WorldWideScience

Sample records for induced pair cascades

  1. ON THE POLAR CAP CASCADE PAIR MULTIPLICITY OF YOUNG PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Timokhin, A. N.; Harding, A. K., E-mail: andrey.timokhin@nasa.gov [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-09-10

    We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ∼few × 10{sup 5}. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence on pulsar inclination angle. This result questions assumptions about very high pair plasma multiplicity in theories of pulsar wind nebulae.

  2. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  3. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    Science.gov (United States)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  4. Ion-irradiation studies of cascade damage in metals

    International Nuclear Information System (INIS)

    Averback, R.S.

    1982-03-01

    Ion-irradiation studies of the fundamental aspects of cascade damage in metals are reviewed. The emphasis of these studies has been the determination of the primary state of damage (i.e. the arrangement of atoms in the cascade region prior to thermal migration of defects). Progress has been made towards understanding the damage function (i.e. the number of Frenkel pairs produced as a function of primary recoil atom energy), the spatial configuration of vacancies and interstitials in the cascade and the cascade-induced mixing of atoms. It is concluded for these studies that the agitation of the lattice in the vicinity of energetic displacement cascades stimulates the defect motion and that such thermal spike motion induces recombination and clustering of Frenkel defects. 9 figures

  5. RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Miniati, Francesco [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland); Elyiv, Andrii, E-mail: fm@phys.ethz.ch [Institut d' Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium)

    2013-06-10

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  6. Multi-pair states in electron–positron pair creation

    Directory of Open Access Journals (Sweden)

    Anton Wöllert

    2016-09-01

    Full Text Available Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  7. Multi-pair states in electron–positron pair creation

    Energy Technology Data Exchange (ETDEWEB)

    Wöllert, Anton, E-mail: woellert@mpi-hd.mpg.de; Bauke, Heiko, E-mail: heiko.bauke@mpi-hd.mpg.de; Keitel, Christoph H.

    2016-09-10

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  8. Multi-pair states in electron–positron pair creation

    International Nuclear Information System (INIS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-01-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron–positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron–positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron–positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron–positron pairs.

  9. Search for neutrino-induced cascade events in the icecube detector

    Energy Technology Data Exchange (ETDEWEB)

    Panknin, Sebastian

    2011-09-15

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72{+-}0.28{+-}{sup 1.54}{sub 0.49} events. For an assumed flavor ratio of {nu}{sub e}:{nu}{sub {mu}}:{nu}{sub {tau}}=1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2}.

  10. Search for neutrino-induced cascade events in the icecube detector

    International Nuclear Information System (INIS)

    Panknin, Sebastian

    2011-01-01

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72±0.28± 1.54 0.49 events. For an assumed flavor ratio of ν e :ν μ :ν τ =1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10 -8 E -2 GeVs -1 sr -1 cm -2 .

  11. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades

    Science.gov (United States)

    Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J.

    2018-04-01

    This work revisits the electrostatic instability for blazar-induced pair beams propagating through the intergalactic medium (IGM) using linear analysis and PIC simulations. We study the impact of the realistic distribution function of pairs resulting from the interaction of high-energy gamma-rays with the extragalactic background light. We present analytical and numerical calculations of the linear growth rate of the instability for the arbitrary orientation of wave vectors. Our results explicitly demonstrate that the finite angular spread of the beam dramatically affects the growth rate of the waves, leading to the fastest growth for wave vectors quasi-parallel to the beam direction and a growth rate at oblique directions that is only a factor of 2–4 smaller compared to the maximum. To study the nonlinear beam relaxation, we performed PIC simulations that take into account a realistic wide-energy distribution of beam particles. The parameters of the simulated beam-plasma system provide an adequate physical picture that can be extrapolated to realistic blazar-induced pairs. In our simulations, the beam looses only 1% of its energy, and we analytically estimate that the beam would lose its total energy over about 100 simulation times. An analytical scaling is then used to extrapolate the parameters of realistic blazar-induced pair beams. We find that they can dissipate their energy slightly faster by the electrostatic instability than through inverse-Compton scattering. The uncertainties arising from, e.g., details of the primary gamma-ray spectrum are too large to make firm statements for individual blazars, and an analysis based on their specific properties is required.

  12. Superradiant cascade emissions in an atomic ensemble via four-wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2015-09-15

    We investigate superradiant cascade emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields via four-wave mixing. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole–dipole interactions. We then calculate the cooperative Lamb shift (CLS) of the idler photon, which is a cumulative effect of interaction energy. We study its dependence on a cylindrical geometry, a conventional setup in cold atom experiments, and estimate the maximum CLS which can be significant and observable. Manipulating the CLS of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network. - Highlights: • Superradiance from a cascade atomic transition. • Correlated photon pair generation via four-wave mixing. • Dynamical light–matter couplings in a phased symmetrical state. • Cooperative Lamb shift in a cylindrical atomic ensemble.

  13. Simulated annealing of displacement cascades in FCC metals. 1. Beeler cascades

    International Nuclear Information System (INIS)

    Doran, D.G.; Burnett, R.A.

    1974-09-01

    An important source of damage to structural materials in fast reactors is the displacement of atoms from normal lattice sites. A high energy neutron may impart sufficient energy to an atom to initiate a displacement cascade consisting of a localized high density of hundreds of interstitials and vacancies. These defects subsequently interact to form clusters and to reduce their density by mutual annihilation. This short term annealing of an isolated cascade has been simulated at high and low temperatures using a correlated random walk model. The cascade representations used were developed by Beeler and the point defect properties were based on the model of γ-iron by Johnson. Low temperature anneals, characterized by no vacancy migration and a 104 site annihilation region (AR), resulted in 49 defect pairs at 20 keV and 11 pairs at 5 keV. High temperature anneals, characterized by both interstitial and vacancy migration and a 32 site AR, resulted in 68 pairs at 20 keV and 18 pairs at 5 keV when no cluster dissociation was permitted; most of the vacancies were in immobile clusters. These high temperature values dropped to 40 and 14 upon dissolution of the vacancy clusters. Parameter studies showed that, at a given temperature, the large AR resulted in about one-half as many defects as the small AR. Cluster size distributions and examples of spatial configurations are included. (U.S.)

  14. Cascade-induced fluctuations and the transition from the stable to the critical cavity radius for swelling

    International Nuclear Information System (INIS)

    Hayns, M.R.; Mansur, L.K.

    1985-01-01

    Recently, a cascade diffusion theory was developed to understand cacade-induced fluctuations in point defect flux during irradiation. Application of the theory revealed that such fluctuations give rise to a mechanism of cascade-induced creep that is predicted to be of significant magnitude. Here we extend the investigation to the formation of cavities. Specifically, we explore the possible importance of cascade-induced cavity growth excursions in triggering a transition from the gas-content-dictated stable radius to the critical radius for bias-driven growth. Two methods of analysis are employed. The first uses the variance of fluctuations to assess the average effect of fluctuations. The second is based on the fact that in a large ensemble of cavities, a small fraction will experience larger than average excursions. This prospect is assessed by estimating upper limits to the processes. For the conditions considered, it is concluded that cascade-induced fluctuations are of minor importance in triggering the onset of swelling in a population of stable gas-containing cavities

  15. Pairing induced superconductivity in holography

    Science.gov (United States)

    Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad

    2014-09-01

    We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.

  16. Defect production in simulated cascades: cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1982-01-01

    Defect production in high energy displacement cascades has been modeled using the computer code MARLOWE to generate the cascades and the stochastic computer code ALSOME to simulate the cascade quenching and short-term annealing of isolated cascades. The quenching is accomplished by using ALSOME with exaggerated values for defect mobilities and critical reaction distanes for recombination and clustering, which are in effect until the number of defect pairs is equal to the value determined from resistivity experiments at 4K. Then normal mobilities and reaction distances are used during short-term annealing to a point representative of Stage III recovery. Effects of cascade interactions at low fluences are also being investigated. The quenching parameter values were empirically determined for 30 keV cascades. The results agree well with experimental information throughout the range from 1 keV to 100 keV. Even after quenching and short-term annealing the high energy cascades behave as a collection of lower energy subcascades and lobes. Cascades generated in a crystal having thermal displacements were found to be in better agreement with experiments after quenching and annealing than those generated in a non-thermal crystal

  17. Noise properties and cascadability of SOA-EA regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    2002-01-01

    We suggest and analyse a new device containing concatenated pairs of semiconductor optical amplifiers (SOAs) and electroabsorption modulators (EAs). The device has regenerative properties and improves the cascadability of optical fibre links.......We suggest and analyse a new device containing concatenated pairs of semiconductor optical amplifiers (SOAs) and electroabsorption modulators (EAs). The device has regenerative properties and improves the cascadability of optical fibre links....

  18. Hole pairing induced by antiferromagnetic spin fluctuations

    International Nuclear Information System (INIS)

    Su, Z.B.; Yu Lu; Dong, J.M.; Tosatti, E.

    1987-08-01

    The effective interaction induced by antiferromagnetic spin fluctuations is considered in the random phase approximation in the context of the recently discovered high T c oxide superconductors. This effective attraction favours a triplet pairing of holes. The implications of such pairing mechanism are discussed in connection with the current experimental observations. (author). 30 refs, 2 figs

  19. Cascade generation in Al laser induced plasma

    Science.gov (United States)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  20. Hadron cascades produced by electromagnetic cascades

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps

  1. Modeling DNA?damage-induced pneumopathy in mice: insight from danger signaling cascades

    OpenAIRE

    Wirsd?rfer, Florian; Jendrossek, Verena

    2017-01-01

    Radiation-induced pneumonitis and fibrosis represent severe and dose-limiting side effects in the radiotherapy of thorax-associated neoplasms leading to decreased quality of life or - as a consequence of treatment with suboptimal radiation doses - to fatal outcomes by local recurrence or metastatic disease. It is assumed that the initial radiation-induced damage to the resident cells triggers a multifaceted damage-signalling cascade in irradiated normal tissues including a multifactorial secr...

  2. Observation of aggregation triggered by Resonance Energy Transfer (RET) induced intermolecular pairing force.

    Science.gov (United States)

    Pan, Xiaoyong; Wang, Weizhi; Ke, Lin; Zhang, Nan

    2017-07-20

    In this report, we showed the existence of RET induced intermolecular pairing force by comparing their fluorescence behaviors under room illumination vs standing in dark area for either PFluAnt solution or PFluAnt&PFOBT mixture. Their prominent emission attenuation under room illumination brought out the critical role of photo, i.e. RET induced intermolecular pairing force in induction of polymer aggregation. Constant UV-Vis absorption and fluorescence spectra in terms of both peak shapes and maximum wavelengths implied no chemical decomposition was involved. Recoverable fluorescence intensity, fluorescence lifetime as well as NMR spectra further exclude photo induced decomposition. The controllable on/off state of RET induced intermolecular pairing force was verified by the masking effect of outside PFluAnt solution which function as filter to block the excitation of inside PFluAnt and thus off the RET induced intermolecular pairing force. Theoretical calculation suggest that magnitude of RET induced intermolecular pairing force is on the same scale as that of van der Waals interaction. Although the absolute magnitude of RET induced intermolecular pairing force was not tunable, its effect can be magnified by intentionally turn it "on", which was achieved by irradiance with 5 W desk lamp in this report.

  3. Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves.

    Science.gov (United States)

    von Kameke, A; Huhn, F; Fernández-García, G; Muñuzuri, A P; Pérez-Muñuzuri, V

    2011-08-12

    We report the experimental observation of Richardson dispersion and a double cascade in a thin horizontal fluid flow induced by Faraday waves. The energy spectra and the mean spectral energy flux obtained from particle image velocimetry data suggest an inverse energy cascade with Kolmogorov type scaling E(k) ∝ k(γ), γ ≈ -5/3 and an E(k) ∝ k(γ), γ ≈ -3 enstrophy cascade. Particle transport is studied analyzing absolute and relative dispersion as well as the finite size Lyapunov exponent (FSLE) via the direct tracking of real particles and numerical advection of virtual particles. Richardson dispersion with ∝ t(3) is observed and is also reflected in the slopes of the FSLE (Λ ∝ ΔR(-2/3)) for virtual and real particles.

  4. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  5. A molecular-dynamics simulation of displacement cascades in α-iron

    International Nuclear Information System (INIS)

    Kusunoki, Katsuyuki

    2003-01-01

    A molecular-dynamics code has been developed for simulating the early process of radiation-induced defects generation and aggregation during displacement cascades in α-iron. This code reproduces the dynamics of various types of defects such as vacancies, interstitials, and their clusters in a crystal composed of a million atoms. Main procedures and results of the present simulation are as follows. Interactions among atoms were described by a many-body EAM potential. Every simulation was performed under 3D periodical boundary conditions. Cascades were introduced into crystals by giving a kinetic energy to a knock-on atom once at a time toward a crystallographic direction along low index axes i.e. , and axes. The maximum number of Frenkel-type defects was generated for a case when the knock-on direction was along axis. Interstitial atoms surrounding residual vacancies were observed to form several clusters shortly after pair annihilation of the Frenkel-type defects. Fast massive migration of the interstitial clusters was also observed. (author)

  6. Induced singularities of mass distributions of unstable particles connected with cascade decay and the CP-problem

    International Nuclear Information System (INIS)

    Khalfin, L.A.

    1975-01-01

    On the basis of the strong energy-momentum conservation law, the induced singularities of mass distributions of unstable particles connected with cascade decay are investigated. The possible solution of the CP-problem in the decay of Kaon neutral - Antikaon neutral mesons based on the mechanism of the induced singularities is proposed

  7. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  8. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.; Barlier, Vincent S.; Chin, Stephanie W.; Whited, Matthew T.; McAnally, R. Eric; Forrest, Stephen R.; Thompson, Mark E.

    2011-01-01

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  9. Low and intermediate energy pion-nucleus interactions in the cascade-exciton model

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1993-01-01

    A large variety of experimental data on pion-nucleus interactions in the bombarding energy range of 0-3000 MeV, on nucleon-induced pion production and on cumulative nucleon production, when a two-step process of pion production followed by absorption on nucleon pairs within a target is taken into account, are analyzed with the Cascade-Exciton Model of nuclear reactions.Comparison is made with other up-to-date models of these processes. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed

  10. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Singh, B.N. [Materials Research Department, Risoe National Laboratory, DK-4000 Roskilde (Denmark); Foreman, A.J.E. [Materials Performance Department, Harwell Laboratory, Oxfordshire OX11 0RA (United Kingdom)

    1997-11-01

    In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop `cloud` are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.). 55 refs.

  11. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation

    International Nuclear Information System (INIS)

    Trinkaus, H.; Foreman, A.J.E.

    1997-01-01

    In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop 'cloud' are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.)

  12. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    Science.gov (United States)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  13. Effects of temperature in binary-collision simulations of high-energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1981-10-01

    Several hundred cascades ranging from 1 to 500 keV were generated using the binary collision code MARLOWE for primary knock-on atoms (PKAs) with randomly chosen directions in both a non-thermal copper lattice and one having atomic displacements representative of room temperature. To simulate the recombination occurring during localized quenching of the highly excited cascade region, an effective spontaneous recombination radius was applied to reduce the number of defect pairs to be consistent with values extracted from resistivity measurements at 4 0 K. At room temperature fewer widely separated pairs are produced, thus the recombination radius is smaller, however, the recombination radii were found to be independent of energy over the entire energy range investigated for both the cold and room temperature cases. The sizes and other features of the point defect distributions were determined as a function of energy. Differences between cold and room temperature cascade dimensions are small. The room temperature cascades tend to have a greater number of distinct damage regions per cascade, with about the same frequency of widely separated subcascades

  14. The rotationally induced quadrupole pair field in the particle-rotor model

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-04-01

    A formalism is developed which makes it possible to consider the influence of the rotationally induced quadrupole pair field and corresponding quasi-particle residual interactions within the particle-rotor model. The Y 21 pair field renormalizes both the Coriolis and the recoil interactions. (Auth.)

  15. Modeling the radar scatter off of high-energy neutrino-induced particle cascades in ice

    NARCIS (Netherlands)

    de Vries, Krijn D.; van Eijndhoven, Nick; O'Murchadha, Aongus; Toscano, Simona; Scholten, Olaf

    2017-01-01

    We discuss the radar detection method as a probe for high-energy neutrino induced particle cascades in ice. In a previous work we showed that the radar detection techniqe is a promising method to probe the high-energy cosmic neutrino flux above PeV energies. This was done by considering a simplified

  16. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S.; Griffin, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W.; Finley, J. P. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Alonso, M. Fernández [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), CC 67—Suc. 28, (C1428ZAA) Ciudad Autónoma de Buenos Aires (Argentina); Fleischhack, H.; Hütten, M. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Fortson, L. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Furniss, A. [Department of Physics, California State University—East Bay, Hayward, CA 94542 (United States); Hervet, O.; Johnson, C. A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Holder, J. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Humensky, T. B., E-mail: elisa.pueschel@ucd.ie, E-mail: weisgarber@physics.wisc.edu [Physics Department, Columbia University, New York, NY 10027 (United States); and others

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadened emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.

  17. Observer-based hyperchaos synchronization in cascaded discrete-time systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2009-01-01

    This paper deals with the observer-based synchronization in a cascade connection of hyperchaotic discrete-time systems. The paper demonstrates that exact synchronization in finite time is achievable between pairs of drive-response systems using only a scalar synchronizing signal. This 'propagated synchronization' starts from the innermost drive-response system pair and propagates toward the outermost drive-system pair. Choosing the drive-system input to be an information signal (encrypted via an arbitrary encryption function) yields a potential application of this architecture in chaos-based communications.

  18. Radiation annealing in Ag and Au due to energetic displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Merkle, K.L.

    1975-01-01

    Radiation annealing due to energetic displacement cascades has been studied in Ag and Au. Thin film specimens, 2500 A, were doped to various concentrations of Frenkel pair defects by irradiating with 150 keV protons at temperatures below 10 K. Subsequently, the specimens were irradiated below 10 K with energetic, approximately 540 keV, self-ions. Electrical resistivity measurements were used to monitor the concentration of defects as a function of dose. In Au, approximately 5 percent of the doped-in Frenkel pairs, annealed during the 540 keV Au irradiation. The annealing volume associated with individual cascades was found to be 2.1 x 10 -16 cm 3 . In Ag approximately 5 percent of the doped-in defects annealed during a 500 keV Ag irradiation and the annealing volume of the cascade was found to be 5 x 10 -16 cm 3 . In addition, the effects of doping concentration and specimen temperature during doping were investigated

  19. A molecular dynamics study of high-energy displacement cascades in α-zirconium

    International Nuclear Information System (INIS)

    Wooding, S.J.; Howe, L.M.; Gao, F.; Calder, A.F.; Bacon, D.J.

    1998-01-01

    The damage produced in α-zirconium at 100 K by displacement cascades with energy, E p , up to 20 keV has been investigated by molecular dynamics using a many-body interatomic potential. The results are compared with similar data for cascades of energy up to 10 keV in α-titanium. The production efficiency of Frenkel pairs falls to about 25% of the NRT value as E p rises above 10 keV in zirconium, and to about 30% at 10 keV in titanium. The power-law dependence of the number of Frenkel pairs, N F , on E p found previously is obeyed, i.e., N F = A(E p ) m . Interstitial and vacancy clusters with sizes of the same order are created in the cascade process, and clusters containing up to 25 interstitials and 30 vacancies were formed in zirconium by 20 keV cascades. Two thirds of the SIAs are produced in clusters in zirconium at high cascade energy. Most interstitial clusters have dislocation character with perfect Burgers vectors of the form 1/3(11 2 - 0), but a few metastable clusters are formed and are persistent over the timescale of MD simulations. Collapse of the 30-vacancy cluster to a faulted loop on the prism plane was found to occur over a period of more than 100 ps. Annealing over this timescale has a stronger effect on the number and clustering of defects in cascades that are dispersed over a large region of crystal than in cascades that form a compact region of damage. (author)

  20. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    Science.gov (United States)

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2017-08-01

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.

  1. INCAS: an analytical model to describe displacement cascades

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, Stephanie E-mail: stephanie.jumel@edf.fr; Claude Van-Duysen, Jean E-mail: jean-claude.van-duysen@edf.fr

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  2. INCAS: an analytical model to describe displacement cascades

    Science.gov (United States)

    Jumel, Stéphanie; Claude Van-Duysen, Jean

    2004-07-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.

  3. INCAS: an analytical model to describe displacement cascades

    International Nuclear Information System (INIS)

    Jumel, Stephanie; Claude Van-Duysen, Jean

    2004-01-01

    REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricite de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory

  4. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  5. The temporal development of collision cascades in the binary collision approximation

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1989-07-01

    A modified binary collision approximation (BCA) was developed to allow explicit evaluation of the times at which projectiles in a collision cascade reach significant points in their trajectories, without altering the ''event-driven'' character of the model. The modified BCA was used to study the temporal development of cascades in copper and gold, initiated by primary atoms of up to 10 keV initial kinetic energy. Cascades generated with time-ordered collisions show fewer ''distant'' Frenkel pairs than do cascades generated with velocity-ordered collisions. In the former, the slower projectiles tend to move in less-damaged crystal than they do in the latter. The effect is larger in Au than in Cu and increases with primary energy. As an approach to cascade nonlinearities, cascades were generated in which stopped cascade atoms were allowed to be redisplaced in later encounters. There were many more redisplacements in time-ordered cascades than in velocity-ordered ones. Because of the additional stopping introduced by the redisplacement events, the cascades in which they were allowed had fewer defects than occurred otherwise. This effect also was larger in Au than in Cu and larger at high energies although most of the redisplacement encounters involved only low-energy particles. 13 refs., 5 figs., 4 tabs

  6. Abnormal cascading failure spreading on complex networks

    International Nuclear Information System (INIS)

    Wang, Jianwei; Sun, Enhui; Xu, Bo; Li, Peng; Ni, Chengzhang

    2016-01-01

    Applying the mechanism of the preferential selection of the flow destination, we develop a new method to quantify the initial load on an edge, of which the flow is transported along the path with the shortest edge weight between two nodes. Considering the node weight, we propose a cascading model on the edge and investigate cascading dynamics induced by the removal of the edge with the largest load. We perform simulated attacks on four types of constructed networks and two actual networks and observe an interesting and counterintuitive phenomenon of the cascading spreading, i.e., gradually improving the capacity of nodes does not lead to the monotonous increase in the robustness of these networks against cascading failures. The non monotonous behavior of cascading dynamics is well explained by the analysis on a simple graph. We additionally study the effect of the parameter of the node weight on cascading dynamics and evaluate the network robustness by a new metric.

  7. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry.

    Science.gov (United States)

    Betz, Karin; Malyshev, Denis A; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J; Ordoukhanian, Phillip; Romesberg, Floyd E; Marx, Andreas

    2012-07-01

    Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.

  8. Cascade of Quantum Transitions and Magnetocaloric Anomalies in an Open Nanowire

    Science.gov (United States)

    Val'kov, V. V.; Mitskan, V. A.; Shustin, M. S.

    2017-12-01

    A sequence of magnetocaloric anomalies occurring with the change in a magnetic field H is predicted for an open nanowire with the Rashba spin-orbit coupling and the induced superconducting pairing potential. The nature of such anomalies is due to the cascade of quantum transitions related to the successive changes in the fermion parity of the nanowire ground state with the growth of the magnetic field. It is shown that the critical H c values fall within the parameter range corresponding to the nontrivial values of the Z 2 topological invariant of the corresponding 1D band Hamiltonian characteristic of the D symmetry class. It is demonstrated that such features in the behavior of the open nanowire are retained even in the presence of Coulomb interactions.

  9. Dependence of radiation damage accumulation in iron on underlying models of displacement cascades and subsequent defect migration

    International Nuclear Information System (INIS)

    Souidi, A.; Becquart, C.S.; Domain, C.; Terentyev, D.; Malerba, L.; Calder, A.F.; Bacon, D.J.; Stoller, R.E.; Osetsky, Yu. N.; Hou, M.

    2006-01-01

    Groups of displacement cascades calculated independently with different simulation models and computer codes are compared on a statistical basis. The parameters used for this comparison are the number of Frenkel pairs (FP) produced, the percentages of vacancies and self-interstitial atoms (SIAs) in clusters, the spatial extent and the aspect ratio of the vacancies and the SIAs formed in each cascade. One group of cascades was generated in the binary collision approximation (BCA) and all others by full molecular dynamics (MD). The MD results differ primarily due to the empirical interatomic potentials used and, to some extent, in code strategies. Cascades were generated in simulation boxes at different initial equilibrium temperatures. Only modest differences in the predicted numbers of FP are observed, but the other cascade parameters may differ by more than 100%. The consequences of these differences on long-term cluster growth in a radiation environment are examined by means of object kinetic Monte Carlo (OKMC) simulations. These were repeated with three different parameterizations of SIA and SIA cluster mobility. The differences encompassed low to high mobility, one- and three-dimensional migration of clusters, and complete immobility of large clusters. The OKMC evolution was followed until 0.1 dpa was reached. With the range of OKMC parameters used, cluster populations after 0.1 dpa differ by orders of magnitude. Using the groups of cascades from different sources induced no difference larger than a factor of 2 in the OKMC results. No correlation could be identified between the cascade parameters considered and the number densities of vacancies and SIAs predicted by OKMC to cluster in the long term. However, use of random point defect distributions instead of those obtained for displacement cascades as input for the OKMC modeling led to significantly different results. It is therefore suggested that although the displacement cascade characteristics considered

  10. PICA, Photon-Induced Medium-Range Nuclear Cascade Analysis by Monte-Carlo

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: PIC calculates the results of nuclear reactions caused by the collision of medium-energy photons with nuclei. The photon energy range in which the calculations are applicable is 30 4 are possible. The program PIC can accommodate incident monoenergetic photons as well as thin-target Bremsstrahlung spectra, thin-target Bremsstrahlung difference spectra and thick-target Bremsstrahlung spectra. For the last type of spectra the user must furnish the photon spectral data. PIC writes a history tape containing data on the properties of the particles (protons, neutrons, or pions) escaping from the nucleus. The data consists of the types of escaping particles and their energies and angles of emission. MECCAN utilizes the data on the PIC history tape to calculate cross sections such as the nonelastic cross section or the doubly differential cross section for energy-angle correlated distributions. EVAP then carries the nuclear reaction through an additional phase, that of evaporation, and calculates the energy spectra of particles (protons, neutrons, deuterons, tritons, 3 He, and alpha particles) 'boiled off' from the nucleus after the cascade has stopped, evaporation particle multiplicities, and evaporation residual nuclei (radio-chemical) cross sections. 2 - Method of solution: The interaction of high-energy photons with nuclei is described by using the intranuclear cascade and evaporation models. Monte Carlo methods are employed to provide a detailed description of each interaction. The initial interaction of the photon with the nucleus is obtained from the quasi-deuteron model of Levinger, that is, photon absorption by a neutron-proton pair moving within the nucleus or from one of the four pion-nucleon states formed in the photon-nucleon interaction. The effect of secondary nucleon-nucleus and/or pion-nucleus interactions following the photon absorption is accounted for by utilizing the intranuclear-cascade concept of high

  11. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    Science.gov (United States)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2017-11-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  12. Radiation-induced effects on the mechanical properties of natural ZrSiO4: double cascade-overlap damage accumulation

    Science.gov (United States)

    Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.

    2018-05-01

    Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.

  13. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    Science.gov (United States)

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  14. Soft pair excitations and double-log divergences due to carrier interactions in graphene

    Science.gov (United States)

    Lewandowski, Cyprian; Levitov, L. S.

    2018-03-01

    Interactions between charge carriers in graphene lead to logarithmic renormalization of observables mimicking the behavior known in (3+1)-dimensional quantum electrodynamics (QED). Here we analyze soft electron-hole (e -h ) excitations generated as a result of fast charge dynamics, a direct analog of the signature QED effect—multiple soft photons produced by the QED vacuum shakeup. We show that such excitations are generated in photon absorption, when a photogenerated high-energy e -h pair cascades down in energy and gives rise to multiple soft e -h excitations. This fundamental process is manifested in a double-log divergence in the emission rate of soft pairs and a characteristic power-law divergence in their energy spectrum of the form 1/ω ln(ω/Δ ) . Strong carrier-carrier interactions make pair production a prominent pathway in the photoexcitation cascade.

  15. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  16. Geophysical applicability of aerosol size distribution measurements using cascade impactors and proton induced X-ray emission

    International Nuclear Information System (INIS)

    Van Grieken, R.E.; Johansson, T.B.; Akselsson, K.R.; Winchester, J.W.; Nelson, J.W.; Chapman, K.R.

    1976-01-01

    Proton Induced X-ray Emission, (PIXE), is capable of high precision analysis for trace element components of aerosol particle size fractions sampled by cascade impactor. A statistical evaluation of data quality has been carried out in order to distinguish between analytical uncertainties in the PIXE procedure, errors caused by cascade impactor performance and by other factors in the sampling procedure, and geophysical causes of differences in composition and particle size distributions of the elements in aerosols. Replicate analyses and simultaneous samplings taken in north Florida and St. Louis have been used for the data evaluation. In addition to the analytical error the sampling procedure contributes an error of approximately 10% to be added quadratically. The resulting precision is sufficient to evaluate the data in geophysical terms. This is illustrated by means of sample sets taken simultaneously in an urban, forest and coastal environment of the same region. (author)

  17. Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro.

    OpenAIRE

    Bopp, D; Jamet, E; Baumgartner, S; Burri, M; Noll, M

    1989-01-01

    Two new paired domain genes of Drosophila, Pox meso and Pox neuro, are described. In contrast to the previously isolated paired domain genes, paired and gooseberry, which contain both a paired and a homeo-domain (PHox genes), Pox meso and Pox neuro possess no homeodomain. Evidence suggesting that the new genes encode tissue-specific transcriptional factors and belong to the same regulatory cascade as the other paired domain genes includes (i) tissue-specific expression of Pox meso in the soma...

  18. Multi Agent System Based Wide Area Protection against Cascading Events

    DEFF Research Database (Denmark)

    Liu, Zhou; Chen, Zhe; Liu, Leo

    2012-01-01

    In this paper, a multi-agent system based wide area protection scheme is proposed in order to prevent long term voltage instability induced cascading events. The distributed relays and controllers work as a device agent which not only executes the normal function automatically but also can...... the effectiveness of proposed protection strategy. The simulation results indicate that the proposed multi agent control system can effectively coordinate the distributed relays and controllers to prevent the long term voltage instability induced cascading events....

  19. QED effects induced harmonics generation in extreme intense laser foil interaction

    Science.gov (United States)

    Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.

    2018-04-01

    A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.

  20. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Domratcheva, Tatiana; Schulten, Klaus

    2014-01-01

    Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad...... of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearrangement of polar side groups in the cryptochrome interior, can yield a FAD-Trp radical pair state...... step can overcome in speed both recombination (electron back-transfer) and proton transfer involving the radical pair reached after primary electron transfer....

  1. Electron cascades in sensors for optical detection of ionizing radiation

    International Nuclear Information System (INIS)

    London, Richard A.; Lowry, Mark E.; Vernon, Stephen P.; Stewart, Richard E.

    2013-01-01

    A new class of high-speed detectors, called RadOptic detectors, measures ionizing radiation incident on a transparent semiconductor by sensing changes in the refractive index with an optical probe beam. We describe the role of radiation-initiated electron cascades in setting the sensitivity and the spatial and temporal resolution of RadOptic detectors. We model electron cascades with both analytical and Monte Carlo computational methods. We find that the timescale for the development of an electron cascade is less than of order 100 fs and is not expected to affect the time response of a detector. The characteristic size of the electron cloud is typically less than 2 μm, enabling high spatial resolution in imaging systems. The electron-hole pair density created by single x-rays is much smaller than the saturation density and, therefore, single events should not saturate the detector

  2. Computer simulation of cascade damage in iron: PKA mass effects

    International Nuclear Information System (INIS)

    Calder, A.; Bacon, D.J.; Barashev, A.; Osetsky, Y.

    2007-01-01

    Full text of publication follows: Results are presented from an extensive series of computer simulations of the damage created by displacement cascades in alpha-iron. The objective has been to determine for the first time the effect of the mass of the primary knock-on atom (PKA) on defect number, defect clustering and cluster morphology. Cascades with PKA energy in the range 5 to 20 keV have been simulated by molecular dynamics for temperature up to 600 K using an interatomic potential for iron for which the energy difference between the dumbbell interstitial and the crowdion is close to the value from ab initio calculation (Ackland et al., J. Phys.: Condens. Matter 2004). At least 30 cascades have been simulated for each condition in order to generate reasonable statistics. The influence of PKA species on damage has been investigated in two ways. In one, the PKA atom was treated as an Fe atom as far as its interaction with other atoms was concerned, but its atomic weight (in amu) was either 12 (C), 56 (Fe) or 209 (Bi). Pairs of Bi PKAs have also been used to mimic heavy molecular ion irradiation. In the other approach, the short-range pair part of the interatomic potential was changed from Fe-Fe to that for Bi-Fe, either with or without a change of PKA mass, in order to study the influence of high-energy collisions on the cascade outcome. It is found that PKA mass is more influential than the interatomic potential between the PKA and Fe atoms. At low cascade energy (5-10 keV), increasing PKA mass leads to a decrease in number of interstitials and vacancies. At high energy (20 keV), the main effect of increasing mass is to increase the probability of creation of interstitial and vacancy clusters in the form of 1/2 and dislocation loops. The simulation results are consistent with experimental TEM observations of damage in irradiated iron. (authors)

  3. Some characteristics of the development of high energy electromagnetic cascades in the atmosphere

    International Nuclear Information System (INIS)

    Jablonski, Z.; Tomaszewski, A.; Wrotniak, J.A.

