here we demonstrate a protocol for the generation of human iPSCs from

  13. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.

    Science.gov (United States)

    Li, Jun; Song, Wei; Pan, Guangjin; Zhou, Jun

    2014-07-19

    Successfully reprogramming somatic cells to a pluripotent state generates induced pluripotent stem (iPS) cells (or iPSCs), which have extensive self-renewal capacity like embryonic stem cells (ESCs). iPSCs can also generate daughter cells that can further undergo differentiation into various lineages or terminally differentiate to reach their final functional state. The discovery of how to produce iPSCs opened a new field of stem cell research with both intellectual and therapeutic benefits. The huge potential implications of disease-specific or patient-specific iPSCs have impelled scientists to solve problems hindering their applications in clinical medicine, especially the issues of convenience and safety. To determine the range of tissue types amenable to reprogramming as well as their particular characteristics, cells from three embryonic germ layers have been assessed, and the advantages that some tissue origins have over fibroblast origins concerning efficiency and accessibility have been elucidated. To provide safe iPSCs in an efficient and convenient way, the delivery systems and combinations of inducing factors as well as the chemicals used to generate iPSCs have also been significantly improved in addition to the efforts on finding better donor cells. Currently, iPSCs can be generated without c-Myc and Klf4 oncogenes, and non-viral delivery integration-free chemically mediated reprogramming methods have been successfully employed with relatively satisfactory efficiency. This paper will review recent advances in iPS technology by highlighting tissue origin and generation of iPSCs. The obstacles that need to be overcome for clinical applications of iPSCs are also discussed.

  14. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues.

    Directory of Open Access Journals (Sweden)

    Chongsheng He

    2012-08-01

    Full Text Available In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3 is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2 is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn and embryonic flower2 (emf2 were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition

  15. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues.

    Science.gov (United States)

    He, Chongsheng; Chen, Xiaofan; Huang, Hai; Xu, Lin

    2012-08-01

    In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3) is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2) is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn) and embryonic flower2 (emf2) were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition, suggesting a

  16. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  17. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  18. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  19. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    Science.gov (United States)

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  20. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine.

    Science.gov (United States)

    Skalova, Stepanka; Svadlakova, Tereza; Shaikh Qureshi, Wasay Mohiuddin; Dev, Kapil; Mokry, Jaroslav

    2015-02-13

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson's, Alzheimer's and Huntington's disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.

  1. Generation and characterization of induced pluripotent stem cells from Aid-deficient mice.

    Directory of Open Access Journals (Sweden)

    Ren Shimamoto

    Full Text Available It has been shown that DNA demethylation plays a pivotal role in the generation of induced pluripotent stem (iPS cells. However, the underlying mechanism of this action is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid, also known as Aicda is involved in DNA demethylation in several developmental processes, as well as cell fusion-mediated reprogramming. Based on these reports, we hypothesized that Aid may be involved in the DNA demethylation that occurs during the generation of iPS cells. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid⁻/⁻ mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By introducing Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP-positive iPS cells could be generated from the fibroblasts and primary B cells of Aid⁻/⁻ mice. Their induction efficiency was similar to that of wild-type (Aid⁺/⁺ iPS cells. The Aid⁻/⁻ iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. A comprehensive DNA methylation analysis showed only a few differences between Aid⁺/⁺ and Aid⁻/⁻ iPS cells. These data suggest that Aid does not have crucial functions in DNA demethylation during iPS cell generation.

  2. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    Directory of Open Access Journals (Sweden)

    Yu Fen Samantha Seah

    2015-12-01

    Full Text Available Embryonic stem cells (ESCs are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.

  3. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2016-07-01

    Full Text Available The rigorous characterization of distinct induced pluripotent stem cells (iPSC derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

  4. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector.

    Directory of Open Access Journals (Sweden)

    Mizuho Ono

    Full Text Available The generation of induced pluripotent stem cells (iPSCs by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs-derived iPSCs by gene transduction with Sendai virus (SeV vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08-0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.

  5. Generation of Induced Pluripotent Stem Cells from Human Nasal Epithelial Cells Using a Sendai Virus Vector

    Science.gov (United States)

    Ono, Mizuho; Hamada, Yuko; Horiuchi, Yasue; Matsuo-Takasaki, Mami; Imoto, Yoshimasa; Satomi, Kaishi; Arinami, Tadao; Hasegawa, Mamoru; Fujioka, Tsuyoshi; Nakamura, Yukio; Noguchi, Emiko

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08–0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes. PMID:22912751

  6. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.

  7. Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids.

    Science.gov (United States)

    Meraviglia, Viviana; Zanon, Alessandra; Lavdas, Alexandros A; Schwienbacher, Christine; Silipigni, Rosamaria; Di Segni, Marina; Chen, Huei-Sheng Vincent; Pramstaller, Peter P; Hicks, Andrew A; Rossini, Alessandra

    2015-06-05

    Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by forcing the expression of four transcription factors (Oct-4, Sox-2, Klf-4, and c-Myc), typically expressed by human embryonic stem cells (hESCs). Due to their similarity with hESCs, iPSCs have become an important tool for potential patient-specific regenerative medicine, avoiding ethical issues associated with hESCs. In order to obtain cells suitable for clinical application, transgene-free iPSCs need to be generated to avoid transgene reactivation, altered gene expression and misguided differentiation. Moreover, a highly efficient and inexpensive reprogramming method is necessary to derive sufficient iPSCs for therapeutic purposes. Given this need, an efficient non-integrating episomal plasmid approach is the preferable choice for iPSC derivation. Currently the most common cell type used for reprogramming purposes are fibroblasts, the isolation of which requires tissue biopsy, an invasive surgical procedure for the patient. Therefore, human peripheral blood represents the most accessible and least invasive tissue for iPSC generation. In this study, a cost-effective and viral-free protocol using non-integrating episomal plasmids is reported for the generation of iPSCs from human peripheral blood mononuclear cells (PBMNCs) obtained from frozen buffy coats after whole blood centrifugation and without density gradient separation.

  8. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions.

    Science.gov (United States)

    Zhou, Ping; Wu, Fujian; Zhou, Tiancheng; Cai, Xiujuan; Zhang, Siqi; Zhang, Xiaohong; Li, Qiuhong; Li, Yongliang; Zheng, Yunfei; Wang, Mengke; Lan, Feng; Pan, Guangjin; Pei, Duanqing; Wei, Shicheng

    2016-05-01

    Human pluripotent stem cells (hPSCs) possess great value in the aspect of cellular therapies due to its self-renewal and potential to differentiate into all somatic cell types. A few defined synthetic surfaces such as polymers and adhesive biological materials conjugated substrata were established for the self-renewal of hPSCs. However, none of them was effective in the generation of human induced pluripotent stem cells (hiPSCs) and long-term maintenance of multiple hPSCs, and most of them required complicated manufacturing processes. Polydopamine has good biocompatibility, is able to form a stable film on nearly all solid substrates surface, and can immobilize adhesive biomolecules. In this manuscript, a polydopamine-mediated surface was developed, which not only supported the reprogramming of human somatic cells into hiPSCs under defined conditions, but also sustained the growth of hiPSCs on diverse substrates. Moreover, the proliferation and pluripotency of hPSCs cultured on the surface were comparable to Matrigel for more than 20 passages. Besides, hPSCs were able to differentiate to cardiomyocytes and neural cells on the surface. This polydopamine-based synthetic surface represents a chemically-defined surface extensively applicable both for fundamental research and cell therapies of hPSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. RNA Helicase DDX5 Inhibits Reprogramming to Pluripotency by miRNA-Based Repression of RYBP and its PRC1-Dependent and -Independent Functions.

    Science.gov (United States)

    Li, Huanhuan; Lai, Ping; Jia, Jinping; Song, Yawei; Xia, Qing; Huang, Kaimeng; He, Na; Ping, Wangfang; Chen, Jiayu; Yang, Zhongzhou; Li, Jiao; Yao, Mingze; Dong, Xiaotao; Zhao, Jicheng; Hou, Chunhui; Esteban, Miguel A; Gao, Shaorong; Pei, Duanqing; Hutchins, Andrew P; Yao, Hongjie

    2017-04-06

    RNA-binding proteins (RBPs), in addition to their functions in cellular homeostasis, play important roles in lineage specification and maintaining cellular identity. Despite their diverse and essential functions, which touch on nearly all aspects of RNA metabolism, the roles of RBPs in somatic cell reprogramming are poorly understood. Here we show that the DEAD-box RBP DDX5 inhibits reprogramming by repressing the expression and function of the non-canonical polycomb complex 1 (PRC1) subunit RYBP. Disrupting Ddx5 expression improves the efficiency of iPSC generation and impedes processing of miR-125b, leading to Rybp upregulation and suppression of lineage-specific genes via RYBP-dependent ubiquitination of H2AK119. Furthermore, RYBP is required for PRC1-independent recruitment of OCT4 to the promoter of Kdm2b, a histone demethylase gene that promotes reprogramming by reactivating endogenous pluripotency genes. Together, these results reveal important functions of DDX5 in regulating reprogramming and highlight the importance of a Ddx5-miR125b-Rybp axis in controlling cell fate.

  10. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells.

    Science.gov (United States)

    Gao, Yi; Guo, Yanjie; Duan, Anqin; Cheng, De; Zhang, Shiqiang; Wang, Huayan

    2014-01-01

    Ground state porcine induced pluripotent stem cells (piPSCs), which retain the potential to generate chimeric animal and germline transmission, are difficult to produce. This study investigated morphological and biological progression at the early stage of porcine somatic cell reprogramming, and explored suitable conditions to increase the induction efficiency of piPSCs. A cocktail of defined transcription factors was used to generate piPSCs. The amphotropic retrovirus, which carried human OCT4 (O), SOX2 (S), KLF4 (K), C-MYC (M), TERT (T), and GFP, were used to infect porcine embryonic fibroblasts (PEFs). The number of clones derived from OSKM (4F) and OSKMT (4F+T) was significantly higher than that from SKM (3F) and SKMT (3F+T), suggesting that OCT4 played a critical role in regulating porcine cell reprogramming. The number of alkaline phosphatase-positive clones from a medium with leukemia inhibitory factor (LIF) and basic fibroblast growth factor (bFGF) (M1 medium) was significantly higher than that with insulin and 2i PD0325901/CHIR99021 (M2 medium), indicating that insulin and 2i could not effectively maintain piPSC propagation. In the M1 medium, piPSC lines could not maintain the typical self-renewal morphology on gelatin-coated and Matrigel-coated plates. Without the mouse embryonic fibroblast (MEF) feeder, piPSCs started to simultaneously differentiate. Based on the potential for self-renewal and activation of pluripotent markers, we found that the culture condition of 4F+T plus LIF and bFGF plus MEF feeder promoted PEF reprogramming more efficiently than the other conditions tested here. Two piPSC lines (IB-1 and IB-2) were derived and maintained for up to 20 passages in vitro.

  11. Bmil puSHHes reprogramming

    Institute of Scientific and Technical Information of China (English)

    Han Li; Manuel Serrano

    2011-01-01

    In 2006,the group of Shinya Yamanaka demonstrated that somatic cells could be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of four transcription factors associated to stemness:Oct4,Sox2,Klf4 and c-Myc [1].This groundbreaking discovery opened the possibility of generating patient-specific cells for research,drug development and regenerative medicine.Due to the tremendous potential of its clinical applications,understanding the process of reprogramming has become a priority and one of the most fascinating biomedical research topics.

  12. Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues

    Directory of Open Access Journals (Sweden)

    Carmen Unzu

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSC are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogene myc showed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such as myc might be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.

  13. Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells?

    Science.gov (United States)

    Ezashi, T; Telugu, B P V L; Roberts, R M

    2012-08-01

    Robust embryonic stem cell (ESC) lines from livestock species have been difficult to derive and maintain, and unlike mouse ESC, have not contributed to our ability to understand directed differentiation in vitro. Nor have such cells yet provided a simpler means than pronuclear injection to manipulate the genomes of agriculturally important species, such as cattle, sheep and pigs. Induced pluripotent stem cells (iPSC) generated by reprogramming somatic cells, such as fibroblasts, with a set of stemness genes, most usually but not exclusively POU5F1, SOX2, KLF4 and c-MYC, offer an alternative to ESC in these regards, as they exhibit a pluripotent phenotype resembling that of ESC, yet are readily generated in the laboratory. Accordingly, such cells, in association with cloning technologies, may be useful for introducing complex genetic changes into livestock, although this potential has yet to be demonstrated. Porcine iPSC may be especially valuable because the pig is a prime biomedical model for tissue transplantation. In general, iPSC from livestock, like those from humans, are of the epiblast type and depend upon FGF2 and activin/nodal signalling systems to maintain their pluripotency and growth. Recent experiments, in which newly reprogrammed porcine and bovine cells were selected on a LIF-based medium in presence of specific protein kinase inhibitors, have allowed iPSC cells of the naïve type, resembling the more amenable blastocyst-derived mouse ESC and iPSC to be isolated. However, hurdles still remain if such cells are to achieve their biotechnological promise.

  14. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells.

    Science.gov (United States)

    Li, Chunliang; Zhou, Junmei; Shi, Guilai; Ma, Yu; Yang, Ying; Gu, Junjie; Yu, Hongyao; Jin, Shibo; Wei, Zhe; Chen, Fang; Jin, Ying

    2009-11-15

    Direct reprogramming of human somatic cells into pluripotency has broad implications in generating patient-specific induced pluripotent stem (iPS) cells for disease modeling and cellular replacement therapies. However, the low efficiency and safety issues associated with generation of human iPS cells have limited their usage in clinical settings. Cell types can significantly influence reprogramming efficiency and kinetics. To date, human iPS cells have been obtained only from a few cell types. Here, we report for the first time rapid and efficient generation of iPS cells from human amniotic fluid-derived cells (hAFDCs) via ectopic expression of four human factors: OCT4/SOX2/KLF4/C-MYC. Significantly, typical single iPS cell colonies can be picked up 6 days after viral infection with high efficiency. Eight iPS cell lines have been derived. They can be continuously propagated in vitro and express pluripotency markers such as AKP, OCT4, SOX2, SSEA4, TRA-1-60 and TRA-1-81, maintaining the normal karyotype. Transgenes are completely inactivated and the endogenous OCT4 promoter is adequately demethylated in the established iPS cell lines. Moreover, various cells and tissues from all three germ layers are found in embryoid bodies and teratomas, respectively. In addition, microarray analysis demonstrates a high correlation coefficient between hAFDC-iPS cells and human embryonic stem cells, but a low correlation coefficient between hAFDCs and hAFDC-iPS cells. Taken together, these data identify an ideal human somatic cell resource for rapid and efficient generation of iPS cells, allowing us to establish human iPS cells using more advanced approaches and possibly to establish disease- or patient-specific iPS cells.

  15. Gingival fibroblasts as a promising source of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hiroshi Egusa

    Full Text Available BACKGROUND: Induced pluripotent stem (iPS cells efficiently generated from accessible tissues have the potential for clinical applications. Oral gingiva, which is often resected during general dental treatments and treated as biomedical waste, is an easily obtainable tissue, and cells can be isolated from patients with minimal discomfort. METHODOLOGY/PRINCIPAL FINDINGS: We herein demonstrate iPS cell generation from adult wild-type mouse gingival fibroblasts (GFs via introduction of four factors (Oct3/4, Sox2, Klf4 and c-Myc; GF-iPS-4F cells or three factors (the same as GF-iPS-4F cells, but without the c-Myc oncogene; GF-iPS-3F cells without drug selection. iPS cells were also generated from primary human gingival fibroblasts via four-factor transduction. These cells exhibited the morphology and growth properties of embryonic stem (ES cells and expressed ES cell marker genes, with a decreased CpG methylation ratio in promoter regions of Nanog and Oct3/4. Additionally, teratoma formation assays showed ES cell-like derivation of cells and tissues representative of all three germ layers. In comparison to mouse GF-iPS-4F cells, GF-iPS-3F cells showed consistently more ES cell-like characteristics in terms of DNA methylation status and gene expression, although the reprogramming process was substantially delayed and the overall efficiency was also reduced. When transplanted into blastocysts, GF-iPS-3F cells gave rise to chimeras and contributed to the development of the germline. Notably, the four-factor reprogramming efficiency of mouse GFs was more than 7-fold higher than that of fibroblasts from tail-tips, possibly because of their high proliferative capacity. CONCLUSIONS/SIGNIFICANCE: These results suggest that GFs from the easily obtainable gingival tissues can be readily reprogrammed into iPS cells, thus making them a promising cell source for investigating the basis of cellular reprogramming and pluripotency for future clinical applications

  16. Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse.

    Science.gov (United States)

    Telugu, Bhanu Prakash V L; Ezashi, Toshihiko; Roberts, R Michael

    2010-01-01

    Authentic or naïve embryonic stem cells (ESC) have probably never been derived from the inner cell mass (ICM) of pig blastocysts, despite over 25 years of effort. Recently, several groups, including ours, have reported induced pluripotent stem cells (iPSC) from swine by reprogramming somatic cells with a combination of four factors, OCT4 (POU5F1)/SOX2/KLF4/c-MYC delivered by retroviral transduction. The porcine (p) iPSC resembled human (h) ESC and the mouse "Epiblast stem cells" (EpiSC) in their colony morphology and expression of pluripotent genes, and are likely dependent on FGF2/ACTIVIN/NODAL signaling, therefore representing a primed ESC state. These cells are likely to advance swine as a model in biomedical research, since grafts could potentially be matched to the animal that donated the cells for re-programming. The objective of the present work has been to develop naïve piPSC. Employing a combination of seven reprogramming factors assembled on episomal vectors, we successfully reprogrammed porcine embryonic fibroblasts on a modified LIF-medium supplemented with two kinase inhibitors; CHIR99021, which inhibits GSK-3beta, and PD0325901, a MEK inhibitor. The derived piPSC bear a striking resemblance to naïve mESC in colony morphology, are dependent on LIF to maintain an undifferentiated phenotype, and express markers consistent with pluripotency. They exhibit high telomerase activity, a short cell cycle interval, and a normal karyotype, and are able to generate teratomas. Currently, the competence of these lines for contributing to germ-line chimeras is being tested.

  17. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system

    Directory of Open Access Journals (Sweden)

    Zhu K

    2014-12-01

    Full Text Available Kai Zhu,1,2,* Jun Li,1,2,* Hao Lai,1,2 Cheng Yang,1,2 Changfa Guo,1,2 Chunsheng Wang1,2 1Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 2Shanghai Institute of Cardiovascular Disease, Shanghai, People’s Republic of China *These authors contributed equally to this article Abstract: Induced pluripotent stem cells (iPSCs have attracted keen interest in regenerative medicine. The generation of iPSCs from somatic cells can be achieved by the delivery of defined transcription factor (Oct4, Sox2, Klf4, and c-Myc[OSKM]. However, most instances of iPSC-generation have been achieved by potentially harmful genome-integrating viral vectors. Here we report the generation of iPSCs from mouse embryonic fibroblasts (MEFs using arginine-terminated generation 4 polyamidoamine (G4Arg nanoparticles as a nonviral transfection vector for the delivery of a single plasmid construct carrying OSKM (pOSKM. Our results showed that G4Arg nanoparticles delivered pOSKM into MEFs at a significantly higher transfection efficiency than did conventional transfection reagents. After serial transfections of pOSKM-encapsulated G4Arg nanoparticles, we successfully generated iPSCs from MEFs. Our study demonstrates that G4Arg nanoparticles may be a promising candidate for generating of virus-free iPSCs that have great potential for clinical application. Keywords: mouse embryonic fibroblasts, induced pluripotent stem cells

  18. The application of induced pluripotent stem cells for bone regeneration: current progress and prospects.

    Science.gov (United States)

    Teng, Songsong; Liu, Chaoxu; Krettek, Christian; Jagodzinski, Michael

    2014-08-01

    Loss of healthy bone tissue and dysosteogenesis are still common and significant problems in clinics. Cell-based therapy using mesenchymal stem cells (MSCs) has been performed in patients for quite some time, but the inherent drawbacks of these cells, such as the reductions in proliferation rate and osteogenic differentiation potential that occur with aging, greatly limit their further application. Moreover, embryonic stem cells (ESCs) have brought new hope to osteoregenerative medicine because of their full pluripotent differentiation potential and excellent performance in bone regeneration. However, the ethical issues involved in destroying human embryos and the immune reactions that occur after transplantation are two major stumbling blocks impeding the clinical application of ESCs. Instead, induced pluripotent stem cells (iPSCs), which are ESC-like pluripotent cells that are reprogrammed from adult somatic cells using defined transcription factors, are considered a more promising source of cells for regenerative medicine because they present no ethical or immunological issues. Here, we summarize the primary technologies for generating iPSCs and the biological properties of these cells, review the current advances in iPSC-based bone regeneration and, finally, discuss the remaining challenges associated with these cells, particularly safety issues and their potential application for osteoregenerative medicine.

  19. Hepatic Differentiation of Murine Disease-Specific Induced Pluripotent Stem Cells Allows Disease Modelling In Vitro

    Directory of Open Access Journals (Sweden)

    Reto Eggenschwiler

    2011-01-01

    Full Text Available Direct reprogramming of somatic cells into pluripotent cells by retrovirus-mediated expression of OCT4, SOX2, KLF4, and C-MYC is a promising approach to derive disease-specific induced pluripotent stem cells (iPSCs. In this study, we focused on three murine models for metabolic liver disorders: the copper storage disorder Wilson's disease (toxic-milk mice, tyrosinemia type 1 (fumarylacetoacetate-hydrolase deficiency, FAH−/− mice, and alpha1-antitrypsin deficiency (PiZ mice. Colonies of iPSCs emerged 2-3 weeks after transduction of fibroblasts, prepared from each mouse strain, and were maintained as individual iPSC lines. RT-PCR and immunofluorescence analyses demonstrated the expression of endogenous pluripotency markers. Hepatic precursor cells could be derived from these disease-specific iPSCs applying an in vitro differentiation protocol and could be visualized after transduction of a lentiviral albumin-GFP reporter construct. Functional characterization of these cells allowed the recapitulation of the disease phenotype for further studies of underlying molecular mechanisms of the respective disease.

  20. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells.

    Science.gov (United States)

    Raya, Angel; Rodríguez-Pizà, Ignasi; Guenechea, Guillermo; Vassena, Rita; Navarro, Susana; Barrero, María José; Consiglio, Antonella; Castellà, Maria; Río, Paula; Sleep, Eduard; González, Federico; Tiscornia, Gustavo; Garreta, Elena; Aasen, Trond; Veiga, Anna; Verma, Inder M; Surrallés, Jordi; Bueren, Juan; Izpisúa Belmonte, Juan Carlos

    2009-07-02

    The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.

