WorldWideScience

Sample records for induced macrophage derived

  1. Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy.

    Directory of Open Access Journals (Sweden)

    Changlong Li

    Full Text Available Adiponectin (APN secreted from perivascular adipose tissue (PVAT is one of the important anti-inflammatory adipokines to inhibit the development of atherosclerosis, but the underlying mechanism has not been clarified. In this study, we aimed to elucidate how APN regulates plaque formation in atherosclerosis.To assess the role of APN secreted by PVAT in atherosclerosis progression, we performed PVAT transplantation experiments on carotid artery atherosclerosis model: ApoE knockout (ApoE-/- mice with a perivascular collar placement around the left carotid artery in combination with a high-fat diet feeding. Our results show that the ApoE-/- mice with PVAT derived from APN knockout (APN-/- mice exhibited accelerated plaque volume formation compared to ApoE-/- mice transplanted with wild-type littermate tissue. Conversely, autophagy in macrophages was significantly attenuated in ApoE-/- mice transplanted with APN-/- mouse-derived PVAT compared to controls. Furthermore, in vitro studies indicate that APN treatment increased autophagy in primary macrophages, as evidenced by increased LC3-I processing and Beclin1 expression, which was accompanied by down-regulation of p62. Moreover, our results demonstrate that APN promotes macrophage autophagy via suppressing the Akt/FOXO3a signaling pathway.Our results indicate that PVAT-secreted APN suppresses plaque formation by inducing macrophage autophagy.

  2. HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Muhammad Atif Zahoor

    Full Text Available Macrophages act as reservoirs of human immunodeficiency virus type 1 (HIV-1 and play an important role in its transmission to other cells. HIV-1 Vpr is a multi-functional protein involved in HIV-1 replication and pathogenesis; however, its exact role in HIV-1-infected human macrophages remains poorly understood. In this study, we used a microarray approach to explore the effects of HIV-1 Vpr on the transcriptional profile of human monocyte-derived macrophages (MDMs. More than 500 genes, mainly those involved in the innate immune response, the type I interferon pathway, cytokine production, and signal transduction, were differentially regulated (fold change >2.0 after infection with a recombinant adenovirus expressing HIV-1 Vpr protein. The differential expression profiles of select interferon-stimulated genes (ISGs and genes involved in the innate immune response, including STAT1, IRF7, MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, APOBEC3A, DDX58 (RIG-I, TNFSF10 (TRAIL, and RSAD2 (viperin were confirmed by real-time quantitative PCR and were consistent with the microarray data. In addition, at the post-translational level, HIV-1 Vpr induced the phosphorylation of STAT1 at tyrosine 701 in human MDMs. These results demonstrate that HIV-1 Vpr leads to the induction of ISGs and expand the current understanding of the function of Vpr and its role in HIV-1 immune pathogenesis.

  3. Induced pluripotent stem cell derived macrophages as a cellular system to study salmonella and other pathogens.

    Directory of Open Access Journals (Sweden)

    Christine Hale

    Full Text Available A number of pathogens, including several human-restricted organisms, persist and replicate within macrophages (Mφs as a key step in pathogenesis. The mechanisms underpinning such host-restricted intracellular adaptations are poorly understood, in part, due to a lack of appropriate model systems. Here we explore the potential of human induced pluripotent stem cell derived macrophages (iPSDMs to study such pathogen interactions. We show iPSDMs express a panel of established Mφ-specific markers, produce cytokines, and polarise into classical and alternative activation states in response to IFN-γ and IL-4 stimulation, respectively. iPSDMs also efficiently phagocytosed inactivated bacterial particles as well as live Salmonella Typhi and S. Typhimurium and were able to kill these pathogens. We conclude that iPSDMs can support productive Salmonella infection and propose this as a flexible system to study host/pathogen interactions. Furthermore, iPSDMs can provide a flexible and practical cellular platform for assessing host responses in multiple genetic backgrounds.

  4. Degradation of amyloid beta by human induced pluripotent stem cell-derived macrophages expressing Neprilysin-2

    Directory of Open Access Journals (Sweden)

    Koutaro Takamatsu

    2014-11-01

    Full Text Available The purpose of this study was to evaluate the therapeutic potential of human induced pluripotent stem (iPS cell-derived macrophage-like cells for Alzheimer's disease (AD. In previous studies, we established the technology to generate macrophage-like myeloid lineage cells with proliferating capacity from human iPS cells, and we designated the cells iPS-ML. iPS-ML reduced the level of Aβ added into the culture medium, and the culture supernatant of iPS-ML alleviated the neurotoxicity of Aβ. We generated iPS-ML expressing the Fc-receptor-fused form of a single chain antibody specific to Aβ. In addition, we made iPS-ML expressing Neprilysin-2 (NEP2, which is a protease with Aβ-degrading activity. In vitro, expression of NEP2 but not anti-Aβ scFv enhanced the effect to reduce the level of soluble Aβ oligomer in the culture medium and to alleviate the neurotoxicity of Aβ. To analyze the effect of iPS-ML expressing NEP2 (iPS-ML/NEP2 in vivo, we intracerebrally administered the iPS-ML/NEP2 to 5XFAD mice, which is a mouse model of AD. We observed significant reduction in the level of Aβ in the brain interstitial fluid following administration of iPS-ML/NEP2. These results suggested that iPS-ML/NEP2 may be a potential therapeutic agent in the treatment of AD.

  5. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes.

    Directory of Open Access Journals (Sweden)

    Ariadnna Cruz-Córdova

    Full Text Available Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10 in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng induced the release of IL-8 (3314-6025 pg/ml, TNF-α (39-359 pg/ml, and IL-10 (2-96 pg/ml, in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200 suppressed the secretion of IL-8, TNF-α, and IL-10 between 95-100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria.

  6. Flagella from Five Cronobacter Species Induce Pro-Inflammatory Cytokines in Macrophage Derivatives from Human Monocytes

    Science.gov (United States)

    Cruz-Córdova, Ariadnna; Rocha-Ramírez, Luz M.; Ochoa, Sara A.; Gónzalez-Pedrajo, Bertha; Espinosa, Norma; Eslava, Carlos; Hernández-Chiñas, Ulises; Mendoza-Hernández, Guillermo; Rodríguez-Leviz, Alejandra; Valencia-Mayoral, Pedro; Sadowinski-Pine, Stanislaw; Hernández-Castro, Rigoberto; Estrada-García, Iris; Muñoz-Hernández, Onofre; Rosas, Irma; Xicohtencatl-Cortes, Juan

    2012-01-01

    Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10) in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng) induced the release of IL-8 (3314–6025 pg/ml), TNF-α (39–359 pg/ml), and IL-10 (2–96 pg/ml), in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200) suppressed the secretion of IL-8, TNF-α, and IL-10 between 95–100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria. PMID:23284883

  7. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    Science.gov (United States)

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  8. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  9. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    Science.gov (United States)

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  10. NK-derived IFN-γ/IL-4 triggers the sexually disparate polarization of macrophages in CVB3-induced myocarditis.

    Science.gov (United States)

    Liu, Li; Yue, Yan; Xiong, Sidong

    2014-11-01

    Coxsackievirus B3 (CVB3) is a common etiology of myocarditis with an increased morbidity and mortality in males. We previously reported that differential polarization of macrophages contributed to sexually dimorphic susceptibility of mice to CVB3-induced myocarditis. However, the underlying kinetics, impetus as well as the molecular mechanism remain unclear. Here, we demonstrated that myocardial macrophages started to polarize at as early as day 5 post CVB3 infection in both genders of BALB/c mice, with M1 phenotype detected in males and M2a phenotype in females, and this trend was further amplified at day 7 when myocarditis reached peak. In addition, we identified that prevailed IFN-γ in males and dominant IL-4 in females were critical myocardial cytokines for the disparate macrophage polarization, which respectively activated JAK1-STAT1 and JAK3-STAT6 pathways. Strikingly, we found that the main source of IFN-γ and IL-4 cytokines in both genders were myocardial infiltrating NK cells, which differentially secreted cytokines in various microenvironments manifested synergistically by sex hormones and CVB3 infection. Consistently, depletion of NK cells significantly impeded the myocardial macrophage polarization in both genders of CVB3-infected mice. Collectively, these data indicated that myocardial NK-derived IFN-γ/IL-4 was critical for the differential polarization of macrophages in CVB3-induced myocarditis via activating JAK1-STAT1 and JAK3-STAT6 pathways respectively. Our study may help understand the mechanism of sexually differential polarization of macrophages and provide clues for the gender bias in CVB3-induced myocarditis.

  11. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    Science.gov (United States)

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis.

  12. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    Science.gov (United States)

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  13. Macrophage inducible nitric oxide synthase gene expression is blocked by a benzothiophene derivative with anti-HIV properties.

    Science.gov (United States)

    Carballo, M; Conde, M; Tejedo, J; Gualberto, A; Jimenez, J; Monteseirín, J; Santa María, C; Bedoya, F J; Hunt, S W; Pintado, E; Baldwin, A S; Sobrino, F

    2002-04-01

    Nitric oxide (NO) has been shown to mediate multiple physiological and toxicological functions. The inducible nitric oxide synthase (iNOS) is responsible for the high output generation of NO by macrophages following their stimulation by cytokines or bacterial antigens. The inhibition of TNF alpha-stimulated HIV expression and the anti-inflammatory property of PD144795, a new benzothiophene derivative, have been recently described. We have now analyzed whether some of these properties could be mediated by an effect of PD144795 on NO-dependent inflammatory events. We show that PD144795 suppresses the lipopolysaccharide-elicited production of nitrite (NO(-)(2)) by primary peritoneal mouse macrophages and by a macrophage-derived cell line, RAW 264.7. This effect was dependent on the dose and timing of addition of PD144795 to the cells. Suppression of NO(-)(2) production was associated with a decrease in the amount of iNOS protein, iNOS enzyme activity and mRNA expression. The effect of PD144795 was partially abolished by coincubation of the cells with LPS and IFN gamma. However, the inhibitory effect of PD144795 was not abrogated by the simultaneous addition of LPS and TNF alpha, which indirectly suggests that the effect of PD144795 was not due to the inhibition of TNF alpha synthesis. Additionally, PD144795 did not block NF-kappa B nuclear translocation induced by LPS. Inhibition of iNOS gene expression represents a novel mechanism of PD144795 action that underlines the anti-inflammatory effects of this immunosuppressive drug.

  14. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  15. Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Ulrike Kuebler

    Full Text Available BACKGROUND: Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM, and (b that these reductions are modulated by stress hormone release. METHODS: Fourty-one healthy men (mean age 35 ± 13 years were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker before assessing HMDM microbicidal potential. RESULTS: Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p's <.05. Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14-44.72. Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001. This effect was blocked by prior incubation with phentolamine. CONCLUSIONS: Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

  16. ALV-J strain SCAU-HN06 induces innate immune responses in chicken primary monocyte-derived macrophages.

    Science.gov (United States)

    Feng, Min; Dai, Manman; Cao, Weisheng; Tan, Yan; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2017-01-01

    Avian leucosis virus subgroup J (ALV-J) can cause lifelong infection and can escape from the host immune defenses in chickens. Since macrophages act as the important defense line against invading pathogens in host innate immunity, we investigated the function and innate immune responses of chicken primary monocyte-derived macrophages (MDM) after ALV-J infection in this study. Our results indicated that ALV-J was stably maintained in MDM cells but that the viral growth rate was significantly lower than that in DF-1 cells. We also found that ALV-J infection significantly increased nitric oxide (NO) production, but had no effect on MDM phagocytic capacity. Interestingly, infection with ALV-J rapidly promoted the expression levels of Myxovirus resistance 1 (Mx) (3 h, 6 h), ISG12 (6 h), and interleukin-1β (IL-1β) (3 h, 12 h) at an early infection stage, whereas it sharply decreased the expression of Mx (24 h, 36 h), ISG12 (36 h), and made little change on IL-1β (24 h, 36 h) production at a late infection stage in MDM cells. Moreover, the protein levels of interferon-β (IFN-β) and interleukin-6 (IL-6) had sharply increased in infected MDM cells from 3 to 36 h post infection (hpi) of ALV-J. And, the protein level of interleukin-10 (IL-10) was dramatically decreased at 36 hpi in MDM cells infected with ALV-J. These results demonstrate that ALV-J can induce host innate immune responses and we hypothesize that macrophages play an important role in host innate immune attack and ALV-J immune escape.

  17. HSV-1-induced chemokine expression via IFI16-dependent and IFI16-independent pathways in human monocyte-derived macrophages

    DEFF Research Database (Denmark)

    Søby, Stine; Laursen, Rune R; Østergaard, Lars Jørgen;

    2012-01-01

    ABSTRACT: BACKGROUND: Innate recognition is essential in the antiviral response against infection by herpes simplex virus (HSV). Chemokines are important for control of HSV via recruitment of natural killer cells, T lymphocytes, and antigen-presenting cells. We previously found that early HSV-1......-mediated chemokine responses are not dependent on TLR2 and TLR9 in human macrophages. Here, we investigated the role of the recently identified innate IFN-inducible DNA receptor IFI16 during HSV-1 infection in human macrophages. METHODS: Peripheral blood mononuclear cells were purified from buffy coats...... and monocytes were differentiated to macrophages. Macrophages infected with HSV-1 were analyzed using siRNA-mediated knock-down of IFI16 by real-time PCR, ELISA, and Western blotting. RESULTS: We determined that both CXCL10 and CCL3 are induced independent of HSV-1 replication. IFI16 mediates CCL3 m...

  18. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    OpenAIRE

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Stephanie A. Amici; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Lindsay M Webb; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity o...

  19. Some bioactive potentials of two biflavanols isolated from Garcinia kola on cadmium-induced alterations of raw U937 cells and U937-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    Tebekeme Okoko; Diepreye Ere

    2013-01-01

    Objective: To investigate the abilities of two flavonoids - Garcinia biflavanol-1 (GB-1) and Garcinia biflavanol-2 (GB-2) from Garcinia kola (G. kola) in reducing cadmium-induced effects on raw U937 cells and U937-derived macrophages. Methods: Macrophage U937 cells were incubated with cadmium followed by treatment with the flavonoids and cell viability assessed via trypan blue staining. In the other experiment, the U937 cells were transformed to the macrophage form and treated with cadmium in order to activate them. The cells were later incubated with the flavonoids and finally the supernatant of each cell culture was analysed for the secretion of nitric oxide, catalyse activity, and the release of tumour necrosis factor-alpha, interleukin-1 and interleukin-2 as indices of macrophage activation. Quercetin (a flavonol) was used as the reference flavonoid in all experiments. Results: It revealed that the flavonoids significantly increased the viability of the cells and also reduced the cadmium-induced activation of the macrophage cells in a concentration-dependent manner. The flavanols GB-1 and GB-2 possessed higher activities than quercetin in all cases (P<0.05). Garcinia biflavanol-2 possessed a higher bioactivity than GB-1 significantly (P<0.05). Conclusions: In addition to corroborating the several reported importance of G. kola as a potential neutraceutical and pharmacological condiment, the study also clearly indicates the role hydroxylation especially at the 3´- position of polyphenols could play in enhancing bioactivities of flavonoids.

  20. Arcobacter butzleri induces a pro-inflammatory response in THP-1 derived macrophages and has limited ability for intracellular survival.

    Science.gov (United States)

    zur Bruegge, Jennifer; Hanisch, Carlos; Einspanier, Ralf; Alter, Thomas; Gölz, Greta; Sharbati, Soroush

    2014-11-01

    Recent case reports have identified Arcobacter (A.) butzleri to be another emerging pathogen of the family Campylobacteraceae causing foodborne diseases. However, little is known about its interaction with the human immune system. As macrophages act as first defense against bacterial infections, we studied for the first time the impact of A. butzleri on human macrophages using THP-1 derived macrophages as an in vitro infection model. Our investigations considered the inflammatory response, intracellular survival and activation of caspases as potential virulence mechanisms employed by A. butzleri. Induction of IL-1α, IL-1ß, IL-6, IL-8, IL-12ß and TNFα demonstrated a pro-inflammatory response of infected macrophages towards A. butzleri. gentamycin protection assays revealed the ability of A. butzleri strains to survive and resist the hostile environment of phagocytic immune cells for up to 22 h. Moreover, initial activation of intitiator- (CASP8) as well as effector caspases (CASP3/7) was observed without the onset of DNA damage, suggesting a potential counter regulation. Intriguingly, we recognized distinct strain specific differences in invasion and survival capabilities. This suggests the existence of isolate dependent phenotype variations and different virulence potentials as known for other intestinal pathogens such as Salmonella enterica ssp.

  1. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Science.gov (United States)

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  2. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Directory of Open Access Journals (Sweden)

    Karina Sánchez-Reyes

    2014-01-01

    Full Text Available Cervical cancer (CC is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated and M2 (alternatively activated. Macrophage polarization exerts profound effects on the Toll-like receptor (TLR profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  3. Bone Marrow-Derived Macrophages (BMM)

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Porse, Bo

    2008-01-01

    INTRODUCTIONBone marrow-derived macrophages (BMM) are primary macrophage cells, derived from bone marrow cells in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is a lineage-specific growth factor that is responsible for the proliferation and differentiation...... of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929 cells...... and is used in the form of L929-conditioned medium. Under these conditions, the bone marrow monocyte/macrophage progenitors will proliferate and differentiate into a homogenous population of mature BMMs. The efficiency of the differentiation is assessed using fluorescence-activated cell sorting (FACS...

  4. Extracellular ATP does not induce P2X7 receptor-dependent responses in cultured renal- and liver-derived swine macrophages

    Directory of Open Access Journals (Sweden)

    Takato Takenouchi

    2014-01-01

    Full Text Available The P2X7 receptor (P2X7R is an ATP-gated cation channel that is abundantly expressed in monocytes/macrophages. P2X7R activation by ATP results in various cellular responses including Ca2+ influx, membrane pore formation, and cytokine secretion. Since P2X7R has low affinity for ATP, high concentrations of ATP (in the mM range are generally required to activate this receptor in vitro. Functional expression of P2X7R has been detected in monocytes/macrophages obtained from different animal species including humans, rodents, dogs, and bovines, but so far it has not been detected in swine (Sus scrofa. In this study, we investigated the expression and functions of P2X7R in swine macrophages, which were isolated from mixed primary cultures of swine kidney or liver tissue. The P2X7R mRNA and protein expression observed in the swine macrophages was comparable to that seen in a c-myc-immortalized mouse kidney-derived clonal macrophage cell line (KM-1. However, extracellular ATP did not induce P2X7R-dependent sustained Ca2+ influx, membrane pore formation, or the secretion of the bioactive cytokine interleukin-1β in the swine macrophages, whereas these responses were clearly observed in the mouse KM-1 cells after stimulation with millimolar concentrations of ATP as a positive control. These findings suggest that the ATP/P2X7R pathway is impaired in swine macrophages at least in the culture conditions used in the present study.

  5. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  6. In vitro evidence for the protective role of Sida rhomboidea. Roxb extract against LDL oxidation and oxidized LDL-induced apoptosis in human monocyte-derived macrophages.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjisinh V; Ramachandran, A V

    2011-06-01

    The present study was undertaken to evaluate protective role of S. rhomboidea. Roxb (SR) leaf extract against in vitro low-density lipoprotein (LDL) oxidation and oxidized LDL (Ox-LDL) induced macrophage apoptosis. Copper and cell-mediated LDL oxidation, Ox-LDL-induced peroxyl radical generation, mitochondrial activity, and apoptosis in human monocyte-derived macrophages (HMDMs) were assessed in presence of SR extract. Results clearly indicated that SR was capable of reducing LDL oxidation and formation of intermediary oxidation products. Also, SR successfully attenuated peroxyl radical formation, mitochondrial dysfunction, nuclear condensation, and apoptosis in Ox-LDL-exposed HMDMs. This scientific report is the first detailed investigation that establishes anti-atherosclerotic potential of SR extract.

  7. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients.

    Science.gov (United States)

    Jung, Karen; Sabri, Siham; Hanson, John; Xu, Yaoxian; Wang, Ying Wayne; Lai, Raymond; Abdulkarim, Bassam S

    2015-01-01

    Radiation therapy (RT) the front-line treatment after surgery for early breast cancer patients is associated with acute skin toxicities in at least 40% of treated patients. Monocyte-derived macrophages are polarized into functionally distinct (M1 or M2) activated phenotypes at injury sites by specific systemic cytokines known to play a key role in the transition between damage and repair in irradiated tissues. The role of M1 and M2 macrophages in RT-induced acute skin toxicities remains to be defined. We investigated the potential value of M1 and M2 macrophages as predictive factors of RT-induced skin toxicities in early breast cancer patients treated with adjuvant RT after lumpectomy. Blood samples collected from patients enrolled in a prospective clinical study (n = 49) were analyzed at baseline and after the first delivered 2Gy RT dose. We designed an ex vivo culture system to differentiate patient blood monocytes into macrophages and treated them with M1 or M2-inducing cytokines before quantitative analysis of their "M1/M2" activation markers, iNOS, Arg1, and TGFß1. Statistical analysis was performed to correlate experimental data to clinical assessment of acute skin toxicity using Common Toxicity Criteria (CTC) grade for objective evaluation of skin reactions. Increased ARG1 mRNA significantly correlated with higher grades of erythema, moist desquamation, and CTC grade. Multivariate analysis revealed that increased ARG1 expression in macrophages after a single RT dose was an independent prognostic factor of erythema (p = 0 .032), moist desquamation (p = 0 .027), and CTC grade (p = 0 .056). Interestingly, multivariate analysis of ARG1 mRNA expression in macrophages stimulated with IL-4 also revealed independent prognostic value for predicting acute RT-induced toxicity factors, erythema (p = 0 .069), moist desquamation (p = 0 .037), and CTC grade (p = 0 .046). To conclude, our findings underline for the first time the biological significance of increased ARG1 m

  8. Decreased eccentric exercise-induced macrophage infiltration in skeletal muscle after supplementation with a class of ginseng-derived steroids.

    Directory of Open Access Journals (Sweden)

    Szu-Hsien Yu

    Full Text Available Dammarane steroids (DS are a class of chemical compounds present in Panax ginseng. Here, we evaluated the effect of 10 weeks of DS supplementation on inflammatory modulation in the soleus muscle following eccentric exercise (EE-induced muscle damage (downhill running. Eighty rats were randomized into 4 groups of DS supplementation (saline, 20, 60, 120 mg/kg body weight. Inflammatory markers were measured at rest and again 1 h after EE. At rest, NFκB signaling, TNF-alpha and IL-6 mRNAs, 3-nitrotyrosine, glutathione peroxidase, and GCS (glutamylcysteine synthetase levels were significantly elevated in the skeletal muscle of DS-treated rats in a dose-dependent manner. Additionally, there were no detectable increases in the number of necrotic muscle fibers or CD68+ M1 macrophages. However, muscle strength, centronucleation, IL-10 mRNA expression, and the number of CD163+ M2 macrophages increased significantly over controls with DS treatment in rat soleus muscle. Under EE-challenged conditions, significant increases in muscle fiber necrosis, CD68+ M1 macrophage distribution, and 3-nitrotyrosine were absent in rats that received low and medium doses (20 and 60 mg/kg of DS treatment, suggesting that DS possess anti-inflammatory action protecting against a muscle-damaging challenge. However, this protective activity was diminished when a high dose of DS (120 mg/kg was administered, suggesting that DS possess hormetic properties. In conclusion, our study provides new evidence suggesting that DS is an ergogenic component of ginseng that potentiate inflammation at baseline but that produce anti-inflammatory effects on skeletal muscle following muscle-damaging exercise. Furthermore, high doses should be avoided in formulating ginseng-based products.

  9. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages

    Directory of Open Access Journals (Sweden)

    Marco Ruggiero

    2013-07-01

    Full Text Available The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH(2D3, its two binding proteins that are the vitamin D receptor (VDR and the vitamin D-binding protein-derived macrophage activating factor (GcMAF. In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This al1ows 1,25(OH(2D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.

  10. A novel role for a major component of the vitamin D axis: vitamin D binding protein-derived macrophage activating factor induces human breast cancer cell apoptosis through stimulation of macrophages.

    Science.gov (United States)

    Thyer, Lynda; Ward, Emma; Smith, Rodney; Fiore, Maria Giulia; Magherini, Stefano; Branca, Jacopo J V; Morucci, Gabriele; Gulisano, Massimo; Ruggiero, Marco; Pacini, Stefania

    2013-07-08

    The role of vitamin D in maintaining health appears greater than originally thought, and the concept of the vitamin D axis underlines the complexity of the biological events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF stimulates macrophages, which in turn attack human breast cancer cells, induce their apoptosis and eventually phagocytize them. These results are consistent with the observation that macrophages infiltrated implanted tumors in mice after GcMAF injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, located at the inner part of the plasma membrane, interact with the first 23 hydrophobic amino acids of the GcMAF located at the external part of the plasma membrane. This allows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin D-binding proteins, thus postulating a novel molecular mode of interaction between GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that GcMAF has multiple biological activities that could be responsible for its anti-cancer effects, possibly through molecular interaction with the VDR that in turn is responsible for a multitude of non-genomic as well as genomic effects.

  11. Protective role of spleen-derived macrophages in lung inflammation, injury, and fibrosis induced by nitrogen mustard.

    Science.gov (United States)

    Venosa, Alessandro; Malaviya, Rama; Gow, Andrew J; Hall, Leroy; Laskin, Jeffrey D; Laskin, Debra L

    2015-12-15

    Nitrogen mustard (NM) is a vesicant that causes lung injury and fibrosis, accompanied by a persistent macrophage inflammatory response. In these studies we analyzed the spleen as a source of these cells. Splenectomized (SPX) and sham control rats were treated intratracheally with NM (0.125 mg/kg) or PBS control. Macrophage responses were analyzed 1-7 days later. Splenectomy resulted in an increase in lung macrophages expressing CCR2, but a decrease in ATR-1α(+) cells, receptors important in bone marrow and spleen monocyte trafficking, respectively. Splenectomy was also associated with an increase in proinflammatory M1 (iNOS(+), CD11b(+)CD43(+)) macrophages in lungs of NM-treated rats, as well as greater upregulation of iNOS and COX-2 mRNA expression. Conversely, a decrease in CD11b(+)CD43(-) M2 macrophages was observed in SPX rats, with no changes in CD68(+), CD163(+), CD206(+), or YM-1(+) M2 macrophages, suggesting distinct origins of M2 subpopulations responding to NM. Macrophage expression of M2 genes including IL-10, ApoE, PTX-2, PTX-3, 5-HT2α, and 5-HT7 was also reduced in NM-treated SPX rats compared with shams, indicating impaired M2 activity. Changes in lung macrophages responding to NM as a consequence of splenectomy were correlated with exacerbated tissue injury and more rapid fibrogenesis. These data demonstrate that the spleen is a source of a subset of M2 macrophages with anti-inflammatory activity; moreover, in their absence, proinflammatory/cytotoxic M1 macrophages predominate in the lung, resulting in heightened pathology. Understanding the origin of macrophages and characterizing their phenotype after vesicant exposure may lead to more targeted therapeutics aimed at reducing toxicity and disease pathogenesis.

  12. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zhao, Leping [Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Zhaoyu [Department of International High School, Shanghai Jiaotong University Nanyang Affiliated (Kunshan) School, Minhang District, Shanghai (China); Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Dan, E-mail: yqyyld@163.com [Department of Nephrology, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  13. Infection of equine monocyte-derived macrophages with an attenuated equine infectious anemia virus (EIAV) strain induces a strong resistance to the infection by a virulent EIAV strain.

    Science.gov (United States)

    Ma, Jian; Wang, Shan-Shan; Lin, Yue-Zhi; Liu, Hai-Fang; Liu, Qiang; Wei, Hua-Mian; Wang, Xue-Feng; Wang, Yu-Hong; Du, Cheng; Kong, Xian-Gang; Zhou, Jian-Hua; Wang, Xiaojun

    2014-08-09

    The Chinese attenuated equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. Given that the induction of immune protection results from the interactions between viruses and hosts, a better understanding of the characteristics of vaccine strain infection and host responses would be useful for elucidating the mechanism of the induction of immune protection by the Chinese attenuated EIAV strain. In this study, we demonstrate in equine monocyte-derived macrophages (eMDM) that EIAVFDDV13, a Chinese attenuated EIAV strain, induced a strong resistance to subsequent infection by a pathogenic strain, EIAVUK3. Further experiments indicate that the expression of the soluble EIAV receptor sELR1, Toll-like receptor 3 (TLR3) and interferon β (IFNβ) was up-regulated in eMDM infected with EIAVFDDV13 compared with eMDM infected with EIAVUK3. Stimulating eMDM with poly I:C resulted in similar resistance to EIAV infection as induced by EIAVFDDV13 and was correlated with enhanced TLR3, sELR1 and IFNβ expression. The knock down of TLR3 mRNA significantly impaired poly I:C-stimulated resistance to EIAV, greatly reducing the expression of sELR1 and IFNβ and lowered the level of infection resistance induced by EIAVFDDV13. These results indicate that the induction of restraining infection by EIAVFDDV13 in macrophages is partially mediated through the up-regulated expression of the soluble viral receptor and IFNβ, and that the TLR3 pathway activation plays an important role in the development of an EIAV-resistant intracellular environment.

  14. Salmonella typhimurium Invasion Induces Apoptosis in Infected Macrophages

    Science.gov (United States)

    Monack, Denise M.; Raupach, Barbel; Hromockyj, Alexander E.; Falkow, Stanley

    1996-09-01

    Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

  15. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  16. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Essafi-Benkhadir, Khadija [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Refai, Amira [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia); Riahi, Ichrak [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Fattouch, Sami [Laboratory LIP-MB National Institute of Applied Sciences and Technology, Tunis (Tunisia); Karoui, Habib [Laboratoire d' epidemiologie Moleculaire et Pathologie Experimentale Appliquee Aux Maladies Infectieuses, Institut Pasteur de Tunis (Tunisia); Essafi, Makram, E-mail: makram.essafi@pasteur.rns.tn [Laboratoire de Recherche sur la Transmission, le Controle et l' immunobiologie des Infections, Institut Pasteur de Tunis (Tunisia)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  17. Macrophage CD74 contributes to MIF-induced pulmonary inflammation

    Directory of Open Access Journals (Sweden)

    Al-Abed Yousef

    2009-05-01

    Full Text Available Abstract Background MIF is a critical mediator of the host defense, and is involved in both acute and chronic responses in the lung. Neutralization of MIF reduces neutrophil accumulation into the lung in animal models. We hypothesized that MIF, in the alveolar space, promotes neutrophil accumulation via activation of the CD74 receptor on macrophages. Methods To determine whether macrophage CD74 surface expression contributes MIF-induced neutrophil accumulation, we instilled recombinant MIF (r-MIF into the trachea of mice in the presence or absence of anti-CD74 antibody or the MIF specific inhibitor, ISO-1. Using macrophage culture, we examined the downstream pathways of MIF-induced activation that lead to neutrophil accumulation. Results Intratracheal instillation of r-MIF increased the number of neutrophils as well as the concentration of macrophage inflammatory protein 2 (MIP-2 and keratinocyte-derived chemokine (KC in BAL fluids. CD74 was found to be expressed on the surface of alveolar macrophages, and MIF-induced MIP-2 accumulation was dependent on p44/p42 MAPK in macrophages. Anti-CD74 antibody inhibited MIF-induced p44/p42 MAPK phosphorylation and MIP-2 release by macrophages. Furthermore, we show that anti-CD74 antibody inhibits MIF-induced alveolar accumulation of MIP-2 (control IgG vs. CD74 Ab; 477.1 ± 136.7 vs. 242.2 ± 102.2 pg/ml, p 4 vs. 1.90 ± 0.61 × 104, p Conclusion MIF-induced neutrophil accumulation in the alveolar space results from interaction with CD74 expressed on the surface of alveolar macrophage cells. This interaction induces p44/p42 MAPK activation and chemokine release. The data suggest that MIF and its receptor, CD74, may be useful targets to reduce neutrophilic lung inflammation, and acute lung injury.

  18. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.

    Science.gov (United States)

    Ismail, Noura; Wang, Yijie; Dakhlallah, Duaa; Moldovan, Leni; Agarwal, Kitty; Batte, Kara; Shah, Prexy; Wisler, Jon; Eubank, Tim D; Tridandapani, Susheela; Paulaitis, Michael E; Piper, Melissa G; Marsh, Clay B

    2013-02-07

    Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.

  19. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study.

    Science.gov (United States)

    Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G

    2011-01-14

    Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.

  20. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  1. Recombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing.

    Science.gov (United States)

    Su, Haibo; Zhu, Shenglin; Zhu, Lin; Huang, Wei; Wang, Honghai; Zhang, Zhi; Xu, Ying

    2016-01-01

    TLR2-dependent cellular signaling in Mycobacterium tuberculosis-infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2(-/-) mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4(+) T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.

  2. Synthesis of New Tricyclic and Tetracyclic Fused Coumarin Sulfonate Derivatives and Their Inhibitory Effects on LPS-Induced Nitric Oxide and PGE2 Productions in RAW 264.7 Macrophages: Part 2.

    Science.gov (United States)

    El-Gamal, Mohammed I; Lee, Woo-Seok; Shin, Ji-Sun; Oh, Chang-Hyun; Lee, Kyung-Tae; Choi, Jungseung; Myoung, Nohsun; Baek, Daejin

    2016-11-01

    The synthesis of a new series of 21 fused coumarin derivatives is described, and the biological evaluation of their in vitro antiinflammatory effects as inhibitors of lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in RAW 264.7 macrophages. The target compounds 1a-u were first tested for cytotoxicity to determine a non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production would not be caused by cytotoxicity. Compounds 1f and 1p were the most active PGE2 inhibitors with IC50 values of 0.89 and 0.95 µM, respectively. Western blot and cell-free COX-2 screening showed that their effects were due to inhibition of both COX-2 protein expression and COX-2 enzyme activity. Their IC50 values against the COX-2 enzyme were 0.67 and 0.85 µM, respectively, which is more potent than etoricoxib. The selectivity indexes of compounds 1f and 1p against COX-2 compared to COX-1 were 41.1 and 42.5, respectively. Compound 1f showed strong inhibitory effects at 5 µM concentration on COX-2 mRNA expression in LPS-induced RAW 264.7 macrophages. Moreover, the tricyclic compounds 1l and 1n as well as the tetracyclic analog 1u were the most potent NO inhibitors, with one-digit micromolar IC50 values. They showed dose-dependent inhibition of inducible nitric oxide synthase (iNOS) protein expression. The tetracyclic derivative 1u was the most potent inhibitor of NO production. It also exhibited a strong inhibitory effect on iNOS mRNA expression in LPS-induced RAW 264.7 macrophages.

  3. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  4. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA and 1,25-dihydroxyvitamin D3 (VD(3 are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD(3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM. Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.

  5. Biological characterization of purified macrophage-derived neutrophil chemotactic factor

    Directory of Open Access Journals (Sweden)

    M. Dias-Baruffi

    1995-01-01

    Full Text Available We have recently described the purification of a 54 kDa acidic protein, identified as macrophage-derived neutrophil chemotactic factor (MNCF. This protein causes in vitro chemotaxis as well as in vivo neutrophil migration even in animals treated with dexamethasone. This in vivo chemotactic activity of MNCF in animals pretreated with dexamethasone is an uncommon characteristic which discriminates MNCF from known chemotactic cytokines. MNCF is released in the supernatant by macrophage monolayers stimulated with lipopolysaccharide (LPS. In the present study, we describe some biological characteristics of homogenous purified MNCF. When assayed in vitro, MNCF gave a bell-shaped dose–response curve. This in vitro activity was shown to be caused by haptotaxis. Unlike N-formyl-methionylleucyl- phenylalanine (FMLP or interleukin 8 (IL-8, the chemotactic activity of MNCF in vivo and in vitro, was inhibited by preincubation with D-galactose but not with D-mannose. In contrast with IL-8, MNCF did not bind to heparin and antiserum against IL-8 was ineffective in inhibiting its chemotactic activity. These data indicate that MNCF induces neutrophil migration through a carbohydrate recognition property, but by a mechanism different from that of the known chemokines. It is suggested that MNCF may be an important mediator in the recruitment of neutrophils via the formation of a substrate bound chemotactic gradient (haptotaxis in the inflamed tissues.

  6. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  7. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    Science.gov (United States)

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  8. cAMP Modulates Macrophage Development by Suppressing M-CSF-Induced MAPKs Activation

    Institute of Scientific and Technical Information of China (English)

    Ning Zhu; Jian Cui; Chunxia Qiao; Yan Li; Yuanfang Ma; Jiyan Zhang; Beifen Shen

    2008-01-01

    M-CSF is a key cytokine in macrophage development by inducing MAPKs activation, and cAMP can inhibit MAPKs activation induced by inflammatory stimuli. To explore the effects of cAMP on M-CSF-induced MAPKs activation and on macrophage development, the model of bone marrow-derived murine macrophages (BMMs) was used. The effects of cAMP on M-CSF-induced MAPKs activation were analyzed by Western blotting assay, and the effects of cAMP on CD14 and F4/80 expression during macrophage development were examined by FACS analysis.Macrophage morphology showed the successful establishment of the model of macrophage development. Western blotting assay revealed that M-CSF activated ERK, JNK and p38 in both mature and immature macrophages, and cAMP inhibited M-CSF-induced ERK, JNK and p38 activation in a time-dependent manner. FACS analysis revealed that macrophage development was impaired with cAMP pretreatment. In conclusion, cAMP modulates macrophage development by suppressing M-CSF-induced MAPKs activation.

  9. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro.

    Science.gov (United States)

    Marton, Annamaria; Vizler, Csaba; Kusz, Erzsebet; Temesfoi, Viktoria; Szathmary, Zsuzsa; Nagy, Krisztina; Szegletes, Zsolt; Varo, Gyorgy; Siklos, Laszlo; Katona, Robert L; Tubak, Vilmos; Howard, O M Zack; Duda, Erno; Minarovits, Janos; Nagy, Katalin; Buzas, Krisztina

    2012-01-01

    To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.

  10. Signaling events in pathogen-induced macrophage foam cell formation.

    Science.gov (United States)

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.

  11. Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages.

    Science.gov (United States)

    Ha, Tran Minh; Ko, Wonmin; Lee, Seung Jun; Kim, Youn-Chul; Son, Jae-Young; Sohn, Jae Hak; Yim, Joung Han; Oh, Hyuncheol

    2017-09-02

    Chemical study on the extract of a marine-derived fungal strain Penicillium sp. SF-5859 yielded a new curvularin derivative (1), along with eight known curvularin-type polyketides (2-9). The structures of these metabolites (1-9) were established by comprehensive spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). In vitro anti-inflammatory effects of these metabolites were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Among these metabolites, 3-9 were shown to strongly inhibit LPS-induced overproduction of nitric oxide (NO) and prostaglandin E₂ (PGE₂) with IC50 values ranging from 1.9 μM to 18.1 μM, and from 2.8 μM to 18.7 μM, respectively. In the further evaluation of signal pathways involved in these effects, the most active compound, (10E,15S)-10,11-dehydrocurvularin (8) attenuated the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 macrophages. Furthermore, compound 8 was shown to suppress the upregulation of pro-inflammatory mediators and cytokines via the inhibition of the nuclear factor-κB (NF-κB) signaling pathway, but not through the mitogen-activated protein kinase (MAPK) pathway. Based on the comparisons of the different magnitude of the anti-inflammatory effects of these structurally-related metabolites, it was suggested that the opening of the 12-membered lactone ring in curvularin-type metabolites and blocking the phenol functionality led to the significant decrease in their anti-inflammatory activity.

  12. The Ca2+ Antagonizing Effect of Chinese Cobra Venom Factor on Formation of Macrophage-derived Foam Cells

    Institute of Scientific and Technical Information of China (English)

    谭健苗; 杨向东; 姜志胜; 李亮

    2007-01-01

    Purpose CCVF was isolated from Chinese cobra (Naja naja) venom, its Ca2+ antagonizing effect on formation of macrophage-derived foam cells was explored in these studies. Methods Foam cell models were induced with C57BL/6J mouse peritoneal macrophages incubated in 10mg/L oxidized low density lipoprotein (OLDL), and their intracellular Ca2+ levels influenced both slowly and transiently by CCVF were determined with the technique of Ca2+ fluorescent indicator. Results The intracellular Ca2+ level with the macrophages incubated in 10mg/L OLDL and 10mg/L CCVF was 40.2% of the macrophages incubated in 10mg/L OLDL (P<0.05); While the transient influence of CCVF on the intracellular Ca2+ levels were not significant. Conclusion CCVF exerted a long-lasting antagonizing role on the enhancement of intracellular Ca2+ levels, thus inhibited the formation of macrophage-derived foam cell.

  13. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategie

  14. Could a B-1 cell derived phagocyte "be one" of the peritoneal macrophages during LPS-driven inflammation?

    Directory of Open Access Journals (Sweden)

    Ana Flavia Popi

    Full Text Available The inflammatory response is driven by signals that recruit and elicit immune cells to areas of tissue damage or infection. The concept of a mononuclear phagocyte system postulates that monocytes circulating in the bloodstream are recruited to inflamed tissues where they give rise to macrophages. A recent publication demonstrated that the large increase in the macrophages observed during infection was the result of the multiplication of these cells rather than the recruitment of blood monocytes. We demonstrated previously that B-1 cells undergo differentiation to acquire a mononuclear phagocyte phenotype in vitro (B-1CDP, and we propose that B-1 cells could be an alternative origin for peritoneal macrophages. A number of recent studies that describe the phagocytic and microbicidal activity of B-1 cells in vitro and in vivo support this hypothesis. Based on these findings, we further investigated the differentiation of B-1 cells into phagocytes in vivo in response to LPS-induced inflammation. Therefore, we investigated the role of B-1 cells in the composition of the peritoneal macrophage population after LPS stimulation using osteopetrotic mice, BALB/Xid mice and the depletion of monocytes/macrophages by clodronate treatment. We show that peritoneal macrophages appear in op/op((-/- mice after LPS stimulation and exhibit the same Ig gene rearrangement (VH11 that is often found in B-1 cells. These results strongly suggest that op/op((-/- peritoneal "macrophages" are B-1CDP. Similarly, the LPS-induced increase in the macrophage population was observed even following monocyte/macrophage depletion by clodronate. After monocyte/macrophage depletion by clodronate, LPS-elicited macrophages were observed in BALB/Xid mice only following the transfer of B-1 cells. Based on these data, we confirmed that B-1 cell differentiation into phagocytes also occurs in vivo. In conclusion, the results strongly suggest that B-1 cell derived phagocytes are a component of

  15. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking.

  16. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages

    Science.gov (United States)

    Wang, Limei; Palme, Veronika; Rotter, Susanne; Schilcher, Nicole; Cukaj, Malsor; Wang, Dongdong; Ladurner, Angela; Heiss, Elke H.; Stangl, Herbert; Dirsch, Verena M.; Atanasov, Atanas G.

    2017-01-01

    Scope Increased macrophage cholesterol efflux (ChE) is considered to have anti-atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP-1-derived macrophages, and mechanisms underlying this effect are explored. Methods and results Without affecting cell viability, piperine concentration-dependently enhances ChE in THP-1-derived macrophages from 25 to 100 μM. The expression level of the key cholesterol transporter protein ATP-binding cassette transporter A1 (ABCA1) is significantly upregulated by piperine, as revealed by western blot analyses. However, two other ChE-mediating transporter proteins, ATP-binding cassette transporter G1 (ABCG1) and scavenger receptor class B member 1 (SR-B1), remain unaffected. Piperine exerts no influence on ABCA1 mRNA levels, but significantly inhibits the degradation of ABCA1, as evident by an increased half-life of the protein in the presence of cycloheximide. Furthermore, it is found that piperine likely interferes with the calpain-mediated ABCA1 degradation pathway and exhibits significant inhibition of calpain activity. Conclusion Our findings suggest that piperine promotes ChE in THP-1-derived macrophages by upregulation of ABCA1, which might be mediated by inhibition of calpain activity. This novel bioactivity makes the dietary constituent piperine a good candidate to be further explored for therapeutic or preventive applications in the context of atherosclerosis. PMID:27862930

  17. Mechanisms of macrophage activation in obesity-induced insulin resistance

    OpenAIRE

    Odegaard, Justin I.; Chawla, Ajay

    2008-01-01

    Chronic inflammation is now recognized as a key step in the pathogenesis of obesity-induced insulin resistance and type 2 diabetes mellitus. This low-grade inflammation is mediated by the inflammatory (classical) activation of recruited and resident macrophages that populate metabolic tissues, including adipose tissue and liver. These findings have led to the concept that infiltration and activation of adipose tissue macrophages is causally linked to obesity-induced insulin resistance. Studie...