    1977-01-01

    Results of the calculations of some characteristics of electromagnetic cascades induced by cosmic radiation are showed. The cascade parameters are influenced by effect of threshold energy of gamma quanta registration in emulsion chambers. Ratio of integral gamma quanta energies in cascade to initial particle energy and mean energy weighted radius as a function of primary interaction hight, as well as total energy and number of gamma quanta in the cascade are calculated. (S.B.)

  4. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis

    International Nuclear Information System (INIS)

    Kim, Sun Don; Moon, Chang Kyu; Eun, Su-Yong; Ryu, Pan Dong; Jo, Sangmee Ahn

    2005-01-01

    Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis

  5. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  6. The structure and dynamics of energetic displacement cascades in Cu and Ni. A molecular dynamics computer simulation study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.

    1989-01-01

    The primary state of damage present in a solid as a result of particle irradiation has been a topic of interest to the physics and materials research community over the last forty years. Energetic displacement cascades resulting from the heavy ion irradiation of a solid play a prominent role in radiation damage and non-equilibrium processing of materials; however, their study has been hampered by the small size (∼10 -20 cm 3 ) and short lifetime (∼10 -11 s) as well as by their highly non-homogeneous nature. In this work, the molecular dynamics computer simulation technique is employed to study the structure and dynamics of energetic displacement cascades in Cu and Ni. The atomic interactions in Cu were described with the use of the Gibson II form of the Born-Mayer pair potential while for Ni the Johnson-Erginsoy pair potential was employed. Calculations were also carried out with the use of the embedded atom method many-body potentials. The results provide the first detailed microscopic description of the evolution of the cascade. The author shows for the first time, that a process akin to melting takes place in the core of the cascade. Atomic mixing, point defect production and point defect agglomeration, all processes directly related to the evolution of the cascade, are then explained in terms of a simple model in which the liquid-like nature of the cascade plays a dominant role in determining the primary state of damage

  7. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    DEFF Research Database (Denmark)

    Houthuijzen, Julia M; Oosterom, Ilse; Hudson, Brian D

    2017-01-01

    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts....... M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance....

  8. Electron-positron pair creation from vacuum induced by variable electric field

    International Nuclear Information System (INIS)

    Marinov, M.S.; Popov, V.S.

    1977-01-01

    Problem is considered of spontaneous creation of electron-positron pairs from the vacuum induced by external electric field, that is homogeneous and depends on time in an arbitrary way. The Heisenberg equations of motion are obtained for the creation-annihilation operators. The solution is a linear canonical transformation. The problem is reduced to a set of differential equations for the second-order matrices determining this transformation. A consequence of the CP symmetry of the Dirac equation with an external electric field is that the e + e - pair is created from the vacuum in a state with total spin 1. The case when the variating electric field conserves its direction, is considered in more detail. In this case the equations are much simplified and may be reduced to the Riccati equation or to problem of oscillator with variable frequency, so the problem is equivalent to the one-dimensional quantal problem of a barrier penetration. Two approximate methods to calculate the pair creation probabilities are discussed: the quasiclassical approach and the antidiabatical method, applicable for sharp variations of the external field. Numerical estimates are obtained for the number of e + e - pairs produced by the field E(t) = E cos ωt. Group-theoretical aspects of the problem are also considered. (author)

  9. Interferometric modulation of quantum cascade interactions

    Science.gov (United States)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  10. Molecular dynamics studies on the structural effects of displacement cascades in UO2 matrix

    International Nuclear Information System (INIS)

    Brutzel, L. Van; Rarivomanantsoa, M.; Ghaleb, D.

    2004-01-01

    A set of molecular dynamics simulations have been carried out in order to study, at the atomic scale, the ballistic damages undergo by the UO 2 matrix. The morphologies of the displacement cascades simulations initiated by an uranium atoms with a Primary Knout on Atom (PKA) energy ranges from 1 keV to 20 keV are analysed. In agreement with all the experimental results no amorphization has been found even at small scales. For the cascade initiated with a PKA energy of 20 keV several sub-cascade branches appear in many directions from the cascade core. It seems that these sub-cascades arise from a quasi channeling of uranium atoms in specific direction over long distances. However, in average the atoms are displaced no more than 2 to 3 crystallographic sites. The evolution of the Frenkel pairs with the initial energy of the PKA exhibits a power law behavior with an exponent close to 0.9 showing a discrepancy with the linear NRT law. No significant clustering of local defects such as vacancies and interstitials have been found, nevertheless vacancies are preferentially created near the core of the cascade whereas the atoms in interstitial positions are mainly located at the periphery of the sub-cascade branches. (authors)

  11. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades

    Directory of Open Access Journals (Sweden)

    Lalita Subedi

    2017-01-01

    Full Text Available The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP- 1-mediated aging; MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR that produces the antiaging compound resveratrol (R as a treatment for skin aging. This resveratrol-enriched rice (RR overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes.

  12. Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway.

    Science.gov (United States)

    Yu, Jie; Lin, Jia-Jia; Yu, Rui; He, Shan; Wang, Qin-Wen; Cui, Wei; Zhang, Jin-Rong

    2017-01-01

    Background : As a natural carotenoid abundant in chloroplasts of edible brown algae, fucoxanthin possesses various health benefits, including anti-oxidative activity in particular. Objective : In the present study, we studied whether fucoxanthin protected against hydrogen peroxide (H 2 O 2 )-induced neuronal apoptosis. Design : The neuroprotective effects of fucoxanthin on H 2 O 2 -induced toxicity were studied in both SH-SY5Y cells and primary cerebellar granule neurons. Results : Fucoxanthin significantly protected against H 2 O 2 -induced neuronal apoptosis and intracellular reactive oxygen species. H 2 O 2 treatment led to the reduced activity of phosphoinositide 3-kinase (PI3-K)/Akt cascade and the increased activity of extracellular signal-regulated kinase (ERK) pathway in SH-SY5Y cells. Moreover, fucoxanthin significantly restored the altered activities of PI3-K/Akt and ERK pathways induced by H 2 O 2 . Both specific inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK) significantly protected against H 2 O 2 -induced neuronal death. Furthermore, the neuroprotective effects of fucoxanthin against H 2 O 2 -induced neuronal death were abolished by specific PI3-K inhibitors. Conclusions : Our data strongly revealed that fucoxanthin protected against H 2 O 2 -induced neurotoxicity via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway, providing support for the use of fucoxanthin to treat neurodegenerative disorders induced by oxidative stress.

  13. Defect production in simulated cascades: Cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-01-01

    Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)

  14. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  15. Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide

    NARCIS (Netherlands)

    Lobino, M.; Marshall, G.D.; Xiong, C.; Clark, A.S.; Bonneau, D.; Natarajan, C.M.; Tanner, M.G.; Hadfield, R.H.; Dorenbos, S.N.; Zijlstra, T.; Zwiller, V.; Marangoni, M.; Ramponi, R.; Thompson, M.G.; Eggleton, B.J.; O'Brien, J.L.

    2011-01-01

    We demonstrate photon-pair generation in a reverse proton exchanged waveguide fabricated on a periodically poled magnesium doped stoichiometric lithium tantalate substrate. Detected pairs are generated via a cascaded second order nonlinear process where a pump laser at wavelength of 1.55 ?m is first

  16. Molecular dynamics simulation of displacement cascades in iron-alpha; Cascades de deplacements atomiques dans le FER-alpha simulation par dynamique moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Vascon, R

    1997-12-31

    Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a `cascade effect`: a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the `cascade effect`. (author). 286 refs.

  17. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.

    Science.gov (United States)

    Hayes, Robert P; Xiao, Yibei; Ding, Fran; van Erp, Paul B G; Rajashankar, Kanagalaghatta; Bailey, Scott; Wiedenheft, Blake; Ke, Ailong

    2016-02-25

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.

  18. X-ray flares from runaway pair production in active galactic nuclei

    Science.gov (United States)

    Kirk, J. G.; Mastichiadis, A.

    1992-01-01

    The hard X-ray spectrum of AGNs is nonthermal, probably arising from an electron-positron pair cascade, with some emission reflected off relatively cold matter. There has been interest in models on which protons are accelerated and create relativistic electrons on interaction with a local radiation field. It is shown here that a sufficient column density of protons can lead to runaway pair production: photons generated by the relativistic pairs are the targets for the protons to produce more pairs. This can produce X-ray fluxes with the characteristics observed in AGN. The model predicts the maximum ratio of luminosity to source size as well as their spectrum in the early phases. The same mechanism may also be able to create the knots of synchrotron-radiating pair plasma seen in sources such as 3C273.

  19. Dynamic analysis of optical soliton pair and four-wave mixing via Fano interference in multiple quantum wells

    International Nuclear Information System (INIS)

    Yan, Wei; Qu, Junle; Niu, H B

    2014-01-01

    We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)

  20. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  1. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  2. Atomic-Scale Simulations of Cascade Overlap and Damage Evolution in Silicon Carbide

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2003-01-01

    In a previous computer simulation experiment, the accumulation of damage in SiC from the overlap of 10 keV Si displacement cascades at 200 K was investigated, and the damage states produced following each cascade were archived for further analysis. In the present study, interstitial clustering, system energy, and volume changes are investigated as the damage states evolve due to cascade overlap. An amorphous state is achieved at a damage energy density of 27.5 eV/atom (0.28 displacements per atom). At low dose levels, most defects are produced as isolated Frenkel pairs, with a small number of defect clusters involving only 4 to 6 atoms; however, after the overlap of 5 cascades (0.0125 displacements per atom), the size and number of interstitial clusters increases with increasing dose. The average energy per atom increases linearly with increasing short-range (or chemical) disorder. The volume change exhibits two regimes of linear dependence on system energy and increases more rapidly with dose than either the energy or the disorder, which indicate a significant contribution to swelling of isolated interstitials and anti-site defects. The saturation volume change for the cascade-amorphized state in these simulations is 8.2%, which is in reasonable agreement with the experimental value of 10.8% in neutron-irradiated SiC

  3. Splitting of an electromagnetically induced transparency window of a cascade system with 133Cs Rydberg atoms in a static magnetic field

    International Nuclear Information System (INIS)

    Bao Shanxia; Yang Wenguang; Zhang Hao; Zhang Linjie; Zhao Jianming; Jia Suotang

    2015-01-01

    We investigate the electromagnetically induced transparency (EIT) of 133 Cs vapor at the room temperature in a magnetic field. In a cascade three-level system involved Rydberg state, two collinearly counter-propagating and orthogonally linear-polarized laser fields act on cascaded two transitions, 6S 1/2 → 6P 3/2 and 6P 3/2 ↔ 47D 5/2 , respectively. The EIT window become broadening and split into several sub-EIT windows when the magnetic field is applied. The dependences of splitting shape and intervals of sub-EIT windows on magnetic field are measured experimentally and compared with the theoretical calculation considering the different magnetic effects on ground state, low excited state and Rydberg state. The splitting intervals of sub-EIT windows are well consistent with theoretical calculation. (author)

  4. Damped trophic cascades driven by fishing in model marine ecosystems

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Pedersen, Martin

    2010-01-01

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic...... cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show...... that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped...

  5. Molecular dynamics simulation of displacement cascades in iron-alpha

    International Nuclear Information System (INIS)

    Vascon, R.

    1997-01-01

    Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a 'cascade effect': a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the 'cascade effect'. (author)

  6. A thermal modelling of displacement cascades in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2014-05-01

    The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.

  7. Gleditsia Saponin C Induces A549 Cell Apoptosis via Caspase-Dependent Cascade and Suppresses Tumor Growth on Xenografts Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    2018-01-01

    Full Text Available Saponins are natural compounds and possess the most promising anti-cancer function. Here, a saponin gleditsia saponin C (GSC, extracted from gleditsiae fructus abnormalis, could induce apoptosis of lung tumor cell line A549 via caspase dependent cascade and this effect could be prevented by the caspase inhibitors. In addition, GSC induced cell death companied with an increase ratio of Bax:Bcl-2 and inhibition of ERK and Akt signaling pathways. Meanwhile, GSC suppressed TNFα inducing NF-κB activation and increased the susceptibility of lung cancer cell to TNFα induced apoptosis. Furthermore, on mouse xenograft model, GSC significantly suppressed tumor growth and induced cancer cell apoptosis, which validated the anti-tumor effect of GSC. Based on these results, GSC might be a promising drug candidate of anti-lung cancer for its potential clinical applications.

  8. Particle fluxes in atomic collision cascades

    International Nuclear Information System (INIS)

    Sckerl, B.W.; Sigmund, P.; Vicanek, M.

    1996-01-01

    The flux of recoil atoms in atomic collision cascades induced by an ion beam or another source of energetic particles in a material is known to approach isotropy at kinetic energies far below the beam energy. A variety of irradiation effects can be explained satisfactorily on the basis of an isotropic particle flux, but significant deviations from this simple behavior are known to exist. While numerous examples have been studied by numerical simulation of cascade processes, the systematics is, by and large, unknown. The present study aims at general scaling properties and estimates of the magnitude of moderate deviations from isotropy and their spatial dependence for a wide range of beam and material parameters. Anisotropies introduced by crystal structure are ignored. Although it is well established that cascade anisotropy is related to the momentum of beam particles, previous attempts to quantify this relation have failed. We have found that there are two leading correction terms to the isotropic particle flux, a well-known term centered around the beam direction as a symmetry axis and a new term proportional to the gradient of the deposited-energy density. As a general rule the two contributions are either both significant or both negligible. Specific situations in which the gradient term dominates are, however, of considerable interest in applications. The parameters which characterize the anisotropy of collision cascades also determine the deposition of momentum, but the connection is less straightforward than asserted hitherto. General principles are first illustrated on the specific case of elastic-collision cascades under self-bombardment which contains the essentials. Thereafter several generalizations are made, including atomic binding forces and inelasticity as well as allowance for multicomponent materials. Application areas in mixing and sputtering are outlined. (au) 58 refs

  9. Nonlinear Breit–Wheeler pair creation with bremsstrahlung γ rays

    Science.gov (United States)

    Blackburn, T. G.; Marklund, M.

    2018-05-01

    Electron–positron pairs are produced through the Breit–Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-Z target is used to produce γ rays that collide with a counter-propagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit–Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today’s high-intensity laser facilities.

  10. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    Science.gov (United States)

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  11. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  12. Modeling of cascade and sub-cascade formation at high pka energies in irradiated fusion structural materials

    International Nuclear Information System (INIS)

    Ryazanov, A.; Metelkin, E.V.; Semenov, E.A.

    2007-01-01

    Full text of publication follows: A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock atom (PKA) energies. Under 14 MeV neutron irradiation especially of light fusion structural materials such as Be, C, SiC materials PKA will have the energies up to 1 MeV. At such high energies it is very difficult to use the Monte Carlo or molecular dynamic simulations. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms into atomic cascades produced by a PKAs with the some kinetic energy obtained from fast neutrons. The Tomas-Fermy interaction potential is used for the describing of elastic collisions between moving atoms. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance between two consequent PKA collisions and size of sub-cascade produced by PKA. The analytical relations for the most important characteristics of cascades and sub-cascade are determined including the average number of sub-cascades per one PKA in the dependence on PKA energy, the distance between sub-cascades and the average cascade and sub-cascade sizes as a function of PKA energy. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for different fusion neutron energy spectra. Based on the developed model the numerical calculations for main characteristics of cascades and sub-cascades in different fusion structural materials are performed using the neutron flux and PKA energy spectra for fusion reactors: ITER and DEMO. The main characteristics for cascade and sub-cascade formation are calculated here for the

  13. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  14. Cascade de photons dans les boîtes quantiques uniques

    Science.gov (United States)

    Robert, I.; Moreau, E.; Gérard, J. M.; Abram, I.

    2002-06-01

    Nous présentons l'observation expérimentale de l'émission squentielle de photons par une boîte quantique unique sous pompage optique continu ou pulsé. Cette cascade radiative produit des paires de photons corrélés qui sont émis suivant un ordre bien défini. En effet, la fonction de corrélation croisée entre les deux photons formant la paire présente une allure asymétrique, de type groupement ou dégroupement de photons, suivant l'ordre temporel de détection des deux photons. Prédit théoriquement en physique atomique, ce comportement asymétrique de la fonction de corrélation de second ordre est la signature de l'émission successive de photons.

  15. Sex differences in behavioral and PKA cascade responses to repeated cocaine administration.

    Science.gov (United States)

    Zhou, Luyi; Sun, Wei-Lun; Weierstall, Karen; Minerly, Ana Christina; Weiner, Jan; Jenab, Shirzad; Quinones-Jenab, Vanya

    2016-10-01

    Previous studies have shown sex different patterns in behavioral responses to cocaine. Here, we used between-subject experiment design to study whether sex differences exist in the development of behavioral sensitization and tolerance to repeated cocaine, as well as the role of protein kinase A (PKA) signaling cascade in this process. Ambulatory and rearing responses were recorded in male and female rats after 1 to 14 days of administration of saline or cocaine (15 mg/kg; ip). Correspondent PKA-associated signaling in the nucleus accumbens (NAc) and caudate-putamen (CPu) was measured at each time point. Our results showed that females exhibited higher cocaine-induced behavioral responses and developed behavioral sensitization and tolerance faster than males. Whereas females developed behavioral sensitization to cocaine after 2 days and tolerance after 14 days, male rats developed sensitization after 5 days. In addition, cocaine induced a sexual dimorphic pattern in the progression of neuronal adaptations on the PKA cascade signaling in region (NAc vs. CPu) and time (days of cocaine administration)-dependent manners. In general, more PKA signaling cascade changes were found in the NAc of males on day 5 and in the CPu of females with repeated cocaine injection. In addition, in females, behavioral activities positively correlated with FosB levels in the NAc and CPu and negatively correlated with Cdk5 and p35 in the CPu, while no correlation was observed in males. Our studies suggest that repeated cocaine administration induced different patterns of behavioral and molecular responses in the PKA cascade in male and female rats.

  16. Effect of collision cascades on dislocations in tungsten: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B.Q., E-mail: bqfu@scu.edu.cn [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Fitzgerald, S.P. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Hou, Q.; Wang, J.; Li, M. [Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065 (China)

    2017-02-15

    Highlights: • A cascde near a dislocation promotes climb motion. • Kinks induced by cascade facilitate the dipoles motion toward the cascade. • Shearing of dipole is dependent on PKA energy, position, direction, and dipole width. - Abstract: Tungsten (W) is the prime candidate material for the divertor and other plasma-facing components in DEMO. The point defects (i.e. vacancies and self-interstitials) produced in collision cascades caused by incident neutrons aggregate into dislocation loops (and voids), which strongly affect the mechanical properties. The point defects also interact with existing microstructural features, and understanding these processes is crucial for modelling the long term microstructural evolution of the material under fusion conditions. In this work, we performed molecular dynamics simulations of cascades interacting with initially straight edge dislocation dipoles. It was found that the residual vacancy number usually exceeds the residual interstitial number for cascades interacting with vacancy type dipoles, but for interstitial type dipoles these are close. We observed that a cascade near a dislocation promotes climb, i.e. it facilitates the movement of point defects along the climb direction. We also observed that the dislocations move easily along the glide direction, and that kinks are formed near the centre of the cascade, which then facilitate the movement of the dipoles. Some dipoles are sheared off by the cascade, and this is dependent on PKA energy, position, direction, and the width of dipole.

  17. Mechanisms of cascade collapse

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.

    1988-12-01

    The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab

  18. Trophic Cascades Induced by Lobster Fishing Are Not Ubiquitous in Southern California Kelp Forests

    Science.gov (United States)

    Guenther, Carla M.; Lenihan, Hunter S.; Grant, Laura E.; Lopez-Carr, David; Reed, Daniel C.

    2012-01-01

    Fishing can trigger trophic cascades that alter community structure and dynamics and thus modify ecosystem attributes. We combined ecological data of sea urchin and macroalgal abundance with fishery data of spiny lobster (Panulirus interruptus) landings to evaluate whether: (1) patterns in the abundance and biomass among lobster (predator), sea urchins (grazer), and macroalgae (primary producer) in giant kelp forest communities indicated the presence of top-down control on urchins and macroalgae, and (2) lobster fishing triggers a trophic cascade leading to increased sea urchin densities and decreased macroalgal biomass. Eight years of data from eight rocky subtidal reefs known to support giant kelp forests near Santa Barbara, CA, USA, were analyzed in three-tiered least-squares regression models to evaluate the relationships between: (1) lobster abundance and sea urchin density, and (2) sea urchin density and macroalgal biomass. The models included reef physical structure and water depth. Results revealed a trend towards decreasing urchin density with increasing lobster abundance but little evidence that urchins control the biomass of macroalgae. Urchin density was highly correlated with habitat structure, although not water depth. To evaluate whether fishing triggered a trophic cascade we pooled data across all treatments to examine the extent to which sea urchin density and macroalgal biomass were related to the intensity of lobster fishing (as indicated by the density of traps pulled). We found that, with one exception, sea urchins remained more abundant at heavily fished sites, supporting the idea that fishing for lobsters releases top-down control on urchin grazers. Macroalgal biomass, however, was positively correlated with lobster fishing intensity, which contradicts the trophic cascade model. Collectively, our results suggest that factors other than urchin grazing play a major role in controlling macroalgal biomass in southern California kelp forests, and

  19. Temperature effects on He bubbles production due to cascades in α-iron

    International Nuclear Information System (INIS)

    Yang, L.; Zu, X.T.; Xiao, H.Y.; Gao, F.; Liu, K.Z.; Heinisch, H.L.; Kurtz, R.J.; Yang, S.Z.

    2006-01-01

    The effects of irradiation temperature on the formation of He-vacancy clusters by displacement cascades in α-Fe are investigated by molecular dynamics (MD) methods. The irradiation temperatures of 100 and 600 K are considered for primary knock-on atom (PKA) energy, E p , from 500 eV to 20 keV. The concentration of He in Fe varies from 1 to 5 at.%. We find that the number of Frenkel pairs (N F ) at 600 K is slightly lower than that at 100 K for the same He concentration and E p , but the number of He-vacancy clusters increases with increasing temperature for the same He concentration and energy recoils. However, the mean size of He-vacancy clusters is independent on temperature. The mechanisms of He bubble nucleation in displacement cascades at different temperatures are discussed in detail

  20. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  1. Inflation of the screening length induced by Bjerrum pairs.

    Science.gov (United States)

    Zwanikken, Jos; van Roij, René

    2009-10-21

    Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.

  2. Enhanced index and negative dispersion without absorption in driven cascade media

    International Nuclear Information System (INIS)

    Hu Xiangming; Xu Jun

    2004-01-01

    In this paper we investigate the dispersive and absorptive properties of a system of three-level cascade atoms driven by a strong coherent field. Three characteristic features are found. First, for the same set of atom-light interaction parameters, the indices of refraction are large at three different frequencies where the absorption vanishes. These three frequencies are determined by the resonance transition frequencies between dressed states produced by the strong driving field. Second, negative dispersion without absorption, which leads to superluminal light propagation, is achievable in the central resonance structure of the dispersion spectrum. Third, the whole absorption spectrum displays, in general, three pairs of absorption peaks and three pairs of gain (negative absorption) peaks. The minimal spacing between dressed states determines whether the outer adjacent gain peaks are separated from each other

  3. Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Metelkin, E.V.; Semenov, E.V.

    2009-01-01

    A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock-on atom energies. Light fusion structural materials: such as Be, C and SiC under 14 MeV neutron irradiation in fusion reactor will have the primary knock-on atoms with the energies up to 1 MeV. It is very difficult to use at such high energies the Monte-Carlo or molecular dynamic simulations [H.L. Heinisch, B.N. Singh, Philos. Mag. A67 (1993) 407; H.L. Heinisch, B.N. Singh, J. Nucl. Mater. 251 (1997) 77]. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms produced by primary knock-on atoms with some kinetic energies obtained from fast neutrons and crystal lattice atoms. The Thomas-Fermi interaction potential is used here for the description of these elastic atomic collisions. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self-consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance of primary knock-on atoms between consequent collisions of them with the target atoms and a size of sub-cascade produced by moving secondary knock-on atoms produced in such collisions. The analytical relations for the most important characteristics of cascades and sub-cascades are determined including the average number of sub-cascades per one primary knock-on atom in the dependence on its energy, the distance between sub-cascades and the average cascade and sub-cascade sizes. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for the different fusion neutron energy spectra. On the basis of this developed model the numerical calculations for main characteristics of cascades and sub-cascades

  4. Quantum cascade laser combs: effects of modulation and dispersion.

    Science.gov (United States)

    Villares, Gustavo; Faist, Jérôme

    2015-01-26

    Frequency comb formation in quantum cascade lasers is studied theoretically using a Maxwell-Bloch formalism based on a modal decomposition, where dispersion is considered. In the mid-infrared, comb formation persists in the presence of weak cavity dispersion (500 fs2 mm-1) but disappears when much larger values are used (30'000 fs2 mm-1). Active modulation at the round-trip frequency is found to induce mode-locking in THz devices, where the upper state lifetime is in the tens of picoseconds. Our results show that mode-locking based on four-wave mixing in broadband gain, low dispersion cavities is the most promising way of achieving broadband quantum cascade laser frequency combs.

  5. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  6. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  7. Cascading off the West Greenland Shelf: A numerical perspective

    Science.gov (United States)

    Marson, Juliana M.; Myers, Paul G.; Hu, Xianmin; Petrie, Brian; Azetsu-Scott, Kumiko; Lee, Craig M.

    2017-07-01

    Cascading of dense water from the shelf to deeper layers of the adjacent ocean basin has been observed in several locations around the world. The West Greenland Shelf (WGS), however, is a region where this process has never been documented. In this study, we use a numerical model with a 1/4° resolution to determine (i) if cascading could happen from the WGS; (ii) where and when it could take place; (iii) the forcings that induce or halt this process; and (iv) the path of the dense plume. Results show cascading happening off the WGS at Davis Strait. Dense waters form there due to brine rejection and slide down the slope during spring. Once the dense plume leaves the shelf, it gradually mixes with waters of similar density and moves northward into Baffin Bay. Our simulation showed events happening between 2003-2006 and during 2014; but no plume was observed in the simulation between 2007 and 2013. We suggest that the reason why cascading was halted in this period is related to: the increased freshwater transport from the Arctic Ocean through Fram Strait; the additional sea ice melting in the region; and the reduced presence of Irminger Water at Davis Strait during fall/early winter. Although observations at Davis Strait show that our simulation usually overestimates the seasonal range of temperature and salinity, they agree with the overall variability captured by the model. This suggests that cascades have the potential to develop on the WGS, albeit less dense than the ones estimated by the simulation.

  8. Conjugation of cascades

    International Nuclear Information System (INIS)

    San Martin, Jesus; Rodriguez-Perez, Daniel

    2009-01-01

    Presented in this work are some results relative to sequences found in the logistic equation bifurcation diagram, which is the unimodal quadratic map prototype. All of the different saddle-node bifurcation cascades, associated with every last appearance p-periodic orbit (p=3,4,5,...), can also be generated from the very Feigenbaum cascade. In this way it is evidenced the relationship between both cascades. The orbits of every saddle-node bifurcation cascade, mentioned above, are located in different chaotic bands, and this determines a sequence of orbits converging to every band-merging Misiurewicz point. In turn, these accumulation points form a sequence whose accumulation point is the Myrberg-Feigenbaum point. It is also proven that the first appearance orbits in the n-chaotic band converge to the same point as the last appearance orbits of the (n + 1)-chaotic band. The symbolic sequences of band-merging Misiurewicz points are computed for any window.

  9. Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection

    Directory of Open Access Journals (Sweden)

    Marius Rutkauskas

    2015-03-01

    Full Text Available CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against foreign nucleic acids. In type I CRISPR-Cas systems, invading DNA is detected by a large ribonucleoprotein surveillance complex called Cascade. The crRNA component of Cascade is used to recognize target sites in foreign DNA (protospacers by formation of an R-loop driven by base-pairing complementarity. Using single-molecule supercoiling experiments with near base-pair resolution, we probe here the mechanism of R-loop formation and detect short-lived R-loop intermediates on off-target sites bearing single mismatches. We show that R-loops propagate directionally starting from the protospacer-adjacent motif (PAM. Upon reaching a mismatch, R-loop propagation stalls and collapses in a length-dependent manner. This unambiguously demonstrates that directional zipping of the R-loop accomplishes efficient target recognition by rapidly rejecting binding to off-target sites with PAM-proximal mutations. R-loops that reach the protospacer end become locked to license DNA degradation by the auxiliary Cas3 nuclease/helicase without further target verification.

  10. Dual origin of pairing in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Idini, A. [University of Jyvaskyla, Department of Physics (Finland); Potel, G. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Barranco, F. [Escuela Superior de Ingenieros, Universidad de Sevilla, Departamento de Fìsica Aplicada III (Spain); Vigezzi, E., E-mail: enrico.vigezzi@mi.infn.it [INFN Sezione di Milano (Italy); Broglia, R. A. [Università di Milano, Dipartimento di Fisica (Italy)

    2016-11-15

    The pairing correlations of the nucleus {sup 120}Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong {sup 1}S{sub 0} short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v{sub p}{sup bare}) and long-range (v{sub p}{sup ind}) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  11. Dual origin of pairing in nuclei

    Science.gov (United States)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  12. Cooper pair induced frustration and nematicity of two-dimensional magnetic adatom lattices

    Science.gov (United States)

    Schecter, Michael; Syljuâsen, Olav F.; Paaske, Jens

    2018-05-01

    We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s -wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown to lead to a variety of hidden-order states that break the point-group symmetry of the 2D adatom lattice at finite temperature. The phase diagram is constructed using a newly developed effective bond theory [M. Schecter et al., Phys. Rev. Lett. 119, 157202 (2017), 10.1103/PhysRevLett.119.157202], and exhibits broad regions of long-range vestigial nematic order.

  13. The paired-domination and the upper paired-domination numbers of graphs

    Directory of Open Access Journals (Sweden)

    Włodzimierz Ulatowski

    2015-01-01

    Full Text Available In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph \\(G\\ with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of \\(G\\, denoted by \\(\\gamma_{p}(G\\, is the minimum cardinality of a PDS of \\(G\\. The upper paired-domination number of \\(G\\, denoted by \\(\\Gamma_{p}(G\\, is the maximum cardinality of a minimal PDS of \\(G\\. Let \\(G\\ be a connected graph of order \\(n\\geq 3\\. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998, 199-206], showed that \\(\\gamma_{p}(G\\leq n-1\\ and they determine the extremal graphs \\(G\\ achieving this bound. In this paper we obtain analogous results for \\(\\Gamma_{p}(G\\. Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007, 1-12] determine \\(\\Gamma_{p}(P_n\\, instead in this paper we determine \\(\\Gamma_{p}(C_n\\. Moreover, we describe some families of graphs \\(G\\ for which the equality \\(\\gamma_{p}(G=\\Gamma_{p}(G\\ holds.

  14. Three-beam double stimulated Raman scatterings: Cascading configuration

    Science.gov (United States)

    Rao, B. Jayachander; Cho, Minhaeng

    2018-03-01

    Two-beam stimulated Raman scattering (SRS) has been used in diverse label-free spectroscopy and imaging applications of live cells, biological tissues, and functional materials. Recently, we developed a theoretical framework for the three-beam double SRS processes that involve pump, Stokes, and depletion beams, where the pump-Stokes and pump-depletion SRS processes compete with each other. It was shown that the net Stokes gain signal can be suppressed by increasing the depletion beam intensity. The theoretical prediction has been experimentally confirmed recently. In the previous scheme for a selective suppression of one SRS by making it compete with another SRS, the two SRS processes occur in a parallel manner. However, there is another possibility of three-beam double SRS scheme that can be of use to suppress either Raman gain of the Stokes beam or Raman loss of the pump beam by depleting the Stokes photons with yet another SRS process induced by the pair of Stokes and another (second) Stokes beam. This three-beam double SRS process resembles a cascading energy transfer process from the pump beam to the first Stokes beam (SRS-1) and subsequently from the first Stokes beam to the second Stokes beam (SRS-2). Here, the two stimulated Raman gain-loss processes are associated with two different Raman-active vibrational modes of solute molecule. In the present theory, both the radiation and the molecules are treated quantum mechanically. We then show that the cascading-type three-beam double SRS can be described by coupled differential equations for the photon numbers of the pump and Stokes beams. From the approximate solutions as well as exact numerical calculation results for the coupled differential equations, a possibility of efficiently suppressing the stimulated Raman loss of the pump beam by increasing the second Stokes beam intensity is shown and discussed. To further prove a potential use of this scheme for developing a super-resolution SRS microscopy, we

  15. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  16. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    Science.gov (United States)

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  17. Instantons in lepton pair production

    International Nuclear Information System (INIS)

    Brandenburg, A.; Ringwald, A.; Utermann, A.

    2006-05-01

    We consider QCD instanton-induced contributions to lepton pair production in hadron-hadron collisions. We relate these contributions to those known from deep inelastic scattering and demonstrate that they can be calculated reliably for sufficiently large momentum transfer. We observe that the instanton contribution to the angular distribution of the lepton pairs at finite momentum transfer strongly violates the Lam-Tung relation - a relation between coefficient functions of the angular distribution which is valid within the framework of ordinary perturbation theory. The drastic violation of this relation, as seen in experimental data, might be related to such instanton-induced effects. (Orig.)

  18. A method for measuring the velocity flow field in the vicinity of a moving cascade

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.

    1977-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required pressure ratios, highly loaded centrifugal compressors are built. The paper deals with a method of measuring the flow field in the vicinity of a moving impeller or cascade with hot wires. The relative flow pattern induced ahead of a cascade or impeller or the rotating wakes behind a moving cascade (which is important for loss evaluation) could be now measured with the help of a single hot wire. The wire should be rotated about the axis of the probe for 3 different inclinations with respect to the approaching flow. The method has been used for measuring the flow field in the vicinity of the inducer of a highly loaded centrifugal compressor. The results and the accuracy of the method are discussed and the mean values have been compared with the theoretically estimated velocities. (orig.) [de

  19. Effect of cascade remnants on freely migrating defects in Cu-1% Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, A; Rehn, L E; Baldo, P M; Funk, L [Argonne National Lab., IL (United States). Materials Science Div.

