WorldWideScience

Sample records for induced genomic instability

  1. Radiation Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  2. Mechanisms of cadmium induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Filipic, Metka, E-mail: metka.filipic@nib.si [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana (Slovenia)

    2012-05-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  3. c-MYC-induced genomic instability.

    Science.gov (United States)

    Kuzyk, Alexandra; Mai, Sabine

    2014-04-01

    MYC dysregulation initiates a dynamic process of genomic instability that is linked to tumor initiation. Early studies using MYC-carrying retroviruses showed that these viruses were potent transforming agents. Cell culture models followed that addressed the role of MYC in transformation. With the advent of MYC transgenic mice, it became obvious that MYC deregulation alone was sufficient to initiate B-cell neoplasia in mice. More than 70% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus. These changes set the stage for the dynamic genomic rearrangements that are associated with cellular transformation.

  4. c-MYC-induced genomic instability

    National Research Council Canada - National Science Library

    Kuzyk, Alexandra; Mai, Sabine

    2014-01-01

    ...% of all tumors have some form of c-MYC gene dysregulation, which affects gene regulation, microRNA expression profiles, large genomic amplifications, and the overall organization of the nucleus...

  5. Radiation-induced genomic instability in Caenorhabditis elegans.

    Science.gov (United States)

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-01

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  6. Bystander effects in radiation-induced genomic instability

    Science.gov (United States)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  7. Radiation induced genome instability: multiscale modelling and data analysis

    Science.gov (United States)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  8. Dioxin induces genomic instability in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Merja Korkalainen

    Full Text Available Ionizing radiation and certain other exposures have been shown to induce genomic instability (GI, i.e., delayed genetic damage observed many cell generations later in the progeny of the exposed cells. The aim of this study was to investigate induction of GI by a nongenotoxic carcinogen, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Mouse embryonic fibroblasts (C3H10T1/2 were exposed to 1, 10 or 100 nM TCDD for 2 days. Micronuclei (MN and expression of selected cancer-related genes were assayed both immediately and at a delayed point in time (8 days. For comparison, similar experiments were done with cadmium, a known genotoxic agent. TCDD treatment induced an elevated frequency of MN at 8 days, but not directly after the exposure. TCDD-induced alterations in gene expression were also mostly delayed, with more changes observed at 8 days than at 2 days. Exposure to cadmium produced an opposite pattern of responses, with pronounced effects immediately after exposure but no increase in MN and few gene expression changes at 8 days. Although all responses to TCDD alone were delayed, menadione-induced DNA damage (measured by the Comet assay, was found to be increased directly after a 2-day TCDD exposure, indicating that the stability of the genome was compromised already at this time point. The results suggested a flat dose-response relationship consistent with dose-response data reported for radiation-induced GI. These findings indicate that TCDD, although not directly genotoxic, induces GI, which is associated with impaired DNA damage response.

  9. Causes of genome instability

    DEFF Research Database (Denmark)

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel

    2015-01-01

    , genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other...... scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.......Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus...

  10. Role of microRNAs and DNA methyltransferases in transmitting induced genomic instability between cell generations

    Directory of Open Access Journals (Sweden)

    Katriina eHuumonen

    2014-09-01

    Full Text Available There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here we measured the expression of microRNAs (miRNAs and DNA methyltransferases (DNMTs in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD, which were previously shown to induce genomic instability in this cell line. Cadmium was used as a reference agent that does not induce genomic instability in our experimental model. Measurements at 8 and 15 days after exposure did not identify any such persistent changes that could be considered as signals transmitting genomic instability to the progeny of exposed cells. However, measurements at 2 days after exposure revealed findings that may reflect initial stages of genomic instability. Changes that were common to TCDD and two doses of radiation (but not to cadmium included 5 candidate signature miRNAs and general up-regulation of miRNA expression. Expression of DNMT3a, DNMT3b and DNMT2 were suppressed by cadmium but not by TCDD or radiation, consistently with the hypothesis that sufficient expression of DNMTs is necessary in the initial phase of induced genomic instability.

  11. The Impact of dUTPase on Ribonucleotide Reductase-Induced Genome Instability in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chen

    2016-08-01

    Full Text Available The appropriate supply of dNTPs is critical for cell growth and genome integrity. Here, we investigated the interrelationship between dUTP pyrophosphatase (dUTPase and ribonucleotide reductase (RNR in the regulation of genome stability. Our results demonstrate that reducing the expression of dUTPase increases genome stress in cancer. Analysis of clinical samples reveals a significant correlation between the combination of low dUTPase and high R2, a subunit of RNR, and a poor prognosis in colorectal and breast cancer patients. Furthermore, overexpression of R2 in non-tumorigenic cells progressively increases genome stress, promoting transformation. These cells display alterations in replication fork progression, elevated genomic uracil, and breaks at AT-rich common fragile sites. Consistently, overexpression of dUTPase abolishes R2-induced genome instability. Thus, the expression level of dUTPase determines the role of high R2 in driving genome instability in cancer cells.

  12. A novel mechanism inducing genome instability in Kaposi's sarcoma-associated herpesvirus infected cells.

    Directory of Open Access Journals (Sweden)

    Brian R Jackson

    2014-05-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is an oncogenic herpesvirus associated with multiple AIDS-related malignancies. Like other herpesviruses, KSHV has a biphasic life cycle and both the lytic and latent phases are required for tumorigenesis. Evidence suggests that KSHV lytic replication can cause genome instability in KSHV-infected cells, although no mechanism has thus far been described. A surprising link has recently been suggested between mRNA export, genome instability and cancer development. Notably, aberrations in the cellular transcription and export complex (hTREX proteins have been identified in high-grade tumours and these defects contribute to genome instability. We have previously shown that the lytically expressed KSHV ORF57 protein interacts with the complete hTREX complex; therefore, we investigated the possible intriguing link between ORF57, hTREX and KSHV-induced genome instability. Herein, we show that lytically active KSHV infected cells induce a DNA damage response and, importantly, we demonstrate directly that this is due to DNA strand breaks. Furthermore, we show that sequestration of the hTREX complex by the KSHV ORF57 protein leads to this double strand break response and significant DNA damage. Moreover, we describe a novel mechanism showing that the genetic instability observed is a consequence of R-loop formation. Importantly, the link between hTREX sequestration and DNA damage may be a common feature in herpesvirus infection, as a similar phenotype was observed with the herpes simplex virus 1 (HSV-1 ICP27 protein. Our data provide a model of R-loop induced DNA damage in KSHV infected cells and describes a novel system for studying genome instability caused by aberrant hTREX.

  13. Radiation-induced Genomic Instability and Radiation Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Varnum, Susan M.; Sowa, Marianne B.; Kim, Grace J.; Morgan, William F.

    2013-01-19

    The obvious relationships between reactive oxygen and nitrogen species, mitochondrial dysfunction, inflammatory type responses and reactive chemokines and cytokines suggests a general stress response induced by ionizing radiation most likely leads to the non-targeted effects described after radiation exposure. We argue that true bystander effects do not occur in the radiation therapy clinic. But there is no question that effects outside the target volume do occur. These “out of field effects” are considered very low dose effects in the context of therapy. So what are the implications of non-targeted effects on radiation sensitivity? The primary goal of therapy is to eradicate the tumor. Given the genetic diversity of the human population, lifestyle and environment factors it is likely some combination of these will influence patient outcome. Non-targeted effects may contribute to a greater or lesser extent. But consider the potential situation involving a partial body exposure due to a radiation accident or radiological terrorism. Non-targeted effects suggest that the tissue at risk for demonstrating possible detrimental effects of radiation exposure might be greater than the volume actually irradiated.

  14. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability.

    Science.gov (United States)

    Sollier, Julie; Stork, Caroline Townsend; García-Rubio, María L; Paulsen, Renee D; Aguilera, Andrés; Cimprich, Karlene A

    2014-12-18

    R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability; however, the mechanisms underlying R-loop-induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability.

  15. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability

    Science.gov (United States)

    Sollier, Julie; Stork, Caroline Townsend; García-Rubio, María L.; Paulsen, Renee D.; Aguilera, Andrés; Cimprich, Karlene A.

    2014-01-01

    Summary R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability, however the mechanisms underlying R-loop induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability. PMID:25435140

  16. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Philpott Michael P

    2010-02-01

    Full Text Available Abstract Background The human cell cycle transcription factor FOXM1 is known to play a key role in regulating timely mitotic progression and accurate chromosomal segregation during cell division. Deregulation of FOXM1 has been linked to a majority of human cancers. We previously showed that FOXM1 was upregulated in basal cell carcinoma and recently reported that upregulation of FOXM1 precedes malignancy in a number of solid human cancer types including oral, oesophagus, lung, breast, kidney, bladder and uterus. This indicates that upregulation of FOXM1 may be an early molecular signal required for aberrant cell cycle and cancer initiation. Results The present study investigated the putative early mechanism of UVB and FOXM1 in skin cancer initiation. We have demonstrated that UVB dose-dependently increased FOXM1 protein levels through protein stabilisation and accumulation rather than de novo mRNA expression in human epidermal keratinocytes. FOXM1 upregulation in primary human keratinocytes triggered pro-apoptotic/DNA-damage checkpoint response genes such as p21, p38 MAPK, p53 and PARP, however, without causing significant cell cycle arrest or cell death. Using a high-resolution Affymetrix genome-wide single nucleotide polymorphism (SNP mapping technique, we provided the evidence that FOXM1 upregulation in epidermal keratinocytes is sufficient to induce genomic instability, in the form of loss of heterozygosity (LOH and copy number variations (CNV. FOXM1-induced genomic instability was significantly enhanced and accumulated with increasing cell passage and this instability was increased even further upon exposure to UVB resulting in whole chromosomal gain (7p21.3-7q36.3 and segmental LOH (6q25.1-6q25.3. Conclusion We hypothesise that prolonged and repeated UVB exposure selects for skin cells bearing stable FOXM1 protein causes aberrant cell cycle checkpoint thereby allowing ectopic cell cycle entry and subsequent genomic instability. The aberrant

  17. Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Ruiz-Herrera, Aurora [Departament de Biologia Cel.lular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, Ctra, Madrid-Cartagena, s/n, El Palmar, 30120 Murcia (Spain); Acien, Maribel [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, Ctra, Madrid-Cartagena, s/n, El Palmar, 30120 Murcia (Spain); Paya, Pilar [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, Ctra, Madrid-Cartagena, s/n, El Palmar, 30120 Murcia (Spain); Giulotto, Elena [Dipartimento di Genetica e Microbiologia Adriano Buzzati Traverso, Universita degli Studi di Pavia, 27100 Pavia (Italy); Egozcue, Josep [Departament de Biologia Cel.lular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Montserrat [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain) and Departament de Biologia Cellular, Fisiologia i Immunologia Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)]. E-mail: Montserrat.Garcia.Caldes@uab.es

    2006-03-20

    The Norwegian rat (Rattus norvegicus) is the most widely studied experimental species in biomedical research although little is known about its chromosomal structure. The characterisation of possible unstable regions of the karyotype of this species would contribute to the better understanding of its genomic architecture. The cytogenetic effects of ionising radiation have been widely used for the study of genomic instability, and the importance of interstitial telomeric-like sequences (ITSs) in instability of the genome has also been reported in previous studies in vertebrates. In order to describe the unstable chromosomal regions of R. norvegicus, the distribution of breakpoints induced by X-irradiation and ITSs in its karyotype were analysed in this work. For the X-irradiation analysis, 52 foetuses (from 14 irradiated rats) were studied, 4803 metaphases were analysed, and a total of 456 breakpoints induced by X-rays were detected, located in 114 chromosomal bands, with 25 of them significantly affected by X-irradiation (hot spots). For the analysis of ITSs, three foetuses (from three rats) were studied, 305 metaphases were analysed and 121 ITSs were detected, widely distributed in the karyotype of this species. Seventy-six percent of all hot spots analysed in this study were co-localised with ITSs.

  18. Bystander effects, adaptive response and genomic instability induced by prenatal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian [Institute for Science and Ethics, University Duisburg-Essen, Auf dem Sutan 12, D-45239 Essen (Germany)]. E-mail: streffer.essen@t-online.de

    2004-12-02

    The developing human embryo and fetus undergo very radiosensitive stages during the prenatal development. It is likely that the induction of low dose related effects such as bystander effects, the adaptive response, and genomic instability would have profound effects on embryonic and fetal development. In this paper, I review what has been reported on the induction of these three phenomena in exposed embryos and fetuses. All three phenomena have been shown to occur in murine embryonic or fetal cells and structures, although the induction of an adaptive response (and also likely the induction of bystander effects) are limited in terms of when during development they can be induced and the dose or dose-rate used to treat animals in utero. In contrast, genomic instability can be induced throughout development, and the effects of radiation exposure on genome instability can be observed for long times after irradiation including through pre- and postnatal development and into the next generation of mice. There are clearly strain-specific differences in the induction of these phenomena and all three can lead to long-term detrimental effects. This is true for the adaptive response as well. While induction of an adaptive response can make fetuses more resistant to some gross developmental defects induced by a subsequent high dose challenge with ionizing radiation, the long-term effects of this low dose exposure are detrimental. The negative effects of all three phenomena reflect the complexity of fetal development, a process where even small changes in the timing of gene expression or suppression can have dramatic effects on the pattern of biological events and the subsequent development of the mammalian organism.

  19. Effect of Cu supplementation on genomic instability in chemically-induced mammary carcinogenesis in the rat

    Directory of Open Access Journals (Sweden)

    Bobrowska Barbara

    2011-12-01

    Full Text Available Abstract Backround The aim of the present study was to assess the effect of dietary supplementation (copper or copper and resveratrol on the intensity of carcinogenesis and the frequency of microsatellite instability in a widely used model of mammary carcinogenesis induced in the rat by treatment with 7,12-dimethylbenz[a]anthracene (DMBA. Methods DNA was extracted from rat mammary cancers and normal tisues, amplified by PCR, using different polymorphic DNA markers and the reaction products were analyzed for microsatellite instability. Results It was found that irrespectively of the applied diet there was no inhibition of mammary carcinogenesis in the rats due to DMBA. Besides, in the groups supplemented with Cu (II or Cu (II and resveratrol the tumor formation was clearly accelerated. Unlike the animals that were fed with standard diet, the supplemented rats were characterized by the loss of heterozygosity of microsatellite D3Mgh9 in cancer tumors (by respectively 50 and 40%. When the animals received Cu (II and resveratrol supplemented diet the occurrence of genomic instability was additionally found in their livers in the case of microsatellite D1Mgh6 (which was stable in the animals without dietary supplementation. Conclusions Identification of the underlying mechanisms by which dietary factors affect genomic stability might prove useful in the treatment of mammary cancer as well as in the incorporation of dietary factors into mammary cancer prevention strategies.