  1. Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation.

    Science.gov (United States)

    Lewandowski, Jarosław; Kurpisz, Maciej

    2016-10-01

    Developing procedures for the derivation of human pluripotent stem cells (PSCs) gave rise to novel pathways into regenerative medicine research. For many years, stem cells have attracted attention as a potentially unlimited cell source for cellular therapy in neurodegenerative disorders, cardiovascular diseases, and spinal cord injuries, for example. In these studies, adult stem cells were insufficient; therefore, many attempts were made to obtain PSCs by other means. This review discusses key issues concerning the techniques of pluripotent cell acquisition. Technical and ethical issues hindered the medical use of somatic cell nuclear transfer and embryonic stem cells. Therefore, induced PSCs (iPSCs) emerged as a powerful technique with great potential for clinical applications, patient-specific disease modelling and pharmaceutical studies. The replacement of viral vectors or the administration of analogous proteins or chemical compounds during cell reprogramming are modifications designed to reduce tumorigenesis risk and to augment the procedure efficiency. Intensified analysis of new PSC lines revealed other barriers to overcome, such as epigenetic memory, disparity between human and mouse pluripotency, and variable response to differentiation of some iPSC lines. Thus, multidimensional verification must be conducted to fulfil strict clinical-grade requirements. Nevertheless, the first clinical trials in patients with spinal cord injury and macular dystrophy were recently carried out with differentiated iPSCs, encouraging alternative strategies for potential autologous cellular therapies.

  2. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaodi Qiu

    Full Text Available The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2, and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP. In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT markers compared with human embryonic stem cells (hESCs and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract

  3. Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Hong, Yean Ju; Do, Jeong Tae

    2016-01-01

    Induced pluripotent stem (iPS) cells can be directly generated from somatic cells by overexpression of defined transcription factors. iPS cells can perpetually self-renew and differentiate into all cell types of an organism. iPS cells were first generated through infection with retroviruses that contain reprogramming factors. However, development of an exogene-free iPS cell generation method is crucial for future therapeutic applications, because integrated exogenes result in the formation of tumors in chimeras and regain pluripotency after differentiation in vitro. Here, we describe a method to generate iPS cells by transfection of plasmid vectors and to convert partially reprogrammed cells into fully reprogrammed iPS cells by switching from mouse ESC culture conditions to KOSR-based media with bFGF. We also describe basic methods used to characterize fully reprogrammed iPS cells.

  4. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  5. Generation of induced pluripotent stem cells from peripheral blood CD34+ hematopoietic progenitors of a 31 year old healthy woman

    Directory of Open Access Journals (Sweden)

    Amornrat Tangprasittipap

    2017-04-01

    Full Text Available The MUi019-A human induced pluripotent stem cell line was generated from peripheral blood CD34+ hematopoietic progenitors of a healthy woman using a non-integrative reprogramming method. Episomal vectors carrying reprogramming factors OCT4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 and EBNA-1 were delivered using electroporation. The iPSC line can be used as a control in studying disease mechanisms. Furthermore, gene editing approaches can be used to introduce specific mutations into the MUi019-A to model disease while the cell type affected by the disease is inaccessible.

  6. Efficient Reprogramming of Human Cord Blood CD34 + Cells for Formation of Induced Pluripotent Stem Cells with Non-integrating Plasmid System%非整合型质粒重编程脐带血CD34+细胞形成诱导性多潜能干细胞的研究

    Institute of Scientific and Technical Information of China (English)

    张权娥; 刘淑平; 刘延风; 张鸿雁; 袁卫平; 陈桂彬; 李彦欣; 许静

    2013-01-01

    This study was to establish the episomal vector reprogramming method to reprogram iPSC from human cord blood (CB) CD34 + cells.The non-integrating plasmids of pEB-C5 and pEB-Tg were transfected into short-term cultured CB CD34 + cells by using the nucleofector,so as to demonstrate efficient reprogramming of CB CD34 + cells.Within 14 days of one-time transfection by two plasmids together,up to 200 iPSC-like colonies per 2 million transfected CB CD34 + cells were generated.The results showed that the pluripotency of iPSC-derived CB CD34 + cells was similar to that of hESC and the karyotypes of iPSC were normal.In addition,no vector integration was found in iPSC of 9th and 10th passages.Furthermore,hiPSC formed teratoma with three embryonic germ layers.It is concluded that the integration-free method to generate human iPSC from CB CD34 + cells is reliable and can provide new ways for both research and future clinical applications.%本研究探索和优化非整合质粒的方法,将人脐带血来源的CD34+(CB CD34+)细胞进行重编程,建立无病毒的iPS技术体系.利用细胞核转染仪将质粒pEB-C5和pEB-Tg转入短暂培养后的CB CD34+细胞中,使其进行重编程形成iPSC,14 d后观察到2×106 CB CD34+细胞中约有200个类似ES细胞特征的克隆出现,并对产生的iPSC进行体内外多能性鉴定及细胞核型检测.结果表明,重编程后的CB CD34+细胞的多能性基因表达与ESC类似,细胞核型正常,外源基因无插入,且具有体内分化成三胚层的全能性.结论:利用非整合型质粒的方法重编程CB CD34+细胞形成iPSC,该方法无外源基因插入、重复性好、操作简单、且效率较高,为建立相对安全的iPSC提供了一个行之有效的途径,为深入探索iPSC应用于临床药物的筛选、组织工程和再生医学研究等提供了很好的研究材料.

  7. Utility of Lymphoblastoid Cell Lines for Induced Pluripotent Stem Cell Generation

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2016-01-01

    Full Text Available A large number of EBV immortalized LCLs have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into iPSCs have paved the way for generating more relevant in vitro disease models using this existing bioresource. However, the overall reprogramming efficiency and success rate remain poor and very little is known about the mechanistic changes that take place at the transcriptome and cellular functional level during LCL-to-iPSC reprogramming. Here, we report a new optimized LCL-to-iPSC reprogramming protocol using episomal plasmids encoding pluripotency transcription factors and mouse p53DD (p53 carboxy-terminal dominant-negative fragment and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate using this optimized protocol. Further, we investigated the transcriptional changes in mRNA and miRNA levels, using FC-abs ≥ 2.0 and FDR ≤ 0.05 cutoffs; 5,228 mRNAs and 77 miRNAs were differentially expressed during LCL-to-iPSC reprogramming. The functional enrichment analysis of the upregulated genes and activation of human pluripotency pathways in the reprogrammed iPSCs showed that the generated iPSCs possess transcriptional and functional profiles very similar to those of human ESCs.

  8. Pluripotent stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-09-01

    Full Text Available The 2012 Nobel prize for Physiology or Medicine has been awarded conjunctely to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent as during the syxties John Gurdon challenged the dogma that the specialised cell is irreversibly committed to its fate and just few years ago Shinya Yamanaka was the first to induce mature cells to reverse their development and turn back into induced pluripotent stem cells....

  9. Potential application of induced pluripotent stem cells in cell replacement therapy for Parkinson's disease.

    Science.gov (United States)

    Chen, L W; Kuang, F; Wei, L C; Ding, Y X; Yung, K K L; Chan, Y S

    2011-06-01

    Parkinson's disease (PD), a common degenerative disease in humans, is known to result from loss of dopamine neurons in the substantia nigra and is characterized by severe motor symptoms of tremor, rigidity, bradykinsia and postural instability. Although levodopa administration, surgical neural lesion, and deep brain stimulation have been shown to be effective in improving parkinsonian symptoms, cell replacement therapy such as transplantation of dopamine neurons or neural stem cells has shed new light on an alternative treatment strategy for PD. While the difficulty in securing donor dopamine neurons and the immuno-rejection of neural transplants largely hinder application of neural transplants in clinical treatment, induced pluripotent stem cells (iPS cells) derived from somatic cells may represent a powerful tool for studying the pathogenesis of PD and provide a source for replacement therapies in this neurodegenerative disease. Yamanaka et al. [2006, 2007] first succeeded in generating iPS cells by reprogramming fibroblasts with four transcription factors, Oct4, Sox2, Klf4, and c-Myc in both mouse and human. Animal studies have further shown that iPS cells from fibroblasts could be induced into dopamine neurons and transplantation of these cells within the central nervous system improved motor symptoms in the 6-OHDA model of PD. More interestingly, neural stem cells or fibroblasts from patients can be efficiently reprogrammed and subsequently differentiated into dopamine neurons. Derivation of patient-specific iPS cells and subsequent differentiation into dopamine neurons would provide a disease-specific in vitro model for disease pathology, drug screening and personalized stem cell therapy for PD. This review summarizes current methods and modifications in producing iPS cells from somatic cells as well as safety concerns of reprogramming procedures. Novel reprogramming strategies that deter abnormal permanent genetic and epigenetic alterations are essential for

  10. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated doma

  11. Generation of Leukemia Inhibitory Factor-Dependent Induced Pluripotent Stem Cells from the Massachusetts General Hospital Miniature Pig

    Directory of Open Access Journals (Sweden)

    Dae-Jin Kwon

    2013-01-01

    Full Text Available The generation and application of porcine induced pluripotent stem cells (iPSCs may enable the testing for safety and efficacy of therapy in the field of human regenerative medicine. Here, the generation of iPSCs from the Massachusetts General Hospital miniature pig (MGH minipig established for organ transplantation studies is reported. Fibroblasts were isolated from the skin of the ear of a 10-day-old MGH minipig and transduced with a cocktail of six human factors: POU5F1, NANOG, SOX2, C-MYC, KLF4, and LIN28. Two distinct types of iPSCs were generated that were positive for alkaline phosphatase activity, as well as the classical pluripotency markers: Oct4, Nanog, Sox2, and the surface marker Ssea-1. Only one of two porcine iPSC lines differentiated into three germ layers both in vitro and in vivo. Western blot analysis showed that the porcine iPSCs were dependent on LIF or BMP-4 to sustain self-renewal and pluripotency. In conclusion, the results showed that human pluripotent factors could reprogram porcine ear fibroblasts into the pluripotent state. These cells may provide a useful source of cells that could be used for the treatment of degenerative and genetic diseases and agricultural research and application.

  12. Generation of Human Induced Pluripotent Stem Cells from Extraembryonic Tissues of Fetuses Affected by Monogenic Diseases.

    Science.gov (United States)

    Spitalieri, Paola; Talarico, Rosa V; Botta, Annalisa; Murdocca, Michela; D'Apice, Maria Rosaria; Orlandi, Augusto; Giardina, Emiliano; Santoro, Massimo; Brancati, Francesco; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-01

    The generation of human induced pluripotent stem cells (hiPSCs) derived from an autologous extraembryonic fetal source is an innovative personalized regenerative technology that can transform own-self cells into embryonic stem-like ones. These cells are regarded as a promising candidate for cell-based therapy, as well as an ideal target for disease modeling and drug discovery. Thus, hiPSCs enable researchers to undertake studies for treating diseases or for future applications of in utero therapy. We used a polycistronic lentiviral vector (hSTEMCCA-loxP) encoding OCT4, SOX2, KLF4, and cMYC genes and containing loxP sites, excisible by Cre recombinase, to reprogram patient-specific fetal cells derived from prenatal diagnosis for several genetic disorders, such as myotonic dystrophy type 1 (DM1), β-thalassemia (β-Thal), lymphedema-distichiasis syndrome (LDS), spinal muscular atrophy (SMA), cystic fibrosis (CF), as well as from wild-type (WT) fetal cells. Because cell types tested to create hiPSCs influence both the reprogramming process efficiency and the kinetics, we used chorionic villus (CV) and amniotic fluid (AF) cells, demonstrating how they represent an ideal cell resource for a more efficient generation of hiPSCs. The successful reprogramming of both CV and AF cells into hiPSCs was confirmed by specific morphological, molecular, and immunocytochemical markers and also by their teratogenic potential when inoculated in vivo. We further demonstrated the stability of reprogrammed cells over 10 and more passages and their capability to differentiate into the three embryonic germ layers, as well as into neural cells. These data suggest that hiPSCs-CV/AF can be considered a valid cellular model to accomplish pathogenesis studies and therapeutic applications.

  13. Induced pluripotent stem cells derived from a patient with autosomal dominant familial neurohypophyseal diabetes insipidus caused by a variant in the AVP gene

    DEFF Research Database (Denmark)

    Toustrup, Lise Bols; Zhou, Yan; Kvistgaard, Helene

    2017-01-01

    Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is caused by variants in the arginine vasopressin (AVP) gene. Here we report the generation of induced pluripotent stem cells (iPSCs) from a 42-year-old man carrying an adFNDI causing variant in exon 1 of the AVP gene using...... lentivirus-mediated nuclear reprogramming. The iPSCs carried the expected variant in the AVP gene. Furthermore, the iPSCs expressed pluripotency markers; displayed in vitro differentiation potential to the three germ layers and had a normal karyotype consistent with the original fibroblasts. This iPSC line...

  14. Generation of an induced pluripotent stem cell line from a patient with hereditary multiple endocrine neoplasia 2A (MEN2A syndrome with RET mutation

    Directory of Open Access Journals (Sweden)

    J. Hadoux

    2016-07-01

    Currently, there is no satisfactory animal model recapitulating all the features of the disease especially at the level of stem cells. We generated induced pluripotent stem cells (iPSCs from a patient with RET mutation at codon 634 who developed pheochromocytoma and MTC. RETC634Y-mutated cells were reprogrammed by non-integrative viral transduction. These iPSCs had normal karyotype, harboured the RETC634Y mutation and expressed pluripotency hallmarks as well as RET. A comprehensive pathological assessment of teratoma was performed after injection in immunodeficient mice.

  15. Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using an integration free vector.

    Science.gov (United States)

    Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas

    2016-03-01

    We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of a 30 year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC-line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi004-A.

  16. Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using integration free Sendai technology.

    Science.gov (United States)

    Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas

    2016-01-01

    We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of 1 28-30 year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and shown to have full differentiation potential. Together with the iPSC-lines, the donors provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi004-A.

  17. Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using an integration free vector

    Directory of Open Access Journals (Sweden)

    Bella Rossbach

    2016-03-01

    Full Text Available We have generated a human induced pluripotent stem cell (iPSC line derived from urinary cells of a 30 year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC-line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi004-A.

  18. Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs) from an early onset Alzheimer's patient.

    Science.gov (United States)

    Lee, Han-Kyu; Morin, Peter; Xia, Weiming

    2016-03-01

    Improvement in transduction efficiency makes it possible to convert blood cells into induced pluripotent stem cells (iPSC). In this study, we generated an iPSC line from peripheral blood mononuclear cells (PBMC) donated by a patient who exhibited memory deficit at age 59; outcome of positron emission tomography scan is consistent with a diagnosis of Alzheimer's disease. Integration-free CytoTune-iPS Sendai Reprogramming factors which include Sendai virus particles of the four Yamanaka factors Oct4, Sox2, Klf4, and c-Myc were introduced to PBMC to convert them to iPSCs without retention of virus. Three germ layer differentiation was induced to demonstrate the pluripotency of these iPSCs. Published by Elsevier B.V.

  19. Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs from an early onset Alzheimer's patient

    Directory of Open Access Journals (Sweden)

    Han-Kyu Lee

    2016-03-01

    Full Text Available Improvement in transduction efficiency makes it possible to convert blood cells into induced pluripotent stem cells (iPSC. In this study, we generated an iPSC line from peripheral blood mononuclear cells (PBMC donated by a patient who exhibited memory deficit at age 59; outcome of positron emission tomography scan is consistent with a diagnosis of Alzheimer's disease. Integration-free CytoTune-iPS Sendai Reprogramming factors which include Sendai virus particles of the four Yamanaka factors Oct4, Sox2, Klf4, and c-Myc were introduced to PBMC to convert them to iPSCs without retention of virus. Three germ layer differentiation was induced to demonstrate the pluripotency of these iPSCs.

  20. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    Science.gov (United States)

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  1. Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions.

    Directory of Open Access Journals (Sweden)

    Jens Durruthy-Durruthy

    Full Text Available Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs will be realized. Nonetheless, clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP. Optimally, derivation of hiPSCs should be rapid and efficient in order to minimize manipulations, reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here, we provide an optimized, fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity, purity, stability and safety at a GMP facility and cryopreserved. To our knowledge, as a proof of principle, these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes.

  2. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the o......Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming...... and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig....

  3. Brown Adipogenic Reprogramming Induced by a Small Molecule

    Directory of Open Access Journals (Sweden)

    Baoming Nie

    2017-01-01

    Full Text Available Brown adipose tissue (BAT has attracted considerable research interest because of its therapeutic potential to treat obesity and associated metabolic diseases. Augmentation of brown fat mass and/or its function may represent an attractive strategy to enhance energy expenditure. Using high-throughput phenotypic screening to induce brown adipocyte reprogramming in committed myoblasts, we identified a retinoid X receptor (RXR agonist, bexarotene (Bex, that efficiently converted myoblasts into brown adipocyte-like cells. Bex-treated mice exhibited enlarged BAT mass, enhanced BAT function, and a modest browning effect in subcutaneous white adipose tissue (WAT. Expression analysis showed that Bex initiated several “browning” pathways at an early stage during brown adipocyte reprogramming. Our findings suggest RXRs as new master regulators that control brown and beige fat development and activation, unlike the common adipogenic regulator PPARγ. Moreover, we demonstrated that selective RXR activation may potentially offer a therapeutic approach to manipulate brown/beige fat function in vivo.

  4. Differentiation Potential of O Bombay Human-Induced Pluripotent Stem Cells and Human Embryonic Stem Cells into Fetal Erythroid-Like Cells

    OpenAIRE

    2015-01-01

    Objective: There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs) have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease. Materials and Methods: In this experimental study, we examined the erythroid differentiation potential of n...

  5. Induced Pluripotent Stem Cells: Characteristics and Perspectives

    Science.gov (United States)

    Cantz, Tobias; Martin, Ulrich

    The induction of pluripotency in somatic cells is widely considered as a major breakthrough in regenerative medicine, because this approach provides the basis for individualized stem cell-based therapies. Moreover, with respect to cell transplantation and tissue engineering, expertise from bioengineering to transplantation medicine is now meeting basic research of stem cell biology.

  6. Generation, Expansion, and Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) Derived From the Umbilical Cords of Newborns.

    Science.gov (United States)

    Song, Richard S; Carroll, Jeanne M; Acevedo, Lisette; Wu, Dongmei; Liu, Yang; Snyder, Evan Y

    2014-05-16

    The umbilical cord is tissue that is normally discarded after the delivery of the infant, but it has been shown to be a rich source of stem cells from the cord blood, Wharton's jelly, and umbilical endothelial cells. Patient-specific human induced pluripotent stem cells (hiPSCs) reprogrammed from patient specific human umbilical vein endothelial cells in the neonatal intensive care unit (NICU) population (specifically, premature neonates) have not been shown in the literature. This unit describes a protocol for the generation and expansion of hiPSCs originating from umbilical cords collected from patients in the NICU.

  7. From cloned frogs to patient matched stem cells: induced pluripotency or somatic cell nuclear transfer?

    Science.gov (United States)

    Yamada, Mitsutoshi; Byrne, James; Egli, Dieter

    2015-10-01

    Nuclear transfer has seen a remarkable comeback in the past few years. Three groups have independently reported the derivation of stem cell lines by somatic cell nuclear transfer, from either adult, neonatal or fetal cells. Though the ability of human oocytes to reprogram somatic cells to stem cells had long been anticipated, success did not arrive on a straightforward path. Little was known about human oocyte biology, and nuclear transfer protocols developed in animals required key changes to become effective with human eggs. By overcoming these challenges, human nuclear transfer research has contributed to a greater understanding of oocyte biology, provided a point of reference for the comparison of induced pluripotent stem cells, and delivered a method for the generation of personalized stem cells with therapeutic potential.

  8. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells.

    Directory of Open Access Journals (Sweden)

    Yanting Xue

    Full Text Available Induced pluripotent stem cell (iPS cell holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.

  9. Modelling Human Channelopathies Using Induced Pluripotent Stem Cells: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Martin Müller

    2013-01-01

    Full Text Available The generation of induced pluripotent stem cells (iPS cells has pioneered the field of regenerative medicine and developmental biology. They can be generated by overexpression of a defined set of transcription factors in somatic cells derived from easily accessible tissues such as skin or plucked hair or even human urine. In case of applying this tool to patients who are classified into a disease group, it enables the generation of a disease- and patient-specific research platform. iPS cells have proven a significant tool to elucidate pathophysiological mechanisms in various diseases such as diabetes, blood disorders, defined neurological disorders, and genetic liver disease. One of the first successfully modelled human diseases was long QT syndrome, an inherited cardiac channelopathy which causes potentially fatal cardiac arrhythmia. This review summarizes the efforts of reprogramming various types of long QT syndrome and discusses the potential underlying mechanisms and their application.

  10. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Masaya Nakamura; Hideyuki Okano

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon,there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science.While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine,safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells.In this review,the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells,and their safety issues in vivo,are outlined.We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  11. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells.

    Science.gov (United States)

    Nakamura, Masaya; Okano, Hideyuki

    2013-01-01

    Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.

  12. Generation of Transgene-free Induced Pluripotent Stem Cells with Non-viral Methods

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Hua-shan Zhao; Qiu-ling Zhang; Chang-lin Xu; Chang-bai Liu

    2013-01-01

    Induced pluripotent stem (iPS) cells were originally generated from mouse fibroblasts by enforced expression of Yamanaka factors (Oct3/4,Sox2,Klf4,and c-Myc). The technique was quickly re-produced with human fibroblasts or mesenchymal stem cells. Although having been showed therapeutic po-tential in animal models of sickle cell anemia and Parkinson's disease,iPS cells generated by viral methods do not suit all the clinical applications. Various non-viral methods have appeared in recent years for application of iPS cells in cell transplantation therapy. These methods mainly include DNA vector-based approaches,transfection of mRNA,and transduction of reprogramming proteins. This review summarized these non-viral methods and compare the advantages,disadvantages,efficiency,and safety of these methods.