  18. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis.

    Science.gov (United States)

    Wang, Shuang; Meng, Xiao-Ming; Ng, Yee-Yung; Ma, Frank Y; Zhou, Shuang; Zhang, Yang; Yang, Chen; Huang, Xiao-Ru; Xiao, Jun; Wang, Ying-Ying; Ka, Shuk-Man; Tang, Yong-Jiang; Chung, Arthur C K; To, Ka-Fai; Nikolic-Paterson, David J; Lan, Hui-Yao

    2016-02-23

    Myofibroblasts are a main cell-type of collagen-producing cells during tissue fibrosis, but their origins remains controversial. While bone marrow-derived myofibroblasts in renal fibrosis has been reported, the cell origin and mechanisms regulating their transition into myofibroblasts remain undefined. In the present study, cell lineage tracing studies by adoptive transfer of GFP+ or dye-labelled macrophages identified that monocyte/macrophages from bone marrow can give rise to myofibroblasts via the process of macrophage-myofibroblast transition (MMT) in a mouse model of unilateral ureteric obstruction. The MMT cells were a major source of collagen-producing fibroblasts in the fibrosing kidney, accounting for more than 60% of α-SMA+ myofibroblasts. The MMT process occurred predominantly within M2-type macrophages and was regulated by TGF-β/Smad3 signalling as deletion of Smad3 in the bone marrow compartment of GFP+ chimeric mice prevented the M2 macrophage transition into the MMT cells and progressive renal fibrosis. In vitro studies in Smad3 null bone marrow macrophages also showed that Smad3 was required for TGF-β1-induced MMT and collagen production. In conclusion, we have demonstrated that bone marrow-derived fibroblasts originate from the monocyte/macrophage population via a process of MMT. This process contributes to progressive renal tissue fibrosis and is regulated by TGF-β/Smad3 signalling.

  19. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators.

    Directory of Open Access Journals (Sweden)

    Karina Furlani Zoccal

    Full Text Available Scorpion sting-induced human envenomation provokes an intense inflammatory reaction. However, the mechanisms behind the recognition of scorpion venom and the induction of mediator release in mammalian cells are unknown. We demonstrated that TLR2, TLR4 and CD14 receptors sense Tityus serrulatus venom (TsV and its major component, toxin 1 (Ts1, to mediate cytokine and lipid mediator production. Additionally, we demonstrated that TsV induces TLR2- and TLR4/MyD88-dependent NF-κB activation and TLR4-dependent and TLR2/MyD88-independent c-Jun activation. Similar to TsV, Ts1 induces MyD88-dependent NF-κB phosphorylation via TLR2 and TLR4 receptors, while c-Jun activation is dependent on neither TLR2 nor TLR4/MyD88. Therefore, we propose the term venom-associated molecular pattern (VAMP to refer to molecules that are introduced into the host by stings and are recognized by PRRs, resulting in inflammation.

  20. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  1. NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2017-01-01

    Full Text Available Introduction. To investigate the contribution and mechanism of NLRP3 inflammasome expression in human wounds in diabetes mellitus and in high glucose induced macrophages. Methods. In the present study, we compared the expression of NLRP3 inflammasome in debridement wound tissue from diabetic and nondiabetic patients. We also examined whether high glucose induces NLRP3 inflammasome expression in cultures THP-1-derived macrophages and the influence on IL-1β expression. Results. The expressions of NLRP3, caspase1, and IL-1β, at both the mRNA and protein level, were significantly higher in wounds of diabetic patients compared with nondiabetic wounds (P<0.05. High glucose induced a significant increase in NLRP3 inflammasome and IL-1β expression in THP-1-derived macrophages. M1 macrophage surface marker with CCR7 was significantly upregulated after high glucose stimulation. SiRNA-mediated silencing of NLRP3 expression downregulates the expression of IL-1β. Conclusion. The higher expression of NLRP3, caspase1, and secretion of IL-1β, signaling, and activation might contribute to the hyperinflammation in the human diabetic wound and in high glucose induced macrophages. It may be a novel target to treat the DM patients with chronic wound.

  2. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Sabrina Pacor

    2015-01-01

    Full Text Available Two fullerene derivatives (fullerenes 1 and 2, bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  3. Effects of Two Fullerene Derivatives on Monocytes and Macrophages.

    Science.gov (United States)

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Lucafò, Marianna; Da Ros, Tatiana; Prato, Maurizio; Sava, Gianni

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  4. Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw 264.7 murine macrophage functions.

    Science.gov (United States)

    Gamal-Eldeen, Amira M; Amer, Hassan; Helmy, Wafaa A; Talaat, Roba M; Ragab, Halla

    2007-06-01

    In this study, a chemical modification of the polysaccharides extract (E) derived from Leucaena leucocephala seeds was performed to prepare C-glycosidic 2-propanol derivative (PE), and its sulphated derivative (SPE). This study aimed to characterize immunomodulatory activities of the original extract and its derivatives by exploring their effects on Raw macrophage 264.7 functions and their antioxidant activity. Our results indicated that PE was an effective radical scavenger to hydroxyl, peroxyl, and superoxide anion radicals, and SPE was a peroxyl radical scavenger. PE and SPE were found to influence the macrophage functions. Both of PE and SPE enhanced the macrophage proliferation and phagocytosis of FITC-zymosan; PE inhibited nitric oxide (NO) generation and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide (LPS)-stimulated Raw macrophage 264.7. In contrast, SPE over-induced NO generation and TNF-alpha secretion. Moreover, PE strongly inhibited the binding affinity of FITC-LPS to Raw 264.7, as indicated by flow cytometry analysis. These findings revealed that PE may act as a potent anti-inflammatory agent; however SPE may act as an inducer of macrophage functions against pathogens.

  5. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  6. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    Science.gov (United States)

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI. Copyright © 2016 the American Physiological Society.

  7. Myeloid heme oxygenase-1 haploinsufficiency reduces high fat diet-induced insulin resistance by affecting adipose macrophage infiltration in mice.

    Directory of Open Access Journals (Sweden)

    Jun-Yuan Huang

    Full Text Available Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1 is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1(+/- bone marrow were fed with HFD for over 24 weeks, the HO-1(+/- chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1(+/- macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK declined faster in HO-1(+/- macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity.

  8. PPARy phosphorylation mediated by JNK MAPK: a potential role in macrophage-derived foam cell formation

    Institute of Scientific and Technical Information of China (English)

    Ran YIN; Yu-gang DONG; Hong-lang LI

    2006-01-01

    Aim: To investigate whether oxidized low-density lipoprotein (ox-LDL) modulates peroxisome proliferator-activated receptor γ (PPARγ) activity through phosphorylation in macrophages, and the effect of PPARy phosphorylation on macrophages-derived foam cell formation. Methods: After exposing the cultured THP-1 cells to ox-LDL in the presence or absence of different mitogen-activated protein kinase (MAPK) inhibitors, PPARγ and phosphorylated PPARγ protein levels were detected by Western blot. MAPK activity was analyzed using MAP Kinase Assay Kit. Intracellular cholesterol accumulation was assessed by Oil red O staining and cholesterol oxidase enzymatic method. The Mrna level of PPARγ target gene was determined by reverse transcription-polymerase chain reaction (RT-PCR). Results: ox-LDL evaluated PPARγ phosphorylation status and subsequently decreased PPARγ target gene expression in a dose-dependent manner. Ox-LDL also induced MAPK activation. Treatment of THP-1 cells with c-Jun N-terminal kinase-, but not p38- or extracellular signal-regulated kinase-MAPK inhibitor, significantly suppressed PPARγ phosphorylation induced by ox-LDL, which in turn inhibited foam cell formation. Conclusion: In addition to its ligand-dependent activation, ox-LDL modulates PPARγ activity through phosphorylation, which is mediated by MAPK activation. PPARγ phosphorylation mediated by MAPK facilitates foam cell formation from macrophages exposed to ox-LDL.

  9. RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages.

    Science.gov (United States)

    Hizir, Zoheir; Bottini, Silvia; Grandjean, Valerie; Trabucchi, Michele; Repetto, Emanuela

    2017-01-05

    The recent discovery of new classes of small RNAs has opened unknown territories to explore new regulations of physiopathological events. We have recently demonstrated that RNY (or Y RNA)-derived small RNAs (referred to as s-RNYs) are an independent class of clinical biomarkers to detect coronary artery lesions and are associated with atherosclerosis burden. Here, we have studied the role of s-RNYs in human and mouse monocytes/macrophages and have shown that in lipid-laden monocytes/macrophages s-RNY expression is timely correlated to the activation of both NF-κB and caspase 3-dependent cell death pathways. Loss- or gain-of-function experiments demonstrated that s-RNYs activate caspase 3 and NF-κB signaling pathways ultimately promoting cell death and inflammatory responses. As, in atherosclerosis, Ro60-associated s-RNYs generated by apoptotic macrophages are released in the blood of patients, we have investigated the extracellular function of the s-RNY/Ro60 complex. Our data demonstrated that s-RNY/Ro60 complex induces caspase 3-dependent cell death and NF-κB-dependent inflammation, when added to the medium of cultured monocytes/macrophages. Finally, we have shown that s-RNY function is mediated by Toll-like receptor 7 (TLR7). Indeed using chloroquine, which disrupts signaling of endosome-localized TLRs 3, 7, 8 and 9 or the more specific TLR7/9 antagonist, the phosphorothioated oligonucleotide IRS954, we blocked the effect of either intracellular or extracellular s-RNYs. These results position s-RNYs as relevant novel functional molecules that impacts on macrophage physiopathology, indicating their potential role as mediators of inflammatory diseases, such as atherosclerosis.

  10. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  11. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro.

    Science.gov (United States)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao; Skovmand, Astrid; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2015-07-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A-DEP) for 24h to study lipid droplet formation and possible mechanisms. The results show that A-DEP did not induce cytotoxicity. The production of reactive oxygen species was only significantly increased after exposure for 3h, but not 24h. Intracellular level of reduced glutathione was increased after 24h exposure. These results combined indicate an adaptive response to oxidative stress. Exposure to A-DEP was associated with significantly increased formation of lipid droplets, as well as changes in lysosomal function, assessed as reduced LysoTracker staining. In conclusion, these results indicated that exposure to A-DEP may induce formation of lipid droplets in macrophages in vitro possibly via lysosomal dysfunction.

  12. Mycobacterium tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas In Vitro.

    Directory of Open Access Journals (Sweden)

    Zikun Huang

    Full Text Available The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.

  13. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  14. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  15. Coxsackievirus B4 Can Infect Human Peripheral Blood-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Enagnon Kazali Alidjinou

    2015-11-01

    Full Text Available Beyond acute infections, group B coxsackieviruses (CVB are also reported to play a role in the development of chronic diseases, like type 1 diabetes. The viral pathogenesis mainly relies on the interplay between the viruses and innate immune response in genetically-susceptible individuals. We investigated the interaction between CVB4 and macrophages considered as major players in immune response. Monocyte-derived macrophages (MDM generated with either M-CSF or GM-CSF were inoculated with CVB4, and infection, inflammation, viral replication and persistence were assessed. M-CSF-induced MDM, but not GM-CSF-induced MDM, can be infected by CVB4. In addition, enhancing serum was not needed to infect MDM in contrast with parental monocytes. The expression of viral receptor (CAR mRNA was similar in both M-CSF and GM-CSF MDM. CVB4 induced high levels of pro-inflammatory cytokines (IL-6 and TNFα in both MDM populations. CVB4 effectively replicated and persisted in M-CSF MDM, but IFNα was produced in the early phase of infection only. Our results demonstrate that CVB4 can replicate and persist in MDM. Further investigations are required to determine whether the interaction between the virus and MDM plays a role in the pathogenesis of CVB-induced chronic diseases.

  16. Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles

    Directory of Open Access Journals (Sweden)

    Weiss Carsten

    2011-08-01

    Full Text Available Abstract Background Acute exposure to elevated levels of environmental particulate matter (PM is associated with increasing morbidity and mortality rates. These adverse health effects, e.g. culminating in respiratory and cardiovascular diseases, have been demonstrated by a multitude of epidemiological studies. However, the underlying mechanisms relevant for toxicity are not completely understood. Especially the role of particle-induced reactive oxygen species (ROS, oxidative stress and inflammatory responses is of particular interest. In this in vitro study we examined the influence of particle-generated ROS on signalling pathways leading to activation of the arachidonic acid (AA cascade. Incinerator fly ash particles (MAF02 were used as a model for real-life combustion-derived particulate matter. As macrophages, besides epithelial cells, are the major targets of particle actions in the lung murine RAW264.7 macrophages and primary human macrophages were investigated. Results The interaction of fly ash particles with macrophages induced both the generation of ROS and as part of the cellular inflammatory responses a dose- and time-dependent increase of free AA, prostaglandin E2/thromboxane B2 (PGE2/TXB2, and 8-isoprostane, a non-enzymatically formed oxidation product of AA. Additionally, increased phosphorylation of the mitogen-activated protein kinases (MAPK JNK1/2, p38 and ERK1/2 was observed, the latter of which was shown to be involved in MAF02-generated AA mobilization and phosphorylation of the cytosolic phospolipase A2. Using specific inhibitors for the different phospolipase A2 isoforms the MAF02-induced AA liberation was shown to be dependent on the cytosolic phospholipase A2, but not on the secretory and calcium-independent phospholipase A2. The initiation of the AA pathway due to MAF02 particle exposure was demonstrated to depend on the formation of ROS since the presence of the antioxidant N-acetyl-cysteine (NAC prevented the MAF02

  17. Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia.

    Directory of Open Access Journals (Sweden)

    Norberto González-Juarbe

    2015-12-01

    Full Text Available Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC, and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10, which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.

  18. Comparative nitric oxide production by LPS-stimulated monocyte-derived macrophages from Ovis canadensis and Ovis aries.

    Science.gov (United States)

    Sacco, R E; Waters, W R; Rudolph, K M; Drew, M L

    2006-01-01

    Bighorn sheep are more susceptible to respiratory infection by Mannheimia haemolytica than are domestic sheep. In response to bacterial challenge, macrophages produce a number of molecules that play key roles in the inflammatory response, including highly reactive nitrogen intermediates such as nitric oxide (NO). Supernatants from monocyte-derived macrophages cultured with M. haemolytica LPS were assayed for nitric oxide activity via measurement of the NO metabolite, nitrite. In response to LPS stimulation, bighorn sheep macrophages secreted significantly higher levels of NO compared to levels for non-stimulated macrophages. In contrast, levels of NO produced by domestic sheep macrophages in response to M. haemolytica LPS did not differ from levels detected in non-stimulated cell cultures. Nitrite levels detected in supernatants of LPS-stimulated bighorn macrophage cultures treated with an inducible nitric oxide synthase (INOS) inhibitor, N(G)-monomethyl-L-arginine, were similar to that observed in non-stimulated cultures indicating a role for the iNOS pathway.

  19. THP-1-derived macrophages render lung epithelial cells hypo-responsive to Legionella pneumophila - a systems biology study.

    Science.gov (United States)

    Schulz, Christine; Lai, Xin; Bertrams, Wilhelm; Jung, Anna Lena; Sittka-Stark, Alexandra; Herkt, Christina Elena; Janga, Harshavadhan; Zscheppang, Katja; Stielow, Christina; Schulte, Leon; Hippenstiel, Stefan; Vera, Julio; Schmeck, Bernd

    2017-09-20

    Immune response in the lung has to protect the huge alveolar surface against pathogens while securing the delicate lung structure. Macrophages and alveolar epithelial cells constitute the first line of defense and together orchestrate the initial steps of host defense. In this study, we analysed the influence of macrophages on type II alveolar epithelial cells during Legionella pneumophila-infection by a systems biology approach combining experimental work and mathematical modelling. We found that L. pneumophila-infected THP-1-derived macrophages provoke a pro-inflammatory activation of neighboring lung epithelial cells, but in addition render them hypo-responsive to direct infection with the same pathogen. We generated a kinetic mathematical model of macrophage activation and identified a paracrine mechanism of macrophage-secreted IL-1β inducing a prolonged IRAK-1 degradation in lung epithelial cells. This intercellular crosstalk may help to avoid an overwhelming inflammatory response by preventing excessive local secretion of pro-inflammatory cytokines and thereby negatively regulating the recruitment of immune cells to the site of infection. This suggests an important but ambivalent immunomodulatory role of macrophages in lung infection.

  20. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  1. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation.

    Science.gov (United States)

    Shiraishi, Daisuke; Fujiwara, Yukio; Komohara, Yoshihiro; Mizuta, Hiroshi; Takeya, Motohiro

    2012-08-24

    It is known that glucagon-like peptide-1 (GLP-1) is a hormone secreted postprandially from the L-cells of the small intestine and regulates glucose homeostasis. GLP-1 is now used for the treatment of diabetes because of its beneficial role against insulin resistance. The GLP-1 receptor (GLP-1R) is expressed on many cell types, including macrophages, and GLP-1 suppresses the development of atherosclerosis by inhibiting macrophage function. However, there have so far been few studies that have investigated the significance of GLP-1/GLP-1R signaling in macrophage activation. In the present study, we examined the effect of GLP-1 and exenatide, a GLP-1R agonist, on human monocyte-derived macrophage (HMDM) activation. We found that GLP-1 induced signal transducer and activator of transcription 3 (STAT3) activation. Silencing of GLP-1R suppressed the GLP-1-induced STAT3 activation. In addition, alternatively activated (M2) macrophage-related molecules, such as IL-10, CD163, and CD204 in HMDM, were significantly upregulated by GLP-1. Furthermore, the co-culture of 3T3-L1 adipocytes with GLP-1-treated RAW 264.7 macrophages increased the secretion of adiponectin compared to co-culture of the 3T3-L1 adipocytes with untreated RAW 264.7 macrophages. Our results demonstrate that GLP-1 induces macrophage polarization toward the M2 phenotype, which may contribute to the protective effects of GLP-1 against diabetes and cardiovascular diseases.

  2. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy

    Science.gov (United States)

    Gao, Sha; Li, Changwei; Zhu, Yanji; Wang, Yanuo; Sui, Ailing; Zhong, Yisheng; Xie, Bing; Shen, Xi

    2017-01-01

    Macrophages have been demonstrated to play a proangiogenic role in retinal pathological vascular growth. Pigment epithelium-derived factor (PEDF) works as a powerful endogenous angiogenesis inhibitor, but its role in macrophage recruitment and polarization is largely unknown. To explore the underlying mechanisms, we first evaluated macrophage polarization in the retinas of the oxygen-induced retinopathy (OIR) mouse model. Compared to that in normal controls, M1- and M2-like macrophages were all abundantly increased in the retinas of OIR mice. In addition, both M1 and M2 subtypes significantly promoted neovascularization in vitro and in vivo. In addition, we found that PEDF inhibited retinal neovascularization by dampening macrophage recruitment and polarization. Furthermore, PEDF inhibited macrophage polarization through adipose triglyceride lipase (ATGL) by regulating the activation of MAPKs and the Notch1 pathway, as we found that the phosphorylation of MAPKs, including p38MAPK, JNK and ERK, as well as the accumulation of Notch1 were essential for hypoxia-induced macrophage polarization, while PEDF significantly dampened M1 subtype-related iNOS and M2 subtype-related Arg-1 expression by inhibiting hypoxia-induced activation of Notch1 and MAPKs through ATGL. These findings reveal a protective role of PEDF against retinal neovascularization by regulating macrophage recruitment and polarization. PMID:28211523

  3. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  4. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes.

    Science.gov (United States)

    Gao, Dan; Madi, Mohamed; Ding, Cherlyn; Fok, Matthew; Steele, Thomas; Ford, Christopher; Hunter, Leif; Bing, Chen

    2014-08-01

    Adipose tissue expansion during obesity is associated with increased macrophage infiltration. Macrophage-derived factors significantly alter adipocyte function, inducing inflammatory responses and decreasing insulin sensitivity. Identification of the major factors that mediate detrimental effects of macrophages on adipocytes may offer potential therapeutic targets. IL-1β, a proinflammatory cytokine, is suggested to be involved in the development of insulin resistance. This study investigated the role of IL-1β in macrophage-adipocyte cross-talk, which affects insulin signaling in human adipocytes. Using macrophage-conditioned (MC) medium and human primary adipocytes, we examined the effect of IL-1β antagonism on the insulin signaling pathway. Gene expression profile and protein abundance of insulin signaling molecules were determined, as was the production of proinflammatory cytokine/chemokines. We also examined whether IL-1β mediates MC medium-induced alteration in adipocyte lipid storage. MC medium and IL-1β significantly reduced gene expression and protein abundance of insulin signaling molecules, including insulin receptor substrate-1, phosphoinositide 3-kinase p85α, and glucose transporter 4 and phosphorylation of Akt. In contrast, the expression and release of the proinflammatory markers, including IL-6, IL-8, monocyte chemotactic protein-1, and chemokine (C-C motif) ligand 5 by adipocytes were markedly increased. These changes were significantly reduced by blocking IL-1β activity, its receptor binding, or its production by macrophages. MC medium-inhibited expression of the adipogenic factors and -stimulated lipolysis was also blunted with IL-1β neutralization. We conclude that IL-1β mediates, at least in part, the effect of macrophages on insulin signaling and proinflammatory response in human adipocytes. Blocking IL-1β could be beneficial for preventing obesity-associated insulin resistance and inflammation in human adipose tissue. Copyright

  5. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  6. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    Science.gov (United States)

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  7. Echinacea purpurea Extract Polarizes M1 Macrophages in Murine Bone Marrow-Derived Macrophages Through the Activation of JNK.

    Science.gov (United States)

    Fu, Aikun; Wang, Yang; Wu, Yanping; Chen, Hongliang; Zheng, Shasha; Li, Yali; Xu, Xin; Li, Weifen

    2017-09-01

    Echinacea purpurea is an indigenous North American purple cone flower used by North Americans for treatment of various infectious diseases and wounds. This study investigated the effect of polysaccharide enriched extract of Echinacea purpurea (EE) on the polarization of macrophages. The results showed that 100 µg/mL of EE could markedly activate the macrophage by increasing the expression of CD80, CD86, and MHCII molecules. Meanwhile, EE upregulated the markers of classically activated macrophages (M1) such as CCR7 and the production of IL-1β, IL-6, IL-12p70, TNF-αand NO. The functional tests showed that EE enhanced the phagocytic and intracellular bactericidal activity of macrophage against ST. Furthermore, we demonstrated that JNK are required for EE-induced NO and M1-related cytokines production. Together, these results demonstrated that EE can polarize macrophages towards M1 phenotype, which is dependent on the JNK signaling pathways. J. Cell. Biochem. 118: 2664-2671, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Functional significance of macrophage-derived exosomes in inflammation and pain.

    Science.gov (United States)

    McDonald, Marguerite K; Tian, Yuzhen; Qureshi, Rehman A; Gormley, Michael; Ertel, Adam; Gao, Ruby; Aradillas Lopez, Enrique; Alexander, Guillermo M; Sacan, Ahmet; Fortina, Paolo; Ajit, Seena K

    2014-08-01

    Exosomes, secreted microvesicles transporting microRNAs (miRNAs), mRNAs, and proteins through bodily fluids, facilitate intercellular communication and elicit immune responses. Exosomal contents vary, depending on the source and the physiological conditions of cells, and can provide insights into how cells and systems cope with physiological perturbations. Previous analysis of circulating miRNAs in patients with complex regional pain syndrome (CRPS), a debilitating chronic pain disorder, revealed a subset of miRNAs in whole blood that are altered in the disease. To determine functional consequences of alterations in exosomal biomolecules in inflammation and pain, we investigated exosome-mediated information transfer in vitro, in a rodent model of inflammatory pain, and in exosomes from patients with CRPS. Mouse macrophage cells stimulated with lipopolysaccharides secrete exosomes containing elevated levels of cytokines and miRNAs that mediate inflammation. Transcriptome sequencing of exosomal RNA revealed global alterations in both innate and adaptive immune pathways. Exosomes from lipopolysaccharide-stimulated cells were sufficient to cause nuclear factor-κB activation in naive cells, indicating functionality in recipient cells. A single injection of exosomes attenuated thermal hyperalgesia in a murine model of inflammatory pain, suggesting an immunoprotective role for macrophage-derived exosomes. Macrophage-derived exosomes carry a protective signature that is altered when secreting cells are exposed to an inflammatory stimulus. We also show that circulating miRNAs altered in patients with complex regional pain syndrome are trafficked by exosomes. With their systemic signaling capabilities, exosomes can induce pleiotropic effects potentially mediating the multifactorial pathology underlying chronic pain, and should be explored for their therapeutic utility.

  9. Effect of size of man-made and natural mineral fibers on chemiluminescent response in human monocyte-derived macrophages.

    OpenAIRE

    2001-01-01

    Fiber size is an important factor in the tumorigenicity of various mineral fibers and asbestos fibers in animal experiments. We examined the time course of the ability to induce lucigenin-dependent chemiluminescence (CL) from human monocyte-derived macrophages exposed to Japan Fibrous Material standard reference samples (glass wool, rock wool, micro glass fiber, two types of refractory ceramic fiber, refractory mullite fiber, potassium titanium whisker, silicon carbide whisker, titanium oxide...

  10. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou; Cao, Bao-yuan; Zhu, Jia-jun

    2015-12-04

    Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciatic nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.

  11. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing.

    Science.gov (United States)

    Dreymueller, Daniela; Denecke, Bernd; Ludwig, Andreas; Jahnen-Dechent, Willi

    2013-01-01

    In adults, repair of deeply injured skin wounds results in the formation of scar tissue, whereas in embryos wounds heal almost scar-free. Macrophages are important mediators of wound healing and secrete cytokines and tissue remodeling enzymes. In contrast to host defense mediated by inflammatory M1 macrophages, wound healing and tissue repair involve regulatory M2/M2-like macrophages. Embryonic/fetal macrophages are M2-like, and this may promote scar-free wound healing. In the present study, we asked whether atopical application of ex vivo generated, embryonic stem cell-derived macrophages (ESDM) improve wound healing in mice. ESDM were tested side by side with bone marrow-derived macrophages (BMDM). Compared to BMDM, ESDM resembled a less inflammatory and more M2-like macrophage subtype as indicated by their reduced responsiveness to lipopolysaccharide, reduced expression of Toll-like receptors, and reduced bacterial phagocytosis. Despite this anti-inflammatory phenotype in cell culture, ESDM prolonged the healing of deep skin wounds even more than BMDM. Healed wounds had more scar formation compared to wounds receiving BMDM or cell-free treatment. Our data indicate that atopical application of ex vivo generated macrophages is not a suitable cell therapy of dermal wounds.

  12. Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function.

    Science.gov (United States)

    Hassani, Kasra; Antoniak, Elisabeth; Jardim, Armando; Olivier, Martin

    2011-05-03

    Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature, 25-26°C) to the mammalian host (37°C). We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis) within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection.

  13. Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function.

    Directory of Open Access Journals (Sweden)

    Kasra Hassani

    Full Text Available Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS during transmission from the sandfly vector (ambient temperature, 25-26°C to the mammalian host (37°C. We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection.

  14. Paclitaxel-induced activation of murine peritoneal macrophage in vitro

    Institute of Scientific and Technical Information of China (English)

    Li Zhongxiang; Wang Fufeng; Qiao Yuhuan

    2004-01-01

    Objective: To study the effects of paclitaxel on macrophage activation. Methods:Mouse macrophages were isolated by peritoneal lavage and cultured in RPMI 1640 medium according to the following groups: paclitaxel (5μmol/L) group, IFN-γ (5U/L) group, paclitaxel (5μmol/L) and IFN-γ (5U/L) combination group, and control group(without paclitaxel and IFNγ) .24 hours later, supematants were collected for nitric oxide(NO) assessment using the Griess reagent, and ttanor necrosis factor-α(TNF-α) assessment using the enzyme linked immunosorbent assay. Antibody-dependent cell-mediated cytotoxicity(ADCC) of the macrophages was assessed using the method of hemoglobin-enzyme release assay (Hb-ERA). Results: Paclitaxel induced the production of higher levels of NO(8.86 ± 1.16μmol/L) and TNF-α(120.2 ± 10.2pg/ml) ,and enhanced the ADCC of macrophages[ (20.61 + 1.13)% ]. The differences were significant compared with the control group[no NO and TNF-α detected,ADCC (15.37 + 1.93)% ](P < 0.01). Paclitaxel and IFN-γ in combination induced the production of higher levels of NO(22.85 ± 0.91μmol/L) and TNF-α(358.6 ± 27 .5pg/ml), and enhanced the ADCC of macrophages[ (42.49 + 3.09) % ]. The differences were significant compared with paclitaxel or IFN-γ[NO 8.09 ± 1.13μmol/L, TNF-α1 24.8 + 9.6pg/ml, ADCC(23.32 ± 2.63) % ] alone (P<0.01). Conclusion: These findings indicate that paclitaxel can promote NO and TNF-α production,enhance ADCC of macrophages, and induce macrophage activation. The active effects are more significant with paclitaxel and IFN-γcombination.

  15. The Ron Receptor Tyrosine Kinase Regulates Macrophage Heterogeneity and Plays a Protective Role in Diet-Induced Obesity, Atherosclerosis, and Hepatosteatosis.

    Science.gov (United States)

    Yu, Shan; Allen, Joselyn N; Dey, Adwitia; Zhang, Limin; Balandaram, Gayathri; Kennett, Mary J; Xia, Mingcan; Xiong, Na; Peters, Jeffrey M; Patterson, Andrew; Hankey-Giblin, Pamela A

    2016-07-01

    Obesity is a chronic inflammatory disease mediated in large part by the activation of inflammatory macrophages. This chronic inflammation underlies a whole host of diseases including atherosclerosis, hepatic steatosis, insulin resistance, type 2 diabetes, and cancer, among others. Macrophages are generally classified as either inflammatory or alternatively activated. Some tissue-resident macrophages are derived from yolk sac erythromyeloid progenitors and fetal liver progenitors that seed tissues during embryogenesis and have the ability to repopulate through local proliferation. These macrophages tend to be anti-inflammatory in nature and are generally involved in tissue remodeling, repair, and homeostasis. Alternatively, during chronic inflammation induced by obesity, bone marrow monocyte-derived macrophages are recruited to inflamed tissues, where they produce proinflammatory cytokines and exacerbate inflammation. The extent to which these two populations of macrophages are plastic in their phenotype remains controversial. We have demonstrated previously that the Ron receptor tyrosine kinase is expressed on tissue-resident macrophages, where it limits inflammatory macrophage activation and promotes a repair phenotype. In this study, we demonstrate that Ron is expressed in a subpopulation of macrophages during chronic inflammation induced by obesity that exhibit a repair phenotype as determined by the expression of arginase 1. In addition, we demonstrate that the Ron receptor plays a protective role in the progression of diet-induced obesity, hepatosteatosis, and atherosclerosis. These results suggest that altering macrophage heterogeneity in vivo could have the potential to alleviate obesity-associated diseases. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    Science.gov (United States)

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.

  17. Enhanced invasion of lung adenocarcinoma cells after co-culture with THP-1-derived macrophages via the induction of EMT by IL-6.

    Science.gov (United States)

    Dehai, Che; Bo, Pan; Qiang, Tian; Lihua, Shang; Fang, Liu; Shi, Jin; Jingyan, Cao; Yan, Yu; Guangbin, Wang; Zhenjun, Yuan

    2014-07-01

    Lung cancer is the leading cause of cancer mortality worldwide, and the cause of death is metastasis. The epithelial-to-mesenchymal transition (EMT) plays a key role in the process of metastasis. Macrophages within the lung cancer microenvironment release cytokines, such as interleukin-6 (IL-6), and promote lung cancer cell invasion and metastasis. However, the interaction between macrophages and lung cancer cells and the effect of this interaction on the expression of IL-6, EMT, and the invasiveness of lung cancer cells remain unclear. Therefore, we established an in vitro co-culture model of human lung adenocarcinoma A549 or H1299 cells with THP-1-derived macrophages to illuminate the important role of macrophages in the invasion of lung cancer. In this study, we demonstrated that the concentrations of IL-6 in the co-culture supernatants were significantly increased compared with controls. Thus, a complex chemical cross-talk is induced by the indirect cell-to-cell contact between lung cancer cells and THP-1-derived macrophages. THP-1-derived macrophages appeared to play an important initiator role in the process. The analysis of the mRNA expression profiles of the sorted cells from the co-culture system revealed that the co-cultured lung cancer cells are the main source of the observed increase in IL-6 secretion. In addition, the interactions between lung cancer cells and THP-1-derived macrophages are bidirectional. The THP-1-derived macrophages underwent differentiation towards the M2-macrophage phenotype during the co-culture process. The expression of IL-6 was correlated with the induction of EMT, which contributed to a significant increase in the invasiveness of the A549 and H1299 cells in vitro. In addition, the addition of an anti-IL-6 antibody reversed these changes. In summary, we demonstrated that the in vitro co-culture of A549 or H1299 cells with THP-1-derived macrophages upregulates IL-6 expression, which increases the invasion ability of the A549 and

  18. An inducible transgene reports activation of macrophages in live zebrafish larvae.

    Science.gov (United States)

    Sanderson, Leslie E; Chien, An-Tzu; Astin, Jonathan W; Crosier, Kathryn E; Crosier, Philip S; Hall, Christopher J

    2015-11-01

    Macrophages are the most functionally heterogenous cells of the hematopoietic system. Given many diseases are underpinned by inappropriate macrophage activation, macrophages have emerged as a therapeutic target to treat disease. A thorough understanding of what controls macrophage activation will likely reveal new pathways that can be manipulated for therapeutic benefit. Live imaging fluorescent macrophages within transgenic zebrafish larvae has provided a valuable window to investigate macrophage behavior in vivo. Here we describe the first transgenic zebrafish line that reports macrophage activation, as evidenced by induced expression of an immunoresponsive gene 1(irg1):EGFP transgene. When combined with existing reporter lines that constitutively mark macrophages, we reveal this unique transgenic line can be used to live image macrophage activation in response to the bacterial endotoxin lipopolysaccharide and xenografted human cancer cells. We anticipate the Tg(irg1:EGFP) line will provide a valuable tool to explore macrophage activation and plasticity in the context of different disease models.

  19. 姜黄素促进 RAW264.7源性 M1巨噬细胞向替代激活 M2表型极化%Curcumin induces M1 phenotype derived from murine RAW264.7 macrophages polarization to alternatively activated M2 phenotype

    Institute of Scientific and Technical Information of China (English)

    陈方圆; 袁祖贻; 周娟; 王欢; 薛丽; 郭宁

    2015-01-01

    目的:观察姜黄素对 LPS 和 IFNγ诱导的 RAW264.7巨噬细胞(M1)极化的影响及机制。方法不同浓度姜黄素(6.25、12.5、25μmol/L)干预 LPS 和 IFNγ诱导的 RAW264.7巨 噬 细 胞 (M1)12 h,同时再加入20μmol/L GW9662与25μmol/L 姜黄素共同干预 LPS 和 IFNγ诱导的 RAW264.7巨 噬 细 胞(M1)12 h,采用 Real-time PCR、ELISA 及 Western blot 方法检测 IL-1β、IL-6和 M2表型标志分子 KLF4、FIZZ1、MGL1、PPARγ的表达,及阻断PPARγ后 KLF4和 FIZZ1的表达。结果不同浓度姜黄素均能上调 LPS 和 IFNγ诱导的 RAW264.7巨噬细胞(M1)的 M2标志分子的表达,并且抑制炎症因子 IL-1β和 IL-6的分泌;阻断 PPARγ后,RAW264.7巨噬细胞源性 M1表型巨噬细胞表达 M2标志分子下调。结论姜黄素通过活化 PPARγ促进 LPS 和 IFNγ诱导的 RAW264.7巨噬细胞(M1)向 M2表型极化。%ABSTRACT:Objective To observe the effect of curcumin on RAW264.7 macrophages induced with LPS and IFNγ(M1)and the mechanisms involved.Methods Curcumin of different concentrations (6.25 μmol/L,12.5μmol/L and 25 μmol/L)was used to treat RAW264.7 macrophages induced with LPS and IFNγ(M1)for 12 h,and RAW264.7 macrophages induced with LPS and IFNγ(M1)were incubated with 20μmol/L GW9662 and 25 μmol/L curcumin for 12 h.Using Real-time PCR,ELISA and Western blotting analysis,we examined the expressions of IL-1β,IL-6,PPARγand phenotype markers M2 (KLF4,FIZZ1,and MGL1 )and the expressions of KLF4 and FIZZ1 when PPARγwas inhibited.Results Curcumin of different concentrations all could inhibit the expressions of IL-1βand IL-6 in RAW264.7 macrophages induced with LPS and IFNγ(M1).Curcumin of different concentra-tions could upregulate the expression of M2 markers (KLF4,FIZZ1 and MGL1)and PPARγin RAW264.7 macro-phages induced with LPS and IFNγ(M1).When M1 macrophages were incubated with curcumin and GW9662,the expression of the M2 phenotype markers was reduced.Conclusion Curcumin polarized the M

  20. Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A; Averill, Michelle M; Becker, Lev; Larson, Ilona; Hagman, Derek K; Foster-Schubert, Karen E; van Yserloo, Brian; Bornfeldt, Karin E; LeBoeuf, Renee C; Kratz, Mario; Heinecke, Jay W

    2014-09-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14(+)CD206(+) macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b(+)F4/80(+)CD11c(-) macrophages accumulated to a greater extent in MMP12-deficient (Mmp12(-/-)) mice than in wild-type mice (Mmp12(+/+)). Despite being markedly more obese, fat-fed Mmp12(-/-) mice were more insulin sensitive than fat-fed Mmp12(+/+) mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12(-/-) macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion.

  1. Transcriptional analysis of diverse strains Mycobacterium avium subspecies paratuberculosis in primary bovine monocyte derived macrophages.

    Science.gov (United States)

    Zhu, Xiaochun; Tu, Zheng J; Coussens, Paul M; Kapur, Vivek; Janagama, Harish; Naser, Saleh; Sreevatsan, Srinand

    2008-10-01

    In this study we analyzed the macrophage-induced gene expression of three diverse genotypes of Mycobacterium avium subsp. paratuberculosis (MAP). Using selective capture of transcribed sequences (SCOTS) on three genotypically diverse MAP isolates from cattle, human, and sheep exposed to primary bovine monocyte derived macrophages for 48 h and 120 h we created and sequenced six cDNA libraries. Sequence annotations revealed that the cattle isolate up-regulated 27 and 241 genes; the human isolate up-regulated 22 and 53 genes, and the sheep isolate up-regulated 35 and 358 genes, at the two time points respectively. Thirteen to thirty-three percent of the genes identified did not have any annotated function. Despite variations in the genes identified, the patterns of expression fell into overlapping cellular functions as inferred by pathway analysis. For example, 10-12% of the genes expressed by all three strains at each time point were associated with cell-wall biosynthesis. All three strains of MAP studied up-regulated genes in pathways that combat oxidative stress, metabolic and nutritional starvation, and cell survival. Taken together, this comparative transcriptional analysis suggests that diverse MAP genotypes respond with similar modus operandi for survival in the host.

  2. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  3. Macrophages overexpressing Aire induce CD4+Foxp3+ T cells.

    Science.gov (United States)

    Sun, Jitong; Fu, Haiying; Wu, Jing; Zhu, Wufei; Li, Yi; Yang, Wei

    2013-01-01

    Aire plays an important role in central immune tolerance by regulating the transcription of thousands of genes. However, the role of Aire in the peripheral immune system is poorly understood. Regulatory T (Treg) cells are considered essential for the maintenance of peripheral tolerance, but the effect of Aire on Treg cells in the peripheral immune system is currently unknown. In this study, we investigated the effects of macrophages overexpressing Aire on CD4+Foxp3+ Treg cells by co-culturing Aire-overexpressing RAW264.7 cells or their supernatant with splenocytes. The results show that macrophages overexpressing Aire enhanced the expression of Foxp3 mRNA and induced different subsets of Treg cells in splenocytes through cell-cell contact or a co-culture supernatants. TGF-β is a key molecule in the increases of CD4+CD45RA+Foxp3hi T cell and activating Treg (aTreg) levels observed following cell‑supernatant co-culturing. Subsets of Treg cells were induced by Aire-overexpressing macrophages, and the manipulation of Treg cells by the targeting of Aire may provide a method for the treatment of inflammatory or autoimmune diseases.

  4. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis.

    Science.gov (United States)

    Tanaka, Miyako; Ikeda, Kenji; Suganami, Takayoshi; Komiya, Chikara; Ochi, Kozue; Shirakawa, Ibuki; Hamaguchi, Miho; Nishimura, Satoshi; Manabe, Ichiro; Matsuda, Takahisa; Kimura, Kumi; Inoue, Hiroshi; Inagaki, Yutaka; Aoe, Seiichiro; Yamasaki, Sho; Ogawa, Yoshihiro

    2014-09-19

    In obesity, a paracrine loop between adipocytes and macrophages augments chronic inflammation of adipose tissue, thereby inducing systemic insulin resistance and ectopic lipid accumulation. Obese adipose tissue contains a unique histological structure termed crown-like structure (CLS), where adipocyte-macrophage crosstalk is known to occur in close proximity. Here we show that Macrophage-inducible C-type lectin (Mincle), a pathogen sensor for Mycobacterium tuberculosis, is localized to macrophages in CLS, the number of which correlates with the extent of interstitial fibrosis. Mincle induces obesity-induced adipose tissue fibrosis, thereby leading to steatosis and insulin resistance in liver. We further show that Mincle in macrophages is crucial for CLS formation, expression of fibrosis-related genes and myofibroblast activation. This study indicates that Mincle, when activated by an endogenous ligand released from dying adipocytes, is involved in adipose tissue remodelling, thereby suggesting that sustained interactions between adipocytes and macrophages within CLS could be a therapeutic target for obesity-induced ectopic lipid accumulation.

  5. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages

    Science.gov (United States)

    Cockrell, Diane C.; Long, Carrie M.; Robertson, Shelly J.; Shannon, Jeffrey G.; Miller, Heather E.; Myers, Lara; Larson, Charles L.; Starr, Tregei; Beare, Paul A.

    2017-01-01

    Published data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages. However, uncharacterized components of conditioned medium, such as variable amounts of type I interferons, can affect macrophage activation status and their permissiveness for infection. In the current study, we show that the C. burnetii Nine Mile phase II (NMII) strain grows robustly in primary macrophages from C57BL/6J mice when bone marrow cells are differentiated with recombinant murine M-CSF (rmM-CSF). Bacteria were readily internalized by BMDM, and replicated within degradative, LAMP1-positive vacuoles to achieve roughly 3 logs of growth over 6 days. Uninfected BMDM did not appreciably express CD38 or Egr2, markers of classically (M1) and alternatively (M2) activated macrophages, respectively, nor did infection change the lack of polarization. In accordance with an M0 phenotype, infected BMDM produced moderate amounts of TNF and nitric oxide. Similar NMII growth results were obtained using C57BL/6J myeloid progenitors immortalized with an estrogen-regulated Hoxb8 (ER-Hoxb8) oncogene. To demonstrate the utility of the ER-Hoxb8 system, myeloid progenitors from natural resistance-associated macrophage protein 1 (Nramp1) C57BL/6J knock-in mice were transduced with ER-Hoxb8, and macrophages were derived from immortalized progenitors using rmM-CSF and infected with NMII. No difference in growth was observed when compared to macrophages from wild type mice, indicating depletion of metal ions by the Nramp1

  6. ATF-2 regulates lipopolysaccharide-induced transcription in macrophage cells.

    Science.gov (United States)

    Hirose, Noriyuki; Maekawa, Toshio; Shinagawa, Toshie; Ishii, Shunsuke

    2009-07-17

    The transcription factor ATF-2, a member of the ATF/CREB family, is a target of p38 that are involved in stress-induced apoptosis and in Toll-like receptor (TLR)-mediated signaling. Phosphorylation of ATF-2 at Thr-71 was enhanced by treating of RAW264.7 macrophage cells with either LPS, MALP-2, or CpG-ODN. LPS treatment enhanced the trans-activation capacity of ATF-2. Among multiple LPS-induced genes, the LPS-induced expression of Socs-3 was significantly reduced by the treatment of RAW264.7 cells with an Atf-2 siRNA. Transcription from the Socs-3 promoter was synergistically stimulated by ATF-2 and LPS, whereas it was suppressed by Atf-2 siRNA. Histone deacetylase 1 (HDAC1) interacted with ATF-2 after LPS treatment, but not before treatment. Treatment of RAW264.7 cells with trichostatin A, an inhibitor of HDAC, suppressed the LPS-induced Socs-3 expression, suggesting that HDAC1 positively regulates the LPS-induced transcription of Socs-3. Thus, ATF-2 plays an important role in TLR-mediated transcriptional control in macrophage cells.