  20. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  1. The Role of DNA Methylation Changes in Radiation-Induced Transgenerational Genomic Instability and Bystander Effects in cranial irradiated Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Gao, Yinglong; Zhang, Baodong

    Heavy-ion radiation could lead to genome instability in the germline, and therefore to transgenerational genome and epigenome instability in offspring of exposed males. The exact mechanisms of radiation-induced genome instability in directly exposed and in bystander organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in genome instability development. The potential of localized body-part exposures to affect the germline and thus induce genome and epigenome changes in the progeny has not been studied. To investigate whether or not the paternal cranial irradiation can exert deleterious changes in the protected germline and the offsprings, we studied the alteration of DNA methylation in the shielded testes tissue. Here we report that the localized paternal cranial irradiation results in a significant altered DNA methylation in sperm cells and leads to a profound epigenetic dysregulation in the unexposed progeny conceived 3 months after paternal exposure. The possible molecular mechanisms and biological consequences of the observed changes are discussed. Keywords: Heavy-ion radiation; Transgenerational effect; Genomic Instability Bystander Effects; DNA methylation.

  2. Breast cancer risk among Swedish hemangioma patients and possible consequences of radiation-induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Eidemueller, Markus, E-mail: markus.eidemueller@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, 85764 Neuherberg (Germany); Holmberg, Erik [Department of Oncology, Sahlgrenska University Hospital, SE-413 45 Goeteborg (Sweden); Jacob, Peter [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, 85764 Neuherberg (Germany); Lundell, Marie [Department of Medical Physics, Radiumhemmet, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Karlsson, Per [Department of Oncology, Sahlgrenska University Hospital, SE-413 45 Goeteborg (Sweden)

    2009-10-02

    Breast cancer incidence among 17,158 female Swedish hemangioma patients was analyzed with empirical excess relative risk models and with a biologically-based model of carcinogenesis. The patients were treated in infancy mainly by external application of radium-226. The mean and median absorbed doses to the breast were 0.29 and 0.04 Gy, and a total of 678 breast cancer cases have been observed. Both models agree very well in the risk estimates with an excess relative risk and excess absolute risk at the age of 50 years, about the mean age of breast cancer incidence, of 0.25 Gy{sup -1}(95% CI 0.14; 0.37) and 30.7 (10{sup 5}BYRGy){sup -1} (95% CI 16.9; 42.8), respectively. Models incorporating effects of radiation-induced genomic instability were developed and applied to the hemangioma cohort. The biologically-based description of the radiation risk was significantly improved with a model of genomic instability at an early stage of carcinogenesis.

  3. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Directory of Open Access Journals (Sweden)

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  4. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  5. Variability: The common factor linking low dose-induced genomic instability, adaptation and bystander effects

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jeffrey L. [Department of Radiation Oncology, University of Washington Medical Center, 1959 NE Pacific, Box 356069, Seattle, WA 98195-6069 (United States)]. E-mail: jschwart@u.washington.edu

    2007-03-01

    The characteristics of low dose radiation-induced genomic instability, adaptive responses, and bystander effects were compared in order to probe possible underlying mechanisms, and develop models for predicting response to in vivo low dose radiation exposures. While there are some features that are common to all three (e.g., absence of a true dose-response, the multiple endpoints affected by each), other characteristics appear to distinguish one from the other (e.g., TP53 involvement, LET response, influence of DNA repair). Each of the responses is also highly variable; not all cell and tissue models show the same response and there is much interindividual variation in response. Most of these studies have employed in vitro cell culture or tissue explant models, and understanding underlying mechanisms and the biological significance of these low dose-responses will require study of tissue-specific in vivo endpoints. The in vitro studies strongly suggest that modeling low dose radiation effects will be a complex process, and will likely require separate study of each of these low dose phenomena. Knowledge of instability responses, for example, may not aid in predicting other low dose effects in the same tissue.

  6. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability.

    Science.gov (United States)

    Tang, Feng Ru; Loke, Weng Keong

    2015-01-01

    To review research progress on the molecular mechanisms of low dose ionizing radiation (LDIR)-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability in order to provide clues for therapeutic approaches to enhance biopositive effects (defined as radiation-induced beneficial effects to the organism), and control bionegative effects (defined as radiation-induced harmful effects to the organism) and related human diseases. Experimental studies have indicated that Ataxia telangiectasia-mutated (ATM), extracellular signal-related kinase (ERK), mitogen-activated protein kinase (MAPK), phospho-c-Jun NH(2)-terminal kinase (JNK) and protein 53 (P53)-related signal transduction pathways may be involved in LDIR-induced hormesis; MAPK, P53 may be important for adaptive response; ATM, cyclooxygenase-2 (COX-2), ERK, JNK, reactive oxygen species (ROS), P53 for radioresistance; COX-2, ERK, MAPK, ROS, tumor necrosis factor receptor alpha (TNFα) for LDIR-induced bystander effect; whereas ATM, ERK, MAPK, P53, ROS, TNFα-related signal transduction pathways are involved in LDIR-induced genomic instability. These results suggest that different manifestations of LDIR-induced cellular responses may have different signal transduction pathways. On the other hand, LDIR-induced different responses may also share the same signal transduction pathways. For instance, P53 has been involved in LDIR-induced hormesis, adaptive response, radioresistance and genomic instability. Current data therefore suggest that caution should be taken when designing therapeutic approaches using LDIR to induce beneficial effects in humans.

  7. Radiation and chemotherapy bystander effects induce early genomic instability events: Telomere shortening and bridge formation coupled with mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Sheeona; Tosetto, Miriam [Centre for Colorectal Disease, St. Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); Lyng, Fiona; Howe, Orla [Radiation and Environmental Science Centre, Dublin Institute of Technology and St. Luke' s Hospital, Dublin (Ireland); Sheahan, Kieran; O' Donoghue, Diarmuid; Hyland, John; Mulcahy, Hugh [Centre for Colorectal Disease, St. Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland); O' Sullivan, Jacintha, E-mail: jacintha.osullivan@ucd.ie [Centre for Colorectal Disease, St. Vincent' s University Hospital, Elm Park, Dublin 4 (Ireland)

    2009-10-02

    The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2 Gy, 5 Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0 Gy) at 24 h. There was no significant difference between 2 Gy and 5 Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2 Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p = 0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p = 0.02) and mitochondrial membrane potential increased (p = 0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring

  8. Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2Gy, 5Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0Gy) at 24h. There was no significant difference between 2Gy and 5Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p=0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p=0.02) and mitochondrial membrane potential increased (p=0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring mitochondrial

  9. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2015-01-01

    replication stress translates into mitotic defects and genomic instability. Arrest of cell growth and induction of DNA double-strand breaks was also observed in MCF7 breast cancer cells in response to SSX2 expression. Additionally, MCF7 cells with ectopic SSX2 expression demonstrated typical signs...... of SSX2 expression in melanoma cell lines demonstrated that SSX2 supports the growth of melanoma cells. Our results reveal two important phenotypes of ectopic SSX2 expression that may drive/support tumorigenesis: First, immediate induction of genomic instability, and second, long-term support of tumor...

  10. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability.

  11. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages.

    Science.gov (United States)

    Mohanty, Soumitra; Dal Molin, Michael; Ganguli, Geetanjali; Padhi, Avinash; Jena, Prajna; Selchow, Petra; Sengupta, Srabasti; Meuli, Michael; Sander, Peter; Sonawane, Avinash

    2016-01-01

    Mycobacterium tuberculosis (Mtb) survives inside the macrophages by modulating the host immune responses in its favor. The 6-kDa early secretory antigenic target (ESAT-6; esxA) of Mtb is known as a potent virulence and T-cell antigenic determinant. At least 23 such ESAT-6 family proteins are encoded in the genome of Mtb; however, the function of many of them is still unknown. We herein report that ectopic expression of Mtb Rv2346c (esxO), a member of ESAT-6 family proteins, in non-pathogenic Mycobacterium smegmatis strain (MsmRv2346c) aids host cell invasion and intracellular bacillary persistence. Further mechanistic studies revealed that MsmRv2346c infection abated macrophage immunity by inducing host cell death and genomic instability as evident from the appearance of several DNA damage markers. We further report that the induction of genomic instability in infected cells was due to increase in the hosts oxidative stress responses. MsmRv2346c infection was also found to induce autophagy and modulate the immune function of macrophages. In contrast, blockade of Rv2346c induced oxidative stress by treatment with ROS inhibitor N-acetyl-L-cysteine prevented the host cell death, autophagy induction and genomic instability in infected macrophages. Conversely, MtbΔRv2346c mutant did not show any difference in intracellular survival and oxidative stress responses. We envision that Mtb ESAT-6 family protein Rv2346c dampens antibacterial effector functions namely by inducing oxidative stress mediated genomic instability in infected macrophages, while loss of Rv2346c gene function may be compensated by other redundant ESAT-6 family proteins. Thus EsxO plays an important role in mycobacterial pathogenesis in the context of innate immunity.

  12. Geosmin induces genomic instability in the mammalian cell microplate-based comet assay.

    Science.gov (United States)

    Silva, Aline Flor; Lehmann, Mauricio; Dihl, Rafael Rodrigues

    2015-11-01

    Geosmin (GEO) (trans-1,10-dimethyl-trans-9-decalol) is a metabolite that renders earthy and musty taste and odor to water. Data of GEO genotoxicity on mammalian cells are scarce in the literature. Thus, the present study assessed the genotoxicity of GEO on Chinese hamster ovary (CHO) cells in the microplate-based comet assay. The percent of tail DNA (tail intensity (TI)), tail moment (TM), and tail length (TL) were used as parameters for DNA damage assessment. The results demonstrated that concentrations of GEO of 30 and 60 μg/mL were genotoxic to CHO cells after 4- and 24-h exposure periods, in all parameters evaluated, such as TI, TM, and TL. Additionally, GEO 15 μg/mL was genotoxic in the three parameters only in the 24-h exposure time. The same was observed for GEO 7.5 μg/mL, which induced significant DNA damage observed as TI in the 24-h treatment. The results present evidence that exposure to GEO may be associated with genomic instability in mammalian cells.

  13. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability

    DEFF Research Database (Denmark)

    Greve, Katrine Buch Vidén; Lindgreen, Jonas; Terp, Mikkel Green

    2015-01-01

    replication stress translates into mitotic defects and genomic instability. Arrest of cell growth and induction of DNA double-strand breaks was also observed in MCF7 breast cancer cells in response to SSX2 expression. Additionally, MCF7 cells with ectopic SSX2 expression demonstrated typical signs......SSX cancer/testis antigens are frequently expressed in melanoma tumors and represent attractive targets for immunotherapy, but their role in melanoma tumorigenesis has remained elusive. Here, we investigated the cellular effects of SSX2 expression. In A375 melanoma cells, SSX2 expression resulted...... of SSX2 expression in melanoma cell lines demonstrated that SSX2 supports the growth of melanoma cells. Our results reveal two important phenotypes of ectopic SSX2 expression that may drive/support tumorigenesis: First, immediate induction of genomic instability, and second, long-term support of tumor...

  14. Genomic Instability Associated with p53 Knockdown in the Generation of Huntington's Disease Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Tidball, Andrew M; Neely, M Diana; Chamberlin, Reed; Aboud, Asad A; Kumar, Kevin K; Han, Bingying; Bryan, Miles R; Aschner, Michael; Ess, Kevin C; Bowman, Aaron B

    2016-01-01

    Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.

  15. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    Full Text Available Poly(ADP-ribose polymerases (PARPs are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR, a DNA double-strand break (DSB repair pathway, are hypersensitive to PARP inhibitors (PARPi. Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR, and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold and chromatid aberrations (2-6-fold. Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.

  16. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    Energy Technology Data Exchange (ETDEWEB)

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cells has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.

  17. A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation.

    Directory of Open Access Journals (Sweden)

    Jennifer Yamtich

    Full Text Available Several germline single nucleotide polymorphisms (SNPs have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β, encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER, a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797 in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.

  18. Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability.

    Directory of Open Access Journals (Sweden)

    Erica Werner

    Full Text Available We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET radiation such as X-rays or high-charge and high-energy (HZE particle high-LET radiation such as (56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization.

  19. Possible expressions of radiation-induced genomic instability, bystander effects or low-dose hypersensitivity in cancer epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Peter, E-mail: Jacob@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, 85764 Neuherberg (Germany); Meckbach, Reinhard; Kaiser, Jan Christian [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, 85764 Neuherberg (Germany); Sokolnikov, Mikhail [Southern Urals Biophysics Institute, Ozyorsk 456780 (Russian Federation)

    2010-05-01

    Recent publications on the integration of radiobiological effects in the two-step clonal expansion (TSCE) model of carcinogenesis and applications to radioepidemiological data are reviewed and updated. First, a model version with radiation-induced genomic instability was shown to be a possible explanation for the age dependence of the radiation-induced cancer mortality in the Techa River Cohort. Second, it is demonstrated that inclusion of a bystander effect with a dose threshold allows an improved description of the lung cancer mortality risk for the Mayak workers cohort due to incorporation of plutonium. The threshold for the annual lung dose is estimated to 12 (90%CI: 4; 14) mGy/year. This threshold applies to the initiation of preneoplastic cells and to hyperplastic growth. There is, however, no evidence for a threshold for the effects of gamma radiation. Third, models with radiation-induced cell inactivation tend to predict lower cancer risks among the atomic bomb survivors with exposure at young age than conventionally used empirical models. Also, risks after exposures with doses in the order of 100 mGy are predicted to be higher in models with low-dose hypersensitivity than in models with conventional cell survival curves. In the reviewed literature, models of carcinogenesis tend to describe radioepidemiological data better than conventionally used empirical models.