    1997-03-01

    The effects of cascade remnants on Freely Migrating Defects (FMD) were studied by measuring Radiation-Induced Segregation (RIS) in Cu-1%Au at 400degC during simultaneous irradiation with 1.5-MeV He and (400-800)-keV heavy ions (Ne, Ar or Cu). The large RIS observed during 1.5-MeV He-only irradiation was dramatically suppressed under simultaneous heavy ion irradiation. For Cu simultaneous irradiation, the suppression disappeared immediately after the Cu irradiation ceased, while for simultaneous inert gas (Ne or Ar) irradiation, the suppression persisted after the ion beam was turned off. These results demonstrate that the displacement cascades created by heavy ions introduce additional annihilation sites, which reduce the steady-state FMD concentrations. As the cascade remnants produced by Cu ions are thermally unstable at 400degC, the RIS suppression occurs only during simultaneous irradiation. On the other hand, the inert gas atoms which accumulate in the specimen apparently stabilize the cascade remnants, allowing the suppression to persist. (author)

  20. Cascade of circulations in fluid turbulence.

    Science.gov (United States)

    Eyink, Gregory L

    2006-12-01

    Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.

  1. Role of AC-cAMP-PKA Cascade in Antidepressant Action of Electroacupuncture Treatment in Rats

    Directory of Open Access Journals (Sweden)

    Jian-hua Liu

    2012-01-01

    Full Text Available Adenylyl cyclase (AC-cyclic adenosine monophosphate (cAMP-cAMP-dependent protein kinase A (PKA cascade is considered to be associated with the pathogenesis and treatment of depression. The present study was conducted to explore the role of the cAMP cascade in antidepressant action of electroacupuncture (EA treatment for chronic mild stress (CMS-induced depression model rats. The results showed that EA improved significantly behavior symptoms in depression and dysfunction of AC-cAMP-PKA signal transduction pathway induced by CMS, which was as effective as fluoxetine. Moreover, the antidepressant effects of EA rather than Fluoxetine were completely abolished by H89, a specific PKA inhibitor. Consequently, EA has a significant antidepressant treatment in CMS-induced depression model rats, and AC-cAMP-PKA signal transduction pathway is crucial for it.

  2. Energy cascades in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A. C.; Brown, T. D.

    1979-03-15

    Combining energy uses in a cascade can result in significant overall reductions in fuel requirements. The simplest applications for a cascade are in the recovery of waste heat from existing processes using special boilers or turbines. Specific applications of more-complex energy cascades for Canada are discussed. A combined-cycle plant at a chemical refinery in Ontario is world leader in energy efficiency. Total-energy systems for commercial buildings, such as one installed in a school in Western Canada, offer attractive energy and operating cost benefits. A cogeneration plant proposed for the National Capital Region, generating electricity as well as steam for district heating, allows the use of a low-grade fossil fuel (coal), greatly improves energy-transformation efficiency, and also utilizes an effectively renewable resource (municipal garbage). Despite the widespread availability of equipment and technology of energy cascades, the sale of steam and electricity across plant boundaries presents a barrier. More widespread use of cascades will require increased cooperation among industry, electric utilities and the various levels of government if Canada is to realize the high levels of energy efficiency potential available.

  3. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T

    1997-01-01

    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  4. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation In Vivo in the Escherichia coli Type I-E CRISPR-Cas System

    Directory of Open Access Journals (Sweden)

    Lauren A. Cooper

    2018-04-01

    Full Text Available In clustered regularly interspaced short palindromic repeat (CRISPR-Cas (CRISPR-associated immunity systems, short CRISPR RNAs (crRNAs are bound by Cas proteins, and these complexes target invading nucleic acid molecules for degradation in a process known as interference. In type I CRISPR-Cas systems, the Cas protein complex that binds DNA is known as Cascade. Association of Cascade with target DNA can also lead to acquisition of new immunity elements in a process known as primed adaptation. Here, we assess the specificity determinants for Cascade-DNA interaction, interference, and primed adaptation in vivo, for the type I-E system of Escherichia coli. Remarkably, as few as 5 bp of crRNA-DNA are sufficient for association of Cascade with a DNA target. Consequently, a single crRNA promotes Cascade association with numerous off-target sites, and the endogenous E. coli crRNAs direct Cascade binding to >100 chromosomal sites. In contrast to the low specificity of Cascade-DNA interactions, >18 bp are required for both interference and primed adaptation. Hence, Cascade binding to suboptimal, off-target sites is inert. Our data support a model in which the initial Cascade association with DNA targets requires only limited sequence complementarity at the crRNA 5′ end whereas recruitment and/or activation of the Cas3 nuclease, a prerequisite for interference and primed adaptation, requires extensive base pairing.

  5. Cascade reactor: introduction

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade is a concept for an ultrasafe, highly efficient, easily built reactor to convert inertial-confinement fusion energy into electrical power. The Cascade design includes a rotating double-cone-shaped chamber in which a moving, 1-m-thick ceramic granular blanket is held against the reactor wall by centrifugal action. The granular material absorbs energy from the fusion reactions. Accomplishments this year associated with Cascade included improvements to simplify chamber design and lower activation. The authors switched from a steel chamber wall to one made from silicon-carbide (SiC) panels held in compression by SiC-fiber/Al-composite tendons that gird the chamber both circumferentially and axially. The authors studies a number of heat-exchanger designs and selected a gravity-flow cascade design with a vacuum on the primary side. This design allows granules leaving the chamber to be transported to the heat exchangers using their own peripheral speed. The granules transfer their thermal energy and return to the chamber gravitationally: no vacuum locks or conveyors are needed

  6. Cascade processes after 3p-shell threshold photoionization of Kr

    International Nuclear Information System (INIS)

    Matsui, T.; Yoshii, H.; Higurashi, A.; Hayaishi, T.; Murakami, E.; Aoto, T.; Onuma, T.; Morioka, Y.; Yagishita, A.

    2002-01-01

    Yield spectra of the multiply charged ions Kr 2+ , Kr 3+ , Kr 4+ and Kr 5+ in coincidence with threshold electrons (E k ≤0.03 eV) have been measured near the 3p-shell ionization region of Kr. Profiles of post-collision interaction (PCI) effects induced by Auger cascades following 3p-shell threshold ionization are derived from these coincidence spectra. On the basis of the PCI profiles, the number of Auger cascade steps for each of the decay channels leading to the formation of the multiply charged ions in 3p 3/2 - and 3p 1/2 -shell threshold ionization of Kr was determined, and the branching ratios of the decay channels were estimated. (author)

  7. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  8. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  9. Cascade theory in isotopic separation processes; Theorie des cascades en separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, J P

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs.

  10. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    Science.gov (United States)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  11. Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Understanding of the defect production and annihilation processes in a cascade is important in modelling of radiation damage for establishing irradiation correlation. In situ observation of heavy ion radiation damage has a great prospect in this respect. Time and temperature dependence of formation and annihilation of vacancy clusters in a cascade with a time resolution of 30 ms has been studied with a facility which comprises a heavy ion accelerator and an electron microscope. Formation and annihilation rates of defect clusters have been separately measured by this technique. The observed processes have been analysed by simple kinetic equations, taking into account the sink effect of surface and the defect clusters themselves together with the annihilation process due to thermal emission of vacancies from the defect clusters. Another tool to study time and temperature dependence of defect production in a cascade is computer simulation. Recent results of molecular dynamics calculations on the temperature dependence of cascade evolution are presented, including directional and temperature dependence of the lengths of replacement collision sequences, temperature dependence of the process to reach thermal equilibrium and so on. These results are discussed under general time frame of radiation damage evolution covering from 10 -15 to 10 9 s, and several important issues for the general understanding have been identified. (orig.)

  12. Tributyltin induces a G2/M cell cycle arrest in human amniotic cells via PP2A inhibition-mediated inactivation of the ERK1/2 cascades.

    Science.gov (United States)

    Zhang, Yali; Guo, Zonglou; Xu, Lihong

    2014-03-01

    The molecular mechanisms underlying the cell cycle alterations induced by tributyltin (TBT), a highly toxic environmental contaminant, remain elusive. In this study, cell cycle progression and some key regulators in G2/M phase were investigated in human amniotic cells treated with TBT. Furthermore, protein phosphatase (PP) 2A and the ERK cascades were examined. The results showed that TBT caused a G2/M cell cycle arrest that was accompanied by a decrease in the total cdc25C protein level and an increase in the p-cdc2 level in the nucleus. TBT caused a decrease in PP2A activity and inhibited the ERK cascade by inactivating Raf-1, resulting in the dephosphorylation of MEK1/2, ERK1/2, and c-Myc. Taken together, TBT leads to a G2/M cell cycle arrest in FL cells, an increase in p-cdc2 and a decrease in the levels of total cdc25C protein, which may be caused by the PP2A inhibition-mediated inactivation of the ERK1/2 cascades. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Interactions between displacement cascades and Σ3〈110〉 tilt grain boundaries in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, 610031 (China); Long, Xiao-Jiang [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, 610031 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan, 610064 (China); Shen, Zhao-Wu, E-mail: ZWShen@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Luo, Sheng-Nian, E-mail: sluo@pims.ac.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, 610031 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, 610031 (China)

    2016-12-01

    With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3〈110〉 tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

  15. Inflation of the screening length induced by Bjerrum pairs

    NARCIS (Netherlands)

    Zwanikken, J.W.; van Roij, R.H.H.G.

    2009-01-01

    Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities

  16. Synchrotron radiation structure analyses of the light-induced radical pair of a hexaarylbiimidazolyl derivative. Origin of the spin-multiplicity change

    CERN Document Server

    Kawano, M; Matsubara, K; Imabayashi, H; Mitsumi, M; Toriumi, K; Ohashi, Y

    2002-01-01

    In situ synchrotron radiation structure analyses of a light-induced radical pair from o-Cl-HABI were performed by using an X-ray vacuum camera at 23-70K at the BL02B1 station of SPring-8. The combined results of X-ray analysis with theoretical calculation, IR, and UV-vis spectroscopy reveal that a slight conformational change of the radical pair causes the drastic spin-multiplicity change during 2-140K. (author)

  17. Cascading costs: an economic nitrogen cycle.

    Science.gov (United States)

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  18. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  19. Temperature Compensated Strain Sensor Based on Cascaded Sagnac Interferometers and All-Solid Birefringent Hybrid Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Wu; He, Sailing

    2012-01-01

    We demonstrate a temperature compensated strain sensor with two cascaded Sagnac interferometers, that provide strain sensing and temperature compensation, respectively. The Sagnac interferometers use an all-solid hybrid photonic crystal fiber with stress-induced birefringence. The stress-induced ...

  20. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Young Min; Hwang, Jin-Taek; Kwak, Dong Wook; Lee, Yun Kyung; Park, Ock Jin

    2007-01-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated during ATP-depleting metabolic states, such as hypoxia, heat shock, oxidative stress, and exercise. As a highly conserved heterotrimeric kinase that functions as a major metabolic switch to maintain energy homeostasis, AMPK has been shown to exert as an intrinsic regulator of mammalian cell cycle. Moreover, AMPK cascade has emerged as an important pathway implicated in cancer control. In this article, we have investigated the effects of capsaicin on apoptosis in relation to AMPK activation in colon cancer cell. Capsaicin-induced apoptosis was revealed by the presence of nucleobodies in the capsaicin-treated HT-29 colon cancer cells. Concomitantly, the activation of AMPK and the increased expression of the inactive form of acetyl-CoA carboxylase (ACC) were detected in capsaicin-treated colon cancer cells. We showed that both capsaicin and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an AMPK activator possess the AMPK-activating capacity as well as apoptosis-inducing properties. Evidence of the association between AMPK activation and the increased apoptosis in HT-29 colon cancer cells by capsaicin treatment, and further findings of the correlation of the activated AMPK and the elevated apoptosis by cotreatment of AICAR and capsaicin support AMPK as an important component of apoptosis, as well as a possible target of cancer control.

  1. Resonance energy transfer (RET)-Induced intermolecular pairing force: a tunable weak interaction and its application in SWNT separation.

    Science.gov (United States)

    Pan, Xiaoyong; Chen, Hui; Wang, Wei Zhi; Ng, Siu Choon; Chan-Park, Mary B

    2011-07-21

    This paper explores evidence of an optically mediated interaction that is active in the separation mechanism of certain selective agents through consideration of the contrasting selective behaviors of two conjugated polymers with distinct optical properties. The involvement of a RET-induced intermolecular pairing force is implied by the different illumination response behaviors. The magnitude of this interaction scales with the external stimulus parameter, the illumination irradiance (I), and thus is tunable. This suggests a facile technique to modify the selectivity of polymers toward specific SWNT species by altering the polymer structure to adjust the corresponding intermolecular interaction. This is the first experimental verification and application of a RET-induced intermolecular pairing force to SWNT separation. With this kind of interaction taken into account, reasonable interpretation of some conflicting data, especially PLE maps, can be easily made. The above conclusion can be applied to other substances as long as they are electrically neutral and there is photon-induced RET between them. The significant magnitude of this interaction makes direct manipulation of molecules/particles possible and is expected to have applications in molecular engineering. © 2011 American Chemical Society

  2. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.

    Science.gov (United States)

    Zhou, Jia-Yu; Li, Xia; Zhao, Dan; Deng-Wang, Meng-Yao; Dai, Chuan-Chao

    2016-09-01

    Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse

  3. Study of fission cross sections induced by nucleons and pions using the cascade-exciton model CEM95

    International Nuclear Information System (INIS)

    Yasin, Z.; Shahzad, M. I.

    2007-01-01

    Nucleon and pion-induced fission cross sections at intermediate and at higher energies are important in current nuclear applications, such as accelerator driven-systems (ADS), in medicine, for effects on electronics etc. In the present work, microscopic fission cross sections induced by nucleons and pions are calculated using the cascade-exciton model code CEM95 for different projectile-target combinations; at various energies and the computed cross sections are compared with the experimental data found in literature. A new approach is used to compute the fission cross sections in which a change of the ratio of the level density parameter in fission to neutron emission channels was taken into account with the change in the incident energy of the projectile. We are unable to describe well the fission cross sections without using this new approach. Proton induced fission cross sections are calculated for targets 1 97Au, 2 08Pb, 2 09Bi, 2 38U and 2 39Pu in the energy range from 20 MeV to 2000 MeV. Neutron induced fission cross sections are computed for 2 38U and 2 39Pu in the energy range from 20 MeV to 200 MeV. Negative pion induced cross sections for fission are calculated for targets 1 97Au and 2 08Pb from 50 MeV to 2500 MeV energy range. The calculated cross sections are essential to build a data library file for accelerator driven systems just like was built for conventional nuclear reactors. The computed values exhibited reasonable agreement with the experimental values found in the literature across a wide range of beam energies

  4. Simulation of concentration spikes in cascades

    International Nuclear Information System (INIS)

    Wood, H.G.

    2006-01-01

    Research has been conducted to investigate the maximum possible enrichment that might be temporarily achieved in a facility that is producing enriched uranium for fuel for nuclear power reactors. The purpose is to provide information to evaluate if uranium enrichment facilities are producing 235 U enriched within declared limits appropriate for power reactors or if the facilities are actually producing more highly enriched uranium. The correlation between feed rate and separation factor in a gas centrifuge cascade shows that as flow decreases, the separation factor increases, thereby, creating small amounts of higher enriched uranium than would be found under optimum design operating conditions. The research uses a number of cascade enrichment programs to model the phenomenon and determine the maximum enrichment possible during the time transient of a gas centrifuge cascade. During cascade start-up, the flow through the centrifuges begins at lower than centrifuge design stage flow rates. Steady-state cascade models have been used to study the maximum 235 U concentrations that would be predicted in the cascade. These calculations should produce an upper bound of product concentrations expected during the transient phase of start-up. Due to the fact that there are different ways in which to start a cascade, several methods are used to determine the maximum enrichment during the time transient. Model cascades were created for gas centrifuges with several product to .feed assay separation factors. With this information, the models were defined and the equilibrium programs were used to determine the maximum enrichment level during the time transient. The calculations predict in a cascade with separation factor 1.254 designed to produce enriched uranium for the purpose of supplying reactor fuel, it would not be unreasonable to see some 235 U in the range of 12-15%. Higher assays produced during the start-up period might lead inspectors to believe the cascade is being

  5. Tricritical behaviour in the phase transition induced by electron-hole pairing

    International Nuclear Information System (INIS)

    Crisan, M.

    1980-01-01

    The electron-hole pairing, which is possible in metals or semiconductors, can give condensed phases with two order parameters. If the coupling between the two order parameters is considered, the free energy functional is similar with the free energy of a n-component spin system with cubic anisotropy. Using the Wagner hypothesis (tricritical scaling) the non-linear scaling fields have been calculated. In order to perform the calculation of the nonlinear fields we used the method given by Rudnick and Nelson to solve the recursion relations for the 4-epsilon-dimensional system with n=6 components. The present calculation in the frame-work of the renormalization-group approach confirms the result obtained in the mean-field theory that the coupling of the two order parameters induces a first order phase transition. (author)

  6. Calculation and comparison with experimental data of cascade curves for liquid xenon

    International Nuclear Information System (INIS)

    Strugal'skij, Z.S.; Yablonskij, Z.

    1975-01-01

    Cascade curves calculated by different methods are compared with the experimental data for showers caused by gamma-quanta with the energies from 40 to 2000 MeV in liquid xenon. The minimum energy of shower electrons (cut-off energy) taken into account by the experiment amounts to 3.1-+1.2 MeV, whereas the calculated cascade curves are given for the energies ranging from 40 to 4000 MeV at the cut-off energies 2.3; 3.5; 4.7 MeV. The depth of the shower development is reckoned from the point of generation of gamma-quanta which create showers. Cascade curves are calculated by the moment method with consideration for three moments. The following physical processes are taken into consideration: generation of electron-positron pairs; Compton effect; bremsstrahlung; ionization losses. The dependences of the mean number of particles on the depth of the shower development are obtained from measurements of photographs taken with a xenon bubble chamber. Presented are similar dependences calculated by the moment and Monte-Carlo methods. From the data analysis it follows that the calculation provides correct position of the shower development maximum, but different methods of calculation for small and low depths of shower development yield drastically different results. The Monte-Carlo method provides better agreement with the experimental data

  7. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    Science.gov (United States)

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  8. Stability of cascade search

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, Tatiana N [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)

    2010-10-22

    We find sufficient conditions on a searching multi-cascade for a modification of the set of limit points of the cascade that satisfy an assessing inequality for the distance from each of these points to the initial point to be small, provided that the modifications of the initial point and the initial set-valued functionals or maps used to construct the multi-cascade are small. Using this result, we prove the stability (in the above sense) of the cascade search for the set of common pre-images of a closed subspace under the action of n set-valued maps, n{>=}1 (in particular, for the set of common roots of these maps and for the set of their coincidences). For n=2 we obtain generalizations of some results of A. V. Arutyunov; the very statement of the problem comes from a recent paper of his devoted to the study of the stability of the subset of coincidences of a Lipschitz map and a covering map.

  9. Unified model of secondary electron cascades in diamond

    International Nuclear Information System (INIS)

    Ziaja, Beata; London, Richard A.; Hajdu, Janos

    2005-01-01

    In this article we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of x-ray photons. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1 and 10 keV. The present article expands our earlier work [B. Ziaja, D. van der Spoel, A. Szoeke, and J. Hajdu, Phys. Rev. B 64, 214104 (2001), Phys. Rev. B 66, 024116 (2002)] by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t≤1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs following the primary impact

  10. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  11. Pairing of heterochromatin in response to cellular stress

    International Nuclear Information System (INIS)

    Abdel-Halim, H.I.; Mullenders, L.H.F.; Boei, J.J.W.A.

    2006-01-01

    We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair

  12. Production of light elements by cascades from energetic antiprotons in the early Universe and problem of nuclear cosmoarcheology

    International Nuclear Information System (INIS)

    Levitan, Yu.L.; Sobol', I.M.; Khlopov, M.Yu.; Chechetkin, V.M.

    1988-01-01

    The mathematical model of the process of light-element (D and 3 He) production due to disintegration of 4 He nuclei, induced by nonequilibrium processes of production of energetic antiprotons in the early Universe is suggested. Numerical calculations show that formation of the nucleon cascade induced by antiproton slowing down increases the D and 3 He yield due to the growth of probability of disintegration of several 4 He nuclei by a single antiproton and due to disintegration of such nuclei by cascade protons. Restraints on the concentration of possible sources of energetic antiprotons in the early Universe are strengthened respectively

  13. Ion-implantation dense cascade data

    International Nuclear Information System (INIS)

    Winterbon, K.B.

    1983-04-01

    A tabulation is given of data useful in estimating various aspects of ion-implantation cascades in the nuclear stopping regime, particularly with respect to nonlinearity of the cascade at high energy densities. The tabulation is restricted to self-ion implantation. Besides power-cross-section cascade dimensions, various material properties are included. Scaling of derived quantities with input data is noted, so one is not limited to the values assumed by the author

  14. Radiation-induced enteropathy: Molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition

    International Nuclear Information System (INIS)

    Hamama, Saad; Gilbert-Sirieix, Marie; Vozenin, Marie-Catherine; Delanian, Sylvie

    2012-01-01

    Background: Radiation-induced fibrosis is a serious late complication of radiotherapy. Pentoxifylline–vitamin E has proven effective and safe in clinical trials in the treatment of fibrosis, while the molecular mechanism of its activity is yet unexplored. Methods: Ten patients suffering from radiation-induced enteropathy were treated with pentoxifylline–vitamin E combination with SOMA score as the primary endpoint. In parallel, primary smooth muscle cells isolated from intestinal samples isolated from humans with radiation enteropathy were incubated with pentoxifylline, trolox (vit. E hydrophilic analogous) or their combination. Activation of the TGF-β1/Smad and Rho/ROCK pathways was subsequently investigated using Q-RT-PCR, gene reporter, Western-blot, ELISA and immunohistochemistry. Results: Pentoxifylline–vitamin E combination induces regression of symptoms (SOMA) by −41% and −80% at 6 and 18 months. In vitro, pentoxifylline and trolox synergize to inhibit TGF-β1 protein and mRNA expression. This inhibitory action is mediated at the transcriptional level and leads to subsequent inhibition of TGF-β1/Smad targets (Col Iα1, FN1, PAI-1, CTGF), while it has no effect on the Rho/ROCK pathway. Conclusions: The anti-fibrotic effect of combined pentoxifylline–vitamin E is at least in part mediated by inhibition of the TGF-β1 cascade. It strengthens previous clinical data showing pentoxifylline–vitamin E synergy and supports its use as a first-line treatment of radiation-induced fibrosis.

  15. Optimized preventive replacement policy for large cascade systems

    International Nuclear Information System (INIS)

    Kretzen, H.H.

    1986-01-01

    The repair-bottleneck problem as a limiting factor for system reliability can be overcome. Design need only cover the steady state, wearout induced accumulations of failures being precluded by preventive replacements with subsequent recycling. As a result, a reliable system appears to be feasible on an economic basis, optimization in detail to be left to more precised cost-benefit studies. As a reference system the radio-frequency-generator cascade of a single-cell linear accelerator is considered. (DG)

  16. Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade.

    Science.gov (United States)

    Chen, Yu-Ying; Hsieh, Cheng-Ying; Jayakumar, Thanasekaran; Lin, Kuan-Hung; Chou, Duen-Suey; Lu, Wan-Jung; Hsu, Ming-Jen; Sheu, Joen-Rong

    2014-07-10

    The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. Phosphorylated p53 subsequently transactivated the expression of Bax, a pro-apoptotic protein. Transfection with pp2a small interfering RNA (siRNA) suppressed andrographolide-induced p38MAPK activation, p53 phosphorylation, and caspase 3 activation. Andrographolide also activated the Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1), and induced PP2A dephosphorylation, both of which were inhibited by the SHP-1 inhibitor sodium stibogluconate (SSG) or shp-1 siRNA. SSG or shp-1 siRNA prevented andrographolide-induced apoptosis. These results suggest that andrographolide activates the PP2A-p38MAPK-p53-Bax cascade, causing mitochondrial dysfunction and VSMC death through an SHP-1-dependent mechanism.

  17. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  18. Cascade of links in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, 100875 Beijing (China)

    2017-01-30

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  19. Cascade of links in complex networks

    International Nuclear Information System (INIS)

    Feng, Yeqian; Sun, Bihui; Zeng, An

    2017-01-01

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  20. Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.

    Science.gov (United States)

    Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng

    2018-05-14

    In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.

  1. Computer simulations of low energy displacement cascades in a face centered cubic lattice

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Bourquin, R.D.

    1976-09-01

    Computer simulations of atomic motion in a copper lattice following the production of primary knock-on atoms (PKAs) with energies from 25 to 200 eV are discussed. In this study, a mixed Moliere-Englert pair potential is used to model the copper lattice. The computer code COMENT, which employs the dynamical method, is used to analyze the motion of up to 6000 atoms per time step during cascade evolution. The atoms are specified as initially at rest on the sites of an ideal lattice. A matrix of 12 PKA directions and 6 PKA energies is investigated. Displacement thresholds in the [110] and [100] are calculated to be approximately 17 and 20 eV, respectively. A table showing the stability of isolated Frenkel pairs with different vacancy and interstitial orientations and separations is presented. The numbers of Frenkel pairs and atomic replacements are tabulated as a function of PKA direction for each energy. For PKA energies of 25, 50, 75, 100, 150, and 200 eV, the average number of Frenkel pairs per PKA are 0.4, 0.6, 1.0, 1.2, 1.4, and 2.2 and the average numbers of replacements per PKA are 2.4, 4.0, 3.3, 4.9, 9.3, and 15.8

  2. The comparison of extraction of energy in two-cascade and one-cascade targets

    Energy Technology Data Exchange (ETDEWEB)

    Dolgoleva, G. V., E-mail: dolgg@list.ru [National Research Tomsk State University, 36, Lenin Ave., 634050, Tomsk (Russian Federation); Ponomarev, I. V., E-mail: wingof17@mail.ru [Moscow State University, Department of Mechanics and Mathematics, 1, Vorobyovy Gory, Moscow,119961 (Russian Federation)

    2016-01-15

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy. The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.

  3. Heat flux and quantum correlations in dissipative cascaded systems

    Science.gov (United States)

    Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio

    2015-02-01

    We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.

  4. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN UP TO 200 KEV OF DAMAGE ENERGY AT 300, 1025, AND 2050 K

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-09-22

    We generated molecular dynamics database of primary defects that adequately covers the range of tungsten recoil energy imparted by 14-MeV neutrons. During this semi annual period, cascades at 150 and 200 keV at 300 and 1025 K were simulated. Overall, we included damage energy up to 200 keV at 300 and 1025 K, and up to 100 keV at 2050 K. We report the number of surviving Frenkel pairs (NF) and the size distribution of defect clusters. The slope of the NF curve versus cascade damage energy (EMD), on a log-log scale, changes at a transition energy (μ). For EMD > μ, the cascade forms interconnected damage regions that facilitate the formation of large clusters of defects. At 300 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 266 and 335, respectively. Similarly, at 1025 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 296 and 338, respectively. At 2050 K, large interstitial clusters also routinely form, but practically no large vacancy clusters do

  5. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells

    International Nuclear Information System (INIS)

    Wen, Long; Sun, Fuhe; Chen, Qin

    2014-01-01

    The incorporation of plasmonic nanostructures in the thin-film solar cells (TFSCs) is a promising route to harvest light into the nanoscale active layer. However, the light trapping scheme based on the plasmonic effects intrinsically presents narrow-band resonant enhancement of light absorption. Here we demonstrate that by cascading metal nanogratings with different sizes atop the TFSCs, broadband absorption enhancement can be realized by simultaneously exciting multiple localized surface plasmon resonances and inducing strong coupling between the plasmonic modes and photonic modes. As a proof of concept, we demonstrate of 66.5% in the photocurrent in an ultrathin amorphous silicon TFSC with two-dimensional cascaded gratings over the reference cell without gratings

  6. Experimental study of flow through compressor Cascade

    Directory of Open Access Journals (Sweden)

    Satyam Panchal

    2017-09-01

    Full Text Available The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160 mm, chord length was 80 mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300 mm, span was 160 mm, pitch was 60 mm, the actual chord of the cascade was 80 mm, the axial chord of the cascade was 70 mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°.

  7. A comparison of methods for cascade prediction

    OpenAIRE

    Guo, Ruocheng; Shakarian, Paulo

    2016-01-01

    Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimen...

  8. Computer simulation of displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-06-01

    More than 500 displacement cascades in copper have been generated with the computer simulation code MARLOWE over an energy range pertinent to both fission and fusion neutron spectra. Three-dimensional graphical depictions of selected cascades, as well as quantitative analysis of cascade shapes and sizes and defect densities, illustrate cascade behavior as a function of energy. With increasing energy, the transition from production of single compact damage regions to widely spaced multiple damage regions is clearly demonstrated

  9. Cascade Error Projection Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  10. Ultrarelativistic cascades and strangeness production

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.

    1998-02-01

    A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS

  11. TEACHING PHYSICS: Demonstrating cosmic ray induced electromagnetic cascades in the A-level laboratory

    Science.gov (United States)

    Dunne, Peter

    1999-01-01

    This article indicates how the study of sea-level cosmic ray phenomena can have a role in A-level physics. It describes a simple but far reaching particle physics experiment that can be carried out in the A-level physics laboratory. A simple model of electron-positron-photon cascades, suitable for use at A-level, is described.

  12. Molecular Dynamics Simulations of displacement cascades in metallic systems

    International Nuclear Information System (INIS)

    Doan, N.V.; Tietze, H.

    1995-01-01

    We use Molecular Dynamics Computer Simulations to investigate defect production induced by energetic displacement cascades up to 10 keV in pure metals (Cu, Ni) and in ordered intermetallic alloys NiAl, Ni 3 Al. Various model potentials were employed to describe the many-body nature of the interactions: the RGL (Rosato-Guillope-Legrand) model was used in pure Cu and Ni simulations; the modified version of the Vitek, Ackland and Cserti potentials (due to Gao, Bacon and Ackland) in Ni 3 Al and the EAM potentials of Foiles and Daw modified by Rubini and Ballone in NiAl, Ni 3 Al were used in alloy simulations. Atomic mixing and disordering were studied into details owing to imaging techniques and determined at different phases of the cascades. Some mixing mechanisms were identified. Our results were compared with existing data and those obtained by similar Molecular Dynamics Simulations available in the literature. (orig.)

  13. Inferring network structure from cascades

    Science.gov (United States)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  14. Top-down cascades in lakes and oceans: Different perspectives but same story?

    KAUST Repository

    Hessen, Dag Olav

    2014-05-16

    While top-down cascades from fish to phytoplankton have been a core topic in limnology for the past four decades, it has attracted far less interest in marine ecology. This is partly for historical reasons, since lake studies have been motivated by the ability to regulate algal blooms induced by cultural eutrophication, while marine studies have been more oriented towards fish yield and thus bottom-up processes. Also freshwaters are closed ecosystems with lower diversity and complexity, making models and predictions on trophic levels and interactions comparatively simpler. Here, we compare some key properties of freshwater and marine top-down cascades and argue that despite some striking differences, the large number of freshwater studies may pose valuable insights also for marine systems. Moreover, we argue that there is an urgent need for more focus on top-down cascades in marine systems that address how top predators or fishing may propagate through the food web and impact autotrophic biomass, production, C-sequestration and thus ultimately the global carbon cycle and climate. © 2014 The Author. Published by Oxford University Press. All rights reserved.

  15. Gas separation performance of tapered cascade with membrane

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    Membrane gas separation cascades are analyzed at steady state. The method of calculating the flow rate and concentration profiles in the cascade are examined, using formulas expressing the various membrane separation cell characteristics. The method adopted is applicable to relatively high concentrations and separation factors. Considerations are further given on the steady state performance of four theoretical forms of cascade: (a) with common value of cut for all stages, (b) with symmetric separation cells, (c) with no mixing at the junction at each stage, and (d) ideal cascade. The analysis showed that, with membrane cells, the ideal cascade would have a pressure ratio varying from stage to stage. The symmetric separation cascade would provide a separation performance lower than the ideal cascade on account of the mixing at the junctions of streams possessing different concentrations, whereas the cut and separation factor of the no-mixing cascade requiring minimum membrane area exhibits zig-zag curves when plotted against stage number. Both these circumstances contribute to the lower separation performance obtained with these two forms as compared with the ideal cascade, and results in larger total membrane area; but these semi-ideal forms retain the advantage of easy practical treatment with their pressure ratio common to all stages. (auth.)

  16. Ultrarelativistic cascades and strangeness production

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.

    1998-08-24

    A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies {radical}(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.) 26 refs.

  17. Ultrarelativistic cascades and strangeness production

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.

    1998-01-01

    A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies √(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.)

  18. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  19. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, N., E-mail: ning.gao@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gao, X. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, W.H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, M.H.; Pang, L.L.; Zhu, Y.B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-10-01

    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from −2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along 〈1 1 1〉 direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to 〈1 1 1〉 has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  20. The Cascade Mountains revisited: A re-evaluation in light of new lead isotopic data

    International Nuclear Information System (INIS)

    Church, S.E.