  13. Induced pluripotent stem cells in research and therapy of diseases: review article

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Noori Daloii

    2014-10-01

    Full Text Available Differentiated cells can change to embryonic stem cells by reprograming. Generation of induced pluripotent stem cells (iPSCs has revolutionized the field of regenerative and personalized medicine. iPSCs can self-renew and differentiate into many cell types. iPSC cells offer a potentially unlimited source for targeted differentiation. Through the expression of a set of transcription factors, iPSCs can be generated from different kinds of embryonic and adult cells. This technology for the first time enabled the researchers to take differentiated cells from an individual, and convert them to another cell type of interest, which is particularly to that person. When the set of master transcription factors containing OCT4, SOX2, KLF4, and MYC is expressed ectopically in somatic cells, the transcriptional network is propelled to organize itself in such a way as to maintenance a pluripotent state. Since iPSCs are similar to Embryonic Stem Cell (ESC, they can be considered as sources for modeling different diseases. iPSCs which are induced from somatic cells of patient can be useful for screening and drugs selection, and also introduce treatment via grafting the cells. Although this technology has been successful in different fields, the tumorigenesis of viral vectors during induction of reprogramming is a major challenge. Nevertheless, iPSCs are valuable for clinical applications and research. By discovery of these cells many challenges related to the safety, efficacy, and bioethics of ESCs are solved. Pluripotency is defined in two aspect of functional and molecular, by which functional regards the capacity of cell is generate three kinds of embryonic layers and germ line, and molecular aspect regards the identifying of molecules and genes that support functional features. Identification of these genes has been placed at the center of fields related to development and stem cell research. In this review, we discuss the process of generation of these

  14. Significant differences in genotoxicity induced by retrovirus integration in human T cells and induced pluripotent stem cells.

    Science.gov (United States)

    Zheng, Weiyan; Wang, Yingjia; Chang, Tammy; Huang, He; Yee, Jiing-Kuan

    2013-04-25

    Retrovirus is frequently used in the genetic modification of mammalian cells and the establishment of induced pluripotent stem cells (iPSCs) via cell reprogramming. Vector-induced genotoxicity could induce profound effect on the physiology and function of these stem cells and their differentiated progeny. We analyzed retrovirus-induced genotoxicity in somatic cell Jurkat and two iPSC lines. In Jurkat cells, retrovirus frequently activated host gene expression and gene activation was not dependent on the distance between the integration site and the transcription start site of the host gene. In contrast, retrovirus frequently down-regulated host gene expression in iPSCs, possibly due to the action of chromatin silencing that spreads from the provirus to the nearby host gene promoter. Our data raises the issue that some of the phenotypic variability observed among iPSC clones derived from the same parental cell line may be caused by retrovirus-induced gene expression changes rather than by the reprogramming process itself. It also underscores the importance of characterizing retrovirus integration and carrying out risk assessment of iPSCs before they can be applied in basic research and clinics.

  15. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases.

    Science.gov (United States)

    Ramalingam, Sivaprakash; London, Viktoriya; Kandavelou, Karthikeyan; Cebotaru, Liudmila; Guggino, William; Civin, Curt; Chandrasegaran, Srinivasan

    2013-02-15

    Zinc finger nucleases (ZFNs) have become powerful tools to deliver a targeted double-strand break at a pre-determined chromosomal locus in order to insert an exogenous transgene by homology-directed repair. ZFN-mediated gene targeting was used to generate both single-allele chemokine (C-C motif) receptor 5 (CCR5)-modified human induced pluripotent stem cells (hiPSCs) and biallele CCR5-modified hiPSCs from human lung fibroblasts (IMR90 cells) and human primary cord blood mononuclear cells (CBMNCs) by site-specific insertion of stem cell transcription factor genes flanked by LoxP sites into the endogenous CCR5 locus. The Oct4 and Sox2 reprogramming factors, in combination with valproic acid, induced reprogramming of human lung fibroblasts to form CCR5-modified hiPSCs, while 5 factors, Oct4/Sox2/Klf4/Lin28/Nanog, induced reprogramming of CBMNCs. Subsequent Cre recombinase treatment of the CCR5-modified IMR90 hiPSCs resulted in the removal of the Oct4 and Sox2 transgenes. Further genetic engineering of the single-allele CCR5-modified IMR90 hiPSCs was achieved by site-specific addition of the large CFTR transcription unit to the remaining CCR5 wild-type allele, using CCR5-specific ZFNs and a donor construct containing tdTomato and CFTR transgenes flanked by CCR5 homology arms. CFTR was expressed efficiently from the endogenous CCR5 locus of the CCR5-modified tdTomato/CFTR hiPSCs. These results suggest that it might be feasible to use ZFN-evoked strategies to (1) generate precisely targeted genetically well-defined patient-specific hiPSCs, and (2) then to reshape their function by targeted addition and expression of therapeutic genes from the CCR5 chromosomal locus for autologous cell-based transgene-correction therapy to treat various recessive monogenic human diseases in the future.

  16. Generation of red blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Dias, Jessica; Gumenyuk, Marina; Kang, HyunJun; Vodyanik, Maxim; Yu, Junying; Thomson, James A; Slukvin, Igor I

    2011-09-01

    Differentiation of human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) into the erythroid lineage of cells offers a novel opportunity to study erythroid development, regulation of globin switching, drug testing, and modeling of red blood cell (RBC) diseases in vitro. Here we describe an approach for the efficient generation of RBCs from hiPSC/hESCs using an OP9 coculture system to induce hematopoietic differentiation followed by selective expansion of erythroid cells in serum-free media with erythropoiesis-supporting cytokines. We showed that fibroblast-derived transgenic hiPSCs generated using lentivirus-based vectors and transgene-free hiPSCs generated using episomal vectors can be differentiated into RBCs with an efficiency similar to that of H1 hESCs. Erythroid cultures established with this approach consisted of an essentially pure population of CD235a(+)CD45(-) leukocyte-free RBCs with robust expansion potential and long life span (up to 90 days). Similar to hESCs, hiPSC-derived RBCs expressed predominately fetal γ and embryonic ɛ globins, indicating complete reprogramming of β-globin locus following transition of fibroblasts to the pluripotent state. Although β-globin expression was detected in hiPSC/hESC-derived erythroid cells, its expression was substantially lower than the embryonic and fetal globins. Overall, these results demonstrate the feasibility of large-scale production of erythroid cells from fibroblast-derived hiPSCs, as has been described for hESCs. Since RBCs generated from transgene-free hiPSCs lack genomic integration and background expression of reprogramming genes, they would be a preferable cell source for modeling of diseases and for gene function studies.

  17. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming.

    Science.gov (United States)

    Quintanilla, Rene H; Asprer, Joanna; Sylakowski, Kyle; Lakshmipathy, Uma

    2016-07-30

    Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.

  18. Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2.

    Science.gov (United States)

    Giorgetti, Alessandra; Montserrat, Nuria; Rodriguez-Piza, Ignacio; Azqueta, Carmen; Veiga, Anna; Izpisúa Belmonte, Juan Carlos

    2010-04-01

    Induced pluripotent stem cells (iPSC) provide an invaluable resource for regenerative medicine as they allow the generation of patient-specific progenitors with potential value for cell therapy. However, in many instances, an off-the-shelf approach is desirable, such as for cell therapy of acute conditions or when the patient's somatic cells are altered as a consequence of a chronic disease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are young cells expected to carry minimal somatic mutations and possess the immunological immaturity of newborn cells; additionally, several hundred thousand immunotyped CB units are readily available through a worldwide network of CB banks. Here we present a detailed protocol for the derivation of CB stem cells and how they can be reprogrammed to pluripotency by retroviral transduction with only two factors (OCT4 and SOX2) in 2 weeks and without the need for additional chemical compounds.

  19. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone

    Institute of Scientific and Technical Information of China (English)

    Jiekai Chen; Duanqing Pei; Jing Liu; Jiaqi Yang; You Chen; Jing Chen; Su Ni; Hong Song; Lingwen Zeng; Ke Ding

    2011-01-01

    Generation of induced pluripotent stem cells by defined factors has become a useful model to investigate the mechanism of reprogramming and cell fate determination.However,the precise mechanism of factor-based reprogramming remains unclear.Here,we show that Klf4 mainly acts at the initial phase of reprogramming to initiate mesenchymal-to-epithelial transition and can be functionally replaced by bone morphogenetic proteins(BMPs).BMPs boosted the efficiency of Oct4/Sox2-mediated reprogramming of mouse embryonic fibroblasts(MEFs)to~1%.BMPs also promoted single-factor Oct4-based reprogramming of MEFs and tail tibiai fihroblasts.Our studies clarify the contribution of Klf4 in reprogramming and establish Oct4 as a singular setter of pluripotency in differentiated cells.

  20. Comparison of the Efficiency of Viral Transduction and Episomal Transfection in Human Fibroblast Reprogramming.

    Science.gov (United States)

    Vdovin, A S; Lupatov, A Yu; Kholodenko, I V; Yarygin, K N

    2015-11-01

    Induced pluripotent cells were derived from adult human skin fibroblast by using two methods of reprogramming. Episomal transfection with vectors containing oriP/EBNA-1 sequence for delivery of reprogramming genes Oct4, Sox2, Klf4, L-Myc, and Lin28 proved to be more effective than viral transduction with Sendai virus-based vector: ~200 and 8 colonies per 10(5) cells were found on day 21 of culturing, respectively. Colonies of induced pluripotent cells obtained by these two methods expressed pluripotency marker Tra1-60.

  1. Identification of unsafe human induced pluripotent stem cell lines using a robust surrogate assay for pluripotency.

    Science.gov (United States)

    Polanco, Juan Carlos; Ho, Mirabelle S H; Wang, Bei; Zhou, Qi; Wolvetang, Ernst; Mason, Elizabeth; Wells, Christine A; Kolle, Gabriel; Grimmond, Sean M; Bertoncello, Ivan; O'Brien, Carmel; Laslett, Andrew L

    2013-08-01

    Human induced pluripotent stem cells (hiPSC) have the potential to generate healthy cells and tissues for the study and medical treatment of a large number of diseases. The utility of putative hiPSC-based therapies is constrained by a lack of robust quality-control assays that address the stability of the cells or their capacity to form teratomas after differentiation. Here we report that virally derived hiPSC, but not human embryonic stem cells (hESC) or hiPSC derived using episomal nonintegrating vectors, exhibit a propensity to revert to a pluripotent phenotype following differentiation. This instability was revealed using our published method to identify pluripotent cells undergoing very early-stage differentiation in standard hESC cultures, by fluorescence activated cell sorting (FACS) based on expression of the cell surface markers TG30 (CD9) and GCTM-2. Differentiated cells cultured post-FACS fractionation from virally derived hiPSC lines reacquired immunoreactivity to TG30 (CD9) and GCTM-2, formed stem cell-like colonies, and re-expressed canonical pluripotency markers. Furthermore, differentiated cells from pluripotency-reverting hiPSC lines generated teratomas in immunocompromised mice, raising concerns about their safety in downstream applications. In contrast, differentiated cell populations from hESC and episomally derived hiPSC did not show any of these abnormalities. Our assays may be used to identify "unsafe" hiPSC cell lines and this information should be considered when selecting hiPSC lines for clinical use and indicate that experiments using these "unsafe" hiPSC lines should be interpreted carefully.

  2. Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming.

    Science.gov (United States)

    Ruiz, Sergio; Gore, Athurva; Li, Zhe; Panopoulos, Athanasia D; Montserrat, Nuria; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M; Zaehres, Holm; Schöler, Hans R; Zhang, Kun; Izpisua Belmonte, Juan Carlos

    2013-01-01

    Recent studies indicate that human-induced pluripotent stem cells contain genomic structural variations and point mutations in coding regions. However, these studies have focused on fibroblast-derived human induced pluripotent stem cells, and it is currently unknown whether the use of alternative somatic cell sources with varying reprogramming efficiencies would result in different levels of genetic alterations. Here we characterize the genomic integrity of eight human induced pluripotent stem cell lines derived from five different non-fibroblast somatic cell types. We show that protein-coding mutations are a general feature of the human induced pluripotent stem cell state and are independent of somatic cell source. Furthermore, we analyse a total of 17 point mutations found in human induced pluripotent stem cells and demonstrate that they do not generally facilitate the acquisition of pluripotency and thus are not likely to provide a selective advantage for reprogramming.

  3. Progress of Induced Pluripotent Stem Cells%诱导性多潜能干细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    程腾; 贺小英; 马利兵

    2014-01-01

    通过转染特定的一个或多个基因将已分化的体细胞诱导成为多潜能干细胞,这种干细胞称为诱导性多潜能干细胞(Induced pluripotent stem cells,iPS cells)。近年来关于iPS细胞的研究取得了举世瞩目的成就,多种已分化的体细胞都可以诱导成为iPS细胞,而且可以进一步将iPS细胞诱导成具有特定功能的细胞,称为诱导性细胞。这些研究极大地促进了细胞生物学、表观遗传学和发育生物学的研究,并且为人类再生医学和特异的细胞治疗带来了更美好的希望。对iPS细胞和诱导性细胞的最新研究状况进行了综述。%Differentiated somatic cells can be reprogrammed into induced pluripotent stem cells (iPS cells) by transfection of one or more gene (S). Remarkable progresses of iPS cells have been achieved in recent years. A variety of differentiated so-matic cells can be reprogrammed into iPS cells and further induced into cells with specific function called induced cells. These researches have greatly boosted the study of cell biology, epigenetics, developmental biology and brought a better hope for regenerative medicine and specific cell therapy. In this paper, advances of induced pluripotent stem cells (iPS cells) and induced functional cells (induced cells) in recent years were reviewed.

  4. Using induced pluripotent stem cells as a tool for modellingcarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Emma L Curry; Mohammad Moad; Craig N Robson; Rakesh Heer

    2015-01-01

    Cancer is a highly heterogeneous group of diseases thatdespite improved treatments remain prevalent accountingfor over 14 million new cases and 8.2 million deaths peryear. Studies into the process of carcinogenesis are limitedby lack of appropriate models for the development andpathogenesis of the disease based on human tissues.Primary culture of patient samples can help but is difficultto grow for a number of tissues. A potential opportunity toovercome these barriers is based on the landmark study byYamanaka which demonstrated the ability of four factors;Oct4, Sox2, Klf4, and c-Myc to reprogram human somaticcells in to pluripotency. These cells were termed inducedpluripotent stem cells (iPSCs) and display characteristicproperties of embryonic stem cells. This technique has awide range of potential uses including disease modelling,drug testing and transplantation studies. InterestinglyiPSCs also share a number of characteristics with cancercells including self-renewal and proliferation, expression ofstem cell markers and altered metabolism. Recently, iPSCshave been generated from a number of human cancercell lines and primary tumour samples from a range ofcancers in an attempt to recapitulate the developmentof cancer and interrogate the underlying mechanismsinvolved. This review will outline the similarities betweenthe reprogramming process and carcinogenesis, and howthese similarities have been exploited to generate iPSCmodels for a number of cancers.

  5. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hubert Arokium

    Full Text Available Long interspersed element-1 (LINE-1 or L1 retrotransposition induces insertional mutations that can result in diseases. It was recently shown that the copy number of L1 and other retroelements is stable in induced pluripotent stem cells (iPSCs. However, by using an engineered reporter construct over-expressing L1, another study suggests that reprogramming activates L1 mobility in iPSCs. Given the potential of human iPSCs in therapeutic applications, it is important to clarify whether these cells harbor somatic insertions resulting from endogenous L1 retrotransposition. Here, we verified L1 expression during and after reprogramming as well as potential somatic insertions driven by the most active human endogenous L1 subfamily (L1Hs. Our results indicate that L1 over-expression is initiated during the reprogramming process and is subsequently sustained in isolated clones. To detect potential somatic insertions in iPSCs caused by L1Hs retotransposition, we used a novel sequencing strategy. As opposed to conventional sequencing direction, we sequenced from the 3' end of L1Hs to the genomic DNA, thus enabling the direct detection of the polyA tail signature of retrotransposition for verification of true insertions. Deep coverage sequencing thus allowed us to detect seven potential somatic insertions with low read counts from two iPSC clones. Negative PCR amplification in parental cells, presence of a polyA tail and absence from seven L1 germline insertion databases highly suggested true somatic insertions in iPSCs. Furthermore, these insertions could not be detected in iPSCs by PCR, likely due to low abundance. We conclude that L1Hs retrotransposes at low levels in iPSCs and therefore warrants careful analyses for genotoxic effects.

  6. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells.

    Science.gov (United States)

    Arokium, Hubert; Kamata, Masakazu; Kim, Sanggu; Kim, Namshin; Liang, Min; Presson, Angela P; Chen, Irvin S

    2014-01-01

    Long interspersed element-1 (LINE-1 or L1) retrotransposition induces insertional mutations that can result in diseases. It was recently shown that the copy number of L1 and other retroelements is stable in induced pluripotent stem cells (iPSCs). However, by using an engineered reporter construct over-expressing L1, another study suggests that reprogramming activates L1 mobility in iPSCs. Given the potential of human iPSCs in therapeutic applications, it is important to clarify whether these cells harbor somatic insertions resulting from endogenous L1 retrotransposition. Here, we verified L1 expression during and after reprogramming as well as potential somatic insertions driven by the most active human endogenous L1 subfamily (L1Hs). Our results indicate that L1 over-expression is initiated during the reprogramming process and is subsequently sustained in isolated clones. To detect potential somatic insertions in iPSCs caused by L1Hs retotransposition, we used a novel sequencing strategy. As opposed to conventional sequencing direction, we sequenced from the 3' end of L1Hs to the genomic DNA, thus enabling the direct detection of the polyA tail signature of retrotransposition for verification of true insertions. Deep coverage sequencing thus allowed us to detect seven potential somatic insertions with low read counts from two iPSC clones. Negative PCR amplification in parental cells, presence of a polyA tail and absence from seven L1 germline insertion databases highly suggested true somatic insertions in iPSCs. Furthermore, these insertions could not be detected in iPSCs by PCR, likely due to low abundance. We conclude that L1Hs retrotransposes at low levels in iPSCs and therefore warrants careful analyses for genotoxic effects.

  7. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    OpenAIRE

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex...

  8. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells.

    Science.gov (United States)

    Winkler, Thomas; Cantilena, Amy; Métais, Jean-Yves; Xu, Xiuli; Nguyen, Anh-Dao; Borate, Bhavesh; Antosiewicz-Bourget, Jessica E; Wolfsberg, Tyra G; Thomson, James A; Dunbar, Cynthia E

    2010-04-01

    Derivation of induced pluripotent stem (iPS) cells requires the expression of defined transcription factors (among Oct3/4, Sox2, Klf4, c-Myc, Nanog, and Lin28) in the targeted cells. Lentiviral or standard retroviral gene transfer remains the most robust and commonly used approach. Low reprogramming frequency overall, and the higher efficiency of derivation utilizing integrating vectors compared to more recent nonviral approaches, suggests that gene activation or disruption via proviral integration sites (IS) may play a role in obtaining the pluripotent phenotype. We provide for the first time an extensive analysis of the lentiviral integration profile in human iPS cells. We identified a total of 78 independent IS in eight recently established iPS cell lines derived from either human fetal fibroblasts or newborn foreskin fibroblasts after lentiviral gene transfer of Oct4, Sox2, Nanog, and Lin28. The number of IS ranged from 5 to 15 IS per individual iPS clone, and 75 IS could be assigned to a unique chromosomal location. The different iPS clones had no IS in common. Expression analysis as well as extensive bioinformatic analysis did not reveal functional concordance of the lentiviral targeted genes between the different clones. Interestingly, in six of the eight iPS clones, some of the IS were found in pairs, integrated into the same chromosomal location within six base pairs of each other or in very close proximity. Our study supports recent reports that efficient reprogramming of human somatic cells is not dependent on insertional activation or deactivation of specific genes or gene classes.

  9. Differential coupling of self-renewal signaling pathways in murine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Luca Orlando

    Full Text Available The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs, exhibiting properties similar to those of embryonic stem cells (ESCs, has attracted much attention, with many studies focused on improving efficiency of derivation and unraveling the mechanisms of reprogramming. Despite this widespread interest, our knowledge of the molecular signaling pathways that are active in iPSCs and that play a role in controlling their fate have not been studied in detail. To address this shortfall, we have characterized the influence of different signals on the behavior of a model mouse iPSC line. We demonstrate significant responses of this iPSC line to the presence of serum, which leads to profoundly enhanced proliferation and, depending on the medium used, a reduction in the capacity of the iPSCs to self-renew. Surprisingly, this iPSC line was less sensitive to withdrawal of LIF compared to ESCs, exemplified by maintenance of expression of a Nanog-GFP reporter and enhanced self-renewal in the absence of LIF. While inhibition of phosphoinositide-3 kinase (PI3K signaling decreased iPSC self-renewal, inhibition of Gsk-3 promoted it, even in the absence of LIF. High passages of this iPSC line displayed altered characteristics, including genetic instability and a reduced ability to self-renew. However, this second feature could be restored upon inhibition of Gsk-3. Collectively, our data suggest modulation of Gsk-3 activity plays a key role in the control of iPSC fate. We propose that more careful consideration should be given to characterization of the molecular pathways that control the fate of different iPSC lines, since perturbations from those observed in naïve pluripotent ESCs could render iPSCs and their derivatives susceptible to aberrant and potentially undesirable behaviors.

  10. Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Koehler Karl R

    2011-08-01

    Full Text Available Abstract Background The use of induced pluripotent stem cells (iPSCs for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and efficient embryonic stem cell (ESC neural induction protocol to test whether iPSCs (1 have the competence to give rise to functional neurons with similar efficiency as ESCs and (2 whether the extent of neural differentiation could be altered or enhanced by increased passaging. Results Our gene expression and morphological analyses revealed that neural conversion was temporally delayed in iPSC lines and some iPSC lines did not properly form embryoid bodies during the first stage of differentiation. Notably, these deficits were corrected by continual passaging in an iPSC clone. iPSCs with greater than 20 passages (late-passage iPSCs expressed higher expression levels of pluripotency markers and formed larger embryoid bodies than iPSCs with fewer than 10 passages (early-passage iPSCs. Moreover, late-passage iPSCs started to express neural marker genes sooner than early-passage iPSCs after the initiation of neural induction. Furthermore, late-passage iPSC-derived neurons exhibited notably greater excitability and larger voltage-gated currents than early-passage iPSC-derived neurons, although these cells were morphologically indistinguishable. Conclusions These findings strongly suggest that the efficiency neuronal conversion depends on the complete reprogramming of iPSCs via extensive passaging.

  11. Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells.

    Science.gov (United States)

    DeRosa, Brooke A; Van Baaren, Jessica M; Dubey, Gaurav K; Lee, Joycelyn M; Cuccaro, Michael L; Vance, Jeffery M; Pericak-Vance, Margaret A; Dykxhoorn, Derek M

    2012-05-10

    Induced pluripotent stem cells (iPSCs) hold tremendous potential both as a biological tool to uncover the pathophysiology of disease by creating relevant cell models and as a source of stem cells for cell-based therapeutic applications. Typically, iPSCs have been derived by the transgenic overexpression of transcription factors associated with progenitor cell or stem cell function in fibroblasts derived from skin biopsies. However, the need for skin punch biopsies to derive fibroblasts for reprogramming can present a barrier to study participation among certain populations of individuals, including children with autism spectrum disorders (ASDs). In addition, the acquisition of skin punch biopsies in non-clinic settings presents a challenge. One potential mechanism to avoid these limitations would be the use of peripheral blood mononuclear cells (PBMCs) as the source of the cells for reprogramming. In this article we describe, for the first time, the derivation of iPSC lines from PBMCs isolated from the whole blood of autistic children, and their subsequent differentiation in GABAergic neurons.