  20. The Role of Telomere Dysfunction in Driving Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Robert L Ullrich; Susan Bailey

    2008-01-17

    The mechanistic role of radiation-induced genomic instability in radiation carcinogenesis is an attractive hypothesis that remains to be rigorously tested. There are few in vivo studies on which to base judgments, but work in our laboratory with mouse models of radiogenic mammary neoplasia provided the first indications that certain forms of genetically predisposed radiation-induced genomic instability may contribute to tumor development. The central goal of this research project is to more firmly establish the mechanistic basis of this radiation-associated genomic instability and, from this, to assess whether such induced instability might play a major role in tumorigenesis at low doses of low LET radiation. In the case of mouse mammary tumors, susceptibility to induced instability is expressed as an autosomal recessive trait in mammary epithelial cells and is manifest largely as excess chromatid damage. Recently published studies associate this form of instability with DNA repair deficiency, polymorphic variation in the gene encoding DNA-PKcs (Prkdc), and mammary associated susceptibility. The underlying hypothesis being tested in this project is that tumor-associated genomic instability is preferentially expressed in certain recombinogenic genomic domains and that these may be cell lineage/individual-specific.

  1. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality.

    Science.gov (United States)

    Hitomi, Toshiaki; Habu, Toshiyuki; Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H; Osafune, Kenji; Taura, Daisuke; Sone, Masakatsu; Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko; Hashikata, Hirokuni; Takagi, Yasushi; Morito, Daisuke; Miyamoto, Susumu; Nakao, Kazuwa; Koizumi, Akio

    2013-10-04

    Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n=3, 61.0 ± 8.2%) compared with wild-type subjects (n=6, 13.1 ± 7.7%; pcarrier had a longer time from prometaphase to metaphase than those from controls (pcarrier had significantly increased mitotic failure rates compared with controls (p<0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. INMAP overexpression inhibits cell proliferation, induces genomic instability and functions through p53/p21 pathways.

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    Full Text Available INMAP is a spindle protein that plays essential role for mitosis, by ensuring spindle and centromere integrality. The aim of this study was to investigate the relevant functions of INMAP for genomic stability and its functional pathway. We overexpressed INMAP in HeLa cells, resulting in growth inhibition in monolayer cell cultures, anchorage-independent growth in soft agar and xenograft growth in nude mice. In this system caused micronuclei (MNi formation, chromosome distortion and γH2AX expression upregulation, suggesting DNA damage induction and genomic stability impairment. As a tumour biochemical marker, lactate dehydrogenase (LDH isoenzymes were detected to evaluate cell metabolic activity, the results confirming that total activity of LDH, as well as that of its LDH5 isoform, is significantly decreased in INMAP-overexpressing HeLa cells. The levels of p53 and p21 were upregulated, and however, that of PCNA and Bcl-2, downregulated. Indirect immunofluorescence (IIF and coimmunoprecipitation (CoIP analyses revealed the interaction between INMAP and p21. These results suggest that INMAP might function through p53/p21 pathways.

  3. Polytene chromosomes of Chironomidae (Diptera as a bioassay of trace-metal-induced genome instability

    Directory of Open Access Journals (Sweden)

    Paraskeva Vladimirova Michailova

    2012-10-01

    Full Text Available Chironomids are a ubiquitous group of aquatic insects that are very sensitive to environmental stress. Due to the presence of polytene (‘giant’ salivary gland chromosomes, it is possible to define the genome response of several Chironomid species to various stress agents. The aim of this study was to assess the genotoxic changes in populations of widely distributed chironomid species from aquatic basins in Bulgaria, Italy, Russia, U.K. and Poland, which were exposed to high concentrations of trace metals. We analyzed the structural and functional alterations of polytene chromosomes of the salivary glands of larvae belonging to three different cytocomplexes of the genus Chironomus (“thummi”, “lacunarius”, “pseudothummi”, and genera Glyptotendipes and Kiefferulus. Somatic structural chromosome rearrangements (para- and pericentric heterozygous inversions, deletions, deficiencies and amplifications were used to estimate a Somatic index (S for each population. The highest S indexes were detected in Chironomus riparius populations from locations with high concentrations of trace metals in the sediment. Each species showed specific genome responses to stress agents which we discussed in the light of the specific DNA structures and cytogenetic characteristics of the species. In larvae from polluted sediments two key structures of the salivary gland chromosomes (Balbiani Rings and Nucleolar Organizer sharply reduced their activity to levels below those observed under non-polluted conditions. It is concluded that polytene chromosomes can be used as tools for evaluating the genotoxicity of the aquatic environment. Structural and functional chromosome alterations provide cost-effective early-warning signals of genotoxic concentrations of environmental pollutants.doi: 10.5324/fn.v31i0.1355.Published online: 17 October 2012.

  4. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    Science.gov (United States)

    2007-04-01

    Li, 2005). Task 2: Establish whether pre-RC reformation , re-initiation or re-elongation induces the DNA damage response. In task 2 of the...300 l of 0.5-mm glass beads (Biospec Products, Bartlesville, OK) and 300 l of SDS-PAGE loading buffer [8% glycerol (vol/vol), 100 mM Tris-HCl, pH

  5. Genomic instability in newborn with short telomeres.

    Directory of Open Access Journals (Sweden)

    Jennifer Moreno-Palomo

    Full Text Available Telomere length is considered to be a risk factor in adults due to its proved association with cancer incidence and mortality. Since newborn present a wide interindividual variation in mean telomere length, it is relevant to demonstrate if these differences in length can act also as an early risk indicator. To answer this question, we have measured the mean telomere length of 74 samples of cord blood from newborns and studied its association with the basal genetic damage, measured as the frequency of binucleated cells carrying micronuclei. In addition, we have challenged the cells of a subgroup of individuals (N = 35 against mitomycin-C (MMC to establish their sensitivity to induced genomic instability. Results indicate that newborn with shorter telomeres present significantly higher levels of genetic damage when compared to those with longer telomeres. In addition, the cellular response to MMC was also significantly higher among those samples from subjects with shorter telomeres. Independently of the causal mechanisms involved, our results show for the first time that telomere length at delivery influence both the basal and induced genetic damage of the individual.Individuals born with shorter telomeres may be at increased risk, especially for those biological processes triggered by genomic instability as is the case of cancer and other age-related diseases.

  6. Genomic instability and cancer: an introduction

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen

    2011-01-01

    @@ Genomic instability as a major driving force of tumorigenesis.The ultimate goal of cell division for most non-cancerous somatic cells is to accurately duplicate the genome and then evenly divide the duplicated genome into the two daughter cells.This ensures that the daughter cells will have exactly the same genetic material as their parent cell.

  7. Gene Mutation as Biomarker of Radiation Induced Cell Injury and Genomic Instability

    Directory of Open Access Journals (Sweden)

    M Syaifudin

    2006-07-01

    Full Text Available Gene expression profiling and its mutation has become one of the most widely used approaches to identify genes and their functions in the context of identify and categorize genes to be used as radiation effect markers including cell and tissue sensitivities. Ionizing radiation produces genetic damage and changes in gene expression that may lead to cancer due to specific protein that controlling cell proliferation altered the function, its expression or both. P53 protein encoded by p53 gene plays an important role in protecting cell by inducing growth arrest and or cell suicide (apoptosis after deoxyribonucleic acid (DNA damage induced by mutagen such as ionizing radiation. The mutant and thereby dysfunctional of this gene was found in more than 50% of various human cancers, but it is as yet unclear how p53 mutations lead to neoplastic development. Wild-type p53 has been postulated to play a role in DNA repair, suggesting that expression of mutant forms of p53 might alter cellular resistance to the DNA damage caused by radiation. Moreover, p53 is thought to function as a cell cycle checkpoint after irradiation, also suggesting that mutant p53 might change the cellular proliferative response to radiation. p53 mutations affect the cellular response to DNA damage, either by increasing DNA repair processes or, possibly, by increasing cellular tolerance to DNA damage. The association of p53 mutations with increased radioresistance suggests that alterations in the p53 gene might lead to oncogenic transformation. Current attractive model of carcinogenesis also showed that p53 gene is the major target of radiation. The majority of p53 mutations found so far is single base pairchanges (point mutations, which result in amino acid substitutionsor truncated forms of the P53 protein, and are widely distributedthroughout the evolutionarily conserved regions of the gene. Examination of p53 mutations in human cancer also shows an association between particular

  8. Genomic instability in liver cells caused by an LPS-induced bystander-like effect.

    Directory of Open Access Journals (Sweden)

    Igor Kovalchuk

    Full Text Available Bacterial infection has been linked to carcinogenesis, however, there is lack of knowledge of molecular mechanisms that associate infection with the development of cancer. We analyzed possible effects of the consumption of heat-killed E. coli O157:H7 cells or its cellular components, DNA, RNA, protein or lipopolysaccharides (LPS on gene expression in naïve liver cells. Four week old mice were provided water supplemented with whole heat-killed bacteria or bacterial components for a two week period. One group of animals was sacrificed immediately, whereas another group was allowed to consume uncontaminated tap water for an additional two weeks, and liver samples were collected, post mortem. Liver cells responded to exposure of whole heat-killed bacteria and LPS with alteration in γH2AX levels and levels of proteins involved in proliferation, DNA methylation (MeCP2, DNMT1, DNMT3A and 3B or DNA repair (APE1 and KU70 as well as with changes in the expression of genes involved in stress response, cell cycle control and bile acid biosynthesis. Other bacterial components analysed in this study did not lead to any significant changes in the tested molecular parameters. This study suggests that lipopolysaccharides are a major component of Gram-negative bacteria that induce molecular changes within naïve cells of the host.

  9. Canonical non-homologous end joining in mitosis induces genome instability and is suppressed by M-phase-specific phosphorylation of XRCC4.

    Directory of Open Access Journals (Sweden)

    Masahiro Terasawa

    2014-08-01

    Full Text Available DNA double-strand breaks (DSBs can be repaired by one of two major pathways-non-homologous end-joining (NHEJ and homologous recombination (HR-depending on whether cells are in G1 or S/G2 phase, respectively. However, the mechanisms of DSB repair during M phase remain largely unclear. In this study, we demonstrate that transient treatment of M-phase cells with the chemotherapeutic topoisomerase inhibitor etoposide induced DSBs that were often associated with anaphase bridge formation and genome instability such as dicentric chromosomes. Although most of the DSBs were carried over into the next G1 phase, some were repaired during M phase. Both NHEJ and HR, in particular NHEJ, promoted anaphase-bridge formation, suggesting that these repair pathways can induce genome instability during M phase. On the other hand, C-terminal-binding protein interacting protein (CtIP suppressed anaphase bridge formation, implying that CtIP function prevents genome instability during mitosis. We also observed M-phase-specific phosphorylation of XRCC4, a regulatory subunit of the ligase IV complex specialized for NHEJ. This phosphorylation required cyclin-dependent kinase (CDK activity as well as polo-like kinase 1 (Plk1. A phosphorylation-defective XRCC4 mutant showed more efficient M-phase DSB repair accompanied with an increase in anaphase bridge formation. These results suggest that phosphorylation of XRCC4 suppresses DSB repair by modulating ligase IV function to prevent genome instability during M phase. Taken together, our results indicate that XRCC4 is required not only for the promotion of NHEJ during interphase but also for its M-phase-specific suppression of DSB repair.

  10. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  11. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  12. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.

    Science.gov (United States)

    de Toledo, Sonia M; Buonanno, Manuela; Harris, Andrew L; Azzam, Edouard I

    2017-06-15

    To examine the time window during which intercellular signaling though gap junctions mediates non-targeted (bystander) effects induced by moderate doses of ionizing radiation; and to investigate the impact of gap junction communication on genomic instability in distant progeny of bystander cells. A layered cell culture system was developed to investigate the propagation of harmful effects from irradiated normal or tumor cells that express specific connexins to contiguous bystander normal human fibroblasts. Irradiated cells were exposed to moderate mean absorbed doses from 3.7 MeV α particle, 1000 MeV/u iron ions, 600 MeV/u silicon ions, or (137)Cs γ rays. Following 5 h of co-culture, pure populations of bystander cells, unexposed to secondary radiation, were isolated and DNA damage and oxidative stress was assessed in them and in their distant progeny (20-25 population doublings). Increased frequency of micronucleus formation and enhanced oxidative changes were observed in bystander cells co-cultured with confluent cells exposed to either sparsely ionizing ((137)Cs γ rays) or densely ionizing (α particles, energetic iron or silicon ions) radiations. The irradiated cells propagated signals leading to biological changes in bystander cells within 1 h of irradiation, and the effect required cellular coupling by gap junctions. Notably, the distant progeny of isolated bystander cells also exhibited increased levels of spontaneous micronuclei. This effect was dependent on the type of junctional channels that coupled the irradiated donor cells with the bystander cells. Previous work showed that gap junctions composed of connexin26 (Cx26) or connexin43 (Cx43) mediate toxic bystander effects within 5 h of co-culture, whereas gap junctions composed of connexin32 (Cx32) mediate protective effects. In contrast, the long-term progeny of bystander cells expressing Cx26 or Cx43 did not display elevated DNA damage, whereas those coupled by Cx32 had enhanced DNA

  13. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  14. Cavitation Instabilities in Inducers

    Science.gov (United States)

    2006-11-01

    gas handling turbomachines . The fluctuation of the cavity length is plotted in Fig.8 under the surge mode oscillation vi . The major differences...Cavitation Instabilities of Turbomachines .” AIAA Journal of Propulsion and Power, Vol.17, No.3, 636-643. [5] Tsujimoto, Y., (2006), “Flow Instabilities in

  15. TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo.

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Herreros

    Full Text Available Anticancer topoisomerase "poisons" exploit the break-and-rejoining mechanism of topoisomerase II (TOP2 to generate TOP2-linked DNA double-strand breaks (DSBs. This characteristic underlies the clinical efficacy of TOP2 poisons, but is also implicated in chromosomal translocations and genome instability associated with secondary, treatment-related, haematological malignancy. Despite this relevance for cancer therapy, the mechanistic aspects governing repair of TOP2-induced DSBs and the physiological consequences that absent or aberrant repair can have are still poorly understood. To address these deficits, we employed cells and mice lacking tyrosyl DNA phosphodiesterase 2 (TDP2, an enzyme that hydrolyses 5'-phosphotyrosyl bonds at TOP2-associated DSBs, and studied their response to TOP2 poisons. Our results demonstrate that TDP2 functions in non-homologous end-joining (NHEJ and liberates DSB termini that are competent for ligation. Moreover, we show that the absence of TDP2 in cells impairs not only the capacity to repair TOP2-induced DSBs but also the accuracy of the process, thus compromising genome integrity. Most importantly, we find this TDP2-dependent NHEJ mechanism to be physiologically relevant, as Tdp2-deleted mice are sensitive to TOP2-induced damage, displaying marked lymphoid toxicity, severe intestinal damage, and increased genome instability in the bone marrow. Collectively, our data reveal TDP2-mediated error-free NHEJ as an efficient and accurate mechanism to repair TOP2-induced DSBs. Given the widespread use of TOP2 poisons in cancer chemotherapy, this raises the possibility of TDP2 being an important etiological factor in the response of tumours to this type of agent and in the development of treatment-related malignancy.