    1976-01-01

    Lead isotopic analyses have been repeated using silica gel for several samples from the Cascade Mountains which were previously analyzed by lead sulfide. The improved precision indicates that some of the scatter in the original data was due to thermal fractionation; however, the bulk of the data have not changed significantly. Two-point mixing lines are demonstrated for main cone-satellitic cone pairs from Glacier Peak, Mt. Baker and Mt. Shasta. Comparison with data on oceanic basalts from the Juan de Fuca and Gorda Ridge area indicates that hypothesis of mixing of mid-ocean ridge (MOR) basalt lead and 'alkali basalt-like' lead from the oceanic crust is not tenable. Lead isotope analyses of pre-Astoria Fan sediments from DSDP Leg 18 sites and from the Eocene Tyee Formation indicate that the sedimentary continental detritus from the North American continent has the correct lead isotopic composition to be the continental component necessary to account for the Cascade Mountains lead isotopic array by mixing with Juan de Fuca-Gorda Ridge MOR basalts. However, from recent work on the structure of oceanic trenches by Karig and Sharman (1975), it does not appear that subduction of sediments is the rule. A model of crustal contamination and/or assimilation at the crust/mantle interface is the preferred explanation for the lead isotopic data from the Cascade Mountains. (Auth.)

  1. Defect accumulation under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Woo, C.H.

    1994-01-01

    in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are emphasized......There is now ample evidence from both experimental and computer simulation studies that in displacement cascades not only intense recombination takes place but also efficient clustering of both self-interstitial atoms (SIAs) and vacancies. The size distributions of the two types of defects produced...... reactions kinetics associated with the specific features of cascade damage is described, with emphasis on asymmetries between SIA and vacancy type defects concerning their production, stability, mobility and interactions with other defects. Defect accumulation under cascade damage conditions is discussed...

  2. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    Science.gov (United States)

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  3. Role of the QCD induced gluon-gluon coupling to gauge boson pairs in the multitev region

    International Nuclear Information System (INIS)

    Ametller, L.; Gava, E.; Paver, N.; Treleani, D.

    1985-02-01

    We discuss the production of γγ and Zsup(O)γ pairs induced by the gluon-gluon fusion mechanism at typical supercollider energies. Due to the large flux of gluons with small fractional momenta, it is found that in certain kinematical configurations that subprocess, although of order (αsub(S)/π) 2 with respect to the leading quark annihilation, can give an appreciable contribution to the cross-section for Zsup(O)γ and even a larger one for the γγ production. (author)

  4. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.; McGehee, Michael D.

    2013-01-01

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cascading Denial of Service Attacks on Wi-Fi Networks

    OpenAIRE

    Xin, Liangxiao; Starobinski, David; Noubir, Guevara

    2016-01-01

    We unveil the existence of a vulnerability in Wi-Fi, which allows an adversary to remotely launch a Denial-of-Service (DoS) attack that propagates both in time and space. This vulnerability stems from a coupling effect induced by hidden nodes. Cascading DoS attacks can congest an entire network and do not require the adversary to violate any protocol. We demonstrate the feasibility of such attacks through experiments with real Wi-Fi cards, extensive ns-3 simulations, and theoretical analysis....

  7. One-sided imaging of large, dense objects using the 511 keV photons from induced pair production

    Energy Technology Data Exchange (ETDEWEB)

    Tavora, L.M.; Gilboy, W.B.; Morton, E.J. [Univ. of Surrey, Guildford (United Kingdom). Physics Dept.; Morgado, R.E.; Estep, R.J.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1998-03-01

    The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%.

  8. One-sided imaging of large, dense objects using the 511 keV photons from induced pair production

    International Nuclear Information System (INIS)

    Tavora, L.M.; Gilboy, W.B.; Morton, E.J.

    1998-03-01

    The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%

  9. Some time dependent aspects of fast neutron induced atomic cascades

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1976-01-01

    Analytical results are obtained for the time-energy distribution of neutrons and the associated displaced atoms slowing down in an amorphous medium according to a general force law. Explicit results are given for the inverse power law, and applications to hard-sphere and Coulomb scattering are discussed. Complete results are obtained for the steady state energy distribution of particles arising from a primary knock-on, and from a neutron initiated cascade. The speed of the slowing down process is assessed by calculating the slowing down time of particles. Two different concepts of slowing down time are discussed, one based upon a density average and the other on a slowing down density average. It is shown that the latter definition is physically more realistic and mathematically simpler. (author)

  10. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    Science.gov (United States)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  11. Cascading Gravity Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension

    CERN Document Server

    de Rham, Claudia; Hofmann, Stefan; Khoury, Justin; Pujolas, Oriol; Redi, Michele; Tolley, Andrew J

    2008-01-01

    We present a higher codimension generalization of the DGP scenario which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law `cascades' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.

  12. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  13. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  14. Assessment on tracking error performance of Cascade P/PI, NPID and N-Cascade controller for precise positioning of xy table ballscrew drive system

    International Nuclear Information System (INIS)

    Abdullah, L; Jamaludin, Z; Rafan, N A; Jamaludin, J; Chiew, T H

    2013-01-01

    At present, positioning plants in machine tools are looking for high degree of accuracy and robustness attributes for the purpose of compensating various disturbance forces. The objective of this paper is to assess the tracking performance of Cascade P/PI, Nonlinear PID (NPID) and Nonlinear cascade (N-Cascade) controller with the existence of disturbance forces in the form of cutting forces. Cutting force characteristics at different cutting parameters; such as spindle speed rotations is analysed using Fast Fourier Transform. The tracking performance of a Nonlinear cascade controller in presence of these cutting forces is compared with NPID controller and Cascade P/PI controller. Robustness of these controllers in compensating different cutting characteristics is compared based on reduction in the amplitudes of cutting force harmonics using Fast Fourier Transform. It is found that the N-cascade controller performs better than both NPID controller and Cascade P/PI controller. The average percentage error reduction between N-cascade controller and Cascade P/PI controller is about 65% whereas the average percentage error reduction between cascade controller and NPID controller is about 82% at spindle speed of 3000 rpm spindle speed rotation. The finalized design of N-cascade controller could be utilized further for machining application such as milling process. The implementation of N-cascade in machine tools applications will increase the quality of the end product and the productivity in industry by saving the machining time. It is suggested that the range of the spindle speed could be made wider to accommodate the needs for high speed machining

  15. Hormonal Signaling Cascade during an Early-Adult Critical Period Required for Courtship Memory Retention in Drosophila.

    Science.gov (United States)

    Lee, Sang Soo; Ding, Yike; Karapetians, Natalie; Rivera-Perez, Crisalejandra; Noriega, Fernando Gabriel; Adams, Michael E

    2017-09-25

    Formation and expression of memories are critical for context-dependent decision making. In Drosophila, a courting male rejected by a mated female subsequently courts less avidly when paired with a virgin female, a behavioral modification attributed to "courtship memory." Here we show the critical role of hormonal state for maintenance of courtship memory. Ecdysis-triggering hormone (ETH) is essential for courtship memory through regulation of juvenile hormone (JH) levels in adult males. Reduction of JH levels via silencing of ETH signaling genes impairs short-term courtship memory, a phenotype rescuable by the JH analog methoprene. JH-deficit-induced memory impairment involves rapid decay rather than failure of memory acquisition. A critical period governs memory performance during the first 3 days of adulthood. Using sex-peptide-expressing "pseudo-mated" trainers, we find that robust courtship memory elicited in the absence of aversive chemical mating cues also is dependent on ETH-JH signaling. Finally, we find that JH acts through dopaminergic neurons and conclude that an ETH-JH-dopamine signaling cascade is required during a critical period for promotion of social-context-dependent memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Collision cascades and sputtering induced by larger cluster ions

    International Nuclear Information System (INIS)

    Sigmund, P.

    1988-01-01

    Recent experimental work on larger cluster impact on solid surfaces suggests large deviations from the standard case of additive sputter yields both in the nuclear and electronic stopping regime. The paper concentrates on elastic collision cascades. In addition to very pronounced spike effects, two phenomena are pointed out that are specific to cluster bombardment. Multiple hits of cluster atoms on one and the same target atom may result in recoil atoms that move faster than the maximum recoil speed for monomer bombardment at the same projectile speed. This effect is important when the atomic mass of a beam atom is less than that of a target atom, M 1 2 . In the opposite case, M 1 >> M 2 , collisions between beam particles may accelerate some beam particles and slow down others. Some consequences are mentioned. Remarks on the nuclear stopping power of larger clusters and on electronic sputtering by cluster bombardment conclude the paper. 38 refs., 2 figs

  17. Predator transitory spillover induces trophic cascades in ecological sinks

    DEFF Research Database (Denmark)

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian

    2012-01-01

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-sy...... in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances......Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross......-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi...

  18. Time structure of cascade showers

    International Nuclear Information System (INIS)

    Nakatsuka, Takao

    1984-01-01

    Interesting results have been reported on the time structure of the electromagnetic components of air showers which have been obtained by using recent fast electronic circuit technology. However, these analyses and explanations seem not very persuasive. One of the reasons is that there is not satisfactory theoretical calculation yet to explain the delay of electromagnetic components in cascade processes which are the object of direct observation. Therefore, Monte Carlo calculation was attempted for examining the relationship between the altitude at which high energy γ-ray is generated up in the air and the time structure of cascade showers at the level of observation. The investigation of a dominant factor over the delay of electromagnetic components indicated that the delay due to the multiple scattering of electrons was essential. The author used the analytical solution found by himself of C. N. Yang's equation for the study on the delay due to multiple scattering. The results were as follows: The average delay time and the spread of distribution of electromagnetic cascades were approximately in linear relationship with the mass of a material having passed in a thin uniform medium; the rise time of arrival time distribution for electromagnetic cascade showers was very steep under the condition that they were generated up in the air and observed on the ground; the subpeaks delayed by tens of ns in arrival time may sometimes appear due to the perturbation in electromagnetic cascade processes. (Wakatsuki, Y.)

  19. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length.

    Science.gov (United States)

    Hintz, William D; Mattes, Brian M; Schuler, Matthew S; Jones, Devin K; Stoler, Aaron B; Lind, Lovisa; Relyea, Rick A

    2017-04-01

    The application of road deicing salts in northern regions worldwide is changing the chemical environment of freshwater ecosystems. Chloride levels in many lakes, streams, and wetlands exceed the chronic and acute thresholds established by the United States and Canada for the protection of freshwater biota. Few studies have identified the impacts of deicing salts in stream and wetland communities and none have examined impacts in lake communities. We tested how relevant concentrations of road salt (15, 100, 250, 500, and 1000 mg Cl - /L) interacted with experimental communities containing two or three trophic levels (i.e., no fish vs. predatory fish). We hypothesized that road salt and fish would have a negative synergistic effect on zooplankton, which would then induce a trophic cascade. We tested this hypothesis in outdoor mesocosms containing filamentous algae, periphyton, phytoplankton, zooplankton, several macroinvertebrate species, and fish. We found that the presence of fish and high salt had a negative synergistic effect on the zooplankton community, which in turn caused an increase in phytoplankton. Contributing to the magnitude of this trophic cascade was a direct positive effect of high salinity on phytoplankton abundance. Cascading effects were limited with respect to impacts on the benthic food web. Periphyton and snail grazers were unaffected by the salt-induced trophic cascade, but the biomass of filamentous algae decreased as a result of competition with phytoplankton for light or nutrients. We also found direct negative effects of high salinity on the biomass of filamentous algae and amphipods (Hyalella azteca) and the mortality of banded mystery snails (Viviparus georgianus) and fingernail clams (Sphaerium simile). Clam mortality was dependent on the presence of fish, suggesting a non-consumptive interactive effect with salt. Our results indicate that globally increasing concentrations of road salt can alter community structure via both direct

  20. Formalism of continual integrals for cascade processes with particle fusion

    International Nuclear Information System (INIS)

    Gedalin, Eh.V.

    1987-01-01

    Formalism of continuous integrals for description of cascade processes, in which besides cascade particle reproduction, their synthesis and coalescence take place, is used. Account of cascade particle coalescence leads to the fact that the development of some cascade branches cannot be independent and main equations of the cascade process become functional instead of integral. The method of continuous intagrals permits to construct in the closed form producing functionals for the cascade process and to obtain the rules of their calculation using diagrams. Analytical expressions in the form of continuous integrals for producing functionals describing cascade development are obtained

  1. Cascaded-focus laser writing of low-loss waveguides in polymers.

    Science.gov (United States)

    Pätzold, Welm M; Reinhardt, Carsten; Demircan, Ayhan; Morgner, Uwe

    2016-03-15

    Waveguide writing in poly (methyl methacrylate) (PMMA) with femtosecond laser radiation is presented. An adequate refractive index change is induced in the border area below the irradiated focal volume. It supports an almost symmetric fundamental mode with propagation losses down to 0.5  dB/cm, the lowest losses observed so far in this class of materials. The writing process with a cascaded focus is demonstrated to be highly reliable over a large parameter range.

  2. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks

    Science.gov (United States)

    Guo, Quantong; Jiang, Xin; Lei, Yanjun; Li, Meng; Ma, Yifang; Zheng, Zhiming

    2015-01-01

    Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. The dynamic process with human awareness is called awareness cascade, during which individuals exhibit herd-like behavior because they are making decisions based on the actions of other individuals [Borge-Holthoefer et al., J. Complex Networks 1, 3 (2013), 10.1093/comnet/cnt006]. In this paper, to investigate the epidemic spreading with awareness cascade, we propose a local awareness controlled contagion spreading model on multiplex networks. By theoretical analysis using a microscopic Markov chain approach and numerical simulations, we find the emergence of an abrupt transition of epidemic threshold βc with the local awareness ratio α approximating 0.5 , which induces two-stage effects on epidemic threshold and the final epidemic size. These findings indicate that the increase of α can accelerate the outbreak of epidemics. Furthermore, a simple 1D lattice model is investigated to illustrate the two-stage-like sharp transition at αc≈0.5 . The results can give us a better understanding of why some epidemics cannot break out in reality and also provide a potential access to suppressing and controlling the awareness cascading systems.

  3. Barrier abnormalities and keratinocyte-derived cytokine cascade after cessation of long-term topical glucocorticosteroid on hairless mouse skin

    Directory of Open Access Journals (Sweden)

    Tzu-Kai Lin

    2015-06-01

    Conclusion: An epidermis-derived cytokine cascade was observed following TCS-induced barrier disruption, which is similar to that from permeability barrier insults by acetone or tape stripping. The study suggests that concurrent application of skin care products during TCS treatment improves barrier homeostasis, and should become a standard practice to alleviate TCS-induced WD.

  4. Cascade theory in isotopic separation processes

    International Nuclear Information System (INIS)

    Agostini, J.P.

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs

  5. Investigation of the interaction dynamics of a pair of laser-induced bubbles generated at the same time through double-exposure strobe method and numerical simulations

    Science.gov (United States)

    Han, Bing; Liu, Liu; Ni, Xiao-Wu

    2017-08-01

    In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.

  6. Pairing mechanism in oxide superconductors

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    1988-01-01

    A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity

  7. Fis protein induced λF-DNA bending observed by single-pair fluorescence resonance energy transfer

    Science.gov (United States)

    Chi-Cheng, Fu; Wunshain, Fann; Yuan Hanna, S.

    2006-03-01

    Fis, a site-specific DNA binding protein, regulates many biological processes including recombination, transcription, and replication in E.coli. Fis induced DNA bending plays an important role in regulating these functions and bending angle range from ˜50 to 95 dependent on the DNA sequence. For instance, the average bending angle of λF-DNA (26 bp, 8.8nm long, contained λF binding site on the center) measured by gel mobility shift assays was ˜ 94 . But the traditional method cannot provide information about the dynamics and the angle distribution. In this study, λF-DNA was labeled with donor (Alexa Fluor 546) and acceptor (Alexa Fluor 647) dyes on its two 5' ends and the donor-acceptor distances were measured using single-pair fluorescence resonance energy transfer (sp-FRET) with and without the present of Fis protein. Combing with structure information of Fis-DNA complex, the sp-FRET results are used to estimate the protein induced DNA bending angle distribution and dynamics.

  8. Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension

    International Nuclear Information System (INIS)

    Rham, Claudia de; Dvali, Gia; Hofmann, Stefan; Khoury, Justin; Tolley, Andrew J.; Pujolas, Oriol; Redi, Michele

    2008-01-01

    We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law ''cascades'' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales

  9. Cascading failure in the wireless sensor scale-free networks

    Science.gov (United States)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  10. Progress of research on the mechanism of microstructure evolution during irradiation with collision cascades

    International Nuclear Information System (INIS)

    Kiritani, Michio

    1997-01-01

    Progress of the research on microstructural evolution during radiation damage accompanied with collision cascades, particularly by neutrons, is summarized from the researches reported in 1995 and 1996. The major part of irradiation was performed with JMTR (Japan Material Testing Reactor), and comparisons were made with the result of D-T fusion neutron irradiation with RTNS-II (Rotating Target Neutron Source, LLNL). The subjects concerned are: (1) Microstructure evolution during irradiation, (2) Processes controlling the accumulation of defects during cascade damage, (3) Subcascades from the viewpoint of point defect cluster formation, (4) Mechanism of suppression of microstructure evolution during temperature cycle neutron irradiation of nickel, (5) Identification of the nature of neutron-irradiation-induced point defect clusters in copper by means of electron irradiation, (6) Easy one-dimensional motion of small interstitial clusters, (7) Identification of the nature of small point defect clusters in neutron irradiated Fe-16Ni-15Cr, (8) Spatial distribution of nucleation of point defect clusters by high energy particle irradiation, (9) Crystallographic orientation dependence of dislocation structures in neutron irradiated metals, (10) Examination of defect accumulation mode with multi-section-removable-irradiation-rig in Japan Material Testing Reactor, (11) Estimation of freely migrating point defects during cascade damage by the growth of helical dislocations, (12) Identification of the nature of neutron-irradiation-induced small point defect clusters in Nickel by means of electron irradiation, (13) Thermal stability of point defect clusters in neutron irradiated Fe-16Ni-15Cr. (author)

  11. Hybrid TLC-pair meter for the Sphinx Project

    Science.gov (United States)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in THE SPHINX PROJECT are research of super lepton physics and new detector experiments. At the second phase of THE SPHINX PROJECT, a hybrid TLC-PAIR METER was designed for measuring high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV) and measuring muon group (E mu 1 TeV). The principle of PAIR METER has been already proposed. In this TLC-PAIR METER, electromagnetic shower induced by cosmic ray muons are detected using TL (Thermoluminescence) sheets with position counters.

  12. Hybrid TLC-pair meter for the Sphinx Project

    International Nuclear Information System (INIS)

    Wada, T.; Yamamoto, I.; Takahashi, N.; Misaki, A.

    1985-01-01

    The chief aims in the Sphinx Project are research on super lepton physics and new detector experiments. In the second phase of the Sphinx Project, a hybrid TLC-pair meter was designed for measuring for high energy neutrino sources (E upsilon * TeV), searching high energy muon sources (E mu TeV), and measuring muon groups (E mu 1 TeV). The principle of the pair meter has been already proposed. In this TLC pair meter, electromagnetic showers induced by cosmic ray muons are detected using thermoluminescene sheets with position counters

  13. Energy and carbon balances of wood cascade chains

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor. (author)

  14. Andrographolide, a Novel NF-κB Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2013-01-01

    Full Text Available Atherosclerosis is linked with the development of many cardiovascular complications. Abnormal proliferation of vascular smooth muscle cells (VSMCs plays a crucial role in the development of atherosclerosis. Accordingly, the apoptosis of VSMCs, which occurs in the progression of vascular proliferation, may provide a beneficial strategy for managing cardiovascular diseases. Andrographolide, a novel nuclear factor-κB inhibitor, is the most active and critical constituent isolated from the leaves of Andrographis paniculata. Recent studies have indicated that andrographolide is a potential therapeutic agent for treating cancer through the induction of apoptosis. In this study, the apoptosis-inducing activity and mechanisms in andrographolide-treated rat VSMCs were characterized. Andrographolide significantly induced reactive oxygen species (ROS formation, p53 activation, Bax, and active caspase-3 expression, and these phenomena were suppressed by pretreating the cells with N-acetyl-L-cysteine, a ROS scavenger, or diphenylene iodonium, a nicotinamide adenine dinucleotide phosphate (NADPH oxidase (Nox inhibitor. Furthermore, p47phox, a Nox subunit protein, was phosphorylated in andrographolide-treated rat VSMCs. However, pretreatment with 3-O-methyl-sphingomyelin, a neutral sphingomyelinase inhibitor, significantly inhibited andrographolide-induced p47phox phosphorylation as well as Bax and active caspase-3 expression. Our results collectively demonstrate that andrographolide-reduced cell viability can be attributed to apoptosis in VSMCs, and this apoptosis-inducing activity was associated with the ceramide-p47phox-ROS signaling cascade.

  15. Cascaded impedance networks for NPC inverter

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    they are subject to the renewable sources. To date, three distinct types of impedance networks can be summarized for implementing a hybrid source impedance network, which can in principle be combined and cascaded before connected to a NPC inverter by proposed two ways. The resulting cascaded impedance network NPC...

  16. Pairing from strong repulsion in triangular lattice Hubbard model

    Science.gov (United States)

    Zhang, Shang-Shun; Zhu, Wei; Batista, Cristian D.

    2018-04-01

    We propose a pairing mechanism between holes in the dilute limit of doped frustrated Mott insulators. Hole pairing arises from a hole-hole-magnon three-body bound state. This pairing mechanism has its roots on single-hole kinetic energy frustration, which favors antiferromagnetic (AFM) correlations around the hole. We demonstrate that the AFM polaron (hole-magnon bound state) produced by a single hole propagating on a field-induced polarized background is strong enough to bind a second hole. The effective interaction between these three-body bound states is repulsive, implying that this pairing mechanism is relevant for superconductivity.

  17. Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-05-01

    Full Text Available ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment.MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females. To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs elicited by single-pulse transcranial magnetic stimulation (TMS before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01 at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity.

  18. Learning Cascading

    CERN Document Server

    Covert, Michael

    2015-01-01

    This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.

  19. Information cascade on networks

    Science.gov (United States)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  20. Computation of inverse magnetic cascades

    International Nuclear Information System (INIS)

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed

  1. Photon strength function in the Hf-181 nucleus by method of two-step cascade

    International Nuclear Information System (INIS)

    Le Hong Khiem

    2003-01-01

    The applicability of sum-coincidence measurements of two-step cascade gamma ray spectra determining Photon Strength Function (PSF) of Hf-181 induced from Hf-180 (n,2γ) Hf-181 reaction is presented. Up to 80% intensity of the primary gamma ray transitions in a wide energy range have been deduced and compared to model calculation. (author)

  2. Dynamical Cooper pairing in non-equilibrium electron-phonon systems

    Energy Technology Data Exchange (ETDEWEB)

    Knap, Michael [Technical University of Munich (Germany); Harvard University (United States); Babadi, Mehrtash; Refael, Gil [Caltech (United States); Martin, Ivar [Argonne National Laboratory (United States); Demler, Eugene [Harvard University (United States)

    2016-07-01

    Ultrafast laser pulses have been used to manipulate complex quantum materials and to induce dynamical phase transitions. One of the most striking examples is the transient enhancement of superconductivity in several classes of materials upon irradiating them with high intensity pulses of terahertz light. Motivated by these experiments we analyze the Cooper pairing instabilities in non-equilibrium electron-phonon systems. We demonstrate that the light induced non-equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We analyze the competition between these effects and show that in a broad range of parameters the dynamic enhancement of Cooper pair formation dominates over the increase in the scattering rate. This opens the possibility of transient light induced superconductivity at temperatures that are considerably higher than the equilibrium transition temperatures. Our results pave new pathways for engineering high-temperature light-induced superconducting states.

  3. Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses

    International Nuclear Information System (INIS)

    Nambu, Yoshihiro; Usami, Koji; Tsuda, Yoshiyuki; Matsumoto, Keiji; Nakamura, Kazuo

    2002-01-01

    We report the generation of polarization-entangled photons by femtosecond-pulse-pumped spontaneous parametric down-conversion in a cascade of two type-I crystals. Highly entangled pulsed states were obtained by introducing a temporal delay between the two orthogonal polarization components of the pump field. They exhibited high-visibility quantum interference and a large concurrence value, without the need of postselection using narrow-bandwidth spectral filters. The results are well explained by the theory which incorporates the space-time dependence of interfering two-photon amplitudes if dispersion and birefringence in the crystals are appropriately taken into account. Such a pulsed entangled photon well localized in time domain is useful for various quantum communication experiments, such as quantum cryptography and quantum teleportation

  4. Phosphoinositolphosphate (PIP) cascade induction by hypertonic stress of plant tissue

    International Nuclear Information System (INIS)

    Srivastava, A.; Jacoby, B.

    1989-01-01

    Inositol 1,4,5-trisphosphate (IP 3 ) was determined by competition with [ 3 H]-IP 3 for binding to an IP 3 specific protein. A hypertonic mannitol, sorbitol or lactose shock induced an increase in the rate of K + uptake and raised the IP 3 content of Beta vulgaris slices, excised Vigna mungo and Sorghum bicolor roots, as well as attached V. mungo roots. Increased K + uptake could also be induced by compounds that artificially induce the PIP cascade, or mimic it's products. A hypertonic shock, administered to intact B. vulgaris slices, further enhanced the phosphorylation of a 20 kD protein in the plasmalemma. Maximal IP 3 content was found 10 min after hypertonic induction and maximal K + uptake was obtained 10 min later. The effect of a continuous hypertonic treatment on IP 3 content, but not on K + uptake, was transient. Li + decreased the rate of IP 3 metabolism

  5. Crossover from phonon-mediated to repulsion-induced superconducting pairing with large momentum

    International Nuclear Information System (INIS)

    Belyavsky, V.I.; Kopaev, Yu.V.; Nguyen, N.T.; Togushova, Yu.N.

    2005-01-01

    There are asymmetric and symmetric solutions of the self-consistency equation which takes into account both phonon-mediated and Coulomb pairing interactions. The first of them leads to the order parameter with a nodal line and, in the case of pairing with large momentum, exists at any repulsive and attractive strengths. The second one arises if the attraction exceeds a level depending on the repulsion strength and dominates the pairing in the strong attraction limit. The competition of attraction and repulsion results in unusual isotope-effect exponent observed in the cuprates

  6. Non-spill control squared cascade

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Suemori, Nobuo.

    1974-01-01

    Object: To reduce a mixed loss thus enhancing separating efficiency by the provision of a simple arrangement wherein a reflux portion in a conventional spill control squared cascade is replaced by a special stage including centrifugal separators. Structure: Steps in the form of a square cascade, in which a plurality of centrifugal separators are connected by pipe lines, are accumulated in multistage fashion to form a squared cascade. Between the adjoining steps is disposed a special stage including a centrifugal separator which receives both lean flow from the upper step and rich flow from the lower step. The centrifugal separator in the special stage has its rich side connected to the upper step and its lean side connected to the lower step. Special stages are each disposed at the upper side of the uppermost step and at the lower side of the lowermost step. (Kamimura, M.)

  7. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  8. Investigation of coulomb and pairing effects using new developed empirical formulas for proton-induced reaction cross sections

    International Nuclear Information System (INIS)

    Tel, E.; Aydin, E. G.; Aydin, A.; Kaplan, A.; Boeluekdemir, M. H.; Okuducu, S.

    2010-01-01

    We have investigated Coulomb and pairing effects by using new empirical formulas including the new coefficients for (p, α) at 17.9 MeV, (p, np) at 22.3 MeV, and (p, nα) at 24.8 and 28.5 MeV energies. A new formula is obtained by adjusting Levkovskii's original asymmetry parameter formula and also Tel et al. formula for proton-induced reactions. The new coefficients by using least-squares fitting method for the reactions are determined. In addition, the findings of the present study are compared with the available experimental data.

  9. Conditions for formation of electron pairs in a metal

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, A.Z., E-mail: shekhtmanalexander@gmail.com

    2015-04-15

    Highlights: • A new approach has been developed for consideration of electron pairing in metals. • Binding energy of a single pair induced by electron-phonon interaction is very small. • A new mechanism for electron pairing in metals has been considered. • Conditions for feasibility of the mechanism give conditions for electron pairing. • The mechanism gives wide opportunities to study new conditions for electron pairing. - Abstract: In an isotropic model of the electron system of metal that is presented by the Fröhlich’s initial Hamiltonian, in the approximation of a weak electron–phonon interaction at T = 0, first time, we show that the ground state of the system is the state with pairing correlations of electrons (the pair correlations of occupied electron states). In contrast to the BCS approach, the initial point in our approach is not electron pairing but is the maximum reduction of the energy of the considered system due to virtual processes of the electron–phonon interaction and to the exchange effect for the indirect electron–electron interaction (which is induced by certain phonon modes separately from others). In contrast to the BCS approach, we take into account the portion of the energy of the electron system that is connected with the above exchange effect. In the BCS approach, the corresponding portion is missed, and its role is prescribed to the portion that does not relate to the electron pairing. We show that expectation values of the above Hamiltonian for different wave functions for two interacting electrons above the Fermi sea of the non-interacting system (with interaction between the electrons that is induced by different phonon modes separately from others) are minimum for a certain structure of these functions and simultaneously for phonon modes that can induce the transitions of the interacting electrons between electron states in which they are (without violation of the Pauli exclusion principle and at everything else

  10. Pair-correlations in swimmer suspensions

    Science.gov (United States)

    Nambiar, Sankalp; Subramanian, Ganesh

    2017-11-01

    Suspensions of rear-actuated swimming microorganisms, such as E.coli, exhibit several interesting phenomena including spontaneous pattern formation above a critical concentration, novel rheological properties, shear-induced concentration banding etc. Explanations based on mean-field theory are only qualitative, since interactions between swimmers are important for typical experimental concentrations. We analytically characterize the hydrodynamic pair-interactions in a quiescent suspension of slender straight swimmers. The pair-correlation, calculated at leading order by integrating the swimmer velocity disturbances along straight trajectories, decays as 1/r2 for r >> L (L being the swimmer size). This allows us to characterize both polar and nematic correlations in an interacting swimmer suspension. In the absence of correlations, the velocity covariance asymptotes from a constant for r > L, the latter being characteristic of a suspension of non-interacting point force-dipoles. On including correlations, the slow decay of the pair-orientation correlation leads to an additional contribution to the velocity covariance that diverges logarithmically with system size.

  11. Cascade fuzzy control for gas engine driven heat pump

    International Nuclear Information System (INIS)

    Li Shuze; Zhang Wugao; Zhang Rongrong; Lv Dexu; Huang Zhen

    2005-01-01

    In addition to absorption chillers, today's gas cooling technology includes gas engine driven heat pump systems (GEHP) in a range of capacities and temperature capacities suitable for most commercial air conditioning and refrigeration applications. Much is expected from GEHPs as a product that would help satisfy the air conditioning system demand from medium and small sized buildings, restrict electric power demand peaks in summer and save energy in general. This article describes a kind of control strategy for a GEHP, a cascade fuzzy control. GEHPs have large and varying time constants and their dynamic modeling cannot be easily achieved. A cascade control strategy is effective for systems that have large time constants and disturbances, and a fuzzy control strategy is fit for a system that lacks an accurate model. This cascade fuzzy control structure brings together the best merits of fuzzy control and cascade control structures. The performance of the cascade fuzzy control is compared to that of a cascade PI (proportional and integral) control strategy, and it is shown by example that the cascade fuzzy control strategy gives a better performance, reduced reaction time and smaller overshoot temperature

  12. Long term simulation of point defect cluster size distributions from atomic displacement cascades in Fe70Cr20Ni10

    International Nuclear Information System (INIS)

    Souidi, A.; Hou, M.; Becquart, C.S.; Domain, C.; De Backer, A.

    2015-01-01

    We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe 70 Cr 20 Ni 10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy–interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10–100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas–Fermi potential and the so-called “Universal” potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10 −7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe 70 Cr 20 Ni 10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent

  13. A cryogenic distillation column cascade for a fusion reactor

    International Nuclear Information System (INIS)

    Kinoshita, M.

    1984-01-01

    A cryogenic distillation column cascade composed of only two columns is proposed. Compared with the Tritium Systems Test Assembly (TSTA) cascade, the tritium inventory is about 1.5 times more and the packed height of the highest column increases by about 40%. However, the number of the columns is halved with the separation performance unchanged. The number of the instruments needed and the number of the process parameters to be monitored are also reduced. Unlike in the case of the TSTA cascade, the performance of the proposed cascade is not subject to the flow rate of the neutral beam injector recycle stream. The high performance can be maintained even if the protium percentage in the raw fuel input increases significantly (e.g., from 1 to 3%), just by adjusting the flow rates of the top, bottom, and side streams. Because of this great flexibility, it is worthwhile to build and study the proposed cascade as a possible alternative to the TSTA cascade

  14. Effect of pairing on nuclear dynamics

    International Nuclear Information System (INIS)

    Scamps, Guillaume

    2014-01-01

    Pairing correlations is an essential component for the description of the atomic nuclei. The effects of pairing on static property of nuclei are now well known. In this thesis, the effect of pairing on nuclear dynamics is investigated. Theories that includes pairing are benchmarked in a model case. The TDHF+BCS theory turns out to be a good compromise between the physics taken into account and the numerical cost. This TDHF+BCS theory was retained for realistic calculations. Nevertheless, the application of pairing in the BCS approximation may induce new problems due to (1) the particle number symmetry breaking, (2) the non-conservation of the continuity equation. These difficulties are analysed in detail and solutions are proposed. In this thesis, a 3 dimensional TDHF+BCS code is developed to simulate the nuclear dynamic. Applications to giant resonances show that pairing modify only the low lying peaks. The high lying collective components are only affected by the initial conditions. An exhaustive study of the giant quadrupole resonances with the TDHF+BCS theory is performed on more than 700 spherical or deformed nuclei. Is is shown that the TDHF+BCS theory reproduces well the collective energy of the resonance. After validation on the small amplitude limit problem, the approach was applied to study nucleon transfer in heavy ion reactions. A new method to extract transfer probabilities is introduced. It is demonstrated that pairing significantly increases the two-nucleon transfer probability. (author) [fr

  15. Search for chargino pair production and top squark pair production in final states with two leptons in proton-proton collisions at $\\sqrt{s}=13~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2018-01-01

    A search for pair production of supersymmetric particles in events with two leptons (electrons or muons) and missing transverse momentum is reported. The data sample corresponds to $35.9~\\mathrm{fb}^{-1}$ of proton-proton collisions at $\\sqrt{s}=13~\\mathrm{TeV}$ collected by the CMS detector during the 2016 data taking period at the CERN LHC. The search targets two signal models for chargino and top squark pair production. No significant deviation is observed from the predicted background. The results are interpreted in terms of several simplified models assuming R-parity conservation and with the neutralino as the lightest supersymmetric particle. When the chargino is assumed to undergo a cascade decay through sleptons, exclusion limits at $95\\%$ confidence level are set on the mass of the chargino up to 800 GeV and on the mass of the neutralino up to 320 GeV. For the top squark production, the search focuses on models with a small mass difference between the top squark and the lightest neutralino. When the ...