  12. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  13. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes.

    Science.gov (United States)

    Hung, Sandy S C; Pébay, Alice; Wong, Raymond C B

    2015-08-20

    Recent advances in reprogramming allow us to turn somatic cells into human induced pluripotent stem cells (hiPSCs). Disease modeling using patient-specific hiPSCs allows the study of the underlying mechanism for pathogenesis, also providing a platform for the development of in vitro drug screening and gene therapy to improve treatment options. The promising potential of hiPSCs for regenerative medicine is also evident from the increasing number of publications (>7000) on iPSCs in recent years. Various cell types from distinct lineages have been successfully used for hiPSC generation, including skin fibroblasts, hematopoietic cells and epidermal keratinocytes. While skin biopsies and blood collection are routinely performed in many labs as a source of somatic cells for the generation of hiPSCs, the collection and subsequent derivation of hair keratinocytes are less commonly used. Hair-derived keratinocytes represent a non-invasive approach to obtain cell samples from patients. Here we outline a simple non-invasive method for the derivation of keratinocytes from plucked hair. We also provide instructions for maintenance of keratinocytes and subsequent reprogramming to generate integration-free hiPSC using episomal vectors.

  14. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.

    Science.gov (United States)

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony F; Rosenberg Belmaker, Lior A; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E; Grigorenko, Elena L; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M

    2012-12-20

    Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically.

  15. A dangerous method? The use of induced pluripotent stem cells as a model for schizophrenia.

    Science.gov (United States)

    Jacobs, Benjamin Meir

    2015-10-01

    Schizophrenia is a devastating and prevalent psychiatric illness. Progress in understanding the basic pathophysiological processes underlying this disorder has been hindered by the lack of appropriate models. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to generate live neurons in vitro from somatic tissue of schizophrenia patients. Despite its several limitations, this revolutionary technology has already helped to advance our understanding of schizophrenia. The phenotypic insights garnered with iPSC models of schizophrenia include transcriptional dysregulation, oxidative stress synaptic dysregulation, and neurodevelopmental abnormalities. Potential pitfalls of this work include the possibility of introducing random genetic mutations during the reprogramming process, the inadequacy of using neurons from other patients as controls, the inability to capture the complex environmental contribution to schizophrenia pathogenesis, the difficulty in modelling neurodevelopment, and the difficulty in modelling the interaction of multiple neuronal and non-neuronal cell types. However, with the increasing sophistication of available reprogramming techniques, co-culture technology, and gene correction strategies, iPSC-derived neurons will continue to elucidate how neuronal function is disrupted in schizophrenia.

  16. Epigenetic Rejuvenation of Mesenchymal Stromal Cells Derived from Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Joana Frobel

    2014-09-01

    Full Text Available Standardization of mesenchymal stromal cells (MSCs remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs, which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology, immunophenotype, in vitro differentiation potential, and gene expression profiles as primary MSCs. However, iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm profiles of iPSCs maintained donor-specific characteristics, whereas tissue-specific, senescence-associated, and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion, but they remained rejuvenated with regard to age-related DNAm. Overall, iPS-MSCs are similar to MSCs, but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns—particularly of DNAm patterns associated with tissue type and aging.

  17. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Olga Momcilovic

    Full Text Available BACKGROUND: Induced pluripotent stem (iPS cells have the capability to undergo self-renewal and differentiation into all somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before these cells can be used in therapeutic designs, it is essential to understand their genetic stability. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe DNA damage responses in human iPS cells. We observe hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after γ-irradiation. Expression of pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double strand breaks (DSB, and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells temporary arrest cell cycle progression in the G(2 phase of the cell cycle, displaying a lack of the G(1/S cell cycle arrest similar to human embryonic stem (ES cells. Furthermore, both cell types remove DSB within six hours of γ-irradiation, form RAD51 foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in ES and iPS cells relative to their differentiated counterparts. CONCLUSIONS/SIGNIFICANCE: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure, including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G(1/S cell cycle arrest, were

  18. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  19. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    Science.gov (United States)

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  20. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David A

    2017-02-06

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  1. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nicholas Brookhouser

    2017-02-01

    Full Text Available In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN, transcription activator-like effector nuclease (TALEN, and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  2. Muse cells and induced pluripotent stem cell: implication of the elite model.

    Science.gov (United States)

    Kitada, Masaaki; Wakao, Shohei; Dezawa, Mari

    2012-11-01

    Induced pluripotent stem (iPS) cells have attracted a great deal attention as a new pluripotent stem cell type that can be generated from somatic cells, such as fibroblasts, by introducing the transcription factors Oct3/4, Sox2, Klf4, and c-Myc. The mechanism of generation, however, is not fully understood. Two mechanistic theories have been proposed; the stochastic model purports that every cell type has the potential to be reprogrammed to become an iPS cell and the elite model proposes that iPS cell generation occurs only from a subset of cells. Some reports have provided theoretical support for the stochastic model, but a recent publication demonstrated findings that support the elite model, and thus the mechanism of iPS cell generation remains under debate. To enhance our understanding of iPS cells, it is necessary to clarify the properties of the original cell source, i.e., the components of the original populations and the potential of each population to become iPS cells. In this review, we discuss the two theories and their implications in iPS cell research.

  3. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells.

    Science.gov (United States)

    Salimi, Ali; Nadri, Samad; Ghollasi, Marzieh; Khajeh, Khosro; Soleimani, Masoud

    2014-03-01

    Although embryonic stem cells (ESCs) have enormous potentials due to their pluripotency, their therapeutic use is limited by ethical, biological and safety issues. Compared to ESCs, induced pluripotent stem cells (iPSCs) can be obtained from mouse or human fibroblasts by reprogramming. Numerous studies have established many protocols for differentiation of human iPSCs (hiPSCs) into neural lineages. However, the low differentiation efficiency of such protocols motivates researchers to design new protocols for high yield differentiation. Herein, we compared neural differentiation potential of three induction media for conversion of hiPSCs into neural lineages. In this study, hiPSCs-derived embryoid bodies were plated on laminin coated dishes and were treated with three induction media including (1) bFGF, EGF (2) RA and (3) forskolin, IBMX. Immunofluorescence staining and quantitative real-time PCR (qPCR) analysis were used to detect the expression of neural genes and proteins. qPCR analysis showed that the expression of neural genes in differentiated hiPSCs in forskolin, IBMX supplemented media was significantly higher than undifferentiated cells and those in induction media containing bFGF, EGF or RA. In conclusion, our results indicated a successful establishment protocol with high efficiency for differentiation of hiPSCs into neural lineages.

  4. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    Science.gov (United States)

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  5. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Han; Ning Li; Jianyong Han; Fangrong Ding; Suying Cao; Seong Soo Lim; Yunping Dai; Ran Zhang; Yurui Zhang; Bing Lim

    2011-01-01

    Dear Editor,Embryonic stem cell (ES cell) lines were first generated by culturing mouse inner cell mass (ICM) on feeder layers in 1981 [1].However,in large domestic animals,attempts to establish ES cell lines from ICM of blastocysts or the later epiblast have not been successful.This has hindered the efficient production of genetically modified livestocks by using ES-based approaches.Recently,it was found that ectopic expression of various combinations oftranscriptinn factors is able to reprogram somatic cells to a pluripotent state [2-5].These induced pluripotent stem (iPS) cells show similarities to embryo-derived ES cells and can be used to produce viable mice through tetraploid complementation [6,7].So far,iPS cells of several mammalian species have been successfully generated [2,3,8-12].In this letter,we report the first establishment of bovine iPS cells using defined transcription factors and a modified culture medium.

  6. [Progress in induced pluripotent stem cell research for age-related neurodegenerative diseases].

    Science.gov (United States)

    Ito, Daisuke; Yagi, Takuya; Suzuki, Norihiro

    2013-03-01

    In 2006, Takahashi et al. established a method for reprogramming somatic cells by introducing definite transcription factors, which enabled the generation of induced pluripotent stem cells (iPSCs) with pluripotency comparable to that of embryonic stem cells. In turn, it has become possible to use these iPSCs for producing various tissues needed for the treatment of neurodegenerative disorders, which have been difficult to obtain from living bodies. This advancement is expected to bring forth rapid progress in the clarification of mechanisms underlying the diseases and discovery of new innovative drugs and lead to rapid progress in regenerative medicine. In recent years, recapitulation and analysis of disease conditions using iPSCs derived from the patients themselves have been reported, and remarkable advances have been made, even for late-onset neurodegenerative disorders. These findings show that the phenotypes of late-onset neurodegenerative disorders can be recapitulated in iPSC-derived neuronal cells, which are reflected the early developmental stages, indicating cellular abnormalities exist from the prenatal period, despite the late onset diseases. In this review, we summarize the state of iPSCs research in the context of neurodegenerative disorders, discuss the possible ways for understanding the mechanisms underlying neurodegenerative disorders and discovering new drugs, and describe some other aspects of regenerative medicine.

  7. H1foo Has a Pivotal Role in Qualifying Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Akira Kunitomi

    2016-06-01

    Full Text Available Embryonic stem cells (ESCs are a hallmark of ideal pluripotent stem cells. Epigenetic reprogramming of induced pluripotent stem cells (iPSCs has not been fully accomplished. iPSC generation is similar to somatic cell nuclear transfer (SCNT in oocytes, and this procedure can be used to generate ESCs (SCNT-ESCs, which suggests the contribution of oocyte-specific constituents. Here, we show that the mammalian oocyte-specific linker histone H1foo has beneficial effects on iPSC generation. Induction of H1foo with Oct4, Sox2, and Klf4 significantly enhanced the efficiency of iPSC generation. H1foo promoted in vitro differentiation characteristics with low heterogeneity in iPSCs. H1foo enhanced the generation of germline-competent chimeric mice from iPSCs in a manner similar to that for ESCs. These findings indicate that H1foo contributes to the generation of higher-quality iPSCs.

  8. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    Science.gov (United States)

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David. A.

    2017-01-01

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods. PMID:28178187

  9. Induced pluripotent stem cells from swine (Sus scrofa): why they may prove to be important.

    Science.gov (United States)

    Roberts, R Michael; Telugu, Bhanu Prakash V L; Ezashi, Toshihiko

    2009-10-01

    Three recent papers, published almost simultaneously by different groups, have described the generation of induced pluripotent stem (iPS) cells from the pig, a species whose size, anatomy and physiology render them attractive as clinical models for the human. The approach used in each case was to infect somatic cells with integrating retroviral vectors designed to express four reprogramming genes (POU5F1, SOX2, cMYC and KLF4). The cell lines generated met the standard criteria for pluripotency, including the ability to differentiate along multiple tissue lineages. In most respects, the porcine iPS cells more resembled human embryonic stem cells and human iPS cells than their murine equivalents. Provided such porcine iPS cells can be "personalized" to specific pigs and then coaxed to differentiate along specific lineages, it should be possible to use such animals to test transplantation therapies with iPS cells for safety and efficacy before the procedures are applied to human patients.

  10. Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Matthew E Brown

    Full Text Available Induced pluripotent stem cells (iPSCs hold enormous potential for the development of personalized in vitro disease models, genomic health analyses, and autologous cell therapy. Here we describe the generation of T lymphocyte-derived iPSCs from small, clinically advantageous volumes of non-mobilized peripheral blood. These T-cell derived iPSCs ("TiPS" retain a normal karyotype and genetic identity to the donor. They share common characteristics with human embryonic stem cells (hESCs with respect to morphology, pluripotency-associated marker expression and capacity to generate neurons, cardiomyocytes, and hematopoietic progenitor cells. Additionally, they retain their characteristic T-cell receptor (TCR gene rearrangements, a property which could be exploited for iPSC clone tracking and T-cell development studies. Reprogramming T-cells procured in a minimally invasive manner can be used to characterize and expand donor specific iPSCs, and control their differentiation into specific lineages.

  11. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells.

    Science.gov (United States)

    Amabile, Giovanni; Welner, Robert S; Nombela-Arrieta, Cesar; D'Alise, Anna Morena; Di Ruscio, Annalisa; Ebralidze, Alexander K; Kraytsberg, Yevgenya; Ye, Min; Kocher, Olivier; Neuberg, Donna S; Khrapko, Konstantin; Silberstein, Leslie E; Tenen, Daniel G

    2013-02-21

    Lineage-restricted cells can be reprogrammed to a pluripotent state known as induced pluripotent stem (iPS) cells through overexpression of 4 transcription factors. iPS cells are similar to human embryonic stem (hES) cells and have the same ability to generate all the cells of the human body, including blood cells. However, this process is extremely inefficient and to date has been unsuccessful at differentiating iPS into hematopoietic stem cells (HSCs). We hypothesized that iPS cells, injected into NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ immunocompromised (NSG) mice could give rise to hematopoietic stem/progenitor cells (HSPCs) during teratoma formation. Here, we report a novel in vivo system in which human iPS cells differentiate within teratomas to derive functional myeloid and lymphoid cells. Similarly, HSPCs can be isolated from teratoma parenchyma and reconstitute a human immune system when transplanted into immunodeficient mice. Our data provide evidence that in vivo generation of patient customized cells is feasible, providing materials that could be useful for transplantation, human antibody generation, and drug screening applications.

  12. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1.

    Science.gov (United States)

    Montserrat, Nuria; de Oñate, Lorena; Garreta, Elena; González, Federico; Adamo, Antonio; Eguizábal, Cristina; Häfner, Sophia; Vassena, Rita; Izpisua Belmonte, Juan Carlos

    2012-01-01

    The pig represents an ideal large-animal model, intermediate between rodents and humans, for the preclinical assessment of emerging cell therapies. As no validated pig embryonic stem (pES) cell lines have been derived so far, pig induced pluripotent stem cells (piPSCs) should offer an alternative source of undifferentiated cells to advance regenerative medicine research from bench to clinical trial. We report here for the first time the derivation of piPSCs from adult fibroblast with only three transcription factors: Sox2 (sex determining region Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (avian myelocytomatosis viral oncogene homolog). We have been able to demonstrate that exogenous Pou5f1 (POU domain class 5 transcription factor 1; abbreviated as Octamer-4: Oct4) is dispensable to achieve and maintain pluripotency in the generation of piPSCs. To the best of our knowledge, this is also the first report of somatic reprogramming in any species without the overexpression, either directly or indirectly, of Oct4. Moreover, we were able to generate piPSCs without the use of feeder cells, approaching thus xeno-free conditions. Our work paves the way for the derivation of clinical grade piPSCs for regenerative medicine.

  13. Red blood cells from induced pluripotent stem cells: hurdles and developments.

    Science.gov (United States)

    Mazurier, Christelle; Douay, Luc; Lapillonne, Hélène

    2011-07-01

    In the context of chronic blood supply difficulties, generating cultured red blood cells (cRBCs) in vitro after amplification of stem cells makes sense. This review will focus on the recent findings about the generation of erythroid cells from induced pluripotent stem (iPS) cells and deals with the hurdles and next developments that will occur. The most proliferative source of stem cells for generating cRBCs is the cord blood, but this source is limited in terms of hematopoietic stem cells and dependent on donations. Pluripotent stem cells are thus the best candidates and potential sources of cRBCs. Critical advances have led towards the in-vitro production of functional RBCs from iPS cells in the last few years. Because iPS cells can proliferate indefinitely and can be selected for a phenotype of interest, they are potential candidates to organize complementary sources of RBCs for transfusion. Proof of concept of generating cRBCs from iPS cells has been performed, but the procedures need to be optimized to lead to clinical application in blood transfusion. Several crucial points remain to be resolved. Notably these include the choice of the initial cell type to generate iPS cells, the method of reprogramming, that is, to ensure the safety of iPS cells as clinical grade, the optimization of erythrocyte differentiation, and the definition of good manufacturing practice (GMP) conditions for industrial production.

  14. Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer

    Directory of Open Access Journals (Sweden)

    Teresa de Souza Fernandez

    2013-01-01

    Full Text Available The human induced pluripotent stem cells (hiPSCs are derived from a direct reprogramming of human somatic cells to a pluripotent stage through ectopic expression of specific transcription factors. These cells have two important properties, which are the self-renewal capacity and the ability to differentiate into any cell type of the human body. So, the discovery of hiPSCs opens new opportunities in biomedical sciences, since these cells may be useful for understanding the mechanisms of diseases in the production of new diseases models, in drug development/drug toxicity tests, gene therapies, and cell replacement therapies. However, the hiPSCs technology has limitations including the potential for the development of genetic and epigenetic abnormalities leading to tumorigenicity. Nowadays, basic research in the hiPSCs field has made progress in the application of new strategies with the aim to enable an efficient production of high-quality of hiPSCs for safety and efficacy, necessary to the future application for clinical practice. In this review, we show the recent advances in hiPSCs’ basic research and some potential clinical applications focusing on cancer. We also present the importance of the use of statistical methods to evaluate the possible validation for the hiPSCs for future therapeutic use toward personalized cell therapies.

  15. Generation of induced pluripotent stem cells (iPSCs from a hypertrophic cardiomyopathy patient with the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7 gene

    Directory of Open Access Journals (Sweden)

    Samantha Barratt Ross

    2017-04-01

    Full Text Available Induced pluripotent stem cells (iPSCs were generated from peripheral blood mononuclear cells (PBMCs isolated from the whole blood of a 43-year-old male with hypertrophic cardiomyopathy (HCM who carries the pathogenic variant p.Val698Ala in beta-myosin heavy chain (MYH7. Patient-derived PBMCs were reprogrammed using non-integrative episomal vectors containing reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotent markers, have trilineage differentiation potential, carry the pathogenic MYH7 variant p.Val698Ala, have a normal karyotype and no longer carry the episomal reprogramming vector. This line is useful for studying the link between variants in MYH7 and the pathogenesis of HCM.

  16. Characterization of Induced Pluripotent Stem Cell Microvesicle Genesis, Morphology and Pluripotent Content.

    Science.gov (United States)

    Zhou, Jing; Ghoroghi, Shima; Benito-Martin, Alberto; Wu, Hao; Unachukwu, Uchenna John; Einbond, Linda Saxe; Guariglia, Sara; Peinado, Hector; Redenti, Stephen

    2016-01-22

    Microvesicles (MVs) are lipid bilayer-covered cell fragments that range in diameter from 30 nm-1 uM and are released from all cell types. An increasing number of studies reveal that MVs contain microRNA, mRNA and protein that can be detected in the extracellular space. In this study, we characterized induced pluripotent stem cell (iPSC) MV genesis, content and fusion to retinal progenitor cells (RPCs) in vitro. Nanoparticle tracking revealed that iPSCs released approximately 2200 MVs cell/hour in the first 12 hrs with an average diameter of 122 nm. Electron and light microscopic analysis of iPSCs showed MV release via lipid bilayer budding. The mRNA content of iPSC MVs was characterized and revealed the presence of the transcription factors Oct-3/4, Nanog, Klf4, and C-Myc. The protein content of iPSCs MVs, detected by immunogold electron microscopy, revealed the presence of the Oct-3/4 and Nanog. Isolated iPSC MVs were shown to fuse with RPCs in vitro at multiple points along the plasma membrane. These findings demonstrate that the mRNA and protein cargo in iPSC MVs have established roles in maintenance of pluripotency. Building on this work, iPSC derived MVs may be shown to be involved in maintaining cellular pluripotency and may have application in regenerative strategies for neural tissue.

  17. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system

    Science.gov (United States)

    Zhu, Kai; Li, Jun; Lai, Hao; Yang, Cheng; Guo, Changfa; Wang, Chunsheng

    2014-01-01

    Induced pluripotent stem cells (iPSCs) have attracted keen interest in regenerative medicine. The generation of iPSCs from somatic cells can be achieved by the delivery of defined transcription factor (Oct4, Sox2, Klf4, and c-Myc[OSKM]). However, most instances of iPSC-generation have been achieved by potentially harmful genome-integrating viral vectors. Here we report the generation of iPSCs from mouse embryonic fibroblasts (MEFs) using arginine-terminated generation 4 polyamidoamine (G4Arg) nanoparticles as a nonviral transfection vector for the delivery of a single plasmid construct carrying OSKM (pOSKM). Our results showed that G4Arg nanoparticles delivered pOSKM into MEFs at a significantly higher transfection efficiency than did conventional transfection reagents. After serial transfections of pOSKM-encapsulated G4Arg nanoparticles, we successfully generated iPSCs from MEFs. Our study demonstrates that G4Arg nanoparticles may be a promising candidate for generating of virus-free iPSCs that have great potential for clinical application. PMID:25540584

  18. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells.

    Science.gov (United States)

    Hu, Kejin; Yu, Junying; Suknuntha, Kran; Tian, Shulan; Montgomery, Karen; Choi, Kyung-Dal; Stewart, Ron; Thomson, James A; Slukvin, Igor I

    2011-04-07

    Reprogramming blood cells to induced pluripotent stem cells (iPSCs) provides a novel tool for modeling blood diseases in vitro. However, the well-known limitations of current reprogramming technologies include low efficiency, slow kinetics, and transgene integration and residual expression. In the present study, we have demonstrated that iPSCs free of transgene and vector sequences could be generated from human BM and CB mononuclear cells using non-integrating episomal vectors. The reprogramming described here is up to 100 times more efficient, occurs 1-3 weeks faster compared with the reprogramming of fibroblasts, and does not require isolation of progenitors or multiple rounds of transfection. Blood-derived iPSC lines lacked rearrangements of IGH and TCR, indicating that their origin is non-B- or non-T-lymphoid cells. When cocultured on OP9, blood-derived iPSCs could be differentiated back to the blood cells, albeit with lower efficiency compared to fibroblast-derived iPSCs. We also generated transgene-free iPSCs from the BM of a patient with chronic myeloid leukemia (CML). CML iPSCs showed a unique complex chromosomal translocation identified in marrow sample while displaying typical embryonic stem cell phenotype and pluripotent differentiation potential. This approach provides an opportunity to explore banked normal and diseased CB and BM samples without the limitations associated with virus-based methods.