  7. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    Science.gov (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  8. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Kenichiro Nishikawa

    Full Text Available Interleukin 17 (IL-17 is a pleiotropic cytokine that acts on both immune and non-immune cells and is generally implicated in inflammatory and autoimmune diseases. Although IL-17 as well as their source, mainly but not limited to Th17 cells, is also abundant in the inflamed intestine, the role of IL-17 in inflammatory bowel disease remains controversial. In the present study, by using IL-17 knockout (KO mice, we investigated the role of IL-17 in colitis, with special focus on the macrophage subpopulations. Here we show that IL-17KO mice had increased susceptibility to DSS-induced colitis which was associated with decrease in expression of mRNAs implicated in M2 and/or wound healing macrophages, such as IL-10, IL-1 receptor antagonist, arginase 1, cyclooxygenase 2, and indoleamine 2,3-dioxygenase. Lamina propria leukocytes from inflamed colon of IL-17KO mice contained fewer CD11b+Ly6C+MHC Class II+ macrophages, which were derived, at least partly, from blood monocytes, as compared to those of WT mice. FACS-purified CD11b+ cells from WT mice, which were more abundant in Ly6C+MHC Class II+ cells, expressed increased levels of genes associated M2/wound healing macrophages and also M1/proinflammatory macrophages. Depletion of this population by topical administration of clodronate-liposome in the colon of WT mice resulted in the exacerbation of colitis. These results demonstrate that IL-17 confers protection against the development of severe colitis through the induction of an atypical M2-like macrophage subpopulation. Our findings reveal a previously unappreciated mechanism by which IL-17 exerts a protective function in colitis.

  9. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D.

    1989-04-01

    Virus infection of alveolar macrophages both in vivo and in vitro has been associated with a variety of changes in cellular function. Some of these changes are identical to the effects that arachidonate-derived mediators, prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids, have on macrophage function. Virus infection of macrophages has been previously shown to increase the output of some arachidonate metabolites, most notably PGE2. However, the effect of virus infection on arachidonate metabolism in general has not been well described. In our experiments, primary cultures of alveolar macrophages obtained from normal cattle by bronchoalveolar lavage, were infected in vitro with parainfluenza type 3 virus. At days 0 to 4 post-infection (p.i.) these cells were labelled with 3H-arachidonic acid and stimulated with either serum-coated zymosan, the calcium ionophore A23187, or phorbol myristate acetate. The complete spectrum of arachidonate-derived metabolites was determined by reverse-phase high performance liquid chromatography with UV and on-line radiometric monitoring of column eluant. The total output of metabolites of arachidonic acid by virus-infected alveolar macrophages was increased over that of noninfected controls (with all stimuli tested) by day 4 p.i. (P less than or equal to 0.05). The production of metabolites by the cyclooxygenase, 12- and 5-lipoxygenase enzyme systems was significantly increased, as was the release of 3H-arachidonate. The lack of stimulus specificity and the increases in arachidonate release suggest that greater substrate availability, due either to increased phospholipase activity or direct virus-membrane interaction, may be responsible for the virus-induced enhancement of metabolite output.

  10. Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis.

    Science.gov (United States)

    Sun, Antonia RuJia; Panchal, Sunil K; Friis, Thor; Sekar, Sunderajhan; Crawford, Ross; Brown, Lindsay; Xiao, Yin; Prasadam, Indira

    2017-01-01

    Epidemiological and experimental studies have established obesity to be an important risk factor for osteoarthritis (OA), however, the mechanisms underlying this link remains largely unknown. Here, we studied local inflammatory responses in metabolic-OA. Wistar rats were fed with control diet (CD) and high-carbohydrate, high-fat diet (HCHF) for period of 8 and 16 weeks. After euthanasia, the knees were examined to assess the articular cartilage changes and inflammation in synovial membrane. Further IHC was conducted to determine the macrophage-polarization status of the synovium. In addition, CD and HCHF synovial fluid was co-cultured with bone marrow-derived macrophages to assess the effect of synovial fluid inflammation on macrophage polarisation. Our study showed that, obesity induced by a high-carbohydrate, high-fat (HCHF) diet is associated with spontaneous and local inflammation of the synovial membranes in rats even before the cartilage degradation. This was followed by increased synovitis and increased macrophage infiltration into the synovium and a predominant elevation of pro-inflammatory M1 macrophages. In addition, bone marrow derived macrophages, cultured with synovial fluid collected from the knees of obese rats exhibited a pro-inflammatory M1 macrophage phenotype. Our study demonstrate a strong association between obesity and a dynamic immune response locally within synovial tissues. Furthermore, we have also identified synovial resident macrophages to play a vital role in the inflammation caused by the HCHF diet. Therefore, future therapeutic strategies targeted at the synovial macrophage phenotype may be the key to break the link between obesity and OA.

  11. Nocardia brasiliensis Induces Formation of Foamy Macrophages and Dendritic Cells In Vitro and In Vivo

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection. PMID:24936860

  12. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  13. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  14. Trans fatty acids exacerbate dextran sodium sulphate-induced colitis by promoting the up-regulation of macrophage-derived proinflammatory cytokines involved in T helper 17 cell polarization.

    Science.gov (United States)

    Okada, Y; Tsuzuki, Y; Sato, H; Narimatsu, K; Hokari, R; Kurihara, C; Watanabe, C; Tomita, K; Komoto, S; Kawaguchi, A; Nagao, S; Miura, S

    2013-12-01

    Numerous reports have shown that a diet containing large amounts of trans fatty acids (TFAs) is a major risk factor for metabolic disorders. Although recent studies have shown that TFAs promote intestinal inflammation, the underlying mechanisms are unknown. In this study, we examined the effects of dietary fat containing TFAs on dextran sodium sulphate (DSS)-induced colitis. C57 BL/6 mice were fed a diet containing 1·3% TFAs (mainly C16:1, C18:1, C18:2, C20:1, C20:2 and C22:1), and then colitis was induced with 1·5% DSS. Colonic damage was assessed, and the mRNA levels of proinflammatory cytokines and major regulators of T cell differentiation were measured. The TFA diet reduced survival and exacerbated histological damage in mice administered DSS compared with those fed a TFA-free diet. The TFA diet significantly elevated interleukin (IL)-6, IL-12p40, IL-23p19 and retinoic acid-related orphan receptor (ROR)γt mRNA levels in the colons of DSS-treated animals. Moreover, IL-17A mRNA levels were elevated significantly by the TFA diet, with or without DSS treatment. We also examined the expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and peritoneal macrophages. These cells were exposed to TFAs (linoelaidic acid or elaidic acid) with or without LPS and the mRNA levels of various cytokines were measured. IL-23p19 mRNA levels were increased significantly by TFAs in the absence of LPS. Cytokine expression was also higher in LPS-stimulated cells exposed to TFAs than in unexposed LPS-stimulated cells. Collectively, our results suggest that TFAs exacerbate colonic inflammation by promoting Th17 polarization and by up-regulating the expression of proinflammatory cytokines in the inflamed colonic mucosa.

  15. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages.

    Science.gov (United States)

    Meshkibaf, Shahab; Martins, Andrew J; Henry, Garth T; Kim, Sung Ouk

    2016-02-01

    Granulocyte colony-stimulating factor (G-CSF) is a pleiotropic cytokine best known for its role in promoting the generation and function of neutrophils. G-CSF is also found to be involved in macrophage generation and immune regulation; however, its in vivo role in immune homeostasis is largely unknown. Here, we examined the role of G-CSF in dextran sulfate sodium (DSS)-induced acute colitis using G-CSF receptor-deficient (G-CSFR(-/-)) mice. Mice were administered with 1.5% DSS in drinking water for 5days, and the severity of colitis was measured for the next 5days. GCSFR(-/-) mice were more susceptible to DSS-induced colitis than G-CSFR(+/+) or G-CSFR(-/+) mice. G-CSFR(-/-) mice harbored less F4/80(+) macrophages, but a similar number of neutrophils, in the intestine. In vitro, bone marrow-derived macrophages prepared in the presence of both G-CSF and macrophage colony-stimulating factor (M-CSF) (G-BMDM) expressed higher levels of regulatory macrophage markers such as programmed death ligand 2 (PDL2), CD71 and CD206, but not in arginase I, transforming growth factor (TGF)-β, Ym1 (chitinase-like 3) and FIZZ1 (found in inflammatory zone 1), and lower levels of inducible nitric oxide synthase (iNOS), CD80 and CD86 than bone marrow-derived macrophages prepared in the presence of M-CSF alone (BMDM), in response to interleukin (IL)-4/IL-13 and lipopolysaccharide (LPS)/interferon (IFN)-γ, respectively. Adoptive transfer of G-BMDM, but not BMDM, protected G-CSFR(-/-) mice from DSS-induced colitis, and suppressed expression of tumor necrosis factor (TNF)-α, IL-1β and iNOS in the intestine. These results suggest that G-CSF plays an important role in preventing colitis, likely through populating immune regulatory macrophages in the intestine.

  16. NLRP3 Inflammasome Expression and Signaling in Human Diabetic Wounds and in High Glucose Induced Macrophages

    Science.gov (United States)

    Zhang, Xiaotian; Dai, Jiezhi; Li, Li

    2017-01-01

    Introduction. To investigate the contribution and mechanism of NLRP3 inflammasome expression in human wounds in diabetes mellitus and in high glucose induced macrophages. Methods. In the present study, we compared the expression of NLRP3 inflammasome in debridement wound tissue from diabetic and nondiabetic patients. We also examined whether high glucose induces NLRP3 inflammasome expression in cultures THP-1-derived macrophages and the influence on IL-1β expression. Results. The expressions of NLRP3, caspase1, and IL-1β, at both the mRNA and protein level, were significantly higher in wounds of diabetic patients compared with nondiabetic wounds (P CCR7 was significantly upregulated after high glucose stimulation. SiRNA-mediated silencing of NLRP3 expression downregulates the expression of IL-1β. Conclusion. The higher expression of NLRP3, caspase1, and secretion of IL-1β, signaling, and activation might contribute to the hyperinflammation in the human diabetic wound and in high glucose induced macrophages. It may be a novel target to treat the DM patients with chronic wound. PMID:28164132

  17. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  18. Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages.

    Science.gov (United States)

    Li, Wei; Katz, Barry P; Spinola, Stanley M

    2012-12-01

    During microbial infection, macrophages are polarized to classically activated (M1) or alternatively activated (M2) cells in response to microbial components and host immune mediators. Proper polarization of macrophages is critical for bacterial clearance. To study the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of macrophage surface markers in skin biopsy specimens of pustules obtained from experimentally infected volunteers. Lesional macrophages expressed markers characteristic of both M1 and M2 polarization. Monocyte-derived macrophages (MDM) also expressed a mixed M1 and M2 profile of surface markers and cytokines/chemokines upon infection with H. ducreyi in vitro. Endogenous interleukin 10 (IL-10) produced by infected MDM downregulated and enhanced expression of several M1 and M2 markers, respectively. Bacterial uptake, mediated mainly by class A scavenger receptors, and activation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways were required for H. ducreyi-induced IL-10 production in MDM. Compared to M1 cells, IL-10-polarized M2 cells displayed enhanced phagocytic activity against H. ducreyi and similar bacterial killing. Thus, IL-10-modulated macrophage polarization may contribute to H. ducreyi clearance during human infection.

  19. Juxtacrine interaction of macrophages and bone marrow stromal cells induce interleukin-6 signals and promote cell migration

    Institute of Scientific and Technical Information of China (English)

    Jia Chang; Amy J Koh; Hernan Roca; Laurie K McCauley

    2015-01-01

    The bone marrow contains a heterogeneous milieu of cells, including macrophages, which are key cellular mediators for resolving infection and inflammation. Macrophages are most well known for their ability to phagocytose foreign bodies or apoptotic cells to maintain homeostasis;however, little is known about their function in the bone microenvironment. In the current study, we investigated the in vitro interaction of murine macrophages and bone marrow stromal cells (BMSCs), with focus on the juxtacrine induction of IL-6 signaling and the resultant effect on BMSC migration and growth. The juxtacrine interaction of primary mouse macrophages and BMSCs activated IL-6 signaling in the co-cultures, which subsequently enhanced BMSC migration and increased BMSC numbers. BMSCs and macrophages harvested from IL-6 knockout mice revealed that IL-6 signaling was essential for enhancement of BMSC migration and increased BMSC numbers via juxtacrine interactions. BMSCs were the main contributor of IL-6 signaling, and hence activation of the IL-6/gp130/STAT3 pathway. Meanwhile, macrophage derived IL-6 remained important for the overall production of IL-6 protein in the co-cultures. Taken together, these findings show the function of macrophages as co-inducers of migration and growth of BMSCs, which could directly influence bone formation and turnover.

  20. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - implications for atherosclerosis research

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander;

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,...

  1. Characterization of HIV-1 Infection and Innate Sensing in Different Types of Primary Human Monocyte-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Elisabeth A. Diget

    2013-01-01

    Full Text Available Macrophages play an important role in human immunodeficiency virus (HIV pathogenesis and contribute to establishment of a viral reservoir responsible for continuous virus production and virus transmission to T cells. In this study, we investigated the differences between various monocyte-derived macrophages (MDMs generated through different differentiation protocols and evaluated different cellular, immunological, and virological properties. We found that elevated and persistent HIV-1 pWT/BaL replication could be obtained only in MDMs grown in RPMI containing macrophage colony-stimulating factor (M-CSF. Interestingly, this MDM type was also most responsive to toll-like receptor stimulation. By contrast, all MDM types were activated to a comparable extent by intracellular DNA, and the macrophage serum-free medium-(Mac-SFM-differentiated MDMs responded strongly to membrane fusion through expression of CXCL10. Finally, we found that HIV infection of RPMI/M-CSF-differentiated MDMs induced low-grade expression of two interferon-stimulated genes in some donors. In conclusion, our study demonstrates that the differentiation protocol used greatly influences the ability of MDMs to activate innate immune reactions and support HIV-1 replication. Paradoxically, the data show that the MDMs with the strongest innate immune response were also the most permissive for HIV-1 replication.

  2. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    Science.gov (United States)

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-03

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  3. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response.

    Directory of Open Access Journals (Sweden)

    Anna K D Schnitger

    Full Text Available Listeria monocytogenes is a gram-positive facultative intracellular pathogen, causing serious illness in immunocompromised individuals and pregnant women. Upon detection by macrophages, which are key players of the innate immune response against infection, L. monocytogenes induces specific host cell responses which need to be tightly controlled at transcriptional and post-transcriptional levels. Here, we ask whether and how host miRNAs, which represent an important mechanism of post-transcriptional regulation in a wide array of biological processes, are altered by a model pathogen upon live infection of murine bone marrow derived macrophages. We first report that L. monocytogenes subverts the host genome-wide miRNA profile of macrophages in vitro. Specifically, we show that miR-155, miR-146a, miR-125a-3p/5p and miR-149 were amongst the most significantly regulated miRNAs in infected macrophages. Strikingly, these miRNAs were highly upregulated upon infection with the Listeriolysin-deficient L. monocytogenes mutant Δhly, that cannot escape from the phagosome thus representing a vacuolar-contained infection. The vacuolar miRNA response was significantly reduced in macrophages deficient for MyD88. In addition, miR-146a and miR-125a-3p/5p were regulated at transcriptional levels upon infection, and miR-125a-3p/5p were found to be TLR2 responsive. Furthermore, miR-155 transactivation in infection was regulated by NF-κB p65, while miR-146a and miR-125a-3p/5p expression was unaffected in p65-deficient primary macrophages upon L. monocytogenes infection. Our results demonstrate that L. monocytogenes promotes significant changes in the miRNA expression profile in macrophages, and reveal a vacuolar-dependent miRNA signature, listeriolysin-independent and MyD88-dependent. These miRNAs are predicted to target immune genes and are therefore most likely involved in regulation of the macrophage innate immune response against infection at post

  4. High density lipoprotein suppresses lipoprotein associated phospholipase A2 in human monocytes-derived macrophages through peroxisome proliferator-activated receptor-γ pathway

    Institute of Scientific and Technical Information of China (English)

    HAN Guan-ping; REN Jing-yi; QIN Li; SONG Jun-xian; WANG Lan; CHEN Hong

    2012-01-01

    Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) is mainly secreted by macrophages,serving as a specific marker of atherosclerotic plaque and exerting pro-atherogenic effects.It is known that high-density lipoprotein (HDL) plays an important role against atherosclerosis by inhibiting pro-inflammatory factors,however,the relationship between HDL and Lp-PLA2 remains elusive.Methods In this study,reverse transcription-polymerase chain reaction (RT-PCR),Western blotting,and a platelet-activating factor (PAF) acetylhydrolase assay were performed to determine the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages upon HDL treatment of different concentrations and durations.To investigate the underlying mechanism of HDL-induced Lp-PLA2 action,pioglitazone,a peroxisome proliferator-activated receptor-y (PPARy) ligand,was introduced to human monocyte-derived macrophages and mRNA and protein levels of Lp-PLA2,as well as its activity,were determined.Results Lp-PLA2 mRNA levels,protein expression and activity were significantly inhibited in response to HDL treatment in a dose and time dependent manner in human monocyte-derived macrophages.Pioglitazone treatment (1-10 ng/ml) upregulated the Lp-PLA2 mRNA level,protein expression and activity in human monocyte-derived macrophages,while the effects were markedly reversed by HDL.In addition,pioglitazone resulted in a significant increase in PPARY phosphorylation in human monocyte-derived macrophages,which could be inhibited by HDL.Conclusion These findings indicate that HDL suppresses the expression and activity of Lp-PLA2 in human monocyte-derived macrophages,and the underlying mechanisms may be mediated through the PPARY pathway.

  5. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors.

    Science.gov (United States)

    Fischer, Andy J; Zelinka, Christopher; Gallina, Donika; Scott, Melissa A; Todd, Levi

    2014-10-01

    In retinas where Müller glia have been stimulated to become progenitor cells, reactive microglia are always present. Thus, we investigated how the activation or ablation of microglia/macrophage influences the formation of Müller glia-derived progenitor cells (MGPCs) in the retina in vivo. Intraocular injections of the Interleukin-6 (IL6) stimulated the reactivity of microglia/macrophage, whereas other types of retinal glia appear largely unaffected. In acutely damaged retinas where all of the retinal microglia/macrophage were ablated, the formation of proliferating MGPCs was greatly diminished. With the microglia ablated in damaged retinas, levels of Notch and related genes were unchanged or increased, whereas levels of ascl1a, TNFα, IL1β, complement component 3 (C3) and C3a receptor were significantly reduced. In the absence of retinal damage, the combination of insulin and Fibroblast growth factor 2 (FGF2) failed to stimulate the formation of MGPCs when the microglia/macrophage were ablated. In addition, intraocular injections of IL6 and FGF2 stimulated the formation of MGPCs in the absence of retinal damage, and this generation of MGPCs was blocked when the microglia/macrophage were absent. We conclude that the activation of microglia and/or infiltrating macrophage contributes to the formation of proliferating MGPCs, and these effects may be mediated by components of the complement system and inflammatory cytokines.

  6. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  7. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  8. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tadamichi [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 930-0194, Toyama (Japan)

    2010-08-09

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  9. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs induce inflammatory responses in avian macrophages.

    Directory of Open Access Journals (Sweden)

    Yock-Ping Chow

    Full Text Available BACKGROUND: At least 19 glycosylphosphatidylinositol (GPI-anchored surface antigens (SAGs are expressed specifically by second-generation merozoites of Eimeria tenella, but the ability of these proteins to stimulate immune responses in the chicken is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Ten SAGs, belonging to two previously defined multigene families (A and B, were expressed as soluble recombinant (r fusion proteins in E. coli. Chicken macrophages were treated with purified rSAGs and changes in macrophage nitrite production, and in mRNA expression profiles of inducible nitric oxide synthase (iNOS and of a panel of cytokines were measured. Treatment with rSAGs 4, 5, and 12 induced high levels of macrophage nitric oxide production and IL-1β mRNA transcription that may contribute to the inflammatory response observed during E. tenella infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity. CONCLUSIONS/SIGNIFICANCE: In summary, some E. tenella SAGs appear to differentially modulate chicken innate and humoral immune responses and those derived from multigene family A (especially rSAG 12 may be more strongly linked with E. tenella pathogenicity associated with the endogenous second generation stages.

  10. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina.

    Science.gov (United States)

    O'Koren, E G; Mathew, R; Saban, D R

    2016-02-09

    The recent paradigm shift that microglia are yolk sac-derived, not hematopoietic-derived, is reshaping our knowledge about the isolated role of microglia in CNS diseases, including degenerative conditions of the retina. However, unraveling microglial-specific functions has been hindered by phenotypic overlap of microglia with monocyte-derived macrophages. The latter are differentiated from recruited monocytes in neuroinflammation, including retina. Here we demonstrate the use of fate mapping wherein microglia and monocyte-derived cells are endogenously labeled with different fluorescent reporters. Combining this method with 12-color flow cytometry, we show that these two populations are definitively distinguishable by phenotype in retina. We prove that retinal microglia have a unique CD45(lo) CD11c(lo) F4/80(lo) I-A/I-E(-) signature, conserved in the steady state and during retinal injury. The latter was observed in the widely used light-induced retinal degeneration model and corroborated in other models, including whole-body irradiation/bone-marrow transplantation. The literature contains conflicting observations about whether microglia, including in the retina, increase expression of these markers in neuroinflammation. We show that monocyte-derived macrophages have elevated expression of these surface markers, not microglia. Our resolution of such phenotypic differences may serve as a robust way to help characterize isolated roles of these cells in retinal neuroinflammation and possibly elsewhere in CNS.

  11. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages

    OpenAIRE

    Woolard, Matthew D.; Barrigan, Lydia M.; Fuller, James R.; Buntzman, Adam S.; Bryan, Joshua; Manoil, Colin; Kawula, Thomas H.; Frelinger, Jeffrey A.

    2013-01-01

    Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cell...

  12. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages.

    OpenAIRE

    Matthew Dale Woolard; Barrigan, Lydia M.; Fuller, James R.; Buntzman, Adam S.; Joshua eBryan; Colin eManoil; Tom eKawula; Frelinger, Jeffrey A.

    2013-01-01

    Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the ce...

  13. The TLR Expression Pattern on Monocyte-Derived Macrophages for Lipopolysaccharid Stimulation of Calves

    Institute of Scientific and Technical Information of China (English)

    GUO Yi-jie; ZHAO Guo-Qi; HUO Yong-jiu; Sachi Tana-ka; Hisashi Aso; Takahiro Yamaguchi

    2009-01-01

    In this paper, toll-like receptor expression pattern in monocytes-derived macrophages by lipopolysaccharid (LPS) stimulation was examined. Jugular venous blood samples from 4 Japanese calves were obtained and the peripheral blood mononuclear cells (PBMC) were isolated. The PBMC were cultured for 7 d so as to collect monocytes-derived macrophages in Repcell. The PBMC were stimulated by LPS for 24 h and the mRNA expression pattern of TLR and cytokines in monocytes-derived macrophages (Mod-Mφ) was analyzed. Results showed that LPS stimulation of Mod-Mφ could increase the mRNA levels of the genes of TNF-α, IL-6, and IL-8. In addition, the mRNA levels of the genes of TNF-α and IL-6 in the group of LPS stimulation were most significantly (P<0.01) higher than those in control group and the mRNA levels of TLR1, 3, 5, 8, and 10 were significantly (P<0.05) decreased after LPS stimulation. There was no difference in the mRNA expressions of TLR2, 4, 6, and 7 between the groups of the control and LPS stimulation. Besides, expression of TLR9 was not found. It suggested that monocytes-derived macrophages could respond to LPS and they might take an important role in the innate immunity. The important function of the cells might contribute to better disease treatment.

  14. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  15. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  16. Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity.

    Science.gov (United States)

    Alvarez, María Noel; Peluffo, Gonzalo; Piacenza, Lucía; Radi, Rafael

    2011-02-25

    Macrophage-derived radicals generated by the NADPH oxidase complex and inducible nitric-oxide synthase (iNOS) participate in cytotoxic mechanisms against microorganisms. Nitric oxide ((•)NO) plays a central role in the control of acute infection by Trypanosoma cruzi, the causative agent of Chagas disease, and we have proposed that much of its action relies on macrophage-derived peroxynitrite (ONOO(-) + ONOOH) formation, a strong oxidant arising from the reaction of (•)NO with superoxide radical (O(2)(-)). Herein, we have shown that internalization of T. cruzi trypomastigotes by macrophages triggers the assembly of the NADPH oxidase complex to yield O(2)(-) during a 60-90-min period. This does not interfere with IFN-γ-dependent iNOS induction and a sustained (•)NO production (∼24 h). The major mechanism for infection control via reactive species formation occurred when (•)NO and O(2)() were produced simultaneously, generating intraphagosomal peroxynitrite levels compatible with microbial killing. Moreover, biochemical and ultrastructural analysis confirmed cellular oxidative damage and morphological disruption in internalized parasites. Overexpression of cytosolic tryparedoxin peroxidase in T. cruzi neutralized macrophage-derived peroxynitrite-dependent cytotoxicity to parasites and favored the infection in an animal model. Collectively, the data provide, for the first time, direct support for the action of peroxynitrite as an intraphagosomal cytotoxin against pathogens and the premise that microbial peroxiredoxins facilitate infectivity via decomposition of macrophage-derived peroxynitrite.

  17. Molecular regulation of Trypanosoma congolense-induced nitric oxide production in macrophages.

    Directory of Open Access Journals (Sweden)

    Rani Singh

    Full Text Available BALB/c mice are highly susceptible while C57BL/6 mice are relatively resistant to experimental Trypanosoma congolense infection. Several reports show that an early interferon-gamma (IFN-γ response in infected mice is critically important for resistance via the activation of macrophages and production of nitric oxide (NO. NO is a pivotal effector molecule and possesses both cytostatic and cytolytic properties for the parasite. However, the molecular mechanisms leading to T. congolense (TC-induced NO release from macrophages are not known. In this study, we investigated the signaling pathways induced by trypanosomes in immortalized macrophage cell lines from the highly susceptible BALB/c (BALB.BM and relatively resistant C57Bl/6 (ANA-1 mice. We found that T. congolense whole cell extract (TC-WCE induces significantly higher levels of NO production in IFN-γ-primed ANA-1 than BALB.BM cells, which was further confirmed in primary bone marrow-derived macrophage (BMDM cultures. NO production was dependent on mitogen-activated protein kinase (MAPK, including p38, Erk1/2, and JNK phosphorylation and was significantly inhibited by specific MAPK inhibitors in BALB.BM, but not in ANA-1 cells. In addition, T. congolense- and IFN-γ-induced NO production in ANA-1 and BALB.BM cells was dependent on STAT1 phosphorylation and was totally suppressed by the use of fludarabine (a specific STAT1 inhibitor. We further show that T. congolense induces differential iNOS transcriptional promoter activation in IFN-γ-primed cells, which is dependent on the activation of both GAS1 and GAS2 transcription factors in BALB.BM but only on GAS1 in ANA-1 cells. Taken together, our findings show the existence of differential signalling events that lead to NO production in macrophages from the highly susceptible and relatively resistant mice following treatment with IFN-γ and T. congolense. Understanding these pathways may help identify immunomodulatory mechanisms that regulate

  18. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages.

    Science.gov (United States)

    Garcia-Morales, Carla; Nandi, Sunil; Zhao, Debiao; Sauter, Kristin A; Vervelde, Lonneke; McBride, Derek; Sang, Helen M; Clinton, Mike; Hume, David A

    2015-03-01

    We have identified differences in gene expression in macrophages grown from the bone marrow of male and female chickens in recombinant chicken M-CSF (CSF1). Cells were profiled with or without treatment with bacterial LPS for 24 h. Approximately 600 transcripts were induced by prolonged LPS stimulation to an equal extent in the male and female macrophages. Many transcripts encoded on the Z chromosome were expressed ∼1.6-fold higher in males, reflecting a lack of dosage compensation in the homogametic sex. A smaller set of W chromosome-specific genes was expressed only in females. LPS signaling in mammals is associated with induction of type 1 IFN-responsive genes. Unexpectedly, because IFNs are encoded on the Z chromosome of chickens, unstimulated macrophages from the female birds expressed a set of known IFN-inducible genes at much higher levels than male cells under the same conditions. To confirm that these differences were not the consequence of the actions of gonadal hormones, we induced gonadal sex reversal to alter the hormonal environment of the developing chick and analyzed macrophages cultured from male, female, and female sex-reversed embryos. Gonadal sex reversal did not alter the sexually dimorphic expression of either sex-linked or IFN-responsive genes. We suggest that female birds compensate for the reduced dose of inducible IFN with a higher basal set point of IFN-responsive genes.

  19. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Li

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are the major n-3 polyunsaturated fatty acids (PUFAs in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression induced by TAMs is not well understood. In this study, we investigated the effects of EPA and DHA on modulating of migration and invasion of prostate cancer cells induced by TAMs-like M2-type macrophages. PC-3 prostate cancer cells were pretreated with EPA, DHA, or the peroxisome proliferator-activated receptor (PPAR-γ antagonist, GW9662, before exposure to conditioned medium (CM. CM was derived from M2-polarized THP-1 macrophages. The migratory and invasive abilities of PC-3 cells were evaluated using a coculture system of M2-type macrophages and PC-3 cells. EPA/DHA administration decreased migration and invasion of PC-3 cells. The PPAR-γ DNA-binding activity and cytosolic inhibitory factor κBα (IκBα protein expression increased while the nuclear factor (NF-κB p65 transcriptional activity and nuclear NF-κB p65 protein level decreased in PC-3 cells incubated with CM in the presence of EPA/DHA. Further, EPA/DHA downregulated mRNA expressions of matrix metalloproteinase-9, cyclooxygenase-2, vascular endothelial growth factor, and macrophage colony-stimulating factor. Pretreatment with GW9662 abolished the favorable effects of EPA/DHA on PC-3 cells. These results indicate that EPA/DHA administration reduced migration, invasion and macrophage chemotaxis of PC-3 cells induced by TAM-like M2-type macrophages, which may partly be explained by activation of PPAR-γ and decreased NF-κB p65 transcriptional activity.

  20. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...... M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation...... frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation...

  1. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    Science.gov (United States)

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  2. Importance of the HIF pathway in cobalt nanoparticle-induced cytotoxicity and inflammation in human macrophages.

    Science.gov (United States)

    Nyga, Agata; Hart, Alister; Tetley, Teresa D

    2015-01-01

    Recent, unexpected high failure rates of metal-on-metal hip implants have reintroduced the issue of cobalt toxicity. An adverse reaction to cobalt ions and cobalt-induced lung injury occurs during environmental exposure and is now strictly controlled. Currently adverse reaction occurs to cobalt nanoparticles during wear and tear of metal-on-metal hip implants of which the underlying mechanism is not fully understood. The putative role of the hypoxia-inducible factor (HIF) pathway in the mechanism of cobalt nanoparticle (Co-NPs) toxicity was examined using the U937 cell line, human alveolar macrophages and monocyte-derived macrophages. Co-NPs (5-20 μg/ml)-induced cytotoxicity (viability ranged from 75% to cobalt ions (Co(II); up to 350 μM) did not. Co-NPs induced HIF-1α stabilization. Addition of ascorbic acid (100 µM) and glutathione (1 mM) both prevented the increased ROS. However, only treatment with ascorbic acid reduced HIF-1α levels and prevented cell death, indicating that a ROS-independent pathway is involved in Co-NPs-induced cytotoxicity. Replenishing intracellular ascorbate, which is crucial in preventing HIF pathway activation, modified Co-induced HIF target gene expression and the inflammatory response, by decreasing interleukin-1 beta (IL-1β) mRNA and protein expression. Addition of glutathione had no effect on Co-NPs-induced HIF target gene expression or inflammatory response. Thus, Co-NPs induce the HIF pathway by depleting intracellular ascorbate, leading to HIF stabilization and pathway activation. This suggests a strong, ROS-independent role for HIF activation in Co-NPs-induced cytotoxicity and a possible role for HIF in metal-on-metal hip implant pathology.

  3. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI.

    Science.gov (United States)

    Al Faraj, Achraf; Sultana Shaik, Asma; Pureza, Mary Angeline; Alnafea, Mohammad; Halwani, Rabih

    2014-01-01

    Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of chronic obstructive respiratory diseases (COPD), which make them attractive vehicles to deliver contrast agents for diagnostic or drugs for therapeutic purposes. This study was designed to monitor and evaluate the migration of differently polarized M1 and M2 iron labeled macrophage subsets to the lung of a LPS-induced COPD animal model and to assess their polarization state once they have reached the inflammatory sites in the lung after intravenous injection. Ex vivo polarized bone marrow derived M1 or M2 macrophages were first efficiently and safely labeled with amine-modified PEGylated dextran-coated SPIO nanoparticles and without altering their polarization profile. Their biodistribution in abdominal organs and their homing to the site of inflammation in the lung was tracked for the first time using a free-breathing non-invasive MR imaging protocol on a 4.7T magnet after their intravenous administration. This imaging protocol was optimized to allow both detection of iron labeled macrophages and visualization of inflammation in the lung. M1 and M2 macrophages were successfully detected in the lung starting from 2 hours post injection with no variation in their migration profile. Quantification of cytokines release, analysis of surface membrane expression using flow cytometry and immunohistochemistry investigations confirmed the successful recruitment of injected iron labeled macrophages in the lung of COPD mice and revealed that even with a continuum switch in the polarization profile of M1 and M2 macrophages during the time course of inflammation a balanced number of macrophage subsets predominate.

  4. Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A.; Averill, Michelle M.; Becker, Lev; Larson, Ilona; Hagman, Derek K.; Foster-Schubert, Karen E.; van Yserloo, Brian; Bornfeldt, Karin E.; LeBoeuf, Renee C.; Kratz, Mario

    2014-01-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14+CD206+ macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b+F4/80+CD11c−macrophages accumulated to a greater extent in MMP12-deficient (Mmp12−/−) mice than in wild-type mice (Mmp12+/+). Despite being markedly more obese, fat-fed Mmp12−/− mice were more insulin sensitive than fat-fed Mmp12+/+ mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12−/− macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion. PMID:24914938

  5. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types

    Directory of Open Access Journals (Sweden)

    Dijkstra Christine D

    2011-05-01

    Full Text Available Abstract Background Macrophages play an important role in neuroinflammatory diseases such as multiple sclerosis (MS and spinal cord injury (SCI, being involved in both damage and repair. The divergent effects of macrophages might be explained by their different activation status: classically activated (CA/M1, pro-inflammatory, macrophages and alternatively activated (AA/M2, growth promoting, macrophages. Little is known about the effect of macrophages with these phenotypes in the central nervous system (CNS and how they influence pathogenesis. The aim of this study was therefore to determine the characteristics of these phenotypically different macrophages in the context of the CNS in an in vitro setting. Results Here we show that bone marrow derived CA and AA macrophages have a distinct migratory capacity towards medium conditioned by various cell types of the CNS. AA macrophages were preferentially attracted by the low weight ( Conclusion In conclusion, since AA macrophages are more motile and are attracted by NCM, they are prone to migrate towards neurons in the CNS. CA macrophages have a lower motility and a stronger adhesion to ECM. In neuroinflammatory diseases the restricted migration and motility of CA macrophages might limit lesion size due to bystander damage.

  6. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  7. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway.

    Science.gov (United States)

    Digiacomo, Graziana; Tusa, Ignazia; Bacci, Marina; Cipolleschi, Maria Grazia; Dello Sbarba, Persio; Rovida, Elisabetta

    2017-07-04

    Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.

  8. Macrophage secretory products induce an inflammatory phenotype in hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Michelle Melino; Gethin P Thomas; Andrew D Clouston; Julie R Jonsson; Elizabeth E Powell; Victoria L Gadd; Gene V Walker; Richard Skoien; Helen D Barrie; Dinesh Jothimani; Leigh Horsfall; Alun Jones; Matthew J Sweet

    2012-01-01

    AIM:To investigate the influence of macrophages on hepatocyte phenotype and function.METHODS:Macrophages were differentiated from THP-1 monocytes via phorbol myristate acetate stimulation and the effects of monocyte or macrophageconditioned medium on HepG2 mRNA and protein expression determined.The in vivo relevance of these findings was confirmed using liver biopsies from 147patients with hepatitis C virus (HCV) infection.RESULTS:Conditioned media from macrophages,but not monocytes,induced a transient morphological change in hepatocytes associated with upregulation of vimentin (7.8 ± 2.5-fold,P =0.045) and transforming growth factor (TGF)-β1 (2.6 ± 0.2-fold,P < 0.001) and downregulation of epithelial cadherin (1.7 ± 0.02-fold,P =0.017) mRNA expression.Microarray analysis revealed significant upregulation of lipocalin-2 (17-fold,P < 0.001) and pathways associated with inflammation,and substantial downregulation of pathways related to hepatocyte function.In patients with chronic HCV,realtime polymerase chain reaction and immunohistochemistry confirmed an increase in lipocalin-2 mRNA (F0 1.0± 0.3,F1 2.2 ± 0.2,F2 3.0 ± 9.3,F3/4 4.0 ± 0.8,P =0.003) and protein expression (F1 1.0 ± 0.5,F2 1.3 ±0.4,F3/4 3.6 ± 0.4,P =0.014) with increasing liver injury.High performance liquid chromatography-tandem mass spectrometry analysis identified elevated levels of matrix metalloproteinase (MMP)-9 in macrophageconditioned medium,and a chemical inhibitor of MMP-9attenuated the change in morphology and mRNA expression of TGF-β1 (2.9 ± 0.2 vs 1.04 ± 0.1,P < 0.001)in macrophage-conditioned media treated HepG2 cells.In patients with chronic HCV infection,hepatic mRNA expression of CD163 (F0 1.0 ± 0.2,F1/2 2.8 ± 0.3,F3/4 5.3 ± 1.0,P =0.001) and MMP-9 (F0 1.0 ± 0.4,F1/2 2.8 ± 0.3,F3/4 4.1 ± 0.8,P =0.011) was significantly associated with increasing stage of fibrosis.CONCLUSION:Secreted macrophage products alter the phenotype and function of hepatocytes

  9. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO, to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS expression induced by lipopolysaccharide (LPS, a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P decreased LPS-induced NO release. Moreover, poly(P suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.

  10. Evaluation of the cytotoxicity of organic dust components on THP1 monocytes-derived macrophages using high content analysis.

    Science.gov (United States)

    Ramery, Eve; O'Brien, Peter J

    2014-03-01

    Organic dust contains pathogen-associated molecular patterns (PAMPs) which can induce significant airway diseases following chronic exposure. Mononuclear phagocytes are key protecting cells of the respiratory tract. Several studies have investigated the effects of PAMPs and mainly endotoxins, on cytokine production. However the sublethal cytotoxicity of organic dust components on macrophages has not been tested yet. The novel technology of high content analysis (HCA) is already used to assess subclinical drug-induced toxicity. It combines the capabilities of flow cytometry, intracellular fluorescence probes, and image analysis and enables rapid multiple analyses in large numbers of samples. In this study, HCA was used to investigate the cytotoxicity of the three major PAMPs contained in organic dust, i.e., endotoxin (LPS), peptidoglycan (PGN) and β-glucans (zymosan) on THP-1 monocyte-derived macrophages. LPS was used at concentrations of 0.005, 0.01, 0.02, 0.05, 0.1, and 1 μg/mL; PGN and zymosan were used at concentrations of 1, 5, 10, 50, 100, and 500 μg/mL. Cells were exposed to PAMPs for 24 h. In addition, the oxidative burst and the phagocytic capabilities of the cells were tested. An overlap between PGN intrinsic fluorescence and red/far-red fluorescent dyes occurred, rendering the evaluation of some parameters impossible for PGN. LPS induced sublethal cytotoxicity at the lowest dose (from 50 ng/mL). However, the greatest cytotoxic changes occurred with zymosan. In addition, zymosan, but not LPS, induced phagosome maturation and oxidative burst. Given the fact that β-glucans can be up to 100-fold more concentrated in organic dust than LPS, these results suggest that β-glucans could play a major role in macrophage impairment following heavy dust exposure and will merit further investigation in the near future.

  11. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  12. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  13. Asbestos Induces Oxidative Stress and Activation of Nrf2 Signaling in Murine Macrophages: Chemopreventive Role of the Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605)

    OpenAIRE

    Pietrofesa, Ralph A; Anastasia Velalopoulou; Albelda, Steven M.; Melpo Christofidou-Solomidou

    2016-01-01

    The interaction of asbestos fibers with macrophages generates harmful reactive oxygen species (ROS) and subsequent oxidative cell damage that are key processes linked to malignancy. Secoisolariciresinol diglucoside (SDG) is a non-toxic, flaxseed-derived pluripotent compound that has antioxidant properties and may thus function as a chemopreventive agent for asbestos-induced mesothelioma. We thus evaluated synthetic SDG (LGM2605) in asbestos-exposed, elicited murine peritoneal macrophages as a...

  14. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Pramod K Giri

    Full Text Available Activation of both CD4(+ and CD8(+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+ and CD8(+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+ and CD8(+ T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.

  15. New Insights into the Role of Macrophages in Adipose Tissue Inflammation and Fatty Liver Disease: Modulation by Endogenous Omega-3 Fatty Acid-derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Joan eClària

    2011-10-01

    Full Text Available Obesity is causally linked to a chronic state of low-grade inflammation in adipose tissue. Prolonged, unremitting inflammation in this tissue has a direct impact on insulin-sensitive tissues (i.e. liver and its timely resolution is a critical step toward reducing the prevalence of related co-morbidities such as insulin resistance and non-alcoholic fatty liver disease. This article describes the current state-of-the-art knowledge and novel insights into the role of macrophages in adipose tissue inflammation, with special emphasis on the progressive changes in macrophage polarization observed over the course of obesity. In addition, this article extends the discussion to the contribution of Kupffer cells, the liver resident macrophages, to metabolic liver disease. Special attention is given to the modulation of macrophage responses by omega-3-PUFAs, and more importantly by resolvins, which are potent anti-inflammatory and pro-resolving autacoids generated from docosahexaenoic and eicosapentaenoic acids. In fact, resolvins have been shown to work as endogenous stop signals in inflamed adipose tissue and to return this tissue to homeostasis by inducing a phenotypic switch in macrophage polarization toward a pro-resolving phenotype. Collectively, this article offers new views on the role of macrophages in metabolic disease and their modulation by endogenously-generated omega-3-PUFA-derived lipid mediators.