  16. MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM

    International Nuclear Information System (INIS)

    Smith, Richard Whiting

    2003-01-01

    Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades

  17. Musa paradisiaca inflorescence induces human colon cancer cell death by modulating cascades of transcriptional events.

    Science.gov (United States)

    K B, Arun; Madhavan, Aravind; T R, Reshmitha; Thomas, Sithara; Nisha, P

    2018-01-24

    Colorectal cancer (CRC) is one of the leading causes of cancer death, and diet plays an important role in the etiology of CRC. Traditional medical practitioners in many South Asian countries use plantain inflorescence to treat various gastro-intestinal ailments. The aim of the present study was to investigate the anticancer effects of extracts of inflorescence of Musa paradisiaca against HT29 human colon cancer cells and elucidate the mechanism of these effects by studying the modulation of cascades of transcriptional events. In vitro assays depicted that methanol extract of Musa paradisiaca inflorescence (PIMET) was cytotoxic to HT29 cells. PIMET induced DNA damage and arrested the cell cycle at the G2/M phase. Expression studies showed that PIMET pretreatment upregulates pro-apoptotic Bcl2 and downregulates anti-apoptotic Bax proteins. Different assays showed that the deregulation of pro/antiapoptotic proteins reduces the mitochondrial membrane potential and ATP production; moreover, it enhances cytochrome c release, which triggers the apoptotic pathway, and further cleaves caspase 3 and PARP proteins, resulting in apoptosis. Changes in the protein expression profile of HT29 cells after PIMET treatment were analyzed using mass-spectrometry-based proteomics. PIMET treatment significantly altered the expression of HT29 protein; interestingly, X-linked inhibitor of apoptosis protein was also downregulated. Alteration in the expression of this protein has significant effects, leading to HT29 cell death.

  18. Contact spectroscopy on S/TI/N devices: Induced pairing on the surface of a topological insulator

    Science.gov (United States)

    Stehno, Martin P.; Ngabonziza, Prosper; Snelder, Marieke; Myoren, Hiroaki; Pan, Yu; de Visser, Anne; Huang, Y.; Golden, Mark S.; Brinkman, Alexander

    Translating concepts of topological quantum computation into applications requires fine-tuning of parameters in the model Hamiltonians of candidate systems. Such level of control has proven difficult to achieve in devices where superconductors are used to induce pairing in topological insulator (TI) materials. While local probe experiments have indicated features of p-wave superconducting correlations in TIs (as suggested by theory), results on extended devices often remain ambiguous. We present contact spectroscopy data on superconductor/topological insulator/normal metal devices with bulk-insulating TI material and compare these with bulk conducting samples. We discuss the magnitude of the induced gap and unusual features in the conductance traces of the bulk-insulating samples that may suggest the presence of p-wave type correlations in the TI. This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).

  19. Stochastic background of atmospheric cascades

    International Nuclear Information System (INIS)

    Wilk, G.; Wlodarczyk, Z.

    1993-01-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions

  20. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  1. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  2. Geothermal segmentation of the Cascade Range in the USA

    Science.gov (United States)

    Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.

    1990-01-01

    Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.

  3. Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation.

    Science.gov (United States)

    Onishi, Hideaki; Otsuru, Naofumi; Kojima, Sho; Miyaguchi, Shota; Saito, Kei; Inukai, Yasuto; Yamashiro, Koya; Sato, Daisuke; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2018-05-08

    Paired-pulse depression (PPD) has been widely used to investigate the functional profiles of somatosensory cortical inhibition. However, PPD induced by somatosensory stimulation is variable, and the reasons for between- and within-subject PPD variability remains unclear. Therefore, the purpose of this study was to clarify the factors influencing PPD variability induced by somatosensory stimulation. The study participants were 19 healthy volunteers. First, we investigated the relationship between the PPD ratio of each component (N20m, P35m, and P60m) of the somatosensory magnetic field, and the alpha, beta, and gamma band changes in power [event-related desynchronization (ERD) and event-related synchronization (ERS)] induced by median nerve stimulation. Second, because brain-derived neurotrophic factor (BDNF) gene polymorphisms reportedly influence the PPD ratio, we assessed whether BDNF genotype influences PPD ratio variability. Finally, we evaluated the test-retest reliability of PPD and the alpha, beta, and gamma ERD/ERS induced by somatosensory stimulation. Significant positive correlations were observed between the P60m_PPD ratio and beta power change, and the P60m_PPD ratio was significantly smaller for the beta ERD group than for the beta ERS group. P35m_PPD was found to be robust and highly reproducible; however, P60m_PPD reproducibility was poor. In addition, the ICC values for alpha, beta, and gamma ERD/ERS were 0.680, 0.760, and 0.552 respectively. These results suggest that the variability of PPD for the P60m deflection may be influenced by the ERD/ERS magnitude, which is induced by median nerve stimulation.

  4. Study of the radiation around a high energy accelerator. Production and scattering of cascade neutrons; Etude du rayonnement autour d'un accelerateur de haute energie. Production et diffusion des neutrons de cascade

    Energy Technology Data Exchange (ETDEWEB)

    Tardy-Joubert, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-03-01

    The cascade induced in protective screens by a 3 GeV proton beam has been studied using activation detectors; the results have been compared with the cosmic neutron spectrum in the atmosphere. A study of the secondary neutron spectrum has made, it possible to obtain the distribution of the dose and to determine the maximum permissible fluxes expressed in terms of the energy, taking into account all the daughter products present. The dose calculated has been checked experimentally. The proportion of cascade neutrons has been studied using the idea of an imaginary source. The parameters which have to be introduced into the general equations to take into account scattering in the the air have been determined. (author) [French] La cascade induite dans les ecrans de protection par un faisceau de protons de 3 GeV a ete etudiee au moyen de detecteurs a activation et la comparaison a ete faite avec le spectre des neutrons cosmiques dans l'atmosphere. L'etude du spectre des neutrons secondaires a permis de preciser la distribution de la dose et de determiner les flux maximaux admissibles qui sont exprimes en fonction de l'energie, en tenant compte de l'ensemble des descendants presents. La dose calculee a ete verifiee experimentalement. La propagation des neutrons de cascade a ete etudiee en introduisant la notion de source fictive. Les parametres a introduire dans les equations generales pour rendre compte de la diffusion dans l'air ont ete determines. (auteur)

  5. Cascade processes in kaonic and muonic atoms

    International Nuclear Information System (INIS)

    Faifman, M.P.; Men'shikov, L.I.

    2003-01-01

    Cascade processes in exotic (kaonic and muonic) hydrogen/deuterium have been studied with the quantum-classical Monte Carlo code (QCMC) developed for 'ab initio' - calculations. It has been shown that the majority of kaonic hydrogen atoms during cascade are accelerated to high energies E ∼ 100 eV, which leads to a much lower value for the calculated yields Y of x-rays than predicted by the 'standard cascade model'. The modified QCMC scheme has been applied to the study of the cascade in μp and μd muonic atoms. A comparison of the calculated yields for K-series x-rays with experimental data directly indicates that the molecular structure of the hydrogen target and new types of non-radiative transitions are essential for the light muonic atoms, while they are negligible for heavy (kaonic) atoms. These processes have been considered and estimates of their probabilities are presented. (author)

  6. Color vision predicts processing modes of goal activation during action cascading.

    Science.gov (United States)

    Jongkees, Bryant J; Steenbergen, Laura; Colzato, Lorenza S

    2017-09-01

    One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identifying Vulnerable Nodes of Complex Networks in Cascading Failures Induced by Node-Based Attacks

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2013-01-01

    Full Text Available In the research on network security, distinguishing the vulnerable components of networks is very important for protecting infrastructures systems. Here, we probe how to identify the vulnerable nodes of complex networks in cascading failures, which was ignored before. Concerned with random attack (RA and highest load attack (HL on nodes, we model cascading dynamics of complex networks. Then, we introduce four kinds of weighting methods to characterize the nodes of networks including Barabási-Albert scale-free networks (SF, Watts-Strogatz small-world networks (WS, Erdos-Renyi random networks (ER, and two real-world networks. The simulations show that, for SF networks under HL attack, the nodes with small value of the fourth kind of weight are the most vulnerable and the ones with small value of the third weight are also vulnerable. Also, the real-world autonomous system with power-law distribution verifies these findings. Moreover, for WS and ER networks under both RA and HL attack, when the nodes have low tolerant ability, the ones with small value of the fourth kind of weight are more vulnerable and also the ones with high degree are easier to break down. The results give us important theoretical basis for digging the potential safety loophole and making protection strategy.

  8. Analysis of antikaon-induced cascade production

    Directory of Open Access Journals (Sweden)

    Jackson Benjamin C.

    2014-01-01

    Full Text Available In preparation for forthcoming experiments on multi-strangeness baryon production at JPARC, we analyze the general features of Ξ production in antikaon-induced reactions. A simple model is applied to this reaction; problems with retaining s-u symmetry are addressed with a generalized contact term. Existing data are reproduced and any hyperon resonance features are extracted.

  9. Rescuing Ecosystems from Extinction Cascades

    Science.gov (United States)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  10. A simple model of global cascades on random networks

    Science.gov (United States)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  11. Coherent pair creation from beam-beam interaction

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1989-09-01

    It has recently been recognized that in future linear colliders, there is a finite probability that the beamstrahlung photons will turn into e + e - pairs induced by the same beam-beam field, and this would potentially cause background problems. In this paper, we first review the probability of such a coherent pair creation process. It is seen that the constraint on the beamstrahlung parameter, Υ, is tight of these coherent pairs to be totally suppressed. We then point out that there exists a minimum energy for the pair-created particles, which scales as ∼1/5Υ. When combining this condition with the deflection angle for the low-energy particles, the constraint on the allowable Υ value is much relaxed. Finally, we calculate the effective cross section for producing the weak bosons by the low-energy e + e - pairs. It is shown that these cross sections are substantial for Υ > 1. We suggest that this effect can help to autoscan the particle spectrum in the high energy frontier. 10 refs., 2 figs

  12. Basic characteristics of a low uranium enrichment cascade by centrifugation, (2)

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi

    1975-01-01

    The theory for a cascade of centrifuges described in the preceding report of the same general title is further developed. First, equations describing the distributions of the flow and the mole concentration are derived from the material balance relations for a square cascade. Corresponding equations are next obtained to cover a squared-off cascade consisting of a series of square cascades. A computer program is outlined which makes it possible to obtain the shape of the most efficient squared-off cascade. The efficiency of the current form of squared-off centrifuge cascade with reflux pipes is found to be lower than obtainable with gaseous diffusion. The efficiency can be improved by the adoption of a tapered squared-off cascade with centrifuges provided with eccentric cuts to take the place of reflux pipes. The dynamic characteristics are also discussed. Analysis of the start-up behavior reveals that the equilibrium time of the centrifuge cascade is much shorter than for a coresponding gaseous diffusion cascade, and that the mole concentration of the product rapidly rises to attain steady state condition. It is also found that even when the feed flow rate fluctuates, the mole concentration of the product is relatively stable. The effect of a centrifuge failure in the cascade is examined. The optimum mole concentration for the waste effluent discarded from the cascade is calculated from the viewpoint of cost. (auth.)

  13. Odd-frequency pairing in superconducting heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, A A [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Tanaka, Y [Department of Applied Physics, Nagoya University, Nagoya, 464-8603 (Japan); Asano, Y [Department of Applied Physics, Hokkaido University, Sapporo 060-8628 (Japan); Tanuma, Y [Institute of Physics, Kanagawa University, 3-7-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686 (Japan)], E-mail: a.golubov@utwente.nl

    2009-04-22

    We review the theory of odd-frequency pairing in superconducting heterostructures, where an odd-frequency pairing component is induced near interfaces. A general description of the superconducting proximity effect in a normal metal or a ferromagnet attached to an unconventional superconductor (S) is given within quasiclassical kinetic theory for various types of symmetry state in S. Various possible symmetry classes in a superconductor are considered which are consistent with the Pauli principle: even-frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state. As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity systems and its relation to the classical McMillan-Rowell oscillations.

  14. Molecular dynamics studies of displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Diaz de la Rubia, T.

    1990-02-01

    Molecular-dynamics simulations of cascades in Cu and Ni with primary-knock-on energies up to 5 keV and lattice temperatures in the range 0 K--700 K are described. Interatomic forces were represented by either the Gibson II (Cu) or Johnson-Erginsoy (Ni) potentials in most of this work, although some simulations using ''Embedded Atom Method'' potentials, e.g., for threshold events in Ni 3 Al, are also presented. The results indicate that the primary state of damage produced by displacement cascades is controlled by two phenomena, replacement collision sequences during the collisional phase of the cascade and local melting during the thermal spike. As expected, the collisional phase is rather similar in Cu and Ni, however, the thermal spike is of longer duration and has a more pronounced influence in Cu than Ni. When the ambient temperature of the lattice is increased, the melt zones are observed to both increase in size and cool more slowly. This has the effect of reducing defect production and enhancing atomic mixing and disordering. The implications of these results for defect production, cascade collapse, atomic disordering will be discussed. 34 refs., 7 figs., 2 tabs

  15. Forecasting Social Unrest Using Activity Cascades.

    Science.gov (United States)

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  16. Forecasting Social Unrest Using Activity Cascades.

    Directory of Open Access Journals (Sweden)

    Jose Cadena

    Full Text Available Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011 to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  17. Single-flavour and two-flavour pairing in three-flavour quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Cowan, Greig A

    2006-01-01

    We study single-flavour quark pairing ('self-pairing') in colour-superconducting phases of quark matter, paying particular attention to the difference between scenarios where all three flavours undergo single-flavour pairing, and scenarios where two flavours pair with each other ('2SC' pairing) and the remaining flavour self-pairs. We perform our calculations in the mean-field approximation using a pointlike four-fermion interaction based on single gluon exchange. We confirm the result from previous weakly-coupled-QCD calculations that when all three flavours self-pair the favoured channel for each is colour-spin-locked (CSL) pseudoisotropic pairing. However, we find that when the up and down quarks undergo 2SC pairing, they induce a colour chemical potential that disfavours the CSL phase. The strange quarks then self-pair in a 'polar' channel that breaks rotational invariance, although the CSL phase may survive in a narrow range of densities

  18. Investigation of cascade regions of damage in alpha iron by a computer simulation method (crystal model). Issledovaniye kaskadnykh oblastey povrezhdeniya v. cap alpha. -zheleze metodom mashinnogo modelirovaniya (kristallicheskaya model)

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyan, Yu R

    1974-01-01

    A SPIKE program is used to study regions of structural damage that arise as a result of cascades of atomic collisions in single-crystal alpha iron. The model of the cascade process realized in the program uses a pair collision approximation and accounts for the influence of the crystal structure of the material. The following characteristics of regions of damage are found as a function of the energy of the primary knock-on atom: volume of the region, displacement effectiveness, size distribution of complexes of vacancies and injections. The results are compared with data in the literature. An appendix gives the text of the SPIKE program in FORTRAN.

  19. Quantum Cascade Lasers Modulation and Applications

    Science.gov (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  20. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  1. Cascades on a stochastic pulse-coupled network

    Science.gov (United States)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  2. Resonant neutron-induced atomic displacements

    Energy Technology Data Exchange (ETDEWEB)

    Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com

    2017-05-01

    Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  3. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  4. Framework for cascade size calculations on random networks

    Science.gov (United States)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  5. Developmental cascade effects of the New Beginnings Program on adolescent adaptation outcomes.

    Science.gov (United States)

    McClain, Darya Bonds; Wolchik, Sharlene A; Winslow, Emily; Tein, Jenn-Yun; Sandler, Irwin N; Millsap, Roger E

    2010-11-01

    Using data from a 6-year longitudinal follow-up sample of 240 youth who participated in a randomized experimental trial of a preventive intervention for divorced families with children ages 9-12, the current study tested alternative cascading pathways by which the intervention decreased symptoms of internalizing disorders, symptoms of externalizing disorders, substance use, and risky sexual behavior and increased self-esteem and academic performance in mid- to late adolescence (15-19 years old). It was hypothesized that the impact of the program on adolescent adaptation outcomes would be explained by progressive associations between program-induced changes in parenting and youth adaptation outcomes. The results supported a cascading model of program effects in which the program was related to increased mother-child relationship quality that was related to subsequent decreases in child internalizing problems, which then was related to subsequent increases in self-esteem and decreases in symptoms of internalizing disorders in adolescence. The results were also consistent with a model in which the program increased maternal effective discipline that was related to decreased child externalizing problems, which was related to subsequent decreases in symptoms of externalizing disorders, less substance use, and better academic performance in adolescence. There were no significant differences in the model based on level of baseline risk or adolescent gender. These results provide support for a cascading pathways model of child and adolescent development.

  6. Increasing sensitivity of MOS dosemeters in cascade connection

    International Nuclear Information System (INIS)

    Vychytil, F.; Cechak, T.; Gerndt, J.; Petr, I.

    1978-01-01

    The possibilities of increasing the sensitivity of MOS transistors in their cascade connection were studied theoretically and experimentally. The measurements confirmed the presumption that the instability of cascade-connected MOS transistors increased with the square of the number of transistors in the system. This allows systems to be formed with different sensitivity to ionizing radiation by encasing 10 to 10 4 transistors connected in cascade, which is technologically feasible. The procedure is also acceptable from the point of view of cost. (Z.M.)

  7. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  8. On the trajectories of CRL...LR...R orbits, their period-doubling cascades and saddle-node bifurcation cascades

    International Nuclear Information System (INIS)

    Cerrada, Lucia; San Martin, Jesus

    2011-01-01

    In this Letter, it is shown that from a two region partition of the phase space of a one-dimensional dynamical system, a p-region partition can be obtained for the CRL...LR...R orbits. That is, permutations associated with symbolic sequences are obtained. As a consequence, the trajectory in phase space is directly deduced from permutation. From this permutation other permutations associated with period-doubling and saddle-node bifurcation cascades are derived, as well as other composite permutations. - Research highlights: → Symbolic sequences are the usual topological approach to dynamical systems. → Permutations bear more physical information than symbolic sequences. → Period-doubling cascade permutations associated with original sequences are obtained. → Saddle-node cascade permutations associated with original sequences are obtained. → Composite permutations are derived.

  9. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  10. Search for tau-neutrino induced cascades in the IceCube detector

    Energy Technology Data Exchange (ETDEWEB)

    Usner, Marcel; Kowalski, Marek [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory at the South Pole is a Cherenkov detector built to measure high-energy neutrinos from cosmic sources. A total volume of about one cubic kilometer of the Antarctic ice is instrumented with 5160 optical modules. A tau lepton is created in the charged current interaction of a tau neutrino with an ice nucleus. The Double Bang signature links two subsequent cascades from the hadronic interaction and the tau decay within the detection volume. It can only be resolved at the highest energies around 1 PeV where the decay length of the tau is about 50 m. The work is focused on optimizing reconstruction methods of Double Bang events incorporating the latest ice model. The goal is to measure a flavor ratio that, for the first time, is sensitive to tau neutrinos.

  11. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  12. A Novel Concept for Three-Phase Cascaded Multilevel Inverter Topologies

    Directory of Open Access Journals (Sweden)

    Md Mubashwar Hasan

    2018-01-01

    Full Text Available One of the key challenges in multilevel inverters (MLIs design is to reduce the number of components used in the implementation while maximising the number of output voltage levels. This paper proposes a new concept that facilitates a device count reduction technique of existing cascaded MLIs. Moreover, the proposed concept can be utilised to extend existing single phase cascaded MLI topologies to three-phase structure without tripling the number of semiconductor components and input dc-supplies as per the current practice. The new generalized concept involves two stages; namely, cascaded stage and phase generator stage. The phase generator stage is a combination of a conventional three-phase two level inverter and three bi-directional switches while the cascaded stage can employ any existing cascaded topology. A laboratory prototype model is built and extensive experimental analyses are conducted to validate the feasibility of the proposed cascaded MLI concept.

  13. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    Fustik, Vangel; Kiteva, Nevenka

    2006-01-01

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  14. On calculating of squared-off cascades for multicomponent isotope separation

    International Nuclear Information System (INIS)

    Potapov, D.V.; Soulaberidze, G.A.; Chuzhinov, V.A.; Filipppov, I.G.

    1996-01-01

    Calculation on a cascade of specified configuration (specified number of stages and flows in the enriching and stripping sections of the cascade) is performed with two approaches. The first one, which is advisable to use for for calculation of so-called 'long' cascades (for example, squared-off cascades of distillation columns), is based on either analytical transitions enabling the problem to be reduced to to the algebraic transcendental equations, or based on the direct integration of the equations describing the cascade separation process, with the subsequent iteration on the boundary conditions and the balance equations. This approach also involves the orthogonal-collocation technique consisting in the approximation of the differential equations solution by an Lagrangian polynomial interpolation

  15. Sample Selection for Training Cascade Detectors.

    Science.gov (United States)

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  16. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  17. Minimum Entropy-Based Cascade Control for Governing Hydroelectric Turbines

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-06-01

    Full Text Available In this paper, an improved cascade control strategy is presented for hydroturbine speed governors. Different from traditional proportional-integral-derivative (PID control and model predictive control (MPC strategies, the performance index of the outer controller is constructed by integrating the entropy and mean value of the tracking error with the constraints on control energy. The inner controller is implemented by a proportional controller. Compared with the conventional PID-P and MPC-P cascade control methods, the proposed cascade control strategy can effectively decrease fluctuations of hydro-turbine speed under non-Gaussian disturbance conditions in practical hydropower plants. Simulation results show the advantages of the proposed cascade control method.

  18. Sodium Phenylbutyrate and Edaravone Abrogate Chronic Restraint Stress-Induced Behavioral Deficits: Implication of Oxido-Nitrosative, Endoplasmic Reticulum Stress Cascade, and Neuroinflammation.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Dwivedi, Shubham; Gurjar, Satendra Singh; Hussain, Md Iftikar; Borah, Probodh; Lahkar, Mangala

    2017-01-01

    Chronic stress exposure can produce deleterious effects on the hippocampus (HC) which eventually leads to cognitive impairment and depression. Endoplasmic reticulum (ER) stress has been reported as one of the major culprits in the development of stress-induced cognitive impairment and depression. We investigated the neuroprotective efficacy of sodium phenylbutyrate (SPB), an ER stress inhibitor, and edaravone, a free radical scavenger, against chronic restraint stress (CRS)-induced cognitive deficits and anxiety- and depressive-like behavior in mice. Adult male Swiss albino mice were restrained for 6 h/day for 28 days and injected (i.p.) with SPB (40 and 120 mg/kg) or edaravone (3 and 10 mg/kg) for the last seven days. After stress cessation, the anxiety- and depressive-like behavior along with spatial learning and memory were examined. Furthermore, oxido-nitrosative stress, proinflammatory cytokines, and gene expression level of ER stress-related genes were assessed in HC and prefrontal cortex (PFC). CRS-exposed mice showed anxiety- and depressive-like behavior, which was significantly improved by SPB and edaravone treatment. In addition, SPB and edaravone treatment significantly alleviated CRS-induced spatial learning and memory impairment. Furthermore, CRS-evoked oxido-nitrosative stress, neuroinflammation, and depletion of Brain-derived neurotrophic factor were significantly ameliorated by SPB and edaravone treatment. We found significant up-regulation of ER stress-related genes in both HC and PFC regions, which were suppressed by SPB and edaravone treatment in CRS mice. Our study provides evidence that SPB and edaravone exerted neuroprotective effects on CRS-induced cognitive deficits and anxiety- and depressive-like behavior, which is possibly coupled with inhibition of oxido-nitrosative stress, neuroinflammation, and ER stress cascade.

  19. PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions

    International Nuclear Information System (INIS)

    Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.

    1997-01-01

    PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, π + , π 0 , and π - for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model

  20. Space-time evolution of electron cascades in diamond

    International Nuclear Information System (INIS)

    Ziaja, Beata; Szoeke, Abraham; Spoel, David van der; Hajdu, Janos

    2002-01-01

    The impact of a primary electron initiates a cascade of secondary electrons in solids, and these cascades play a significant role in the dynamics of ionization. Here we describe model calculations to follow the spatiotemporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E∼250 eV. This energy is similar to the energy of an Auger electron from carbon. Two limiting cases were considered: the case in which electrons transmit energy to the lattice, and the case where no such energy transfer is permitted. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (∼5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud, and it increases exponentially with the radial size of the cascade. This means that the long-range Coulomb field is not shielded within this cloud, and the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E∼250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. At 10 fs the cascade has a maximal radius of ∼70 A, and is already dominated by low-energy electrons

  1. Energy cascading in the beat-wave accelerator

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Batha, S.H.

    1987-01-01

    A review is given of energy cascading in the beat-wave accelerator. The properties of the electromagnetic cascade and the corresponding plasma-wave evolution are well understood within the framework of an approximate analytic model. Based on this model, idealized laser-plasma coupling efficiencies of the order of 10% do not seem unreasonable. 28 refs

  2. Simulation of short-term annealing of displacement cascades in FCC metals

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Doran, D.G.; Schwartz, D.M.

    1980-01-01

    Computer models have been developed for the simulation of high energy displacement cascades. The objective is the generation of defect production functions for use in correlation analysis of radiation effects in fusion reactor materials. In particular, the stochastic cascade annealing simulation code SCAS has been developed and used to model the short-term annealing behavior of simulated cascades in FCC metals. The code is fast enough to make annealing of high energy cascades practical. Sets of cascades from 5 keV to 100 keV in copper were generated by the binary collision code MARLOWE

  3. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade.

    Science.gov (United States)

    Wang, Chen; He, Xiaowen; Li, Yuzhen; Wang, Lijun; Guo, Xulei; Guo, Xingqi

    2017-11-02

    Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  4. Optimization of the cascade with gas centrifuges for uranium enrichment

    International Nuclear Information System (INIS)

    Ozaki, N.; Harada, I.

    1976-01-01

    Computer programs to optimize the step and tapered-step cascades with gas centrifuges are developed. The 'Complex Method', one of the direct search method, is employed to find the optimum of the nonlinear function of several variables within a constrained region. The separation characteristics of the optimized step and tapered-step cascades are discussed in comparison with that of the ideal cascade. The local optima of the cascade profile, the convergence of the object function, and the stopping criterion for the optimization trial are also discussed. (author)

  5. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  6. A period-doubling cascade precedes chaos for planar maps.

    Science.gov (United States)

    Sander, Evelyn; Yorke, James A

    2013-09-01

    A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.

  7. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-Il Kang

    Full Text Available Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1 induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR, M1 and M2 muscarinic (mAChR or GABAergic A (GABAAR receptors was performed during the training session and visual evoked potentials (VEPs were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD, suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by n

  8. Congestion and cascades in payment systems

    Science.gov (United States)

    Beyeler, Walter E.; Glass, Robert J.; Bech, Morten L.; Soramäki, Kimmo

    2007-10-01

    We develop a parsimonious model of the interbank payment system. The model incorporates an endogenous instruction arrival process, a scale-free topology of payments between banks, a fixed total liquidity which limits banks’ capacity to process arriving instructions, and a global market that distributes liquidity. We find that at low liquidity the system becomes congested and payment settlement loses correlation with payment instruction arrival, becoming coupled across the network. The onset of congestion is evidently related to the relative values of three characteristic times: the time for banks’ net position to return to 0, the time for a bank to exhaust its liquidity endowment, and the liquidity market relaxation time. In the congested regime settlement takes place in cascades having a characteristic length scale. A global liquidity market substantially attenuates congestion, requiring only a small fraction of the payment-induced liquidity flow to achieve strong beneficial effects.

  9. Sample Selection for Training Cascade Detectors.

    Directory of Open Access Journals (Sweden)

    Noelia Vállez

    Full Text Available Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  10. Multilevel Inverter by Cascading Industrial VSI

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim

    2002-01-01

    In this paper the modularity concept applied to medium-voltage adjustable speed drives is addressed. First, the single-phase cascaded voltage-source inverter that uses series connection of IGBT H-bridge modules with isolated dc-buses is presented. Next, a novel three-phase cascaded voltage......-source inverter that uses three IGBT triphase inverter modules along with an output transformer to obtain a 3 p.u. multilevel output voltage is introduced. The system yields in high-quality multistep voltage with up to 4 levels and low dv/dt, balanced operation of the inverter modules, each supplying a third...... of the motor rated kVA. The concept of using cascaded inverters is further extended to a new modular motor-modular inverter system where the motor winding connections are reconnected into several three-phase groups, either six-lead or 12-lead connection according to the voltage level, each powered...

  11. Cascading Generative Adversarial Networks for Targeted

    KAUST Repository

    Hamdi, Abdullah

    2018-01-01

    Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.

  12. Cascading Generative Adversarial Networks for Targeted

    KAUST Repository

    Hamdi, Abdullah

    2018-04-09

    Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.

  13. Establishment and evaluation of operation function model for cascade hydropower station

    OpenAIRE

    Chang-ming Ji; Ting Zhou; Hai-tao Huang

    2010-01-01

    Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hy...

  14. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    R.M. Banin

    2014-09-01

    Full Text Available Ginkgo biloba extract (GbE has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1, protein tyrosine phosphatase 1B (PTP-1B, and protein kinase B (Akt, as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD or a normal fat diet (NFD for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V, and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb. NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  15. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    International Nuclear Information System (INIS)

    Banin, R.M.; Hirata, B.K.S.; Andrade, I.S.; Zemdegs, J.C.S.; Clemente, A.P.G.; Dornellas, A.P.S.; Boldarine, V.T.; Estadella, D.; Albuquerque, K.T.; Oyama, L.M.; Ribeiro, E.B.; Telles, M.M.

    2014-01-01

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment

  16. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Banin, R. M.; Hirata, B. K.S. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil); Andrade, I. S.; Zemdegs, J. C.S. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Clemente, A. P.G. [Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL (Brazil); Dornellas, A. P.S.; Boldarine, V. T. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Estadella, D. [Departamento de Biociências, Universidade Federal de São Paulo, Baixada Santista, SP (Brazil); Albuquerque, K. T. [Curso de Nutrição, Universidade Federal do Rio de Janeiro, Macaé, RJ (Brazil); Oyama, L. M.; Ribeiro, E. B. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Telles, M. M. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil)

    2014-07-25

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  17. Inhomogeneous ensembles of radical pairs in chemical compasses

    Science.gov (United States)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  18. Effects of Ion Beam Irradiation on Nanoscale InOx Cooper-Pair Insulators

    Directory of Open Access Journals (Sweden)

    Srdjan Milosavljević

    2013-01-01

    Full Text Available This paper examines the effects of irradiating indium oxide films of nanoscale thickness by ion beams, when these films are in the Cooper-pair insulator state. Radiation effects are predicted on the basis of Monte Carlo simulations of ion transport. Results of numerical experiments are interpreted within the theoretical model of a Cooper-pair insulator. The study suggests that radiation-induced changes in InOx films exposed to ion beams could significantly alter their current-voltage characteristics and that a transition to a metallic state is possible, due to radiation-induced perturbation of the fine-tuned granular structure. Furthermore, incident and displaced ions can break up enough Cooper pairs in InOx films to cause dissolution of this specific insulating state.

  19. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar, E-mail: giridhar.nandipati@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Setyawan, Wahyu; Heinisch, Howard L. [Pacific Northwest National Laboratory, Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Laboratory, Richland, WA (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  20. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  1. Sign epistasis caused by hierarchy within signalling cascades.

    Science.gov (United States)

    Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J

    2018-04-13

    Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.

  2. Matched pairs approach to set theoretic solutions of the Yang-Baxter equation

    International Nuclear Information System (INIS)

    Gateva-Ivanova, T.; Majid, S.

    2005-08-01

    We study set-theoretic solutions (X,r) of the Yang-Baxter equations on a set X in terms of the induced left and right actions of X on itself. We give a characterization of involutive square-free solutions in terms of cyclicity conditions. We characterise general solutions in terms of an induced matched pair of unital semigroups S(X,r) and construct (S,r S ) from the matched pair. Finally, we study extensions of solutions in terms of matched pairs of their associated semigroups. We also prove several general results about matched pairs of unital semigroups of the required type, including iterated products S bowtie S bowtie S underlying the proof that r S is a solution, and extensions (S bowtie T, r Sb owtie T ). Examples include a general 'double' construction (S bowtie S,r Sb owtie S ) and some concrete extensions, their actions and graphs based on small sets. (author)

  3. PIV-DCNN: cascaded deep convolutional neural networks for particle image velocimetry

    Science.gov (United States)

    Lee, Yong; Yang, Hua; Yin, Zhouping

    2017-12-01

    Velocity estimation (extracting the displacement vector information) from the particle image pairs is of critical importance for particle image velocimetry. This problem is mostly transformed into finding the sub-pixel peak in a correlation map. To address the original displacement extraction problem, we propose a different evaluation scheme (PIV-DCNN) with four-level regression deep convolutional neural networks. At each level, the networks are trained to predict a vector from two input image patches. The low-level network is skilled at large displacement estimation and the high- level networks are devoted to improving the accuracy. Outlier replacement and symmetric window offset operation glue the well- functioning networks in a cascaded manner. Through comparison with the standard PIV methods (one-pass cross-correlation method, three-pass window deformation), the practicability of the proposed PIV-DCNN is verified by the application to a diversity of synthetic and experimental PIV images.