  19. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr

    Directory of Open Access Journals (Sweden)

    Chukwuma A. Agu

    2015-10-01

    Full Text Available The collection sites of human primary tissue samples and the receiving laboratories, where the human induced pluripotent stem cells (hIPSCs are derived, are often not on the same site. Thus, the stability of samples prior to derivation constrains the distance between the collection site and the receiving laboratory. To investigate sample stability, we collected blood and held it at room temperature for 5, 24, or 48 hr before isolating peripheral blood mononuclear cells (PBMCs and reprogramming into IPSCs. Additionally, PBMC samples at 5- and 48-hr time points were frozen in liquid nitrogen for 4 months and reprogrammed into IPSCs. hIPSC lines derived from all time points were pluripotent, displayed no marked difference in chromosomal aberration rates, and differentiated into three germ layers. Reprogramming efficiency at 24- and 48-hr time points was 3- and 10-fold lower, respectively, than at 5 hr; the freeze-thaw process of PBMCs resulted in no obvious change in reprogramming efficiency.

  20. Current status of treating neurodegenerative disease with induced pluripotent stem cells.

    Science.gov (United States)

    Pen, A E; Jensen, U B

    2017-01-01

    Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease.

    Science.gov (United States)

    Son, Mi-Young; Lee, Mi-Ok; Jeon, Hyejin; Seol, Binna; Kim, Jung Hwa; Chang, Jae-Suk; Cho, Yee Sook

    2016-05-13

    Autoimmune diseases (AIDs), a heterogeneous group of immune-mediated disorders, are a major and growing health problem. Although AIDs are currently treated primarily with anti-inflammatory and immunosuppressive drugs, the use of stem cell transplantation in patients with AIDs is becoming increasingly common. However, stem cell transplantation therapy has limitations, including a shortage of available stem cells and immune rejection of cells from nonautologous sources. Induced pluripotent stem cell (iPSC) technology, which allows the generation of patient-specific pluripotent stem cells, could offer an alternative source for clinical applications of stem cell therapies in AID patients. We used nonintegrating oriP/EBNA-1-based episomal vectors to reprogram dermal fibroblasts from patients with AIDs such as ankylosing spondylitis (AS), Sjögren's syndrome (SS) and systemic lupus erythematosus (SLE). The pluripotency and multilineage differentiation capacity of each patient-specific iPSC line was validated. The safety of these iPSCs for use in stem cell transplantation is indicated by the fact that all AID-specific iPSCs are integrated transgene free. Finally, all AID-specific iPSCs derived in this study could be differentiated into cells of hematopoietic and mesenchymal lineages in vitro as shown by flow cytometric analysis and induction of terminal differentiation potential. Our results demonstrate the successful generation of integration-free iPSCs from patients with AS, SS and SLE. These findings support the possibility of using iPSC technology in autologous and allogeneic cell replacement therapy for various AIDs, including AS, SS and SLE.

  2. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency

    DEFF Research Database (Denmark)

    Hammachi, Fella; Morrison, Gillian M; Sharov, Alexei A

    2012-01-01

    Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these fun...

  3. Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency

    DEFF Research Database (Denmark)

    Hammachi, Fella; Morrison, Gillian M; Sharov, Alexei A;

    2012-01-01

    Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these fun...

  4. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  5. Induced pluripotent stem cells as a cellular model for studying Down Syndrome

    Directory of Open Access Journals (Sweden)

    Brigida AL

    2016-11-01

    Full Text Available Down Syndrome (DS, or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy of chromosome 21 (trisomy, as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer's disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21 are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28. By reprogramming cells from DS patients, it is possible to obtain new tissue with

  6. Induced pluripotent stem cells as a cellular model for studying Down Syndrome

    Science.gov (United States)

    Brigida, Anna Lisa; Siniscalco, Dario

    2016-01-01

    Down Syndrome (DS), or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy) of chromosome 21 (trisomy), as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer’s disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21) are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS) cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28). By reprogramming cells from DS patients, it is possible to obtain new tissue with the same

  7. Sirtuin 1 facilitates generation of induced pluripotent stem cells from mouse embryonic fibroblasts through the miR-34a and p53 pathways.

    Directory of Open Access Journals (Sweden)

    Yin Lau Lee

    Full Text Available Forced-expression of transcription factors can reprogram somatic cells into induced pluripotent stem cells (iPSC. Recent studies show that the reprogramming efficiency can be improved by inclusion of small molecules that regulate chromatin modifying enzymes. We report here that sirtuin 1 (SIRT1, a member of the sirtuin family of NAD(+-dependent protein deacetylases, is involved in iPSC formation. By using an efficient mouse secondary fibroblast reprogramming system with doxycycline (DOX inducible Yamanaka's transcription factors delivered by piggyBac (PB transposition (2°F/1B MEF, we show that SIRT1 knockdown decreased while resveratrol (RSV increased the efficiency of iPSC formation. The treatments were associated with altered acetylated p53 and its downstream Nanog but not p21 expression. The stimulatory effect was also confirmed by SIRT1 over-expression, which stimulated the formation of colonies with induced Nanog and reduced p21 expression. Furthermore, the effects of RSV and SIRT1 knockdown on reprogramming were most pronounced during the initiation phase of reprogramming. MicroRNA-34a is a known regulator of SIRT1. Its inhibitor increased, while its mimics reduced iPSC formation. The stimulatory effect of SIRT1 during reprogramming was also confirmed in the primary MEF. RSV increased while tenovin-6, a small molecule that activates p53 through SIRT1 inhibition, suppressed reprogramming. In conclusion, SIRT1 enhances iPSC generation, in part, through deacetylation of p53, inhibition of p21 and enhancement of Nanog expression.

  8. Genomic Instability Associated with p53 Knockdown in the Generation of Huntington's Disease Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tidball, Andrew M; Neely, M Diana; Chamberlin, Reed; Aboud, Asad A; Kumar, Kevin K; Han, Bingying; Bryan, Miles R; Aschner, Michael; Ess, Kevin C; Bowman, Aaron B

    2016-01-01

    Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.

  9. Recent Progress of National Banking Project on Homozygous HLA-typed Induced Pluripotent Stem Cells in South Korea.

    Science.gov (United States)

    Rim, Yeri Alice; Park, Narae; Nam, Yoojun; Ham, Dong-Sik; Kim, Ji-Won; Ha, Hye-Yeong; Jung, Ji-Won; Jung, Seung Min; Baek, In Cheol; Kim, Su-Yeon; Kim, Tai-Gyu; Song, Jihwan; Lee, Jennifer; Park, Sung-Hwan; Chung, Nak-Gyun; Yoon, Kun-Ho; Ju, Ji Hyeon

    2017-09-23

    Induced pluripotent stem cells (iPSCs) can be generated by introducing several factors into mature somatic cells. Banking of iPSCs can lead to wider application for treatment and research. In an economical view, it is important to store cells that can cover a high percentage of the population. Therefore, the use of homozygous human leukocyte antigen-iPSCs (HLA-iPSCs) is thought as a potential candidate for effective iPSC banking system for further clinical use. We screened the database stored in the Catholic Hematopoietic Stem Cell Bank of Korea and sorted the most frequent homozygous HLA types of the South Korean population. Blood cells with the selected homozygous HLA types were obtained and transferred to the GMP facility in the Catholic Institute of Cell Therapy. Cells were reprogrammed to iPSCs inside the facility and went through several quality controls. As a result, a total of 13 homozygous GMP-grade iPSC lines were obtained in the facility. The generated iPSCs showed high pluripotency and normal karyotype after reprogramming. Five HLA-homozygous iPSCs had the type that was included in the top five most frequent HLA types. Homozygous HLA-iPSCs can open a new opportunity for further application of iPSCs in clinical research and therapy. This article is protected by copyright. All rights reserved.

  10. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    Science.gov (United States)

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.

  11. Origins of pluripotent stem cells.

    Science.gov (United States)

    Roelen, B A J; Chuva De Sousa Lopes, S M

    2011-08-01

    Different types of pluripotent stem cells can be identified and cultured in vitro. Here an overview is presented of the various pluripotent stem cells types. Embryonal carcinoma (EC) cells that have been cultured in vitro provided the groundwork for future pluripotent cell cultures. Conditions established for these cells such as culture on a feeder layer of mouse embryonic fibroblasts and the importance of fetal calf serum were initially also used for the culture of mouse embryonic stem (ES) cells derived from the inner cell masses of blastocysts. Embryonic stem cells derived from human blastocysts were found to require different conditions and are cultured in the presence of activin and basic fibroblast growth factor. Recently pluripotent stem cells have also been derived from mouse peri-implantation epiblasts. Since these epiblast stem cells (EpiSCs) require the same conditions as the human ES cells it has been suggested that human ES cells are more similar to mouse EpiSCs than to mouse ES cells. Pluripotent cell lines have also been derived from migratory primordial germ cells and spermatogonial stem cells. The creation of pluripotent stem cells from adult cells by the introduction of reprogramming transcription factors, so-called induced pluripotent stem (iPS) cells allowed the derivation of patient-specific pluripotent stem cells without the need of creation of a human blastocyst after cloning by somatic cells nuclear transfer. Recently it has become clear however that iPS cells may be quite different to ES cells in terms of epigenetics.

  12. Generation of Viable Mice from Induced Pluripotent Stem Cells (iPSCs) Through Tetraploid Complementation.

    Science.gov (United States)

    Kang, Lan; Gao, Shaorong

    2015-01-01

    Tetraploid complementation assay is the most rigorous criteria for pluripotency characterization of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Pluripotent stem cells could complement the developmental deficiency of tetraploid embryos and thus support the full-term mice development. Here we describe the protocol for tetraploid complementation using iPSCs to produce viable all-iPSC mice.

  13. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  14. Cellular Reprogramming: a novel tool for investigating autism spectrum disorders

    OpenAIRE

    Kim, Kun-Yong; Jung, Yong Wook; Sullivan, Gareth J.; Chung, Leeyup; Park, In-Hyun

    2012-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interaction, communication, and the manifestation of stereotyped behaviors. Despite much effort, ASDs are not yet fully understood. Advanced genetics and genomics technologies have recently identified novel ASD genes. Approaches using genetically engineered murine models or postmortem human brain have facilitated understanding ASD. Reprogramming somatic cells into induced pluripote...

  15. Induced pluripotent stem cells, from generation to application: review article

    Directory of Open Access Journals (Sweden)

    Sharif Moradi

    2014-11-01

    Full Text Available Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation, these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells that are derived from embryonic stem cells is allogenic, they face the problem of immune rejection following the transplantation of embryonic stem cell-derived cells into patients. In 2006, researchers from Japan reported the derivation of a new type of pluripotent stem cells which could overcome the problem of immune rejection that is associated with the application of embryonic stem cells. They designated these cells as induced pluripotent stem (iPS cells, because their production was ‘induced’ from differentiated somatic cells using a combination of four embryonic stem cell-associated transcription factors. Importantly, these pluripotent stem cells exhibit all the key features of embryonic stem cells including unlimited self-renewal and multi-lineage differentiation potential, and can pass the most stringent test of pluripotency which is known as the tetraploid (4n complementation. Hence, in addition to bypassing the problem of immune rejection, iPS cells have all of the potential applications of embryonic stem cells, including in developmental studies, toxicology research, drug discovery and disease modeling. Also, considering that they could be generated from patient’s own cells, iPS cells hold great promise in the future of patient-specific cell replacement therapies using pluripotent stem cells. In this review article, we will present a comprehensive review on the how and why of the generation of iPS cell from somatic cells of the body and discuss how they should be characterized in terms of morphologically, pluripotent stem cell behavior, and

  16. Modelling familial dysautonomia in human induced pluripotent stem cells

    OpenAIRE

    Lee, Gabsang; Studer, Lorenz

    2011-01-01

    Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of...

  17. Establishment and identification of induced pluripotent stem cells in liver cancer patients

    Institute of Scientific and Technical Information of China (English)

    Da-Ming Zhang; Jian-Jun Li; Peng Yan; Jian-Ting Hu

    2014-01-01

    Objective: To induce pluripotent stem (IPS) cells from fibrocytes that are separated from liver cancer patients. Methods: The fibrocytes were reprogrammed to IPS cells by lentiviral vector, stained and identified by immunohistochemistry. Results: The IPS cells were successfully established from fibrocytes after infection, and IPS cell clones formed in round shape under a microscopy. The induction rate was 0.013%±0.007%. No tumor formed at the back of nude mice within 8 weeks after the inoculation of cell clones. However, tetatoma appeared in nude mice within 1 week after IPS inoculation. A few tumors formed in nude mice within 4 weeks after the inoculation of cell clones. However, subcutaneous tumors formed within 1 week after IPS inoculation. The induced IPS cells showed three germ layers in tetatoma. Nanog and OCT4 in the induced IPS cells showed hypomethylation. SSEA-A, TRA-1-6-, TRA-1-81 and Nanog were highly expressed in the induced IPS cells, indicating the IPS cells possessed the similar ability as the stem cells. Conclusion: The IPS cells of liver cancer patients can be established effectively from fibrocytes and can be cultured stably in vitro, which provides an approach for the treatment of intermediate or advanced stage liver cancer.

  18. Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth.

    Science.gov (United States)

    Dambrot, C; van de Pas, S; van Zijl, L; Brändl, B; Wang, J W; Schalij, M J; Hoeben, R C; Atsma, D E; Mikkers, H M; Mummery, C L; Freund, C

    2013-02-01

    The generation of human induced pluripotent stem cells (hiPSCs) requires the collection of donor tissue, but clinical circumstances in which the interests of patients have highest priority may compromise the quality and availability of cells that are eventually used for reprogramming. Here we compared (i) skin biopsies stored in standard physiological salt solution for up to two weeks (ii) blood outgrowth endothelial cells (BOECs) isolated from fresh peripheral blood and (iii) children's milk teeth lost during normal replacement for their ability to form somatic cell cultures suitable for reprogramming to hiPSCs. We derived all hiPSC lines using the same reprogramming method (a conditional (FLPe) polycistronic lentivirus) and under similar conditions (same batch of virus, fetal calf serum and feeder cells). Skin fibroblasts could be reprogrammed robustly even after long-term biopsy storage. Generation of hiPSCs from juvenile dental pulp cells gave similar high efficiencies, but that of BOECs was lower. In terms of invasiveness of biopsy sampling, biopsy storage and reprogramming efficiencies skin fibroblasts appeared best for the generation of hiPSCs, but where non-invasive procedures are required (e.g., for children and minors) dental pulp cells from milk teeth represent a valuable alternative.

  19. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species

    OpenAIRE

    Ogorevc, J.; Orehek, S.; Dovč, P.

    2016-01-01

    Establishment of embryonic stem cell (ESC) lines has been successful in mouse and human, but not in farm animals. Development of direct reprogramming technology offers an alternative approach for generation of pluripotent stem cells, applicable also in farm animals. Induced pluripotent stem cells (iPSCs) represent practically limitless, ethically acceptable, individuum-specific source of pluripotent cells that can be generated from different types of somatic cells. iPSCs can differentiate to ...

  20. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Shigeo Saito

    2015-06-01

    Full Text Available Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia, cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches. Reactive oxygen species (ROS have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16Ink4a, which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs. During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs. ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.

  1. Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells.

    Science.gov (United States)

    Singbrant, Sofie; van Galen, Peter; Lucas, Daniel; Challen, Grant; Rossi, Derrick J; Daley, George Q

    2015-09-01

    Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification.

  2. Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells.

    Science.gov (United States)

    Luo, Yumei; Zhu, Detu; Du, Rong; Gong, Yu; Xie, Chun; Xu, Xiangye; Fan, Yong; Yu, Bolan; Sun, Xiaofang; Chen, Yaoyong

    2015-01-01

    The human induced pluripotent stem cell (iPSC) technique promises to provide an unlimited, reliable source of genetically matched pluripotent cells for personalized therapy and disease modeling. Recently, it is observed that cells with ring chromosomes 13 or 17 autonomously correct the defects via compensatory uniparental disomy during cellular reprogramming to iPSCs. This breakthrough finding suggests a potential therapeutic approach to repair large-scale chromosomal aberrations. However, due to the scarceness of ring chromosome samples, the reproducibility of this approach in different individuals is not carefully evaluated yet. Moreover, the underlying mechanism and the applicability to other types of chromosomal aberrations remain unknown. Here we generated iPSCs from four 45,X chorionic villous fibroblast lines and found that only one reprogrammed line acquired 46,XX karyotype via uniparental disomy of the entire X chromosome. The karyotype correction was reproducible in the same cell line by either retroviral or episomal reprogramming. The karyotype-corrected iPSCs were subject to X chromosome inactivation and obtained better colony morphology and higher proliferation rate than other uncorrected ones. Further transcriptomic comparison among the fibroblast lines identified a distinct expression pattern of cell cycle regulators in the uncorrectable ones. These findings demonstrate that the iPSC technique holds the potential to correct X monosomy, but the correction rate is very low, probably due to differential regulation of cell cycle genes between individuals. Our data strongly suggest that more systematic investigations are needed before defining the iPSC technique as a novel means of chromosome therapy.

  3. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.

    Science.gov (United States)

    Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C

    2013-06-01

    Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.

  4. Pluripotency and its layers of complexity

    Directory of Open Access Journals (Sweden)

    Ooi Jolene

    2012-09-01

    Full Text Available Abstract Pluripotency is depicted by a self-renewing state that can competently differentiate to form the three germ layers. Different stages of early murine development can be captured on a petri dish, delineating a spectrum of pluripotent states, ranging from embryonic stem cells, embryonic germ cells to epiblast stem cells. Anomalous cell populations displaying signs of pluripotency have also been uncovered, from the isolation of embryonic carcinoma cells to the derivation of induced pluripotent stem cells. Gaining insight into the molecular circuitry within these cell types enlightens us about the significance and contribution of each stage, hence deepening our understanding of vertebrate development. In this review, we aim to describe experimental milestones that led to the understanding of embryonic development and the conception of pluripotency. We also discuss attempts at exploring the realm of pluripotency with the identification of pluripotent stem cells within mouse teratocarcinomas and embryos, and the generation of pluripotent cells through nuclear reprogramming. In conclusion, we illustrate pluripotent cells derived from other organisms, including human derivatives, and describe current paradigms in the comprehension of human pluripotency.

  5. Pluripotency and its layers of complexity

    Directory of Open Access Journals (Sweden)

    Jolene Ooi

    2012-01-01

    Full Text Available Pluripotency is depicted by a self-renewing state that can competently differentiate to form the three germ layers. Different stages of early murine development can be captured on a petri dish, delineating a spectrum of pluripotent states, ranging from embryonic stem cells, embryonic germ cells to epiblast stem cells. Anomalous cell populations displaying signs of pluripotency have also been uncovered, from the isolation of embryonic carcinoma cells to the derivation of induced pluripotent stem cells. Gaining insight into the molecular circuitry within these cell types enlightens us about the significance and contribution of each stage, hence deepening our understanding of vertebrate development. In this review, we aim to describe experimental milestones that led to the understanding of embryonic development and the conception of pluripotency. We also discuss attempts at exploring the realm of pluripotency with the identification of pluripotent stem cells within mouse teratocarcinomas and embryos, and the generation of pluripotent cells through nuclear reprogramming. In conclusion, we illustrate pluripotent cells derived from other organisms, including human derivatives, and describe current paradigms in the comprehension of human pluripotency.

  6. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia.

    Science.gov (United States)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-13

    Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of iPS cell technology to biomedical research.

  7. Generation of an induced pluripotent stem cell line that mimics the disease phenotypes from a patient with Fanconi anemia by conditional complementation

    Directory of Open Access Journals (Sweden)

    Sumitha Prameela Bharathan

    2017-04-01

    Full Text Available Generation of Fanconi anemia (FA patient-specific induced pluripotent stem cells (iPSCs has been reported to be technically challenging due to the defects in the FA-pathway in the patients' somatic cells. By inducible complementation of FA-pathway, we successfully reprogrammed the fibroblasts of an FA patient to iPSCs. CSCR19i-indCFANCA, one of the iPSC lines generated by the inducible complementation of FA-pathway, was extensively characterized for its pluripotency and karyotype. In the absence of doxycycline (DOX and FANCA expression, this line showed the cellular phenotypes of FA, suggesting it is an excellent tool for FA disease modeling and drug screening.

  8. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators.

    Science.gov (United States)

    Song, LouJin; Awari, Daniel W; Han, Elizabeth Y; Uche-Anya, Eugenia; Park, Seon-Hye E; Yabe, Yoko A; Chung, Wendy K; Yazawa, Masayuki

    2015-05-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics.

  9. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders.

    Science.gov (United States)

    Ye, Zhaohui; Zhan, Huichun; Mali, Prashant; Dowey, Sarah; Williams, Donna M; Jang, Yoon-Young; Dang, Chi V; Spivak, Jerry L; Moliterno, Alison R; Cheng, Linzhao

    2009-12-24

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS cell lines were generated from previously frozen cord blood or adult CD34(+) cells of healthy donors, and could be redirected to hematopoietic differentiation. Multiple iPS cell lines were also generated from peripheral blood CD34(+) cells of 2 patients with myeloproliferative disorders (MPDs) who acquired the JAK2-V617F somatic mutation in their blood cells. The MPD-derived iPS cells containing the mutation appeared normal in phenotypes, karyotype, and pluripotency. After directed hematopoietic differentiation, the MPD-iPS cell-derived hematopoietic progenitor (CD34(+)CD45(+)) cells showed the increased erythropoiesis and gene expression of specific genes, recapitulating features of the primary CD34(+) cells of the corresponding patient from whom the iPS cells were derived. These iPS cells provide a renewable cell source and a prospective hematopoiesis model for investigating MPD pathogenesis.

  10. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  11. The Role of microRNAs in Animal Cell Reprogramming.

    Science.gov (United States)

    Cruz-Santos, María Concepción; Aragón-Raygoza, Alejandro; Espinal-Centeno, Annie; Arteaga-Vázquez, Mario; Cruz-Hernández, Andrés; Bako, Laszlo; Cruz-Ramírez, Alfredo

    2016-07-15

    Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.

  12. Induction of pluripotency by defined factors

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Keisuke, E-mail: okita@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507 (Japan); Yamanaka, Shinya [Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507 (Japan); Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507 (Japan); Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 (United States)

    2010-10-01

    Somatic cells can be reprogrammed into pluripotent stem cells by introducing a combination of several transcription factors. The induced pluripotent stem (iPS) cells from a patient's somatic cells could be useful source of cells for drug discovery and cell transplantation therapies. However, most human iPS cells are made by viral vectors, such as retrovirus and lentivirus, which integrate the reprogramming factors into host genomes and may increase the risk of tumor formation. Studies of the mechanisms underlying the reprogramming and establishment of non-integration methods contribute evidence to resolve the safety concerns associated with iPS cells. On the other hand, patient-specific iPS cells have already been established and used for recapitulating disease pathology.

  13. Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency

    Directory of Open Access Journals (Sweden)

    Steven D. Sheridan

    2012-01-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes the in vivo teratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of the in vitro embryoid body (EB assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs.