  16. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  17. Dysfunctional telomeres promote genomic instability and metastasis in the absence of telomerase activity in oncogene induced mammary cancer.

    Science.gov (United States)

    Bojovic, Bojana; Crowe, David L

    2013-02-01

    Telomerase is a ribonucleoprotein that maintains the ends of chromosomes (telomeres). In normal cells lacking telomerase activity, telomeres shorten with each cell division because of the inability to completely synthesize the lagging strand. Critically shortened telomeres elicit DNA damage responses and limit cellular division and lifespan, providing an important tumor suppressor function. Most human cancer cells express telomerase which contributes significantly to the tumor phenotype. In human breast cancer, telomerase expression is predictive of clinical outcomes such as lymph node metastasis and survival. In mouse models of mammary cancer, telomerase expression is also upregulated. Telomerase overexpression resulted in spontaneous mammary tumor development in aged female mice. Increased mammary cancer also was observed when telomerase deficient mice were crossed with p53 null mutant animals. However, the effects of telomerase and telomere length on oncogene driven mammary cancer have not been completely characterized. To address these issues we characterized neu proto-oncogene driven mammary tumor formation in G1 Terc-/- (telomerase deficient with long telomeres), G3 Terc-/- (telomerase deficient with short telomeres), and Terc+/+ mice. Telomerase deficiency reduced the number of mammary tumors and increased tumor latency regardless of telomere length. Decreased tumor formation correlated with increased apoptosis in Terc deficient tumors. Short telomeres dramatically increased lung metastasis which correlated with increased genomic instability, and specific alterations in DNA copy number and gene expression. We concluded that short telomeres promote metastasis in the absence of telomerase activity in neu oncogene driven mammary tumors.

  18. Dose- and time-dependent changes of micronucleus frequency and gene expression in the progeny of irradiated cells: Two components in radiation-induced genomic instability?

    Energy Technology Data Exchange (ETDEWEB)

    Huumonen, Katriina [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Korkalainen, Merja [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Boman, Eeva; Heikkilä, Janne [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Höytö, Anne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Lahtinen, Tapani [Kuopio University Hospital, Cancer Center, P.O. Box 1777, 70211 Kuopio (Finland); Luukkonen, Jukka [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Viluksela, Matti [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, 70701 Kuopio (Finland); Naarala, Jonne [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland); Juutilainen, Jukka, E-mail: jukka.juutilainen@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, 70211 Kuopio (Finland)

    2014-07-15

    Highlights: • Development with time of radiation-induced genomic instability (RIGI) was studied. • Dose–response of micronuclei showed marked time-dependent changes. • A new model assuming two components in RIGI was found to fit with the data. • The persisting component of RIGI seems to be independent of dose above a threshold. • Increasing heterogeneity was characteristic to delayed gene expression changes. - Abstract: Murine embryonic C3H/10T½ fibroblasts were exposed to X-rays at doses of 0.2, 0.5, 1, 2 or 5 Gy. To follow the development of radiation-induced genomic instability (RIGI), the frequency of micronuclei was measured with flow cytometry at 2 days after exposure and in the progeny of the irradiated cells at 8 and 15 days after exposure. Gene expression was measured at the same points in time by PCR arrays profiling the expression of 84 cancer-relevant genes. The micronucleus results showed a gradual decrease in the slope of the dose–response curve between days 2 and 15. The data were consistent with a model assuming two components in RIGI. The first component is characterized by dose-dependent increase in micronuclei. It may persist more than ten cell generations depending on dose, but eventually disappears. The second component is more persistent and independent of dose above a threshold higher than 0.2 Gy. Gene expression analysis 2 days after irradiation at 5 Gy showed consistent changes in genes that typically respond to DNA damage. However, the consistency of changes decreased with time, suggesting that non-specificity and increased heterogeneity of gene expression are characteristic to the second, more persistent component of RIGI.

  19. Genomic instability caused by hepatitis B virus: into the hepatoma inferno.

    Science.gov (United States)

    Hsieh, Yi-Hsuan; Hsu, Jye-Lin; Su, Ih-Jen; Huang, Wenya

    2011-06-01

    Chronic hepatitis B virus (HBV) infection is an important cause of hepatocellular carcinoma (HCC) worldwide, especially in Asia. HBV induces HCC through multiple oncogenic pathways. Hepatitis-induced hepatocyte inflammation and regeneration stimulates cell proliferation. The interplay between the viral and host factors activates oncogenic signaling pathways and triggers cell transformation. In this review, we summarize previous studies, which reported that HBV induces host genomic instability and that HBV-induced genomic instability is a significant factor that accelerates carcinogenesis. The various types of genomic changes in HBV-induced HCC--chromosomal instability, telomere attrition, and gene-level mutations--are reviewed. In addition, the two viral factors, HBx and the pre-S2 mutant large surface antigen, are discussed for their roles in promoting genomic instability as their main features as viral oncoproteins.

  20. Radio-protective effect of cinnamic acid, a phenolic phytochemical, on genomic instability induced by X-rays in human blood lymphocytes in vitro.

    Science.gov (United States)

    Cinkilic, Nilufer; Tüzün, Ece; Çetintaş, Sibel Kahraman; Vatan, Özgür; Yılmaz, Dilek; Çavaş, Tolga; Tunç, Sema; Özkan, Lütfi; Bilaloğlu, Rahmi

    2014-08-01

    The present study was designed to determine the protective activity of cinnamic acid against induction by X-rays of genomic instability in normal human blood lymphocytes. This radio-protective activity was assessed by use of the cytokinesis-block micronucleus test and the alkaline comet assay, with human blood lymphocytes isolated from two healthy donors. A Siemens Mevatron MD2 (Siemens AG, USA, 1994) linear accelerator was used for the irradiation with 1 or 2 Gy. Treatment of the lymphocytes with cinnamic acid prior to irradiation reduced the number of micronuclei when compared with that in control samples. Treatment with cinnamic acid without irradiation did not increase the number of micronuclei and did not show a cytostatic effect in the lymphocytes. The results of the alkaline comet assay revealed that cinnamic acid reduces the DNA damage induced by X-rays, showing a significant radio-protective effect. Cinnamic acid decreased the frequency of irradiation-induced micronuclei by 16-55% and reduced DNA breakage by 17-50%, as determined by the alkaline comet assay. Cinnamic acid may thus act as a radio-protective compound, and future studies may focus on elucidating the mechanism by which cinnamic acid offers radioprotection.

  1. Nitric Oxide: Genomic Instability And Synthetic Lethality

    Directory of Open Access Journals (Sweden)

    Vasily A. Yakovlev

    2015-08-01

    Loss or inhibition of Poly(ADP-ribose polymerase 1 (PARP1 activity results in accumulation of DNA single-strand breaks, which are subsequently converted to DSB by the transcription machinery. In BRCA-positive cells, DSB are repaired by HRR, but they cannot be properly repaired in BRCA1-deficient cells, leading to genomic instability, chromosomal rearrangements, and cell death. Our data demonstrated that combination of NO-donors with PARP inhibitors significantly sensitized the BRCA1-positive cancer cells to DNA-damaging agents.

  2. One-hit wonders of genomic instability

    Directory of Open Access Journals (Sweden)

    Strunnikov Alexander V

    2010-05-01

    Full Text Available Abstract Recent data show that cells from many cancers exhibit massive chromosome instability. The traditional view is that the gradual accumulation of mutations in genes involved in transcriptional regulation and cell cycle controls results in tumor development. This, however, does not exclude the possibility that some mutations could be more potent than others in destabilizing the genome by targeting both chromosomal integrity and corresponding checkpoint mechanisms simultaneously. Three such examples of "single-hit" lesions potentially leading to heritable genome destabilization are discussed. They include: failure to release sister chromatid cohesion due to the incomplete proteolytic cleavage of cohesin; massive merotelic kinetochore misattachments upon condensin depletion; and chromosome under-replication. In all three cases, cells fail to detect potential chromosomal bridges before anaphase entry, indicating that there is a basic cell cycle requirement to maintain a degree of sister chromatid bridging that is not recognizable as chromosomal damage.

  3. The effect of growth architecture on the induction and decay of bleomycin and X-ray-induced bystander response and genomic instability in lung adenocarcinoma cells and blood lymphocytes.

    Science.gov (United States)

    Chinnadurai, Mani; Paul, Solomon F D; Venkatachalam, Perumal

    2013-02-01

    Cancer patients treated with radiomimetic drug bleomycin (BLM) have shown incidence of 7% second malignancy. Studies regarding BLM-induced genomic instability in bystander cells are scarce, and experiments with cells grown on three-dimensional (3D) cultures to mimic the in-vivo condition have never been attempted. A549 and NCI-H23 (human lung adenocarcinoma) cells were grown as 3D cultures using Cytomatrix(™), exposed to BLM or X-radiation and co-cultured with their respective unexposed cells. The DNA damage in direct and bystander cells were assessed by the induction of micronuclei (MN) or phosphorylated serine-15 residue in protein 53 (p53(ser-15)), a reflection of DNA damage, and by up-regulation of protein 21 (p21Waf1). The persistence of DNA damage was measured using MN assay and fluorescence in situ hybridization (FISH) in cancer cells and human peripheral blood lymphocytes (PBL) respectively. BLM or X-irradiation induced DNA damage in both A549 and NCI-H23 cells and their respective bystander cells grown in 2D or 3D cultures. Further persistence of these damages in bystander PBL at delayed times indicated genomic instability in these cells. BLM-induced genomic instability in the progeny of bystander cells and their significance in therapy-induced second malignancy may not be eliminated completely.

  4. Bathtub vortex induced by instability

    Science.gov (United States)

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic.

  5. Nuclear and mitochondrial genome instability induced by senna (Cassia angustifolia Vahl.) aqueous extract in Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M

    2014-11-27

    Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA.

  6. Genomic instability in the epidermis induced by atomic bomb (A-bomb) radiation: a long-lasting health effect in A-bomb survivors.

    Science.gov (United States)

    Naruke, Yuki; Nakashima, Masahiro; Suzuki, Keiji; Kondo, Hisayoshi; Hayashi, Tomayoshi; Soda, Midori; Sekine, Ichiro

    2009-08-15

    Radiation etiology is suggested in the occurrence of basal cell carcinoma (BCC) of the skin among atomic bomb (A-bomb) survivors. Any genotoxicity, including ionizing radiation, can induce a DNA damage response (DDR), leading to genomic instability (GIN), which allows the accumulation of mutations during tumorigenesis. In this study, the authors evaluated the presence of GIN in the epidermis of survivors as a late effect of A-bomb radiation. In total, 146 BCCs, including 23 cases arising from nonexposed skin, were identified in survivors from 1968 to 1999. The incidence rate (IR) of BCC was calculated with stratification by distance in kilometers from the hypocenter ( or =3 km). Nineteen epidermal samples surrounding BCC at the nonexposed sites were collected and tested for p53 binding protein 1 (53BP1) expression with immunofluorescence. 53BP1 rapidly forms nuclear foci at the sites of DNA double strand breaks (DSBs). Because 1 manifestation of GIN is the induction of endogenous DSBs, the level of 53BP1-focus formation (DDR type) can be considered as a marker for GIN. : The incidence rate of BCC increased significantly as exposure distance approached the hypocenter. Of the 7 epidermal samples from the proximal group ( or =3 km) and all samples from the control group predominantly expressed the stable type of 53BP1 expression in the epidermis. : The current results demonstrated the endogenous activation of DDR in the epidermis surrounding BCC in the proximal group, suggesting the presence of a GIN in the survivors as a late effect of A-bomb radiation, which may indicate a predisposition to cancer.

  7. In situ quantification of genomic instability in breast cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  8. Causes of genome instability: the effect of low dose chemical exposures in modern society

    Science.gov (United States)

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  9. Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels.

    Directory of Open Access Journals (Sweden)

    Hei-Man Vincent Tang

    2009-10-01

    Full Text Available Peroxiredoxins are a family of antioxidant enzymes critically involved in cellular defense and signaling. Particularly, yeast peroxiredoxin Tsa1p is thought to play a role in the maintenance of genome integrity, but the underlying mechanism is not understood. In this study, we took a genetic approach to investigate the cause of genome instability in tsa1Delta cells. Strong genetic interactions of TSA1 with DNA damage checkpoint components DUN1, SML1, and CRT1 were found when mutant cells were analyzed for either sensitivity to DNA damage or rate of spontaneous base substitutions. An elevation in intracellular dNTP production was observed in tsa1Delta cells. This was associated with constitutive activation of the DNA damage checkpoint as indicated by phosphorylation of Rad9/Rad53p, reduced steady-state amount of Sml1p, and induction of RNR and HUG1 genes. In addition, defects in the DNA damage checkpoint did not modulate intracellular level of reactive oxygen species, but suppressed the mutator phenotype of tsa1Delta cells. On the contrary, overexpression of RNR1 exacerbated this phenotype by increasing dNTP levels. Taken together, our findings uncover a new role of TSA1 in preventing the overproduction of dNTPs, which is a root cause of genome instability.