  16. New Insights into the Role of Macrophages in Adipose Tissue Inflammation and Fatty Liver Disease: Modulation by Endogenous Omega-3 Fatty Acid-Derived Lipid Mediators

    Science.gov (United States)

    Clària, Joan; González-Périz, Ana; López-Vicario, Cristina; Rius, Bibiana; Titos, Esther

    2011-01-01

    Obesity is causally linked to a chronic state of “low-grade” inflammation in adipose tissue. Prolonged, unremitting inflammation in this tissue has a direct impact on insulin-sensitive tissues (i.e., liver) and its timely resolution is a critical step toward reducing the prevalence of related co-morbidities such as insulin resistance and non-alcoholic fatty liver disease. This article describes the current state-of-the-art knowledge and novel insights into the role of macrophages in adipose tissue inflammation, with special emphasis on the progressive changes in macrophage polarization observed over the course of obesity. In addition, this article extends the discussion to the contribution of Kupffer cells, the liver resident macrophages, to metabolic liver disease. Special attention is given to the modulation of macrophage responses by omega-3-PUFAs, and more importantly by resolvins, which are potent anti-inflammatory and pro-resolving autacoids generated from docosahexaenoic and eicosapentaenoic acids. In fact, resolvins have been shown to work as endogenous “stop signals” in inflamed adipose tissue and to return this tissue to homeostasis by inducing a phenotypic switch in macrophage polarization toward a pro-resolving phenotype. Collectively, this article offers new views on the role of macrophages in metabolic disease and their modulation by endogenously generated omega-3-PUFA-derived lipid mediators. PMID:22566839

  17. Fucoidan modulates cytokine production and migration of THP‑1‑derived macrophages via colony‑stimulating factor‑1.

    Science.gov (United States)

    Li, Peng; Wang, Huayang; Shao, Qianqian; Kong, Beihua; Qu, Xun

    2017-04-01

    Fucoidan is known for its various biological activities, including immunomodulatory effects on immune cells. However, the effect of fucoidan on the functions of macrophages remains to be elucidated. The present study examined the effects of fucoidan on cytokine production and migration of THP‑1‑derived macrophages and its potential mechanisms. Fucoidan was added during the differentiation process of THP‑1‑derived macrophages along with lipopolysaccharide and interferon‑γ for 42 h, and then macrophages were harvested for functional assays. Fucoidan altered the morphology of THP‑1‑derived macrophages, and also attenuated their migration activity and pro‑inflammatory cytokine production. Additionally, THP‑1‑derived macrophages intensively produced colony‑stimulating factor‑1 (CSF‑1), which was significantly decreased by fucoidan. CSF‑1 neutralizing antibody attenuated the basic production level of pro‑inflammatory cytokines in macrophages. Furthermore, when recombinant human CSF‑1 was added along with fucoidan, the attenuating effects of fucoidan on migration and cytokine production were significantly reversed. In conclusion, the present study suggests that macrophages appear to be a potential target in the immunomodulatory action of fucoidan, and CSF‑1 may be involved in this modulation.

  18. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    Science.gov (United States)

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-06-25

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function.

  19. Fate mapping analysis reveals that adult microglia derive from primitive macrophages.

    Science.gov (United States)

    Ginhoux, Florent; Greter, Melanie; Leboeuf, Marylene; Nandi, Sayan; See, Peter; Gokhan, Solen; Mehler, Mark F; Conway, Simon J; Ng, Lai Guan; Stanley, E Richard; Samokhvalov, Igor M; Merad, Miriam

    2010-11-01

    Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor-deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.

  20. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  1. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    Directory of Open Access Journals (Sweden)

    Celia Maria Vieira Vendrame

    2014-01-01

    Full Text Available Leishmania (Leishmania amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF-I on interactions between L. (L. amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L. amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.

  2. Liposomal phosphatidylserine inhibits tumor cytotoxicity of liver macrophages induced by muramyl dipeptide and lipopolysaccharide

    NARCIS (Netherlands)

    Daemen, T; Regts, J; Scherphof, GL

    1996-01-01

    Liposomes can very efficiently deliver immunomodulators to macrophages so as to induce tumor cytotoxicity. Liposomes most widely used for that purpose contain negatively charged lipids, in particular phosphatidylserine (PS), to enhance liposome uptake by the macrophages. We investigated the effect o

  3. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  4. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages.

    Science.gov (United States)

    Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Mossalayi, M Djavad

    2004-03-01

    In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-alpha and nitric oxide derivatives. In the present study, quercetin (3,3',4',5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-alpha and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis.

  5. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, J.M.B.D., E-mail: jmanya@terra.com.br [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil); Seabra, S.H. [Laboratorio de Tecnologia em Cultura de Celulas, UEZO, Rio de Janeiro (Brazil); Vallim, D.C. [Instituto Oswaldo Cruz, Rio de Janeiro (Brazil); Americo, M.A.; Fracallanza, S.E.L. [Laboratorio de Bacteriologia Medica, IMPPG, UFRJ, Rio de Janeiro (Brazil); Vommaro, R.C. [Laboratorio de Ultra-estrutura Celular Hertha Meyer, IBCCF, UFRJ (Brazil); Domingues, R.M.C.P. [Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro (Brazil)

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  6. Primed Activation of Macrophages by Oral Administration of Lipopolysaccharide Derived from Pantoea agglomerans.

    Science.gov (United States)

    Inagawa, Hiroyuki; Kobayashi, Yutaro; Kohchi, Chie; Zhang, Ran; Shibasaki, Yasuhiro; Soma, Gen-Ichiro

    2016-01-01

    Bacterial lipopolysaccharide (LPS) is involved in the activation of the innate immune responses on monocytes/macrophages in vitro, and by intravenous injection. Although small quantities of LPS are usually found in traditional Chinese medicines, vegetables and fruits, the mode of action of orally administered LPS is still unclear. LPS derived from Pantoea agglomerans (LPSp) was orally administered to C3H/HeN or C3H/HeJ mice ad libitum. The LPSp treatment enhanced phagocytosis by resident peritoneal macrophages of C3H/HeN mice but not of C3H/HeJ mice. This activation can be defined as primed activation because no augmentation of inflammatory cytokines production was detected. LPSp in peritoneal fluid was detected and successfully quantified. Moreover, the LPSp reduced the expression of avian reticuloendotheliosis viral oncogene-related B (RelB) in the macrophages without degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor, alpha (IκBα). Orally administered LPSp can reach the peritoneum, and enhance phagocytosis via Toll-like receptor 4 signaling pathway in resident peritoneal macrophages. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRα signaling in THP-1 macrophage-derived foam cells.

    Science.gov (United States)

    Lin, Xiao-long; Liu, Mi-Hua; Hu, Hui-Jun; Feng, Hong-ru; Fan, Xiao-Juan; Zou, Wei-wen; Pan, Yong-quan; Hu, Xue-mei; Wang, Zuo

    2015-09-01

    Curcumin, a traditional Chinese derivative from the rhizomes of Curcuma longa, is beneficial to health by modulating lipid metabolism and suppressing atherogenesis. A key part of atherosclerosis is the failure of macrophages to restore their cellular cholesterol homeostasis and the formation of foam cells. In this study, results showed that curcumin dramatically increased the expression of ATP-binding cassette transporter 1 (ABCA1), promoted cholesterol efflux from THP-1 macrophage-derived foam cells, and reduced cellular cholesterol levels. Curcumin activated AMP-activated protein kinase (AMPK) and SIRT1, and then activated LXRα in THP-1 macrophage-derived foam cells. Inhibiting AMPK/SIRT1 activity by its specific inhibitor or by small interfering RNA could inhibit LXRα activation and abolish curcumin-induced ABCA1 expression and cholesterol efflux. Thus, curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through activating AMPK-SIRT1-LXRα signaling in THP-1 macrophage-derived foam cells. This study describes a possible mechanism for understanding the antiatherogenic effects of curcumin on attenuating the progression of atherosclerosis.

  8. [The modulation of low-level laser on polarization of mouse bone marrow-derived macrophages].

    Science.gov (United States)

    Dai, Chen; Song, Jiwei; Liang, Zhuowen; Zhang, Qian; Zhang, Kun; Wang, Zhe; Hu, Xueyu

    2016-08-01

    Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification. After lipopolysaccharide-γ interferon (LPS-IFN-γ) induced polarization status in the macrophages, the mRNA expressions of inducible nitric oxide synthase (iNOS), arginase 1 (Arg1) and CD86 were detected by reverse transcription PCR, and the protein expressions of iNOS and Arg1 were tested by Western blotting. Thereafter, the M1 macrophages were exposed to 810 nm low-level laser of (1, 2, 3, 4) J/cm(2), and then the cell viability was evaluated by MTT assay; the expressions of iNOS and Arg1 were observed by immunofluorescent cytochemical staining; the mRNA and protein levels of iNOS and Arg1 were studied by reverse transcription PCR and Western blotting. Results Flow cytometry showed that the percentage of F4/80 positive cells cultured with M-CSF conditioned medium was 99.9%. The mRNA and protein levels of iNOS and CD86 in macrophages were both significantly raised after induction by LPS-IFN-γ. Compared with the control cells, the viability of M1 cells significantly decreased when the energy of the low-level laser exposure was 4 J/cm(2), while the viability remained unchanged when the energy was 1, 2 or 3 J/cm(2). Immunocytochemistry revealed that the percentage of Arg1 positive cells that represent M2 macrophages was not significantly different from the control group when the irradiation dose was 1 or 2 J/cm(2), however, the Arg1 positive cells significantly increased and the iNOS positive cells that represent M1 macrophages significantly decreased when the irradiation dose was 3 or 4 J/cm(2). When the irradiation dose was 1 or 2 J/cm(2), the mRNA and protein levels of iNOS and Arg1 remained unchanged

  9. Macrophage colony-stimulating factor-induced macrophage differentiation promotes regrowth in atrophied skeletal muscles and C2C12 myotubes.

    Science.gov (United States)

    Dumont, Nicolas A; Frenette, Jérôme

    2013-02-01

    Skeletal muscle injury and regeneration are closely associated with an inflammatory reaction that is usually characterized by sequential recruitment of neutrophils and monocytes or macrophages. Selective macrophage depletion models have shown that macrophages are essential for complete regeneration of muscle fibers after freeze injuries, toxin injuries, ischemia-reperfusion, and hindlimb unloading and reloading. Although there is growing evidence that macrophages possess major myogenic capacities, it is not known whether the positive effects of macrophages can be optimized to stimulate muscle regrowth. We used in vivo and in vitro mouse models of atrophy to investigate the effects of stimulating macrophages with macrophage colony-stimulating factor (M-CSF) on muscle regrowth. When atrophied soleus muscles were injected intramuscularly with M-CSF, we observed a 1.6-fold increase in macrophage density and a faster recovery in muscle force (20%), combined with an increase in muscle fiber diameter (10%), after 7 days of reloading, compared with PBS-injected soleus muscles. Furthermore, coculture of atrophied myotubes with or without bone marrow-derived macrophages (BMDM) and/or M-CSF revealed that the combination of BMDMs and M-CSF was required to promote myotube growth (15%). More specifically, M-CSF promoted the anti-inflammatory macrophage phenotype, which in turn decreased protein degradation and MuRF-1 expression by 25% in growing myotubes. These results indicate that specific macrophage subsets can be stimulated to promote muscle cell regrowth after atrophy.

  10. Influence of Stress-Induced Catecholamines on Macrophage Phagocytosis

    Science.gov (United States)

    1989-04-01

    levels of adenosine-3’, 5"-cyclic monophosphate on phagocytosis: effects on macrophage- Trypanosoma cruzi interaction. J. Immunol. 129:2757. 11 7. Lima...decreased phagocytosis of Trgpanosoma cruzi (6) and IgG-coated erythrocytes (7,B) by mouse macrophages. Alterations in cAMP concentrations influence

  11. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss.

    Science.gov (United States)

    Papadopoulos, George; Weinberg, Ellen O; Massari, Paola; Gibson, Frank C; Wetzler, Lee M; Morgan, Elise F; Genco, Caroline A

    2013-02-01

    Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.

  12. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages.

    Science.gov (United States)

    Jiménez-Garcia, Lidia; Herránz, Sandra; Luque, Alfonso; Hortelano, Sonsoles

    2015-01-01

    Alternative activation of macrophages plays an important role in a range of physiological and pathological processes. This alternative phenotype, also known as M2 macrophages, is induced by type 2 cytokines such as IL-4. The binding of IL-4 to its receptor leads to activation of two major signaling pathways: STAT-6 and PI3K. However, recent studies have described that p38 MAPK might play a role in IL-4-dependent signaling in some cells, although its role in macrophages is still controversial. In this study, we investigated whether p38 MAPK plays a role in the polarization of macrophages in mice. Our results reveal that IL-4 induces phosphorylation of p38 MAPK in thioglycollate-elicited murine peritoneal macrophages, in addition to STAT-6 and PI3K activation. Furthermore, p38 MAPK inactivation, by gene silencing or pharmacological inhibition, suppressed IL-4-induced typical M2 markers, indicating the involvement of p38 MAPK in the signaling of IL-4 leading to M2-macrophage polarization. Moreover, p38 MAPK inhibition blocked phosphorylation of STAT-6 and Akt, suggesting that p38 MAPK is upstream of these signaling pathways. Finally, we show that in an in vivo model of chitin-induced M2 polarization, p38 MAPK inhibition also diminished activation of M2 markers. Taken together, our data establish a new role for p38 MAPK during IL-4-induced alternative activation of macrophages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

    Science.gov (United States)

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S; Buchan, Alice; Brodermann, Maximillian H; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J; Greaves, David R

    2015-06-02

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2(-/-) macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.

  14. TRIF promotes angiotensin II-induced cross-talk between fibroblasts and macrophages in atrial fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao-Qing; Zhang, Dao-Liang [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China); Zhang, Ming-Jian; Guo, Meng; Zhan, Yang-Yang; Liu, Fang [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-Feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China); Zhao, Liang, E-mail: zhaol_zg@163.com [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China); Wang, Quan-Xing, E-mail: wqxejd@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Liu, Xu, E-mail: liuxu_xk@163.com [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai (China)

    2015-08-14

    Aims: Atrial fibroblasts and macrophages have long been thought to participate in atrial fibrillation (AF). However, which specific mediator may regulate the interaction between them remains unclear. Methods and results: We provided the evidence for the involvement of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), an important inflammation-related molecule, in the pathophysiology of AF. Patients with AF showed higher levels of angiotensin II (AngII) and TRIF expression and larger number of macrophages infiltration in left atria appendage than individuals with sinus rhythm (SR). In the cell study, AngII induced chemokines expressions in mouse atrial fibroblasts and AngII-stimulated atrial fibroblasts induced the chemotaxis of macrophages, which were reduced by losartan and TRIF siRNA. Meanwhile, AngII-stimulated atrial fibroblasts proliferation was enhanced by macrophages. Conclusions: Our data demonstrated that TRIF may be a crucial factor promoting the interaction between atrial fibroblasts and macrophages, leading to atrial fibrosis. - Highlights: • Compared with SR, AF showed higher TRIF expression in left atrial appendage. • TRIF siRNA reversed macrophage chemotaxis induced by AngII-treated fibroblast. • TRIF siRNA reversed chemokines expressions induced by AngII in fibroblast. • AngII-stimulated atrial fibroblast proliferation was enhanced by macrophage.

  15. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment[S

    Science.gov (United States)

    Hu, Xiaoqian; Cifarelli, Vincenza; Sun, Shishuo; Kuda, Ondrej; Abumrad, Nada A.; Su, Xiong

    2016-01-01

    Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2), reflecting cytosolic phospholipase A2 α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2 potently induced macrophage migration while different FFAs and PGD2 had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2 levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2 with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis. PMID:26912395

  16. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and down-regulates macrophages.

    Science.gov (United States)

    Siegemund, Sabine; Alber, Gottfried

    2008-04-01

    Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.

  17. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation

    Directory of Open Access Journals (Sweden)

    Malkinson Alvin M

    2011-06-01

    Full Text Available Abstract Background Worldwide, lung cancer kills more people than breast, colon and prostate cancer combined. Alterations in macrophage number and function during lung tumorigenesis suggest that these immune effector cells stimulate lung cancer growth. Evidence from cancer models in other tissues suggests that cancer cells actively recruit growth factor-producing macrophages through a reciprocal signaling pathway. While the levels of lung macrophages increase during tumor progression in mouse models of lung cancer, and high pulmonary macrophage content correlates with a poor prognosis in human non-small cell lung cancer, the specific role of alveolar macrophages in lung tumorigenesis is not clear. Methods After culturing either an immortalized lung macrophage cell line or primary murine alveolar macrophages from naïve and lung-tumor bearing mice with primary tumor isolates and immortalized cell lines, the effects on epithelial proliferation and cellular kinase activation were determined. Insulin-like growth factor-1 (IGF-1 was quantified by ELISA, and macrophage conditioned media IGF-1 levels manipulated by IL-4 treatment, immuno-depletion and siRNA transfection. Results Primary macrophages from both naïve and lung-tumor bearing mice stimulated epithelial cell proliferation. The lungs of tumor-bearing mice contained 3.5-times more IGF-1 than naïve littermates, and media conditioned by freshly isolated tumor-educated macrophages contained more IGF-1 than media conditioned by naïve macrophages; IL-4 stimulated IGF-1 production by both macrophage subsets. The ability of macrophage conditioned media to stimulate neoplastic proliferation correlated with media IGF-1 levels, and recombinant IGF-1 alone was sufficient to induce epithelial proliferation in all cell lines evaluated. Macrophage-conditioned media and IGF-1 stimulated lung tumor cell growth in an additive manner, while EGF had no effect. Macrophage-derived factors increased p-Erk1/2, p

  18. Hyperoxia Exacerbates Postnatal Inflammation-Induced Lung Injury in Neonatal BRP-39 Null Mutant Mice Promoting the M1 Macrophage Phenotype

    Directory of Open Access Journals (Sweden)

    Mansoor A. Syed

    2013-01-01

    Full Text Available Rationale. Hyperoxia exposure to developing lungs—critical in the pathogenesis of bronchopulmonary dysplasia—may augment lung inflammation by inhibiting anti-inflammatory mediators in alveolar macrophages. Objective. We sought to determine the O2-induced effects on the polarization of macrophages and the role of anti-inflammatory BRP-39 in macrophage phenotype and neonatal lung injury. Methods. We used RAW264.7, peritoneal, and bone marrow derived macrophages for polarization (M1/M2 studies. For in vivo studies, wild-type (WT and BRP-39−/− mice received continuous exposure to 21% O2 (control mice or 100% O2 from postnatal (PN 1 to PN7 days, along with intranasal lipopolysaccharide (LPS administered on alternate days (PN2, -4, and -6. Lung histology, bronchoalveolar lavage (BAL cell counts, BAL protein, and cytokines measurements were performed. Measurements and Main Results. Hyperoxia differentially contributed to macrophage polarization by enhancing LPS induced M1 and inhibiting interleukin-4 induced M2 phenotype. BRP-39 absence led to further enhancement of the hyperoxia and LPS induced M1 phenotype. In addition, BRP-39−/− mice were significantly more sensitive to LPS plus hyperoxia induced lung injury and mortality compared to WT mice. Conclusions. These findings collectively indicate that BRP-39 is involved in repressing the M1 proinflammatory phenotype in hyperoxia, thereby deactivating inflammatory responses in macrophages and preventing neonatal lung injury.

  19. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway.

    Science.gov (United States)

    Zhu, Liangying; Fu, Xiao; Chen, Xiang; Han, Xiaodong; Dong, Ping

    2017-09-01

    IPF is characterized by fibroblast accumulation, collagen deposition, and ECM remodeling, with myofibroblasts believed to be the effector cell type. Myofibroblasts develop due to EMT of lung alveolar epithelial cells, which can be induced by TGF-β. M2 macrophages, a macrophage subpopulation, secrete large amounts of TGF-β. To clarify the relationship between IPF, EMT, TGF-β, and M2 macrophages, a bleomycin-induced pulmonary fibrosis mouse model was used. Seventeen days after mice were treated with bleomycin, the successful establishment of a pulmonary fibrosis model was confirmed by HE stain and Masson's trichrome stain. We found evidence in support of EMT, such as elevated protein levels of α-SMA in lung tissue and decreased levels of E-cadherin and CK-18. Additionally, increased TGF-β levels and TGF-β/Smad2 signaling activation was observed. Macrophages were recruited to pulmonary alveoli. Alveolar macrophages were phenotyped and identified as M2 macrophages, with up-regulated CD206 on the cell surfaces. For in vitro studies, we treated RAW 264.7 cells with IL-4 for 24 h, and the cells were then utilized as M2 macrophages. TGF-β levels increased significantly in the culture supernatant. Forty-eight hours after lung epithelial cells (MLE-12) were co-cultured with the M2 macrophages, the expression of α-SMA increased, and E-cadherin and CK-18 decreased. When a TGF-β receptor inhibitor, LY2109761 was used, the EMT induced by M2 macrophages was blocked. In conclusion, we demonstrated that M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. © 2017 International Federation for Cell Biology.

  20. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna Lena Jung

    2016-04-01

    Full Text Available The formation and release of outer membrane vesicles (OMVs is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila, a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host.

  1. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  2. Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis.

    Science.gov (United States)

    Weber, Christine; Telerman, Stephanie B; Reimer, Andreas S; Sequeira, Ines; Liakath-Ali, Kifayathullah; Arwert, Esther N; Watt, Fiona M

    2016-02-15

    Macrophages are essential for the progression and maintenance of many cancers, but their role during the earliest stages of tumor formation is unclear. To test this, we used a previously described transgenic mouse model of wound-induced skin tumorigenesis, in which expression of constitutively active MEK1 in differentiating epidermal cells results in chronic inflammation (InvEE mice). Upon wounding, the number of epidermal and dermal monocytes and macrophages increased in wild-type and InvEE skin, but the increase was greater, more rapid, and more sustained in InvEE skin. Macrophage ablation reduced tumor incidence. Furthermore, bioluminescent imaging in live mice to monitor macrophage flux at wound sites revealed that macrophage accumulation was predictive of tumor formation; wounds with the greatest number of macrophages at day 5 went on to develop tumors. Gene expression profiling of flow-sorted monocytes, macrophages, and T cells from InvEE and wild-type skin showed that as wound healing progressed, InvEE macrophages altered their phenotype. Throughout wound healing and after wound closure, InvEE macrophages demonstrated sustained upregulation of several markers implicated in alternative macrophage activation including arginase-1 (ARG1) and mannose receptor (CD206). Notably, inhibition of ARG1 activity significantly reduced tumor formation and epidermal proliferation in vivo, whereas addition of L-arginase to cultured keratinocytes stimulated proliferation. We conclude that macrophages play a key role in early, inflammation-mediated skin tumorigenesis, with mechanistic evidence suggesting that ARG1 secretion drives tumor development by stimulating epidermal cell proliferation. These findings highlight the importance of cancer immunotherapies aiming to polarize tumor-associated macrophages toward an antitumor phenotype.

  3. Nogo-B is associated with cytoskeletal structures in human monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Gredler Viktoria

    2011-01-01

    Full Text Available Abstract Background The reticulon Nogo-B participates in cellular and immunological processes in murine macrophages. Since leukocytes are an essential part of the immune system in health and disease, we decided to investigate the expression of Nogo-A, Nogo-B and Nogo-C in different human immune cell subpopulations. Furthermore, we analyzed the localization of Nogo-B in human monocyte-derived macrophages by indirect immunofluorescence stainings to gain further insight into its possible function. Findings We describe an association of Nogo-B with cytoskeletal structures and the base of filopodia, but not with focal or podosomal adhesion sites of monocyte-derived macrophages. Nogo-B positive structures are partially co-localized with RhoA staining and Rac1 positive membrane ruffles. Furthermore, Nogo-B is associated with the tubulin network, but not accumulated in the Golgi region. Although Nogo-B is present in the endoplasmic reticulum, it can also be translocated to large cell protrusions or the trailing end of migratory cells, where it is homogenously distributed. Conclusions Two different Nogo-B staining patterns can be distinguished in macrophages: firstly we observed ER-independent Nogo-B localization in cell protrusions and at the trailing end of migrating cells. Secondly, the localization of Nogo-B in actin/RhoA/Rac1 positive regions supports an influence on cytoskeletal organization. To our knowledge this is the first report on Nogo-B expression at the base of filopodia, thus providing further insight into the distribution of this protein.

  4. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    OpenAIRE

    Lumeng, Carey N.; Bodzin, Jennifer L.; Alan R Saltiel

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, i...

  5. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages

    OpenAIRE

    2016-01-01

    Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. I...

  6. Progranulin promotes activation of microglia/macrophage after pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Zhu, Shanshan; Tai, Chao; Petkau, Terri L; Zhang, Si; Liao, Chengyong; Dong, Zhifang; Wen, Wendy; Chang, Qing; Tian Wang, Yu; MacVicar, Brian A; Leavitt, Blair R; Jia, William; Cynader, Max S

    2013-09-12

    Progranulin (PGRN) haploinsufficiency accounts for up to 10% of frontotemporal lobe dementia. PGRN has also been implicated in neuroinflammation in acute and chronic neurological disorders. Here we report that both protein and mRNA levels of cortical and hippocampal PGRN are significantly enhanced following pilocarpine-induced status epilepticus. We also identify intense PGRN immunoreactivity that colocalizes with CD11b in seizure-induced animals, suggesting that PGRN elevation occurs primarily in activated microglia and macrophages. To test the role of PGRN in activation of microglia/macrophages, we apply recombinant PGRN protein directly into the hippocampal formation, and observe no change in the number of CD11b(+) microglia/macrophages in the dentate gyrus. However, with pilocarpine-induced status epilepticus, PGRN application significantly increases the number of CD11b(+) microglia/macrophages in the dentate gyrus, without affecting the extent of hilar cell death. In addition, the number of CD11b(+) microglia/macrophages induced by status epilepticus is not significantly different between PGRN knockout mice and wildtype. Our findings suggest that status epilepticus induces PGRN expression, and that PGRN potentiates but is not required for seizure-induced microglia/macrophage activation.

  7. Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner.

    Directory of Open Access Journals (Sweden)

    Verena Wilhelmi

    Full Text Available In view of the steadily increasing use of zinc oxide nanoparticles in various industrial and consumer applications, toxicological investigations to evaluate their safety are highly justified. We have investigated mechanisms of ZnO nanoparticle-induced apoptosis and necrosis in macrophages in relation to their important role in the clearance of inhaled particulates and the regulation of immune responses during inflammation. In the murine macrophage RAW 264.7 cell line, ZnO treatment caused a rapid induction of nuclear condensation, DNA fragmentation, and the formation of hypodiploid DNA nuclei and apoptotic bodies. The involvement of the essential effector caspase-3 in ZnO-mediated apoptosis could be demonstrated by immunocytochemical detection of activated caspase-3 in RAW 264.7 cells. ZnO specifically triggered the intrinsic apoptotic pathway, because Jurkat T lymphocytes deficient in the key mediator caspase-9 were protected against ZnO-mediated toxicity whereas reconstituted cells were not. ZnO also caused DNA strand breakage and oxidative DNA damage in the RAW 264.7 cells as well as p47(phox NADPH oxidase-dependent superoxide generation in bone marrow-derived macrophages. However, ZnO-induced cell death was not affected in bone marrow-derived macrophages of mice deficient in p47(phox or the oxidant responsive transcription factor Nrf2. Taken together, our data demonstrate that ZnO nanoparticles trigger p47(phox NADPH oxidase-mediated ROS formation in macrophages, but that this is dispensable for caspase-9/3-mediated apoptosis. Execution of apoptotic cell death by ZnO nanoparticles appears to be NADPH oxidase and Nrf2-independent but rather triggered by alternative routes.

  8. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region.

    Science.gov (United States)

    Jobe, Ousman; Trinh, Hung V; Kim, Jiae; Alsalmi, Wadad; Tovanabutra, Sodsai; Ehrenberg, Philip K; Peachman, Kristina K; Gao, Guofen; Thomas, Rasmi; Kim, Jerome H; Michael, Nelson L; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2016-06-01

    Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1

  9. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa;

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  10. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Etzerodt, Anders; Ulhøi, Benedicte Parm

    2012-01-01

    Tumor-associated macrophages (TAMs) represent a distinct malignancy-promoting phenotype suggested to play a key role in tumor formation and metastasis. We aimed to investigate the expression of the monocyte/macrophage-restricted receptor CD163 in bladder tumor biopsies and assess the potential...... mechanism inducing the CD163 expression in tumor cells. A high CD163 mRNA expression (n = 87) was significantly associated with a poor 13-year overall survival (log-rank test, χ(2) = 8.931; p = 0.0028). Moreover, CD163 mRNA expression was significantly increased in muscle invasive (T2-T4), p = 0.......017, and aggressive (grade III/IV) cancers (p = 0.015). The expression strongly correlated with local expression of IL-6 (r = 0.72; p CD163 expression in vitro. CD163 immunostaining (n = 46) confirmed the association between dense TAM infiltration...

  11. Mycobacterium bovis Bacillus Calmette-Guérin-Induced Macrophage Cytotoxicity against Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2010-01-01

    Full Text Available Many details of the molecular and cellular mechanisms involved in Mycobacterium bovis bacillus Calmette-Guérin (BCG immunotherapy of bladder cancer have been discovered in the past decades. However, information on a potential role for macrophage cytotoxicity as an effector mechanism is limited. Macrophages play pivotal roles in the host innate immunity and serve as a first line of defense in mycobacterial infection. In addition to their function as professional antigen-presenting cells, the tumoricidal activity of macrophages has also been studied with considerable interest. Studies have shown that activated macrophages are potent in killing malignant cells of various tissue origins. This review summarizes the current understanding of the BCG-induced macrophage cytotoxicity toward bladder cancer cells with an intention to inspire investigation on this important but underdeveloped research field.

  12. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.

    Science.gov (United States)

    Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu; Liu, Liangliang; Cao, Yi

    2017-03-01

    It was recently shown that exposure to ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress both in vivo and in vitro, but the role of ER stress in ZnO NP induced toxicity remains unclear. Because macrophages are sensitive to ER stress, we hypothesized that stressing macrophages with ER stress inducer could enhance the toxicity of ZnO NPs. In this study, the effects of ER stress inducer thapsigargin (TG) on the toxicity of ZnO NPs to THP-1 macrophages were investigated. The results showed that TG enhanced ZnO NP induced cytotoxicity as revealed by water soluble tetrazolium-1 (WST-1) and neutral red uptake assays, but not lactate dehydrogenase (LDH) assay. ZnO NPs dose-dependently enhanced the accumulation of intracellular Zn ions without the induction of reactive oxygen species (ROS), and the presence of TG did not significantly affect these effects. In the co-culture, exposure of THP-1 macrophages in the upper chamber to ZnO NPs and TG significantly reduced the viability of human umbilical vein endothelial cells (HUVECs) in the lower chamber, but the release of tumor necrosis factor α (TNFα) was not induced. In summary, our data showed that stressing THP-1 macrophages with TG enhanced the cytotoxicity of ZnO NPs to macrophages and macrophage-endothelial co-cultures.

  13. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing.

    Science.gov (United States)

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi, Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-05-12

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the contribution of BMDCs. However, the extent of the differentiation of BMDCs to endothelial cells in wound healing is unclear. In this study, using the green fluorescent protein-bone marrow chim-eric experiment and high resolution confocal microscopy at a single cell level, we observed no endothelial differentiation of BMDCs in 2 acute wound healing models (dorsal excisional wound and ear punch) and a chronic wound healing model (decubitus ulcer). Instead, a major proportion of BMDCs were macrophages. Indeed, colony-stimulating factor 1 (CSF-1) inhibition depleted approximately 80% of the BMDCs at the wound healing site. CSF-1-mutant (CSF-1(op/op)) mice showed significantly reduced neoangiogenesis into the wound site, supporting the substantial role of BMDCs as macrophages. Our data show that the proangiogenic effects of macrophages, but not the endothelial differentiation, are the major contribution of BMDCs in wound healing.

  14. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Christopher T D Price

    Full Text Available Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼ 300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs to actively replicating L. pneumophila.Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling, anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression.Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.

  15. Fasciola hepatica tegumental antigens indirectly induce an M2 macrophage-like phenotype in vivo.

    Science.gov (United States)

    Adams, P N; Aldridge, A; Vukman, K V; Donnelly, S; O'Neill, S M

    2014-10-01

    The M2 subset of macrophages has a critical role to play in host tissue repair, tissue fibrosis and modulation of adaptive immunity during helminth infection. Infection with the helminth, Fasciola hepatica, is associated with M2 macrophages in its mammalian host, and this response is mimicked by its excretory-secretory products (FhES). The tegumental coat of F. hepatica (FhTeg) is another major source of immune-modulatory molecules; we have previously shown that FhTeg can modulate the activity of both dendritic cells and mast cells inhibiting their ability to prime a Th1 immune response. Here, we report that FhTeg does not induce Th2 immune responses but can induce M2-like phenotype in vivo that modulates cytokine production from CD4(+) cells in response to anti-CD3 stimulation. FhTeg induces a RELMα expressing macrophage population in vitro, while in vivo, the expression of Arg1 and Ym-1/2 but not RELMα in FhTeg-stimulated macrophages was STAT6 dependent. To support this finding, FhTeg induces RELMα expression in vivo prior to the induction of IL-13. FhTeg can induce IL-13-producing peritoneal macrophages following intraperitoneal injection This study highlights the important role of FhTeg as an immune-modulatory source during F. hepatica infection and sheds further light on helminth-macrophage interactions.

  16. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis.

    Science.gov (United States)

    Wang, Qun; Zeng, Ping; Liu, Yuanliang; Wen, Ge; Fu, Xiuqiong; Sun, Xuegang

    2015-07-01

    Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.

  17. Mycobacterium tuberculosis expressing phospholipase C subverts PGE2 synthesis and induces necrosis in alveolar macrophages.

    Science.gov (United States)

    Assis, Patricia A; Espíndola, Milena S; Paula-Silva, Francisco W G; Rios, Wendy M; Pereira, Priscilla A T; Leão, Sylvia C; Silva, Célio L; Faccioli, Lúcia H

    2014-05-19

    Phospholipases C (PLCs) are virulence factors found in several bacteria. In Mycobacterium tuberculosis (Mtb) they exhibit cytotoxic effects on macrophages, but the mechanisms involved in PLC-induced cell death are not fully understood. It has been reported that induction of cell necrosis by virulent Mtb is coordinated by subversion of PGE2, an essential factor in cell membrane protection. Using two Mtb clinical isolates carrying genetic variations in PLC genes, we show that the isolate 97-1505, which bears plcA and plcB genes, is more resistant to alveolar macrophage microbicidal activity than the isolate 97-1200, which has all PLC genes deleted. The isolate 97-1505 also induced higher rates of alveolar macrophage necrosis, and likewise inhibited COX-2 expression and PGE2 production. To address the direct effect of mycobacterial PLC on cell necrosis and PGE2 inhibition, both isolates were treated with PLC inhibitors prior to macrophage infection. Interestingly, inhibition of PLCs affected the ability of the isolate 97-1505 to induce necrosis, leading to cell death rates similar to those induced by the isolate 97-1200. Finally, PGE2 production by Mtb 97-1505-infected macrophages was restored to levels similar to those produced by 97-1200-infected cells. Mycobacterium tuberculosis bearing PLCs genes induces alveolar macrophage necrosis, which is associated to subversion of PGE2 production.

  18. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.

    Science.gov (United States)

    Chen, Hongen; Liu, Yan; Li, Di; Song, Jiayi; Xia, Min

    2016-02-01

    Inflammation of infiltrated macrophages in adipose tissue is a key contributor to the initiation of adipose insulin resistance. These macrophages are exposed to high local concentrations of free fatty acids (FFAs) and can be proinflammatory activated by saturated fatty acids (SFAs). However, the regulatory mechanisms on SFA-induced macrophage inflammation are still elusive. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a member of the PGC-1 family of transcriptional coactivators and has been reported to play a key role in SFAs metabolism and in the regulation of inflammatory signaling. However, it remains unclear whether PGC-1β is involved in SFA-induced macrophage inflammation. In this study, we found that PGC-1β expression was significantly decreased in response to palmitic acid (PA) in macrophages in a dose dependent manner. PGC-1β inhibited PA induced TNFα, MCP-1, and IL-1β mRNA and protein expressions. Furthermore, PGC-1β significantly antagonized PA induced macrophage nuclear factor-κB (NF-κB) p65 and JUN N-terminal kinase activation. Mechanistically, we revealed that TGF-β-activated kinase 1 (TAK1) and its adaptor protein TAK1 binding protein 1 (TAB1) played a dominant role in the regulatory effects of PGC-1β. We confirmed that PGC-1β inhibited downstream inflammatory signals via binding with TAB1 and thus preventing TAB1/TAK1 binding and TAK1 activation. Finally, we showed that PGC-1β overexpression in PA treated macrophages improved adipocytes PI3K-Akt insulin signaling in a paracrine fashion. Collectively, our results uncovered a novel mechanism on how macrophage inflammation induced by SFAs was regulated and suggest a potential target in the treatment of obesity induced insulin resistance.

  19. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

    Science.gov (United States)

    Malandrino, Maria Ida; Fucho, Raquel; Weber, Minéia; Calderon-Dominguez, María; Mir, Joan Francesc; Valcarcel, Lorea; Escoté, Xavier; Gómez-Serrano, María; Peral, Belén; Salvadó, Laia; Fernández-Veledo, Sonia; Casals, Núria; Vázquez-Carrera, Manuel; Villarroya, Francesc; Vendrell, Joan J; Serra, Dolors; Herrero, Laura

    2015-05-01

    Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

  20. Inhibition of nitric oxide enhances ovine lentivirus replication in monocyte-derived macrophages.

    Science.gov (United States)

    Keane, Kevin A; Mason, Gary L; DeMartini, James C

    2002-12-01

    Ovine lentivirus (OvLV) also known as maedi-visna virus, infects and replicates primarily in macrophages. This investigation examined the role of nitric oxide in the replication of OvLV in cultured macrophages. Peripheral blood mononuclear cells were collected from OvLV-free sheep and cultured in Teflon coated flasks at a high concentration of lamb serum. The cells were subsequently infected with OvLV strain 85/34. OvLV replication was assessed under different experimental treatments by comparison of reverse transcriptase (RT) activity in culture supernatant. Cultures that were treated with exogenous nitric oxide via S-nitroso-acetylpenicillamine did not have altered levels of RT activity compared to cultures treated with the inactive control compound, acetylpenicillamine. However, blockage of nitric oxide production by treatment with aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), led to a significant rise in RT activity. This rise in RT activity was partially reversed in aminoguanidine treated cultures by L-arginine, the normal substrate for iNOS. Finally, the number of viral antigen producing cells was also quantified after aminoguanidine treatment and found to be significantly higher than untreated cultures. Collectively, these results indicate that nitric oxide is a negative regulator of OvLV replication in macrophages.

  1. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes.

    Science.gov (United States)

    Lee, Hee Doo; Koo, Bon-Hun; Kim, Yeon Hyang; Jeon, Ok-Hee; Kim, Doo-Sik

    2012-07-01

    A disintegrin and metalloproteinase 15 (ADAM15), the only ADAM protein containing an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain, is a widely expressed membrane protein that is involved in tumor progression and suppression. However, the underlying mechanism of ADAM15-mediated tumor suppression is not clearly understood. This study demonstrates that ADAM15 is released as an exosomal component, and ADAM15 exosomes exert tumor suppressive activities. We found that exosomal ADAM15 release is stimulated by phorbol 12-myristate 13-acetate, a typical protein kinase C activator, in various tumor cell types, and this results in a corresponding decrease in plasma membrane-associated ADAM15. Exosomes rich in ADAM15 display enhanced binding affinity for integrin αvβ3 in an RGD-dependent manner and suppress vitronectin- and fibronectin-induced cell adhesion, growth, and migration, as well as in vivo tumor growth. Exosomal ADAM15 is released from human macrophages, and macrophage-derived ADAM15 exosomes have tumor inhibitory effects. This work suggests a primary role of ADAM15 for exosome-mediated tumor suppression, as well as functional significance of exosomal ADAM protein in antitumor immunity.

  2. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability?

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available BACKGROUND: Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown. METHODS AND RESULTS: Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis. CONCLUSION: Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.

  3. Curcumin Attenuates Titanium Particle-Induced Inflammation by Regulating Macrophage Polarization In Vitro and In Vivo

    Science.gov (United States)

    Li, Bin; Hu, Yan; Zhao, Yaochao; Cheng, Mengqi; Qin, Hui; Cheng, Tao; Wang, Qiaojie; Peng, Xiaochun; Zhang, Xianlong

    2017-01-01

    Periprosthetic inflammatory osteolysis and subsequent aseptic loosening are commonly observed in total joint arthroplasty. Other than revision surgery, few approved treatments are available for this complication. Wear particle-induced inflammation and macrophage polarization state play critical roles in periprosthetic osteolysis. We investigated the effects of curcumin, a polyphenol extracted from Curcuma longa, on titanium (Ti) particle-induced inflammation and macrophage polarization in vitro using the murine cell line RAW 264.7 and in vivo using a murine air pouch model. The expression of specific macrophage markers was qualitatively analyzed by immunofluorescence (inducible nitric oxide synthase and CD206) and quantitatively analyzed by flow cytometry (CCR7 and CD206), representing M1 and M2 macrophages, respectively. Our results show that curcumin induced a higher percentage of M2 macrophages together with a higher concentration of anti-inflammatory cytokine IL-10, and a lower percentage of M1 macrophages with a lower concentration of pro-inflammatory cytokines (TNF-α and IL-6). The genes encoding CD86 (M1) and CD163 (M2), two additional markers, were shifted by curcumin toward an M2 phenotype. C57BL/J6 mice were injected with air and Ti particles to establish an air pouch model. Curcumin reduced cell infiltration in the pouch membrane and decreased membrane thickness. The analysis of exudates obtained from pouches demonstrated that the effects of curcumin on macrophage polarization and cytokine production were similar to those observed in vitro. These results prove that curcumin suppresses Ti particle-induced inflammation by regulating macrophage polarization. Thus, curcumin could be developed as a new therapeutic candidate for the prevention and treatment of inflammatory osteolysis and aseptic loosening. PMID:28197150

  4. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Science.gov (United States)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  5. Escherichia coli Prevents Phagocytosis-Induced Death of Macrophages via Classical NF-κB Signaling, a Link to T-Cell Activation

    OpenAIRE

    Groesdonk, Heinrich V.; Schlottmann, Silke; Richter, Friederike; Georgieff, Michael; Senftleben, Uwe

    2006-01-01

    NF-κB is a crucial mediator of macrophage inflammatory responses, but its role in the context of pathogen-induced adaptive immune responses has yet to be elucidated. Here, we demonstrate that classical NF-κB activation delays phagocytosis-induced cell death (PICD) in Raw 264.7 and bone marrow-derived macrophages (BMDMs) upon ingestion of bacteria from the Escherichia coli laboratory strain Top10. By expression of a nondegradable form of IκBα (superrepressor) and pyrrolidine dithiocarbamate tr...

  6. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  7. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells.

    Science.gov (United States)

    Maniecki, Maciej Bogdan; Etzerodt, Anders; Ulhøi, Benedicte Parm; Steiniche, Torben; Borre, Michael; Dyrskjøt, Lars; Orntoft, Torben Falck; Moestrup, Søren Kragh; Møller, Holger Jon

    2012-11-15

    Tumor-associated macrophages (TAMs) represent a distinct malignancy-promoting phenotype suggested to play a key role in tumor formation and metastasis. We aimed to investigate the expression of the monocyte/macrophage-restricted receptor CD163 in bladder tumor biopsies and assess the potential mechanism inducing the CD163 expression in tumor cells. A high CD163 mRNA expression (n = 87) was significantly associated with a poor 13-year overall survival (log-rank test, χ(2) = 8.931; p = 0.0028). Moreover, CD163 mRNA expression was significantly increased in muscle invasive (T2-T4), p = 0.017, and aggressive (grade III/IV) cancers (p = 0.015). The expression strongly correlated with local expression of IL-6 (r = 0.72; p CD163 expression in vitro. CD163 immunostaining (n = 46) confirmed the association between dense TAM infiltration and histologically advanced disease. In 39% of the biopsies, CD163 immunoreactivity was also observed in tumor cells, and CD163-expressing metastatic cells were identified in lymph node biopsies (n = 8). Bladder cancer cell lines did not express CD163; however, when cocultured with macrophages the bladder cancer cell expression of CD163 was significantly induced in an IL-6/IL-10 independent manner. In conclusion, we show a strong association between CD163 mRNA expression in bladder cancer biopsies and poor patient outcome. CD163 expression was not confined to the infiltrating TAMs, but was also expressed by a significant portion of the malignant cells in both tumors and lymph nodes. CD163 expressing tumor cells may constitute a subpopulation of tumor cells with a phenotypic shift associated with epithelial-to-mesenchymal transition (EMT) and increased metastatic activity induced by TAMs. Copyright © 2012 UICC.