  14. A hit and run approach to inducible direct reprogramming of astrocytes to neural stem cells

    Directory of Open Access Journals (Sweden)

    Maria ePoulou

    2016-04-01

    Full Text Available Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel hit and run inducible direct reprogramming approach. In a single step, two days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2 triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine.

  15. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Wang, Ziyu; Wang, Feng

    2016-02-01

    Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.

  16. Induced Pluripotent Stem Cells: Applications in regenerative medicine, disease modelling and drug discovery

    Directory of Open Access Journals (Sweden)

    Vimal kishor Singh

    2015-02-01

    Full Text Available Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. IPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells, and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases, NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modelled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modelling and gene therapy. The technique offers benefits over other

  17. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhumur Ghosh

    Full Text Available Human induced pluripotent stem cells (hiPSCs generated by de-differentiation of adult somatic cells offer potential solutions for the ethical issues surrounding human embryonic stem cells (hESCs, as well as their immunologic rejection after cellular transplantation. However, although hiPSCs have been described as "embryonic stem cell-like", these cells have a distinct gene expression pattern compared to hESCs, making incomplete reprogramming a potential pitfall. It is unclear to what degree the difference in tissue of origin may contribute to these gene expression differences. To answer these important questions, a careful transcriptional profiling analysis is necessary to investigate the exact reprogramming state of hiPSCs, as well as analysis of the impression, if any, of the tissue of origin on the resulting hiPSCs. In this study, we compare the gene profiles of hiPSCs derived from fetal fibroblasts, neonatal fibroblasts, adipose stem cells, and keratinocytes to their corresponding donor cells and hESCs. Our analysis elucidates the overall degree of reprogramming within each hiPSC line, as well as the "distance" between each hiPSC line and its donor cell. We further identify genes that have a similar mode of regulation in hiPSCs and their corresponding donor cells compared to hESCs, allowing us to specify core sets of donor genes that continue to be expressed in each hiPSC line. We report that residual gene expression of the donor cell type contributes significantly to the differences among hiPSCs and hESCs, and adds to the incompleteness in reprogramming. Specifically, our analysis reveals that fetal fibroblast-derived hiPSCs are closer to hESCs, followed by adipose, neonatal fibroblast, and keratinocyte-derived hiPSCs.

  18. Solving the puzzle of Parkinson's disease using induced pluripotent stem cells.

    Science.gov (United States)

    Zhao, Ping; Luo, Zhiwei; Tian, Weihua; Yang, Jiayin; Ibáñez, David P; Huang, Zhijian; Tortorella, Micky D; Esteban, Miguel A; Fan, Wenxia

    2014-11-01

    The prevalence and incidence of Parkinson's disease (PD) is increasing due to a prolonged life expectancy. This highlights the need for a better mechanistic understanding and new therapeutic approaches. However, traditional in vitro and in vivo experimental models to study PD are suboptimal, thus hampering the progress in the field. The epigenetic reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) offers a unique way to overcome this problem, as these cells share many properties of embryonic stem cells (ESCs) including the potential to be transformed into different lineages. PD modeling with iPSCs is nowadays facilitated by the growing availability of high-efficiency neural-specific differentiation protocols and the possibility to correct or induce mutations as well as creating marker cell lines using designer nucleases. These technologies, together with steady advances in human genetics, will likely introduce profound changes in the way we interpret PD and develop new treatments. Here, we summarize the different PD iPSCs reported so far and discuss the challenges for disease modeling using these cell lines.

  19. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3

    Directory of Open Access Journals (Sweden)

    Susanne K. Hansen

    2016-09-01

    Full Text Available The neurodegenerative disease spinocerebellar ataxia type 3 (SCA3 is caused by a CAG-repeat expansion in the ATXN3 gene. In this study, induced pluripotent stem cell (iPSC lines were established from two SCA3 patients. Dermal fibroblasts were reprogrammed using an integration-free method and the resulting SCA3 iPSCs were differentiated into neurons. These neuronal lines harbored the disease causing mutation, expressed comparable levels of several neuronal markers and responded to the neurotransmitters, glutamate/glycine, GABA and acetylcholine. Additionally, all neuronal cultures formed networks displaying synchronized spontaneous calcium oscillations within 28 days of maturation, and expressed the mature neuronal markers NeuN and Synapsin 1 implying a relatively advanced state of maturity, although not comparable to that of the adult human brain. Interestingly, we were not able to recapitulate the glutamate-induced ataxin-3 aggregation shown in a previously published iPSC-derived SCA3 model. In conclusion, we have generated a panel of SCA3 patient iPSCs and a robust protocol to derive neurons of relatively advanced maturity, which could potentially be valuable for the study of SCA3 disease mechanisms.

  20. Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress

    Science.gov (United States)

    2013-01-01

    Background A variety of oncogenic and environmental factors alter tumor metabolism to serve the distinct cellular biosynthetic and bioenergetic needs present during oncogenesis. Extracellular acidosis is a common microenvironmental stress in solid tumors, but little is known about its metabolic influence, particularly when present in the absence of hypoxia. In order to characterize the extent of tumor cell metabolic adaptations to acidosis, we employed stable isotope tracers to examine how acidosis impacts glucose, glutamine, and palmitate metabolism in breast cancer cells exposed to extracellular acidosis. Results Acidosis increased both glutaminolysis and fatty acid β-oxidation, which contribute metabolic intermediates to drive the tricarboxylic acid cycle (TCA cycle) and ATP generation. Acidosis also led to a decoupling of glutaminolysis and novel glutathione (GSH) synthesis by repressing GCLC/GCLM expression. We further found that acidosis redirects glucose away from lactate production and towards the oxidative branch of the pentose phosphate pathway (PPP). These changes all serve to increase nicotinamide adenine dinucleotide phosphate (NADPH) production and counter the increase in reactive oxygen species (ROS) present under acidosis. The reduced novel GSH synthesis under acidosis may explain the increased demand for NADPH to recycle existing pools of GSH. Interestingly, acidosis also disconnected novel ribose synthesis from the oxidative PPP, seemingly to reroute PPP metabolites to the TCA cycle. Finally, we found that acidosis activates p53, which contributes to both the enhanced PPP and increased glutaminolysis, at least in part, through the induction of G6PD and GLS2 genes. Conclusions Acidosis alters the cellular metabolism of several major metabolites, which induces a significant degree of metabolic inflexibility. Cells exposed to acidosis largely rely upon mitochondrial metabolism for energy generation to the extent that metabolic intermediates are

  1. Purging and isolating pluripotent cells, "sweet" dreams become true?

    Institute of Scientific and Technical Information of China (English)

    Ignacio Sancho-Martinez; Emmanuel Nivet; Juan Carlos Izpisua Belmonte

    2011-01-01

    The formation of an adult organism could be viewed as a hierarchical process in which the initial totipotent cell,the zygote,progressively loses "potency" by differentiating into pluripotent,multipotent and unipotent states until the final terminally differentiated cells comprising tissues and organs are derived.Such a unidirectional concept trembled when four transcription factors were shown to "revert" the identity of differentiated somatic cells and reprogram them into induced pluripotent stem cells (iPSCs) [1].

  2. A robust strategy for negative selection of Cre-loxP recombination-based excision of transgenes in induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Syandan Chakraborty

    Full Text Available Viral vectors remain the most efficient and popular in deriving induced pluripotent stem cells (iPSCs. For translation, it is important to silence or remove the reprogramming factors after induction of pluripotency. In this study, we design an excisable loxP-flanked lentiviral construct that a includes all the reprogramming elements in a single lentiviral vector expressed by a strong EF-1α promoter; b enables easy determination of lentiviral titer; c enables transgene removal and cell enrichment using LoxP-site-specific Cre-recombinase excision and Herpes Simplex Virus-thymidine kinase/ganciclovir (HSV-tk/gan negative selection; and d allows for transgene excision in a colony format. A reprogramming efficiency comparable to that reported in the literature without boosting molecules can be consistently obtained. To further demonstrate the utility of this Cre-loxP/HSV-tk/gan strategy, we incorporate a non-viral therapeutic transgene (human blood coagulation Factor IX in the iPSCs, whose expression can be controlled by a temporal pulse of Cre recombinase. The robustness of this platform enables the implementation of an efficacious and cost-effective protocol for iPSC generation and their subsequent transgenesis for downstream studies.

  3. Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neurophysiological alterations.

    Science.gov (United States)

    Farra, N; Zhang, W-B; Pasceri, P; Eubanks, J H; Salter, M W; Ellis, J

    2012-12-01

    Rett syndrome (RTT) is a neurodevelopmental autism spectrum disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Here, we describe the first characterization and neuronal differentiation of induced pluripotent stem (iPS) cells derived from Mecp2-deficient mice. Fully reprogrammed wild-type (WT) and heterozygous female iPS cells express endogenous pluripotency markers, reactivate the X-chromosome and differentiate into the three germ layers. We directed iPS cells to produce glutamatergic neurons, which generated action potentials and formed functional excitatory synapses. iPS cell-derived neurons from heterozygous Mecp2(308) mice showed defects in the generation of evoked action potentials and glutamatergic synaptic transmission, as previously reported in brain slices. Further, we examined electrophysiology features not yet studied with the RTT iPS cell system and discovered that MeCP2-deficient neurons fired fewer action potentials, and displayed decreased action potential amplitude, diminished peak inward currents and higher input resistance relative to WT iPS-derived neurons. Deficiencies in action potential firing and inward currents suggest that disturbed Na(+) channel function may contribute to the dysfunctional RTT neuronal network. These phenotypes were additionally confirmed in neurons derived from independent WT and hemizygous mutant iPS cell lines, indicating that these reproducible deficits are attributable to MeCP2 deficiency. Taken together, these results demonstrate that neuronally differentiated MeCP2-deficient iPS cells recapitulate deficits observed previously in primary neurons, and these identified phenotypes further illustrate the requirement of MeCP2 in neuronal development and/or in the maintenance of normal function. By validating the use of iPS cells to delineate mechanisms underlying RTT pathogenesis, we identify deficiencies that can be targeted for in vitro translational screens.

  4. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  5. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  6. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies.

    Science.gov (United States)

    Nestor, Michael W; Phillips, Andre W; Artimovich, Elena; Nestor, Jonathan E; Hussman, John P; Blatt, Gene J

    2016-05-01

    Autism Spectrum Disorder (ASD) is a behaviorally defined neurodevelopmental condition. Symptoms of ASD cover the spectrum from mild qualitative differences in social interaction to severe communication and social and behavioral challenges that require lifelong support. Attempts at understanding the pathophysiology of ASD have been hampered by a multifactorial etiology that stretches the limits of current behavioral and cell based models. Recent progress has implicated numerous autism-risk genes but efforts to gain a better understanding of the underlying biological mechanisms have seen slow progress. This is in part due to lack of appropriate models for complete molecular and pharmacological studies. The advent of induced pluripotent stem cells (iPSC) has reinvigorated efforts to establish more complete model systems that more reliably identify molecular pathways and predict effective drug targets and candidates in ASD. iPSCs are particularly appealing because they can be derived from human patients and controls for research purposes and provide a technology for the development of a personalized treatment regimen for ASD patients. The pluripotency of iPSCs allow them to be reprogrammed into a number of CNS cell types and phenotypically screened across many patients. This quality is already being exploited in protocols to generate 2-dimensional (2-D) and three-dimensional (3-D) models of neurons and developing brain structures. iPSC models make powerful platforms that can be interrogated using electrophysiology, gene expression studies, and other cell-based quantitative assays. iPSC technology has limitations but when combined with other model systems has great potential for helping define the underlying pathophysiology of ASD. Autism Res 2016, 9: 513-535. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Daniels, Brian R; Hale, Christopher M; Khatau, Shyam B; Kusuma, Sravanti; Dobrowsky, Terrence M; Gerecht, Sharon; Wirtz, Denis

    2010-12-01

    Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell "softness" is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.

  8. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias.

    Science.gov (United States)

    Hoekstra, Maaike; Mummery, Christine L; Wilde, Arthur A M; Bezzina, Connie R; Verkerk, Arie O

    2012-01-01

    Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic) arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte (CM) environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models have been generated, but these also have significant shortcomings, primarily related to species differences. The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC) has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human CMs can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here, we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially) characterized. Human iPSC (hiPSC) models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these disorders.

  9. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions.

    Science.gov (United States)

    Swistowski, Andrzej; Peng, Jun; Liu, Qiuyue; Mali, Prashant; Rao, Mahendra S; Cheng, Linzhao; Zeng, Xianmin

    2010-10-01

    Human induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells represent a promising unlimited cell source for generating patient-specific cells for biomedical research and personalized medicine. As a first step, critical to clinical applications, we attempted to develop defined culture conditions to expand and differentiate human iPSCs into functional progeny such as dopaminergic neurons for treating or modeling Parkinson's disease (PD). We used a completely defined (xeno-free) system that we previously developed for efficient generation of authentic dopaminergic neurons from human embryonic stem cells (hESCs), and applied it to iPSCs. First, we adapted two human iPSC lines derived from different somatic cell types for the defined expansion medium and showed that the iPSCs grew similarly as hESCs in the same medium regarding pluripotency and genomic stability. Second, by using these two independent adapted iPSC lines, we showed that the process of differentiation into committed neural stem cells (NSCs) and subsequently into dopaminergic neurons was also similar to hESCs. Importantly, iPSC-derived dopaminergic neurons were functional as they survived and improved behavioral deficits in 6-hydroxydopamine-leasioned rats after transplantation. In addition, iPSC-derived NSCs and neurons could be efficiently transduced by a baculoviral vector delivering episomal DNA for future gene function study and disease modeling using iPSCs. We also performed genome-wide microarray comparisons between iPSCs and hESCs, and we derived NSC and dopaminergic neurons. Our data revealed overall similarity and visible differences at a molecular level. Efficient generation of functional dopaminergic neurons under defined conditions will facilitate research and applications using PD patient-specific iPSCs.

  10. X-chromosome inactivation in Rett Syndrome human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Aaron YL Cheung

    2012-03-01

    Full Text Available Rett Syndrome (RTT is a neurodevelopmental disorder that affects girls due primarily to heterozygous mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2. Random X-chromosome inactivation (XCI results in cellular mosaicism in which some cells express wild-type MECP2 while other cells express mutant MECP2. The generation of patient-specific human induced Pluripotent Stem cells (hiPSCs facilitates the production of RTT-hiPSC-derived neurons in vitro to investigate disease mechanisms and identify novel drug treatments. The generation of RTT-hiPSCs has been reported by many laboratories, however, the XCI status of RTT-hiPSCs has been inconsistent. Some report RTT-hiPSCs retain the inactive X-chromosome (post-XCI of the founder somatic cell allowing isogenic RTT-hiPSCs that express only the wild-type or mutant MECP2 allele to be isolated from the same patient. Post-XCI RTT-hiPSCs-derived neurons retain this allele-specific expression pattern of wild-type or mutant MECP2. Conversely, others report RTT-hiPSCs in which the inactive X-chromosome of the founder somatic cell reactivates (pre-XCI upon reprogramming into RTT-hiPSCs. Pre-XCI RTT-hiPSC-derived neurons exhibit random XCI resulting in cellular mosaicism with respect to wild-type and mutant MECP2 expression. Here we review and attempt to interpret the inconsistencies in XCI status of RTT-hiPSCs generated to date by comparison to other pluripotent systems in vitro and in vivo and the methods used to analyze XCI. Finally, we discuss the relative strengths and weaknesses of post- and pre-XCI hiPSCs in the context of RTT, and other X-linked and autosomal disorders for translational medicine.

  11. Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors

    Science.gov (United States)

    Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...

  12. Induced Pluripotent Stem Cells and Periodontal Regeneration

    OpenAIRE

    Du, Mi; Duan, Xuejing; Yang, Pishan

    2015-01-01

    Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal ...

  13. Development of a protein marker panel for characterization of human induced pluripotent stem cells (hiPSCs using global quantitative proteome analysis

    Directory of Open Access Journals (Sweden)

    Natalia S. Pripuzova

    2015-05-01

    Full Text Available The emergence of new methods for reprogramming of adult somatic cells into induced pluripotent stem cells (iPSC led to the development of new approaches in drug discovery and regenerative medicine. Investigation of the molecular mechanisms underlying the self-renewal, expansion and differentiation of human iPSC (hiPSC should lead to improvements in the manufacture of safe and reliable cell therapy products. The goal of our study was qualitative and quantitative proteomic characterizations of hiPSC by means of electrospray ionization (ESI-MSe and MALDI-TOF/TOF mass spectrometry (MS. Proteomes of hiPSCs of different somatic origins: fibroblasts and peripheral blood CD34+ cells, reprogrammed by the same technique, were compared with the original somatic cells and hESC. Quantitative proteomic comparison revealed approximately 220 proteins commonly up-regulated in all three pluripotent stem cell lines compared to the primary cells. Expression of 21 proteins previously reported as pluripotency markers was up-regulated in both hiPSCs (8 were confirmed by Western blot. A number of novel candidate marker proteins with the highest fold-change difference between hiPSCs/hESC and somatic cells discovered by MS were confirmed by Western blot. A panel of 22 candidate marker proteins of hiPSC was developed and expression of these proteins was confirmed in 8 additional hiPSC lines.

  14. Manipulation of KLF4 Expression Generates iPSCs Paused at Successive Stages of Reprogramming

    Directory of Open Access Journals (Sweden)

    Ken Nishimura

    2014-11-01

    Full Text Available The detailed mechanism of reprogramming somatic cells into induced pluripotent stem cells (iPSCs remains largely unknown. Partially reprogrammed iPSCs are informative and useful for understanding the mechanism of reprogramming but remain technically difficult to generate in a predictable and reproducible manner. Using replication-defective and persistent Sendai virus (SeVdp vectors, we analyzed the effect of decreasing the expression levels of OCT4, SOX2, KLF4, and c-MYC and found that low KLF4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of KLF4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path toward pluripotency. Paused iPSCs with different KLF4 expression levels remain at distinct intermediate stages of reprogramming. This SeVdp-based stage-specific reprogramming system (3S reprogramming system is applicable for both mouse and human somatic cells and will facilitate the mechanistic analysis of reprogramming.

  15. Derivation of induced pluripotent stem cells from a familial Alzheimer's disease patient carrying the L282F mutation in presenilin 1

    DEFF Research Database (Denmark)

    Poon, Anna Fong-Yee; Li, Tong; Pires, Carlota

    2016-01-01

    Mutations in presenilin 1 (PSEN1) lead to the most aggressive form of familial Alzheimer's disease (AD). Human induced pluripotent stem cells (hiPSCs) derived from AD patients can be differentiated and used for disease modeling. Here, we derived hiPSC from skin fibroblasts obtained from an AD...... patient carrying a L282F mutation in PSEN1. We transfected skin fibroblasts with episomal iPSC reprogramming vectors targeting human OCT4, SOX2, L-MYC, KLF4, NANOG, LIN28, and short hairpin RNA against TP53. Our hiPSC line, L282F-hiPSC, displayed typical stem cell characteristics with consistent...

  16. Will brain cells derived from induced pluripotent stem cells or directly converted from somatic cells (iNs) be useful for schizophrenia research?

    Science.gov (United States)

    Filippich, Cheryl; Wolvetang, Ernst J; Mowry, Bryan J

    2013-09-01

    The reprogramming of nonneuronal somatic cells to induced pluripotent stem cells and their derivation to functional brain cells as well as the related methods for direct conversion of somatic cells to neurons have opened up the possibility of conducting research on cellular disease models from living schizophrenia patients. We review the published literature on schizophrenia that has used this rapidly developing technology, highlighting the need for specific aims and reproducibility. The key issues for consideration for future schizophrenia research in this field are discussed and potential investigations using this technology are put forward for critical assessment by the reader.

  17. Nonhuman Primate Induced Pluripotent Stem Cells in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Yuehong Wu

    2012-01-01

    Full Text Available Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.

  18. Fluorescence lifetime imaging of induced pluripotent stem cells

    Science.gov (United States)

    Uchugonova, Aisada; Batista, Ana; König, Karsten

    2014-02-01

    The multiphoton FLIM tomograph MPTflex with its flexible scan head, articulated arm, and the tunable femtosecond laser source was employed to study cell monolayers and 3D cell clusters. FLIM was performed with 250 ps temporal resolution and submicron special resolution using time-correlated single photon counting. The autofluorescence based on NAD(P)H and flavins/flavoproteins has been measured in mouse embryonic fibroblasts, induced pluripotent stem cells (iPS cells) originated from mouse embryonic fibroblasts and non-proliferative mouse embryonic fibroblasts.

  19. Modeling neurodegenerative diseases with patient-derived induced pluripotent cells

    DEFF Research Database (Denmark)

    Poon, Anna; Zhang, Yu; Chandrasekaran, Abinaya

    2017-01-01

    patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls generated using CRISPR-Cas9 mediated genome editing. The iPSCs are self-renewable and capable of being differentiated into the cell types affected by the diseases. These in vitro models based on patient-derived iPSCs provide...... the possibilities of generating three-dimensional (3D) models using the iPSCs-derived cells and compare their advantages and disadvantages to conventional two-dimensional (2D) models....

  20. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin.

    Science.gov (United States)

    Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.

  1. Stress-triggered atavistic reprogramming (STAR) addiction: driving force behind head and neck cancer?

    Science.gov (United States)

    Masuda, Muneyuki; Wakasaki, Takahiro; Toh, Satoshi

    2016-01-01

    Recent results of the Cancer Genome Atlas on head and neck squamous cell carcinoma (HNSCC) revealed that HNSCC lacked predominant gain-of-function mutations in oncogenes, whereas an essential role for epigenetics in oncogenesis has become apparent. In parallel, it has gained general acceptance that cancer is considered as complex adaptive system, which evolves responding environmental selective pressures. This somatic evolution appears to proceed concurrently with the acquisition of an atavistic pluripotent state (i.e., "stemness"), which is inducible by intrinsic epigenetic reprogramming program as demonstrated by induced pluripotent stem (iPS) cells. This Nobel prize-winning discovery has markedly accelerated and expanded cancer stem cell research from the point of epigenetic reprogramming. Taken together, we hypothesize that stress-triggered atavistic reprogramming (STAR) may be the major driving force of HNSCC evolution. In this perspective, we discuss the possible mechanisms of STAR in HNSCC, focusing on recent topics of epigenetic reprogramming in developmental and cancer cell biology.