  10. p53-Dependent suppression of genome instability in germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Otozai, Shinji [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Ishikawa-Fujiwara, Tomoko [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Oda, Shoji [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Kamei, Yasuhiro [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ryo, Haruko [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Sato, Ayuko [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Nomura, Taisei [Nomura Project, National Institute of Biomedical Innovation, Osaka 565-0085 (Japan); Mitani, Hiroshi [Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562 (Japan); Tsujimura, Tohru [Department of Pathology, Hyogo College of Medicine, Hyogo 663-8501 (Japan); Inohara, Hidenori [Department of Otorhinolaryngology and Head and Neck Surgery, Osaka University School of Medicine, Osaka 565-0871 (Japan); Todo, Takeshi, E-mail: todo@radbio.med.osaka-u.ac.jp [Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    Highlights: • Radiation-induced microsatellite instability (MSI) was investigated in medaka fish. • msh2{sup −/−} fish had a high frequency of spontaneous MSI. • p53{sup −/−} fish had a high frequency of radiation-induced MSI. • p53 and msh2 suppress MSI by different pathways: mismatch removal and apoptosis. - Abstract: Radiation increases mutation frequencies at tandem repeat loci. Germline mutations in γ-ray-irradiated medaka fish (Oryzias latipes) were studied, focusing on the microsatellite loci. Mismatch-repair genes suppress microsatellite mutation by directly removing altered sequences at the nucleotide level, whereas the p53 gene suppresses genetic alterations by eliminating damaged cells. The contribution of these two defense mechanisms to radiation-induced microsatellite instability was addressed. The spontaneous mutation frequency was significantly higher in msh2{sup −/−} males than in wild-type fish, whereas there was no difference in the frequency of radiation-induced mutations between msh2{sup −/−} and wild-type fish. By contrast, irradiated p53{sup −/−} fish exhibited markedly increased mutation frequencies, whereas their spontaneous mutation frequency was the same as that of wild-type fish. In the spermatogonia of the testis, radiation induced a high level of apoptosis both in wild-type and msh2{sup −/−} fish, but negligible levels in p53{sup −/−} fish. The results demonstrate that the msh2 and p53 genes protect genome integrity against spontaneous and radiation-induced mutation by two different pathways: direct removal of mismatches and elimination of damaged cells.

  11. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    Science.gov (United States)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  12. Genome instability in Novel Lolium multiflorum x L. arundinaceum hybrids

    Science.gov (United States)

    We have identified a method whereby Lolium multiflorum (Lm) or L. arundinaceum (Fa) genomes are preferentially eliminated through a mitotic loss behavior in interspecific Lm x Fa F1 hybrids,generating either dihaploid Lm lines or Fa lines. The genome instability has been visualized phenotypically an...

  13. Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches.

    Science.gov (United States)

    Sahin, Ibrahim H; Lowery, Maeve A; Stadler, Zsofia K; Salo-Mullen, Erin; Iacobuzio-Donahue, Christine A; Kelsen, David P; O'Reilly, Eileen M

    2016-08-01

    Pancreatic cancer is one of the most challenging cancers. Whole genome sequencing studies have been conducted to elucidate the underlying fundamentals underscoring disease behavior. Studies have identified a subgroup of pancreatic cancer patients with distinct molecular and clinical features. Genetic fingerprinting of these tumors is consistent with an unstable genome and defective DNA repair pathways, which creates unique susceptibility to agents inducing DNA damage. BRCA1/2 mutations, both germline and somatic, which lead to impaired DNA repair, are found to be important biomarkers of genomic instability as well as of response to DNA damaging agents. Recent studies have elucidated that PARP inhibitors and platinum agents may be effective to induce tumor regression in solid tumors bearing an unstable genome including pancreatic cancer. In this review we discuss the characteristics of genomic instability in pancreatic cancer along with its clinical implications and the utility of DNA targeting agents particularly PARP inhibitors as a novel treatment approach.

  14. A Signature of Genomic Instability Resulting from Deficient Replication Licensing

    Science.gov (United States)

    Qin, Maochun; Wang, Jianmin; Kunnev, Dimiter; Freeland, Amy

    2017-01-01

    Insufficient licensing of DNA replication origins has been shown to result in genome instability, stem cell deficiency, and cancers. However, it is unclear whether the DNA damage resulting from deficient replication licensing occurs generally or if specific sites are preferentially affected. To map locations of ongoing DNA damage in vivo, the DNAs present in red blood cell micronuclei were sequenced. Many micronuclei are the product of DNA breaks that leave acentromeric remnants that failed to segregate during mitosis and should reflect the locations of breaks. To validate the approach we show that micronuclear sequences identify known common fragile sites under conditions that induce breaks at these locations (hydroxyurea). In MCM2 deficient mice a different set of preferred breakage sites is identified that includes the tumor suppressor gene Tcf3, which is known to contribute to T-lymphocytic leukemias that arise in these mice, and the 45S rRNA gene repeats. PMID:28045896

  15. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ariyoshi, Kentaro [Hirosaki University, Institute of Radiation Emergency Medicine, 66-1 Hon-cho, Hirosaki 036-8564 (Japan); Miura, Tomisato; Kasai, Kosuke; Fujishima, Yohei [Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564 (Japan); Oshimura, Mitsuo [Chromosome Engineering Research Center (CERC), Tottori University, Nishicho 86, Yonago, Tottori 683-8503 (Japan); Yoshida, Mitsuaki A., E-mail: ariyoshi@hirosaki-u.ac.jp [Hirosaki University, Institute of Radiation Emergency Medicine, 66-1 Hon-cho, Hirosaki 036-8564 (Japan)

    2016-08-15

    Highlights: • Clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. • Increased autophagy was observed in the artificially aneuploid clones. • Inhibition of autophagy resulted in increased genomic instability and DNA damage. • Intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones. - Abstract: Chromosome missegregation can lead to a change in chromosome number known as aneuploidy. Although aneuploidy is a known hallmark of cancer cells, the various mechanisms by which altered gene and/or DNA copy number facilitate tumorigenesis remain unclear. To understand the effect of aneuploidy occurring in non-tumorigenic human breast epithelial cells, we generated clones harboring artificial aneuploidy using microcell-mediated chromosome transfer. Our results demonstrate that clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. Also, the increased autophagy was observed in the artificially aneuploidy clones, and inhibition of autophagy resulted in increased genomic instability and DNA damage. In addition, the intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones, and inhibition of autophagy further increased the production of reactive oxygen species. Together, these results suggest that even a single extraneous chromosome can induce genomic instability, and that autophagy triggered by aneuploidy-induced stress is a mechanism to protect cells bearing abnormal chromosome number.

  16. Genome instability in Lactobacillus rhamnosus GG

    NARCIS (Netherlands)

    Sybesma, W.; Molenaar, D.; IJcken, W. van; Venema, K.; Korta, R.

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the

  17. Genome instability in Lactobacillus rhamnosus GG

    NARCIS (Netherlands)

    W. Sybesma (Wilbert); D. Molenaar (Douwe); W.F.J. van IJcken (Wilfred); K. Venema (Koen); R. Kort (Remco)

    2013-01-01

    textabstractWe describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing

  18. Genome instability in Lactobacillus rhamnosus GG

    NARCIS (Netherlands)

    W. Sybesma (Wilbert); D. Molenaar (Douwe); W.F.J. van IJcken (Wilfred); K. Venema (Koen); R. Kort (Remco)

    2013-01-01

    textabstractWe describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing f

  19. Genome instability in Lactobacillus rhamnosus GG

    NARCIS (Netherlands)

    Sybesma, W.; Molenaar, D.; IJcken, W. van; Venema, K.; Korta, R.

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the geno

  20. Mechanisms of Low Dose Radio-Suppression of Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Engelward, Bevin P

    2009-09-16

    The major goal of this project is to contribute toward the elucidation of the impact of long term low dose radiation on genomic stability. We have created and characterized novel technologies for delivering long term low dose radiation to animals, and we have studied genomic stability by applying cutting edge molecular analysis technologies. Remarkably, we have found that a dose rate that is 300X higher than background radiation does not lead to any detectable genomic damage, nor is there any significant change in gene expression for genes pertinent to the DNA damage response. These results point to the critical importance of dose rate, rather than just total dose, when evaluating public health risks and when creating regulatory guidelines. In addition to these studies, we have also further developed a mouse model for quantifying cells that have undergone a large scale DNA sequence rearrangement via homologous recombination, and we have applied these mice in studies of both low dose radiation and space radiation. In addition to more traditional approaches for assessing genomic stability, we have also explored radiation and possible beneficial effects (adaptive response), long term effects (persistent effects) and effects on communication among cells (bystander effects), both in vitro and in vivo. In terms of the adaptive response, we have not observed any significant induction of an adaptive response following long term low dose radiation in vivo, delivered at 300X background. In terms of persistent and bystander effects, we have revealed evidence of a bystander effect in vivo and with researchers at and demonstrated for the first time the molecular mechanism by which cells “remember” radiation exposure. Understanding the underlying molecular mechanisms by which radiation can induce genomic instability is fundamental to our ability to assess the biological impact of low dose radiation. Finally, in a parallel set of studies we have explored the effects of heavy

  1. Dissipation-induced instabilities and symmetry

    Institute of Scientific and Technical Information of China (English)

    Oleg N. Kirillov; Ferdinand Verhulst

    2011-01-01

    The paradox of destabilization of a conservative or non-conservative system by small dissipation, or Ziegler's paradox (1952), has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations. Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary, associated with Whitney's umbrella. The first explanation of Ziegler's paradox was given (much earlier) by Oene Bottema in 1956. The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.

  2. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas.

    Science.gov (United States)

    Duquette, Michelle L; Huber, Michael D; Maizels, Nancy

    2007-03-15

    Diffuse large B-cell lymphoma is the most common lymphoid malignancy in adults. It is a heterogeneous disease with variability in outcome. Genomic instability of a subset of proto-oncogenes, including c-MYC, BCL6, RhoH, PIM1, and PAX5, can contribute to initial tumor development and has been correlated with poor prognosis and aggressive tumor growth. Lymphomas in which these proto-oncogenes are unstable derive from germinal center B cells that express activation-induced deaminase (AID), the B-cell-specific factor that deaminates DNA to initiate immunoglobulin gene diversification. Proto-oncogene instability is evident as both aberrant hypermutation and translocation, paralleling programmed instability which diversifies the immunoglobulin loci. We have asked if genomic sequence correlates with instability in AID-positive B-cell lymphomas. We show that instability does not correlate with enrichment of the WRC sequence motif that is the consensus for deamination by AID. Instability does correlate with G-richness, evident as multiple runs of the base guanine on the nontemplate DNA strand. Extending previous analysis of c-MYC, we show experimentally that transcription of BCL6 and RhoH induces formation of structures, G-loops, which contain single-stranded regions targeted by AID. We further show that G-richness does not characterize translocation breakpoints in AID-negative B- and T-cell malignancies. These results identify G-richness as one feature of genomic structure that can contribute to genomic instability in AID-positive B-cell malignancies.

  3. An update on the mechanisms and pathophysiological consequences of genomic instability with a focus on ionizing radiation

    Directory of Open Access Journals (Sweden)

    Streffer C

    2015-12-01

    Full Text Available Christian Streffer Institute for Medical Radiobiology, University Clinics Essen, Essen, Germany Abstract: The genome of eukaryotic cells is generally instable. DNA damage occurs by endogenous processes and exogenous toxic agents. The efficient DNA repair pathways conserve the genetic information to a large extent throughout the life. However, exposure to genotoxic agents can increase the genomic instability. This phenomenon develops in a delayed manner after approximately 20 and more cell generations. It is comparatively thoroughly investigated after the exposure to ionizing radiation. The increase of genomic instability has been observed after exposures to ionizing radiation in vitro and in vivo as well as with many different types of radiation. The effect is induced over a wide dose range, and it has been found with cell death, chromosomal damage, cell transformations, mutations, double-strand breaks, malformations, and cancers. No specific chromosomes or genomic sites have been observed for such events. The increased genomic instability can be transmitted to the next generation. Possible mechanisms such as oxidative stress (mitochondria may be involved, reduced DNA repair, changes in telomeres, epigenetic effects are discussed. A second wave of oxidative stress has been observed after radiation exposures with considerably high doses as well as with cytotoxic agents at time periods when an increased genomic instability was seen. However, the increase of genomic instability also happens to much lower radiation doses. Hypoxia induces an increase of genomic instability. This effect is apparently connected with a reduction of DNA repair. Changes of telomeres appear as the most probable mechanisms for the increase of genomic instability. Syndromes have been described with a genetic predisposition for high radiosensitivity. These individuals show an increase of cancer, a deficient DNA repair, a disturbed regulation of the cell cycle, and an

  4. Genome instability in Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Sybesma, Wilbert; Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen; Kort, Remco

    2013-04-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies.

  5. Myc-dependent genome instability and lifespan in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christina Greer

    Full Text Available The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs. In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  6. Radiation-induced genomic instability and bystander effects: implications for radiation protection; Instabilite genomique et effet ''bystander'' induit par les rayonnements ionisants: implications pour la radioprotection

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B. [Harvard School of Public Health, Lab. of Radiobiology, Boston, MA (United States)

    2002-09-01

    Evidence has emerged over the past decade for the existence of two cellular phenomenons which challenge the standard paradigms for the induction of biological effects by ionizing radiation. In both cases, important genetic changes arise in cells that in themselves receive no radiation exposure. In the first, radiation induces a type of transmissible genomic instability in cells that leads to a persistent enhancement in the rate at which genetic alterations including mutations and chromosomal aberrations arise in the descendants of the original irradiated cell after many generations of replication. In the bystander effect, damage signals are transmitted from irradiated to non-irradiated cells in the population, leading to the occurrence of biologic effects in these 'bystander' cells. In this review, our current knowledge concerning these two phenomena is described and their potential impact on the estimation of risks of low level radiation exposure discussed. (author)

  7. Autophagy-independent senescence and genome instability driven by targeted telomere dysfunction.

    Science.gov (United States)

    Mar, Florie A; Debnath, Jayanta; Stohr, Bradley A

    2015-01-01

    Telomere dysfunction plays a complex role in tumorigenesis. While dysfunctional telomeres can block the proliferation of incipient cancer clones by inducing replicative senescence, fusion of dysfunctional telomeres can drive genome instability and oncogenic genomic rearrangements. Therefore, it is important to define the regulatory pathways that guide these opposing effects. Recent work has shown that the autophagy pathway regulates both senescence and genome instability in various contexts. Here, we apply models of acute telomere dysfunction to determine whether autophagy modulates the resulting genome instability and senescence responses. While telomere dysfunction rapidly induces autophagic flux in human fibroblast cell lines, inhibition of the autophagy pathway does not have a significant impact upon the transition to senescence, in contrast to what has previously been reported for oncogene-induced senescence. Our results suggest that this difference may be explained by disparities in the development of the senescence-associated secretory phenotype. We also show that chromosome fusions induced by telomere dysfunction are comparable in autophagy-proficient and autophagy-deficient cells. Altogether, our results highlight the complexity of the senescence-autophagy interface and indicate that autophagy induction is unlikely to play a significant role in telomere dysfunction-driven senescence and chromosome fusions.