  4. Criticality safety study of shutdown diffusion cascade coolers

    International Nuclear Information System (INIS)

    Paschal, L.S.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.

    1996-01-01

    Gaseous diffusion plants use cascade coolers in the production of highly enriched uranium (HEU) to remove heat from the enriched stream of UF 6 . The cascade coolers operate like shell and tube heat exchangers with the UF 6 on the shell side and Freon on the tube side. Recirculating cooling water (RCW) in condensers is used to cool the Freon. A criticality safety analysis was previously performed for cascade coolers during normal operation. The purpose of this paper is to evaluate several different hypothetical accidents regarding RCW ingress into the cooler to determine whether criticality safety concerns exist

  5. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades.

    Science.gov (United States)

    Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok

    2017-05-19

    Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.

  6. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  7. The flow analysis of supercavitating cascade by linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)

    1996-06-01

    In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.

  8. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    International Nuclear Information System (INIS)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-01

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases

  9. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha (China); Wu, Chuanlong [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Guangwang [Department of Orthopaedic Surgery, The Central Hospital of Xuzhou, Affiliated Hospital of Medical Collage of Southeast University, Xuzhou (China); Fan, Qiming; Tang, Tingting [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Dai, Kerong, E-mail: krdai@163.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  10. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  11. Influence of non-binary effects on intranuclear cascade method

    International Nuclear Information System (INIS)

    Gomes, E.H.C.

    1985-01-01

    The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt

  12. Cascade DNA nanomachine and exponential amplification biosensing.

    Science.gov (United States)

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A virtual component method in numerical computation of cascades for isotope separation

    International Nuclear Information System (INIS)

    Zeng Shi; Cheng Lu

    2014-01-01

    The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)

  14. Tunable signal processing in synthetic MAP kinase cascades.

    Science.gov (United States)

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Cascade statistics in the binary collision approximation and in full molecular dynamics

    International Nuclear Information System (INIS)

    Hou, M.; Pan, Z.Y.

    1995-01-01

    The Binary Collision Approximation (BCA) and Molecular Dynamics (MD) are used to simulate low energy atomic collision cascades in solids. Results are compared and discussed on the example of copper and gold self irradiation. For MD, long range N-body potentials are built, similar to those deduced from the second moment semi-empirical tight binding model. The pair interaction contribution is splined to a Moliere screened Coulomb potential at small separation distances. The BCA calculations are performed with the MARLOWE program, using the same Moliere potential as for MD, and modelling the N-body contribution by a binding of the atoms to their equilibrium lattice sites. The scattering integrals are estimated by means of a 4 points Gauss-Mehler quadrature. In MD, the NVT equations of motion are integrated with a constant time step of 2 fs. For the NVE cascade simulations, the Newton equations of motion are solved with a dynamically adjusted time step, kept lower than 2 fs. The influence of the time step on the simulated trajectories is discussed. The mean number of moving atoms with total energy above threshold values ranging from 1 to 100 eV is estimated as a function of time over 300 fs both with MARLOWE and by MD. This estimate is repeated for external primary energies ranging from 250 eV to 1 keV. In the case of copper, the BCA results are found to be in remarkable agreement with MD over about 200 fs cascade development, provided the size of the crystallite used in MD is sufficiently large in order to account for the early mechanical response of the close environment. This agreement between the two methods is found to be the best when the binding energy of the target atoms as modelled in the BCA is adjusted to a value close to the cohesive energy. In the case of gold, the agreement between BCA and MD is reasonable and the results suggest the need of an accurate modelling of linear collision sequences in the BCA. (orig.)

  16. THEORETICAL INVESTIGATION OF MICROSTRUCTURE EVOLUTION AND DEFORMATION OF ZIRCONIUM UNDER CASCADE DAMAGE CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Barashev, Alexander V [ORNL; Golubov, Stanislav I [ORNL; Stoller, Roger E [ORNL

    2012-06-01

    This work is based on our reaction-diffusion model of radiation growth of Zr-based materials proposed recently in [1]. In [1], the equations for the strain rates in unloaded pure crystal under cascade damage conditions of, e.g., neutron or heavy-ion irradiation were derived as functions of dislocation densities, which include contributions from dislocation loops, and spatial distribution of their Burgers vectors. The model takes into account the intra-cascade clustering of self-interstitial atoms and their one-dimensional diffusion; explains the growth stages, including the break-away growth of pre-annealed samples; and accounts for some striking observations, such as of negative strain in prismatic direction, and co-existence of vacancy- and interstitial-type prismatic loops. In this report, the change of dislocation densities due to accumulation of sessile dislocation loops is taken into account explicitly to investigate the dose dependence of radiation growth. The dose dependence of climb rates of dislocations is calculated, which is important for the climb-induced glide model of radiation creep. The results of fitting the model to available experimental data and some numerical calculations of the strain behavior of Zr for different initial dislocation structures are presented and discussed. The computer code RIMD-ZR.V1 (Radiation Induced Microstructure and Deformation of Zr) developed is described and attached to this report.

  17. Quantification of Radiation-induced DNA Damage following intracellular Auger-Cascades

    DEFF Research Database (Denmark)

    Fredericia, Nina Pil Møntegaard

    2017-01-01

    Purpose: The aim my PhD study and the topic of this thesis is to investigate the radiotoxicity and the Relative Biological effectiveness (RBE) of intracellular Auger cascades. A special focus is kept on obtaining reliable absorbed dose calculations and using matched dose rate profiles for the Auger......-values (SC-values). The work can be divided into three steps; Examination of the bio-kinetics of the Auger emitter 131Cs used in the study, calculations of the SC-values and finally the measurement of the RBE of intracellular 131Cs decays, through ƴH2AX and clonogenic cell survival assay. Methods: A series....../(Bq*Sec)/pL for HeLa nuclei and from 7.45*10-4 to 7.63 *10-4 Gy/(Bq*Sec)/pL for V79 nuclei. The SC-values were shown to be were very robust and almost independent of cellular and nuclear size. A RBE value of 1 was obtained for HeLa cells using ƴH2AX assays. RBE values of 4.5 ± 0.5 and 3.8 ± 0.8 were obtained for He...

  18. Cascade ICF power reactor

    International Nuclear Information System (INIS)

    Hogan, W.J.; Pitts, J.H.

    1986-01-01

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO 2 . The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor

  19. A cascading failure model for analyzing railway accident causation

    Science.gov (United States)

    Liu, Jin-Tao; Li, Ke-Ping

    2018-01-01

    In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.

  20. Cascade Structure of Digital Predistorter for Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    E. B. Solovyeva

    2015-12-01

    Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

  1. Increase of transient lower esophageal sphincter relaxation associated with cascade stomach

    Science.gov (United States)

    Kawada, Akiyo; Kusano, Motoyasu; Hosaka, Hiroko; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Kawamura, Osamu; Akiyama, Junichi; Yamada, Masanobu; Akuzawa, Masako

    2017-01-01

    We previously reported that cascade stomach was associated with reflux symptoms and esophagitis. Delayed gastric emptying has been believed to initiate transient lower esophageal sphincter relaxation (TLESR). We hypothesized that cascade stomach may be associated with frequent TLESR with delayed gastric emptying. Eleven subjects with cascade stomach and 11 subjects without cascade stomach were enrolled. Postprandial gastroesophageal manometry and gastric emptying using a continuous 13C breath system were measured simultaneously after a liquid test meal. TLESR events were counted in early period (0–60 min), late period (60–120 min), and total monitoring period. Three parameters of gastric emptying were calculated: the half emptying time, lag time, and gastric emptying coefficient. The median frequency of TLESR events in the cascade stomach and non-cascade stomach groups was 6.0 (median), 4.6 (interquartile range) vs 5.0, 3.0 in the early period, 5.0, 3.2 vs 3.0, 1.8 in the late period, and 10.0, 6.2 vs 8.0, 5.0 in the total monitoring period. TLESR events were significantly more frequent in the cascade stomach group during the late and total monitoring periods. In contrast, gastric emptying parameters showed no significant differences between the two groups. We concluded that TLESR events were significantly more frequent in persons with cascade stomach without delayed gastric emptying. PMID:28584403

  2. Carotenoid Biosynthetic Pathways Are Regulated by a Network of Multiple Cascades of Alternative Sigma Factors in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Rai, Ashutosh Kumar; Dubey, Ashutosh Prakash; Kumar, Santosh; Dutta, Debashis; Mishra, Mukti Nath; Singh, Bhupendra Narain; Tripathi, Anil Kumar

    2016-11-01

    Carotenoids constitute an important component of the defense system against photooxidative stress in bacteria. In Azospirillum brasilense Sp7, a nonphotosynthetic rhizobacterium, carotenoid synthesis is controlled by a pair of extracytoplasmic function sigma factors (RpoEs) and their cognate zinc-binding anti-sigma factors (ChrRs). Its genome harbors two copies of the gene encoding geranylgeranyl pyrophosphate synthase (CrtE), the first critical step in the carotenoid biosynthetic pathway in bacteria. Inactivation of each of two crtE paralogs found in A. brasilense caused reduction in carotenoid content, suggesting their involvement in carotenoid synthesis. However, the effect of crtE1 deletion was more pronounced than that of crtE2 deletion. Out of the five paralogs of rpoH in A. brasilense, overexpression of rpoH1 and rpoH2 enhanced carotenoid synthesis. Promoters of crtE2 and rpoH2 were found to be dependent on RpoH2 and RpoE1, respectively. Using a two-plasmid system in Escherichia coli, we have shown that the crtE2 gene of A. brasilense Sp7 is regulated by two cascades of sigma factors: one consisting of RpoE1and RpoH2 and the other consisting of RpoE2 and RpoH1. In addition, expression of crtE1 was upregulated indirectly by RpoE1 and RpoE2. This study shows, for the first time in any carotenoid-producing bacterium, that the regulation of carotenoid biosynthetic pathway involves a network of multiple cascades of alternative sigma factors. Carotenoids play a very important role in coping with photooxidative stress in prokaryotes and eukaryotes. Although extracytoplasmic function (ECF) sigma factors are known to directly regulate the expression of carotenoid biosynthetic genes in bacteria, regulation of carotenoid biosynthesis by one or multiple cascades of sigma factors had not been reported. This study provides the first evidence of the involvement of multiple cascades of sigma factors in the regulation of carotenoid synthesis in any bacterium by showing the

  3. A combination method for simulation of secondary knock-on atoms of boron carbide induced by neutron irradiation in SPRR-300

    International Nuclear Information System (INIS)

    Wu, Jian-Chun; Feng, Qi-Jie; Liu, Xian-Kun; Zhan, Chang-Yong; Zou, Yu; Liu, Yao-Guang

    2016-01-01

    A multiscale sequence of simulation should be used to predict properties of materials under irradiation. Binary collision theory and molecular dynamics (MDs) method are commonly used to characterize the displacement cascades induced by neutrons in a material. In order to reduce the clock time spent for the MD simulation of damages induced by high-energy primary knock-on atoms (PKAs), the damage zones were split into sub-cascade according to the sub-cascade formation criteria. Two well-known codes, Geant4 and TRIM, were used to simulate high-energy PKA-induced cascades in B_4C and then produce the secondary knock-on atom (SKA) energy spectrum. It has been found that both high-energy primary knock-on B and C atoms move a long range in the boron carbide. These atoms produce sub-cascades at the tip of trajectory. The energy received by most of the SKAs is <10 keV, which can be used as input to reduce the clock time spent for MD simulation.

  4. On peculiarities of the cascade γ decay of heavy nuclei

    International Nuclear Information System (INIS)

    Boneva, S.T.; Khitrov, V.A.; Popov, Yu.P.; Sukhovoj, A.M.; Vasil'eva, E.V.; Yazvitskij, Yu.S.

    1987-01-01

    Comparison of measured and calculated by statistical theory sums of two-quanta cascade intensities in compound-nuclei 163 ≤ A ≤ 183 points to the dependence of cascade intensity on the structure of initial and intermediate levels. The dependence of two-quanta cascade intensity sum on reduced neutron widths of compound states of even-even nuclei-targets of rare earth regions is detected. In 175 Yb and 179 Hf nuclei a considerable increase in the intensity of two-quanta cascades at the energy of their intermediate level in the range of the calculated position of one-quasiparticle states of the Saxon-Woods deformed potential is observed

  5. Designing the Cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The primary goal in designing inertial confinement fusion (ICF) reactors is to produce electrical power as inexpensively as possible, with minimum activation and without compromising safety. This paper discusses a method for designing the Cascade rotating ceramic-granule-blanket reactor (Pitts, 1985) and its associated power plant (Pitts and Maya, 1985). Although focus is on the cascade reactor, the design method and issues presented are applicable to most other ICF reactors

  6. Hadronic cascade processes

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.

    1977-01-01

    The analytical treatment of hadronic decay cascades within the framework of the statistical bootstrap model is demonstrated on the basis of a simple variant. Selected problems for a more comprehensive formulation of the model such as angular momentum conservation, quantum statistical effects, and the immediate applicability to particle production processes at high energies are discussed in detail

  7. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    Directory of Open Access Journals (Sweden)

    Gregory L. Eyink

    2018-02-01

    Full Text Available We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or “coarse-grained” solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy by pressure work and a cascade of negentropy to small scales. We derive “4/5th-law”-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the “Big Power Law in the Sky” observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  8. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    Science.gov (United States)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  9. Gradients in Catostomid assemblages along a reservoir cascade

    Science.gov (United States)

    Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.

    2017-01-01

    Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions

  10. Cascade reactor: granule fabrication processes

    International Nuclear Information System (INIS)

    Erlandson, O.D.; Winkler, E.O.; Maya, I.; Pitts, J.H.

    1985-01-01

    A key feature of Cascade is the granular blanket. Of the many blanket material options open to Cascade, fabrication of Li 2 O granules was felt to offer the greatest challenge. The authors explored available methods for initial Li 2 O granule fabrication. They identified three cost-effective processes for fabricating Li 2 O granules: the VSM drop-melt furnace process, which is based on melting and spheroidizing irregularly shaped Li 2 O feed granules; the LiOH process, which spheroidizes liquefied LiOH and uses GA Technologies' sphere-forming procedures; and the Li 2 CO 3 sol-gel process, used for making spherical fuel particles for the high-temperature gas-cooled reactor (HTGR). Each process is described below

  11. Orphan receptor GPR179 forms macromolecular complexes with components of metabotropic signaling cascade in retina ON-bipolar neurons.

    Science.gov (United States)

    Orlandi, Cesare; Cao, Yan; Martemyanov, Kirill A

    2013-10-29

    In the mammalian retina, synaptic transmission between light-excited rod photoreceptors and downstream ON-bipolar neurons is indispensable for dim vision, and disruption of this process leads to congenital stationary night blindness in human patients. The ON-bipolar neurons use the metabotropic signaling cascade, initiated by the mGluR6 receptor, to generate depolarizing responses to light-induced changes in neurotransmitter glutamate release from the photoreceptor axonal terminals. Evidence for the identity of the components involved in transducing these signals is growing rapidly. Recently, the orphan receptor, GPR179, a member of the G protein-coupled receptor (GPCR) superfamily, has been shown to be indispensable for the synaptic responses of ON-bipolar cells. In our study, we investigated the interaction of GPR179 with principle components of the signal transduction cascade. We used immunoprecipitation and proximity ligation assays in transfected cells and native retinas to characterize the protein-protein interactions involving GPR179. The influence of cascade components on GPR179 localization was examined through immunohistochemical staining of the retinas from genetic mouse models. We demonstrated that, in mouse retinas, GPR179 forms physical complexes with the main components of the metabotropic cascade, recruiting mGluR6, TRPM1, and the RGS proteins. Elimination of mGluR6 or RGS proteins, but not TRPM1, detrimentally affects postsynaptic targeting or GPR179 expression. These observations suggest that the mGluR6 signaling cascade is scaffolded as a macromolecular complex in which the interactions between the components ensure the optimal spatiotemporal characteristics of signal transduction.

  12. A simple method for potential flow simulation of cascades

    Indian Academy of Sciences (India)

    vortex panel method to simulate potential flow in cascades is presented. The cascade ... The fluid loading on the blades, such as the normal force and pitching moment, may ... of such discrete infinite array singularities along the blade surface.

  13. DECREASING OF WATER TROPHY IN CASCADE SYSTEMS, ON EXAMPLE OF THE SOŁA RIVER DAM CASCADE (SOUTHERN POLAND

    Directory of Open Access Journals (Sweden)

    Ewa Jachniak

    2014-10-01

    Full Text Available In this thesis the subject of water self-purification in cascade systems of water reservoirs was engaged. The results of hydrobiological research of three dam reservoirs (Tresna, Porąbka and Czaniec, creating the Soła river dam cascade were presented. The trophic status of these reservoirs was defined on the grounds of the concentration of chlorophyll a, biomass of phytoplankton and occurrence of indicating species of planktonic algae. The results of research indicated on decreasing of water trophy in the layout from the highest into the lowest reservoir of the cascade. The average concentrations of chlorophyll a amounted appropriately 19,99 μg·dm-3, 8,74 μg·dm-3 and 4,29 μg·dm-3, instead the average biomass of phytoplankton amounted appropriately 4,1 mg·dm-3, 3,4 mg·dm-3 and 0,1 mg·dm-3. The observed species of algae confirmed occurrence of differences between reservoirs. In Tresna reservoir more species of phytoplankton indicating for eutrophy were thrived, instead in Porąbka and Czaniec reservoirs the species occurring in oligomesotrophic water thrived. Water self-purification in the Soła river dam cascade expressed decreasing of their fertility is important for water management of the region, because the Czaniec reservoir fulfill a function of water-supply reservoir.

  14. Cascades for hydrogen isotope separation using metal hydrides

    International Nuclear Information System (INIS)

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes

  15. Cascades for hydrogen isotope separation using metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F B; Grzetic, V [Brookhaven National Lab., Upton, NY (USA)

    1983-02-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  16. A cascaded online uninterruptible power supply using reduced semiconductor

    DEFF Research Database (Denmark)

    Zhang, Lei; Loh, Poh Chiang; Gao, Feng

    2011-01-01

    A cascaded online uninterruptible power supply (UPS) is proposed here that uses 25% lesser semiconductor, as compared to its traditional H-bridge cascaded precedence. Unlike other component-saving configurations where compromises are unavoidable, almost no performance degradations and constraints...

  17. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA.

    Science.gov (United States)

    Zhang, Peng; Liu, Hui; Ma, Suzhen; Men, Shuai; Li, Qingzhou; Yang, Xin; Wang, Hongning; Zhang, Anyun

    2016-06-15

    The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade

    Directory of Open Access Journals (Sweden)

    J. Lepicovsky

    2004-01-01

    velocity.To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the by-product of an endwall restricted linear cascade.

  19. A two-level solvable model involving competing pairing interactions

    International Nuclear Information System (INIS)

    Dussel, G.G.; Maqueda, E.E.; Perazzo, R.P.J.; Evans, J.A.

    1986-01-01

    A model is considered consisting of nucleons moving in two non-degenerate l-shells and interacting through two pairing residual interactions with (S, T) = (1, 0) and (0, 1). These, together with the single particle hamiltonian induce mutually destructive correlations, giving rise to various collective pictures that can be discussed as representing a two-dimensional space of phases. The model is solved exactly using an O(8)xO(8) group theoretical classification scheme. The transfer of correlated pairs and quartets is also discussed. (orig.)

  20. Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

    Science.gov (United States)

    Wang, Haifang; Du, Jiulin; Yan, Jun

    2013-01-01

    In the study of circadian rhythms, it has been a puzzle how a limited number of circadian clock genes can control diverse aspects of physiology. Here we investigate circadian gene expression genome-wide using larval zebrafish as a model system. We made use of a spatial gene expression atlas to investigate the expression of circadian genes in various tissues and cell types. Comparison of genome-wide circadian gene expression data between zebrafish and mouse revealed a nearly anti-phase relationship and allowed us to detect novel evolutionarily conserved circadian genes in vertebrates. We identified three groups of zebrafish genes with distinct responses to light entrainment: fast light-induced genes, slow light-induced genes, and dark-induced genes. Our computational analysis of the circadian gene regulatory network revealed several transcription factors (TFs) involved in diverse aspects of circadian physiology through transcriptional cascade. Of these, microphthalmia-associated transcription factor a (mitfa), a dark-induced TF, mediates a circadian rhythm of melanin synthesis, which may be involved in zebrafish's adaptation to daily light cycling. Our study describes a systematic method to discover previously unidentified TFs involved in circadian physiology in complex organisms. PMID:23468616

  1. Collision cascades in HTSC [high temperature superconductors] as possible pinning centres

    International Nuclear Information System (INIS)

    Kirsanov, V.V.; Musin, N.N.; Roskin, D.G.; Shamarina, E.I.

    1993-01-01

    Computer simulation was used to study the development of collision cascades in monocrystals of YBa 2 Cu 3 O 7 , YBa 2 Cu 3 O 6.5 and YBa 2 Cu 3 O 6 which were produced by primary knock-on atoms (PKAs) during fast particle irradiation. Oxygen deficit was found to have an effect on the development of cascades in these phases, with a lowering of oxygen deficit decreasing cascade sizes. The type of PKA was observed to influence the geometry of a cascade. When heavy PKAs form a cascade, the oxygen sublattice is practically undisturbed, with very little disorder; while with oxygen ions as the PKA, the main displacements fall within the oxygen subsystem. In addition, the angular dependences of the displacement threshold energy for yttrium and barium ions are given. (Author)

  2. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades

    Directory of Open Access Journals (Sweden)

    Hanwool Lee

    2017-05-01

    Full Text Available Isorhynchophylline (Rhy is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase. This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4, MMP-9 (Matrix metallopeptidase-9, and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.

  3. Isorhynchophylline, a Potent Plant Alkaloid, Induces Apoptotic and Anti-Metastatic Effects in Human Hepatocellular Carcinoma Cells through the Modulation of Diverse Cell Signaling Cascades

    Science.gov (United States)

    Lee, Hanwool; Baek, Seung Ho; Lee, Jong Hyun; Kim, Chulwon; Ko, Jeong-Hyeon; Lee, Seok-Geun; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Yang, Woong Mo; Um, Jae-Young; Sethi, Gautam; Ahn, Kwang Seok

    2017-01-01

    Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells. PMID:28534824

  4. A divergent [5+2] cascade approach to bicyclo[3.2.1]octanes: facile synthesis of ent-kaurene and cedrene-type skeletons.

    Science.gov (United States)

    He, Chi; Bai, Zengbing; Hu, Jialei; Wang, Bingnan; Xie, Hujun; Yu, Lei; Ding, Hanfeng

    2017-07-25

    A solvent-dependent oxidative dearomatization-induced divergent [5+2] cascade approach to bicyclo[3.2.1]octanes was described. This novel protocol enables a facile synthesis of a series of diversely functionalized ent-kaurene and cedrene-type skeletons in good yields and excellent diastereoselectivities.

  5. Interband cascade light emitting devices based on type-II quantum wells

    International Nuclear Information System (INIS)

    Yang, Rui Q.; Lin, C.H.; Murry, S.J.

    1997-01-01

    The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 μm)

  6. Cascade Processes in Muonic Hydrogen Atoms

    International Nuclear Information System (INIS)

    Faifman, M. P.; Men'Shikov, L. I.

    2001-01-01

    The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.

  7. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...... and 3 K. Changing the number of MHPs, we optimized input parameters to achieve maximum heating powers. We have found that both maximum heating power and COP decrease together with number of heat pumps, but the TGs and the temperature span can be largely increased. References [1] M. Tahavori et al., “A...... be necessary, which is hardly achievable with a single MHP and such techniques as cascading are required. Series and parallel cascading increase the AMR span and heating power, respectively, but do not change TG. Therefore, the intermediate type of cascading was proposed with individual MHPs separately...

  8. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Kπ=1+ pairing interaction and moments of inertia of superdeformed rotational bands in atomic nuclei

    International Nuclear Information System (INIS)

    Hamamoto, I.; Nazarewicz, W.

    1994-01-01

    The effect of the pairing interaction coming from the rotationally induced K π =1 + pair-density on the nuclear moments of inertia is studied. It is pointed out that, contrary to the situation at normal deformations, the inclusion of the K π =1 + pairing may appreciably modify the frequency dependence of the moments of inertia at superdeformed shapes

  10. Asteroid clusters similar to asteroid pairs

    Science.gov (United States)

    Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.

    2018-04-01

    We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.

  11. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept.

    Science.gov (United States)

    Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  12. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept

    Science.gov (United States)

    Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  13. Hybrid Modulation Scheme for Cascaded H-Bridge Inverter Cells ...

    African Journals Online (AJOL)

    This work proposes a switching technique for cascaded H-Bridge (CHB) cells. Single carrier Sinusoidal PWM (SCSPWM) scheme is employed in the generation of the gating signals. A sequential switching and base PWM circulation schemes are presented for this fundamental cascaded multilevel inverter topology.

  14. Cascade in muonic and pionic atoms with Z = 1

    International Nuclear Information System (INIS)

    Markushin, V.E.

    1999-01-01

    Recent theoretical and experimental studies of the exotic atoms with Z = 1 are reviewed. An interplay between the atomic internal and external degrees of freedom is essential for a good description of the atomic cascade. The perspective of ab initio cascade calculations is outlined

  15. Climate Change and Baleen Whale Trophic Cascades in Greenland

    Science.gov (United States)

    2009-09-30

    DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Climate Change and Baleen Whale Trophic Cascades in Greenland...SUBTITLE Climate Change And Baleen Whale Trophic Cascades In Greenland 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  16. A multivariate approach to heavy flavour tagging with cascade training

    International Nuclear Information System (INIS)

    Bastos, J; Liu, Y

    2007-01-01

    This paper compares the performance of artificial neural networks and boosted decision trees, with and without cascade training, for tagging b-jets in a collider experiment. It is shown, using a Monte Carlo simulation of WH→lνq q-bar events, that for a b-tagging efficiency of 50%, the light jet rejection power given by boosted decision trees without cascade training is about 55% higher than that given by artificial neural networks. The cascade training technique can improve the performance of boosted decision trees and artificial neural networks at this b-tagging efficiency level by about 35% and 80% respectively. We conclude that the cascade trained boosted decision trees method is the most promising technique for tagging heavy flavours at collider experiments

  17. Study on computer-aided simulation procedure for multicomponent separating cascade

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro

    1982-11-01

    The present report reviews the author's study on the computer-aided simulation procedure for a multicomponent separating cascade. As a conclusion, two very powerful simulation procedures have been developed for cascades composed of separating elements whose separation factors are very large. They are applicable in cases where interstage flow rates are input variables for the calculation and stage separation factors are given either as constants or as functions of compositions of the up and down streams. As an application of the new procedure, a computer-aided simulation study has been performed for hydrogen isotope separating cascades by porous membrane method. A cascade system configuration is developed and pertinent design specifications are determined in an example case of the feed conditions and separation requirements. (author)

  18. Annealing simulation of cascade damage using MARLOWE-DAIQUIRI codes

    International Nuclear Information System (INIS)

    Muroga, Takeo

    1984-01-01

    The localization effect of the defects generated by the cascade damage on the properties of solids was studied by using a computer code. The code is based on the two-body collision approximation method and the Monte Carlo method. The MARLOWE and DAIQUIRI codes were partly improved to fit the present calculation of the annealing of cascade damage. The purpose of this study is to investigate the behavior of defects under the simulated reactive and irradiation condition. Calculation was made for alpha iron (BCC), and the threshold energy was set at 40 eV. The temperature dependence of annealing and the growth of a cluster were studied. The overlapping effect of cascade was studied. At first, the extreme case of overlapping was studied, then the practical cases were estimated by interpolation. The state of overlapping of cascade corresponded to the irradiation speed. The interaction between cascade and dislocations was studied, and the calculation of the annealing of primary knock-out atoms (PKA) in alpha iron was performed. At low temperature, the effect of dislocations was large, but the growth of vacancy was not seen. At high temperature, the effect of dislocations was small. The evaluation of the simulation of various ion irradiation and the growth efficiency of defects were performed. (Kato, T.)

  19. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  20. The relationship between collisional phase defect distribution and cascade collapse efficiency

    International Nuclear Information System (INIS)

    Morishita, K.; Heinisch, H.L.; Ishino, S.; Sekimura, N.

    1994-01-01

    Defect distributions after the collisional phase of cascade damage processes were calculated using the computer simulation code MARLOWE, which is based on the binary collision approximation. The densities of vacant sites were evaluated in defect-dense regions at the end of the collisional phase in simulated ion irradiations of several pure metals (Au, Ag, Cu, Ni, Fe, Mo and W). The vacancy density distributions were compared to the measured cascade collapse efficiencies obtained from low-dose ion irradiations of thin foils reported in the literature to identify the minimum or ''critical'' values of the vacancy densities during the collisional phase corresponding to cascade collapse. The critical densities are generally independent of the cascade energy in the same metal. The relationships between physical properties of the target elements and the critical densities are discussed within the framework of the cascade thermal spike model. ((orig.))

  1. Angular distributions for the charged components in a cascade shower induced by 350 MeV electrons

    International Nuclear Information System (INIS)

    Kobayashi, S.; Itoh, H.; Murakami, A.; Muto, T.

    1978-01-01

    The angular distributions of secondary electrons contained in a cascade shower are studied by using a streamer chamber. The primary electrons with energy of about 350 MeV are incident on a lead converter of various thickness. The angular data are analyzed for the number of electrons in a shower, and for the converter thickness. The obtained distributions show a systematic agreement with the Monte Carlo calculations presented by Messel and Crawford. (Auth.)

  2. FADD cleavage by NK cell granzyme M enhances its self-association to facilitate procaspase-8 recruitment for auto-processing leading to caspase cascade.

    Science.gov (United States)

    Wang, S; Xia, P; Shi, L; Fan, Z

    2012-04-01

    Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.

  3. Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Knudsen, Michael; Wiuf, Carsten Henrik

    2012-01-01

    We study signaling cascades with an arbitrary number of layers of one-site phosphorylation cycles. Such cascades are abundant in nature and integrated parts of many pathways. Based on the Michaelis-Menten model of enzyme kinetics and the law of mass-action, we derive explicit analytic expressions...

  4. High energy evolution of soft gluon cascades

    International Nuclear Information System (INIS)

    Shuvaev, A.; Wallon, S.

    2006-01-01

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  5. High energy evolution of soft gluon cascades

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaev, A. [St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg district (Russian Federation); Wallon, S. [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2006-04-15

    In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that this equation has the same form as the BFKL equation in the forward case. An explicit expression for the total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of the colored source wavefunction turns out to be responsible for the reggeization of the source. (orig.)

  6. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  7. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  8. Unconventional Cooper pairing results in a pseudogap-like phase in s-wave superconductors

    International Nuclear Information System (INIS)

    Springer, Daniel; Cheong, Siew Ann

    2015-01-01

    The impact of disorder on the superconducting (SC) pairing mechanism is the centre of much debate. Some evidence suggests a loss of phase coherence of pairs while others point towards the formation of a competing phase. In our work we show that the two perspectives may be different sides of the same coin. Using an extension of the perturbative renormalization group approach we compare the impact of different disorder-induced interactions on a SC ground state. We find that in the strongly disordered regime an interaction between paired fermions and their respective disordered environment replaces conventional Cooper pairing. For these unconventional Cooper pairs the phase coherence condition, required for the formation of a SC condensate, is not satisfied. (paper)

  9. Modeling techniques for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  10. Modeling techniques for quantum cascade lasers

    Science.gov (United States)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  11. Numerical studies of pair creation in counterpropagating laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Matthias

    2009-05-27

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  12. Numerical studies of pair creation in counterpropagating laser fields

    International Nuclear Information System (INIS)

    Ruf, Matthias

    2009-01-01

    Pair creation from vacuum induced by electromagnetic fields is probably one of the most intriguing phenomena in physics. If the fields are sufficiently strong, the QED vacuum become unstable. Due to the remarkable progress in laser technology during recent years an experimental investigation of pair creation by pure laser light is coming into reach. The focus of this thesis is on pair creation in counterpropagating laser beams. The pair creation probability is calculated employing the numerically obtained solutions of the Dirac equation. This numerical ansatz has the capability of calculating the momentum distribution of the created pairs in a single propagation, for pure time dependent field configurations. Furthermore, it allows to take the magnetic component of the laser fields into account, which is usually neglected. The latter strongly affects the creation process at high laser frequency. The involved numerical calculations are rather time consuming, therefore the second project of this thesis was to develop a highly efficient code for solving relativistic quantum mechanical problems. This is accomplished by adopting the split-operator method to the Klein-Gordon equation. Here the possibility arises to use parallel computing. However the corresponding spin-statistics becomes crucial in the case of pair creation, demonstrated in several examples. (orig.)

  13. Bearing-Only Formation Control for Cascade Multirobots

    Directory of Open Access Journals (Sweden)

    Qing Han

    2016-01-01

    Full Text Available A new formation control method is proposed, which is used to queue multirobots in a single-direction cascade structure. In the cascade formation, each robot is a follower for the previous robot and a leader for the next robot, and the robots in the middle act as both leader and follower. The follower robot can only observe the bearing information of the leader robot. The observability of the cascade leader-follower formation is studied, which shows that the bearing-only observation meets the observability conditions required for the nonlinear system. Based on the bearing-only observations, the unscented Kalman filter (UKF is employed for the state estimation of the leader and the follower robots at all levels, which enables the real-time movement control of the follower robots via the input-output feedback control. Simulation results demonstrate that the proposed approach can efficiently control the formation of multirobots as desired.