  2. Modeling Viral Infectious Diseases and Development of Antiviral Therapies Using Human Induced Pluripotent Stem Cell-Derived Systems

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2015-07-01

    Full Text Available The recent biotechnology breakthrough of cell reprogramming and generation of induced pluripotent stem cells (iPSCs, which has revolutionized the approaches to study the mechanisms of human diseases and to test new drugs, can be exploited to generate patient-specific models for the investigation of host–pathogen interactions and to develop new antimicrobial and antiviral therapies. Applications of iPSC technology to the study of viral infections in humans have included in vitro modeling of viral infections of neural, liver, and cardiac cells; modeling of human genetic susceptibility to severe viral infectious diseases, such as encephalitis and severe influenza; genetic engineering and genome editing of patient-specific iPSC-derived cells to confer antiviral resistance.

  3. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling.

    Science.gov (United States)

    Li, Wen; Chen, Shengdi; Li, Jia-Yi

    2015-11-01

    Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases.

    Science.gov (United States)

    Gao, Aijing; Peng, Yuhua; Deng, Yulin; Qing, Hong

    2013-01-01

    Difficulties in realizing persistent neurogenesis, inabilities in modeling pathogenesis of most cases, and a shortage of disease material for screening therapeutic agents restrict our progress to overcome challenges presented by neurodegenerative diseases. We propose that reprogramming primary somatic cells of patients into induced pluripotent stem cells (iPSCs) provides a new avenue to overcome these impediments. Their abilities in self-renewal and differentiation into various cell types will enable disease investigation and drug development. In this review, we introduce efficient approaches to generate iPSCs and distinct iPSCs differentiation stages, and critically discuss paradigms of iPSCs technology application to investigate neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Although iPSCs technology is in its infancy and faces many obstacles, it has great potential in helping to identify therapeutic targets for treating neurodegenerative diseases.

  5. Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter.

    Directory of Open Access Journals (Sweden)

    Taruna Anand

    Full Text Available Curative approaches for eye cataracts and other eye abnormalities, such as myopia and hyperopia currently suffer from a lack of appropriate models. Here, we present a new approach for in vitro growth of lentoid bodies from induced pluripotent stem (iPS cells as a tool for ophthalmological research. We generated a transgenic mouse line with lens-specific expression of a fluorescent reporter driven by the alphaA crystallin promoter. Fetal fibroblasts were isolated from transgenic fetuses, reprogrammed to iPS cells, and differentiated to lentoid bodies exploiting the specific fluorescence of the lens cell-specific reporter. The employment of cell type-specific reporters for establishing and optimizing differentiation in vitro seems to be an efficient and generally applicable approach for developing differentiation protocols for desired cell populations.

  6. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects.

    Science.gov (United States)

    Borgs, Laurence; Peyre, Elise; Alix, Philippe; Hanon, Kevin; Grobarczyk, Benjamin; Godin, Juliette D; Purnelle, Audrey; Krusy, Nathalie; Maquet, Pierre; Lefebvre, Philippe; Seutin, Vincent; Malgrange, Brigitte; Nguyen, Laurent

    2016-09-19

    Some mutations of the LRRK2 gene underlie autosomal dominant form of Parkinson's disease (PD). The G2019S is a common mutation that accounts for about 2% of PD cases. To understand the pathophysiology of this mutation and its possible developmental implications, we developed an in vitro assay to model PD with human induced pluripotent stem cells (hiPSCs) reprogrammed from skin fibroblasts of PD patients suffering from the LRKK2 G2019S mutation. We differentiated the hiPSCs into neural stem cells (NSCs) and further into dopaminergic neurons. Here we show that NSCs bearing the mutation tend to differentiate less efficiently into dopaminergic neurons and that the latter exhibit significant branching defects as compared to their controls.

  7. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  8. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs

    Science.gov (United States)

    Neganova, Irina; Chichagova, Valeria; Armstrong, Lyle; Lako, Majlinda

    2017-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. Reprogramming is a stepwise process with well-defined stages of initiation, maturation and stabilisation which are critically dependent on interactions between key pluripotency transcription factors, epigenetic regulators and signalling pathways. In this manuscript we have investigated the role of p38 MAPK signalling pathway and have shown a subpopulation- and phase-specific pattern of activation occurring during the initiation and maturation stage of reprogramming in partially and fully reprogrammed cells respectively. Downregulation of p38 MAPK activity via RNA interference or small molecule inhibitor led to cell accumulation in G1 phase of the cell cycle and reduced expression of cell cycle regulators during the initiation stage of reprogramming. This was associated with a significant downregulation of key pluripotency marker expression, disruption of mesenchymal to epithelial transition (MET), increased expression of differentiation markers and presence of partially reprogrammed cells which retained a typical gene expression profile of mesendodermal cells and were unable to progress to fully reprogrammed phenotype. Together our data indicate an important role for p38 MAPK activity in proliferation, MET progression and establishment of pluripotent phenotype, which are necessary steps for the development of human iPSCs. PMID:28155868

  9. Veterinary applications of induced pluripotent stem cells: regenerative medicine and models for disease?

    Science.gov (United States)

    Cebrian-Serrano, Alberto; Stout, Tom; Dinnyes, Andras

    2013-10-01

    Induced pluripotent stem cells (iPSCs) can now be derived from a tissue biopsy and represent a promising new platform for disease modelling, drug and toxicity testing, biomarker development and cell-based therapies for regenerative medicine. In regenerative medicine, large animals may represent the best models for man, and thereby provide invaluable systems in which to test the safety and the potential of iPSCs. Hence, testing iPSCs in veterinary species may serve a double function, namely, developing therapeutic products for regenerative medicine in veterinary patients while providing valuable background information for human clinical trials. The production of iPSCs from livestock or wild species is attractive because it could improve efficiency and reduce costs in various fields, such as transgenic animal generation and drug development, preservation of biological diversity, and because it also offers an alternative to xenotransplantation for in vivo generation of organs. Although the technology of cellular reprogramming using the so-called 'Yamanaka factors' is in its peak expectation phase and many concerns still need to be addressed, the rapid technical progress suggests that iPSCs could contribute significantly to novel therapies in veterinary and biomedical practice in the near future. This review provides an overview of the potential applications of iPSCs in veterinary medicine.

  10. Induced pluripotent stem cell-based studies of Parkinson's disease: challenges and promises.

    Science.gov (United States)

    Sanchez-Danes, Adriana; Benzoni, Patrizia; Memo, Maurizio; Dell'Era, Patrizia; Raya, Angel; Consiglio, Antonella

    2013-12-01

    A critical step in the development of effective therapeutics to treat Parkinson's disease (PD) is the identification of molecular pathogenic mechanisms underlying this chronically progressive neurodegenerative disease. However, while animal models have provided valuable information about the molecular basis of PD, the lack of faithful cellular and animal models that recapitulate human pathophysiology is delaying the development of new therapeutics. The reprogramming of somatic cells to induced pluripotent stem cells (iPSC) using delivery of defined combinations of transcription factors is a groundbreaking discovery that opens great opportunities for modeling human diseases, including PD, since iPSC can be generated from patients and differentiated into disease-relevant cell types, which would capture the patients' genetic complexity. Furthermore, human iPSC-derived neuronal models offer unprecedented access to early stages of the disease, allowing the investigation of the events that initiate the pathologic process in PD. Recently, human iPSC-derived neurons from patients with familial and sporadic PD have been generated and importantly they recapitulate some PD-related cell phenotypes, including abnormal α-synuclein accumulation in vitro, and alterations in the autophagy machinery. This review highlights the current PD iPSC-based models and discusses the potential future research directions of this field.

  11. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  12. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  13. Donor Dependent Variations in Hematopoietic Differentiation among Embryonic and Induced Pluripotent Stem Cell Lines.

    Directory of Open Access Journals (Sweden)

    Olivier Féraud

    Full Text Available Hematopoiesis generated from human embryonic stem cells (ES and induced pluripotent stem cells (iPS are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process.

  14. Stable X Chromosome Reactivation in Female Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Tahsin Stefan Barakat

    2015-02-01

    Full Text Available In placental mammals, balanced expression of X-linked genes is accomplished by X chromosome inactivation (XCI in female cells. In humans, random XCI is initiated early during embryonic development. To investigate whether reprogramming of female human fibroblasts into induced pluripotent stem cells (iPSCs leads to reactivation of the inactive X chromosome (Xi, we have generated iPSC lines from fibroblasts heterozygous for large X-chromosomal deletions. These fibroblasts show completely skewed XCI of the mutated X chromosome, enabling monitoring of X chromosome reactivation (XCR and XCI using allele-specific single-cell expression analysis. This approach revealed that XCR is robust under standard culture conditions, but does not prevent reinitiation of XCI, resulting in a mixed population of cells with either two active X chromosomes (Xas or one Xa and one Xi. This mixed population of XaXa and XaXi cells is stabilized in naive human stem cell medium, allowing expansion of clones with two Xas.

  15. Gene Signature of Human Oral Mucosa Fibroblasts: Comparison with Dermal Fibroblasts and Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Keiko Miyoshi

    2015-01-01

    Full Text Available Oral mucosa is a useful material for regeneration therapy with the advantages of its accessibility and versatility regardless of age and gender. However, little is known about the molecular characteristics of oral mucosa. Here we report the first comparative profiles of the gene signatures of human oral mucosa fibroblasts (hOFs, human dermal fibroblasts (hDFs, and hOF-derived induced pluripotent stem cells (hOF-iPSCs, linking these with biological roles by functional annotation and pathway analyses. As a common feature of fibroblasts, both hOFs and hDFs expressed glycolipid metabolism-related genes at higher levels compared with hOF-iPSCs. Distinct characteristics of hOFs compared with hDFs included a high expression of glycoprotein genes, involved in signaling, extracellular matrix, membrane, and receptor proteins, besides a low expression of HOX genes, the hDFs-markers. The results of the pathway analyses indicated that tissue-reconstructive, proliferative, and signaling pathways are active, whereas senescence-related genes in p53 pathway are inactive in hOFs. Furthermore, more than half of hOF-specific genes were similarly expressed to those of hOF-iPSC genes and might be controlled by WNT signaling. Our findings demonstrated that hOFs have unique cellular characteristics in specificity and plasticity. These data may provide useful insight into application of oral fibroblasts for direct reprograming.

  16. Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Mohammed Kawser Hossain

    2016-02-01

    Full Text Available Diabetes mellitus (DM is a widespread metabolic disease with a progressive incidence of morbidity and mortality worldwide. Despite extensive research, treatment options for diabetic patients remains limited. Although significant challenges remain, induced pluripotent stem cells (iPSCs have the capacity to differentiate into any cell type, including insulin-secreting pancreatic β cells, highlighting its potential as a treatment option for DM. Several iPSC lines have recently been derived from both diabetic and healthy donors. Using different reprogramming techniques, iPSCs were differentiated into insulin-secreting pancreatic βcells. Furthermore, diabetes patient-derived iPSCs (DiPSCs are increasingly being used as a platform to perform cell-based drug screening in order to develop DiPSC-based cell therapies against DM. Toxicity and teratogenicity assays based on iPSC-derived cells can also provide additional information on safety before advancing drugs to clinical trials. In this review, we summarize recent advances in the development of techniques for differentiation of iPSCs or DiPSCs into insulin-secreting pancreatic β cells, their applications in drug screening, and their role in complementing and replacing animal testing in clinical use. Advances in iPSC technologies will provide new knowledge needed to develop patient-specific iPSC-based diabetic therapies.

  17. Induced pluripotent stem cell potential in medicine, specifically focused on reproductive medicine

    Directory of Open Access Journals (Sweden)

    Christine Joséphine Françoise Louise Wyns

    2014-03-01

    Full Text Available Since 2006, several laboratories have proved that somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC. iPSCs have enormous potential in stem cell biology as they can give rise to numerous cell lineages, including the three germ layers. In this review, we discuss past and recent advances in human iPSCs used for modeling diseases in vitro, screening drugs to test new treatments, and autologous cell and tissue regenerative therapies, with a special focus on reproductive medicine applications. While this latter field of research is still in its stage of infancy, it holds great promise for investigating germ cell development and studying the genetic and physiopathological mechanisms of infertility. A major cause of infertility is the absence of germ cells in the testes, mainly due to genetic background or as a consequence of gonadotoxic treatments. For these patients, no effective fertility restoration strategy has so far been identified. The derivation of germ cells from iPSCs represents an alternative source of stem cells able to differentiate into spermatozoa. Lessons learned from animal models as well as studies on human iPSCs for reproductive purposes are reviewed.

  18. Induced pluripotent stem cell potential in medicine, specifically focused on reproductive medicine.

    Science.gov (United States)

    Botman, Olivier; Wyns, Christine

    2014-01-01

    Since 2006, several laboratories have proved that somatic cells can be reprogramed into induced pluripotent stem cells (iPSCs). iPSCs have enormous potential in stem cell biology as they can give rise to numerous cell lineages, including the three germ layers. In this review, we discuss past and recent advances in human iPSCs used for modeling diseases in vitro, screening drugs to test new treatments, and autologous cell and tissue regenerative therapies, with a special focus on reproductive medicine applications. While this latter field of research is still in its infancy, it holds great promise for investigating germ cell development and studying the genetic and physiopathological mechanisms of infertility. A major cause of infertility is the absence of germ cells in the testes, mainly due to genetic background or as a consequence of gonadotoxic treatments. For these patients, no effective fertility restoration strategy has so far been identified. The derivation of germ cells from iPSCs represents an alternative source of stem cells able to differentiate into spermatozoa. Lessons learned from animal models as well as studies on human iPSCs for reproductive purposes are reviewed.

  19. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  20. Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Ojima, Takuma; Shibata, Eri; Saito, Shiho; Toyoda, Masashi; Nakajima, Hideki; Yamazaki-Inoue, Mayu; Miyagawa, Yoshitaka; Kiyokawa, Nobutaka; Fujimoto, Jun-ichiro; Sato, Toshinori; Umezawa, Akihiro

    2015-10-19

    Glycosphingolipids (GSLs) are glycoconjugates that function as mediators of cell adhesion and modulators of signal transduction. Some well-defined markers of undifferentiated human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are glycoconjugates, such as SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. However, Comprehensive GSL profiles of hiPSCs have not yet been elucidated. The global images of GSLs from the parental cells, hiPSCs, and differentiated cells revealed that there are parental cell-independent specific glycolipids, including Globo H (fucosyl-Gb5Cer) and H type1 antigen (fucosyl-Lc4Cer) that are novel markers for undifferentiated hiPSCs. Interestingly, undifferentiated hiPSCs expressed H type 1 antigen, specific for blood type O, regardless of the cells' genotypes. Thus, in this study, we defined the dynamics of GSL remodeling during reprogramming from parental cell sets to iPSC sets and thence to iPSC-neural cells.

  1. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics.

    Science.gov (United States)

    Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav

    2015-06-23

    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude.

  2. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  3. Induced pluripotent stem cell (iPS) technology: promises and challenges

    Institute of Scientific and Technical Information of China (English)

    MIGUELA Esteban; GAN Yi; QIN DaJiang; PEI DuanQing

    2009-01-01

    In 2006,an article published in Cell by Shinya Yamanaka took by surprise the stem cell research community.By performing systematic retroviral transduction of factors enriched in embryonic stem (ES) cells,the authors demonstrated the reprogramming of mouse fibroblasts into an ES cell-like state.These cells,baptized iPS (induced pluripotent stem) cells,were immediately recognized as a ground-breaking discovery.Subsequently,the same authors and other groups reported a similar achievement with human fibroblasts.Two years later,the number of top quality papers on iPS is astonishing,and interest in the scientific community has risen to a fever pitch.But although iPS has the potential to revolutionize Regenerative Medicine,important questions still remain unanswered.Work from multiple laboratories worldwide including ours is focused on deciphering the molecular mechanisms of iPS,and trying to improve the technique to make it suitable for the clinic.In this review article we briefly discuss the past,present and future of iPS,with emphasis on urgent issues to be solved.

  4. Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS.

    Science.gov (United States)

    Esteban, Miguel A; Peng, Meixiu; Deli, Zhang; Cai, Jie; Yang, Jiayin; Xu, Jianyong; Lai, Liangxue; Pei, Duanqing

    2010-04-01

    Recently, three independent laboratories reported the generation of induced pluripotent stem cells (iPSCs) from pig (Sus scrofa). This finding sums to the growing list of species (mouse, human, monkey, and rat, in this order) for which successful reprogramming using exogenous factors has been achieved, and multiple others are possibly forthcoming. But apart from demonstrating the universality of the network identified by Shinya Yamanaka, what makes the porcine model so special? On one side, pigs are an agricultural commodity and have an easy and affordable maintenance compared with nonhuman primates that normally need to be imported. On the other side, resemblance (for example, size of organs) of porcine and human physiology is striking and because pigs are a regular source of food the ethical concerns that still remain in monkeys are not applicable. Besides, the prolonged lifespan of pigs compared with other domestic species can allow exhaustive follow up of side effects after transplantation. Porcine iPSCs may thus fill the gap between the mouse model, which due to its ease is preferred for mechanistic studies, and the first clinical trials using iPSCs in humans. However, although these studies are relevant and have created significant interest they face analogous problems that we discuss herein together with potential new directions.

  5. A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics

    Science.gov (United States)

    Gallego Romero, Irene; Pavlovic, Bryan J; Hernando-Herraez, Irene; Zhou, Xiang; Ward, Michelle C; Banovich, Nicholas E; Kagan, Courtney L; Burnett, Jonathan E; Huang, Constance H; Mitrano, Amy; Chavarria, Claudia I; Friedrich Ben-Nun, Inbar; Li, Yingchun; Sabatini, Karen; Leonardo, Trevor R; Parast, Mana; Marques-Bonet, Tomas; Laurent, Louise C; Loring, Jeanne F; Gilad, Yoav

    2015-01-01

    Comparative genomics studies in primates are restricted due to our limited access to samples. In order to gain better insight into the genetic processes that underlie variation in complex phenotypes in primates, we must have access to faithful model systems for a wide range of cell types. To facilitate this, we generated a panel of 7 fully characterized chimpanzee induced pluripotent stem cell (iPSC) lines derived from healthy donors. To demonstrate the utility of comparative iPSC panels, we collected RNA-sequencing and DNA methylation data from the chimpanzee iPSCs and the corresponding fibroblast lines, as well as from 7 human iPSCs and their source lines, which encompass multiple populations and cell types. We observe much less within-species variation in iPSCs than in somatic cells, indicating the reprogramming process erases many inter-individual differences. The low within-species regulatory variation in iPSCs allowed us to identify many novel inter-species regulatory differences of small magnitude. DOI: http://dx.doi.org/10.7554/eLife.07103.001 PMID:26102527

  6. CD24 tracks divergent pluripotent states in mouse and human cells

    Science.gov (United States)

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  7. A novel feeder-free culture system for human pluripotent stem cell culture and induced pluripotent stem cell derivation.

    Directory of Open Access Journals (Sweden)

    Sanna Vuoristo

    Full Text Available Correct interactions with extracellular matrix are essential to human pluripotent stem cells (hPSC to maintain their pluripotent self-renewal capacity during in vitro culture. hPSCs secrete laminin 511/521, one of the most important functional basement membrane components, and they can be maintained on human laminin 511 and 521 in defined culture conditions. However, large-scale production of purified or recombinant laminin 511 and 521 is difficult and expensive. Here we have tested whether a commonly available human choriocarcinoma cell line, JAR, which produces high quantities of laminins, supports the growth of undifferentiated hPSCs. We were able to maintain several human pluripotent stem cell lines on decellularized matrix produced by JAR cells using a defined culture medium. The JAR matrix also supported targeted differentiation of the cells into neuronal and hepatic directions. Importantly, we were able to derive new human induced pluripotent stem cell (hiPSC lines on JAR matrix and show that adhesion of the early hiPSC colonies to JAR matrix is more efficient than to matrigel. In summary, JAR matrix provides a cost-effective and easy-to-prepare alternative for human pluripotent stem cell culture and differentiation. In addition, this matrix is ideal for the efficient generation of new hiPSC lines.

  8. Genomic imprinting is variably lost during reprogramming of mouse iPS cells

    OpenAIRE

    2013-01-01

    Derivation of induced pluripotent stem (iPS) cells is mainly an epigenetic reprogramming process. It is still quite controversial how genomic imprinting is reprogrammed in iPS cells. Thus, we derived multiple iPS clones from genetically identical mouse somatic cells. We found that parentally inherited imprint was variably lost among these iPS clones. Concurrent with the loss of DNA methylation imprint at the corresponding Snrpn and Peg3 imprinted regions, parental origin-specific expression o...

  9. Induced pluripotent stem cells (iPSCs) derived from a patient with frontotemporal dementia caused by a P301L mutation in microtubule-associated protein tau (MAPT)

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel A.; Hjermind, Lena Elisabeth; Hasholt, Lis Frydenreich;

    2016-01-01

    Skin fibroblasts were obtained froma 57-year-old woman diagnosed with frontotemporal dementia. The diseaseis caused by a P301L mutation in microtubule-associated protein tau (MAPT). Induced pluripotent stem cells (iPSCs) were established by electroporation with episomal plasmids containing hOCT4, h......SOX2, hKLF2, hL-MYC,hLIN-28 and shP53. iPSCs were free of genomically integrated reprogramming genes, contained the expected c.902C>T substitution in exon 10 of the MAPT gene, expressed the expected pluripotency markers, displayed in vitro differentiation potential to the three germ layers and had...... normal karyotype. The iPSC line may be useful for studying hereditary frontotemporal dementia and TAU pathology in vitro....

  10. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying a M146I mutation in PSEN1.

    Science.gov (United States)

    Li, Tong; Pires, Carlota; Nielsen, Troels T; Waldemar, Gunhild; Hjermind, Lena E; Nielsen, Jørgen E; Dinnyes, Andras; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K

    2016-03-01

    Skin fibroblasts were obtained from a 46-year-old symptomatic man carrying a M146I mutation in the presenilin 1 gene (PSEN1), responsible for causing Alzheimer's disease (AD). Induced pluripotent stem cells (iPSCs) were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, hL-MYC, hLIN28 and shTP53 genes. M146I-iPSCs were free of genomically integrated reprogramming genes, had the specific mutation but no additional genomic aberrancies, expressed the expected pluripotency markers and displayed in vitro differentiation potential to the three germ layers. The reported M146I-iPSCs line may be a useful resource for in vitro modeling of familial AD. Copyright © 2016 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.

  11. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying an A79V mutation in PSEN1.