  8. Heavy ions, radioprotectors and genomic instability: implications for human space exploration.

    Science.gov (United States)

    Dziegielewski, Jaroslaw; Goetz, Wilfried; Baulch, Janet E

    2010-08-01

    The risk associated with space radiation exposure is unique from terrestrial radiation exposures due to differences in radiation quality, including linear energy transfer (LET). Both high- and low-LET radiations are capable of inducing genomic instability in mammalian cells, and this instability is thought to be a driving force underlying radiation carcinogenesis. Unfortunately, during space exploration, flight crews cannot entirely avoid radiation exposure. As a result, chemical and biological countermeasures will be an important component of successful extended missions such as the exploration of Mars. There are currently several radioprotective agents (radioprotectors) in use; however, scientists continue to search for ideal radioprotective compounds-safe to use and effective in preventing and/or reducing acute and delayed effects of irradiation. This review discusses the agents that are currently available or being evaluated for their potential as radioprotectors. Further, this review discusses some implications of radioprotection for the induction and/or propagation of genomic instability in the progeny of irradiated cells.

  9. Genomic instability of gold nanoparticle treated human lung fibroblast cells.

    Science.gov (United States)

    Li, Jasmine J; Lo, Soo-Ling; Ng, Cheng-Teng; Gurung, Resham Lal; Hartono, Deny; Hande, Manoor Prakash; Ong, Choon-Nam; Bay, Boon-Huat; Yung, Lin-Yue Lanry

    2011-08-01

    Gold nanoparticles (AuNPs) are one of the most versatile and widely researched materials for novel biomedical applications. However, the current knowledge in their toxicological profile is still incomplete and many on-going investigations aim to understand the potential adverse effects in human body. Here, we employed two dimensional gel electrophoresis to perform a comparative proteomic analysis of AuNP treated MRC-5 lung fibroblast cells. In our findings, we identified 16 proteins that were differentially expressed in MRC-5 lung fibroblasts following exposure to AuNPs. Their expression levels were also verified by western blotting and real time RT-PCR analysis. Of interest was the difference in the oxidative stress related proteins (NADH ubiquinone oxidoreductase (NDUFS1), protein disulfide isomerase associate 3 (PDIA3), heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and thioredoxin-like protein 1 (TXNL1)) as well as proteins associated with cell cycle regulation, cytoskeleton and DNA repair (heterogeneous nuclear ribonucleus protein C1/C2 (hnRNP C1/C2) and Secernin-1 (SCN1)). This finding is consistent with the genotoxicity observed in the AuNP treated lung fibroblasts. These results suggest that AuNP treatment can induce oxidative stress-mediated genomic instability.

  10. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma.

    Science.gov (United States)

    de Araujo, Luiza F; Fonseca, Aline S; Muys, Bruna R; Plaça, Jessica R; Bueno, Rafaela B L; Lorenzi, Julio C C; Santos, Anemari R D; Molfetta, Greice A; Zanette, Dalila L; Souza, Jorge E S; Valente, Valeria; Silva, Wilson A

    2015-11-01

    Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.

  11. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2014-11-01

    Instability during DNA Replication." 10: April 12, 2013-University of Zurich Cancer Mini-Symposium in Grindelwald, Switzerland - “Genome Stability during...53BP1DB, 53BP18A, o 45 min recovery) and immunoprecipitation was performed with anti- FLAG antib immunoprecipitated protein (right). (B) Isogenic...explore the mechanism of PTIP recruitment to DSBs, we expressed FLAG -tagged PTIP in WT, 53BP1/, and ATM/ MEFs and irradiated them with 10 Gy (Figure 6A

  12. Initiation of genome instability and preneoplastic processes through loss of Fhit expression.

    Directory of Open Access Journals (Sweden)

    Joshua C Saldivar

    Full Text Available Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the

  13. Initiation of genome instability and preneoplastic processes through loss of Fhit expression.

    Directory of Open Access Journals (Sweden)

    Joshua C Saldivar

    Full Text Available Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the

  14. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence.

    Science.gov (United States)

    Gawel, Damian; Seed, Patrick C

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  15. Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Hong Qin

    Full Text Available Increasing genomic instability is associated with aging in eukaryotes, but the connection between genomic instability and natural variation in life span is unknown. We have quantified chronological life span and loss-of-heterozygosity (LOH in 11 natural isolates of Saccharomyces cerevisiae. We show that genomic instability increases and mitotic asymmetry breaks down during chronological aging. The age-dependent increase of genomic instability generally lags behind the drop of viability and this delay accounts for approximately 50% of the observed natural variation of replicative life span in these yeast isolates. We conclude that the abilities of yeast strains to tolerate genomic instability co-vary with their replicative life spans. To the best of our knowledge, this is the first quantitative evidence that demonstrates a link between genomic instability and natural variation in life span.

  16. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  17. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    DEFF Research Database (Denmark)

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.;

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells...... that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, the tolerant phenotype in tetraploid cells, coupled with a doubling of chromosome aberrations per cell, allows...... chromosome abnormalities to evolve specifically in tetraploids, recapitulating chromosomal changes in genomically complex colorectal tumors. Finally, a genome-doubling event is independently predictive of poor relapse-free survival in early-stage disease in two independent cohorts in multivariate analyses...

  18. Affected chromosome homeostasis and genomic instability of clonal yeast cultures.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Panek, Anita; Golec, Ewelina; Lewinska, Anna; Wnuk, Maciej

    2016-05-01

    Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.

  19. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  20. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    the governing equations, are linearly unstable to arbitrarily small perturbations. It should be noted similar stability characteristics are found for shallow layer fluid flows on an inclined plane, with small wavelength perturbations stabilised by the inclusion of empirical frictional drag and viscous dissipation. Furthermore, depth-averaged models for roll waves on a monodisperse, shallow granular layer released on an inclined plane have a similar problem with high wave-number modes remaining linearly unstable. In this case the high wavenumber instability can be suppressed by the inclusion of (phenomenological) viscous dissipation. It is possible that by including similar rheological terms in our depth-averaged model the small wavelength modes can be stabilised and a well defined finger width can be predicted. This is the first model to describe the break-up of a uniform front of granular material, and it represents a crucial step forward in obtaining a mathematical model of this process. However, the current model is not complete and remains linearly unstable to arbitrarily small wavelength perturbations. We anticipate that these small wavelength instabilities can be stabilised by including additional physical effects, and this remains an active avenue of investigation. Reference: Woodhouse, M; Thornton, A. R.; Johnson, C.G.; Kokelaar, P, and Gray, J.M.N.T. Segregation-induced fingering instabilities in granular free surface flows. Journal of Fluids Mechanics. (2012). 709 543-580

  1. Streak instability induced by bedload diffusion

    Science.gov (United States)

    Abramian, Anaïs; Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Eric

    2016-04-01

    The bed of an alluvial river is made of the sediment it transports. Its shape and size are controlled mostly by bedload transport which, at first order, entrains sediment grains along the flow. Gravity also pulls the moving grains towards the center of the channel, thus eroding the banks continually (Parker 1978). However, laboratory observations show that, due to the bed roughness, the trajectory of a transported grain fluctuates in the transverse direction (Seizilles et al. 2014). The bedload layer is therefore a collection of random walkers which diffuse towards the less active areas of the bed. In a river at equilibrium, bedload diffusion counteracts gravity to maintain the banks. If an initially flat bed of sediment is perturbed with longitudinal streaks, the flow-induced shear stress is weaker where the flow is shallower. Therefore, we expect bedload diffusion to induce a flux of sediment towards the crests of the perturbation. This positive feedback induces an instability which can generate new channels. We suggest that this mechanism could explain the transition from a single-thread river to a braided one.

  2. Cancer models, genomic instability and somatic cellular Darwinian evolution

    Directory of Open Access Journals (Sweden)

    Little Mark P

    2010-04-01

    Full Text Available Abstract The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12, the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK (Math. Biosci. 1979:47;55-77, the generalized MVK model of Little (Biometrics 1995:51;1278-1291 and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238. Reviewers This article was reviewed by RA Gatenby and M Kimmel.

  3. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  4. Break-Induced Replication and Genome Stability

    Directory of Open Access Journals (Sweden)

    Anna Malkova

    2012-10-01

    Full Text Available Genetic instabilities, including mutations and chromosomal rearrangements, lead to cancer and other diseases in humans and play an important role in evolution. A frequent cause of genetic instabilities is double-strand DNA breaks (DSBs, which may arise from a wide range of exogeneous and endogeneous cellular factors. Although the repair of DSBs is required, some repair pathways are dangerous because they may destabilize the genome. One such pathway, break-induced replication (BIR, is the mechanism for repairing DSBs that possesses only one repairable end. This situation commonly arises as a result of eroded telomeres or collapsed replication forks. Although BIR plays a positive role in repairing DSBs, it can alternatively be a dangerous source of several types of genetic instabilities, including loss of heterozygosity, telomere maintenance in the absence of telomerase, and non-reciprocal translocations. Also, mutation rates in BIR are about 1000 times higher as compared to normal DNA replication. In addition, micro-homology-mediated BIR (MMBIR, which is a mechanism related to BIR, can generate copy-number variations (CNVs as well as various complex chromosomal rearrangements. Overall, activation of BIR may contribute to genomic destabilization resulting in substantial biological consequences including those affecting human health.

  5. Methods to Monitor DNA Repair Defects and Genomic Instability in the Context of a Disrupted Nuclear Lamina

    Science.gov (United States)

    Gonzalo, Susana; Kreienkamp, Ray

    2016-01-01

    The organization of the genome within the nuclear space is viewed as an additional level of regulation of genome function, as well as a means to ensure genome integrity. Structural proteins associated with the nuclear envelope, in particular lamins (A- and B-type) and lamin-associated proteins, play an important role in genome organization. Interestingly, there is a whole body of evidence that links disruptions of the nuclear lamina with DNA repair defects and genomic instability. Here, we describe a few standard techniques that have been successfully utilized to identify mechanisms behind DNA repair defects and genomic instability in cells with an altered nuclear lamina. In particular, we describe protocols to monitor changes in the expression of DNA repair factors (Western blot) and their recruitment to sites of DNA damage (immunofluorescence); kinetics of DNA double-strand break repair after ionizing radiation (neutral comet assays); frequency of chromosomal aberrations (FISH, fluorescence in situ hybridization); and alterations in telomere homeostasis (Quantitative-FISH). These techniques have allowed us to shed some light onto molecular mechanisms by which alterations in A-type lamins induce genomic instability, which could contribute to the pathophysiology of aging and aging-related diseases. PMID:27147057

  6. Instability-induced hierarchy in bipedal locomotion

    Science.gov (United States)

    Ohgane, Kunishige; Ueda, Kei-Ichi

    2008-05-01

    One of the important features of human locomotion is its instant adaptability to various unpredictable changes of physical and environmental conditions. This property is known as flexibility. Modeling the bipedal locomotion system, we show that initial-state coordination by a global variable which encodes the attractor basins of the system can yield flexibility. This model is based on the following hypotheses: (i) the walking velocity is a global variable, and (ii) the leg posture at the beginning of the stance phase is the initial state of the gait. Moreover, we confirm these hypotheses. We investigate the regions near the neutral states between walking and falling phases using numerical experiments and demonstrate that global variables can be defined as the dominant unstable directions of the system dynamics near the neutral states. We propose the concept of an “instability-induced hierarchy.” In this hierarchy, global variables govern other variables near neutral states; i.e., they become elements of a higher level.

  7. Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability

    Directory of Open Access Journals (Sweden)

    Aaraby Yoheswaran Nielsen

    2016-06-01

    Full Text Available Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.

  8. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis.

    Science.gov (United States)

    Amor-Guéret, Mounira

    2006-05-08

    Bloom syndrome (BS) displays one of the strongest known correlations between chromosomal instability and an increased risk of malignancy at an early age. The prevention of genomic instability and cancer depends on a complex network of pathways induced in response to DNA damage and stalled replication forks, including cell-cycle checkpoints, DNA repair, and apoptosis. Several studies have demonstrated that BLM is involved in the cellular response to DNA damage and stalled replication forks. BLM interacts physically and functionally with several proteins involved in the maintenance of genome integrity and BLM is redistributed and/or phosphorylated in response to several genotoxic stresses. The data concerning the relationship between BLM and these cellular pathways are summarized and the role of BLM in the rescue of arrested replication forks is discussed. Moreover, I speculate that BLM deficiency is lethal, and that BLM-deficient cells escaping apoptotic death do so by constitutively inducing a bacterial SOS-like response including the induction of alternative replication pathway(s) dependent on recombination, contributing to the mutator and hyper-Rec phenotypes characteristic of BS cells. This mechanism may be dependent on the RAD51 gene family, and involved in carcinogenesis in the general population.

  9. Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity.

    Science.gov (United States)

    Nagaoka, Hitoshi; Tran, Thinh Huy; Kobayashi, Maki; Aida, Masatoshi; Honjo, Tasuku

    2010-04-01

    Activation-induced cytidine deaminase (AID) is essential and sufficient to accomplish class-switch recombination and somatic hypermutation, which are two genetic events required for the generation of antibody-mediated memory responses. However, AID can also introduce genomic instability, giving rise to chromosomal translocation and/or mutations in proto-oncogenes. It is therefore important for cells to suppress AID expression unless B lymphocytes are stimulated by pathogens. The mechanisms for avoiding the accidental activation of AID and thereby avoiding genomic instability can be classified into three types: (i) transcriptional regulation, (ii) post-transcriptional regulation and (iii) target specificity. This review summarizes the recently elucidated comprehensive transcriptional regulation mechanisms of the AID gene and the post-transcriptional regulation that may be critical for preventing excess AID activity. Finally, we discuss why AID targets not only Igs but also other proto-oncogenes. AID targets many genes but it is not totally promiscuous and the criteria that specify its targets are unclear. A recent finding that a non-B DNA structure forms upon a decrease in topoisomerase 1 expression may explain this paradoxical target specificity determination. Evolution has chosen AID as a mutator of Ig genes because of its efficient DNA cleavage activity, even though its presence increases the risk of genomic instability. This is probably because immediate protection against pathogens is more critical for species survival than complete protection from the slower acting consequences of genomic instability, such as tumor formation.

  10. Anticipating Terrorist Safe Havens from Instability Induced Conflict

    Science.gov (United States)

    Shearer, Robert; Marvin, Brett

    This chapter presents recent methods developed at the Center for Army Analysis to classify patterns of nation-state instability that lead to conflict. The ungoverned areas endemic to failed nation-states provide terrorist organizations with safe havens from which to plan and execute terrorist attacks. Identification of those states at risk for instability induced conflict should help to facilitate effective counter terrorism policy planning efforts. Nation-states that experience instability induced conflict are similar in that they share common instability factors that make them susceptible to experiencing conflict. We utilize standard pattern classification algorithms to identify these patterns. First, we identify features (political, military, economic and social) that capture the instability of a nation-state. Second, we forecast the future levels of these features for each nation-state. Third, we classify each future state’s conflict potential based upon the conflict level of those states in the past most similar to the future state.