  14. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  15. Solvent-shared pairs of densely charged ions induce intense but short-range supra-additive slowdown of water rotation.

    Science.gov (United States)

    Vila Verde, Ana; Santer, Mark; Lipowsky, Reinhard

    2016-01-21

    The question "Can ions exert supra-additive effects on water dynamics?" has had several opposing answers from both simulation and experiment. We address this ongoing controversy by investigating water reorientation in aqueous solutions of two salts with large (magnesium sulfate) and small (cesium chloride) effects on water dynamics using molecular dynamics simulations and classical, polarizable models. The salt models are reparameterized to reproduce properties of both dilute and concentrated solutions. We demonstrate that water rotation in concentrated MgSO4 solutions is unexpectedly slow, in agreement with experiment, and that the slowdown is supra-additive: the observed slowdown is larger than that predicted by assuming that the resultant of the extra forces induced by the ions on the rotating water molecules tilts the free energy landscape associated with water rotation. Supra-additive slow down is very intense but short-range, and is strongly ion-specific: in contrast to the long-range picture initially proposed based on experiment, we find that intense supra-additivity is limited to water molecules directly bridging two ions in solvent-shared ion pair configuration; in contrast to a non-ion-specific origin to supra-additive effects proposed from simulations, we find that the magnitude of supra-additive slowdown strongly depends on the identity of the cations and anions. Supra-additive slowdown of water dynamics requires long-lived solvent-shared ion pairs; long-lived ion pairs should be typical for salts of multivalent ions. We discuss the origin of the apparent disagreement between the various studies on this topic and show that the short-range cooperative slowdown scenario proposed here resolves the existing controversy.

  16. Computer codes for simulating atomic-displacement cascades in solids subject to irradiation

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko

    1979-03-01

    In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)

  17. LIMIT SOLUTIONS OF EQUATIONS OF A DC HIGH-VOLTAGE CASCADE GENERATOR

    Directory of Open Access Journals (Sweden)

    V. O. Brzhezitsky

    2015-04-01

    Full Text Available In the paper the issue of calculating the high voltage cascade mode oscillator with a nonlinear load using the analytical method under different conditions of selection values of its components is presented. The peculiarity of the method of the study is that during multivariate calculations output parameters load generator remain unchanged. For high-voltage cascade direct current power found conditions under which can be significantly reduced high capacity capacitors cascade generator. The calculations show that acceptable for practical applications of high-voltage characteristics of cascade generators can be achieved with substantial reduction of the volume of their constituents, and thus substantial decline in their value.

  18. Odd-frequency pairing in superconducting heterostructures .

    Science.gov (United States)

    Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.

    2007-03-01

    We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.

  19. Films with discrete nano-DLC-particles as the field emission cascade

    International Nuclear Information System (INIS)

    Song Fengqi; Bu Haijun; Wan Jianguo; Wang Guanghou; Zhou Feng; He Longbing; Han Min; Zhou Jianfeng; Wang Xiaoshu

    2008-01-01

    Films with discrete diamond-like-carbon (DLC) nanoparticles were prepared by the deposition of the carbon nanoparticle beam. Their morphologies were imaged by scanning electron microscopy and atomic force microscopy (AFM). The nanoparticles were found to be distributed on the silicon (1 0 0) substrate discretely. Hemispherical shapes of the nanoparticles were demonstrated by the AFM line profile. Electron energy loss spectra were measured and an sp 3 ratio as high as 86% was found. Field-induced electron emission of the as-prepared cascade (nanoDLC/ Si) was tested and a current density of 1 mA cm -2 was achieved at 10.2 V μm -1 . (fast track communication)

  20. The time-energy distribution of atoms in a radiation damage cascade

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1976-01-01

    The time-energy distribution of atoms in a cascade induced by a primary knock-on is obtained by solving the Boltzmann equation. A more general scattering law is used than has hitherto been possible which is based upon a rational approximation to the Thomas-Fermi model of atomic scattering. The virtue of this scheme is that it remains possible to obtain an exact, closed form solution but allows a more realistic description of the scattering process. Time moments of the distribution are obtained from which the slowing down time and associated variance can be calculated. It is shown that the complete time-energy distribution may be reconstructed from the moments. (author)

  1. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    Science.gov (United States)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7-742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  2. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  3. Cascade multiplicity inside deuteron in Π d high energy collisions

    International Nuclear Information System (INIS)

    Kisielewska, D.

    1983-01-01

    Multiplicity distribution of double scattering events is analysed using the additive quark model including the cascading effect. The mean multiplicity of particles produced in the process of cascading estimated for Π d experiments at 100, 205 and 360 GeV/c is equal to 1.15 ± .31. This value does not depend on the momentum of the incident pion. Some indications are found that the probability of cascading depends on multiplicity of the collision with the first nucleon and is smaller for low multiplicities. (author)

  4. Is cascade reinforcement likely when sympatric and allopatric populations exchange migrants?

    Science.gov (United States)

    Yukilevich, Roman; Aoki, Fumio

    2016-04-01

    When partially reproductively isolated species come back into secondary contact, these taxa may diverge in mating preferences and sexual cues to avoid maladaptive hybridization, a process known as reinforcement. This phenomenon often leads to reproductive character displacement (RCD) between sympatric and allopatric populations of reinforcing species that differ in their exposure to hybridization. Recent discussions have reinvigorated the idea that RCD may give rise to additional speciation between conspecific sympatric and allopatric populations, dubbing the concept "cascade reinforcement." Despite some empirical studies supporting cascade reinforcement, we still know very little about the conditions for its evolution. In the present article, we address this question by developing an individual-based population genetic model that explicitly simulates cascade reinforcement when one of the hybridizing species is split into sympatric and allopatric populations. Our results show that when sympatric and allopatric populations reside in the same environment and only differ in their exposure to maladaptive hybridization, migration between them generally inhibits the evolution of cascade by spreading the reinforcement alleles from sympatry into allopatry and erasing RCD. Under these conditions, cascade reinforcement only evolved when migration rate between sympatric and allopatric populations was very low. This indicates that stabilizing sexual selection in allopatry is generally ineffective in preventing the spread of reinforcement alleles. Only when sympatric and allopatric populations experienced divergent ecological selection did cascade reinforcement evolve in the presence of substantial migration. These predictions clarify the conditions for cascade reinforcement and facilitate our understanding of existing cases in nature.

  5. CASCADER: An M-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1993-02-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes through advection and diffusion. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one-space dimensional transport and fate model for M-chain radionuclides in very dry homogeneous or heterogeneous soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advection velocity is derived from an embedded air-pumping submodel. The air-pumping submodel is based on an assumption of isothermal conditions, which is driven by barometric pressure. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions are used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  6. CASCADER: An m-chain gas-phase radionuclide transport and fate model

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.; Donahue, M.E.

    1992-06-01

    Chemicals and radionuclides move either in the gas-phase, liquid-phase, or both phases in soils. They may be acted upon by either biological or abiotic processes as they are advected and/or dispersed. Furthermore, parent and daughter radionuclides may decay as they are transported in the soil. CASCADER is a gas-phase, one space dimensional transport and fate model for an m-chain of radionuclides in very dry soil. This model contains barometric pressure-induced advection and diffusion together with linear irreversible and linear reversible sorption for each radionuclide. The advocation velocity is derived from an embedded air-pumping submodel. The airpumping submodel is based on an assumption of isothermal conditions and is barometric pressure driven. CASCADER allows the concentration of source radionuclides to decay via the classical Bateman chain of simple, first-order kinetic processes. The transported radionuclides also decay via first-order processes while in the soil. A mass conserving, flux-type inlet and exit set of boundary conditions is used. The user must supply the initial distribution for the parent radionuclide in the soil. The initial daughter distribution is found using equilibrium rules. The model is user friendly as it uses a prompt-driven, free-form input. The code is ANSI standard Fortran 77

  7. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  8. Efficient collective influence maximization in cascading processes with first-order transitions

    Science.gov (United States)

    Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.

    2017-01-01

    In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988

  9. LNG cascading damage study. Volume I, fracture testing report.

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  10. Cascading Dynamics of Heterogenous Scale-Free Networks with Recovery Mechanism

    Directory of Open Access Journals (Sweden)

    Shudong Li

    2013-01-01

    Full Text Available In network security, how to use efficient response methods against cascading failures of complex networks is very important. In this paper, concerned with the highest-load attack (HL and random attack (RA on one edge, we define five kinds of weighting strategies to assign the external resources for recovering the edges from cascading failures in heterogeneous scale-free (SF networks. The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading failures in the real-world networks.

  11. Critical assessment and ramifications of a purported marine trophic cascade

    Science.gov (United States)

    Grubbs, R. Dean; Carlson, John K; Romine, Jason G.; Curtis, Tobey H; McElroy, W. David; McCandless, Camilla T; Cotton, Charles F; Musick, John A.

    2016-01-01

    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decisions.

  12. Reversible switching of quantum cascade laser-modes using a pH-responsive polymeric cladding as transducer.

    Science.gov (United States)

    Basnar, Bernhard; Schartner, Stephan; Austerer, Maximilian; Andrews, Aaron Maxwell; Roch, Tomas; Schrenk, Werner; Strasser, Gottfried

    2008-06-09

    We present a novel approach for the reversible switching of the emission wavelength of a quantum cascade laser (QCL) using a halochromic cladding. An air-waveguide laser ridge is coated with a thin layer of polyacrylic acid. This cladding introduces losses corresponding to the absorption spectrum of the polymer. By changing the state of the polymer, the absorption spectrum and losses change, inducing a shift of 7 cm(-1) in the emission wavelength. This change is induced by exposure to acidic or alkaline vapors under ambient conditions and is fully reversible. Such lasers can be used as multi-color light source and as sensor for atmospheric pH.

  13. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  14. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.

    Science.gov (United States)

    Catozzi, S; Sepulchre, J-A

    2017-08-01

    In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.

  15. Conical refraction in a degenerated two-crystal cascade

    International Nuclear Information System (INIS)

    Peet, V

    2016-01-01

    When a collimated light beam is passed consequently along the optic axes of two identical biaxial crystals, the conical refraction produces in the focal image plane a specific light pattern consisting of a ring and a central spot. The ring is formed due to the additive action of two crystals, while the spot results from the reversed conical refraction in such a degenerated cascade arrangement. The relative intensity of these two components depends on the azimuth angle between the orientations of the crystals about the beam axis. It is shown that this dependence arises due to the interference of pairs of waves produced by conical refraction in two crystals. If a part of these waves is blocked by polarization selection of beam components, the dependence of the light pattern on the azimuth angle vanishes. In this case, the outgoing light profile consists of a ring and a central spot with fixed intensities so that the total beam power is divided equally between these two components. Depending on the applied polarization, the central spot appears either as a restored input beam or a charge-two optical vortex. The results of numerical simulations of the effect are in a very good agreement with the experimental observations. (paper)

  16. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Science.gov (United States)

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  17. Comparison of many bodied and binary collision cascade models up to 1 keV

    International Nuclear Information System (INIS)

    Schwartz, D.M.; Schiffgens, J.D.; Doran, D.G.; Odette, G.R.; Ariyasu, R.G.

    1976-01-01

    A quasi-dynamical code ADDES has been developed to model displacement cascades in copper for primary knockon atom energies up to several keV. ADDES is like a dynamical code in that it employs a many body treatment, yet similar to a binary collision code in that it incorporates the basic assumption that energy transfers below several eV can be ignored in describing cascade evolution. This paper is primarily concerned with (1) a continuing effort to validate the assumptions and specific parameters in the code by the comparison of ADDES results with experiment and with results from a dynamical code, and (2) comparisons of ADDES results with those from a binary collision code. The directional dependence of the displacement threshold is in reasonable agreement with the measurements of Jung et al. The behavior of focused replacement sequences is very similar to that obtained with the dynamical codes GRAPE and COMENT. Qualitative agreement was found between ADDES and COMENT for a higher energy (500 eV) defocused event while differences, still under study, are apparent in a 250 eV high index event. Comparisons of ADDES with the binary collision code MARLOWE show surprisingly good agreement in the 250 to 1000 eV range for both number and separation of Frenkel pairs. A preliminary observation, perhaps significant to displacement calculations utilizing the concept of a mean displacement energy, is the dissipation of 300 to 400 eV in a replacement sequence producing a single interstitial

  18. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    Science.gov (United States)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  19. Node vulnerability of water distribution networks under cascading failures

    International Nuclear Information System (INIS)

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    Water distribution networks (WDNs) are important in modern lifeline system. Its stability and reliability are critical for guaranteeing high living quality and continuous operation of urban functions. The aim of this paper is to evaluate the nodal vulnerability of WDNs under cascading failures. Vulnerability is defined to analyze the effects of the consequent failures. A cascading failure is a step-by-step process which is quantitatively investigated by numerical simulation with intentional attack. Monitored pressures in different nodes and flows in different pipes have been used to estimate the network topological structure and the consequences of nodal failure. Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. A load variation function is established to record the nodal failure reason and describe the relative differences between the load and the capacity. The proposed method is validated by an illustrative example. The results revealed that the network vulnerability should be evaluated with the consideration of hydraulic analysis and network topology. In the case study, 70.59% of the node failures trigger the cascading failures with different failure processes. It is shown that the cascading failures result in severe consequences in WDNs. - Highlights: • The aim of this paper is to evaluate the nodal vulnerability of water distribution networks under cascading failures. • Monitored pressures and flows have been used to estimate the network topological structure and the consequences of nodal failure. • Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. • A load variation function is established to record the failure reason and describe the relative differences between load and capacity. • The results show that 70.59% of the node failures trigger the cascading failures with different failure processes

  20. Placement of Synchronized Measurements for Power System Observability during Cascaded Outages

    Science.gov (United States)

    Thirugnanasambandam, Venkatesh; Jain, Trapti

    2017-11-01

    Cascaded outages often result in power system islanding followed by a blackout and therefore considered as a severe disturbance. Maintaining the observability of each island may help in taking proper control actions to preserve the stability of individual islands thus, averting system collapse. With this intent, a strategy for placement of synchronized measurements, which can be obtained from phasor measurement units (PMU), has been proposed in this paper to keep the system observable during cascaded outages also. Since, all the cascaded failures may not lead to islanding situations, therefore, failures leading to islanding as well as non-islanding situations have been considered. A topology based algorithm has been developed to identify the islanding/non-islanding condition created by a particular cascaded event. Additional contingencies such as single line loss and single PMU failure have also been considered after the occurrence of cascaded events. The proposed method is further extended to incorporate the measurement redundancy, which is desirable for a reliable state estimation. The proposed scheme is tested on IEEE 14-bus, IEEE 30-bus and a practical Indian 246-bus networks. The numerical results ensure the observability of the power system under system intact as well as during cascaded islanding and non-islanding disturbances.

  1. Atomistic simulations of displacement cascades in Y2O3 single crystal

    International Nuclear Information System (INIS)

    Dholakia, Manan; Chandra, Sharat; Valsakumar, M.C.; Mathi Jaya, S.

    2014-01-01

    Graphical abstract: (a) The averaged distortion index and the Y–O bond length of the Y 2 O 3 octahedra as a function of the simulation time for 5 keV PKA. (b) Shows the nearest neighbourhood of one of the Y ions as a function of simulation time, showing the destruction and the recovery of the YO 6 octahedron during the cascade corresponding to 5 keV Y PKA. - Highlights: • Qualitative difference in displacement cascades exists for Y and O PKA. • Nearest neighbour correlation between Y and O ions exists even at cascade peak. • Cascade core in Y 2 O 3 does not undergo melting. • Topological connectivity of YO 6 polyhedra plays important role in stability of Y 2 O 3 . - Abstract: We study the characteristics of displacement cascades in single crystal Y 2 O 3 using classical molecular dynamics. There are two possible ways to generate the cascades in yttria, using either the Y or the O atoms as the primary knock-on (PKA) atom. It is shown that there is a qualitative difference in the characteristics of the cascades obtained in these two cases. Even though the crystal is seen to be in a highly disordered state in the cascade volume, as seen from the plots of radial distribution function, the correlation between the Y and O atoms is not completely lost. This facilitates a quick recovery of the system during the annealing phase. Topological connectivity of the YO 6 polyhedral units plays an important role in imparting stability to the Y 2 O 3 crystal. These characteristics of the cascades can help explain the stability of the yttria nanoparticles when they are dispersed in oxide dispersion strengthened steels

  2. Cascade Chaotic System With Applications.

    Science.gov (United States)

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  3. Bankruptcy cascades in interbank markets.

    Directory of Open Access Journals (Sweden)

    Gabriele Tedeschi

    Full Text Available We study a credit network and, in particular, an interbank system with an agent-based model. To understand the relationship between business cycles and cascades of bankruptcies, we model a three-sector economy with goods, credit and interbank market. In the interbank market, the participating banks share the risk of bad debits, which may potentially spread a bank's liquidity problems through the network of banks. Our agent-based model sheds light on the correlation between bankruptcy cascades and the endogenous economic cycle of booms and recessions. It also demonstrates the serious trade-off between, on the one hand, reducing risks of individual banks by sharing them and, on the other hand, creating systemic risks through credit-related interlinkages of banks. As a result of our study, the dynamics underlying the meltdown of financial markets in 2008 becomes much better understandable.

  4. Investigation of cascade effect failure for tungsten armour

    International Nuclear Information System (INIS)

    Makhankov, A.; Barabash, V.; Berkhov, N.; Divavin, V.; Giniatullin, R.; Grigoriev, S.; Ibbott, C.; Komarov, V.; Labusov, A.; Mazul, I.; McDonald, J.; Tanchuk, V.; Youchison, D.

    2001-01-01

    The glancing angle of incident power on the target of a tokamak divertor results in doubled and highly peaked heat flux onto adjacent downstream tile in the case of lost of tile event (LOTE). As a result downstream tile has higher probability to fail resulting in triple loads to the next downstream tile and so on (cascade effect). This paper devoted to analytical and experimental investigation of the cascade effect failure for the flat tile option of tungsten armoured plasma facing components. Armour geometry resistant to the cascade effect failure was selected on the base of thermal and stress analyses. Experimental investigation of the LOTE has been performed also. Small size W/Cu mock-up withstood not only LOTE simulation load, but also survived afterwards for 1500 cycles at 26-28 MW/m 2 without damage in joint

  5. Process Evaluation Tools for Enzymatic Cascades Welcome Message

    DEFF Research Database (Denmark)

    Abu, Rohana

    improvement and implementation. Hence, the goal of this thesis is to evaluate the process concepts in enzymatic cascades in a systematic manner, using tools such as thermodynamic and kinetic analysis. Three relevant case studies have been used to exemplify the approach. In the first case study, thermodynamic......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis......, the kinetics can be controlled in a highly efficient way to achieve a sufficiently favourable conversion to a given target product. This is exemplified in the second case study, in the kinetic modelling of the formation of 2-ketoglutarate from glucoronate, the second case study. This cascade consists of 4...

  6. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    Science.gov (United States)

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  7. Cascade Apartments: Deep Energy Multifamily Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mattheis, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kunkle, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Howard, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lubliner, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

  8. Molecular dynamics simulation of cascade damage in gold

    International Nuclear Information System (INIS)

    Alonso, E.; Caturla, M.J.; Tang, M.; Huang, H.; Diaz de la Rubia, T.

    1997-01-01

    High-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. The authors provide evidence that correlation between interstitial and vacancy clustering exists

  9. Participant intimacy: A cluster analysis of the intranuclear cascade

    International Nuclear Information System (INIS)

    Cugnon, J.; Knoll, J.; Randrup, J.

    1981-01-01

    The intranuclear cascade for relativistic nuclear collisions is analyzed in terms of clusters consisting of groups of nucleons which are dynamically linked to each other by violent interactions. The formation cross sections for the different cluster types as well as their intrinsic dynamics are studied and compared with the predictions of the linear cascade model ( rows-on-rows ). (orig.)

  10. Cascaded FSO-VLC Communication System

    KAUST Repository

    Gupta, Akash; Sharma, Nikhil; Garg, Parul; Alouini, Mohamed-Slim

    2017-01-01

    The proposed cascaded free space optics (FSO)-visible light communication (VLC) system consists of multiple VLC access points which caters the end users connected via a decode and forward (DF) relay to the FSO backhaul link. The FSO link is assumed

  11. Rapid identification and recovery of ENU-induced mutations with next-generation sequencing and Paired-End Low-Error analysis.

    Science.gov (United States)

    Pan, Luyuan; Shah, Arish N; Phelps, Ian G; Doherty, Dan; Johnson, Eric A; Moens, Cecilia B

    2015-02-14

    Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach to directly identify point mutations in specific genes of interest in genomic DNA from a large chemically mutagenized population. Classical TILLING processes, based on enzymatic detection of mutations in heteroduplex PCR amplicons, are slow and labor intensive. Here we describe a new TILLING strategy in zebrafish using direct next generation sequencing (NGS) of 250 bp amplicons followed by Paired-End Low-Error (PELE) sequence analysis. By pooling a genomic DNA library made from over 9,000 N-ethyl-N-nitrosourea (ENU) mutagenized F1 fish into 32 equal pools of 288 fish, each with a unique Illumina barcode, we reduce the complexity of the template to a level at which we can detect mutations that occur in a single heterozygous fish in the entire library. MiSeq sequencing generates 250 base-pair overlapping paired-end reads, and PELE analysis aligns the overlapping sequences to each other and filters out any imperfect matches, thereby eliminating variants introduced during the sequencing process. We find that this filtering step reduces the number of false positive calls 50-fold without loss of true variant calls. After PELE we were able to validate 61.5% of the mutant calls that occurred at a frequency between 1 mutant call:100 wildtype calls and 1 mutant call:1000 wildtype calls in a pool of 288 fish. We then use high-resolution melt analysis to identify the single heterozygous mutation carrier in the 288-fish pool in which the mutation was identified. Using this NGS-TILLING protocol we validated 28 nonsense or splice site mutations in 20 genes, at a two-fold higher efficiency than using traditional Cel1 screening. We conclude that this approach significantly increases screening efficiency and accuracy at reduced cost and can be applied in a wide range of organisms.

  12. The nonelastic reaction code BRIEFF and its intranuclear cascade BRIC

    International Nuclear Information System (INIS)

    Duarte, H.

    2008-01-01

    The intranuclear cascade (INC) code of Bruyeres-le-Chatel named BRIC is the first part of the nonelastic reaction code BRIEFF. Recent changes in our INC are presented. They were done for nucleon induced reaction to improve results below 100 MeV, and to calculate cross sections of compound nucleus formation. These cross sections are used in the evaporation component of our reaction code. BRIEFF is included in the Bruyeres-le-Chatel version of HETC (High Energy Transport Code) to perform thick targets calculations. BRIC has recently been incorporated into MCNPX 2.4.0 to verify thick target results of neutron yields and to do some comparisons with other nuclear models or libraries. Good agreement with data is obtained on average. (author)

  13. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence.

    Science.gov (United States)

    Sandor, Roman; Der, Christophe; Grosjean, Kevin; Anca, Iulia; Noirot, Elodie; Leborgne-Castel, Nathalie; Lochman, Jan; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2016-09-01

    Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Deterministic Role of Collision Cascade Density in Radiation Defect Dynamics in Si

    Science.gov (United States)

    Wallace, J. B.; Aji, L. B. Bayu; Shao, L.; Kucheyev, S. O.

    2018-05-01

    The formation of stable radiation damage in solids often proceeds via complex dynamic annealing (DA) processes, involving point defect migration and interaction. The dependence of DA on irradiation conditions remains poorly understood even for Si. Here, we use a pulsed ion beam method to study defect interaction dynamics in Si bombarded in the temperature range from ˜-30 ° C to 210 °C with ions in a wide range of masses, from Ne to Xe, creating collision cascades with different densities. We demonstrate that the complexity of the influence of irradiation conditions on defect dynamics can be reduced to a deterministic effect of a single parameter, the average cascade density, calculated by taking into account the fractal nature of collision cascades. For each ion species, the DA rate exhibits two well-defined Arrhenius regions where different DA mechanisms dominate. These two regions intersect at a critical temperature, which depends linearly on the cascade density. The low-temperature DA regime is characterized by an activation energy of ˜0.1 eV , independent of the cascade density. The high-temperature regime, however, exhibits a change in the dominant DA process for cascade densities above ˜0.04 at.%, evidenced by an increase in the activation energy. These results clearly demonstrate a crucial role of the collision cascade density and can be used to predict radiation defect dynamics in Si.

  15. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  16. Dynamics and Instabilities of Vortex Pairs

    Science.gov (United States)

    Leweke, Thomas; Le Dizès, Stéphane; Williamson, Charles H. K.

    2016-01-01

    This article reviews the characteristics and behavior of counter-rotating and corotating vortex pairs, which are seemingly simple flow configurations yet immensely rich in phenomena. Since the reviews in this journal by Widnall (1975) and Spalart (1998) , who studied the fundamental structure and dynamics of vortices and airplane trailing vortices, respectively, there have been many analytical, computational, and experimental studies of vortex pair flows. We discuss two-dimensional dynamics, including the merging of same-sign vortices and the interaction with the mutually induced strain, as well as three-dimensional displacement and core instabilities resulting from this interaction. Flows subject to combined instabilities are also considered, in particular the impingement of opposite-sign vortices on a ground plane. We emphasize the physical mechanisms responsible for the flow phenomena and clearly present the key results that are useful to the reader for predicting the dynamics and instabilities of parallel vortices.

  17. Cascades from nu_E above 1020 eV

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Spencer R.

    2004-12-21

    At very high energies, the Landau-Pomeranchuk-Migdal effect reduces the cross sections for electron bremsstrahlung and photon e{sup +}e{sup -} pair production. The fractional electron energy loss and pair production cross sections drop as the energy increases. In contrast, the cross sections for photonuclear interactions grow with energy. In solids and liquids, at energies above 10{sup 20} eV, photonuclear reactions dominate, and showers that originate as photons or electrons quickly become hadronic showers. These electron-initiated hadronic showers are much shorter (due to the absence of the LPM effect), but wider than purely electromagnetic showers would be. This change in shape alters the spectrum of the electromagnetic and acoustic radiation emitted from the shower. These alterations have important implications for existing and planned searches for radiation from u{sub e} induced showers above 10{sup 20} eV, and some existing limits should be reevaluated.

  18. An ant colony based resilience approach to cascading failures in cluster supply network

    Science.gov (United States)

    Wang, Yingcong; Xiao, Renbin

    2016-11-01

    Cluster supply chain network is a typical complex network and easily suffers cascading failures under disruption events, which is caused by the under-load of enterprises. Improving network resilience can increase the ability of recovery from cascading failures. Social resilience is found in ant colony and comes from ant's spatial fidelity zones (SFZ). Starting from the under-load failures, this paper proposes a resilience method to cascading failures in cluster supply chain network by leveraging on social resilience of ant colony. First, the mapping between ant colony SFZ and cluster supply chain network SFZ is presented. Second, a new cascading model for cluster supply chain network is constructed based on under-load failures. Then, the SFZ-based resilience method and index to cascading failures are developed according to ant colony's social resilience. Finally, a numerical simulation and a case study are used to verify the validity of the cascading model and the resilience method. Experimental results show that, the cluster supply chain network becomes resilient to cascading failures under the SFZ-based resilience method, and the cluster supply chain network resilience can be enhanced by improving the ability of enterprises to recover and adjust.

  19. COSMIC EVOLUTION OF STAR FORMATION ENHANCEMENT IN CLOSE MAJOR-MERGER GALAXY PAIRS SINCE z = 1

    International Nuclear Information System (INIS)

    Xu, C. K.; Shupe, D. L.; Bock, J.; Bridge, C.; Cooray, A.; Lu, N.; Schulz, B.; Béthermin, M.; Aussel, H.; Elbaz, D.; Le Floc'h, E.; Riguccini, L.; Berta, S.; Lutz, D.; Magnelli, B.; Conley, A.; Franceschini, A.; Marsden, G.; Oliver, S. J.; Pozzi, F.

    2012-01-01

    The infrared (IR) emission of 'M * galaxies' (10 10.4 ≤ M star ≤ 10 11.0 M ☉ ) in galaxy pairs, derived using data obtained in Herschel (PEP/HerMES) and Spitzer (S-COSMOS) surveys, is compared to that of single-disk galaxies in well-matched control samples to study the cosmic evolution of the star formation enhancement induced by galaxy-galaxy interaction. Both the mean IR spectral energy distribution and mean IR luminosity of star-forming galaxies (SFGs) in SFG+SFG (S+S) pairs in the redshift bin of 0.6 < z < 1 are consistent with no star formation enhancement. SFGs in S+S pairs in a lower redshift bin of 0.2 < z < 0.6 show marginal evidence for a weak star formation enhancement. Together with the significant and strong sSFR enhancement shown by SFGs in a local sample of S+S pairs (obtained using previously published Spitzer observations), our results reveal a trend for the star formation enhancement in S+S pairs to decrease with increasing redshift. Between z = 0 and z = 1, this decline of interaction-induced star formation enhancement occurs in parallel with the dramatic increase (by a factor of ∼10) of the sSFR of single SFGs, both of which can be explained by the higher gas fraction in higher-z disks. SFGs in mixed pairs (S+E pairs) do not show any significant star formation enhancement at any redshift. The difference between SFGs in S+S pairs and in S+E pairs suggests a modulation of the sSFR by the intergalactic medium (IGM) in the dark matter halos hosting these pairs.

  20. Generalized pairing strategies-a bridge from pairing strategies to colorings

    Directory of Open Access Journals (Sweden)

    Győrffy Lajos

    2016-12-01

    Full Text Available In this paper we define a bridge between pairings and colorings of the hypergraphs by introducing a generalization of pairs called t-cakes for t ∈ ℕ, t ≥ 2. For t = 2 the 2-cakes are the same as the well-known pairs of system of distinct representatives, that can be turned to pairing strategies in Maker-Breaker hypergraph games, see Hales and Jewett [12]. The two-colorings are the other extremity of t-cakes, in which the whole ground set of the hypergraph is one big cake that we divide into two parts (color classes. Starting from the pairings (2-cake placement and two-colorings we define the generalized t-cake placements where we pair p elements by q elements (p, q ∈ ℕ, 1 ≤ p, q < t, p + q = t.

  1. Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades

    International Nuclear Information System (INIS)

    Dyer, R.H.; Fowler, A.H.; Vanstrum, P.R.

    1977-01-01

    The invention relates to an improved method and system for making relatively large and rapid adjustments in the process gas inventory of an electrically powered gaseous diffusion cascade in order to accommodate scheduled changes in the electrical power available for cascade operation. In the preferred form of the invention, the cascade is readied for a decrease in electrical input by simultaneously withdrawing substreams of the cascade B stream into respective process-gas-freezing and storage zones while decreasing the datum-pressure inputs to the positioning systems for the cascade control valves in proportion to the weight of process gas so removed. Consequently, the control valve positions are substantially unchanged by the reduction in invention, and there is minimal disturbance of the cascade isotopic gradient. The cascade is readied for restoration of the power cut by simultaneously evaporating the solids in the freezing zones to regenerate the process gas substreams and introducing them to the cascade A stream while increasing the aforementioned datum pressure inputs in proportion to the weight of process gas so returned. In the preferred form of the system for accomplishing these operations, heat exchangers are provided for freezing, storing, and evaporating the various substreams. Preferably, the heat exchangers are connected to use existing cascade auxiliary systems as a heat sink. A common control is employed to adjust and coordinate the necessary process gas transfers and datum pressure adjustments

  2. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  3. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    Science.gov (United States)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  4. τ polarization in SUSY cascade decays

    International Nuclear Information System (INIS)

    Choi, S.Y.; Hagiwara, K.; Kim, Y.G.

    2006-12-01

    τ leptons emitted in cascade decays of supersymmetric particles are polarized. The polarization may be exploited to determine spin and mixing properties of the neutralinos and stau particles involved. (orig.)

  5. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.

    1997-01-01

    . This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  6. Orbitally limited pair-density-wave phase of multilayer superconductors

    Science.gov (United States)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  7. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  8. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.

  9. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1997-01-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies

  10. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    Science.gov (United States)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  11. Loophole to the universal photon spectrum in electromagnetic cascades and application to the cosmological lithium problem.

    Science.gov (United States)

    Poulin, Vivian; Serpico, Pasquale Dario

    2015-03-06

    The standard theory of electromagnetic cascades onto a photon background predicts a quasiuniversal shape for the resulting nonthermal photon spectrum. This has been applied to very disparate fields, including nonthermal big bang nucleosynthesis (BBN). However, once the energy of the injected photons falls below the pair-production threshold the spectral shape is much harder, a fact that has been overlooked in past literature. This loophole may have important phenomenological consequences, since it generically alters the BBN bounds on nonthermal relics; for instance, it allows us to reopen the possibility of purely electromagnetic solutions to the so-called "cosmological lithium problem," which were thought to be excluded by other cosmological constraints. We show this with a proof-of-principle example and a simple particle physics model, compared with previous literature.

  12. Nitrogen Cascade: An Opportunity to Integrate Biogeochemistry and Policy

    Science.gov (United States)

    Galloway, J. N.; Moomaw, W. R.; Theis, T. L.