  8. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    Science.gov (United States)

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  9. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  10. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  11. Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-06-01

    Full Text Available Shuyuan Guo,1* Xin Sun,1,2* Jiali Cheng,1 Haobo Xu,1 Juhua Dan,2 Jing Shen,3 Qi Zhou,4 Yun Zhang,1 Lingli Meng,1 Wenwu Cao,4,5 Ye Tian1,2 1Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China; 2Division of Pathophysiology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin, People's Republic of China; 3Division of Oncology, the Third Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China; 4Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, People's Republic of China; 5Department of Mathematics and Materials Research Institute, Pennsylvania State University, University Park, PA, USA *These authors contributed equally to this work Background: Sonodynamic therapy (SDT was developed as a localized ultrasound-activated cytotoxic therapy for cancer. The ability of SDT to destroy target tissues selectively is especially appealing for atherosclerotic plaque, in which selective accumulation of the sonosensitizer, protoporphyrin IX (PpIX, had been demonstrated. Here we investigate the effects of PpIX-mediated SDT on macrophages, which are the main culprit in progression of atherosclerosis. Methods and results: Cultured THP-1 derived macrophages were incubated with PpIX. Fluorescence microscopy showed that the intracellular PpIX concentration increased with the concentration of PpIX in the incubation medium. MTT assay demonstrated that SDT with PpIX significantly decreased cell viability, and this effect increased with duration of ultrasound exposure and PpIX concentration. PpIX-mediated SDT induced both apoptosis and necrosis, and the maximum apoptosis to necrosis ratio was obtained after SDT with 20 µg/mL PpIX and five minutes of sonication

  12. Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria.

    Science.gov (United States)

    Häcker, Hans; Fürmann, Christine; Wagner, Hermann; Häcker, Georg

    2002-09-15

    A number of highly virulent, intracellular bacteria are known to induce cell death by apoptosis in infected host cells. In this work we demonstrate that phagocytosis of bacteria from the Escherichia coli laboratory strain K12 DH5alpha is a potent cell death stimulus for mouse macrophages. RAW264.7 mouse macrophages took up bacteria and digested them within 2-4 h as investigated with green fluorescent protein-expressing bacteria. No evidence of apoptosis was seen at 8 h postexposure, but at 24 h approximately 70% of macrophages displayed an apoptotic phenotype by a series of parameters. Apoptosis was blocked by inhibition of caspases or by forced expression of the apoptosis-inhibiting protein Bcl-2. Processing of caspase-3 and caspase-9 but not caspase-8 was seen suggesting that the mitochondrial branch of the apoptotic pathway was activated. Active effector caspases could be detected in two different assays. Because the adapter molecule myeloid differentiation factor 88 (MyD88) has been implicated in apoptosis, involvement of the Toll-like receptor pathway was investigated. In RAW264.7 cells, heat-treated bacteria were taken up poorly and failed to induce significant apoptosis. However, cell activation was almost identical between live and heat-inactivated bacteria as measured by extracellular signal-regulated kinase activation, generation of free radicals, and TNF secretion. Furthermore, primary bone marrow-derived macrophages from wild-type as well as from MyD88-deficient mice underwent apoptosis upon phagocytosis of bacteria. These results show that uptake and digestion of bacteria leads to MyD88-independent apoptosis in mouse macrophages. This form of cell death might have implications for the generation of the immune response.

  13. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability

    Science.gov (United States)

    Chen, Kejie; Shanmugam, Nanda Kumar N.; Pazos, Michael A.; Hurley, Bryan P.; Cherayil, Bobby J.

    2016-01-01

    Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß). Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages) after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis. PMID:27505062

  14. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1.

    Science.gov (United States)

    Wang, Huayang; Shao, Qianqian; Sun, Jintang; Ma, Chao; Gao, Wenjuan; Wang, Qingjie; Zhao, Lei; Qu, Xun

    2016-04-01

    Tumor-infiltrated macrophages were potential targets of the immune therapy for patients with colon cancer. Colony stimulating factor 1 (CSF1) is a primary chemoattractant and functional regulator for macrophages, and therefore would be a feasible intervention for the macrophage-targeting therapeutics. However, the expression of CSF1 in colon cancer microenvironment and its roles in cancer development is largely unknown. In the present study, we found that CSF1 was over-expressed exclusively in colon cancer cells and was correlated with macrophages infiltration. The high CSF1 expression and macrophages infiltration were related to the tumor-node-metastasis (TNM) stage of colon cancer, and suggested to be positively associated with survival of colon cancer patients. In the in vitro studies based on an indirect Transwell system, we found that co-culture with macrophage promoted CSF1 production in colon cancer cells. Further investigation on regulatory mechanisms suggested that CSF1 production in colon cancer cells was dependent on PKC pathway, which was activated by IL-8, mainly produced by macrophages. Moreover, colon cancer cell-derived CSF1 drove the recruitment of macrophages and re-educated their secretion profile, including the augment of IL-8 production. The mice tumor xenografts study also found that over-expression of CSF1 in colon cancer cells promoted intratumoral infiltration of macrophages, and partially suppressed tumor growth. In all, our results demonstrated that CSF1 was an important factor in the colon cancer microenvironment, involving in the interactions between colon cancer cells and tumor-infiltrated macrophages.

  15. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  16. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    Science.gov (United States)

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation.

  17. Prior reproductive experience alters prolactin-induced macrophage responses in pregnant rats.

    Science.gov (United States)

    Carvalho-Freitas, Maria Isabel Roth; Anselmo-Franci, Janete A; Palermo-Neto, João; Felicio, Luciano F

    2013-09-01

    Reproductive experience (i.e., pregnancy and lactation) induces physiological changes in mammals. A previous reproductive experience was recently shown to modulate the activity of dopaminergic hypothalamic systems while decreasing serum prolactin levels and oxidative burst activity in peritoneal macrophages. Dopamine receptor antagonists increase serum prolactin levels, and both prolactin and dopamine receptors may be involved in the modulation of macrophage activity, providing a means of communication between the nervous and immune systems. The present study evaluated the in vitro effects of prolactin and a dopamine D2 receptor antagonist on the peritoneal activity of macrophages from primigravid and multigravid female rats during the third trimester of pregnancy. Oxidative bursts and phagocytosis in peritoneal macrophages were evaluated by flow cytometry. Primigravid and multigravid Wistar rats, during the third trimester of pregnancy (i.e., days 17-21), were used. Peritoneal fluid samples from these rats were first incubated with prolactin (10 and 100 nM) for different periods of time. The same procedure was repeated to evaluate the effects of domperidone (10 and 100 nM) on macrophage activity. Our results showed that macrophages from multigravid rats responded more effectively to in vitro incubation with prolactin, especially with regard to the intensity and percentage of phagocytosis. Additionally, these effects were more pronounced after incubation periods of 30 min or 4 h. These data suggest that macrophages during a second pregnancy become more sensitive to the phagocytotic effects of prolactin.

  18. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage.

    Science.gov (United States)

    Heo, Soo-Jin; Yoon, Weon-Jong; Kim, Kil-Nam; Oh, Chulhong; Choi, Young-Ung; Yoon, Kon-Tak; Kang, Do-Hyung; Qian, Zhong-Ji; Choi, Il-Whan; Jung, Won-Kyo

    2012-09-01

    In this study, the anti-inflammatory effect of fucoxanthin (FX) derivatives, which was isolated from Sargassum siliquastrum were evaluated by examining their inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. The FX derivatives were isolated from activity-guided chloroform fraction using inhibition of nitric oxide (NO) production and identified as 9'-cis-(6'R) fucoxnathin (FXA), and 13-cis and 13'-cis-(6'R) fucoxanthin complex (FXB) on the basis of a comparison of NMR spectroscopic data. Both FXA and FXB significantly inhibited the NO production and showed slightly reduce the PGE2 production. However, FXB exhibited cytotoxicity at the whole tested concentration, therefore, the results of FXA was only illustrate for further experiments. FXA induced dose-dependent reduction in the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) proteins as well as mRNA expression. In addition, FXA reduced the LPS-stimulated production and mRNA expressions of TNF-α and IL-6 in a dose-dependent manner whereas IL-1β production do not inhibit by addition of FXA. Taken together, these findings indicate that the anti-inflammatory properties of FXA may be due to the inhibition of iNOS/NO pathway which associated with the attenuation of TNF-α and IL-6 formation. Thus FXA may provide a potential therapeutic approach for inflammation related diseases.

  19. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes.

    NARCIS (Netherlands)

    Diepen, van Janna A.; Hooiveld, Guido; Stienstra, Rinke; Deen, Peter M.

    2017-01-01

    Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal induced by

  20. The roles of blood-derived macrophages and resident microglia in the neuroinflammatory response to implanted Intracortical microelectrodes

    Science.gov (United States)

    Ravikumar, Madhumitha; Sunil, Smrithi; Black, James; Barkauskas, Deborah S.; Haung, Alex Y.; Miller, Robert H.; Selkirk, Stephen M.; Capadona, Jeffrey R.

    2014-01-01

    Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance. Therefore, the goal of this study is to characterize the role of infiltrating blood-derived cells, specifically macrophages, in mediating neuroinflammation following intracortical microelectrode implantation. Interestingly, we found no correlation between microglia and neuron populations at the microelectrode-tissue interface. On the other hand, blood-borne macrophages consistently dominated the infiltrating cell population following microelectrode implantation. Most importantly, we found a correlation between increased populations of blood-derived cells (including the total macrophage population) and neuron loss at the microelectrode-tissue interface. Specifically, the total macrophage population was greatest at two and sixteen weeks post implantation, at the same time points when we observed the lowest densities of neuronal survival in closest proximity to the implant. Together, our results suggest a dominant role of infiltrating macrophages, and not resident microglia, in mediating neurodegeneration following microelectrode implantation. PMID:24973296

  1. HIV-1-infected monocytes and monocyte-derived macrophages are impaired in their ability to produce superoxide radicals.

    Science.gov (United States)

    Howell, A L; Groveman, D S; Wallace, P K; Fanger, M W

    1997-01-01

    Monocytes and monocyte-derived macrophages play a key role in immune defense against pathogenic organisms. Superoxide anion production is a key mechanism by which phagocytes kill pathogens. We sought to determine whether human immunodeficiency virus-infected monocytes and monocyte-derived macrophages are compromised in their ability to produce the superoxide anion following stimulation with phorbol myristate acetate (PMA) or after cross-linking the type I Fc receptor for IgG (Fc gamma RI). Fc gamma RI was cross-linked by the binding of monoclonal antibody 197, which reacts with an epitope of Fc gamma RI via its Fc region. Monocytes and monocyte-derived macrophages obtained from seronegative donors were infected in vitro with human immunodeficiency virus-1JR-FL and used in effector assays that measured superoxide anion production by the reduction of nitroblue tetrazolium. Reduced nitroblue tetrazolium was measured spectrophotometrically and by microscopy in which the percentage of cells containing intracellular deposits of the dye was assessed. By spectrophotometric measurement, we found that human immunodeficiency virus-infected monocytes and monocyte-derived macrophages produced less superoxide anion following either phorbol myristate acetate stimulation or Fc gamma RI cross-linking than uninfected cells from the same donor. Using microscopy we saw no difference in the percentage of infected and uninfected macrophages containing intracellular deposits of nitroblue tetrazolium suggesting that human immunodeficiency virus-infected macrophages produce less superoxide anion on a per cell basis than uninfected macrophages. Activation of human immunodeficiency virus-infected monocytes with interferon-gamma for 72 h prior to stimulation with phorbol myristate acetate or monoclonal antibody 197 increased their ability to reduce nitroblue tetrazolium. These findings suggest that impairment in the production of reactive oxygen intermediates may, in some cases, contribute to

  2. Essential roles of the CC chemokine ligand 3-CC chemokine receptor 5 axis in bleomycin-induced pulmonary fibrosis through regulation of macrophage and fibrocyte infiltration.

    Science.gov (United States)

    Ishida, Yuko; Kimura, Akihiko; Kondo, Toshikazu; Hayashi, Takahito; Ueno, Masaya; Takakura, Nobuyuki; Matsushima, Kouji; Mukaida, Naofumi

    2007-03-01

    We investigated the pathogenic roles of CC chemokine ligand (CCL)3 and its receptors, CC chemokine receptor (CCR)1 and CCR5, in bleomycin (BLM)-induced pulmonary fibrosis (PF). An intratracheal injection of BLM into wild-type (WT) mice caused a massive infiltration of granulocytes and macrophages, followed by the development of diffuse PF with fibrocyte accumulation. Intrapulmonary CCL3 expression was enhanced rapidly and remained at elevated levels until PF developed. Moreover, CCL3 protein was detected mainly in infiltrating granulocytes and macrophages, whereas transforming growth factor-beta1 protein was detected in macrophages and myofibroblasts. Compared with WT mice, collagen accumulation was reduced in CCL3(-/-) and CCR5(-/-) but not CCR1(-/-) mice. Moreover, the BLM-induced increases in intrapulmonary macrophage and fibrocyte numbers were attenuated in CCL3(-/-) and CCR5(-/-) but not CCR1(-/-) mice, although BLM increased bone marrow (BM) fibrocyte number to a similar extent in these strains. BM transplantation from CCR5(-/-) to WT, but not that from WT to CCR5(-/-) mice, recapitulated the phenotypes in CCR5(-/-) mice. Furthermore, CCR5(+/-) mice exhibited a significant reduction in BLM-induced fibrotic changes. These results demonstrated that locally produced CCL3 was involved in BLM-induced recruitment of BM-derived macrophages and fibrocytes, main producers of transforming growth factor-beta1, and subsequent development of PF by interacting mainly with CCR5.

  3. Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation.

    Directory of Open Access Journals (Sweden)

    Helmy Rachman

    Full Text Available Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-alpha as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG, a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles.

  4. In vitro Leishmania major promastigote-induced macrophage migration is modulated by sensory and autonomic neuropeptides

    DEFF Research Database (Denmark)

    Ahmed, A A; Wahbi, A; Nordlind, K

    1998-01-01

    the chemotactic activities of live, killed and sonicated Leishmania major promastigotes and of the promastigote culture supernatant as well as the L. major surface protease gp63 towards a murine macrophage cell line, Raw 264.7, were investigated, using the Boyden technique. The sensory neuropeptides SOM, CGRP...... and SP, and the autonomic neuropeptides VIP and NPY, were also investigated for possible modulatory effects on this chemotaxis, using the living promastigotes. Living promastigotes were the most efficient attractants for macrophages compared with other forms of the parasites. Prior incubation...... of the macrophages with the parasites completely abolished the chemotactic activity. This might indicate that the living promastigote chemotaxis is a receptor-mediated process. On the other hand, paraformaldehyde-killed promastigotes not only failed to induce macrophage chemotaxis but also inhibited it in comparison...

  5. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy.

    Science.gov (United States)

    Kim, Su-Mi; Lee, Sang-Ho; Kim, Yang-Gyun; Kim, Se-Yun; Seo, Jung-Woo; Choi, Young-Wook; Kim, Dong-Jin; Jeong, Kyung-Hwan; Lee, Tae-Won; Ihm, Chun-Gyoo; Won, Kyu-Yeoun; Moon, Ju-Young

    2015-05-01

    IL-1β-secreting nucleotide-binding oligomerization domain protein 3 (NLRP3) inflammasomes play a pivotal role in triggering innate immune responses in metabolic disease. We investigated the role of soluble uric acid in NLRP3 inflammasome activation in macrophages to demonstrate the effect of systemic hyperuricemia on progressive kidney damage in type 2 diabetes. THP-1 cells, human acute monocytic leukemia cells, were cultured to obtain macrophages, and HK-2 cells, human renal proximal tubule cells, were cultured and stimulated with uric acid. In vivo, we designed four rat groups as follows: 1) Long-Evans Tokushima Otsuka (LETO); 2) Otsuka Long-Evans Tokushima Fatty (OLETF); 3) OLETF+high-fructose diet (HFD) for 16 wk; and 4) OLETF+HFD+allopurinol (10 mg/dl administered in the drinking water). Soluble uric acid stimulated NLRP3 inflammasomes to produce IL-1β in macrophages. Uric acid-induced MitoSOX mediates NLRP3 activation and IL-1β secretion. IL-1β from macrophages activates NF-κB in cocultured proximal tubular cells. In vivo, intrarenal IL-1β expression and macrophage infiltration increased in HFD-fed OLETF rats. Lowering the serum uric acid level resulted in improving the albuminuria, tubular injury, macrophage infiltration, and renal IL-1β (60% of HFD-fed OLETF) independently of glycemic control. Direct activation of proximal tubular cells by uric acid resulted in (C-X-C motif) ligand 12 and high mobility group box-1 release and accelerated macrophage recruitment and the M1 phenotype. Taken together, these data support direct roles of hyperuricemia in activating NLRP3 inflammasomes in macrophages, promoting chemokine signaling in the proximal tubule and contributing to the progression of diabetic nephropathy through cross talk between macrophages and proximal tubular cells.

  6. Chemotherapeutic agent CPT-11 eliminates peritoneal resident macrophages by inducing apoptosis.

    Science.gov (United States)

    Huang, Mei-Yun; Pan, Hao; Liang, Yi-Dan; Wei, Hong-Xia; Xu, Li-Hui; Zha, Qing-Bing; He, Xian-Hui; Ouyang, Dong-Yun

    2016-02-01

    CPT-11 (Irinotecan) is a first-line chemotherapeutic agent in clinic, but it may induce side effects including diarrhea and enteritis in patients. The underlying mechanism of CPT-11's intestinal toxicity is unclear. Peritoneal resident macrophages have been reported to be important for the maintenance of intestinal homeostasis. In this study, we evaluated the cytotoxic effects of CPT-11 on mouse peritoneal resident macrophages. CPT-11 was administered intraperitoneally to mice and their peritoneal exudate cells were isolated for evaluation. CPT-11 treatment strikingly decreased the ratio of F4/80(hi)MHCII(low) large peritoneal macrophages (LPMs), which are regarded as prenatally-originated peritoneal resident macrophages. Consistent with this, the transcription factor GATA6 specifically expressed in LPMs was barely detectable in the macrophages from CPT-11-treated mice, indicative of elimination of LPMs. Such elimination of LPMs was at least partly due to CPT-induced apoptosis in macrophages, because inhibition of apoptosis by caspase-3 inhibitor z-DEVD-fmk significantly diminished the loss of GATA6(+) LPMs. As GATA6 is a transcription factor that controls expression of multiple genes regulating peritoneal B-1 cell development and translocation, elimination of GATA6(+) LPMs led to a great reduction in B-1 cells in the peritoneal cavity after CPT-11 treatment. These results indicated that CPT-11-induced apoptosis contributed to the elimination of peritoneal resident macrophages, which might in turn impair the function of peritoneal B-1 cells in maintaining intestinal homeostasis. Our findings may at least partly explain why CPT-11 treatment in cancer patients induces diarrhea and enteritis, which may provide a novel avenue to prevent such side effects.

  7. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation

    Directory of Open Access Journals (Sweden)

    Weihua Xiao

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C Control, E Exercise, (E1 Exercise with one week to recover, (ES Exercise + Supplementation and (ES1 Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031, reactive oxygen species (ROS production (decreased by 26%, p = 0.003 and MHC II mRNA (decreased by 22%, p = 0.041 of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05. Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  8. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation.

    Science.gov (United States)

    Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin

    2015-10-21

    The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  9. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke.

    Science.gov (United States)

    Kooltheat, Nateelak; Sranujit, Rungnapa Pankla; Chumark, Pilaipark; Potup, Pachuen; Laytragoon-Lewin, Nongnit; Usuwanthim, Kanchana

    2014-02-18

    Moringa oleifera Lam. (MO) has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE)-induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF) was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM) pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8) which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6) which mediate tissue disease and damage.

  10. An Ethyl Acetate Fraction of Moringa oleifera Lam. Inhibits Human Macrophage Cytokine Production Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nateelak Kooltheat

    2014-02-01

    Full Text Available Moringa oleifera Lam. (MO has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE—induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8 which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6 which mediate tissue disease and damage.

  11. Organic cation transporter Octn1-mediated uptake of food-derived antioxidant ergothioneine into infiltrating macrophages during intestinal inflammation in mice.

    Science.gov (United States)

    Shimizu, Takuya; Masuo, Yusuke; Takahashi, Saki; Nakamichi, Noritaka; Kato, Yukio

    2015-06-01

    OCTN1/SLC22A4 is expressed on apical membranes of small intestine, and is involved in gastrointestinal absorption of its substrates, including the food-derived antioxidant ergothioneine (ERGO). ERGO concentration in circulating blood of patients with inflammatory bowel disease (Crohn's disease) is lower than that in healthy volunteers; thus, circulating ERGO is a potential diagnostic marker, although the mechanisms underlying low ERGO concentration in patients are unknown. Here, we focused on intestinal macrophages, which infiltrate sites of inflammation, and examined possible first-pass uptake of ERGO by macrophages. ERGO concentration in blood was lower in mice with dextran sodium sulfate (DSS)-induced colitis than in controls. On the other hand, expression of octn1 gene product and ERGO concentration in intestinal tissues of DSS-treated mice were higher than in controls. Interestingly, lamina propria mononuclear cells (LPMCs) isolated from DSS-treated mice contained ERGO and showed [(3)H]ERGO uptake and Octn1 expression, whereas ERGO was undetectable in LPMCs of control mice. Functional expression of OCTN1 was also confirmed in LPS-stimulated human macrophage-like cell line, THP-1. In conclusion, OCTN1 is functionally expressed on activated intestinal macrophages, and ERGO uptake into these immune cells could contribute at least in part to the altered disposition of ERGO in intestinal inflammation.

  12. Copper induces the expression of cholesterogenic genes in human macrophages.

    Science.gov (United States)

    Svensson, Per Arne; Englund, Mikael C O; Markström, Emilia; Ohlsson, Bertil G; Jernås, Margareta; Billig, Håkan; Torgerson, Jarl S; Wiklund, Olov; Carlsson, Lena M S; Carlsson, Björn

    2003-07-01

    Accumulation of lipids and cholesterol by macrophages and subsequent transformation into foam cells are key features in development of atherosclerosis. Serum copper concentrations have been shown to be associated with cardiovascular disease. However, the mechanism behind the proatherogenic effect of copper is not clear. We used DNA microarrays to define the changes in gene expression profile in response to copper exposure of human macrophages. Expression monitoring by DNA microarray revealed 91 genes that were regulated. Copper increased the expression of seven cholesterogenic genes (3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase, IPP isomerase, squalene synthase, squalene epoxidase, methyl sterol oxidase, H105e3 mRNA and sterol-C5-desaturase) and low-density lipoprotein receptor (LDL-R), and decreased the expression of CD36 and lipid binding proteins. The expression of LDL-R and HMG CoA reductase was also investigated using real time PCR. The expression of both of these genes was increased after copper treatment of macrophages (Pmechanism for the association between copper and atherosclerosis. The effect of copper on cholesterogenic genes may also have implications for liver steatosis in early stages of Wilson's disease.

  13. Identification of Francisella novicida mutants that fail to induce prostaglandin E2 synthesis by infected macrophages.

    Directory of Open Access Journals (Sweden)

    Matthew Dale Woolard

    2013-02-01

    Full Text Available Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS induces macrophages to synthesize prostaglandin E2 (PGE2. Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial that result in up-regulation of the PGE2 biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, we infected cells with individual mutants from the closely related strain Francisella tularensis subspecies novicida U112 (U112 two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE2 by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI. Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE2. This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE2. We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor induces PGE2. These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE2 synthesis. These mutants provide a critical entrée into the pathways used

  14. Molecular mechanisms of macrophage activation induced by the synergistic effects of low dose irradiation and adoptive T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Noemi

    2016-12-19

    The detection of cancerous cells by the immune system elicits spontaneous antitumour immune responses. Still, during their progression, tumours acquire characteristics that enable them to escape immune surveillance. Cancer immunotherapy aims to reverse tumour immune evasion by activating and directing the immune system against transformed tumour cells. However, the tumours' intrinsic resistance mechanisms limit the success of many immunotherapeutic approaches. The functionally and morphologically abnormal tumour vasculature forms a physical barrier and prevents the entry of tumour-reactive immune effector cells, while the immunosuppressive tumour microenvironment impairs their function. To block tumour immune evasion, therapeutic strategies are being developed that combine cancer immunotherapy with treatment modalities, such as radiotherapy, that reprogram the tumour microenvironment to increase treatment efficacies and improve clinical outcome. In various preclinical models radiotherapy was shown to enhance the efficacy of adoptive T cell therapy. Our group showed that in the RIP1-TAg5 mouse model of spontaneous insulinoma, the transfer of in vitro-activated tumour-specific T cells induces T cell infiltration and promotes long-term survival only in combination with neoadjuvant local low dose irradiation (LDI). These treatment effects were mediated by iNOS+ macrophages. In this thesis, we investigated the mechanisms underlying the improved T cell infiltration and prolonged survival upon combination therapy with adoptive T cell transfer and local LDI. We demonstrate that combination therapy leads to a normalization of the aberrant tumour vasculature and endothelial activation, an increase in intratumoural macrophages, a reduction of intratumoural myeloid derived suppressor cells and, most importantly, to tumour regression. These findings suggest that this treatment inhibits tumour immune suppression but also facilitates immune effector cell infiltration through

  15. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T;

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions...... and macrophage infiltration at day 7. No denervation was detectable at day 14 of double treatment, using subcutaneous AG. Our findings favor a role for ED1+ macrophages and iNOS in the hypertension-induced denervation process....

  16. Cumene hydroperoxide debilitates macrophage physiology by inducing oxidative stress: possible protection by alpha-tocopherol.

    Science.gov (United States)

    Kaur, Gurpreet; Alam, M Sarwar; Athar, Mohammad

    2009-05-15

    Macrophages, the major phagocytes of body, are largely dependent on membrane for their apposite functioning. Cum-OOH, a catalyst used in chemical and pharmaceutical industry, is a peroxidative agent, which may induce oxidative stress in macrophages hampering the integrity of their membrane. Alpha-tocopherol is known to protect the membrane from oxidative modulation and preserve its integrity. In the present study, we investigated the effect of Cum-OOH on physiology of macrophages and evaluated the protective effect of alpha-tocopherol against Cum-OOH-induced functional impairment. An in vitro exposure to 10-200 microM Cum-OOH altered redox balance of murine peritoneal macrophages and led to a severe physiological impairment. It markedly augmented the release of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and prostaglandin E(2)), lipopolysaccharide primed nitric oxide release and inducible nitric oxide synthase expression, and lysosomal hydrolases secretion. It mitigated respiratory burst and phagocytosis and intracellular killing of yeast (Saccharomyces cerevisiae). Mannose receptor, a major macrophage phagocytic receptor (also implicated in S. cerevisiae phagocytosis), exhibited a hampered recycling with its number being reduced to about 54% of the untreated, control cells following Cum-OOH exposure. A 24-h pretreatment of macrophages with 25 microM alpha-tocopherol preserved most of the assessed functions close to their corresponding control values. These data suggest that exposure to Cum-OOH may impair the physiology of immune cells such as macrophages and that supplementation with alpha-tocopherol can safeguard these cells against Cum-OOH toxicity.

  17. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Science.gov (United States)

    Routray, Indusmita; Ali, Shakir

    2016-01-01

    Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  18. Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech.

    Science.gov (United States)

    Schorn, Tilo; Drago, Francesco; Tettamanti, Gianluca; Valvassori, Roberto; de Eguileor, Magda; Vizioli, Jacopo; Grimaldi, Annalisa

    2015-03-01

    Allograft inflammatory factor-1 (AIF-1) is a 17-kDa cytokine-inducible calcium-binding protein that, in vertebrates, plays an important role in the allograft immune response. Its expression is mostly limited to the monocyte/macrophage lineage. Until recently, AIF-1 was assumed to be a novel molecule involved in inflammatory responses. To clarify this aspect, we have investigated the expression of AIF-1 after bacterial challenge and its potential role in regulating the innate immune response in an invertebrate model, the medicinal leech (Hirudo medicinalis). Analysis of an expressed sequence tag library from the central nervous system of Hirudo revealed the presence of the gene Hmaif-1/alias Hmiba1, showing high homology with vertebrate aif-1. Immunohistochemistry with an anti-HmAIF-1 polyclonal antibody revealed the constitutive presence of this protein in spread CD68(+) macrophage-like cells. A few hours after pathogen (bacterial) injection into the body wall, the amount of these immunopositive cells co-expressing HmAIF-1 and the common leucocyte marker CD45 increased at the injected site. Moreover, the recombinant protein HmAIF-1 induced massive angiogenesis and was a potent chemoattractant for macrophages. Following rHmAIF-1 stimulation, macrophage-like cells co-expressed the macrophage marker CD68 and the surface glycoprotein CD45, which, in vertebrates, seems to have a role in the integrin-mediated adhesion of macrophages and in the regulation of the functional responsiveness of cells to chemoattractants. CD45 is therefore probably involved in leech macrophage-like cell activation and migration towards an inflammation site. We have also examined its potential effect on HmAIF-1-induced signalling.

  19. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages.

    Directory of Open Access Journals (Sweden)

    Indusmita Routray

    Full Text Available Chemical mediators of inflammation (CMI are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO, were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.

  20. TNF and PGE2 in human monocyte-derived macrophages infected with Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    E. Manor

    1993-01-01

    Full Text Available In this study levels of prostaglandin E2 (PGE2, tumour necrosis factor (TNF and interleukin-1 (IL-1 alpha in medium from monocyte derived macrophages (MdM infected with Chlamydia trachomatis (L2/434/Bu or K biovars. TNF and PGE2 were found in both cases while IL-1 alpha was not detected. Both TNF and PGE2 levels were higher in the medium of the MdM infected with K biovars. TNF reached maximum levels 24 h postinfection, and then declined, while PGE2 levels increased continuously during the infection time up to 96 h post-infection. Addition of dexamethasone inhibited production of TNF and PGE2. Inhibition of PGE2 production by indomethacin resulted in increased production of TNF, while addition of PGE2 caused partial inhibition of TNF production from infected MdM.

  1. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  2. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages.

    Science.gov (United States)

    Chen, Fenglei; Li, Qian; Zhang, Zhe; Lin, Pengfei; Lei, Lanjie; Wang, Aihua; Jin, Yaping

    2015-08-20

    Zearalenone (ZEA) is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER) stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT) and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA) or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs), significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  3. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    Science.gov (United States)

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  4. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages.

    Science.gov (United States)

    Shioi, Atsushi; Katagi, Miwako; Okuno, Yasuhisa; Mori, Katsuhito; Jono, Shuichi; Koyama, Hidenori; Nishizawa, Yoshiki

    2002-07-12

    Inflammatory cells such as macrophages and T lymphocytes play an important role in vascular calcification associated with atherosclerosis and cardiac valvular disease. In particular, macrophages activated with cytokines derived from T lymphocytes such as interferon-gamma (IFN-gamma) may contribute to the development of vascular calcification. Moreover, we have shown the stimulatory effect of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro calcification through increasing the expression of alkaline phosphatase (ALP), an ectoenzyme indispensable for bone mineralization, in vascular smooth muscle cells. Therefore, we hypothesized that macrophages may induce calcifying phenotype, especially the expression of ALP in human vascular smooth muscle cells (HVSMCs) in the presence of IFN-gamma and 1,25(OH)2D3. To test this hypothesis, we used cocultures of HVSMCs with human monocytic cell line (THP-1) or peripheral blood monocytes (PBMCs) in the presence of IFN-gamma and 1,25(OH)2D3. THP-1 cells or PBMCs induced ALP activity and its gene expression in HVSMCs and the cells with high expression of ALP calcified their extracellular matrix by the addition of beta-glycerophosphate. Thermostability and immunoassay showed that ALP induced in HVSMCs was bone-specific enzyme. We further identified tumor necrosis factor-alpha (TNF-alpha) and oncostatin M (OSM) as major factors inducing ALP in HVSMCs in the culture supernatants of THP-1 cells. TNF-alpha and OSM, only when applied together, increased ALP activities and in vitro calcification in HVSMCs in the presence of IFN-gamma and 1,25(OH)2D3. These results suggest that macrophages may contribute to the development of vascular calcification through producing various inflammatory mediators, especially TNF-alpha and OSM.

  5. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    Science.gov (United States)

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis.

  6. Effect of Different Omega-6/Omega-3 Polyunsaturated Fatty Acid Ratios on the Formation of Monohydroxylated Fatty Acids in THP-1 Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Kathrin Keeren

    2015-04-01

    Full Text Available Omega-6 and omega-3 polyunsaturated fatty acids (n-6 and n-3 PUFA can modulate inflammatory processes. In western diets, the content of n-6 PUFA is much higher than that of n-3 PUFA, which has been suggested to promote a pro-inflammatory phenotype. The aim of this study was to analyze the effect of modulating the n-6/n-3 PUFA ratio on the formation of monohydroxylated fatty acid (HO-FAs derived from the n-6 PUFA arachidonic acid (AA and the n-3 PUFAs eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in THP-1 macrophages by means of LC-MS. Lipid metabolites were measured in THP-1 macrophage cell pellets. The concentration of AA-derived hydroxyeicosatetraenoic acids (HETEs was not significantly changed when incubated THP-1 macrophages in a high AA/(EPA+DHA ratio of 19/1 vs. a low ratio AA/(EPA+DHA of 1/1 (950.6 ± 110 ng/mg vs. 648.2 ± 92.4 ng/mg, p = 0.103. Correspondingly, the concentration of EPA-derived hydroxyeicosapentaenoic acids (HEPEs and DHA-derived hydroxydocosahexaenoic acids (HDHAs were significantly increased (63.9 ± 7.8 ng/mg vs. 434.4 ± 84.3 ng/mg, p = 0.012 and 84.9 ± 18.3 ng/mg vs. 439.4 ± 82.7 ng/mg, p = 0.014, respectively. Most notable was the strong increase of 18-hydroxyeicosapentaenoic acid (18-HEPE formation in THP-1 macrophages, with levels of 170.9 ± 40.2 ng/mg protein in the high n-3 PUFA treated cells. Thus our data indicate that THP-1 macrophages prominently utilize EPA and DHA for monohydroxylated metabolite formation, in particular 18-HEPE, which has been shown to be released by macrophages to prevent pressure overload-induced maladaptive cardiac remodeling.

  7. Macrophage-specific apoE gene repair reduces diet-induced hyperlipidemia and atherosclerosis in hypomorphic Apoe mice.

    Directory of Open Access Journals (Sweden)

    Nathalie Gaudreault

    Full Text Available BACKGROUND: Apolipoprotein (apo E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Hypomorphic apoE (Apoe(h/h mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h allele in Apoe(h/hLysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/hLysM-Cre and Apoe(h/h mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12. When fed a high-cholesterol diet (HCD for 16 weeks, Apoe(h/hLysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7. On HCD, Apoe(h/hLysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/hLysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h mice (167×10(3±16×10(3 µm(2 versus 259×10(3±56×10(3 µm(2, n = 7. This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol. CONCLUSIONS/SIGNIFICANCE: Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels.

  8. Macrophage Inducible C-Type Lectin As a Multifunctional Player in Immunity

    Directory of Open Access Journals (Sweden)

    Emmanuel C. Patin

    2017-07-01

    Full Text Available The macrophage-inducible C-type lectin (Mincle is an innate immune receptor on myeloid cells sensing diverse entities including pathogens and damaged cells. Mincle was first described as a receptor for the mycobacterial cell wall glycolipid, trehalose-6,6′-dimycolate, or cord factor, and the mammalian necrotic cell-derived alarmin histone deacetylase complex unit Sin3-associated protein 130. Upon engagement by its ligands, Mincle induces secretion of innate cytokines and other immune mediators modulating inflammation and immunity. Since its discovery more than 25 years ago, the understanding of Mincle’s immune function has made significant advances in recent years. In addition to mediating immune responses to infectious agents, Mincle has been linked to promote tumor progression, autoimmunity, and sterile inflammation; however, further studies are required to completely unravel the complex role of Mincle in these distinct host responses. In this review, we discuss recent findings on Mincle’s biology with an emphasis on its diverse functions in immunity.

  9. Soluble Siglec-9 suppresses arthritis in a collagen-induced arthritis mouse model and inhibits M1 activation of RAW264.7 macrophages

    OpenAIRE

    Matsumoto, Takuya; Takahashi, Nobunori; Kojima, Toshihisa; Yoshioka, Yutaka; Ishikawa, Jun; Furukawa, Koichi; Ono, Kenji; Sawada, Makoto; ISHIGURO, NAOKI; Yamamoto, Akihito

    2016-01-01

    Background The aim of this study was to assess the effects of soluble sialic acid-binding immunoglobulin-type lectin (sSiglec)-9 on joint inflammation and destruction in a murine collagen-induced arthritis (CIA) model and in monolayer cultures of murine macrophages (RAW264.7 cells and peritoneal macrophages) and fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis. Methods DBA/1J mice were immunized with type II collagen. Effects of sSiglec-9 were evaluated using...

  10. Clearance of Apoptotic Cells by Macrophages Induces Regulatory Phenotype and Involves Stimulation of CD36 and Platelet-Activating Factor Receptor

    Directory of Open Access Journals (Sweden)

    Matheus Ferracini

    2013-01-01

    Full Text Available Phagocytosis of apoptotic cells (efferocytosis induces macrophage differentiation towards a regulatory phenotype (IL-10high/IL-12p40low. CD36 is involved in the recognition of apoptotic cells (AC, and we have shown that the platelet-activating factor receptor (PAFR is also involved. Here, we investigated the contribution of PAFR and CD36 to efferocytosis and to the establishment of a regulatory macrophage phenotype. Mice bone marrow-derived macrophages were cocultured with apoptotic thymocytes, and the phagocytic index was determined. Blockage of PAFR with antagonists or CD36 with specific antibodies inhibited the phagocytosis of AC (~70–80%. Using immunoprecipitation and confocal microscopy, we showed that efferocytosis increased the CD36 and PAFR colocalisation in the macrophage plasma membrane; PAFR and CD36 coimmunoprecipitated with flotillin-1, a constitutive lipid raft protein, and disruption of these membrane microdomains by methyl-β-cyclodextrin reduced AC phagocytosis. Efferocytosis induced a pattern of cytokine production, IL-10high/IL-12p40low, that is, characteristic of a regulatory phenotype. LPS potentiated the efferocytosis-induced production of IL-10, and this was prevented by blocking PAFR or CD36. It can be concluded that phagocytosis of apoptotic cells engages CD36 and PAFR, possibly in lipid rafts, and this is required for optimal efferocytosis and the establishment of the macrophage regulatory phenotype.

  11. Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages.

    Science.gov (United States)

    Rekha, Rokeya Sultana; Rao Muvva, S S V Jagadeeswara; Wan, Min; Raqib, Rubhana; Bergman, Peter; Brighenti, Susanna; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2015-01-01

    LL-37 is a human antimicrobial peptide (AMP) of the cathelicidin family with multiple activities including a mediator of vitamin D-induced autophagy in human macrophages, resulting in intracellular killing of Mycobacterium tuberculosis (Mtb). In a previous trial in healthy volunteers, we have shown that LL-37 expression and subsequent Mtb-killing can be further enhanced by 4-phenylbutyrate (PBA), also an inducer of LL-37 expression. Here, we explore a potential mechanism(s) behind PBA and LL-37-induced autophagy and intracellular killing of Mtb. Mtb infection of macrophages downregulated the expression of both the CAMP transcript and LL-37 peptide as well as certain autophagy-related genes (BECN1 and ATG5) at both the mRNA and protein levels. In addition, activation of LC3-II in primary macrophages and THP-1 cells was not detected. PBA and the active form of vitamin D3 (1,25[OH]2D3), separately or particularly in combination, were able to overcome Mtb-induced suppression of LL-37 expression. Notably, reactivation of autophagy occurred by stimulation of macrophages with PBA and promoted colocalization of LL-37 and LC3-II in autophagosomes. Importantly, PBA treatment failed to induce autophagy in Mtb-infected THP-1 cells, when the expression of LL-37 was silenced. However, PBA-induced autophagy was restored when the LL-37 knockdown cells were supplemented with synthetic LL-37. Interestingly, we have found that LL-37-induced autophagy was mediated via P2RX7 receptor followed by enhanced cytosolic free Ca(2+), and activation of AMPK and PtdIns3K pathways. Altogether, these results suggest a novel activity for PBA as an inducer of autophagy, which is LL-37-dependent and promotes intracellular killing of Mtb in human macrophages.

  12. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    Science.gov (United States)

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  13. 高表达β1,6分支N-糖链的骨肉瘤类肿瘤干细胞诱导巨噬细胞M2表型分化%Cancer stem-like cells from osteosarcoma with highly expressed beta 1,6 GlcNAc branched N-glycan induce a phenotypic switch in polarization of bone marrow-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    张思胜; 刘世清

    2014-01-01

    Objective To investigate the effect of cancer stem-like cells (CSCs) from osteosarcoma cell line on the polarization of macrophages.Methods CSCs were pre-treated with different doses of swainsonine and co-cultured with macrophages,and the phenotypic specific markers on macrophages were detected respectively.Results Compared to the control group,the expression of Arg-1 [(12.0 ± 3.1) % vs.(40.0±2.6)%,P<0.05] and interleukin (IL)-10 [(90.0±4.4) ng/Lvs.(150.0±6.8) ng/L,P <0.05] in macrophages co-cultured with CSCs pre-treated with swainsonine (1 mg/L) was decreased,whereas inducible nitric oxide synthase (iNOS) [(50.0 ±2.1)% vs.(12.0 ± 1.3)%,P<0.05] and tumor necrosis factor (TNF)-α [(240.0 ± 8.1) ng/L vs.(50.0 ± 3.3) ng/L,P < 0.05] increased.Conclusion Increased expression of beta-1,6-oligosaccharide in CSCs derived from osteosarcoma cell line induced the differentiation of bone marrow-derived macrophages into anti-inflammatory M2 macrophages.%目的 检测骨肉瘤类肿瘤干细胞对巨噬细胞表型转换的影响.方法 苦马豆素预处理的CD133+ CD44+骨肉瘤细胞LM8与骨髓巨噬细胞共培养后检测巨噬细胞表型相关标志分子的表达.结果 与未处理组比较,1 mg/L苦马豆素处理组巨噬细胞精氨酸酶(Arg)-1[(12.0±3.1)%比(40.0±2.6)%,P<0.05]和白细胞介素(IL)-10[(90.0±4.4) ng/L比(150.0 ±6.8) ng/L,P<0.05]表达下降,诱导型一氧化氮合酶(iNOS)[(50.0±2.1)%比(12.0±1.3)%,P<0.05]与肿瘤坏死因子(TNF)-α[(240.0 ±8.1)ng/L比(50.0±3.3) ng/L,P<0.05]表达上升.结论 骨肉瘤类肿瘤干细胞高表达1,6分支N-糖链诱导巨噬细胞M2表型转换.

  14. Induction of Heme Oxygenase-1 with Hemin Reduces Obesity-Induced Adipose Tissue Inflammation via Adipose Macrophage Phenotype Switching

    Directory of Open Access Journals (Sweden)

    Thai Hien Tu

    2014-01-01

    Full Text Available Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1, which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6 from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α. The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  15. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching.

    Science.gov (United States)

    Tu, Thai Hien; Joe, Yeonsoo; Choi, Hye-Seon; Chung, Hun Taeg; Yu, Rina

    2014-01-01

    Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6) from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB) in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a) in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  16. Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses

    Directory of Open Access Journals (Sweden)

    Casandra Panea

    2015-08-01

    Full Text Available Generation of different CD4 T cell responses to commensal and pathogenic bacteria is crucial for maintaining a healthy gut environment, but the associated cellular mechanisms are poorly understood. Dendritic cells (DCs and macrophages (Mfs integrate microbial signals and direct adaptive immunity. Although the role of DCs in initiating T cell responses is well appreciated, how Mfs contribute to the generation of CD4 T cell responses to intestinal microbes is unclear. Th17 cells are critical for mucosal immune protection and at steady state are induced by commensal bacteria, such as segmented filamentous bacteria (SFB. Here, we examined the roles of mucosal DCs and Mfs in Th17 induction by SFB in vivo. We show that Mfs, and not conventional CD103+ DCs, are essential for the generation of SFB-specific Th17 responses. Thus, Mfs drive mucosal T cell responses to certain commensal bacteria.