  11. [Oncovirus-induced permanent genetic instability in Drosophila melanogaster].

    Science.gov (United States)

    Mit', N V; Dzhansugurova, L B; Bersimbaev, R I

    2000-08-01

    Mutant alleles of a system of genetic instability induced by oncoviral DNAs were shown to demonstrate an unstable manifestation 500 generations after their emergence. A cytogenetic analysis of oncovirus-induced unstable lines has revealed numerous chromosome rearrangements. For the Lobe alleles of this system, a specific chromosome rearrangement, Df(2L) = 35C-36B, was found on the left arm of chromosome 2. We used recessive lethal mutations involving DNA rearrangements in a successful construction of cross systems for "explosive" instability.

  12. Genomic instability and radiation risk in molecular pathways to colon cancer.

    Directory of Open Access Journals (Sweden)

    Jan Christian Kaiser

    Full Text Available Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI. GI appears in molecular pathways of microsatellite instability (MSI and chromosomal instability (CIN with clinically observed case shares of about 15-20% and 80-85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients

  13. Replication independent DNA double-strand break retention may prevent genomic instability

    Directory of Open Access Journals (Sweden)

    Pornthanakasem Wichai

    2010-03-01

    Full Text Available Abstract Background Global hypomethylation and genomic instability are cardinal features of cancers. Recently, we established a method for the detection of DNA methylation levels at sites close to endogenous DNA double strand breaks (EDSBs, and found that those sites have a higher level of methylation than the rest of the genome. Interestingly, the most significant differences between EDSBs and genomes were observed when cells were cultured in the absence of serum. DNA methylation levels on each genomic location are different. Therefore, there are more replication-independent EDSBs (RIND-EDSBs located in methylated genomic regions. Moreover, methylated and unmethylated RIND-EDSBs are differentially processed. Euchromatins respond rapidly to DSBs induced by irradiation with the phosphorylation of H2AX, γ-H2AX, and these initiate the DSB repair process. During G0, most DSBs are repaired by non-homologous end-joining repair (NHEJ, mediated by at least two distinct pathways; the Ku-mediated and the ataxia telangiectasia-mutated (ATM-mediated. The ATM-mediated pathway is more precise. Here we explored how cells process methylated RIND-EDSBs and if RIND-EDSBs play a role in global hypomethylation-induced genomic instability. Results We observed a significant number of methylated RIND-EDSBs that are retained within deacetylated chromatin and free from an immediate cellular response to DSBs, the γ-H2AX. When cells were treated with tricostatin A (TSA and the histones became hyperacetylated, the amount of γ-H2AX-bound DNA increased and the retained RIND-EDSBs were rapidly repaired. When NHEJ was simultaneously inhibited in TSA-treated cells, more EDSBs were detected. Without TSA, a sporadic increase in unmethylated RIND-EDSBs could be observed when Ku-mediated NHEJ was inhibited. Finally, a remarkable increase in RIND-EDSB methylation levels was observed when cells were depleted of ATM, but not of Ku86 and RAD51. Conclusions Methylated RIND-EDSBs are

  14. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    Science.gov (United States)

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURESR. Julian PrestonEnvironmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USAThere ...

  15. Comparison of mortality and incidence cancer risk and models of genomic instability: the Techa River cohort

    Energy Technology Data Exchange (ETDEWEB)

    Eidemueller, Markus; Jacob, Peter [Helmholtz Zentrum Muenchen, Institut fuer Strahlenschutz, Neuherberg (Germany); Ostroumova, Zhenia; Krestinina, Ludmila; Akleyev, Alexander [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation)

    2009-07-01

    Solid cancer mortality and incidence risk after radiation exposure in the Techa River Cohort in the Southern Urals region of Russia is analyzed. Residents along the Techa River received protracted exposure in the 1950s due to the releases of radioactive materials from the Mayak plutonium complex. The analysis is performed within the framework of the biologically based two-stage clonal expansion (TSCE) model and with excess relative risk models. TSCE models including effects of radiation-induced genomic instability are applied to the data and it is found that the best description of the radiation risk is achieved with the same model of genomic instability both for the mortality and incidence cohort. By a direct comparison of the cancer risk in both cohorts it is shown how the mortality and incidence rates and excess relative risk can be related. The TSCE parameters, that describe effective biological time scales in the process of cancer development, turn out to be similar for the mortality and incidence data sets.

  16. Instabilities in geomaterials induced by dissolution

    Science.gov (United States)

    Stefanou, I.; Sulem, J.

    2015-12-01

    Deformation bands play an important role in reservoir engineering, geological storage, underwater landslides and slow geological procedures. Various mechanisms can be involved at different scales and may be responsible for deformation bands. Mechanical and chemical degradation of the grain skeleton is a softening factor that can lead to compaction, shear or even dilation band formation [1]-[3]. The present study is twofold. On one hand it focuses on the mathematical modeling of chemically induced strain localization instabilities in porous rocks and on the other hand it explores the conditions for their creation [4], [5]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during deformation, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [6]. Under the presence of dissolving fluids the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). Based on a micromechanical model, the conditions for deformation band triggering are investigated analytically. The heterogeneity of the microstructure in terms of chemical reactivity of the constituents of the REV is taken into account resulting in a characteristic internal length of the system. The post bifurcation behavior is finally studied both analytically and numerically revealing the thickness of the localized zone. References[1] I. Stefanou and J. Sulem, DOI: 10.1002/2013JB010342 [2] M. Cha and J. C. Santamarina, DOI: 10.1680/geot.14P.115 [3] M. D. Ingraham, K. A. Issen, and D. J. Holcomb, DOI: 10.1007/s11440-013-0275-y [4] K. A. Issen and J. W. Rudnicki, DOI: 10.1029/2000JB900185 [5] J. W. Rudnicki and J. R. Rice, DOI

  17. Cavitation instabilities of an inducer in a cryogenic pump

    Science.gov (United States)

    Kim, Dae-Jin; Sung, Hyung Jin; Choi, Chang-Ho; Kim, Jin-Sun

    2017-03-01

    Inducers assist cryogenic pumps to operate safely under cavitation conditions by increasing the pressure of the impeller inlet, but create cavitation instabilities. The use of cryogenic fluids requires special attention because of safety and handling concerns. To examine the cavitation instabilities of a cryogenic pump, two kinds of working fluids, water and liquid oxygen, were employed. The cavitation instabilities were measured with an accelerometer installed on the pump casing. The flow coefficient and the head slightly decrease with decreases in the cavitation number before the cavitation breakdown. These trends are true of both fluids. Several cavitation instabilities were identified with the accelerometer. At lower flow coefficients, super-synchronous rotating cavitation was found in a similar cavitation number range for both fluids. At higher flow coefficients, the cavitation numbers of the cavitation instabilities in the liquid oxygen test are smaller than those of the water test.

  18. Regional genomic instability predisposes to complex dystrophin gene rearrangements.

    Science.gov (United States)

    Oshima, Junko; Magner, Daniel B; Lee, Jennifer A; Breman, Amy M; Schmitt, Eric S; White, Lisa D; Crowe, Carol A; Merrill, Michelle; Jayakar, Parul; Rajadhyaksha, Aparna; Eng, Christine M; del Gaudio, Daniela

    2009-09-01

    Mutations in the dystrophin gene (DMD) cause Duchenne and Becker muscular dystrophies and the majority of cases are due to DMD gene rearrangements. Despite the high incidence of these aberrations, little is known about their causative molecular mechanism(s). We examined 792 DMD/BMD clinical samples by oligonucleotide array-CGH and report on the junction sequence analysis of 15 unique deletion cases and three complex intragenic rearrangements to elucidate potential underlying mechanism(s). Furthermore, we present three cases with intergenic rearrangements involving DMD and neighboring loci. The cases with intragenic rearrangements include an inversion with flanking deleted sequences; a duplicated segment inserted in direct orientation into a deleted region; and a splicing mutation adjacent to a deletion. Bioinformatic analysis demonstrated that 7 of 12 breakpoints combined among 3 complex cases aligned with repetitive sequences, as compared to 4 of 30 breakpoints for the 15 deletion cases. Moreover, the inversion/deletion case may involve a stem-loop structure that has contributed to the initiation of this rearrangement. For the duplication/deletion and splicing mutation/deletion cases, the presence of the first mutation, either a duplication or point mutation, may have elicited the deletion events in an attempt to correct preexisting mutations. While NHEJ is one potential mechanism for these complex rearrangements, the highly complex junction sequence of the inversion/deletion case suggests the involvement of a replication-based mechanism. Our results support the notion that regional genomic instability, aided by the presence of repetitive elements, a stem-loop structure, and possibly preexisting mutations, may elicit complex rearrangements of the DMD gene.

  19. Genomic instability and telomere fusion of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Junko Maeda

    Full Text Available Canine osteosarcoma (OSA is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.

  20. Trans-generational radiation-induced chromosomal instability in the female enhances the action of chemical mutagens

    Energy Technology Data Exchange (ETDEWEB)

    Camats, Nuria [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Garcia, Francisca [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Parrilla, Juan Jose [Servicio de Ginecologia y Obstetricia, Hospital Universitario Virgen de la Arrixaca, 30120 El Palmar, Murcia (Spain); Calaf, Joaquim [Servei de Ginecologia i Obstetricia, Hospital Universitari de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Martin, Miguel [Departament de Pediatria, d' Obstetricia i Ginecologia i de Medicina Preventiva, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Caldes, Montserrat Garcia [Institut de Biotecnologia i Biomedicina (IBB), Universitat Autonoma de Barcelona, 08193 Barcelona (Spain); Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Barcelona (Spain)], E-mail: Montserrat.Garcia.Caldes@uab.es

    2008-04-02

    Genomic instability can be produced by ionising radiation, so-called radiation-induced genomic instability, and chemical mutagens. Radiation-induced genomic instability occurs in both germinal and somatic cells and also in the offspring of irradiated individuals, and it is characterised by genetic changes including chromosomal rearrangements. The majority of studies of trans-generational, radiation-induced genomic instability have been described in the male germ line, whereas the authors who have chosen the female as a model are scarce. The aim of this work is to find out the radiation-induced effects in the foetal offspring of X-ray-treated female rats and, at the same time, the possible impact of this radiation-induced genomic instability on the action of a chemical mutagen. In order to achieve both goals, the quantity and quality of chromosomal damage were analysed. In order to detect trans-generational genomic instability, a total of 4806 metaphases from foetal tissues from the foetal offspring of X-irradiated female rats (5 Gy, acute dose) were analysed. The study's results showed that there is radiation-induced genomic instability: the number of aberrant metaphases and the breaks per total metaphases studied increased and were found to be statistically significant (p {<=} 0.05), with regard to the control group. In order to identify how this trans-generational, radiation-induced chromosomal instability could influence the chromosomal behaviour of the offspring of irradiated rat females in front of a chemical agent (aphidicolin), a total of 2481 metaphases were studied. The observed results showed that there is an enhancement of the action of the chemical agent: chromosomal breaks per aberrant metaphases show significant differences (p {<=} 0.05) in the X-ray- and aphidicolin-treated group as regards the aphidicolin-treated group. In conclusion, our findings indicate that there is trans-generational, radiation-induced chromosomal instability in the foetal

  1. Electromagnetic instability induced by Neutrino interaction

    CERN Document Server

    Bhatt, Jitesh R

    2016-01-01

    A kinetic theory of spin plasma in a neutrino background is developed. Equations of motion of a charged particle in the presence of electromagnetic field and the neutrino asymmetry are derived using the effective low-energy Lagrangian. Modified Vlasov equation is obtained by extending the regular phase-space to incorporate the spin degree of freedom. We apply this formalism to the early Universe to study collective modes in the plasma after the neutrino decoupling. It is shown that the parity violating term in the Lagrangian leads to a plasma instability which can generate magnetic fields. We find that that at the temperatures below the neutrino decoupling the instability can produce magnetic field of 10 Gauss in the Universe. We discuss cosmological implications of the results.

  2. The X chromosome: does it have a role in Bloom syndrome, a genomic instability disorder?

    Science.gov (United States)

    Aslan, Deniz

    2014-01-01

    The Bloom syndrome, caused by mutations in a single gene [BLM (15q26.1)], is a rare genomic instability syndrome. Despite its autosomal recessive transmission, it shows a male dominance, suggesting the possibility of a subgroup with X-linked recessive inheritance. In view of the latest molecular developments achieved in the other genomic instability syndromes, the potential functions of the X chromosome in maintaining genomic stability, and particularly, the first clues of Bloom syndrome development by mechanisms other than the BLM, we suggest herein that the X chromosome should be investigated in Bloom syndrome.

  3. DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome.

    Science.gov (United States)

    Gonzalo, Susana; Kreienkamp, Ray

    2015-06-01

    The integrity of the nuclear lamina has emerged as an important factor in the maintenance of genome stability. In particular, mutations in the LMNA gene, encoding A-type lamins (lamin A/C), alter nuclear morphology and function, and cause genomic instability. LMNA gene mutations are associated with a variety of degenerative diseases and devastating premature aging syndromes such as Hutchinson-Gilford Progeria Syndrome (HGPS) and Restrictive Dermopathy (RD). HGPS is a severe laminopathy, with patients dying in their teens from myocardial infarction or stroke. HGPS patient-derived cells exhibit nuclear shape abnormalities, changes in epigenetic regulation and gene expression, telomere shortening, genome instability, and premature senescence. This review highlights recent advances in identifying molecular mechanisms that contribute to the pathophysiology of HGPS, with a special emphasis on DNA repair defects and genome instability.