    Science.gov (United States)

    Li, Tong; Pires, Carlota; Nielsen, Troels T; Waldemar, Gunhild; Hjermind, Lena E; Nielsen, Jørgen E; Dinnyes, Andras; Hyttel, Poul; Freude, Kristine K

    2016-03-01

    Skin fibroblasts were obtained from a 48-year-old presymptomatic woman carrying a A79V mutation in the presenilin 1 gene (PSEN1), causing Alzheimer's disease (AD). Induced pluripotent stem cell (iPSCs) were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, hL-MYC, hLIN28 and shTP53 genes. A79V-iPSCs were free of genomically integrated reprogramming genes, had the specific mutation but no additional genomic aberrancies, expressed the expected pluripotency markers and displayed in vitro differentiation potential to the three germ layers. The reported A79V-iPSCs line may be a useful resource for in vitro modeling of familial AD. Copyright © 2016 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.

  12. Generation of induced pluripotent stem cells (iPSCs from an Alzheimer's disease patient carrying a M146I mutation in PSEN1

    Directory of Open Access Journals (Sweden)

    Tong Li

    2016-03-01

    Full Text Available Skin fibroblasts were obtained from a 46-year-old symptomatic man carrying a M146I mutation in the presenilin 1 gene (PSEN1, responsible for causing Alzheimer's disease (AD. Induced pluripotent stem cells (iPSCs were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, hL-MYC, hLIN28 and shTP53 genes. M146I-iPSCs were free of genomically integrated reprogramming genes, had the specific mutation but no additional genomic aberrancies, expressed the expected pluripotency markers and displayed in vitro differentiation potential to the three germ layers. The reported M146I-iPSCs line may be a useful resource for in vitro modeling of familial AD.

  13. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations

    DEFF Research Database (Denmark)

    Momcilovic, Olga; Sivapatham, Renuka; Oron, Tal Ronnen

    2016-01-01

    We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson's disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight...... of these lines (one of each SNCA, LRRK2 and GBA, four PARK2 lines, and the control) were differentiated into neural stem cells (NSC) and subsequently to dopaminergic cultures. We did not observe significant differences in the timeline of neural induction and NSC derivation between the patient and control line...... to identify alterations by large-scale evaluation. While gene expression profiling clearly distinguished cells at different stages of differentiation, no mutation-specific clustering or difference was observed, though consistent changes in patient lines were detected in genes associated mitochondrial biology...

  14. Generation of induced pluripotent stem cells (iPSCs from an Alzheimer's disease patient carrying an A79V mutation in PSEN1

    Directory of Open Access Journals (Sweden)

    Tong Li

    2016-03-01

    Full Text Available Skin fibroblasts were obtained from a 48-year-old presymptomatic woman carrying a A79V mutation in the presenilin 1 gene (PSEN1, causing Alzheimer's disease (AD. Induced pluripotent stem cell (iPSCs were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, hL-MYC, hLIN28 and shTP53 genes. A79V-iPSCs were free of genomically integrated reprogramming genes, had the specific mutation but no additional genomic aberrancies, expressed the expected pluripotency markers and displayed in vitro differentiation potential to the three germ layers. The reported A79V-iPSCs line may be a useful resource for in vitro modeling of familial AD.

  15. Differential role of nonhomologous end joining factors in the generation, DNA damage response, and myeloid differentiation of human induced pluripotent stem cells.

    Science.gov (United States)

    Felgentreff, Kerstin; Du, Likun; Weinacht, Katja G; Dobbs, Kerry; Bartish, Margarita; Giliani, Silvia; Schlaeger, Thorsten; DeVine, Alexander; Schambach, Axel; Woodbine, Lisa J; Davies, Graham; Baxi, Sachin N; van der Burg, Mirjam; Bleesing, Jack; Gennery, Andrew; Manis, John; Pan-Hammarström, Qiang; Notarangelo, Luigi D

    2014-06-17

    Nonhomologous end-joining (NHEJ) is a key pathway for efficient repair of DNA double-strand breaks (DSBs) and V(D)J recombination. NHEJ defects in humans cause immunodeficiency and increased cellular sensitivity to ionizing irradiation (IR) and are variably associated with growth retardation, microcephaly, and neurodevelopmental delay. Repair of DNA DSBs is important for reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). To compare the specific contribution of DNA ligase 4 (LIG4), Artemis, and DNA-protein kinase catalytic subunit (PKcs) in this process and to gain insights into phenotypic variability associated with these disorders, we reprogrammed patient-derived fibroblast cell lines with NHEJ defects. Deficiencies of LIG4 and of DNA-PK catalytic activity, but not Artemis deficiency, were associated with markedly reduced reprogramming efficiency, which could be partially rescued by genetic complementation. Moreover, we identified increased genomic instability in LIG4-deficient iPSCs. Cell cycle synchronization revealed a severe defect of DNA repair and a G0/G1 cell cycle arrest, particularly in LIG4- and DNA-PK catalytically deficient iPSCs. Impaired myeloid differentiation was observed in LIG4-, but not Artemis- or DNA-PK-mutated iPSCs. These results indicate a critical importance of the NHEJ pathway for somatic cell reprogramming, with a major role for LIG4 and DNA-PKcs and a minor, if any, for Artemis.

  16. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts.

    Science.gov (United States)

    Doi, Akiko; Park, In-Hyun; Wen, Bo; Murakami, Peter; Aryee, Martin J; Irizarry, Rafael; Herb, Brian; Ladd-Acosta, Christine; Rho, Junsung; Loewer, Sabine; Miller, Justine; Schlaeger, Thorsten; Daley, George Q; Feinberg, Andrew P

    2009-12-01

    Induced pluripotent stem (iPS) cells are derived by epigenetic reprogramming, but their DNA methylation patterns have not yet been analyzed on a genome-wide scale. Here, we find substantial hypermethylation and hypomethylation of cytosine-phosphate-guanine (CpG) island shores in nine human iPS cell lines as compared to their parental fibroblasts. The differentially methylated regions (DMRs) in the reprogrammed cells (denoted R-DMRs) were significantly enriched in tissue-specific (T-DMRs; 2.6-fold, P cancer-specific DMRs (C-DMRs; 3.6-fold, P cells are derived from fibroblasts, their R-DMRs can distinguish between normal brain, liver and spleen cells and between colon cancer and normal colon cells. Thus, many DMRs are broadly involved in tissue differentiation, epigenetic reprogramming and cancer. We observed colocalization of hypomethylated R-DMRs with hypermethylated C-DMRs and bivalent chromatin marks, and colocalization of hypermethylated R-DMRs with hypomethylated C-DMRs and the absence of bivalent marks, suggesting two mechanisms for epigenetic reprogramming in iPS cells and cancer.

  17. Induced pluripotent stem cell technology and aquatic animal species.

    Science.gov (United States)

    Temkin, Alexis M; Spyropoulos, Demetri D

    2014-06-01

    Aquatic animal species are the overall leaders in the scientific investigation of tough but important global health issues, including environmental toxicants and climate change. Historically, aquatic animal species also stand at the forefront of experimental biology, embryology and stem cell research. Over the past decade, intensive and high-powered investigations principally involving mouse and human cells have brought the generation and study of induced pluripotent stem cells (iPSCs) to a level that facilitates widespread use in a spectrum of species. A review of key features of these investigations is presented here as a primer for the use of iPSC technology to enhance ongoing aquatic animal species studies. iPSC and other cutting edge technologies create the potential to study individuals from "the wild" closer to the level of investigation applied to sophisticated inbred mouse models. A wide variety of surveys and hypothesis-driven investigations can be envisioned using this new capability, including comparisons of organism-specific development and exposure response and the testing of fundamental dogmas established using inbred mice. However, with these new capabilities, also come new criteria for rigorous baseline assessments and testing. Both the methods for inducing pluripotency and the source material can negatively impact iPSC quality and bourgeoning applications. Therefore, more rigorous strategies not required for inbred mouse models will have to be implemented to approach global health issues using individuals from "the wild" for aquatic animal species. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    fibroblasts. This SAM-mediated activation of LOS can be stably maintained for over 20 days in fibroblasts cultured in either fibroblasts or stem cell medium. However, when attempting to use the SAM-LOS activation as an approach for induced pluripotent stem cells-reprogramming, no embryonic stem-like colonies...

  19. The neurosteroid dehydroepiandrosterone could improve somatic cell reprogramming.

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Verdi, Javad

    2011-10-01

    Expression of four major reprogramming transgenes, including Oct4, Sox2, Klf4 and c-myc, in somatic cells enables them to have pluripotency. These cells are iPSC (induced pluripotent stem cell) that currently show the greatest potential for differentiation into cells of the three germ lineages. One of the issues facing the successful reprogramming and clinical translation of iPSC technology is the high rate of apoptosis after the reprogramming process. Reprogramming is a stressful process, and the p53 apoptotic pathway plays a negative role in cell growth and self-renewal. Apoptosis via the p53 pathway serves as a major barrier in nuclear somatic cell reprogramming during iPSC generation. DHEA (dehydroepiandrosterone) is an abundant steroid that is produced at high levels in the adrenal cells, and withdrawal of DHEA increases the levels of p53 in the epithelial and stromal cells, resulting in increased levels of apoptotic cells; meanwhile, DHEA decreases cellular apoptosis. DHEA could improve the efficacy of reprogramming yield due to a decrease in apoptosis via the p53 pathway and an increase in cell viability.

  20. [Inducing brain regeneration from within: in vivo reprogramming of endogenous somatic cells into neurons].

    Science.gov (United States)

    Heinrich, Christophe; Rouaux, Caroline

    2015-01-01

    In order to overcome the quasi-total inability of the mammalian central nervous system to regenerate in response to injuries, and in parallel to the studies dedicated to prevent neuronal loss under these circumstances, alternative approaches based on the programming of pluripotent cells or the reprogramming of somatic cells into neurons have recently emerged. These uniquely combine growing knowledge of the mechanisms that underlie neurogenesis and neuronal specification during development to the most recent findings of the molecular and epigenetic mechanisms that govern the acquisition and maintenance of cellular identity. Here, we discuss the possibility to instruct the regeneration of the central nervous system from within for therapeutic purposes, in light of the recent works reporting on the generation of neurons by direct conversion of various cerebral cell types in vitro and in vivo. © 2015 médecine/sciences – Inserm.

  1. Perspective for special Gurdon issue for differentiation: can cell fusion inform nuclear reprogramming?

    Science.gov (United States)

    Burns, David; Blau, Helen M

    2014-07-01

    Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically.

  2. 诱导性多能干细胞治疗:移植排斥与安全性问题%Induced pluripotent stem cell therapy:transplant rejection and safety

    Institute of Scientific and Technical Information of China (English)

    吴鹏飞; 周光纪

    2015-01-01

    BACKGROUND:Induced pluripotent stem cels have been a hotspot in regenerative medicine research since it was discovered. The clinical application of induced pluripotent stem cels is excessively focused on, but the safety issue is almost ignored. OBJECTIVE:By summarizing the application of induced pluripotent stem cels in animal experiments to analyze the safety problems of induced pluripotent stem cels and their possible reasons in order to lay a foundation for further study and clinical application of induced pluripotent stem cels. METHODS: PubMed database was retrieved by the first author for articles related to the safety of induced pluripotent stem cels published from 2006 to 2014 using the keywords of “induced pluripotent stem cels, safety, immune, immunogenicity, tumorigenicity, cancer, epigenomic, transplantation, generation, reprogramming,genomic, mutation” in English. Related ful texts were got from Cel Press and Nature Databases. Finaly, 28 articles were chosen in result analysis. RESULTS AND CONCLUSION: Safety problems of induced pluripotent stem cels are attracting more and more attentions. Immunogenicity, potential tumorigenicity and epigenetic variation are major risks for the clinical applications of induced pluripotent stem cels. Safety issues of induced pluripotent stem cels mainly come from the reprogramming process. The “integrating genetic manipulation” may lead to a greater risk of tumorigenicity than non-integrating operations. Epigenetic variations emerge in the reprogramming, which are mostly relative to “epigenetic memory” of reprogrammed cels.%背景:诱导性多能干细胞自发现以来一直是再生医学的研究热点,但人们过多地关注了它的运用性却忽略了安全性。目的:通过综述目前诱导性多能干细胞在动物移植研究中的表现,分析诱导性多能干细胞的安全性问题及可能原因,为今后的诱导性多能干细胞研究及临床运用提供参考。方法:以英文检索词为“induced

  3. Generation of functional platelets from canine induced pluripotent stem cells.

    Science.gov (United States)

    Nishimura, Toshiya; Hatoya, Shingo; Kanegi, Ryoji; Sugiura, Kikuya; Wijewardana, Viskam; Kuwamura, Mitsuru; Tanaka, Miyuu; Yamate, Jyoji; Izawa, Takeshi; Takahashi, Masahiro; Kawate, Noritoshi; Tamada, Hiromichi; Imai, Hiroshi; Inaba, Toshio

    2013-07-15

    Thrombocytopenia (TTP) is a blood disease common to canines and human beings. Currently, there is no valid therapy for this disease except blood transfusion. In this study, we report the generation of canine induced pluripotent stem cells (ciPSCs) from canine embryonic fibroblasts, and a novel protocol for creating mature megakaryocytes (MKs) and functional platelets from ciPSCs. The ciPSCs were generated using lentiviral vectors, and differentiated into MKs and platelets on OP9 stromal cells supplemented with growth factors. Our ciPSCs presented in a tightly domed shape and showed expression of a critical pluripotency marker, REX1, and normal karyotype. Additionally, ciPSCs differentiated into cells derived from three germ layers via the formation of an embryoid body. The MKs derived from ciPSCs had hyperploidy and transformed into proplatelets. The proplatelets released platelets early on that expressed specific MK and platelet marker CD41/61. Interestingly, these platelets, when activated with adenosine diphosphate or thrombin, bind to fibrinogen. Moreover, electron microscopy showed that the platelets had the same ultrastructure as peripheral platelets. Thus, we have demonstrated for the first time the generation of ciPSCs that are capable of differentiating into MKs and release functional platelets in vitro. Our system for differentiating ciPSCs into MKs and platelets promises a critical therapy for canine TTP and appears to be extensible in principle to resolve human TTP.

  4. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  5. Epigenetic Characterization of the FMR1 Promoter in Induced Pluripotent Stem Cells from Human Fibroblasts Carrying an Unmethylated Full Mutation

    Science.gov (United States)

    de Esch, Celine E.F.; Ghazvini, Mehrnaz; Loos, Friedemann; Schelling-Kazaryan, Nune; Widagdo, W.; Munshi, Shashini T.; van der Wal, Erik; Douben, Hannie; Gunhanlar, Nilhan; Kushner, Steven A.; Pijnappel, W.W.M. Pim; de Vrij, Femke M.S.; Geijsen, Niels; Gribnau, Joost; Willemsen, Rob

    2014-01-01

    Summary Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene. PMID:25358783

  6. Epigenetic Characterization of the FMR1 Promoter in Induced Pluripotent Stem Cells from Human Fibroblasts Carrying an Unmethylated Full Mutation

    Directory of Open Access Journals (Sweden)

    Celine E.F. de Esch

    2014-10-01

    Full Text Available Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs of an unmethylated full mutation (uFM individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.

  7. 诱导多能性干细胞研究进展%Progress in induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    刘孟麟; 王晓旭; 陈贝克; 刘运来

    2010-01-01

    人类诱导多能性干细胞(iPS细胞)的出现被誉为生命科学领域里新的里程碑,它建立了一种全新的、相对易操作而较稳定的体细胞核重编程方法,在生物学基础研究和临床应用方面具有潜在的价值;然而,iPS细胞的高癌变率和极低的重编程效率大大限制了它的应用.目前iPS细胞技术正在被不断完善,就iPS细胞的研究历程及在诱导iPS细胞上的最新研究进展进行综述.%The induced pluripotent stem cells(iPS cells) were regarded as a milestone of life sciences,which originated a relatively easy-to-use and more stable somatic cell nuclear reprogramming method, having apotential value in basic research of biology and clinical application. However, its applications were limited by high carcinogenic rate and low efficiency of reprogramming. Currently, iPS cell technology is being continuously improved. This article reviewed the history and the latest research progress in iPS cells.

  8. Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia.

    Science.gov (United States)

    Si-Tayeb, Karim; Idriss, Salam; Champon, Benoite; Caillaud, Amandine; Pichelin, Matthieu; Arnaud, Lucie; Lemarchand, Patricia; Le May, Cédric; Zibara, Kazem; Cariou, Bertrand

    2016-01-01

    Proprotein convertase subtilisin kexin type 9 (PCSK9) is a critical modulator of cholesterol homeostasis. Whereas PCSK9 gain-of-function (GOF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis, PCSK9 loss-of-function (LOF) mutations have a cardio-protective effect and in some cases can lead to familial hypobetalipoproteinemia (FHBL). However, limitations of the currently available cellular models preclude deciphering the consequences of PCSK9 mutation further. We aimed to validate urine-sample-derived human induced pluripotent stem cells (UhiPSCs) as an appropriate tool to model PCSK9-mediated ADH and FHBL. To achieve our goal, urine-sample-derived somatic cells were reprogrammed into hiPSCs by using episomal vectors. UhiPSC were efficiently differentiated into hepatocyte-like cells (HLCs). Compared to control cells, cells originally derived from an individual with ADH (HLC-S127R) secreted less PCSK9 in the media (-38.5%; P=0.038) and had a 71% decrease (Pcells originally derived from an individual with FHBL (HLC-R104C/V114A) displayed a strong decrease in PCSK9 secretion (-89.7%; Pcells for reprogramming and hepatocyte differentiation, but also a powerful tool to further decipher PCSK9 mutations and function.

  9. Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression.

    Science.gov (United States)

    Dowey, Sarah N; Huang, Xiaosong; Chou, Bin-Kuan; Ye, Zhaohui; Cheng, Linzhao

    2012-11-01

    Several human postnatal somatic cell types have been successfully reprogrammed to induced pluripotent stem cells (iPSCs). Blood mononuclear cells (MNCs) offer several advantages compared with other cell types. They are easily isolated from umbilical cord blood (CB) or adult peripheral blood (PB), and can be used fresh or after freezing. A short culture allows for more efficient reprogramming, with iPSC colonies forming from blood MNCs in 14 d, compared with 28 d for age-matched fibroblastic cells. The advantages of briefly cultured blood MNCs may be due to favorable epigenetic profiles and gene expression patterns. Blood cells from adults, especially nonlymphoid cells that are replenished frequently from intermittently activated blood stem cells, are short-lived in vivo and may contain less somatic mutations than skin fibroblasts, which are more exposed to environmental mutagens over time. We describe here a detailed, validated protocol for effective generation of integration-free human iPSCs from blood MNCs by plasmid vectors.

  10. Introduction to thematic minireview series: Development of human therapeutics based on induced pluripotent stem cell (iPSC) technology.

    Science.gov (United States)

    Rao, Mahendra; Gottesfeld, Joel M

    2014-02-21

    With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.

  11. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  12. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  13. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Grace E.Asuelime; Yanhong Shi

    2012-01-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming.While in recent years,much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state,there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming,including relatively low reprogramming efficiency,the times required for the reprogramming event to take place,the epigenetic instability,and the tumorigenicity associated with the pluripotent state.On the other hand,lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate.It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts.While lineage reprogramming provides exciting potential,there is still much to be assessed before this technology is ready to be applied in a clinical setting.

  14. Characterization of human induced pluripotent stem cell (iPSC) line from a 72year old male patient with later onset Alzheimer's disease.

    Science.gov (United States)

    Zhang, Shaokun; Lv, Zhenshan; Zhang, Songyuan; Liu, Lidi; Li, Qiao; Gong, Weiquan; Sha, Hui; Wu, Hong

    2017-03-01

    Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Characterization of human induced pluripotent stem cell (iPSC line from a 72 year old male patient with later onset Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Shaokun Zhang

    2017-03-01

    Full Text Available Peripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for studying the pathological mechanism of Alzheimer's disease.

  16. Induced pluripotent stem cell generation from a man carrying a complex chromosomal rearrangement as a genetic model for infertility studies

    Science.gov (United States)

    Mouka, Aurélie; Izard, Vincent; Tachdjian, Gérard; Brisset, Sophie; Yates, Frank; Mayeur, Anne; Drévillon, Loïc; Jarray, Rafika; Leboulch, Philippe; Maouche-Chrétien, Leila; Tosca, Lucie

    2017-01-01

    Despite progress in human reproductive biology, the cause of male infertility often remains unknown, due to the lack of appropriate and convenient in vitro models of meiosis. Induced pluripotent stem cells (iPSCs) derived from the cells of infertile patients could provide a gold standard model for generating primordial germ cells and studying their development and the process of spermatogenesis. We report the characterization of a complex chromosomal rearrangement (CCR) in an azoospermic patient, and the successful generation of specific-iPSCs from PBMC-derived erythroblasts. The CCR was characterized by karyotype, fluorescence in situ hybridization and oligonucleotide-based array-comparative genomic hybridization. The CCR included five breakpoints and was caused by the inverted insertion of a chromosome 12 segment into the short arm of one chromosome 7 and a pericentric inversion of the structurally rearranged chromosome 12. Gene mapping of the breakpoints led to the identification of a candidate gene, SYCP3. Erythroblasts from the patient were reprogrammed with Sendai virus vectors to generate iPSCs. We assessed iPSC pluripotency by RT-PCR, immunofluorescence staining and teratoma induction. The generation of specific-iPSCs from patients with a CCR provides a valuable in vitro genetic model for studying the mechanisms by which chromosomal abnormalities alter meiosis and germ cell development. PMID:28045072

  17. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.

    Directory of Open Access Journals (Sweden)

    Methichit Wattanapanitch

    Full Text Available Incurable neurological disorders such as Parkinson's disease (PD, Huntington's disease (HD, and Alzheimer's disease (AD are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases, we generated induced pluripotent stem cells (iPSCs from human dermal fibroblasts (HDFs and then differentiated them into neural progenitor cells (NPCs and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor, valproic acid (VPA, and inhibitor of p160-Rho associated coiled-coil kinase (ROCK, Y-27632, after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology, cell surface antigens, pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542, inhibitors of the SMAD signaling pathway, HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction, neuroepithelial cells (NEPCs were observed in the adherent monolayer culture, which had the ability to differentiate further into NPCs and neurons, as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays.

  18. Deriving retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells by different sizes of embryoid bodies.

    Science.gov (United States)

    Muñiz, Alberto; Ramesh, Kaini R; Greene, Whitney A; Choi, Jae-Hyek; Wang, Heuy-Ching

    2015-02-04

    Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towards a desired lineage remains low. The purpose of this study is to describe a protocol to derive retinal pigment epithelium (RPE) from iPS cells (iPS-RPE) by applying a tissue engineering approach to generate homogenous populations of embryoid bodies (EBs), a common intermediate during in vitro differentiation. The protocol applies the formation of specific size of EBs using microwell plate technology. The methods for identifying protein and gene markers of RPE by immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are also explained. Finally, the efficiency of