  17. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages.

  18. Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2011-12-01

    Full Text Available Abstract Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.

  19. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  20. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation

    Science.gov (United States)

    Kawasaki, Norihito; Vela, Jose Luis; Nycholat, Corwin M.; Rademacher, Christoph; Khurana, Archana; van Rooijen, Nico; Crocker, Paul R.; Kronenberg, Mitchell; Paulson, James C.

    2013-01-01

    Invariant natural killer T (iNKT) cells induce a protective immune response triggered by foreign glycolipid antigens bound to CD1d on antigen-presenting cells (APCs). A limitation of using glycolipid antigens to stimulate immune responses in human patients has been the inability to target them to the most effective APCs. Recent studies have implicated phagocytic CD169+ macrophages as major APCs in lymph nodes for priming iNKT cells in mice immunized with glycolipid antigen in particulate form. CD169 is known as sialoadhesin (Sn), a macrophage-specific adhesion and endocytic receptor of the siglec family that recognizes sialic acid containing glycans as ligands. We have recently developed liposomes decorated with glycan ligands for CD169/Sn suitable for targeted delivery to macrophages via CD169/Sn-mediated endocytosis. Here we show that targeted delivery of a lipid antigen to CD169+ macrophages in vivo results in robust iNKT cell activation in liver and spleen using nanogram amounts of antigen. Activation of iNKT cells is abrogated in Cd169−/− mice and is macrophage-dependent, demonstrating that targeting CD169+ macrophages is sufficient for systemic activation of iNKT cells. When pulsed with targeted liposomes, human monocyte–derived dendritic cells expressing CD169/Sn activated human iNKT cells, demonstrating the conservation of the CD169/Sn endocytic pathway capable of presenting lipid antigens to iNKT cells. PMID:23610394

  1. Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway

    Science.gov (United States)

    Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun

    2016-01-01

    Background There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. Material/Methods This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. Results The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. Conclusions Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation. PMID:27941708

  2. RNA from LPS-stirnulated macrophages induces the release of tumour necrosis factor-α and interleukin-1 by resident macrophages

    Directory of Open Access Journals (Sweden)

    R. A. Ribeiro

    1993-01-01

    Full Text Available The effect of exogenous RNA on many cellular functions has been studied in a variety of eukaryotic cells but there are few reports on macrophages. In the present study, it is demonstrated that cytoplasmatic RNA extracted from rat macrophages stimulated with Escherichia coli lipopolysaccharide (LPS, referred to as L-RNA, induced the release of TNF-α and IL-1 from monolayers of peritoneal resident macrophages. The activity of L-RNA was not altered by polymyxin B but was abolished by ribonuclease (RNase pretreatment, indicating the absence of LPS contamination and that the integrity of the polynucleotide chain is essential for this activity. Both the poly A(− and poly A(+ fractions obtained from L-RNA applied to oligo(dT–cellulose chromatography induced TNF-α and IL-1 release. The L-RNA-induced cytokine release was inhibited by dexamethasone and seemed to be dependent on protein synthesis since this effect was abolished by cycloheximide or actinomycin-D. The LPS-stimulated macrophages, when pre-incubated with [5-3H]-uridine, secreted a trichloroacetic acid (TCA precipitable material which was sensitive to RNase and KOH hydrolysis, suggesting that the material is RNA. This substance was also released from macrophage monolayers stimulated with IL-1β but not with TNF-α, IL-6 or IL-8. The substance secreted (3H-RNA sediments in the 4–5S region of a 5–20% sucrose gradient. These results show that L-RNA induces cytokine secretion by macrophage monolayers and support the idea that, during inflammation, stimulated macrophages could release RNA which may further induce the release of cytokines by the resident cell population.

  3. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.

    Science.gov (United States)

    Lumeng, Carey N; Deyoung, Stephanie M; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties.

  4. Paraoxsonase2 (PON2) and oxidative stress involvement in pomegranate juice protection against cigarette smoke-induced macrophage cholesterol accumulation.

    Science.gov (United States)

    Rom, Oren; Aviram, Michael

    2016-11-25

    Exposure to cigarette smoke (CS) promotes various stages of atherosclerosis development. Macrophages are the predominant cells in early atherogenesis, and the polyphenolic-rich pomegranate juice (PJ) is known for its protective role against macrophage atherogenicity. The aim of the current study was to examine the atherogenic effects of CS on macrophages, and to evaluate the protective effects of PJ against CS-induced macrophage atherogenicity. Murine J774A.1 macrophages were treated with CS-exposed medium in the absence or presence of PJ. Parameters of lipid peroxidation in CS-exposed medium were measured by the lipid peroxides and thiobarbituric acid reactive substances (TBARS) assays. Atherogenicity of macrophages incubated with increasing concentrations of CS-exposed medium was assessed by cytotoxicity, oxidative stress determined by generation of reactive oxygen species (ROS) using DCFH-DA, activity of the cellular anti-oxidant paraoxonase2 (PON2), macrophage accumulation of cholesterol and triglycerides, as well as through high density lipoprotein (HDL)-mediated cholesterol efflux from the cells. CS exposure resulted in significant and dose-dependent increases in lipid peroxides and TBARS medium levels (up to 3 and 8-fold, respectively). Incubation of macrophages with CS-exposed medium resulted in dose-dependent increases in macrophage damage/injury (up to 6-fold), intracellular ROS levels (up to 31%), PON2 activity (up to 2-fold), and macrophage cholesterol content (up to 24%). The latter might be explained by reduced HDL-mediated cholesterol efflux from CS-exposed macrophages (by 21%). PJ protected macrophages from CS-induced increases in intracellular ROS levels and cholesterol accumulation, as well as the attenuated efflux of cholesterol. These data indicate that CS stimulates macrophage oxidation and activates PON2 as a possible compensatory response to the oxidative burden. CS impairs HDL-mediated cholesterol efflux from macrophages leading to cellular

  5. SULFASALAZINE INDUCED AGRANULOCYTOSIS TREATED WITH GRANULOCYTE-MACROPHAGE COLONY STIMULATING FACTOR

    NARCIS (Netherlands)

    KUIPERS, EJ; VELLENGA, E; DEWOLF, JTM; HAZENBERG, BPC

    1992-01-01

    We report the use of granulocyte-macrophage colony stimulating factor (GM-CSF) in a case of rheumatoid arthritis with sulfasalazine induced agranulocytosis, leading to a rapid bone marrow recovery within 7 days. This case and 2 others reported in the literature emphasize the need for further researc

  6. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes

    NARCIS (Netherlands)

    Diepen, J.A. van; Robben, J.H.; Hooiveld, G.J.; Carmone, C.; Alsady, M.; Boutens, L.; Bekkenkamp-Grovenstein, M.; Hijmans, A.G.; Engelke, U.F.H.; Wevers, R.A.; Netea, M.G.; Tack, C.J.J.; Stienstra, R.; Deen, P.M.T.

    2017-01-01

    AIMS/HYPOTHESIS: Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal

  7. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes

    NARCIS (Netherlands)

    Diepen, van Janna A.; Robben, Joris H.; Hooiveld, Guido J.; Carmone, Claudia; Alsady, Mohammad; Boutens, Lily; Bekkenkamp-Grovenstein, Melissa; Hijmans, Anneke; Engelke, Udo F.H.; Wevers, Ron A.; Netea, Mihai G.; Tack, Cees J.; Stienstra, Rinke; Deen, Peter M.T.

    2017-01-01

    Aims/hypothesis: Obesity induces macrophages to drive inflammation in adipose tissue, a crucial step towards the development of type 2 diabetes. The tricarboxylic acid (TCA) cycle intermediate succinate is released from cells under metabolic stress and has recently emerged as a metabolic signal

  8. Macrophage Chemotaxis in Anti-tubular Basement Membrane-Induced Interstitial Nephritis in Guinea Pigs

    NARCIS (Netherlands)

    Kennedy, Thomas L.; Merrow, Martha; Phillips, S. Michael; Norman, Michael; Neilson, Eric G.

    1985-01-01

    Interstitial renal lesions containing T cells and macrophages develop after 14 days in guinea pigs immunized to produce anti-tubular basement membrane-induced interstitial nephritis. We serially examined the renal venous and systemic arterial sera from such animals to determine if chemotactic factor

  9. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Allison Groseth

    Full Text Available The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV and the hemorrhagic fever-causing Junin virus (JUNV, in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.

  10. Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration

    DEFF Research Database (Denmark)

    Sola, Anna; Weigert, Andreas; Jung, Michaela;

    2011-01-01

    the kidney. The present study describes a mechanism for renal tissue regeneration after ischaemia/reperfusion injury. Following injury, apoptotic cell-derived sphingosine-1-phosphate (S1P) or exogenously administered sphingosine analogue FTY720 activates macrophages to support the proliferation and healing......Inflammatory reactions are initiated to eliminate pathogens, but also to promote repair of damaged tissue after acute inflammation is terminated. In this regard, macrophages play a prominent role during induction as well as resolution of inflammation and injury in various organs including...... of renal epithelium, once inflammatory conditions are terminated. Both suppression of inflammation and renal regeneration might require S1P receptor 3 (S1P3) signalling and downstream release of neutrophil gelatinase-associated lipocalin (NGAL/Lcn-2) from macrophages. Overall, our data point...

  11. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pang

    2013-01-01

    Full Text Available Tumor-associated macrophages (TAMs are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

  12. Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages

    Directory of Open Access Journals (Sweden)

    Smith Milton

    2006-11-01

    Full Text Available Abstract Background 2-Chloroethyl ethyl sulphide (CEES is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD. Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. Results We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA or dichlorofluorescin diacetate (DCFH-DA. Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity Conclusion CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-κB signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS

  13. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages.

    Science.gov (United States)

    Ray, Dipankar; Shukla, Shirish; Allam, Uday Sankar; Helman, Abigail; Ramanand, Susmita Gurjar; Tran, Linda; Bassetti, Michael; Krishnamurthy, Pranathi Meda; Rumschlag, Matthew; Paulsen, Michelle; Sun, Lei; Shanley, Thomas P; Ljungman, Mats; Nyati, Mukesh K; Zhang, Ming; Lawrence, Theodore S

    2013-01-01

    The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/-) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178) phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  14. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages.

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    Full Text Available The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT. Although tumor necrosis factor-alpha (TNF-α signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP, in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/- mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  15. Staphylococcus aureus Biofilms Induce Macrophage Dysfunction Through Leukocidin AB and Alpha-Toxin

    Science.gov (United States)

    Scherr, Tyler D.; Hanke, Mark L.; Huang, Ouwen; James, David B. A.; Horswill, Alexander R.; Bayles, Kenneth W.; Fey, Paul D.; Torres, Victor J.

    2015-01-01

    ABSTRACT The macrophage response to planktonic Staphylococcus aureus involves the induction of proinflammatory microbicidal activity. However, S. aureus biofilms can interfere with these responses in part by polarizing macrophages toward an anti-inflammatory profibrotic phenotype. Here we demonstrate that conditioned medium from mature S. aureus biofilms inhibited macrophage phagocytosis and induced cytotoxicity, suggesting the involvement of a secreted factor(s). Iterative testing found the active factor(s) to be proteinaceous and partially agr-dependent. Quantitative mass spectrometry identified alpha-toxin (Hla) and leukocidin AB (LukAB) as critical molecules secreted by S. aureus biofilms that inhibit murine macrophage phagocytosis and promote cytotoxicity. A role for Hla and LukAB was confirmed by using hla and lukAB mutants, and synergy between the two toxins was demonstrated with a lukAB hla double mutant and verified by complementation. Independent confirmation of the effects of Hla and LukAB on macrophage dysfunction was demonstrated by using an isogenic strain in which Hla was constitutively expressed, an Hla antibody to block toxin activity, and purified LukAB peptide. The importance of Hla and LukAB during S. aureus biofilm formation in vivo was assessed by using a murine orthopedic implant biofilm infection model in which the lukAB hla double mutant displayed significantly lower bacterial burdens and more macrophage infiltrates than each single mutant. Collectively, these findings reveal a critical synergistic role for Hla and LukAB in promoting macrophage dysfunction and facilitating S. aureus biofilm development in vivo. PMID:26307164

  16. Identifying panaxynol, a natural activator of nuclear factor erythroid-2 related factor 2 (Nrf2) from American ginseng as a suppressor of inflamed macrophage-induced cardiomyocyte hypertrophy

    Science.gov (United States)

    Qu, Chen; Li, Bin; Lai, Yimu; Li, Hechu; Windust, Anthony; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash; Wang, Xing Li; Tang, Dongqi; Janicki, Joseph S.; Tian, Xingsong; Cui, Taixing

    2015-01-01

    Ethnopharmacological relevance American ginseng is capable of ameliorating cardiac dysfunction and activating Nrf2, a master regulator of antioxidant defense, in the heart. This study was designed to isolate compounds from American ginseng and to determine those responsible for the Nrf2-mediated resolution of inflamed macrophage-induced cardiomyocyte hypertrophy. Materials and methods A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. A bioassay-based fractionization of American ginseng was performed to identify the putative substances which could activate Nrf2-mediated suppression of pro-inflammatory cytokine expression in macrophages and macrophage-mediated pro-hypertrophic growth in cardiomyocytes. Results A hexane fraction of an anti-inflammatory crude extract of American ginseng was found to be most effective in suppressing the inflammatory responses in macrophages. Preparative, reverse-phase HPLC and a comparative analysis by analytical scale LC–UV/MS revealed the hexane fraction contains predominantly C17 polyacetylenes and linolenic acid. Panaxynol, one of the major polyacetylenes, was found to be a potent Nrf2 activator. Panaxynol posttranscriptionally activated Nrf2 by inhibiting Kelch-like ECH-associated protein (Keap) 1-mediated degradation without affecting the binding of Keap1 and Nrf2. Moreover, panaxynol suppressed a selected set of cytokine expression via the activation of Nrf2 while minimally regulating nuclear factor-kappa B (NF-κB)-mediated cytokine expression in macrophages. It also dramatically inhibited the inflamed macrophage-mediated cardiomyocyte death and hypertrophy by activating Nrf2 in macrophages. Conclusions These results demonstrate that American ginseng-derived panaxynol is a specific Nrf2 activator and panaxynol-activated Nrf2 signaling is at least partly responsible for American ginseng-induced health benefit in the heart. PMID

  17. Surface modification of biomaterials based on high-molecular polylactic acid and their effect on inflammatory reactions of primary human monocyte-derived macrophages: perspective for personalized therapy.

    Science.gov (United States)

    Stankevich, Ksenia S; Gudima, Alexandru; Filimonov, Victor D; Klüter, Harald; Mamontova, Evgeniya M; Tverdokhlebov, Sergei I; Kzhyshkowska, Julia

    2015-06-01

    Polylactic acid (PLA) based implants can cause inflammatory complications. Macrophages are key innate immune cells that control inflammation. To provide higher biocompatibility of PLA-based implants with local innate immune cells their surface properties have to be improved. In our study surface modification technique for high-molecular PLA (MW=1,646,600g/mol) based biomaterials was originally developed and successfully applied. Optimal modification conditions were determined. Treatment of PLA films with toluene/ethanol=3/7 mixture for 10min with subsequent exposure in 0.001M brilliant green dye (BGD) solution allows to entrap approximately 10(-9)mol/cm(2) model biomolecules. The modified PLA film surface was characterized by optical microscopy, SERS, FT-IR, UV and TG/DTA/DSC analysis. Tensile strain of modified films was determined as well. The effect of PLA films modified with BGD on the inflammatory reactions of primary human monocyte-derived macrophages was investigated. We developed in vitro test-system by differentiating primary monocyte-derived macrophages on a coating material. Type 1 and type 2 inflammatory cytokines (TNFα, CCL18) secretion and histological biomarkers (CD206, stabilin-1) expression were analyzed by ELISA and confocal microscopy respectively. BGD-modified materials have improved thermal stability and good mechanical properties. However, BGD modifications induced additional donor-specific inflammatory reactions and suppressed tolerogenic phenotype of macrophages. Therefore, our test-system successfully demonstrated specific immunomodulatory effects of original and modified PLA-based biomaterials, and can be further applied for the examination of improved coatings for implants and identification of patient-specific reactions to implants.

  18. Interleukin-25 fails to activate STAT6 and induce alternatively activated macrophages.

    Science.gov (United States)

    Stolfi, Carmine; Caruso, Roberta; Franzè, Eleonora; Sarra, Massimiliano; De Nitto, Daniela; Rizzo, Angelamaria; Pallone, Francesco; Monteleone, Giovanni

    2011-01-01

    Interleukin-25 (IL-25), a T helper type 2 (Th2) -related factor, inhibits the production of inflammatory cytokines by monocytes/macrophages. Since Th2 cytokines antagonize classically activated monocytes/macrophages by inducing alternatively activated macrophages (AAMs), we here assessed the effect of IL-25 on the alternative activation of human monocytes/macrophages. The interleukins IL-25, IL-4 and IL-13 were effective in reducing the expression of inflammatory chemokines in monocytes. This effect was paralleled by induction of AAMs in cultures added with IL-4 or IL-13 but not with IL-25, regardless of whether cells were stimulated with lipopolysaccharide or interferon-γ. Moreover, pre-incubation of cells with IL-25 did not alter the ability of both IL-4 and IL-13 to induce AAMs. Both IL-4 and IL-13 activated signal transducer and activator of transcription 6 (STAT6), and silencing of this transcription factor markedly reduced the IL-4/IL-13-driven induction of AAMs. In contrast, IL-25 failed to trigger STAT6 activation. Among Th2 cytokines, only IL-25 and IL-10 were able to activate p38 mitogen-activated protein kinase. These results collectively indicate that IL-25 fails to induce AAMs and that Th2-type cytokines suppress inflammatory responses in human monocytes by activating different intracellular signalling pathways.

  19. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone

    Institute of Scientific and Technical Information of China (English)

    Li YANG; Ta Yuan CHANG; Bo Liang LI; Jin Bo YANG; Jia CHEN; Guang Yao YU; Pei ZHOU; Lei LEI; Zhen Zhen WANG; Catherine CY CHANG; XinYing YANG

    2004-01-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study,with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP- 1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-l-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP- 1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner.Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex,which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  20. Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages.

    Science.gov (United States)

    Collins, Laura E; Lynch, Mark; Marszalowska, Izabela; Kristek, Maja; Rochfort, Keith; O'Connell, Mary; Windle, Henry; Kelleher, Dermot; Loscher, Christine E

    2014-05-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhoea worldwide, and if the bacterium is not cleared effectively it can pose a risk of recurrent infections and complications such as colitis, sepsis and death. In this study we demonstrate that surface layer proteins from the one of the most frequently acquired strains of C. difficile, activate mechanisms in murine macrophage in vitro that are associated with clearance of bacterial infection. Surface layer proteins (SLPs) isolated from C. difficile induced the production of pro-inflammatory cytokines and chemokines and increased macrophage migration and phagocytotic activity in vitro. Furthermore, we also observed up-regulation of a number of cell surface markers on the macrophage, which are important in pathogen recognition and antigen presentation. The effects of SLPs on macrophages were reversed in the presence of a p38 inhibitor, indicating the potential importance of this signalling protein in how SLP activates the immune system. In conclusion this study shows that surface layer proteins from a common strain of C. difficile can activate a clearance response in macrophage and suggests that these proteins are important in clearance of C. difficile infection. Understanding how the immune system clears C. difficile infection could offer important insights for new treatment strategies.

  1. Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia

    Science.gov (United States)

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth; Biswas, Subhra K.; Harris, Adrian L.; Johnson, Randall S.; Imityaz, Hongxia Z.; Simon, M. Celeste; Fredlund, Erik; Greten, Florian; Rius, Jordi; Lewis, Claire E.

    2010-01-01

    Ischemia exists in many diseased tissues including arthritic joints, atherosclerotic plaques and malignant tumors. Macrophages accumulate in these sites and upregulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18h. For example, they were seen to upregulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, VEGFA, interleukins 1β and 8, adrenomedullin, CXCR4 and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the NF-κB signalling pathway. We then used both genetic and pharmacological methods to manipulate the levels of HIFs 1α and 2α or NF-κB in primary macrophages in order to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIFs 1 and 2, but not NF-κB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues like malignant tumors. PMID:19454749

  2. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  3. Effects of oxaliplatin and oleic acid Gc-protein-derived macrophage-activating factor on murine and human microglia.

    Science.gov (United States)

    Branca, Jacopo J V; Morucci, Gabriele; Malentacchi, Francesca; Gelmini, Stefania; Ruggiero, Marco; Pacini, Stefania

    2015-09-01

    The biological properties and characteristics of microglia in rodents have been widely described, but little is known about these features in human microglia. Several murine microglial cell lines are used to investigate neurodegenerative and neuroinflammatory conditions; however, the extrapolation of the results to human conditions is frequently met with criticism because of the possibility of species-specific differences. This study compares the effects of oxaliplatin and of oleic acid Gc-protein-derived macrophage-activating factor (OA-GcMAF) on two microglial cell lines, murine BV-2 cells and human C13NJ cells. Cell viability, cAMP levels, microglial activation, and vascular endothelial growth factor (VEGF) expression were evaluated. Our data demonstrate that oxaliplatin induced a significant decrease in cell viability in BV-2 and in C13NJ cells and that this effect was not reversed with OA-GcMAF treatment. The signal transduction pathway involving cAMP/VEGF was activated after treatment with oxaliplatin and/or OA-GcMAF in both cell lines. OA-GcMAF induced a significant increase in microglia activation, as evidenced by the expression of the B7-2 protein, in BV-2 as well as in C13NJ cells that was not associated with a concomitant increase in cell number. Furthermore, the effects of oxaliplatin and OA-GcMAF on coculture morphology and apoptosis were evaluated. Oxaliplatin-induced cell damage and apoptosis were nearly completely reversed by OA-GcMAF treatment in both BV-2/SH-SY5Y and C13NJ/SH-SY5Y cocultures. Our data show that murine and human microglia share common signal transduction pathways and activation mechanisms, suggesting that the murine BV-2 cell line may represent an excellent model for studying human microglia.

  4. BZ-26, a novel GW9662 derivate, attenuated inflammation by inhibiting the differentiation and activation of inflammatory macrophages.

    Science.gov (United States)

    Bei, Yuncheng; Chen, Jiajia; Zhou, Feifei; Huang, Yahong; Jiang, Nan; Tan, Renxiang; Shen, Pingping

    2016-12-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is considered to be an important transcriptional factor in regulation of macrophages differentiation and activation. We have synthesized a series of novel structural molecules based on GW9662's structure (named BZ-24, BZ-25 and BZ-26), and interaction activity was calculated by computational docking. BZ-26 had shown stronger interaction with PPARγ and had higher transcriptional inhibitory activity of PPARγ with lower dosage compared with GW9662. BZ-26 was proved to inhibit inflammatory macrophage differentiation. LPS-induced acute inflammation mouse model was applied to demonstrate its anti-inflammatory activity. And the results showed that BZ-26 administration attenuated plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, which are vital cytokines in acute inflammation. The anti-inflammatory activity was examined in THP-1 cell line, and TNF-α, IL-6 and MCP-1, were significantly inhibited. The results of Western blot and luciferase reporter assay indicated that BZ-26 not only inhibited NF-κB transcriptional activity, but also abolished LPS-induce nuclear translocation of P65. We also test BZ-26 action in tumor-bearing chronic inflammation mouse model, and BZ-26 was able to alter macrophages phenotype, resulting in antitumor effect. All our data revealed that BZ-26 modulated LPS-induced acute inflammation via inhibiting inflammatory macrophages differentiation and activation, potentially via inhibition of NF-κB signal pathway.

  5. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available BACKGROUND: Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared. METHODOLOGY/PRINCIPAL FINDINGS: We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. CONCLUSIONS: These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  6. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  7. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    Science.gov (United States)

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  8. Injury-induced GR-1+ macrophage expansion and activation occurs independently of CD4 T-cell influence.

    Science.gov (United States)

    O'Leary, Fionnuala M; Tajima, Goro; Delisle, Adam J; Ikeda, Kimiko; Dolan, Sinead M; Hanschen, Marc; Mannick, John A; Lederer, James A

    2011-08-01

    Burn injury initiates an enhanced inflammatory condition referred to as the systemic inflammatory response syndrome or the two-hit response phenotype. Prior reports indicated that macrophages respond to injury and demonstrate a heightened reactivity to Toll-like receptor stimulation. Since we and others observed a significant increase in splenic GR-1 F4/80 CD11b macrophages in burn-injured mice, we wished to test if these macrophages might be the primary macrophage subset that shows heightened LPS reactivity. We report here that burn injury promoted higher level TNF-α expression in GR-1, but not GR-1 macrophages, after LPS activation both in vivo and ex vivo. We next tested whether CD4 T cells, which are known to suppress injury-induced inflammatory responses, might control the activation and expansion of GR-1 macrophages. Interestingly, we found that GR-1 macrophage expansion and LPS-induced TNF-α expression were not significantly different between wild-type and CD4 T cell-deficient CD4(-/-) mice. However, further investigations showed that LPS-induced TNF-α production was significantly influenced by CD4 T cells. Taken together, these data indicate that GR-1 F4/80 CD11b macrophages represent the primary macrophage subset that expands in response to burn injury and that CD4 T cells do not influence the GR-1 macrophage expansion process, but do suppress LPS-induced TNF-α production. These data suggest that modulating GR-1 macrophage activation as well as CD4 T cell responses after severe injury may help control the development of systemic inflammatory response syndrome and the two-hit response phenotype.

  9. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  10. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis.

    Science.gov (United States)

    Sonda, Nada; Simonato, Francesca; Peranzoni, Elisa; Calì, Bianca; Bortoluzzi, Stefania; Bisognin, Andrea; Wang, Ena; Marincola, Francesco M; Naldini, Luigi; Gentner, Bernhard; Trautwein, Christian; Sackett, Sara Dutton; Zanovello, Paola; Molon, Barbara; Bronte, Vincenzo

    2013-06-27

    Tumor progression is accompanied by an altered myelopoiesis causing the accumulation of immunosuppressive cells. Here, we showed that miR-142-3p downregulation promoted macrophage differentiation and determined the acquisition of their immunosuppressive function in tumor. Tumor-released cytokines signaling through gp130, the common subunit of the interleukin-6 cytokine receptor family, induced the LAP∗ isoform of C/EBPβ transcription factor, promoting macrophage generation. miR-142-3p downregulated gp130 by canonical binding to its messenger RNA (mRNA) 3' UTR and repressed C/EBPβ LAP∗ by noncanonical binding to its 5' mRNA coding sequence. Enforced miR expression impaired macrophage differentiation both in vitro and in vivo. Mice constitutively expressing miR-142-3p in the bone marrow showed a marked increase in survival following immunotherapy with tumor-specific T lymphocytes. By modulating a specific miR in bone marrow precursors, we thus demonstrated the feasibility of altering tumor-induced macrophage differentiation as a potent tool to improve the efficacy of cancer immunotherapy.

  11. Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin II

    Directory of Open Access Journals (Sweden)

    Ning-Ping Wang

    2017-05-01

    Full Text Available Introduction: The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. Methods: Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. Results: Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor β1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. Conclusions: These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.

  12. Eradication of intracellular Francisella tularensis in THP-1 human macrophages with a novel autophagy inducing agent

    Directory of Open Access Journals (Sweden)

    Gunn John S

    2009-12-01

    Full Text Available Abstract Background Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages. Methods and results Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4 and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria. Conclusion Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.

  13. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    Science.gov (United States)

    Baillie, J Kenneth; Arner, Erik; Daub, Carsten; De Hoon, Michiel; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Faulkner, Geoffrey J; Wells, Christine A; Rehli, Michael; Pavli, Paul; Summers, Kim M; Hume, David A

    2017-03-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  14. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    Science.gov (United States)

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  15. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.

    Science.gov (United States)

    Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang

    2017-03-16

    Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

  16. Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation.

    Science.gov (United States)

    Zhang, Hai-Lin; Cui, Shao-Hua; Zha, Xue-Qiang; Bansal, Vibha; Xue, Lei; Li, Xiao-Long; Hao, Ran; Pan, Li-Hua; Luo, Jian-Ping

    2014-06-15

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from jellyfish skin (JSP). The optimum parameters were found to be raw material to water ratio 1:7.5 (w/v), extraction temperature 100°C and extraction time 4h. Under these conditions, the JSP yield reached 1.007 mg/g. Papain (15 U/mL) in combination with Sevag reagent was beneficial in removing proteins from JSP. After precipitation with ethanol at final concentration of 40%, 60% and 80% in turn, three polysaccharide fractions of JSP1, JSP2 and JSP3 were obtained from JSP, respectively. The three fractions exhibited different physicochemical properties with respect to molecular weight distribution, monosaccharide composition, infrared absorption spectra, and glycosyl bond composition. In addition, JSP3 showed strong inhibitory effects on oxidized low-density lipoprotein (oxLDL) induced conversion of macrophages into foam cells, which possibly attributed to the down-regulation of some atherogenesis-related gene expressions.

  17. The significance of T cells, B cells, antibodies and macrophages against encephalomyocarditis (EMC)-D virus-induced diabetes in mice.

    Science.gov (United States)

    Kounoue, Etsushi; Izumi, Ken-ichi; Ogawa, Shuichiro; Kondo, Shiori; Katsuta, Hitoshi; Akashi, Tomoyuki; Niho, Yoshiyuki; Harada, Mine; Tamiya, Sadafumi; Kurisaki, Hironori; Nagafuchi, Seiho

    2008-01-01

    In order to clarify the significance of protective mechanisms against encephalomyocarditis (EMC) virus-induced diabetes in mice, we studied the relative importance of T cells, B cells, antibodies and macrophages in the prevention of virus-induced diabetes. Neither T cell-deficient athymic nude mice nor B cell-deficient microMT/microMT mice showed an enhanced clinical course of EMC-D virus-induced diabetes, indicating that neither T cells nor B cells played a major role in the protection against EMC-D-virus-induced diabetes. Transfer of a large amount of antiserum to EMC-D-virus-infected mice protected the development of diabetes only when transferred within 36 h of infection, the timing of which was earlier than that for the production of natural neutralizing antibodied. Since pretreatment of mice with the macrophage-activating immunopotentiator Corynebacterium parvum (CP) completely prevented the development of diabetes, we studied the clinical outcome of EMC-D-virus-infected mice pretreated with CP. Mice treated with CP showed reduced proliferation of EMC-D virus in the affected organs, including the pancreas, while the levels of development of neutralizing antibody and serum interferon were not enhanced compared with the controls. Finally, we studied the macrophages derived from mice pretreated with CP and found that they inhibited the growth of EMC-D virus in vitro more than those derived from non-treated and thioglycolate-treated mice. Taken together, it can be suggested that neither T cells nor B cells, which have to do with adaptive immunity, play a significant role in the pathogenesis of EMC-D-virus-induced diabetes, while innate immunity, which is dependent on activated macrophages, contributes to in vivo resistance against EMC-D-virus-induced diabetes.

  18. Neisseria gonorrhoeae Induces a Tolerogenic Phenotype in Macrophages to Modulate Host Immunity

    Directory of Open Access Journals (Sweden)

    Alejandro Escobar

    2013-01-01

    Full Text Available Neisseria gonorrhoeae is the etiological agent of gonorrhoea, which is a sexually transmitted disease widespread throughout the world. N. gonorrhoeae does not improve immune response in patients with reinfection, suggesting that gonococcus displays several mechanisms to evade immune response and survive in the host. N. gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and dendritic cells. In this study, we determined whether N. gonorrhoeae directly conditions the phenotype of RAW 264.7 murine macrophage cell line and its response. We established that gonococcus was effectively phagocytosed by the RAW 264.7 cells and upregulates production of immunoregulatory cytokines (IL-10 and TGF-β1 but not the production of proinflammatory cytokine TNF-α, indicating that gonococcus induces a shift towards anti-inflammatory cytokine production. Moreover, N. gonorrhoeae did not induce significant upregulation of costimulatory CD86 and MHC class II molecules. We also showed that N. gonorrhoeae infected macrophage cell line fails to elicit proliferative CD4+ response. This implies that macrophage that can phagocytose gonococcus do not display proper antigen-presenting functions. These results indicate that N. gonorrhoeae induces a tolerogenic phenotype in antigen-presenting cells, which seems to be one of the mechanisms to induce evasion of immune response.

  19. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway.

    Science.gov (United States)

    Liu, Yitong; Fang, Silian; Li, Xiaoyan; Feng, Jie; Du, Juan; Guo, Lijia; Su, Yingying; Zhou, Jian; Ding, Gang; Bai, Yuxing; Wang, Songling; Wang, Hao; Liu, Yi

    2017-09-14

    Aspirin (acetylsalicylic acid, ASA) has been shown to improve bone marrow mesenchymal stem cell-based calvarial bone regeneration by promoting osteogenesis and inhibiting osteoclastogenesis. However, it remains unknown whether aspirin influences other immune cells during bone formation. In the present study, we investigated whether ASA treatment influenced macrophage activation during the LPS inducement. We found that ASA could downregulate the expressions of iNOS and TNF-α both in mouse peritoneum macrophages and RAW264.7 cells induced by LPS via the IκK/IκB/NF-κB pathway and a COX2/PGE2/EP2/NF-κB feedback loop, without affecting the expressions of FIZZ/YM-1/ARG1 induced by IL-4. Furthermore, we created a rat mandibular bone defect model and showed that ASA treatment improved bone regeneration by inhibiting LPS-induced macrophage activation in the early stages of inflammation. Taken together, our results indicated that ASA treatment was a feasible strategy for improving bone regeneration, particularly in inflammatory conditions.

  20. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    Science.gov (United States)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  1. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles.

    Science.gov (United States)

    Liu, Ming-Lin; Reilly, Michael P; Casasanto, Peter; McKenzie, Steven E; Williams, Kevin Jon

    2007-02-01

    Biologically significant amounts of two procoagulant molecules, phosphatidylserine (PS) and tissue factor (TF), are transported by monocyte/macrophage-derived microvesicles (MVs). Because cellular cholesterol accumulation is an important feature of atherosclerotic vascular disease, we now examined effects of cholesterol enrichment on MV release from human monocytes and macrophages. Cholesterol enrichment of human THP-1 monocytes, alone or in combination with lipopolysaccharide (LPS), tripled their total MV generation, as quantified by flow cytometry based on particle size and PS exposure. The subset of these MVs that were also TF-positive was likewise increased by cellular cholesterol enrichment, and these TF-positive MVs exhibited a striking 10-fold increase in procoagulant activity. Moreover, cholesterol enrichment of primary human monocyte-derived macrophages also increased their total as well as TF-positive MV release, and these TF-positive MVs exhibited a similar 10-fold increase in procoagulant activity. To explore the mechanisms of enhanced MV release, we found that cholesterol enrichment of monocytes caused PS exposure on the cell surface by as early as 2 hours and genomic DNA fragmentation in a minority of cells by 20 hours. Addition of a caspase inhibitor at the beginning of these incubations blunted both cholesterol-induced apoptosis and MV release. Cholesterol enrichment of human monocyte/macrophages induces the generation of highly biologically active, PS-positive MVs, at least in part through induction of apoptosis. Cholesterol-induced monocyte/macrophage MVs, both TF-positive and TF-negative, may be novel contributors to atherothrombosis.

  2. The effect of low oxygen with and without steady-state hydrogen peroxide on cytokine gene and protein expression of monocyte-derived macrophages - biomed 2011

    NARCIS (Netherlands)

    Owegi, H.; Bouwens, M.; Egot-Lemaire, S.; Mueller, S.; Geib, R.W.; Waite, G.N.

    2011-01-01

    An early event during inflammation and infection is the migration of monocytes into tissues where they differentiate into macrophages. Such monocyte-derived macrophages face an unfavorable environment characterized by extremely low oxygen tension and accumulation of reactive oxygen species such as h

  3. Haemophilus ducreyi infection induces activation of the NLRP3 inflammasome in nonpolarized but not in polarized human macrophages.

    Science.gov (United States)

    Li, Wei; Katz, Barry P; Bauer, Margaret E; Spinola, Stanley M

    2013-08-01

    Recognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whether Haemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). Although H. ducreyi is predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated in H. ducreyi-infected skin. Infection of MDM with live, but not heat-killed, H. ducreyi induced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage of H. ducreyi uptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K(+) efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited by H. ducreyi. Our study data indicate that H. ducreyi induces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.

  4. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages.

    Science.gov (United States)

    Nyambura, Lydon Wainaina; Jarmalavicius, Saulius; Baleeiro, Renato Brito; Walden, Peter

    2016-09-15

    Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity.

  5. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    Science.gov (United States)

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.

  6. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.

    Science.gov (United States)

    Li, Chunmei; Eom, Taekil; Jeong, Yoonhwa

    2015-01-01

    Glycyrrhiza glabra has been used in medicine for thousands of years. Our previous study revealed that the methanolic extract of Glycyrrhiza glabra L. (EGGR) exhibits significant nitric oxide (NO) inhibitory effect on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages among 100 other extracts. Accordingly, the aim of the present study was to investigate the potential anti-inflammatory effect of EGGR. The anti-inflammatory effect of EGGR on LPS-stimulated RAW 264.7 macrophages was measured by MTT assay, NO content analysis, reactive oxygen species (ROS) level analysis, RT-PCR, Western blot analysis, and ELISA assay. Low doses of EGGR were non-toxic to macrophages and imparted protective effect against LPS induced cell death. Incubation of LPS-treated macrophages with 100 μg/mL EGGR led to an increase in cell viability from 66.6 to 99%. Moreover, EGGR led to down regulation of NO (NO2+NO3) and ROS productions in a dose-dependent manner. In particular, 100 μg/mL EGGR led to a reduction in NO2+NO3 level from 336.2 to 24.1 pM/mL, and ROS level from 483.5 to 128.4%. Consistent with the result related to NO production, EGGR suppressed the ability of LPS to induce mRNA and protein expressions of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) cytokines, tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6 productions which were analyzed by an ELISA assay. These results provide a comprehensive approach into the anti-inflammatory effect of EGGR on LPS-stimulated macrophages; however, efforts are underway on gaining detailed insight into anti-inflammatory signaling pathways.

  7. Paracoccin Induces M1 Polarization of Macrophages via Interaction with TLR4

    Science.gov (United States)

    Freitas, Mateus S.; Oliveira, Aline F.; da Silva, Thiago A.; Fernandes, Fabrício F.; Gonçales, Relber A.; Almeida, Fausto; Roque-Barreira, Maria C.

    2016-01-01

    The fungal human pathogen Paracoccidioides brasiliensis contains paracoccin (PCN), a multi-domain protein that has lectin and N-acetyl-glucosaminidase activities, which account for its effects on the growth and morphogenesis of the fungus and on the activation of host macrophages through its interaction with TLR N-glycans. With the purpose of detailing the knowledge on the effects of PCN on macrophages, we used recombinant PCN expressed in Pichia pastoris (p-rPCN) to stimulate isolated murine peritoneal macrophages. The activation of these cells manifested through the release of high levels of inflammatory mediators, such as nitric oxide, TNF-α, IL-12p40, and IL-6. Furthermore, peritoneal macrophages stimulated with p-rPCN increased the relative expression of STAT1, SOCS3, and iNOS2 mRNA (M1 polarization markers). However, the expression of Arginase-1, Ym-1, and FIZZ1 (M2 polarization markers) remained at basal levels. Interestingly, the observed M1 macrophages’ polarization triggered by p-rPCN was abolished in cells obtained from knockout Toll-like receptor-4 mice. In this case, the p-rPCN-induced production of pro-inflammatory mediators was blocked too. These results demonstrate that the classical activation of macrophages induced by paracoccin depends on TLR4. Taken together, the results of our study indicate that paracoccin acts as a TLR agonist able to modulate immunity and exerts biological activities that favor its applicability as an immunotherapeutic agent to combat systemic fungal infections. PMID:27458431

  8. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation.

    Science.gov (United States)

    Bessler, Waylan K; Kim, Grace; Hudson, Farlyn Z; Mund, Julie A; Mali, Raghuveer; Menon, Keshav; Kapur, Reuben; Clapp, D Wade; Ingram, David A; Stansfield, Brian K

    2016-03-15

    Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.

  9. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization.

    Science.gov (United States)

    Lin, Yuli; Yang, Xuguang; Yue, Wenjie; Xu, Xiaofei; Li, Bingji; Zou, Linlin; He, Rui

    2014-07-01

    Chemerin is present in various inflammatory sites and is closely involved in tissue inflammation. Recent studies have demonstrated that chemerin treatment can cause either anti-inflammatory or pro-inflammatory effects according to the disease model being investigated. Elevated circulating chemerin was recently found in patients with inflammatory bowel disease (IBD); however, the role of chemerin in intestinal inflammation remains unknown. In this study, we demonstrated that the administration of exogenous chemerin (aa17-156) aggravated the severity of dextran sulfate sodium (DSS)-induced colitis, which was characterized by higher clinical scores, extensive mucosal damage and significantly increased local and systemic production of pro-inflammatory cytokines, including IL-6, TNF-α and interferon (IFN-γ). Interestingly, chemerin did not appear to influence the magnitudes of inflammatory infiltrates in the colons, but did result in significantly decreased colonic expression of M2 macrophage-associated genes, including Arginase 1 (Arg-1), Ym1, FIZZ1 and IL-10, following DSS exposure, suggesting an impaired M2 macrophage skewing in vivo. Furthermore, an in vitro experiment showed that the addition of chemerin directly suppressed M2 macrophage-associated gene expression and STAT6 phosphorylation in IL-4-stimulated macrophages. Significantly elevated chemerin levels were found in colons from DSS-exposed mice and from ulcerative colitis (UC) patients and appeared to positively correlate with disease severity. Moreover, the in vivo administration of neutralizing anti-chemerin antibody significantly improved intestinal inflammation following DSS exposure. Taken together, our findings reveal a pro-inflammatory role for chemerin in DSS-induced colitis and the ability of chemerin to suppress the anti-inflammatory M2 macrophage response. Our study also suggests that upregulated chemerin in inflamed colons may contribute to the pathogenesis of IBD.

  10. Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing.

    Science.gov (United States)

    Goren, Itamar; Pfeilschifter, Josef; Frank, Stefan

    2014-12-01

    The determination of regenerative wound-healing macrophages as alternatively activated macrophages is currently questioned by the absence of IL-4 in wound tissue. Yet, murine wound tissue expressed high levels of Ym1 (chitinase 3-like 3), an established marker of the IL-4-induced alternatively activated macrophage phenotype. Ym1 was expressed in wound neutrophils but not in macrophages. Initially, Ym1-free wound-healing macrophages, invading from the wound margins, became gradually positive for the protein in the absence of IL-4 signaling and Stat6 activation, as they entered the neutrophil-populated wound regions. IL-4 failed to induce Ym1 protein in ex vivo-cultured wound tissue explants containing wound-healing macrophages. Recombinant Ym1 protein was selectively taken up by macrophages but not by keratinocytes and endothelial cells. Cultured macrophages lost the ability to take up the recombinant protein when four highly conserved residues and the 70-amino acid small α+β domain essential for Ym1 function were removed. The data suggest that the IL-4/Stat6-independent presence of Ym1 protein in wound-healing macrophages is of exogenous origin, with Ym1 taken up from wound neutrophils as the cellular source. The data suggest that in situ determination of wound-healing macrophages, often defined by Ym1, might not essentially describe an IL-4-dependent macrophage phenotype. Consequently, wound-healing macrophages should not be classified by the established categories of the well-accepted but simplified paradigm of M1/M2 macrophage activation.

  11. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  12. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  13. Anti-tumor and macrophage activation induced by alkali-extracted polysaccharide from Pleurotus ostreatus.