    2008-12-01

    It began with micro-organisms millions of years ago, was enhanced by the burning of fossil carbon in the last several hundred years, and was magnified by a patent filed one hundred years ago. Today, the combined actions of cultivation-induced biological nitrogen fixation, fossil fuel combustion and the Haber-Bosch process have exceeded natural terrestrial processes in converting N22 to nitrogen compounds that are biologically, chemically or physically reactive (reactive nitrogen, Nr). While the benefits of Nr are well understood, many of the adverse consequences of excessive Nr are invisible from a policy perspective. Over the past century, the fundamental knowledge on nitrogen processes has advanced to the point where we have a good understanding of nitrogen's biogeochemical cycle, the role of humans in altering the cycle, and the consequences of the alterations. This knowledge has collectively led us to two conclusions-the consequences of intensive human influence on the nitrogen cycle leads to a cascade of ecosystem and human effects which need to be managed. Secondly, the management is complicated by the facts that it not only has to be integrated, but it also has to take into account that the management should not lower the ability of managed ecosystems to produce food for the world's peoples. The framework of the nitrogen cascade provides us with a structure for better identifying intervention points, and more effective policies, technologies and measures to prevent or mitigate the adverse impacts of reactive nitrogen, while enhancing its beneficial uses. We can now begin to use our understanding of science to set priorities and craft new policy strategies. For many regions of the world, the science is strong enough to manage nitrogen and there are existing tools to do so. However, the tools are not integrated, critical tools are missing and most importantly, there are nitrogen-rich regions of the world where the science is lacking, and nitrogen-poor regions

  13. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  14. The 17/5 spectrum of the Kelvin-wave cascade

    OpenAIRE

    Kozik, Evgeny; Svistunov, Boris

    2010-01-01

    Direct numeric simulation of the Biot-Savart equation readily resolves the 17/5 spectrum of the Kelvin-wave cascade from the 11/3 spectrum of the non-local (in the wavenumber space) cascade scenario by L'vov and Nazarenko. This result is a clear-cut visualisation of the unphysical nature of the 11/3 solution, which was established earlier on the grounds of symmetry.

  15. Study on the Effect and Mechanism of Aerodynamic Measures for the Vortex-Induced Vibration of Separate Pairs of Box Girders in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Han Xin He

    2015-01-01

    Full Text Available Although not always resulting in catastrophic failures, vortex-induced vibration (VIV response can seriously impact the fatigue life and functionality of bridges, especially for separate pairs of box girders in cable-stayed bridges. This study investigates the effects of three aerodynamic measures: grating, inclined web plate, and the baffles on separated box girders in the cable-stayed bridges. The experimental result indicates that the grating of different opening ratios can control the vortex-induced vibration effectively, and the optimized grating opening ratio set in this paper is 40%. Increasing the angle of inclined web plate has a great control on mitigation of the vortex-induced vibration. However, there is an optimum angle where the amplitude of vortex-induced vibration is the smallest at low wind speed. The amplitude of vortex-induced vibration becomes larger with the increase of the web inclined angle that exceeds the optimum angle. Comparatively, the baffles installed on both sides of the inclined webs are more effective to restrain the vortex-induced resonance. The Computational Fluent Dynamics (CFD software is utilized to investigate the mechanism of the experimental results.

  16. Design of ideal cascades of gas centrifuges with variable separation factors

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    A method of designing ideal cascades in which the separation factor varies with stage number is presented and applied to centrifuges as separating units. The centrifuge is characterized by a performance function, which gives the separative power, optimized with respect to all internal variables, as a function of cut and throughput. For centrifuges with certain types of performance functions, variable-α ideal cascades can provide a product at a lower cost than the conventional ideal cascade in which the separation factor is independent of stage number

  17. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    Science.gov (United States)

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  18. Modeling defect production in high energy collision cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1993-01-01

    A multi-model approach roach (MMA) to simulating defect production processes at the atomic scale is described that incorporates molecular dynamics (MD), binary collision approximation (BCA) calculations and stochastic annealing simulations. The central hypothesis of the MMA is that the simple, fast computer codes capable of simulating large numbers of high energy cascades (e.g., BCA codes) can be made to yield the correct defect configurations when their parameters are calibrated using the results of the more physically realistic MD simulations. The calibration procedure is investigated using results of MD simulations of 25 keV cascades in copper. The configurations of point defects are extracted from the MD cascade simulations at the end of the collisional phase, similar to the information obtained with a binary collision model. The MD collisional phase defect configurations are used as input to the ALSOME annealing simulation code, and values of the ALSOME quenching parameters are determined that yield the best fit to the post-quenching defect configurations of the MD simulations

  19. Photoproduction of the Cascade Baryons at GlueX

    Science.gov (United States)

    Ernst, Ashley; GlueX Collaboration

    2017-09-01

    Multi-strange baryons play an important role in understanding the strong interaction and despite their importance, little is known about such hyperons. Almost all knowledge of the Cascades today stems from Kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s, of which only the octet and decuplet ground states, Ξ (1320) and Ξ (1530) respectively, are well established. This research uses the GlueX experiment at Jefferson Laboratory to map out the spectrum of doubly-strange Cascade resonances, as well as to measure the spin-parity for each of the detected resonances. The first physics run for GlueX has recently been completed and a clear signature of the Ξ (1320) is observed. The systematics of the Cascade spectrum will be presented motivated by prior discoveries in the N* program. This work was supported by the U.S. Department of Energy Grant DE-FG02-92ER40735 and National Science Foundation Grant 1449440.

  20. Analysis of static characteristic roots and propagation of disturbance of adjustable centrifuge cascade

    International Nuclear Information System (INIS)

    Li Weijie; Wu Zhongdi; Nong Guowei; Zeng Shi

    2014-01-01

    The hydraulic characteristic roots of a centrifuge cascade represent an important property of the cascade performance. Regulators and centrifuges are the key components that have a significant influence on the cascade hydraulic performance. The method used in diffusion cascades was adopted to obtain the static characteristic roots by solving the small disturbance equation for an adjustable centrifuge cascade in which all stages have the same fluid parameters. As the light stream flowrate of a centrifuge is irrelevant to the pressure at the outlet of the light flow, and the heavy stream flows at the speed of sound, there are only 2 static characteristic roots in the centrifuge cascade: the first root Z_1 is the main characteristic root and the second one Z_2 comes into play only when there exists a feed. The value of the main characteristic root is influenced by the amplification factor of the regulators, the fluid resistance in the main feed pipe and other factors. When Z_1 is smaller than 1, it increases with the fluid resistance. A large enough amplification factor has little impact on Z_1. The same distribution of the relative changes of the light fraction along the cascade is obtained by an analytical and a numerical method. (authors)

  1. English for au pairs the au pair's guide to learning English

    CERN Document Server

    Curtis, Lucy

    2014-01-01

    English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.

  2. Optimization Control of Bidirectional Cascaded DC-AC Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun

    in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...

  3. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...

  4. Cascaded Photoenhancement: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.; Smith, David D.

    2006-01-01

    Our analysis shows that coupling of gold nanoparticles to microspheres will evoke a cascading effect from the respective photoenhancement mechanisms. We refer to this amplification process as cascaded photoenhancement, and the resulting cavity amplification of surface-enhanced Raman scattering (SERS) and fluorescence as CASERS and CAF, respectively. Calculations, based on modal analysis of scattering and absorption by compound spheres, presented herein indicate that the absorption cross sections of metal nanoparticles immobilized onto dielectric microspheres can be greatly enhanced by cavity resonances in the microspheres without significant degradation of the resonators. Gain factors associated with CSP of 10(exp 3) - 10(exp 4) are predicted for realistic experimental conditions using homogenous microspheres. Cascaded surface photoenhancement thus has the potential of dramatically increasing the sensitivities of fluorescence and vibrational spectroscopies.

  5. Correlation Scales of the Turbulent Cascade at 1 au

    Science.gov (United States)

    Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.

    2018-05-01

    We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.

  6. Total output operation chart optimization of cascade reservoirs and its application

    International Nuclear Information System (INIS)

    Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke

    2014-01-01

    Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective

  7. Major disruptions, inverse cascades, and the Strauss equations

    International Nuclear Information System (INIS)

    Montgomery, D.

    1982-01-01

    Current-carrying plasmas in a strong dc magnetic field are subject to violent disruptions above certain thresholds. At present difficult to verify, explanations are typically sought in terms of tearing modes. An alternative explanation is in terms of inverse magnetic helicity cascades, generated from a variety of possible sources of small-scale MHD turbulence. Strongly anisotropic MHD plasmas may be described by the Strauss equations. Indications of turbulent inverse cascade behavior for the Strauss equations are sought, in parallel with earlier examples from MHD and fluid mechanics

  8. Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades

    Directory of Open Access Journals (Sweden)

    Timothy F. Jamison

    2010-03-01

    Full Text Available The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqualenoid natural products can be traced to these hypothesized cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of ladder polyethers and oxasqualenoid natural products.

  9. Universal resilience patterns in cascading load model: More capacity is not always better

    Science.gov (United States)

    Wang, Jianwei; Wang, Xue; Cai, Lin; Ni, Chengzhang; Xie, Wei; Xu, Bo

    We study the problem of universal resilience patterns in complex networks against cascading failures. We revise the classical betweenness method and overcome its limitation of quantifying the load in cascading model. Considering that the generated load by all nodes should be equal to the transported one by all edges in the whole network, we propose a new method to quantify the load on an edge and construct a simple cascading model. By attacking the edge with the highest load, we show that, if the flow between two nodes is transported along the shortest paths between them, then the resilience of some networks against cascading failures inversely decreases with the enhancement of the capacity of every edge, i.e. the more capacity is not always better. We also observe the abnormal fluctuation of the additional load that exceeds the capacity of each edge. By a simple graph, we analyze the propagation of cascading failures step by step, and give a reasonable explanation of the abnormal fluctuation of cascading dynamics.

  10. Dirhodium(II Carbenes : The Chiral Product Cascade

    Directory of Open Access Journals (Sweden)

    Gregory H. P. Roos

    2000-12-01

    Full Text Available The last decade has witnessed enormous growth in the spectrum of highly efficient asymmetric synthetic transformations. One prominent example of this progress is the application of dirhodium (II carbenes generated from diazo- precursors. Innovative construction of ‘designer’ catalysts has played a integral role in extending the breadth of the synthetic cascade of non-racemic products now available through the range of cyclopropanation, C-X insertion, aromatic cycloaddition-rearrangement, and ylide-based reaction types. This review deals briefly with an overview of the important catalytic systems and maintains as its primary focus the cascade of diverse optically enriched products that flow from their applications.

  11. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  12. Evolution of the vertebrate phototransduction cascade activation steps.

    Science.gov (United States)

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. On the optimity of separation cascade for a binary and a multi-component case

    International Nuclear Information System (INIS)

    Song, T.M.; Zeng, S.

    2006-01-01

    The optimity discussed in this article means minimum total interstage flow which is studied for two cases, a binary and a multi-component case, using direct numerical optimizations for countercurrent symmetric cascades with the concentrations of the target component specified in the .feed flow, the product and waste withdrawals In binary separation, the ideal cascade in which there are no mixing losses and whose stages are working under symmetric separation is the optimum cascade that has the minimum total flow However when the separation factor is large, there may not exist an ideal cascade for certain prescribed external parameters. Cascades are optimized numerically to minimize mixing losses and total flows, respectively The results are compared for the minimum mixing losses and the minimum total flow, and analyzed with theoretically derived formulas. For the multi-component case, satisfying the non-mixing condition is impossible. There is a counterpart of the binary ideal cascade named MARC which matches the abundance ratio at mixing points. An optimization example for a four-cornponent mixture separation cascade is analyzed with the first and the last components as the targets, respectively. The results show that MARC is not the optimum cascade for the separation of one certain isotope. The separation power of each stage in the optimized cascades is calculated using several different definitions, and the rationality of these definitions is discussed. The Q-iteration method is used to calculate the concentration distribution in both the binary and the multi-component cases. Ns-2 stage cuts out of the Ns stages of the cascade are the optimization variables in the optimization process and a combination of the simulated annealing and the Hooke-Jeeves method is applied as the optimization technique to find the minimum. (authors)

  14. Cascading Corruption News

    DEFF Research Database (Denmark)

    Damgaard, Mads

    2018-01-01

    Through a content analysis of 8,800 news items and six months of front pages in three Brazilian newspapers, all dealing with corruption and political transgression, this article documents the remarkable skew of media attention to corruption scandals. The bias is examined as an information...... phenomenon, arising from systemic and commercial factors of Brazil’s news media: An information cascade of news on corruption formed, destabilizing the governing coalition and legitimizing the impeachment process of Dilma Rousseff. As this process gained momentum, questions of accountability were disregarded...

  15. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  16. Successful treatment of homozygous familial hypercholesterolemia using cascade filtration plasmapheresis.

    Science.gov (United States)

    Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali

    2012-12-01

    The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.

  17. Modeling cascading failures with the crisis of trust in social networks

    Science.gov (United States)

    Yi, Chengqi; Bao, Yuanyuan; Jiang, Jingchi; Xue, Yibo

    2015-10-01

    In social networks, some friends often post or disseminate malicious information, such as advertising messages, informal overseas purchasing messages, illegal messages, or rumors. Too much malicious information may cause a feeling of intense annoyance. When the feeling exceeds a certain threshold, it will lead social network users to distrust these friends, which we call the crisis of trust. The crisis of trust in social networks has already become a universal concern and an urgent unsolved problem. As a result of the crisis of trust, users will cut off their relationships with some of their untrustworthy friends. Once a few of these relationships are made unavailable, it is likely that other friends will decline trust, and a large portion of the social network will be influenced. The phenomenon in which the unavailability of a few relationships will trigger the failure of successive relationships is known as cascading failure dynamics. To our best knowledge, no one has formally proposed cascading failures dynamics with the crisis of trust in social networks. In this paper, we address this potential issue, quantify the trust between two users based on user similarity, and model the minimum tolerance with a nonlinear equation. Furthermore, we construct the processes of cascading failures dynamics by considering the unique features of social networks. Based on real social network datasets (Sina Weibo, Facebook and Twitter), we adopt two attack strategies (the highest trust attack (HT) and the lowest trust attack (LT)) to evaluate the proposed dynamics and to further analyze the changes of the topology, connectivity, cascading time and cascade effect under the above attacks. We numerically find that the sparse and inhomogeneous network structure in our cascading model can better improve the robustness of social networks than the dense and homogeneous structure. However, the network structure that seems like ripples is more vulnerable than the other two network

  18. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  19. Experimental investigation on a high subsonic compressor cascade flow

    Directory of Open Access Journals (Sweden)

    Zhang Haideng

    2015-08-01

    Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.

  20. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

    Science.gov (United States)

    Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh

    2018-05-31

    Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.

  1. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  2. Disaster Mythology and Availability Cascades

    Directory of Open Access Journals (Sweden)

    Lisa Grow Sun

    2013-04-01

    Full Text Available Sociological research conducted in the aftermath of natural disasters has uncovered a number of “disaster myths” – widely shared misconceptions about typical post-disaster human behavior. This paper discusses the possibility that perpetuation of disaster mythology reflects an “availability cascade,” defined in prior scholarship as a “self-reinforcing process of collective belief formation by which an expressed perception triggers a chain reaction that gives the perception increasing plausibility through its rising availability in public discourse.” (Kuran and Sunstein 1999. Framing the spread of disaster mythology as an availability cascade suggests that certain tools may be useful in halting the myths’ continued perpetuation. These tools include changing the legal and social incentives of so-called “availability entrepreneurs” – those principally responsible for beginning and perpetuating the cascade, as well as insulating decision-makers from political pressures generated by the availability cascade. This paper evaluates the potential effectiveness of these and other solutions for countering disaster mythology. Las investigaciones sociológicas realizadas tras los desastres naturales han hecho evidentes una serie de “mitos del desastre”, conceptos erróneos ampliamente compartidos sobre el comportamiento humano típico tras un desastre. Este artículo analiza la posibilidad de que la perpetuación de los mitos del desastre refleje una “cascada de disponibilidad”, definida en estudios anteriores como un “proceso de auto-refuerzo de la formación de una creencia colectiva, a través del que una percepción expresada produce una reacción en cadena que hace que la percepción sea cada vez más verosímil, a través de una mayor presencia en el discurso público” (Kuran y Sunstein 1999. Enmarcar la propagación de los mitos del desastre como una cascada de disponibilidad sugiere que ciertas herramientas pueden ser

  3. Time development of cascades by the binary collision approximation code

    International Nuclear Information System (INIS)

    Fukumura, A.; Ishino, S.; Sekimura, N.

    1991-01-01

    To link a molecular dynamic calculation to binary collision approximation codes to explore high energy cascade damage, time between consecutive collisions is introduced into the binary collision MARLOWE code. Calculated results for gold by the modified code show formation of sub-cascades and their spatial and time overlapping, which can affect formation of defect clusters. (orig.)

  4. Fabrication of a novel cascade high-pressure electro-osmotic pump.

    Science.gov (United States)

    Zhang, Feifang; Wang, Rong; Han, Tingting; Yang, Bingcheng; Liang, Xinmiao

    2011-07-07

    A novel cascade electro-osmotic pump (EOP) has been fabricated by alternately connecting a cation monolithic column and anion monolithic column in series. In this manner, the change of electric polarity between each stage of the cascade EOP is easily achieved and the pressure output of the EOP could be greatly enhanced without increase of the applied voltage.

  5. Cascadability of Silicon Microring Resonators for40-Gbit/s OOK and DPSK Optical Signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; An, Yi; Lali-Dastjerdi, Zohreh

    2012-01-01

    The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators.......The cascadability of a single silicon micro-ring resonator for CSRZ-OOK and CSRZ-DPSK signals is experimentally demonstrated at 40 Gbit/s for the first time. Error-free performance is obtained for both modulation formats after 5 cascaded resonators....

  6. Development of a novel cascading TPV and TE power generation system

    International Nuclear Information System (INIS)

    Qiu, K.; Hayden, A.C.S.

    2012-01-01

    Highlights: ► A novel cascading thermophotovoltaic (TPV) and thermoelectric (TE) power generation system is proposed and developed. ► The used heat stream is taken from the TPV and applied to the input of a TE converter in the system. ► A prototype was built and tested where GaSb TPV cells and PbSnTe-based TE converter were used. ► The TPV cells generate 123.5 We whereas the TE converter generates 306.2 We in the prototype. ► It is shown the cascading power generation is feasible in fuel-fired furnaces and can be applied to micro-CHP. -- Abstract: Thermophotovoltaic (TPV) cells can convert infrared radiation into electricity. They open up possibilities for silent and stand-alone power production in fuel-fired heating equipment. Similarly, thermoelectric (TE) devices convert thermal energy directly into electricity with no moving parts. However, TE devices have relatively low efficiency for electric power generation. In this study, the concept of cascading TPV and TE power generation was developed where the used heat stream is taken from the TPV and applied to the input of a TE converter. A prototype cascading TPV and TE generation system was built and tested. GaSb TPV cells and an integrated semiconductor TE converter were used in the cascading power system. The electric output characteristics of the TPV cells and the TE converter have been investigated in the power generation system at various operating conditions. Experimental results show that the cascading power generation is feasible and has the potential for certain applications.

  7. Linewidth and tuning characteristics of terahertz quantum cascade lasers.

    Science.gov (United States)

    Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A

    2004-03-15

    We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.

  8. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

    International Nuclear Information System (INIS)

    Llordes, Anna; Palau, A.; Gazquez, J.; Coll, M.; Vlad, R.; Pomar, A.; Arbiol, Jordi; Guzman, Roger; Ye, S.; Rouco, V.; Sandiumenge, Felip; Ricart, Susagna; Puig, Teresa; Varela del Arco, Maria; Chataigner, D.; Vanacken, J.; Gutierrez, J.; Moschalkov, V.; Deutscher, G.; Magen Dominguez, Cesar; Obradors, Xavier

    2012-01-01

    Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centers in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa 2 Cu 3 O 7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.

  9. Ionizing radiation-induced MEK and Erk activation does not enhance survival of irradiated human squamous carcinoma cells

    International Nuclear Information System (INIS)

    Bonner, James A.; Vroman, Benjamin T.; Christianson, Teresa J.H.; Karnitz, Larry M.

    1998-01-01

    Purpose: Ionizing radiation (IR) triggers several intracellular signaling cascades that have commonly been regarded as mitogenic, including the Raf-MEK-Erk kinase cascade. In addition to promoting proliferation, activated MEK and Erk may also prevent cell death induced by cytotoxic stimuli. Because Raf, MEK, and Erk are activated by IR in some tumor cell lines, this suggests that IR-induced activation of the kinase cascade may enhance the survival of irradiated cells. Methods and Materials: IR-induced activation of MEK and Erk was assessed in irradiated UM-SCC-6 cells, a human squamous carcinoma cell line. Activation of MEK and Erk was blocked with the pharmacological inhibitor of MEK activation, PD098059. Clonogenic survival was assessed in irradiated UM-SCC-6 cells that were pretreated with nothing or with the MEK inhibitor. Results: In UM-SCC-6 cells, IR doses as low as 2 Gy rapidly activated MEK and Erk. Pretreatment of the cells with the pharmacological inhibitor of MEK activation, PD098059, effectively blocked IR-induced activation of MEK and Erk. However, inhibition of the kinase cascade did not affect the clonogenic survival of irradiated cells in either early or delayed-plating experiments. Conclusion: Taken together, these results suggest that although MEK and Erk are rapidly activated by IR treatment, these protein kinases do not affect the clonogenic survival of irradiated UM-SCC6 cells

  10. Analysis of displacement damage and defect production under cascade damage conditions

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Singh, B.N.

    1993-01-01

    and residual defect production must be treated separately. An evaluation of experimental and computer defect production studies indicates that the overall fraction of defects surviving correlated annihilation in an energetic displacement cascade in copper decreases from about 30% of the Norgett......-Robinson-Torrens (NRT) calculated displacements at 4 K to about 10% of the NRT displacements at 300 K. Due to differences in the thermal stability of vacancy versus interstitial clusters, the fractions of freely migrating defects available for inducing microstructural changes at elevated temperatures may be higher...... for vacancies than for interstitials. The available evidence suggests that the fraction of freely migrating vacancies at temperatures relevant for void swelling in copper is greater than or similar to 5% of the calculated NRT displacements....

  11. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    Science.gov (United States)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  12. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    Science.gov (United States)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  13. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    Energy Technology Data Exchange (ETDEWEB)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.; Samaan, Nader A.; Makarov, Yuri V.; Diao, Ruisheng; Huang, Qiuhua; Ke, Xinda

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis by developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.

  14. Cascade system using both trough system and dish system for power generation

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe

    2017-01-01

    Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m"2). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.

  15. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    International Nuclear Information System (INIS)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F

    2010-01-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  16. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Science.gov (United States)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  17. Mahonian pairs

    OpenAIRE

    Sagan, Bruce E.; Savage, Carla D.

    2012-01-01

    We introduce the notion of a Mahonian pair. Consider the set, P^*, of all words having the positive integers as alphabet. Given finite subsets S,T of P^*, we say that (S,T) is a Mahonian pair if the distribution of the major index, maj, over S is the same as the distribution of the inversion number, inv, over T. So the well-known fact that maj and inv are equidistributed over the symmetric group, S_n, can be expressed by saying that (S_n,S_n) is a Mahonian pair. We investigate various Mahonia...

  18. Cascading Corruption News

    DEFF Research Database (Denmark)

    Damgaard, Mads

    2018-01-01

    Through a content analysis of 8,800 news items and six months of front pages in three Brazilian newspapers, all dealing with corruption and political transgression, this article documents the remarkable skew of media attention to corruption scandals. The bias is examined as an information...... phenomenon, arising from systemic and commercial factors of Brazil’s news media: An information cascade of news on corruption formed, destabilizing the governing coalition and legitimizing the impeachment process of Dilma Rousseff. As this process gained momentum, questions of accountability were disregarded...... by the media, with harmful effects on democracy....

  19. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.

    Directory of Open Access Journals (Sweden)

    P Martin Sander

    Full Text Available Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM. This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism". Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.

  20. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.

    Science.gov (United States)

    Sander, P Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.

  1. Failure cascade in interdependent network with traffic loads

    International Nuclear Information System (INIS)

    Hong, Sheng; Wang, Baoqing; Wang, Jianghui; Zhao, Tingdi; Ma, Xiaomin

    2015-01-01

    Complex networks have been widely studied recent years, but most researches focus on the single, non-interacting networks. With the development of modern systems, many infrastructure networks are coupled together and therefore should be modeled as interdependent networks. For interdependent networks, failure of nodes in one network may lead to failure of dependent nodes in the other networks. This may happen recursively and lead to a failure cascade. In the real world, different networks carry different traffic loads. Overload and load redistribution may lead to more nodes’ failure. Considering the dependency between the interdependent networks and the traffic load, a small fraction of fault nodes may lead to complete fragmentation of a system. Based on the robust analysis of interdependent networks, we propose a costless defense strategy to suppress the failure cascade. Our findings highlight the need to consider the load and coupling preference when designing robust interdependent networks. And it is necessary to take actions in the early stage of the failure cascade to decrease the losses caused by the large-scale breakdown of infrastructure networks. (paper)

  2. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  3. Cascade-based attacks on complex networks

    Science.gov (United States)

    Motter, Adilson E.; Lai, Ying-Cheng

    2002-12-01

    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.

  4. Ultrasensitivity in signaling cascades revisited: Linking local and global ultrasensitivity estimations.

    Directory of Open Access Journals (Sweden)

    Edgar Altszyler

    Full Text Available Ultrasensitive response motifs, capable of converting graded stimuli into binary responses, are well-conserved in signal transduction networks. Although it has been shown that a cascade arrangement of multiple ultrasensitive modules can enhance the system's ultrasensitivity, how a given combination of layers affects a cascade's ultrasensitivity remains an open question for the general case. Here, we introduce a methodology that allows us to determine the presence of sequestration effects and to quantify the relative contribution of each module to the overall cascade's ultrasensitivity. The proposed analysis framework provides a natural link between global and local ultrasensitivity descriptors and it is particularly well-suited to characterize and understand mathematical models used to study real biological systems. As a case study, we have considered three mathematical models introduced by O'Shaughnessy et al. to study a tunable synthetic MAPK cascade, and we show how our methodology can help modelers better understand alternative models.

  5. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  6. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magnetized Weakly Collisional Plasmas

    International Nuclear Information System (INIS)

    Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.

    2009-01-01

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  7. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  8. Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?

    Science.gov (United States)

    Schweickert, Axel; Ott, Tim; Kurz, Sabrina; Tingler, Melanie; Maerker, Markus; Fuhl, Franziska; Blum, Martin

    2017-12-29

    Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure.

  9. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  10. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: Multiple states and routes to chaos

    Science.gov (United States)

    Verjus, Romuald; Guillou, Sylvain; Ezersky, Alexander; Angilella, Jean-Régis

    2016-12-01

    The sedimentation of a pair of rigid circular particles in a two-dimensional vertical channel containing a Newtonian fluid is investigated numerically, for terminal particle Reynolds numbers (ReT) ranging from 1 to 10, and for a confinement ratio equal to 4. While it is widely admitted that sufficiently inertial pairs should sediment by performing a regular DKT oscillation (Drafting-Kissing-Tumbling), the present analysis shows in contrast that a chaotic regime can also exist for such particles, leading to a much slower sedimentation velocity. It consists of a nearly horizontal pair, corresponding to a maximum effective blockage ratio, and performing a quasiperiodic transition to chaos while increasing the particle weight. For less inertial regimes, the classical oblique doublet structure and its complex behavior (multiple stable states and hysteresis, period-doubling cascade and chaotic attractor) are recovered, in agreement with previous work [Aidun, C. K. and Ding, E.-J., "Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state," Phys. Fluids 15, 1612 (2003)]. As a consequence of these various behaviors, the link between the terminal Reynolds number and the non-dimensional driving force is complex: it contains several branches displaying hysteresis as well as various bifurcations. For the range of Reynolds number considered here, a global bifurcation diagram is given.

  11. Successful Treatment Of Homozygous Familial Hypercholesterolemia Using Cascade Filtration Plasmapheresis

    Directory of Open Access Journals (Sweden)

    Fatih Kardas

    2012-12-01

    Full Text Available OBJECTIVE: The aim of our study is to discuss the efficacy of low-density lipoprotein-cholesterol (LDL-C apheresis procedure using the cascade filtration system for pediatric patients with homozygous familial hypercholesterolemia (FH, and to clarify the adverse effects and difficulties. METHODS: LDL apheresis using the cascade filtration system was performed in 3 pediatric patients with homozygous FH. In total, 120 apheresis sessions were performed for all patients. RESULTS: Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dl to 145 ± 43 mg/dl (p<0.05. We determined an acute mean reduction in the plasma levels of total cholesterol (57.9%, LDL cholesterol (70.8%, and high-density lipoprotein (HDL cholesterol (40.7%. Treatments were well tolerated. The most frequent clinical adverse effects were hypotension in 3 sessions (2.5%, chills/feeling cold (1.7% in 2 sessions, and nausea and vomiting in 3 sessions (2.5%. CONCLUSION: Our experience with three patients using the cascade filtration system were, good clinical outcomes, laboratory findings, safety of usage, minor adverse effects and technical problems.

  12. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    International Nuclear Information System (INIS)

    Tikhonchev, M.; Svetukhin, V.; Kadochkin, A.; Gaganidze, E.

    2009-01-01

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is ∼0.2 NRT that is slightly higher than for pure α-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  13. MD simulation of atomic displacement cascades in Fe-10 at.%Cr binary alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonchev, M., E-mail: tikhonchev@sv.ulsu.r [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Joint Stock Company, ' State Scientific Center Research Institute of Atomic Reactors' , 433510 Dimitrovgrad-10 (Russian Federation); Svetukhin, V.; Kadochkin, A. [Ulyanovsk State University, Leo Tolstoy Str., 42, Ulyanovsk 432970 (Russian Federation); Gaganidze, E. [Forschungszentrum Karlsruhe, IMF II, 3640, D-76021 Karlsruhe (Germany)

    2009-12-15

    Molecular dynamics simulation of atomic displacement cascades up to 20 keV has been performed in Fe-10 at.%Cr binary alloy at a temperature of 600 K. The N-body interatomic potentials of Finnis-Sinclair type were used. According to the obtained results the dependence of 'surviving' defects amount is well approximated by power function that coincides with other researchers' results. Obtained cascade efficiency for damage energy in the range from 10 to 20 keV is approx0.2 NRT that is slightly higher than for pure alpha-Fe. In post-cascade area Cr fraction in interstitials is in range 2-5% that is essentially lower than Cr content in the base alloy. The results on size and amount of vacancy and interstitial clusters generated in displacement cascades are obtained. For energies of 2 keV and higher the defect cluster average size increases and it is well approximated by a linear dependence on cascade energy both for interstitials and vacancies.

  14. Glucose detection in a highly scattering medium with diffuse photon-pair density wave

    Directory of Open Access Journals (Sweden)

    Li-Ping Yu

    2017-01-01

    Full Text Available We propose a novel optical method for glucose measurement based on diffuse photon-pair density wave (DPPDW in a multiple scattering medium (MSM where the light scattering of photon-pair is induced by refractive index mismatch between scatters and phantom solution. Experimentally, the DPPDW propagates in MSM via a two-frequency laser (TFL beam wherein highly correlated pairs of linear polarized photons are generated. The reduced scattering coefficient μ2s′ and absorption coefficient μ2a of DPPDW are measured simultaneously in terms of the amplitude and phase measurements of the detected heterodyne signal under arrangement at different distances between the source and detection fibers in MSM. The results show that the sensitivity of glucose detection via glucose-induced change of reduced scattering coefficient (δμ2s′ is 0.049%mM−1 in a 1% intralipid solution. In addition, the linear range of δμ2s′ vs glucose concentration implies that this DPPDW method can be used to monitor glucose concentration continuously and noninvasively subcutaneously.

  15. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  16. A field-based characterization of conductivity in areas of minimal alteration: A case example in the Cascades of northwestern United States.

    Science.gov (United States)

    Cormier, Susan M; Zheng, Lei; Hayslip, Gretchen; Flaherty, Colleen M

    2018-08-15

    The concentration of salts in streams is increasing world-wide making freshwater a declining resource. Developing thresholds for freshwater with low specific conductivity (SC), a measure of dissolved ions in water, may protect high quality resources that are refugia for aquatic life and that dilute downstream waters. In this case example, methods are illustrated for estimating protective levels for streams with low SC. The Cascades in the Pacific Northwest of the United States of America was selected for the case study because a geophysical model indicated that the SC of freshwater streams was likely to be very low. Also, there was an insufficient range in the SC data to accurately derive a criterion using the 2011, US Environmental Protection Agency field-based extirpation concentration distribution method. Instead, background and a regression model was used to estimate chronic and acute SC levels that could extirpate 5% of benthic invertebrate genera. Background SC was estimated at the 25th centile (33μS/cm) of the measured data and used as the independent variable in a least squares empirical background-to-criteria (B-C) model. Because no comparison could be made with effect levels estimated from a paired SC and biological data set from the Cascades, the lower 50% prediction limit (PL) was identified as an example chronic water quality criterion (97μS/cm). The maximum exposure threshold was estimated at the 90th centile SC of streams meeting the chronic SC level. The example acute SC level was 190μS/cm. Because paired aquatic life and SC data are often sparse, the B-C method is useful for developing SC criteria for other systems with limited data. Published by Elsevier B.V.

  17. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Science.gov (United States)

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...

  18. Semiclassical description of soliton-antisoliton pair production in particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Levkov, D.G. [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2015-11-10

    We develop a consistent semiclassical method to calculate the probability of topological soliton-antisoliton pair production in collisions of elementary particles. In our method one adds an auxiliary external field pulling the soliton and antisoliton in the opposite directions. This transforms the original scattering process into a Schwinger pair creation of the solitons induced by the particle collision. One describes the Schwinger process semiclassically and recovers the original scattering probability in the limit of vanishing external field. We illustrate the method in (1+1)-dimensional scalar field model where the suppression exponents of soliton-antisoliton production in the multiparticle and two-particle collisions are computed numerically.

  19. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  20. Effects of in-cascade defect clustering on near-term defect evolution

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.