    Science.gov (United States)

    Kong, Fanli; Li, Feng-E; He, Zhongmei; Jiang, Yong; Hao, Ruoyi; Sun, Xin; Tong, Haibin

    2014-08-01

    Pleurotus ostreatus is popularly consumed as traditional medicine and health food for enhancing immune function in China. Polysaccharides from mushroom have been demonstrated to possess a wide range of health beneficial properties. This study was carried out to elucidate the immunomodulating effects and molecular mechanism involved in the in vivo and in vitro anti-tumor activities of alkali-extracted polysaccharide (WPOP-N1) from the fruiting bodies of P. ostreatus. The results showed that WPOP-N1 significantly inhibited the tumor growth of Sarcoma 180 tumor-bearing mice, and markedly increased the secretion level of TNF-α in serum. In addition, WPOP-N1 enhanced the phagocytic capability of peritoneal macrophages in vitro. Furthermore, the secretion of TNF-α and NO and the amount of TNF-α and iNOS transcript were increased significantly when the peritoneal macrophages were exposed to WPOP-N1. Meanwhile, Western blot analysis revealed that the stimulation of peritoneal macrophages by WPOP-N1 induced the phosphorylation of p65 and a marked decrease of IκB expression. These results suggest that WPOP-N1 could activate macrophages through NF-κB signaling pathway, and the anti-tumor effects of WPOP-N1 can be achieved by its immunostimulating property. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Exploring Mycobacterium tuberculosis infection-induced alterations in gene expression in macrophage by microarray hybridization

    Institute of Scientific and Technical Information of China (English)

    XIE; Jianping; (谢建平); LI; Yao; (李; 瑶); YUE; Jun; (乐; 军); XU; Yongzhong; (徐永忠); HUANG; Daqiang; (黄达蔷); LIANG; Li; (梁; 莉); WANG; Honghai; (王洪海)

    2003-01-01

    Tuberculosis remains a serious threat to public health. Its causative agent Mycobacte- rium tuberculosis is an intracellular pathogen which survives and replicates within cells of the host immune system, primarily macrophages. Knowledge of the bacteria-macrophage interaction can help to develop novel measures to combat the disease. The global gene expression of macro- phage following invasion by and growth of M. tuberculosis was studied by cDNA microarray. Of the 12800 human genes analyzed, totally 473 (3.7%) macrophage genes were differentially expressed after being infected by M. tuberculosis, among which, only 25 (5.2%, corresponding to less than 0.2% of the 12800 genes) genes were up-regulated, while others (94.8%) were down-regulated against the control. Of the 473 genes, 376 genes are registered in the GenBank, and 97 are novel genes. Expression of 5 up-regulated genes has been induced by more than 3-fold. 25 genes were down-regulated by more than 3-fold. Syndecan binding protein has been down-regu- lated up to 12.5-fold. The data gave an insight into the early gene expression in macrophage ensuing M. tuberculosis infection and a basis for further study.

  15. Glucocorticoid-induced impairment of macrophage antimicrobial activity: mechanisms and dependence on the state of activation.

    Science.gov (United States)

    Schaffner, A; Schaffner, T

    1987-01-01

    Experimental observations indicate that tissue macrophages deployed in great numbers at critical anatomic sites such as the liver, spleen, and lung are major targets for glucocorticoids compromising natural resistance of the host. Therapeutic concentrations of glucocorticoids appear to prevent destruction of microorganisms ingested by macrophages without interfering with phagocytosis, phagolysosomal fusion, and/or secretion of reactive oxygen intermediates. These findings indicate that at the cellular level the glucocorticoid target should be sought for in the nonoxidative armature of the phagocyte and that nonoxidative killing systems of resident tissue macrophages play an important role in natural resistance to opportunistic pathogens. Glucocorticoids do not prevent lymphokine-induced activation of oxidative killing systems. Thus, lymphokines such as interferon-gamma can restore the microbicidal activity of macrophages functionally impaired by glucocorticoids. Counterbalance of the suppressive effect of glucocorticoids by lymphokines might only be possible, however, for pathogens susceptible to oxidative killing and not for microorganisms that are more resistant to reactive oxygen intermediates such as Aspergillus spores and Nocardia, opportunists that appear to be particularly associated with hypercortisolism.

  16. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Kunihiko Hiraiwa

    2013-01-01

    Full Text Available Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells and systemic (bone marrow and vascular system, controlled predominantly by macrophages inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants.

  17. Transcriptional Response of Bovine Monocyte-Derived Macrophages after the Infection with Different Argentinean Mycobacterium bovis Isolates

    Directory of Open Access Journals (Sweden)

    Karina Caimi

    2013-01-01

    Full Text Available Infection of bovines with Mycobacterium bovis causes important financial hardship in many countries presenting also a risk for humans. M. bovis is known to be adapted to survive and thrive within the intramacrophage environment. In spite of its relevance, at present the information about macrophage expression patterns is scarce, particularly regarding the bovine host. In this study, transcriptomic analysis was used to detect genes differentially expressed in macrophages derived from peripheral blood mononuclear cells at early stages of infection with two Argentinean strains of M. bovis, a virulent and an attenuated strains. The results showed that the number of differentially expressed genes in the cells infected with the virulent strain (5 was significantly lower than those in the cells infected with the attenuated strain (172. Several genes were more strongly expressed in infected macrophages. Among them, we detected encoding transcription factors, anthrax toxin receptor, cell division and apoptosis regulator, ankyrin proteins, cytoskeleton proteins, protein of cell differentiation, and regulators of endocytic traffic of membrane. Quantitative real-time PCR of a selected group of differentially expressed genes confirmed the microarrays results. Altogether, the present results contribute to understanding the mechanisms involved in the early interaction of M. bovis with the bovine macrophage.

  18. Theranostic carbon dots derived from garlic with efficient anti-oxidative effects towards macrophages

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Ogaki, Ryosuke; Hansen, Line

    2015-01-01

    Luminescent garlic carbon dots with superior photostability are synthesized via microwave assisted heating. The garlic dots are biocompatible, have low toxicity and can be used as benign theranostic nanoparticles for bioimaging with efficient anti-oxidative effects towards macrophages.......Luminescent garlic carbon dots with superior photostability are synthesized via microwave assisted heating. The garlic dots are biocompatible, have low toxicity and can be used as benign theranostic nanoparticles for bioimaging with efficient anti-oxidative effects towards macrophages....

  19. Mechanism of Platinum Derivatives Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Feifei YAN

    2015-09-01

    Full Text Available Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug’s toxicity such as the cisplatin’s nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.

  20. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Directory of Open Access Journals (Sweden)

    Yuexia Liao

    Full Text Available Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  1. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Science.gov (United States)

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  2. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  3. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  4. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS.

    Directory of Open Access Journals (Sweden)

    Jing Tong

    Full Text Available HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS. It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (hBDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM and murine myeloid monocyte-derived macrophages (mMDM. These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.

  5. Monocytes-derived macrophages mediated stable expression of human brain-derived neurotrophic factor, a novel therapeutic strategy for neuroAIDS.

    Science.gov (United States)

    Tong, Jing; Buch, Shilpa; Yao, Honghong; Wu, Chengxiang; Tong, Hsin-I; Wang, Youwei; Lu, Yuanan

    2014-01-01

    HIV-1 associated dementia remains a significant public health burden. Clinical and experimental research has shown that reduced levels of brain-derived neurotrophic factor (BDNF) may be a risk factor for neurological complications associated with HIV-1 infection. We are actively testing genetically modified macrophages for their possible use as the cell-based gene delivery vehicle for the central nervous system (CNS). It can be an advantage to use the natural homing/migratory properties of monocyte-derived macrophages to deliver potentially neuroprotective BDNF into the CNS, as a non-invasive manner. Lentiviral-mediated gene transfer of human (h)BDNF plasmid was constructed and characterized. Defective lentiviral stocks were generated by transient transfection of 293T cells with lentiviral transfer plasmid together with packaging and envelope plasmids. High titer lentiviral vector stocks were harvested and used to transduce human neuronal cell lines, primary cultures of human peripheral mononocyte-derived macrophages (hMDM) and murine myeloid monocyte-derived macrophages (mMDM). These transduced cells were tested for hBDNF expression, stability, and neuroprotective activity. The GenomeLab GeXP Genetic Analysis System was used to evaluate transduced cells for any adverse effects by assessing gene profiles of 24 reference genes. High titer vectors were prepared for efficient transduction of neuronal cell lines, hMDM, and mMDM. Stable secretion of high levels of hBDNF was detected in supernatants of transduced cells using western blot and ELISA. The conditioned media containing hBDNF were shown to be protective to neuronal and monocytic cell lines from TNF-α and HIV-1 Tat mediated cytotoxicity. Lentiviral vector-mediated gene transduction of hMDM and mMDM resulted in high-level, stable expression of the neuroprotective factorBDNF in vitro. These findings form the basis for future research on the potential use of BDNF as a novel therapy for neuroAIDS.

  6. Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages.

    Directory of Open Access Journals (Sweden)

    Kosuke Watari

    Full Text Available Tumors formed by a highly metastatic human lung cancer cell line are characterized by activated signaling via vascular endothelial growth factor (VEGF-C through its receptor (VEGFR-3 and aggressive lymph node metastasis. In this study, we examined how these highly metastatic cancers acquired aggressive lymph node metastasis. Compared with their lower metastatic counterparts, the highly metastatic tumors formed by this cell line expressed higher amounts of interleukin (IL-1α, with similarly augmented expression of IL-1α and IL-1β by tumor stromal cells and of VEGF-A and VEGF-C by tumor-associated macrophages. These tumor-associated macrophages were mainly of the M2 type. Administration of a macrophage-targeting drug suppressed the production of these potent angiogenic and lymphangiogenic factors, resulting in decreased tumor growth, angiogenesis, lymphangiogenesis, and lymph node metastasis. In Matrigel plug assays, the highly metastatic cells formed tumors that were extensively infiltrated by M2-type macrophages and exhibited enhanced angiogenesis and lymphangiogenesis. All of these responses were suppressed by the IL-1 receptor (IL-1R antagonist anakinra. Thus, the IL-1α-driven inflammatory activation of angiogenesis and lymphangiogenesis seems to provide a highly metastatic tumor microenvironment favorable for lymph node metastasis through cross-talk with macrophages. Accordingly, the IL-1R/M2-type macrophage axis may be a good therapeutic target for patients with this form of lung cancer.

  7. Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages.

    Science.gov (United States)

    Watari, Kosuke; Shibata, Tomohiro; Kawahara, Akihiko; Sata, Ken-ichi; Nabeshima, Hiroshi; Shinoda, Ai; Abe, Hideyuki; Azuma, Koichi; Murakami, Yuichi; Izumi, Hiroto; Takahashi, Takashi; Kage, Masayoshi; Kuwano, Michihiko; Ono, Mayumi

    2014-01-01

    Tumors formed by a highly metastatic human lung cancer cell line are characterized by activated signaling via vascular endothelial growth factor (VEGF)-C through its receptor (VEGFR-3) and aggressive lymph node metastasis. In this study, we examined how these highly metastatic cancers acquired aggressive lymph node metastasis. Compared with their lower metastatic counterparts, the highly metastatic tumors formed by this cell line expressed higher amounts of interleukin (IL)-1α, with similarly augmented expression of IL-1α and IL-1β by tumor stromal cells and of VEGF-A and VEGF-C by tumor-associated macrophages. These tumor-associated macrophages were mainly of the M2 type. Administration of a macrophage-targeting drug suppressed the production of these potent angiogenic and lymphangiogenic factors, resulting in decreased tumor growth, angiogenesis, lymphangiogenesis, and lymph node metastasis. In Matrigel plug assays, the highly metastatic cells formed tumors that were extensively infiltrated by M2-type macrophages and exhibited enhanced angiogenesis and lymphangiogenesis. All of these responses were suppressed by the IL-1 receptor (IL-1R) antagonist anakinra. Thus, the IL-1α-driven inflammatory activation of angiogenesis and lymphangiogenesis seems to provide a highly metastatic tumor microenvironment favorable for lymph node metastasis through cross-talk with macrophages. Accordingly, the IL-1R/M2-type macrophage axis may be a good therapeutic target for patients with this form of lung cancer.

  8. Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord.

    Science.gov (United States)

    Zhang, Kun; Zheng, Jingjing; Bian, Ganlan; Liu, Ling; Xue, Qian; Liu, Fangfang; Yu, Caiyong; Zhang, Haifeng; Song, Bing; Chung, Sookja K; Ju, Gong; Wang, Jian

    2015-06-01

    Spinal cord injury (SCI) frequently provokes serious detrimental outcomes because neuronal regeneration is limited in the central nervous system (CNS). Thus, the creation of a permissive environment for transplantation therapy with neural stem/progenitor cells (NS/PCs) is a promising strategy to replace lost neuronal cells, promote repair, and stimulate functional plasticity after SCI. Macrophages are important SCI-associated inflammatory cells and a major source of secreted factors that modify the lesion milieu. Here, we used conditional medium (CM) from bone marrow-derived M1 or M2 polarized macrophages to culture murine NS/PCs. The NS/PCs showed enhanced astrocytic versus neuronal/oligodendrocytic differentiation in the presence of M1- versus M2-CM. Similarly, cotransplantation of NS/PCs with M1 and M2 macrophages into intact or injured murine spinal cord increased the number of engrafted NS/PC-derived astrocytes and neurons/oligodendrocytes, respectively. Furthermore, when cotransplantated with M2 macrophages, the NS/PC-derived neurons integrated into the local circuitry and enhanced locomotor recovery following SCI. Interesting, engrafted M1 macrophages promoted long-distance rostral migration of NS/PC-derived cells in a chemokine (C-X-C motif) receptor 4 (CXCR4)-dependent manner, while engrafted M2 macrophages resulted in limited cell migration of NS/PC-derived cells. Altogether, these findings suggest that the cotransplantation of NS/PCs together with polarized macrophages could constitute a promising therapeutic approach for SCI repair.

  9. Analysis of macrophage apoptosis induced by Brucella melitensis and the effects of caspases 3,8 and 9

    Institute of Scientific and Technical Information of China (English)

    任晓莉

    2013-01-01

    Objective To determine the difference of macrophage RAW264.7 apoptosis induced by Brucella melitensis virulent strain 16M and attenuated strain M5-90 and elucidate the regulatory role of caspases 3,8 and 9.Methods The best multiplicity of infection (MOI) was determined through kinetic analysis of Brucella melitensis strain 16M and M5-90 induced mouse macrophages apop-

  10. Proteomic alteration of equine monocyte-derived macrophages infected with equine infectious anemia virus.

    Science.gov (United States)

    Du, Cheng; Liu, Hai-Fang; Lin, Yue-Zhi; Wang, Xue-Feng; Ma, Jian; Li, Yi-Jing; Wang, Xiaojun; Zhou, Jian-Hua

    2015-06-01

    Similar to the well-studied viruses human immunodeficiency virus (HIV)-1 and simian immunodeficiency virus (SIV), equine infectious anemia virus (EIAV) is another member of the Lentivirus genus in the family Retroviridae. Previous studies revealed that interactions between EIAV and the host resulted in viral evolution in pathogenicity and immunogenicity, as well as adaptation to the host. Proteomic analysis has been performed to examine changes in protein expression and/or modification in host cells infected with viruses and has revealed useful information for virus-host interactions. In this study, altered protein expression in equine monocyte-derived macrophages (eMDMs, the principle target cell of EIAV in vivo) infected with the EIAV pathogenic strain EIAV(DLV34) (DLV34) was examined using 2D-LC-MS/MS coupled with the iTRAQ labeling technique. The expression levels of 210 cellular proteins were identified to be significantly upregulated or downregulated by infection with DLV34. Alterations in protein expression were confirmed by examining the mRNA levels of eight selected proteins using quantitative real-time reverse-transcription PCR, and by verifying the levels of ten selected proteins using parallel reaction monitoring (PRM). Further analysis of GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)-Pathway enrichment demonstrated that these differentially expressed proteins are primarily related to the biological processes of oxidative phosphorylation, protein folding, RNA splicing, and ubiquitylation. Our results can facilitate a better understanding of the host response to EIAV infection and the cellular processes required for EIAV replication and pathogenesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Asbestos Induces Oxidative Stress and Activation of Nrf2 Signaling in Murine Macrophages: Chemopreventive Role of the Synthetic Lignan Secoisolariciresinol Diglucoside (LGM2605

    Directory of Open Access Journals (Sweden)

    Ralph A. Pietrofesa

    2016-03-01

    Full Text Available The interaction of asbestos fibers with macrophages generates harmful reactive oxygen species (ROS and subsequent oxidative cell damage that are key processes linked to malignancy. Secoisolariciresinol diglucoside (SDG is a non-toxic, flaxseed-derived pluripotent compound that has antioxidant properties and may thus function as a chemopreventive agent for asbestos-induced mesothelioma. We thus evaluated synthetic SDG (LGM2605 in asbestos-exposed, elicited murine peritoneal macrophages as an in vitro model of tissue phagocytic response to the presence of asbestos in the pleural space. Murine peritoneal macrophages (MFs were exposed to crocidolite asbestos fibers (20 µg/cm2 and evaluated at various times post exposure for cytotoxicity, ROS generation, malondialdehyde (MDA, and levels of 8-iso Prostaglandin F2α (8-isoP. We then evaluated the ability of LGM2605 to mitigate asbestos-induced oxidative stress by administering LGM2605 (50 µM 4-h prior to asbestos exposure. We observed a significant (p < 0.0001, time-dependent increase in asbestos-induced cytotoxicity, ROS generation, and the release of MDA and 8-iso Prostaglandin F2α, markers of lipid peroxidation, which increased linearly over time. LGM2605 treatment significantly (p < 0.0001 reduced asbestos-induced cytotoxicity and ROS generation, while decreasing levels of MDA and 8-isoP by 71%–88% and 41%–73%, respectively. Importantly, exposure to asbestos fibers induced cell protective defenses, such as cellular Nrf2 activation and the expression of phase II antioxidant enzymes, HO-1 and Nqo1 that were further enhanced by LGM2605 treatment. LGM2605 boosted antioxidant defenses, as well as reduced asbestos-induced ROS generation and markers of oxidative stress in murine peritoneal macrophages, supporting its possible use as a chemoprevention agent in the development of asbestos-induced malignant mesothelioma.

  12. Apoptosis-Inducing Factor Participation in Bovine Macrophage Mycobacterium bovis-Induced Caspase-Independent Cell Death▿

    Science.gov (United States)

    Vega-Manriquez, X.; López-Vidal, Y.; Moran, J.; Adams, L. G.; Gutiérrez-Pabello, J. A.

    2007-01-01

    Mycobacterium tuberculosis complex species survive and replicate in phagosomes of the host cell. Cell death (CD) has been highlighted as one of the probable outcomes in this host-pathogen interaction. Previously, our group demonstrated macrophage apoptosis as a consequence of Mycobacterium bovis infection. In this study, we aimed to identify the contribution of apoptotic effector elements in M. bovis-induced CD. Bovine macrophages were either infected with M. bovis (multiplicity of infection, 10:1) or treated with an M. bovis cell extract (CFE). Structural changes compatible with CD were evaluated. Chromatin condensation was increased three times by the CFE. On the other hand, a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay demonstrated that levels of DNA fragmentation induced by M. bovis and CFE were 53.7% ± 24% and 38.9% ± 14%, respectively, whereas control cells had a basal proportion of 8.9% ± 4.1%. Rates of DNA fragmentation were unaffected by the presence of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (z-VAD). Cells treated with 100 μg of CFE for 12 h had a fivefold decrease in the level of mitochondrial outer membrane permeabilization compared to that of untreated cells. Neither M. bovis infection nor CFE treatment induced activation of caspase 3, 8, or 9. Translocation of apoptosis-inducing factor (AIF) to the nucleus was identified in 32% ± 3.5% and 26.3% ± 4.9% of M. bovis-infected and CFE-treated cells, respectively. Incubation of macrophages with z-VAD prior to infection did not alter the percentage of cells showing AIF translocation. Our data suggest that M. bovis-induced CD in bovine macrophages is caspase independent with AIF participation. PMID:17158896

  13. The impact of telmisartan on angiotensin converting enzyme 2 mRNA expression in monocyte-derived macrophages of diabetic hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    李永勤

    2013-01-01

    Objective To investigate the effects of telmisartan on the expression of angiotensin converting enzyme 2(ACE2) mRNA in monocyte-derived macrophages of hypertensive patients accompanied with diabetes. Methods 62 essential hypertensive patients accompanied with

  14. Neotuberostemonine attenuates bleomycin-induced pulmonary fibrosis by suppressing the recruitment and activation of macrophages.

    Science.gov (United States)

    Xiang, Juan; Cheng, Si; Feng, Tianlong; Wu, Yan; Xie, Weina; Zhang, Mian; Xu, Xianghong; Zhang, Chaofeng

    2016-07-01

    Neotuberostemonine (NTS) is one of the main antitussive alkaloids in the root of Stemona tuberosa Lour. This study aimed to investigate the effects of NTS on bleomycin (BLM)-induced pulmonary fibrosis in mice and the underlying mechanism. After BLM administration, NTS were orally administered to mice at 20 and 40mg/kg per day from days 8 to 21, with nintedanib as a positive control. The effect of NTS on BLM-induced mice was assessed via histopathological examination by HE and Masson's trichrome staining, TGF-β1 level and macrophage recruitment by immunohistochemical staining, expression of profibrotic media and M1/M2 polarization by western blot. RAW 264.7 cells were used to evaluate whether NTS (1, 10, 100μM) directly affected macrophages. The results revealed that NTS treatment significantly ameliorated lung histopathological changes and decreased inflammatory cell counts in the bronchoalveolar lavage fluid. The over-expression of collagen, α-SMA and TGF-β1 was reduced by NTS. Furthermore, NTS markedly lowered the expression of MMP-2 and TIMP-1 while raised the expression of MMP-9. A further analysis showed that NTS was able to decrease the recruitment of macrophages and to inhibit the M2 polarization in mice lung tissues. The experiment in vitro showed that NTS significantly reduced the arginase-1 (marker for M2) expression in a dose-dependent manner but down-regulated the iNOS (marker for M1) expression only at 100μM. In conclusion, our study demonstrated for the first time that NTS has a significant protective effect on BLM-induced pulmonary fibrosis through suppressing the recruitment and M2 polarization of macrophages.

  15. Ly6Chi Monocytes and Their Macrophage Descendants Regulate Neutrophil Function and Clearance in Acetaminophen-Induced Liver Injury

    Science.gov (United States)

    Graubardt, Nadine; Vugman, Milena; Mouhadeb, Odelia; Caliari, Gabriele; Pasmanik-Chor, Metsada; Reuveni, Debby; Zigmond, Ehud; Brazowski, Eli; David, Eyal; Chappell-Maor, Lousie; Jung, Steffen; Varol, Chen

    2017-01-01

    Monocyte-derived macrophages (MoMF) play a pivotal role in the resolution of acetaminophen-induced liver injury (AILI). Timely termination of neutrophil activity and their clearance are essential for liver regeneration following injury. Here, we show that infiltrating Ly6Chi monocytes, their macrophage descendants, and neutrophils spatially and temporally overlap in the centrilobular necrotic areas during the necroinflammatory and resolution phases of AILI. At the necroinflammatory phase, inducible ablation of circulating Ly6Chi monocytes resulted in reduced numbers and fractions of reactive oxygen species (ROS)-producing neutrophils. In alignment with this, neutrophils sorted from monocyte-deficient livers exhibited reduced expression of NADPH oxidase 2. Moreover, human CD14+ monocytes stimulated with lipopolysaccharide or hepatocyte apoptotic bodies directly induced ROS production by cocultured neutrophils. RNA-seq-based transcriptome profiling of neutrophils from Ly6Chi monocyte-deficient versus normal livers revealed 449 genes that were differentially expressed with at least twofold change (p ≤ 0.05). In the absence of Ly6Chi monocytes, neutrophils displayed gene expression alterations associated with decreased innate immune activity and increased cell survival. At the early resolution phase, Ly6Chi monocytes differentiated into ephemeral Ly6Clo MoMF and their absence resulted in significant accumulation of late apoptotic neutrophils. Further gene expression analysis revealed the induced expression of a specific repertoire of bridging molecules and receptors involved with apoptotic cell clearance during the transition from Ly6Chi monocytes to MoMF. Collectively, our findings establish a phase-dependent task division between liver-infiltrating Ly6Chi monocytes and their MoMF descendants with the former regulating innate immune functions and cell survival of neutrophils and the later neutrophil clearance. PMID:28620383

  16. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis

    Science.gov (United States)

    Zhang, Hui; Yue, Yan; Sun, Tianle; Wu, Xuejie; Xiong, Sidong

    2017-01-01

    Infiltrating macrophages have been proven as a pivotal pathological inflammatory cell subset in coxsackievirus B3 (CVB3) induced viral myocarditis. However, the mechanisms underlying the initiation and promotion of macrophage pro-inflammatory responses are still blur. We previously reported that cardiac ER stress contributed to CVB3-induced myocarditis by augmenting inflammation. In this study, we focused on the influence of ER stress on the macrophage inflammatory responses in the viral myocarditis. We found that ER stress was robustly induced in the cardiac infiltrating macrophages from CVB3-infected mice, and robustly facilitated the production of pro-inflammatory cytokines (IL-6, IL-12, MCP-1 and IP-10). Consistently, adoptive transfer of ER stressed macrophages significantly worsened the viral myocarditis; while transfer of ER stress-inhibited macrophages obviously alleviated the myocarditis. To our surprise, this significantly activated ER stress was not directly caused by the virus stimulation, but was transferred from the CVB3-infected, ER stressed myocardiocytes via soluble molecules in a TLR2, 4-independent way. In the present study, we reported that the transmissible ER stress from the infected myocardiocytes to macrophages could augment the pro-inflammatory responses and promoted the pathogenesis of viral myocarditis. Blocking ER stress transmission, instead of inhibiting its initiation, may represent novel therapeutic strategies against viral myocarditis. PMID:28176833

  17. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    Science.gov (United States)

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. Copyright © 2016 the American Physiological Society.

  18. Endocannabinoid System Contributes to Liver Injury and Inflammation by Activation of Bone Marrow-Derived Monocytes/Macrophages in a CB1-Dependent Manner.

    Science.gov (United States)

    Mai, Ping; Yang, Le; Tian, Lei; Wang, Lin; Jia, Shuangshuang; Zhang, Yuanyuan; Liu, Xin; Yang, Lin; Li, Liying

    2015-10-01

    Hepatic injury undergoes significant increases in endocannabinoidsand infiltrations of macrophages, yet the concrete mechanisms of changes in endocannabinoids and the functions of macrophage-expressed cannabinoid receptors (CBs) are unclear. Biosynthetic and degradative enzymes of endocannabinoids revealed a significant change in human fibrotic liver. Meanwhile, we showed dynamic changes of these enzymes and CBs (CB1 and CB2) from 1 to 56 d in carbon tetrachloride-induced murine liver injury. Biosynthetic enzymes (N-acylphosphatidyl-ethanolamine selective phospholipase D and diacylglycerol lipase-α) and CBs were markedly increased, whereas degradative enzymes (fatty acid amidohydrolase and monoacylglycerol lipase) were downregulated. Moreover, these enzymes intimately correlated with the fibrosis parameter [procollagen α1(III)]. Bone marrow-derived monocytes/macrophages (BMM) expressed CBs. Interestingly, CB1 but not CB2 mediated BMM migration through a Boyden chambers assay, and the effect depended on the G(α)i/o/RhoA/ROCK signaling pathway. ICR mice were lethally irradiated and received BM transplants from enhanced GFP transgenic mice. Four weeks later, mice of BM reconstruction were subjected to carbon tetrachloride-induced liver injury. In the chimeric murine model, we found that blockade of CB1 by administration of a CB1 antagonist inhibited the recruitment of BMM into injured liver using immunofluorescence staining and FACS, but it did not have effects on migration of T cells and dendritic cells without CB1 expression. Furthermore, activation of CB1 enhanced cytokine expression of BMM. In vivo, inhibition of CB1 attenuated the inflammatory cytokine level through real-time RT-PCR and cytometric bead array, ameliorating hepatic inflammation and fibrosis. In this study, we identify inactivation of BMM-expressed CB1 as a therapeutic strategy for reducing hepatic inflammation and fibrosis.

  19. Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia.

    Science.gov (United States)

    Rosenberg, Avi Z; Yu, Weiying; Hill, D Ashley; Reyes, Christine A; Schwartz, David A

    2017-01-01

    -The placenta is an important component in understanding the fetal response to intrauterine Zika virus infection, but the pathologic changes in this organ remain largely unknown. Hofbauer cells are fetal-derived macrophages normally present in the chorionic villous stroma. They have been implicated in a variety of physiological and pathologic processes, in particular involving infectious agents. -To characterize the fetal and maternal responses and viral localization in the placenta following Zika virus transmission to an 11 weeks' gestation fetus. The clinical course was notable for prolonged viremia in the mother and extensive neuronal necrosis in the fetus. The fetus was delivered at 21 weeks' gestation after pregnancy termination. -The placenta was evaluated by using immunohistochemistry for inflammatory cells (macrophages/monocytes [Hofbauer cells], B and T lymphocytes) and proliferating cells, and an RNA probe to Zika virus. The fetal brain and the placenta were previously found to be positive for Zika virus RNA by reverse transcription-polymerase chain reaction. -The placenta demonstrated prominently enlarged, hydropic chorionic villi with hyperplasia and focal proliferation of Hofbauer cells. The degree of Hofbauer cell hyperplasia gave an exaggerated immature appearance to the villi. No acute or chronic villitis, villous necrosis, remote necroinflammatory abnormalities, chorioamnionitis, funisitis, or hemorrhages were present. An RNA probe to Zika virus was positive in villous stromal cells, presumably Hofbauer cells. -Zika virus placental infection induces proliferation and prominent hyperplasia of Hofbauer cells in the chorionic villi but does not elicit villous necrosis or a maternal or fetal lymphoplasmacellular or acute inflammatory cell reaction.

  20. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  1. Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Juan S. Henao Agudelo

    2017-07-01

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent cells with abilities to exert immunosuppressive response promoting tissue repair. Studies have shown that MSCs can secrete extracellular vesicles (MVs-MSCs with similar regulatory functions to the parental cells. Furthermore, strong evidence suggesting that MVs-MSCs can modulate several immune cells (i.e., Th1, Th17, and Foxp3+ T cells. However, their precise effect on macrophages (Mϕs remains unexplored. We investigated the immunoregulatory effect of MVs-MSCs on activated M1-Mϕs in vitro and in vivo using differentiated bone marrow Mϕs and an acute experimental model of thioglycollate-induced peritonitis, respectively. We observed that MVs-MSCs shared surface molecules with MSCs (CD44, CD105, CD90, CD73 and expressed classical microvesicle markers (Annexin V and CD9. The in vitro treatment with MVs-MSCs exerted a regulatory-like phenotype in M1-Mϕs, which showed higher CD206 level and reduced CCR7 expression. This was associated with decreased levels of inflammatory molecules (IL-1β, IL-6, nitric oxide and increased immunoregulatory markers (IL-10 and Arginase in M1-Mϕs. In addition, we detected that MVs-MSCs promoted the downregulation of inflammatory miRNAs (miR-155 and miR-21, as well as, upregulated its predicted target gene SOCS3 in activated M1-Mϕs. In vivo MVs-MSCs treatment reduced the Mϕs infiltrate in the peritoneal cavity inducing a M2-like regulatory phenotype in peritoneal Mϕs (higher arginase activity and reduced expression of CD86, iNOS, IFN-γ, IL-1β, TNF-α, IL-1α, and IL-6 molecules. This in vivo immunomodulatory effect of MVs-MSCs on M1-Mϕs was partially associated with the upregulation of CX3CR1 in F4/80+/Ly6C+/CCR2+ Mϕs subsets. In summary, our findings indicate that MVs-MSCs can modulate an internal program in activated Mϕs establishing an alternative regulatory-like phenotype.

  2. Properties of soluble and particulate angiotensin-converting enzymes of rabbit lung, induced macrophage and serum.

    Science.gov (United States)

    Friedland, J; Silverstein, E

    1983-01-01

    Rabbit serum, lung and corticosteroid-induced macrophage angiotensin-converting enzymes were compared with respect to migration on polyacrylamide-gel electrophoresis, sucrose gradient centrifugation and Km. Cellular particulate enzymes solubilized by nonidet P40 had approximately half the electrophoretic mobility of soluble enzymes and a similar Km (1.2 mM). Trypsin treatment of nonidet P40 solubilized particulate enzyme converted its electrophoretic mobility to that of soluble enzyme, and rendered it non-aggregating in sucrose gradients lacking detergent, similar to soluble enzyme. Approximate molecular weights by sucrose gradient centrifugation were similar for all enzymes (135,000-158,000). The data suggest that lung and macrophage enzymes are similar and that cellular particulate enzyme may be convertible to soluble enzyme.

  3. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  4. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P.

    Science.gov (United States)

    Tuluc, Florin; Meshki, John; Spitsin, Sergei; Douglas, Steven D

    2014-07-01

    Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163(low) and CD163(high)) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163(high) cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis. © 2014 Society for Leukocyte Biology.

  5. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  6. Is interleukin-1β a culprit in macrophage-adipocyte crosstalk in obesity?

    OpenAIRE

    Bing, Chen

    2015-01-01

    Abstract Adipose tissue remodeling occurs in obesity, characterized by adipocyte hypertrophy and increased infiltration of macrophages which also shift to a proinflammatory phenotype. Factors derived from these macrophages significantly alter adipocyte function, such as repressing adipogenesis, inducing inflammatory response and desensitizing insulin action. As macrophages produce a cocktail of inflammatory signals, identifying the key factors that mediate the detrimental effects may offer ef...

  7. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    Science.gov (United States)

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.

  8. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses.

  9. Mechanism involved in interleukin-21-induced phagocytosis in human monocytes and macrophages.

    Science.gov (United States)

    Vallières, F; Girard, D

    2017-02-01

    The interleukin (IL)-21/IL-21 receptor (R) is a promising system to be exploited for the development of therapeutic strategies. Although the biological activities of IL-21 and its cell signalling events have been largely studied in immunocytes, its interaction with human monocytes and macrophages have been neglected. Previously, we reported that IL-21 enhances Fc gamma receptor (FcRγ)-mediated phagocytosis in human monocytes and in human monocyte-derived macrophages (HMDM) and identified Syk as a novel molecular target of IL-21. Here, we elucidate further how IL-21 promotes phagocytosis in these cells. Unlike its ability to enhance phagocytosis of opsonized sheep red blood cells (SRBCs), IL-21 did not promote phagocytosis of Escherichia coli and zymosan by monocytes and did not alter the cell surface expression of CD16, CD32 and CD64. In HMDM, IL-21 was found to enhance phagocytosis of zymosan. In addition, we found that IL-21 activates p38, protein kinase B (Akt), signal transducer and activator of transcription (STAT)-1 and STAT-3 in monocytes and HMDM. Using a pharmacological approach, we demonstrate that IL-21 enhances phagocytosis by activating some mitogen-activated protein kinases (MAPKs) and phosphoinositide 3-kinase (PI3K)-Akt and Janus kinase (JAK)-STAT pathways. These results obtained in human monocytes and macrophages have to be considered for a better exploitation of the IL-21/IL-21R system for therapeutic purposes. © 2016 British Society for Immunology.

  10. Malondialdehyde-acetaldehyde haptenated protein binds macrophage scavenger receptor(s) and induces lysosomal damage.

    Science.gov (United States)

    Willis, Monte S; Klassen, Lynell W; Carlson, Deborah L; Brouse, Chad F; Thiele, Geoffrey M

    2004-07-01

    There is evidence that the chemical modification of proteins (haptens) with malondialdehyde-acetaldehyde (MAA) and the immune response to these haptenated proteins is associated with the initiation and/or progression of alcohol liver disease. Experimentally, proteins modified with MAA induce antibody and T cell responses, which are mediated by scavenger receptor(s). Moreover, macrophages have been shown to play an important role in processing and presenting MAA-haptenated proteins in vitro. In vitro, MAA-modified proteins have been shown to induce both apoptosis and necrosis in a dose- and cell-type-dependent manner. Natural ligands modified by oxidative stress, such as oxidized LDL, similarly initiate not only antibody responses, but also cause cell death by disrupting lysosomes after binding to scavenger receptors and internalization. We therefore investigated the binding, internalization, and lysosomal integrity in a macrophage cell line to a MAA-haptenated protein. We demonstrate for the first time that MAA-haptenated proteins are preferentially bound by scavenger receptors on macrophages, which internalize the ligands and shuttle them to lysosomes. Moreover, MAA-haptenated proteins are demonstrated to be associated with a rapid dose-dependent disruption in lysosomal integrity, resulting in leakage and caspase activation. Similarly, as hen egg lysozyme (HEL)-MAA concentrations increased (>31.3 microg/ml), increased levels of apoptosis and a G1/S cell cycle checkpoint inhibition were identified. This study identifies mechanisms by which MAA-haptenated proteins are taken up by a representative antigen-presenting cell and may delineate steps by which MAA-haptenated proteins induce cell death and induce their immunogenicity to the carrier protein. Copyright 2004 Elsevier B.V.

  11. Leishmania pifanoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4.

    Science.gov (United States)

    Whitaker, Shanta M; Colmenares, Maria; Pestana, Karen Goldsmith; McMahon-Pratt, Diane

    2008-05-01

    The P8 proteoglycolipid complex (P8 PGLC) is a glyconjugate expressed by Leishmania mexicana complex parasites. We previously have shown that vaccination with P8 PGLC provides protection against cutaneous leishmaniasis in susceptible BALB/c mice. However, the biological importance of this complex remains unknown. Here we show that P8 PGLC localizes to the surface of Leishmania pifanoi amastigotes and that upon exposure to macrophages, P8 PGLC binds and induces inflammatory cytokine and chemokine mRNAs such as tumor necrosis factor alpha and RANTES early after stimulation. Our studies indicate that cytokine and chemokine induction is dependent upon Toll-like receptor 4 (TLR4). Interestingly, key inflammatory cytokines and chemokines (such as interleukin-6 [IL-6], macrophage inflammatory protein 1beta, and beta interferon [IFN-beta]) that can be induced through TLR4 activation were not induced or only slightly upregulated by P8 PGLC. Activation by P8 PGLC does not occur in the presence of TLR4 alone and requires both CD14 and myeloid differentiation protein 2 for signaling; this requirement may be responsible for the limited TLR4 response. This is the first characterization of a TLR4 ligand for Leishmania. In vitro experiments indicate that L. pifanoi amastigotes induce lower levels of cytokines in macrophages in the absence of TLR4; however, notably higher IL-10/IFN-gamma ratios were found for TLR4-deficient mice than for BALB/c mice. Further, increased levels of parasites persist in BALB/c mice deficient in TLR4. Taken together, these results suggest that TLR4 recognition of Leishmania pifanoi amastigotes is important for the control of infection and that this is mediated, in part, through the P8 PGLC.

  12. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Ursula Manuelpillai

    Full Text Available Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4 twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6 were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively. Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established

  13. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    Science.gov (United States)

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  14. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection.

    Directory of Open Access Journals (Sweden)

    Jutta Sharbati

    Full Text Available BACKGROUND: Many efforts have been made to understand basal mechanisms of mycobacterial infections. Macrophages are the first line of host immune defence to encounter and eradicate mycobacteria. Pathogenic species have evolved different mechanisms to evade host response, e.g. by influencing macrophage apoptotic pathways. However, the underlying molecular regulation is not fully understood. A new layer of eukaryotic regulation of gene expression is constituted by microRNAs. Therefore, we present a comprehensive study for identification of these key regulators and their targets in the context of host macrophage response to mycobacterial infections. METHODOLOGY/PRINCIPAL FINDINGS: We performed microRNA as well as mRNA expression analysis of human monocyte derived macrophages infected with several Mycobacterium avium hominissuis strains by means of microarrays as well as quantitative reverse transcription PCR (qRT-PCR. The data revealed the ability of all strains to inhibit apoptosis by transcriptional regulation of BCL2 family members. Accordingly, at 48 h after infection macrophages infected with all M. avium strains showed significantly decreased caspase 3 and 7 activities compared to the controls. Expression of let-7e, miR-29a and miR-886-5p were increased in response to mycobacterial infection at 48 h. The integrated analysis of microRNA and mRNA expression as well as target prediction pointed out regulative networks identifying caspase 3 and 7 as potential targets of let-7e and miR-29a, respectively. Consecutive reporter assays verified the regulation of caspase 3 and 7 by these microRNAs. CONCLUSIONS/SIGNIFICANCE: We show for the first time that mycobacterial infection of human macrophages causes a specific microRNA response. We furthermore outlined a regulatory network of potential interactions between microRNAs and mRNAs. This study provides a theoretical concept for unveiling how distinct mycobacteria could manipulate host cell response

  15. High resolution preparation of monocyte-derived macrophages (MDM protein fractions for clinical proteomics

    Directory of Open Access Journals (Sweden)

    Olivieri Oliviero

    2009-02-01

    Full Text Available Abstract Background Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels. Results Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis indicated no fraction cross contamination. On 2D-PAGE mini gels (7 × 8 cm we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS. Conclusion This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.

  16. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  17. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS induces the production of inflammatory cytokines and reactive oxygen species (ROS under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC, an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects.

  18. Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid.

    Science.gov (United States)

    Kim, Young-Jin; Park, Wansu

    2016-04-04

    Quercetin (3,3',4',5,6-pentahydroxyflavone) is a well-known antioxidant and a flavonol found in many fruits, leaves, and vegetables. Quercetin also has known anti-inflammatory effects on lipopolysaccharide-induced macrophages. However, the effects of quercetin on virus-induced macrophages have not been fully reported. In this study, the anti-inflammatory effect of quercetin on double-stranded RNA (dsRNA)-induced macrophages was examined. Quercetin at concentrations up to 50 μM significantly inhibited the production of NO, IL-6, MCP-1, IP-10, RANTES, GM-CSF, G-CSF, TNF-α, LIF, LIX, and VEGF as well as calcium release in dsRNA (50 μg/mL of polyinosinic-polycytidylic acid)-induced RAW 264.7 mouse macrophages (p Quercetin at concentrations up to 50 μM also significantly inhibited mRNA expression of signal transducer and activated transcription 1 (STAT1) and STAT3 in dsRNA-induced RAW 264.7 cells (p quercetin had alleviating effects on viral inflammation based on inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-induced macrophages via the calcium-STAT pathway.

  19. Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL in HIV-1-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Yunlong Huang

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM culture system was infected with macrophage-tropic HIV-1(ADA, HIV-1(JR-FL, or HIV-1(BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1 activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.

  20. Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia.

    Science.gov (United States)

    Umekawa, Takashi; Osman, Ahmed M; Han, Wei; Ikeda, Tomoaki; Blomgren, Klas

    2015-12-01

    The mechanisms of neuronal injury after hypoxia-ischemia (HI) are different in the immature and the adult brain, but microglia activation has not been compared. The purpose of this study was to phenotype resident microglia and blood-derived macrophages in the hippocampus after HI in neonatal (postnatal day 9, P9) or adult (3 months of age, 3mo) mice. Unilateral brain injury after HI was induced in Cx3cr1(GFP/+) Ccr2(RFP/+) male mice on P9 (n = 34) or at 3mo (n = 53) using the Vannucci model. Resident microglia (Cx3cr1-GFP+) proliferated and were activated earlier after HI in the P9 (1-3 days) than that in the 3mo hippocampus, but remained longer in the adult brain (3-7 days). Blood-derived macrophages (Ccr2-RFP+) peaked 3 days after HI in both immature (P9) and adult (3mo) hippocampi but were twice as frequent in adult brains, 41% vs. 21% of all microglia/macrophages. CCL2 expression was three times higher in the P9 hippocampi, indicating that the proinflammatory response was more pronounced in the immature brain after HI. This corresponded well with the higher numbers of galectin-3-positive resident microglia in the P9 hippocampi, but did not correlate with CD16/32- or CD206-positive resident microglia or blood-derived macrophages. In conclusion, resident microglia, rather than infiltrating blood-derived macrophages, proliferate and are activated earlier in the immature than in the adult brain, but remain increased longer in the adult brain. The inflammatory response is more pronounced in the immature brain, and this correlate well with galectin-3 expression in resident microglia.

  1. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages.

  2. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm.

    Science.gov (United States)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S; Buendía, Irene; Egido, Jesús; Blanco-Colio, Luis Miguel; Samaniego, Rafael; Meilhac, Olivier; Michel, Jean Baptiste; Martín-Ventura, José Luis; Moreno, Juan Antonio

    2015-12-15

    Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD163 expressing macrophages ex vivo, in vitro and in human AAA. CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent to neoangiogenic microvessels. Dual CD14/CD163 expression was observed in recently infiltrated monocytes surrounding microvessels. A higher release of soluble CD163 was observed in the conditioned medium from AAA (AAA-CM, n=10), mainly in the adventitial layer. Similar to Hb, AAA-CM induced CD163-dependent monocyte chemotaxis, especially on circulating monocytes from AAA patients. Hb or AAA-CM promoted differentiation towards CD163(high)/HLA-DR(low)-expressing macrophages, with enhanced Hb uptake, increased anti-inflammatory IL-10 secretion and decreased pro-inflammatory IL-12p40 release. All these effects were partially suppressed when Hb was removed from AAA-CM. Separate analysis on circulating monocytes reported increased percentage of pre-infiltrating CD14(++)CD16(+) monocytes in patients with AAA (n=21), as compared to controls (n=14). A significant increase in CD163 expression in CD14(++)CD16(+) monocyte subpopulation was observed in AAA patients. The presence of Hb in the adventitial AAA-wall promotes the migration and differentiation of activated circulating monocytes in AAA patients, explaining the existence of a protective CD163-macrophage phenotype that could take up the Hb present in the AAA-wall, avoiding its injurious effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Analysis of the bovine monocyte-derived macrophage response to Mycobacterium avium subspecies paratuberculosis infection using RNA-seq

    Directory of Open Access Journals (Sweden)

    Maura E Casey

    2015-02-01

    Full Text Available Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP, is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a six-hour infection time course with non-infected controls. We observed 245 and 574 differentially expressed genes in MAP-infected versus non-infected control samples (adjusted P value ≤ 0.05 at 2 and 6 hours post-infection, respectively. Functional analyses of these differentially expressed genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.

  4. Analyzing time-dependent microarray data using independent component analysis derived expression modes from human macrophages infected with F. tularensis holartica.

    Science.gov (United States)

    Lutter, D; Langmann, Th; Ugocsai, P; Moehle, C; Seibold, E; Splettstoesser, W D; Gruber, P; Lang, E W; Schmitz, G

    2009-08-01

    The analysis of large-scale gene expression profiles is still a demanding and extensive task. Modern machine learning and data mining techniques developed in linear algebra, like Independent Component Analysis (ICA), become increasingly popular as appropriate tools for analyzing microarray data. We applied ICA to analyze kinetic gene expression profiles of human monocyte derived macrophages (MDM) from three different donors infected with Francisella tularensis holartica and compared them to more classical methods like hierarchical clustering. Results were compared using a pathway analysis tool, based on the Gene Ontology and the MeSH database. We could show that both methods lead to time-dependent gene regulatory patterns which fit well to known TNFalpha induced immune responses. In comparison, the nonexclusive attribute of ICA results in a more detailed view and a higher resolution in time dependent behavior of the immune response genes. Additionally, we identified NFkappaB as one of the main regulatory genes during response to F. tularensis infection.

  5. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis.

    Science.gov (United States)

    Jaquenod De Giusti, Carolina; Ure, Agustín E; Rivadeneyra, Leonardo; Schattner, Mirta; Gomez, Ricardo M

    2015-08-01

    Macrophage influx and galectin 3 production have been suggested as major players driving acute inflammation and chronic fibrosis in many diseases. However, their involvement in the pathogenesis of viral myocarditis and subsequent cardiomyopathy are unknown. Our aim was to characterise the role of macrophages and galectin 3 on survival, clinical course, viral burden, acute pathology, and chronic fibrosis in coxsackievirus B3 (CVB3)-induced myocarditis. Our results showed that C3H/HeJ mice infected with CVB3 and depleted of macrophages by liposome-encapsulated clodronate treatment compared with infected untreated mice presented higher viral titres but reduced acute myocarditis and chronic fibrosis, compared with untreated infected mice. Increased galectin 3 transcriptional and translational expression levels correlated with CVB3 infection in macrophages and in non-depleted mice. Disruption of the galectin 3 gene did not affect viral titres but reduced acute myocarditis and chronic fibrosis compared with C57BL/6J wild-type mice. Similar results were observed after pharmacological inhibition of galectin 3 with N-acetyl-d-lactosamine in C3H/HeJ mice. Our results showed a critical role of macrophages and their galectin 3 in controlling acute viral-induced cardiac injury and the subsequent fibrosis. Moreover, the fact that pharmacological inhibition of galectin 3 induced similar results to macrophage depletion regarding the degree of acute cardiac inflammation and chronic fibrosis opens up the possibility of new pharmacological strategies for viral myocarditis.

  6. β Common Receptor Mediates Erythropoietin-Conferred Protection on OxLDL-Induced Lipid Accumulation and Inflammation in Macrophages

    Directory of Open Access Journals (Sweden)

    Tzong-Shyuan Lee

    2015-01-01

    Full Text Available Erythropoietin (EPO, the key factor for erythropoiesis, also protects macrophage foam cells from lipid accumulation, yet the definitive mechanisms are not fully understood. β common receptor (βCR plays a crucial role in the nonhematopoietic effects of EPO. In the current study, we investigated the role of βCR in EPO-mediated protection in macrophages against oxidized low-density lipoprotein- (oxLDL- induced deregulation of lipid metabolism and inflammation. Here, we show that βCR expression was mainly in foamy macrophages of atherosclerotic aortas from apolipoprotein E-deficient mice. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR in macrophages. Inhibition of βCR activation by neutralizing antibody or small interfering RNA (siRNA abolished the EPO-conferred protection in oxLDL-induced lipid accumulation. Furthermore, EPO-promoted cholesterol efflux and upregulation of ATP-binding cassette (ABC transporters ABCA1 and ABCG1 were prevented by pretreatment with βCR neutralizing antibody or βCR siRNA. Additionally, blockage of βCR abrogated the EPO-conferred anti-inflammatory action on oxLDL-induced production of macrophage inflammatory protein-2. Collectively, our findings suggest that βCR may play an important role in the beneficial effects of EPO against oxLDL-elicited dysfunction of macrophage foam cells.

  7. Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss

    National Research Council Canada - National Science Library

    Raffaella Cancello; Corneliu Henegar; Nathalie Viguerie; Soraya Taleb; Christine Poitou; Christine Rouault; Muriel Coupaye; Veronique Pelloux; Danielle Hugol; Jean-Luc Bouillot; Anne Bouloumié; Giorgio Barbatelli; Saverio Cinti; Per-Arne Svensson; Gregory S. Barsh; Jean-Daniel Zucker; Arnaud Basdevant; Dominique Langin; Karine Clément

    2005-01-01

    Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss Raffaella Cancello 1 , Corneliu...

  8. Estrogen-induced nongenomic calcium signaling inhibits lipopolysaccharide-stimulated tumor necrosis factor α production in macrophages.

    Directory of Open Access Journals (Sweden)

    Limin Liu

    Full Text Available Estrogen is traditionally thought to exert genomic actions through members of the nuclear receptor family. Here, we investigated the rapid nongenomic effects of 17β-estradiol (E2 on tumor necrosis factor α (TNF-α production following lipopolysaccharide (LPS stimulation in mouse bone marrow-derived macrophages (BMMs. We found that LPS induced TNF-α production in BMMs via phosphorylation of p38 mitogen-activated protein kinase (MAPK. E2 itself did not affect the MAPK pathway, although it attenuated LPS-induced TNF-α production through suppression of p38 MAPK activation. Recently, G protein-coupled receptor 30 (GPR30 was suggested to be a membrane estrogen receptor (mER that can mediate nongenomic estradiol signaling. We found that BMMs expressed both intracellular estrogen receptors (iER and mER GPR30. The specific GPR30 antagonist G-15 significantly blocked effects of estradiol on LPS-induced TNF-α production, whereas an iER antagonist did not. Moreover, E2 induced a rapid rise in intracellular free Ca(2+ that was due to the influx of extracellular Ca(2+ and was not inhibited by an iER antagonist or silencing of iER. Ca(2+ influx was also induced by an impermeable E2 conjugated to BSA (E2-BSA, which has been used to investigate the nongenomic effects of estrogen. Consequently, Ca(2+, a pivotal factor in E2-stimulated nongenomic action, was identified as the key mediator. The inhibitory effects of E2 on LPS-induced TNF-α production and p38 MAPK phosphorylation were dependent on E2-triggered Ca(2+ influx because BAPTA, an intracellular Ca(2+ chelator, prevented these effects. Taken together, these data indicate that E2 can down-regulate LPS-induced TNF-α production via blockade of p38 MAPK phosphorylation through the mER-mediated nongenomic Ca(2+ signaling pathway in BMMs.

  9. Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism.

    Science.gov (United States)

    Zhou, Xiaoye; He, Wei; Huang, Zhiping; Gotto, Antonio M; Hajjar, David P; Han, Jihong

    2008-01-25

    Low density lipoprotein receptor (LDLR) mutations cause familial hypercholesterolemia and early atherosclerosis. ABCA1 facilitates free cholesterol efflux from peripheral tissues. We investigated the effects of LDLR deletion (LDLR(-/-)) on ABCA1 expression. LDLR(-/-) macrophages had reduced basal levels of ABCA1, ABCG1, and cholesterol efflux. A high fat diet increased cholesterol in LDLR(-/-) macrophages but not wild type cells. A liver X receptor (LXR) agonist induced expression of ABCA1, ABCG1, and cholesterol efflux in both LDLR(-/-) and wild type macrophages, whereas expression of LXRalpha or LXRbeta was similar. Interestingly, oxidized LDL induced more ABCA1 in wild type macrophages than LDLR(-/-) cells. LDL induced ABCA1 expression in wild type cells but inhibited it in LDLR(-/-) macrophages in a concentration-dependent manner. However, lipoproteins regulated ABCG1 expression similarly in LDLR(-/-) and wild type macrophages. Cholesterol or oxysterols induced ABCA1 expression in wild type macrophages but had little or inhibitory effects on ABCA1 expression in LDLR(-/-) macrophages. Active sterol regulatory element-binding protein 1a (SREBP1a) inhibited ABCA1 promoter activity in an LXRE-dependent manner and decreased both macrophage ABCA1 expression and cholesterol efflux. Expression of ABCA1 in animal tissues was inversely correlated to active SREBP1. Oxysterols inactivated SREBP1 in wild type macrophages but not in LDLR(-/-) cells. Oxysterol synergized with nonsteroid LXR ligand induced ABCA1 expression in wild type macrophages but blocked induction in LDLR(-/-) cells. Taken together, our studies suggest that LDLR is critical in the regulation of cholesterol efflux and ABCA1 expression in macrophage. Lack of the LDLR impairs sterol-induced macrophage ABCA1 expression by a sterol regulatory element-binding protein 1-dependent mechanism that can result in reduced cholesterol efflux and lipid accumulation in macrophages under hypercholesterolemic conditions.

  10. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  11. Macrophage Polarization Modulates Development of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-10-01

    Full Text Available Background/Aims: Macrophages have recently been shown to play a critical role in the pathogenesis of systemic lupus erythematosus (SLE. However, the underlying mechanisms remain unclear. Methods: Here, we used an activated lymphocyte-derived DNA (ALD-DNA method to induce SLE in mice. We used a macrophage-specific eliminator clodronate to selectively deplete macrophages in mice. We isolated macrophages from bone marrow of the mice and used cytokines to differentiate M1 and M2 macrophages, respectively. Adoptive transplantation of M1 or M2 macrophages was performed in clodronate-treated mice. The effects on SLE were evaluated by serum anti-dsDNA autoantibody, by renal pathological changes, and by urine protein levels. Results: ALD-DNA induced SLE-like features in mice, manifested by induction of serum anti-dsDNA autoantibody, by renal pathological changes, and by increases in urine protein levels. Clodronate significantly decreased macrophages in mice, which significantly increased SLE severity. Adoptive transplantation of M2, but not M1 macrophages significantly reduced SLE severity in clodronate- and ALD-DNA-treated mice. Conclusion: M1 and M2 macrophages play different roles in development of SLE. M1 macrophages increase the severity of SLE, while M2 macrophages reduce it. Modulation of macrophage polarity may be an attractive therapy for SLE.

  12. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  13. Aflatoxin B1 Induces Reactive Oxygen Species-Mediated Autophagy and Extracellular Trap Formation in Macrophages

    Science.gov (United States)

    An, Yanan; Shi, Xiaochen; Tang, Xudong; Wang, Yang; Shen, Fengge; Zhang, Qiaoli; Wang, Chao; Jiang, Mingguo; Liu, Mingyuan; Yu, Lu

    2017-01-01

    Aflatoxins are a group of highly toxic mycotoxins with high carcinogenicity that are commonly found in foods. Aflatoxin B1 (AFB1) is the most toxic member of the aflatoxin family. A recent study reported that AFB1 can induce autophagy, but whether AFB1 can induce extracellular traps (ETs) and the relationships among innate immune responses, reactive oxygen species (ROS), and autophagy and the ETs induced by AFB1 remain unknown. Here, we demonstrated that AFB1 induced a complete autophagic process in macrophages (MΦ) (THP-1 cells and RAW264.7 cells). In addition, AFB1 induced the generation of MΦ ETs (METs) in a dose-dependent manner. In particular, the formation of METs significantly reduced the AFB1 content. Further analysis using specific inhibitors showed that the inhibition of either autophagy or ROS prevented MET formation caused by AFB1, indicating that autophagy and ROS were required for AFB1-induced MET formation. The inhibition of ROS prevented autophagy, indicating that ROS generation occurred upstream of AFB1-induced autophagy. Taken together, these data suggest that AFB1 induces ROS-mediated autophagy and ETs formation and an M1 phenotype in MΦ. PMID:28280716

  14. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  15. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    J Kenneth Baillie

    2017-03-01

    Full Text Available The FANTOM5 consortium utilised cap analysis of gene expression (CAGE to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1 to bacterial lipopolysaccharide (LPS. We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility

  16. Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Science.gov (United States)

    Arner, Erik; De Hoon, Michiel; Carninci, Piero; Hayashizaki, Yoshihide; Pavli, Paul; Summers, Kim M.; Hume, David A.

    2017-01-01

    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis

  17. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    Science.gov (United States)

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.

  18. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    Science.gov (United States)

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  19. Inhibition of VDAC1 prevents Ca²⁺-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages.

    Science.gov (United States)

    Chen, Haibo; Gao, Weiwei; Yang, Yang; Guo, Shuyuan; Wang, Huan; Wang, Wei; Zhang, Shuisheng; Zhou, Qi; Xu, Haobo; Yao, Jianting; Tian, Zhen; Li, Bicheng; Cao, Wenwu; Zhang, Zhiguo; Tian, Ye

    2014-12-01

    Ultrasound combined with endogenous protoporphyrin IX derived from 5-aminolevulinic acid (ALA-SDT) is known to induce apoptosis in multiple cancer cells and macrophages. Persistent retention of macrophages in the plaque has been implicated in the pathophysiology and progression of atherosclerosis. Here we investigated the effects of inhibition of voltage-dependent anion channel 1 (VDAC1) on ALA-SDT-induced THP-1 macrophages apoptosis. Cells were pre-treated with VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) disodium salt for 1 h or downregulated VDAC1 expression by small interfering RNA and exposed to ultrasound. Cell viability was assessed by MTT assay, and cell apoptosis along with necrosis was evaluated by Hoechst 33342/propidium iodide staining and flow cytometry. Levels of cytochrome c release was assessed by confocal microscope and Western blot. The levels of full length caspases, caspase activation, and VDAC isoforms were analyzed by Western blot. Intracellular reactive oxygen species generation, mitochondrial membrane permeability, and intracellular Ca(2+) [Ca(2+)]i levels were measured with fluorescent probes. We confirmed that the pharmacological inhibition of VDAC1 by DIDS notably prevented ALA-SDT-induced cell apoptosis in THP-1 macrophages. Additionally, DIDS significantly inhibited intracellular ROS generation and apoptotic biochemical changes such as inner mitochondrial membrane permeabilization, loss of mitochondrial membrane potential, cytochrome c release and activation of caspase-3 and caspase-9. Moreover, ALA-SDT elevated the [Ca(2+)]i levels and it was also notably reduced by DIDS. Furthermore, both of intracellular ROS generation and cell apoptosis were predominately inhibited by Ca(2+) chelating reagent BAPTA-AM. Intriguingly, ALA-treatment markedly augmented VDAC1 protein levels exclusively, and the downregulation of VDAC1 expression by specific siRNA also significantly abolished cell apoptosis. Altogether, these

  20. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Wei, X.Y.; Liu, B.; Wang, L.J.; Jiang, L.H. [Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou (China)

    2015-02-24

    This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

  1. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia/macrophage

  2. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    Science.gov (United States)

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  3. Free cholesterol-induced cytotoxicity a possible contributing factor to macrophage foam cell necrosis in advanced atherosclerotic lesions.

    Science.gov (United States)

    Tabas, I

    1997-10-01

    A major characteristic of advanced atherosclerotic lesions is the necrotic, or lipid, core, which likely plays an important role in the clinical progression of these lesions. Recent data suggest that the necrotic core forms primarily as a consequence of macrophage foam cell necrosis. Lesional macrophages initially accumulate mostly cholesteryl esters, but macrophages in advanced lesions contain large amounts of unesterified, or free, cholesterol (FC). Although there are many theories as to why macrophage foam cells die in advanced lesions, the fact that a high FC:phospholipid (PL) ratio in cellular membranes can be toxic to cells suggests that FC-induced cytotoxicity may contribute to foam cell necrosis. The mechanism of FC cytotoxicity can be explained by disturbances in membrane protein function as a result of "stiffening" of the bilayer and by formation of intracellular FC crystals that can cause physical damage to cellular organelles. Macrophages appear to respond to FC loading by a fascinating adaptive response, namely the induction of PL biosynthesis, which initially keeps the cellular FC:PL ratio below toxic levels. Studies with cultured macrophages have demonstrated that a failure of this adaptive response leads to FC-induced foam cell cytotoxicity and necrosis, and thus a similar series of events in advanced atherosclerotic lesions could provide an explanation for the development of the necrotic core. (Trends Cardiovasc Med 1997;7: 256-263). © 1997, Elsevier Science Inc.

  4. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  5. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  6. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  7. Lanthanum Chloride Inhibiting Expression of Inducible Nitric Oxide Synthase in RAW264.7 Macrophages Induced by Lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Guo Fei; Lou Yuanlei; Wang Yang; Xie An; Li Guohui

    2007-01-01

    Nitric oxide (NO) and its reaction products were key players in the pathophysiology of sepsis and shock. The present study was designed to explore the effects of lanthanum chloride (LaCl3) on inducible nitric oxide synthase (iNOS) expression, at both gene and protein levels, in RAW264.7 macrophages induced by Lipopolysaccharide (LPS). Reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence, and western blot were employed to measure iNOS gene expression, localization, and protein expression respectively. NO production in culture supernatants was detected by the nitrate reductase method. The results showed that LaCl3 significantly attenuated the iNOS gene and protein expression, as well as NO production in RAW264.7cells induced by LPS.

  8. Herp depletion inhibits zearalenone-induced cell death in RAW 264.7 macrophages.

    Science.gov (United States)

    Chen, Fenglei; Lin, Pengfei; Wang, Nan; Yang, Diqi; Wen, Xin; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2016-04-01

    Herp is an endoplasmic reticulum (ER) membrane protein and strongly induced by the ER stress that not only participates in the unfolded protein response (UPR) under the ER stress, but also in cell autophagy under glucose starvation (GS). However, we do not know whether Herp plays any roles in other responses, such as zearalenone (ZEA). In this study, we constructed recombinant lentiviral vectors for Herp shRNA expression and generated stable Herp knockdown RAW 264.7 macrophages. Flow cytometry analysis showed Herp depletion could inhibit cell death induced by ZEA. Western blot analysis revealed that Herp depletion could up-regulate autophagy-related protein LC3-I conversion into LC3-II and the expression of ER stress-related protein CHOP. These results suggest that Herp depletion inhibits cell death by up-regulating autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The role of arachidonic acid metabolism in virus-induced alveolar macrophage dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.

    1988-01-01

    Alveolar macrophages (AM) recovered from virus-infected lungs have decreased phagocytic, respiratory burst and bactericidal activities. The studies described below investigated the role of eicosanoids in virus induced AM bactericidal dysfunction. The spectrum of eicosanoid metabolites which bovine AM are capable of producing was determined. Cultured AM were exposed to {sup 3}H-arachidonate for 1 hour, stimulated for 4 hours with A23187, phorbol myristate acetate or zymosan and the supernatants extracted and analyzed by HPLC. All stimuli tested caused the release of these cyclooxygenase metabolites: thromboxane B{sub 2}, PGF{sub 2}, PGE{sub 2}, PGD{sub 2} and HHT. The effect of this enhanced release of arachidonate metabolites on the ability of AM to kill bacteria was evaluated. Preincubation with cyclooxygenase inhibitors or dual cyclooxygenase and lipoxygenase inhibitors resulted in partial reversal of the virus-induced bactericidal deficit in PI3 infected AM.

  10. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma.

    Science.gov (United States)

    De Stefano, Daniela; Maiuri, Maria Chiara; Simeon, Vittorio; Grassia, Gianluca; Soscia, Antonio; Cinelli, Maria Pia; Carnuccio, Rosa

    2007-07-02

    Oxidative stress plays an important role in inflammatory process of celiac disease. We have studied the effect of the lycopene, quercetin and tyrosol natural antioxidants on the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression in RAW 264.7 macrophages stimulated by gliadin in association with IFN-gamma. The IFN-gamma plus gliadin combination treatment was capable of enhancing iNOS and COX-2 gene expression and nuclear factor-kappaB (NF-kappaB), interferon regulatory factor-1 (IRF-1) and signal transducer and activator of transcription-1alpha (STAT-1alpha) activation induced by reactive oxygen species generation at 24 h. Lycopene, quercetin and tyrosol inhibited all these effects. The results here reported suggest that these compounds may represent non toxic agents for the control of pro-inflammatory genes involved in celiac disease.

  11. Monocyte/macrophage-derived soluble CD163: a novel biomarker in multiple myeloma.

    Science.gov (United States)

    Andersen, Morten N; Abildgaard, Niels; Maniecki, Maciej B; Møller, Holger J; Andersen, Niels F

    2014-07-01

    Macrophages play an important role in cancer by suppression of adaptive immunity and promotion of angiogenesis and metastasis. Tumor-associated macrophages strongly express the hemoglobin scavenger receptor CD163, which can also be found as a soluble protein in serum and other body fluids (soluble CD163, sCD163). In this study, we examined serum sCD163 as a biomarker in patients with newly diagnosed multiple myeloma. Peripheral blood (n = 104) and bone marrow (n = 17) levels of sCD163 were measured using an enzyme-linked immunosorbent assay. At diagnosis, high sCD163 was associated with higher stage according to the International Staging System (ISS) and with other known prognostic factors in multiple myeloma (creatinine, C-reactive protein, and beta-2 microglobulin). Soluble CD163 decreased upon high-dose treatment, and in a multivariate survival analysis including the covariates treatment modality and age at diagnosis, higher levels of sCD163 were associated with poor outcome (HR = 1.82; P = 0.010). The prognostic significance of sCD163 was lost when including ISS stage in the model (HR = 1.51; P = 0.085). Soluble CD163 values were significantly higher in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have an important role in the bone marrow microenvironment of myeloma patients, supporting myeloma cell proliferation and survival. We propose the serum sCD163 value 1.8 mg/L as a cutoff concentration for survival analysis in patients with multiple myeloma, which should be validated in future studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation.

    Directory of Open Access Journals (Sweden)

    Yung-Chun Chuang

    Full Text Available Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF induced reactive oxygen species (ROS production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC. In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation.

  13. Rhinovirus infection induces interleukin-13 production from CD11b-positive, M2-polarized exudative macrophages.

    Science.gov (United States)

    Chung, Yutein; Hong, Jun Young; Lei, Jing; Chen, Qiang; Bentley, J Kelley; Hershenson, Marc B

    2015-02-01

    Rhinovirus (RV) causes asthma exacerbations. Previously, we showed that adherent bronchoalveolar cells from allergen-treated mice produce IL-13 when stimulated with RV ex vivo, implicating cells of the monocyte/macrophage lineage in viral-induced airway inflammation. In this study, we hypothesized that RV infection of allergen-treated mice results in IL-13 production by CD11b+ exudative macrophages in vivo. We sensitized and challenged BALB/c mice with ovalbumin (OVA), after which mice were inoculated with RV or sham HeLa cell lysate. After 1 day, lungs were harvested, and cell suspensions were analyzed by flow cytometry. We repeated this process in IL-13 reporter mice, CD11b-DTR mice in which diphtheria toxin selectively depletes CD11b+ cells, and chemokine receptor 2 (CCR2) null mice. We found that lungs of mice infected with RV alone showed increases in CD45+, CD68+, F4/80+, Ly6C+, and CD11b(high) cells, indicating an influx of inflammatory monocytes and exudative macrophages. The combination of OVA and RV had synergistic effects on the exudative macrophage number. However, CD11b+ cells from OVA-treated, RV-infected mice showed M2 polarization, including expression of CD206 and CD301 and production of IL-13. Similar results were obtained in IL-13 reporter mice. Diphtheria toxin depleted CD11b+, IL-13-producing cells in OVA-treated, RV-infected, CD11b-DTR mice, decreasing airway inflammation and responsiveness. CD11b+, Ly6C+ cells were reduced in CCR2 knockout mice. We conclude that, in contrast to naive mice, RV infection of mice with allergic airways disease induces an influx of IL-13-producing CD11b+ exudative macrophages bearing M2 macrophage markers. This finding further implicates alternatively activated macrophages in RV-induced asthma exacerbations.

  14. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp

    Institute of Scientific and Technical Information of China (English)

    Jin Sun; Yong-Hui Shi; Guo-Wei Le; Xi-Yi Ma

    2005-01-01

    AIM: To analyze the distinct immune responses induced by Lactobacillus peptidoglycan (PG).METHODS: BALB/c mice were intraperitoneally injected with PG once a day for three consecutive days. Peritoneal macrophage and splenocyte mRNA was extracted and the gene expression profile was studied using high-density oligonucleotide microarrays. Inhibitory effects of Lactobacillus PG on colon tumor tissue were studied in vitro and in vivo.RESULTS: The gene expression profiles revealed that the TLR-NF-κB and Jak-STAT signaling pathways were highly activated. An inflammatory phenotype was induced when peritoneal macrophages were initially exposed to Lactobacillus PG and switched to a more complex phenotype when BALB/c mice were treated with three doses of Lactobacillus PG. A protective physiological inflammatory response was induced after three consecutive days of PG treatment. It was tending toward Th1 dominant immune response. Lactobacillus PG also appeared to induce a significantin vivo anti-colon tumor effect.CONCLUSION: Lactobacillus PG is responsible for certain immune responses induced by Lactobacilli. Anti-tumor effects of Lactobacilli are likely to attribute to the activation of macrophages by PG expressed on the bacterial cell surface.

  15. Immunomodulatory Role of Ocimum gratissimum and Ascorbic Acid against Nicotine-Induced Murine Peritoneal Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Santanu Kar Mahapatra

    2011-01-01

    Full Text Available The aim of this present study was to evaluate the immune functions and immune responses in nicotine-induced (10 mM macrophages and concurrently establish the immunomodulatory role of aqueous extract of Ocimum gratissimum (Ae-Og and ascorbic acid. In this study, nitrite generations and some phenotype functions by macrophages were studied. Beside that, release of Th1 cytokines (TNF-α, IL-12 and Th2 cytokines (IL-10, TGF-β was measured by ELISA, and the expression of these cytokines at mRNA level was analyzed by real-time PCR. Ae-Og, at a dose of 10 μg/mL, significantly reduced the nicotine-induced NO generation and iNOSII expression. Similar kinds of response were observed with supplementation of ascorbic acid (0.01 mM. The administration of Ae-Og and ascorbic acid increased the decreased adherence, chemotaxis, phagocytosis, and intracellular killing of bacteria in nicotine-treated macrophages. Ae-Og and ascorbic acid were found to protect the murine peritoneal macrophages through downregulation of Th1 cytokines in nicotine-treated macrophages with concurrent activation of Th2 responses. These findings strongly enhanced our understanding of the molecular mechanism leading to nicotine-induced suppression of immune functions and provide additional rationale for application of anti-inflammatory therapeutic approaches by O. gratissimum and ascorbic acid for different inflammatory disease prevention and treatment during nicotine toxicity.

  16. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    Science.gov (United States)

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis.

  17. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF-α pathway.

    Directory of Open Access Journals (Sweden)

    Joo Young Kim

    Full Text Available The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF-α. We determined whether the serine protease in German cockroach extract (GCE enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR, inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model.

  18. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  19. Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages.

    Science.gov (United States)

    Ceppo, Franck; Berthou, Flavien; Jager, Jennifer; Dumas, Karine; Cormont, Mireille; Tanti, Jean-François

    2014-03-01

    Adipose tissue inflammation is associated with the development of insulin resistance. In obese adipose tissue, lipopolysaccharides (LPSs) and saturated fatty acids trigger inflammatory factors that mediate a paracrine loop between adipocytes and macrophages. However, the inflammatory signaling proteins underlying this cross talk remain to be identified. The mitogen-activated protein kinase kinase kinase tumor progression locus 2 (Tpl2) is activated by inflammatory stimuli, including LPS, and its expression is up-regulated in obese adipose tissue, but its role in the interaction between adipocytes and macrophages remains ill-defined. To assess the implication of Tpl2 in the cross talk between these 2 cell types, we used coculture system and conditioned medium (CM) from macrophages. Pharmacological inhibition of Tpl2 in the coculture markedly reduced lipolysis and cytokine production and prevented the decrease in adipocyte insulin signaling. Tpl2 knockdown in cocultured adipocytes reduced lipolysis but had a weak effect on cytokine production and did not prevent the alteration of insulin signaling. By contrast, Tpl2 silencing in cocultured macrophages resulted in a marked inhibition of cytokine production and prevented the alteration of adipocyte insulin signaling. Further, when Tpl2 was inhibited in LPS-activated macrophages, the produced CM did not alter adipocyte insulin signaling and did not induce an inflammatory response in adipocytes. By contrast, Tpl2 silencing in adipocytes did not prevent the deleterious effects of a CM from LPS-activated macrophages. Together, these data establish that Tpl2, mainly in macrophages, is involved in the cross talk between adipocytes and macrophages that promotes inflammatory changes and alteration of insulin signaling in adipocytes.

  20. Different roles for non-receptor tyrosine kinases in arachidonate release induced by zymosan and Staphylococcus aureus in macrophages

    Directory of Open Access Journals (Sweden)

    Sundler Roger

    2006-05-01

    Full Text Available Abstract Background Yeast and bacteria elicit arachidonate release in macrophages, leading to the formation of leukotrienes and prostaglandins, important mediators of inflammation. Receptors recognising various microbes have been identified, but the signalling pathways are not entirely understood. Cytosolic phospholipase A2 is a major down-stream target and this enzyme is regulated by both phosphorylation and an increase in intracellular Ca2+. Potential signal components are MAP kinases, phosphatidylinositol 3-kinase and phospholipase Cγ2. The latter can undergo tyrosine phosphorylation, and Src family kinases might carry out this phosphorylation. Btk, a Tec family kinase, could also be important. Our aim was to further elucidate the role of Src family kinases and Btk. Methods Arachidonate release from murine peritoneal macrophages was measured by prior radiolabeling. Furthermore, immunoprecipitation and Western blotting were used to monitor changes in activity/phosphorylation of intermediate signal components. To determine the role of Src family kinases two different inhibitors with broad specificity (PP2 and the Src kinase inhibitor 1, SKI-1 were used as well as the Btk inhibitor LFM-A13. Results Arachidonate release initiated by either Staphylococcus aureus or yeast-derived zymosan beads was shown to depend on members of the Src kinase family as well as Btk. Src kinases were found to act upstream of Btk, phosphatidylinositol 3-kinase, phospholipase Cγ2 and the MAP kinases ERK and p38, thereby affecting all branches of the signalling investigated. In contrast, Btk was not involved in the activation of the MAP-kinases. Since the cytosolic phospholipase A2 in macrophages is regulated by both phosphorylation (via ERK and p38 and an increase in intracellular Ca2+, we propose that members of the Src kinase family are involved in both types of regulation, while the role of Btk may be restricted to the latter type. Conclusion Arachidonate release

  1. Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    Directory of Open Access Journals (Sweden)

    Goetz Frederick

    2011-01-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMPs are structural components of pathogens such as lipopolysaccharide (LPS and peptidoglycan (PGN from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4 over time. Results Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36 and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12 generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis highlight the different sensitivity of the macrophage to slight differences (serotype in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease.

  2. Hydroxyl radicals induced by quartz particles in lung alveolar macrophages: the role of surface iron

    Institute of Scientific and Technical Information of China (English)

    LI Yi; ZHU Tong; GUO Xinbiao; SHANG Yu

    2006-01-01

    Previous studies have shown that hydroxyl radical generation is a key step in the mechanism of pathogenic process caused by airborne particles to the lung. However, there is no direct evidence for dose-response relationship between airborne particles and hydroxyl radical generation. In this study, hydroxyl radicals generated in lung alveolar macrophages exposed to quartz particles were measured using a highly sensitive capillary electrophoresis-fluorescence detection method. The results demonstrated that quartz particles induced the generation of hydroxyl radical in a dose-dependent manner, and the amount of the hydroxyl radicals was 10-10 mol/106 cells.The viability of alveolar macrophages exposed to quartz particles decreased with the increase of quartz concentration, showing a clear doseresponse relationship. Hydroxyl radical scavenger mannitol could increase the viability of quartz-treated cells, suggesting that hydroxyl radical contributed directly to cell death. In this study this contribution accounted for about 5%-20% of cell death. The hydroxyl radical generating potential was found to be related to surface iron content of the quartz particles.

  3. Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts Spinal Progression in Ankylosing Spondylitis.

    Science.gov (United States)

    Ranganathan, Vidya; Ciccia, Francesco; Zeng, Fanxing; Sari, Ismail; Guggino, Guiliana; Muralitharan, Janogini; Gracey, Eric; Haroon, Nigil

    2017-09-01

    To investigate the role of macrophage migration inhibitory factor (MIF) in the pathogenesis of ankylosing spondylitis (AS). Patients who met the modified New York criteria for AS were recruited for the study. Healthy volunteers, rheumatoid arthritis patients, and osteoarthritis patients were included as controls. Based on the annual rate of increase in modified Stoke AS Spine Score (mSASSS), AS patients were classified as progressors or nonprogressors. MIF levels in serum and synovial fluid were quantitated by enzyme-linked immunosorbent assay. Predictors of AS progression were evaluated using logistic regression analysis. Immunohistochemical analysis of ileal tissue was performed to identify MIF-producing cells. Flow cytometry was used to identify MIF-producing subsets, expression patterns of the MIF receptor (CD74), and MIF-induced tumor necrosis factor (TNF) production in the peripheral blood. MIF-induced mineralization of osteoblast cells (SaOS-2) was analyzed by alizarin red S staining, and Western blotting was used to quantify active β-catenin levels. Baseline serum MIF levels were significantly elevated in AS patients compared to healthy controls and were found to independently predict AS progression. MIF levels were higher in the synovial fluid of AS patients, and MIF-producing macrophages and Paneth cells were enriched in their gut. MIF induced TNF production in monocytes, activated β-catenin in osteoblasts, and promoted the mineralization of osteoblasts. Our findings indicate an unexplored pathogenic role of MIF in AS and a link between inflammation and new bone formation. © 2017, American College of Rheumatology.

  4. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Yun Jeong Kim

    Full Text Available Botulinum neurotoxin type A (BoNT/A is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO and tumor necrosis factor alpha (TNFα were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2 and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, and p38 mitogen-activated protein kinase (MAPK. BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.

  5. Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage

    Institute of Scientific and Technical Information of China (English)

    Ke Li; Wenqi Yao; Xiudan Zheng; Kan Liao

    2009-01-01

    Berberine is identified to lower the serum cholesterol level in human and hamster through the induction of low density lipoproteins (LDL) receptor in hepatic cells. To evaluate its potential in preventing atherosclerosis, the effect of berberine on atherosclerosis development in apolipoprotein E-deficient (apoE-/-) mice was investigated, in apoE-/-mice, berberine induced in vivo foam cell formation and promoted atherosclerosis development. The foam cell for-mation induced by berberine was also observed in mouse RAW264.7 cells, as well as in mouse and human primary macrophages. By inducing scavenger receptor A (SR-A) expression in macrophages, berberine increased the uptake of modified LDL (DiO-Ac-LDL). Berberine-induced SR-A expression was also observed in macrophage foam cells in vivo and in the cells at atherosclerotic lesion. Analysis in RAW264.7 cells indicated that berberine induced SR-A ex-pression by suppressing PTEN expression, which led to sustained Akt activation. Our results suggest that to evaluate the potential of a cholesterol-reducing compound in alleviating atherosclerosis, its effect on the cells involved in ath-erosclerosis development, such as macrophages, should also be considered. Promotion of foam cell formation could counter-balance the beneficial effect of lowering serum cholesterol.

  6. Glutathione prevents preterm parturition and fetal death by targeting macrophage-induced reactive oxygen species production in the myometrium.

    Science.gov (United States)

    Hadi, Tarik; Bardou, Marc; Mace, Guillaume; Sicard, Pierre; Wendremaire, Maeva; Barrichon, Marina; Richaud, Sarah; Demidov, Oleg; Sagot, Paul; Garrido, Carmen; Lirussi, Frédéric

    2015-06-01

    Preterm birth is an inflammatory process resulting from the massive infiltration of innate immune cells and the production of proinflammatory cytokines in the myometrium. However, proinflammatory cytokines, which induce labor in vivo, fail to induce labor-associated features in human myometrial cells (MCs). We thus aimed to investigate if reactive oxygen species (ROS) production could be the missing step between immune cell activation and MC response. Indeed, we found that ROS production is increased in the human preterm laboring myometrium (27% ROS producing cells, respectively, versus 2% in nonlaboring controls), with 90% ROS production in macrophages. Using LPS-stimulated myometrial samples and cell coculture experiments, we demonstrated that ROS production is required for labor onset. Furthermore, we showed that ROS are required first in the NADPH oxidase (NADPHox)-2/NF-κB-dependent macrophage response to inflammatory stimuli but, more importantly, to trigger macrophage-induced MCs transactivation. Remarkably, in a murine model of LPS-induced preterm labor (inducing delivery within 17 hours, with no pup survival), cotreatment with glutathione delayed labor onset up to 94 hours and prevented in utero fetal distress, allowing 46% pups to survive. These results suggest that targeting ROS production with the macrophage-permeable antioxidant glutathione could constitute a promising strategy to prevent preterm birth. © FASEB.

  7. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang, E-mail: zgliu@helix.nih.gov [Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80{sup +} macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206{sup +} TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  8. Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiency on rabies virus-induced macrophage cell death and onset of disease

    Science.gov (United States)

    Kip, E; Nazé, F; Suin, V; Vanden Berghe, T; Francart, A; Lamoral, S; Vandenabeele, P; Beyaert, R; Van Gucht, S; Kalai, M

    2017-01-01

    Rabies virus is a highly neurovirulent RNA virus, which causes about 59000 deaths in humans each year. Previously, we described macrophage cytotoxicity upon infection with rabies virus. Here we examined the type of cell death and the role of specific caspases in cell death and disease development upon infection with two laboratory strains of rabies virus: Challenge Virus Standard strain-11 (CVS-11) is highly neurotropic and lethal for mice, while the attenuated Evelyn–Rotnycki–Abelseth (ERA) strain has a broader cell tropism, is non-lethal and has been used as an oral vaccine for animals. Infection of Mf4/4 macrophages with both strains led to caspase-1 activation and IL-1β and IL-18 production, as well as activation of caspases-3, -7, -8, and -9. Moreover, absence of caspase-3, but not of caspase-1 and -11 or -7, partially inhibited virus-induced cell death of bone marrow-derived macrophages. Intranasal inoculation with CVS-11 of mice deficient for either caspase-1 and -11 or -7 or both IL-1β and IL-18 led to general brain infection and lethal disease similar to wild-type mice. Deficiency of caspase-3, on the other hand, significantly delayed the onset of disease, but did not prevent final lethal outcome. Interestingly, deficiency of caspase-1/11, the key executioner of pyroptosis, aggravated disease severity caused by ERA virus, whereas wild-type mice or mice deficient for either caspase-3, -7, or both IL-1β and IL-18 presented the typical mild symptoms associated with ERA virus. In conclusion, rabies virus infection of macrophages induces caspase-1- and caspase-3-dependent cell death. In vivo caspase-1/11 and caspase-3 differently affect disease development in response to infection with the attenuated ERA strain or the virulent CVS-11 strain, respectively. Inflammatory caspases seem to control attenuated rabies virus infection, while caspase-3 aggravates virulent rabies virus infection. PMID:28280602

  9. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages.

    Science.gov (United States)

    Ninomiya, Yuki; Tanuma, Sei-Ichi; Tsukimoto, Mitsutoshi

    2017-03-11

    Sepsis is a systemic inflammatory response syndrome triggered by lipopolysaccharide (LPS), an outer membrane component of gram-negative bacteria, and cytokine production via LPS-induced macrophage activation is deeply involved in its pathogenesis. Effective therapy of sepsis has not yet been established. However, it was reported that transient receptor potential vanilloid 1 (TRPV1) channel antagonist capsazepine (CPZ; a capsaicin analogue) attenuates sepsis in a murine model [Ang et al., PLoS ONE 6(9) (2011) e24535; J. Immunol. 187 (2011) 4778-4787]. Here, we profiled the effects of four TRPV1 channel antagonists, AMG9810, SB366791, BCTC and CPZ, on the release of IL-6, IL-1β and IL-18, and on expression of cyclooxygenase 2 (COX-2) in LPS-activated macrophages. Treatment of murine macrophage J774.1 cells or BALB/c mouse-derived intraperitoneal immune cells with LPS induced pro-inflammatory cytokines production and COX-2 expression. Pretreatment with AMG9810 or CPZ significantly suppressed the release of IL-6, IL-1β and IL-18, and COX-2 expression, whereas SB366791 and BCTC were less effective. These results support a role of TRPV1 channel in macrophage activation, but also indicate that only a subset of TRPV1 channel antagonists may be effective in suppressing inflammatory responses. These results suggest that at least some TRPV1 channel antagonists, such as AMG9810 and CPZ, may be candidate anti-inflammatory agents for treatment of sepsis.

  10. Characterization of Macrophage Phenotypes in Three Murine Models of House-Dust-Mite-Induced Asthma

    NARCIS (Netherlands)

    Draijer, Christina; Robbe, Patricia; Boorsma, Carian E.; Hylkema, Machteld N.; Melgert, Barbro N.

    2013-01-01

    In asthma, an important role for innate immunity is increasingly being recognized. Key innate immune cells in the lungs are macrophages. Depending on the signals they receive, macrophages can at least have an M1, M2, or M2-like phenotype. It is unknown how these macrophage phenotypes behave with reg

  11. Smoking status and anti-inflammatory macrophages in induced sputum and bronchoalveolar lavage in COPD

    NARCIS (Netherlands)

    Kunz, L.I.; Lapperre, T.S.; Snoeck-Stroband, J.B.; Budulac, S.E.; Timens, W.; van Wijngaarden, S.; Schrumpf, J.A.; Rabe, K.F.; Postma, D.S.; Sterk, P.J.; Hiemstra, P.S.

    2011-01-01

    ABSTRACT: BACKGROUND: Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was

  12. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    NARCIS (Netherlands)

    Kunz, Lisette I Z; Lapperre, Thérèse S; Snoeck-Stroband, Jiska B; Budulac, Simona E; Timens, Wim; van Wijngaarden, Simone; Schrumpf, Jasmijn A; Rabe, Klaus F; Postma, Dirkje S; Sterk, Peter J; Hiemstra, Pieter S

    2011-01-01

    Background: Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro-and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study m

  13. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treat