  4. Telomere-mediated chromosomal instability triggers TLR4 induced inflammation and death in mice.

    Directory of Open Access Journals (Sweden)

    Rabindra N Bhattacharjee

    Full Text Available BACKGROUND: Telomeres are essential to maintain chromosomal stability. Cells derived from mice lacking telomerase RNA component (mTERC-/- mice display elevated telomere-mediated chromosome instability. Age-dependent telomere shortening and associated chromosome instability reduce the capacity to respond to cellular stress occurring during inflammation and cancer. Inflammation is one of the important risk factors in cancer progression. Controlled innate immune responses mediated by Toll-like receptors (TLR are required for host defense against infection. Our aim was to understand the role of chromosome/genome instability in the initiation and maintenance of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of TLR4 in telomerase deficient mTERC-/- mice harbouring chromosome instability which did not develop any overt immunological disorder in pathogen-free condition or any form of cancers at this stage. Chromosome instability was measured in metaphase spreads prepared from wildtype (mTERC+/+, mTERC+/- and mTERC-/- mouse splenocytes. Peritoneal and/or bone marrow-derived macrophages were used to examine the responses of TLR4 by their ability to produce inflammatory mediators TNFalpha and IL6. Our results demonstrate that TLR4 is highly up-regulated in the immune cells derived from telomerase-null (mTERC-/- mice and lipopolysaccharide, a natural ligand for TLR4 stabilises NF-kappaB binding to its promoter by down-regulating ATF-3 in mTERC-/- macrophages. CONCLUSIONS/SIGNIFICANCE: Our findings implied that background chromosome instability in the cellular level stabilises the action of TLR4-induced NF-kappaB action and sensitises cells to produce excess pro-inflammatory mediators. Chromosome/genomic instability data raises optimism for controlling inflammation by non-toxic TLR antagonists among high-risk groups.

  5. Genomic instability of human embryonic stem cell lines using different passaging culture methods.

    Science.gov (United States)

    Tosca, Lucie; Feraud, Olivier; Magniez, Aurélie; Bas, Cécile; Griscelli, Frank; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2015-01-01

    Human embryonic stem cells exhibit genomic instability that can be related to culture duration or to the passaging methods used for cell dissociation. In order to study the impact of cell dissociation techniques on human embryonic stem cells genomic instability, we cultured H1 and H9 human embryonic stem cells lines using mechanical/manual or enzymatic/collagenase-IV dissociation methods. Genomic instability was evaluated at early (p60) passages by using oligonucleotide based array-comparative genomic hybridization 105 K with a mean resolution of 50 Kb. DNA variations were mainly located on subtelomeric and pericentromeric regions with sizes <100 Kb. In this study, 9 recurrent genomic variations were acquired during culture including the well known duplication 20q11.21. When comparing cell dissociation methods, we found no significant differences between DNA variations number and size, DNA gain or DNA loss frequencies, homozygous loss frequencies and no significant difference on the content of genes involved in development, cell cycle tumorigenesis and syndrome disease. In addition, we have never found any malignant tissue in 4 different teratoma representative of the two independent stem cell lines. These results show that the occurrence of genomic instability in human embryonic stem cells is similar using mechanical or collagenase IV-based enzymatic cell culture dissociation methods. All the observed genomic variations have no impact on the development of malignancy.

  6. Loss of RMI2 Increases Genome Instability and Causes a Bloom-Like Syndrome.

    Science.gov (United States)

    Hudson, Damien F; Amor, David J; Boys, Amber; Butler, Kathy; Williams, Lorna; Zhang, Tao; Kalitsis, Paul

    2016-12-01

    Bloom syndrome is a recessive human genetic disorder with features of genome instability, growth deficiency and predisposition to cancer. The only known causative gene is the BLM helicase that is a member of a protein complex along with topoisomerase III alpha, RMI1 and 2, which maintains replication fork stability and dissolves double Holliday junctions to prevent genome instability. Here we report the identification of a second gene, RMI2, that is deleted in affected siblings with Bloom-like features. Cells from homozygous individuals exhibit elevated rates of sister chromatid exchange, anaphase DNA bridges and micronuclei. Similar genome and chromosome instability phenotypes are observed in independently derived RMI2 knockout cells. In both patient and knockout cell lines reduced localisation of BLM to ultra fine DNA bridges and FANCD2 at foci linking bridges are observed. Overall, loss of RMI2 produces a partially active BLM complex with mild features of Bloom syndrome.

  7. Rac2-MRC-cIII–generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors

    Science.gov (United States)

    Nieborowska-Skorska, Margaret; Kopinski, Piotr K.; Ray, Regina; Hoser, Grazyna; Ngaba, Danielle; Flis, Sylwia; Cramer, Kimberly; Reddy, Mamatha M.; Koptyra, Mateusz; Penserga, Tyrone; Glodkowska-Mrowka, Eliza; Bolton, Elisabeth; Holyoake, Tessa L.; Eaves, Connie J.; Cerny-Reiterer, Sabine; Valent, Peter; Hochhaus, Andreas; Hughes, Timothy P.; van der Kuip, Heiko; Sattler, Martin; Wiktor-Jedrzejczak, Wieslaw; Richardson, Christine; Dorrance, Adrienne; Stoklosa, Tomasz; Williams, David A.

    2012-01-01

    Chronic myeloid leukemia in chronic phase (CML-CP) is induced by BCR-ABL1 oncogenic tyrosine kinase. Tyrosine kinase inhibitors eliminate the bulk of CML-CP cells, but fail to eradicate leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) displaying innate and acquired resistance, respectively. These cells may accumulate genomic instability, leading to disease relapse and/or malignant progression to a fatal blast phase. In the present study, we show that Rac2 GTPase alters mitochondrial membrane potential and electron flow through the mitochondrial respiratory chain complex III (MRC-cIII), thereby generating high levels of reactive oxygen species (ROS) in CML-CP LSCs and primitive LPCs. MRC-cIII–generated ROS promote oxidative DNA damage to trigger genomic instability, resulting in an accumulation of chromosomal aberrations and tyrosine kinase inhibitor–resistant BCR-ABL1 mutants. JAK2(V617F) and FLT3(ITD)–positive polycythemia vera cells and acute myeloid leukemia cells also produce ROS via MRC-cIII. In the present study, inhibition of Rac2 by genetic deletion or a small-molecule inhibitor and down-regulation of mitochondrial ROS by disruption of MRC-cIII, expression of mitochondria-targeted catalase, or addition of ROS-scavenging mitochondria-targeted peptide aptamer reduced genomic instability. We postulate that the Rac2-MRC-cIII pathway triggers ROS-mediated genomic instability in LSCs and primitive LPCs, which could be targeted to prevent the relapse and malignant progression of CML. PMID:22411871

  8. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    Science.gov (United States)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  9. Development of cancer-initiating cells and immortalized cells with genomic instability

    Science.gov (United States)

    Yoshioka, Ken-ichi; Atsumi, Yuko; Nakagama, Hitoshi; Teraoka, Hirobumi

    2015-01-01

    Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations and epigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells (CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A (ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2AX to levels representative of growth arrest in normal cells. PMID:25815132

  10. Chromosomal and Extrachromosomal Instability of the cyclin D2 Gene is Induced by Myc Overexpression

    Directory of Open Access Journals (Sweden)

    Sabine Mai

    1999-08-01

    Full Text Available We examined the expression of cyclins D1, D2, D3, and E in mouse B-lymphocytic tumors. Cyclin D2 mRNA was consistently elevated in plasmacytomas, which characteristically contain Myc-activating chromosome translocations and constitutive c-Myc mRNA and protein expression. We examined the nature of cyclin D2 overexpression in plasmacytomas and other tumors. Human and mouse tumor cell lines that exhibited c-Myc dysregulation displayed instability of the cyclin D2 gene, detected by Southern blot, fluorescent in situ hybridization (FISH, and in extrachromosomal preparations (Hirt extracts. Cyclin D2 instability was not seen in cells with low levels of c-Myc protein. To unequivocally demonstrate a role of c-Myc in the instability of the cyclin D2 gene, a Myc-estrogen receptor chimera was activated in two mouse cell lines. After 3 to 4 days of Myc-ERTm activation, instability at the cyclin D2 locus was seen in the form of extrachromosomal elements, determined by FISH of metaphase and interphase nuclei and of purified extrachromosomal elements. At the same time points, Northern and Western blot analyses detected increased cyclin D2 mRNA and protein levels. These data suggest that Myc-induced genomic instability may contribute to neoplasia by increasing the levels of a cell cycle—regulating protein, cyclin D2, via intrachromosomal amplification of its gene or generation of extrachromosomal copies.

  11. Detection of genomic instability in hypospadias patients by random ...

    African Journals Online (AJOL)

    DIRECTOR

    2011-05-16

    May 16, 2011 ... in situ hybridization, comparative genomic hybridization. (CGH) and ... Gene Genius Bio Imaging System (Syngene; Frederick, Maryland,. USA). .... molecular genetic case control studies with high and low hypospadias grade ...

  12. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21.

    Science.gov (United States)

    Lefort, Nathalie; Feyeux, Maxime; Bas, Cécile; Féraud, Olivier; Bennaceur-Griscelli, Annelise; Tachdjian, Gerard; Peschanski, Marc; Perrier, Anselme L

    2008-12-01

    By analyzing five human embryonic stem (hES) cell lines over long-term culture, we identified a recurrent genomic instability in the human genome. An amplification of 2.5-4.6 Mb at 20q11.21, encompassing approximately 23 genes in common, was detected in four cell lines of different origins. This amplification, which has been associated with oncogenic transformation, may provide a selective advantage to hES cells in culture.

  13. Genomic instability and tumorigenic induction in immortalized human bronchial epithelial cells by heavy ions

    Science.gov (United States)

    Hei, T. K.; Piao, C. Q.; Wu, L. J.; Willey, J. C.; Hall, E. J.

    1998-11-01

    Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.

  14. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    Science.gov (United States)

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-DoseCancer Responses.There has been a concerted effort in the field of radiation biology to better understand cellularresponses that could have an impact on the estin1ation of cancer...

  15. BYSTANDERS, ADAPTIVE RESPONSES AND GENOMIC INSTABILITY - POTENTIAL MODIFIERS OF LOW-DOSE CANCER RESPONSES.

    Science.gov (United States)

    Bystanders, Adaptive Responses and Genomic Instability -Potential Modifiers ofLow-DoseCancer Responses.There has been a concerted effort in the field of radiation biology to better understand cellularresponses that could have an impact on the estin1ation of cancer...

  16. BCR/ABL stimulates WRN to promote survival and genomic instability

    Science.gov (United States)

    Slupianek, Artur; Poplawski, Tomasz; Jozwiakowski, Stanislaw K.; Cramer, Kimberly; Pytel, Dariusz; Stoczynska, Ewelina; Nowicki, Michal O.; Blasiak, Janusz; Skorski, Tomasz

    2010-01-01

    BCR/ABL-transformed chronic myeloid leukemia (CML) cells accumulate numerous DNA double-strand breaks (DSBs) induced by reactive oxygen species (ROS) and genotoxic agents. To repair these lesions BCR/ABL stimulate unfaithful DSB repair pathways, homologous recombination repair (HRR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA). Here we show that BCR/ABL enhances the expression and increase nuclear localization of WRN (mutated in Werner syndrome), which is required for processing DSB ends during the repair. Other fusion tyrosine kinases (FTKs) such as TEL/ABL, TEL/JAK2, TEL/PDGFβR, and NPM/ALK also elevate WRN. BCR/ABL induces WRN mRNA and protein expression in part by c-MYC -mediated activation of transcription and Bcl-xL –dependent inhibition of caspase-dependent cleavage, respectively. WRN is in complex with BCR/ABL resulting in WRN tyrosine phosphorylation and stimulation of its helicase and exonuclease activities. Activated WRN protects BCR/ABL-positive cells from the lethal effect of oxidative and genotoxic stresses, which causes DSBs. In addition, WRN promotes unfaithful recombination-dependent repair mechanisms HRR and SSA, and enhances the loss of DNA bases during NHEJ in leukemia cells. In summary, we postulate that BCR/ABL-mediated stimulation of WRN modulates the efficiency and fidelity of major DSB repair mechanisms to protect leukemia cells from apoptosis and to facilitate genomic instability. PMID:21123451

  17. BCR/ABL stimulates WRN to promote survival and genomic instability.

    Science.gov (United States)

    Slupianek, Artur; Poplawski, Tomasz; Jozwiakowski, Stanislaw K; Cramer, Kimberly; Pytel, Dariusz; Stoczynska, Ewelina; Nowicki, Michal O; Blasiak, Janusz; Skorski, Tomasz

    2011-02-01

    BCR/ABL-transformed chronic myeloid leukemia (CML) cells accumulate numerous DNA double-strand breaks (DSB) induced by reactive oxygen species (ROS) and genotoxic agents. To repair these lesions BCR/ABL stimulate unfaithful DSB repair pathways, homologous recombination repair (HRR), nonhomologous end-joining (NHEJ), and single-strand annealing (SSA). Here, we show that BCR/ABL enhances the expression and increase nuclear localization of WRN (mutated in Werner syndrome), which is required for processing DSB ends during the repair. Other fusion tyrosine kinases (FTK), such as TEL/ABL, TEL/JAK2, TEL/PDGFβR, and NPM/ALK also elevate WRN. BCR/ABL induces WRN mRNA and protein expression in part by c-MYC-mediated activation of transcription and Bcl-xL-dependent inhibition of caspase-dependent cleavage, respectively. WRN is in complex with BCR/ABL resulting in WRN tyrosine phosphorylation and stimulation of its helicase and exonuclease activities. Activated WRN protects BCR/ABL-positive cells from the lethal effect of oxidative and genotoxic stresses, which causes DSBs. In addition, WRN promotes unfaithful recombination-dependent repair mechanisms HRR and SSA, and enhances the loss of DNA bases during NHEJ in leukemia cells. In summary, we postulate that BCR/ABL-mediated stimulation of WRN modulates the efficiency and fidelity of major DSB repair mechanisms to protect leukemia cells from apoptosis and to facilitate genomic instability.

  18. The Thermodynamical Instability Induced by Pressure Ionization in Fluid Helium

    CERN Document Server

    Li, Qiong; Zhang, Gong-Mu; Zhao, Yan-Hong; Lu, Guo; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    A systematic study of pressure ionization is carried out in the chemical picture by the example of fluid helium. By comparing the variants of the chemical model, it is demonstrated that the behavior of pressure ionization depends on the construction of the free energy function. In the chemical model with the Coulomb free energy described by the Pad\\'e interpolation formula, thermodynamical instability induced by pressure ionization is found to be manifested by a discontinuous drop or a continuous fall and rise along the pressure-density curve as well as the pressure-temperature curve, which is very much like the first order liquid-liquid phase transition of fluid hydrogen from the first principles simulations. In contrast, in the variant chemical model with the Coulomb free energy term empirically weakened, no thermodynamical instability is induced when pressure ionization occurs, and the resulting equation of state achieves good agreement with the first principles simulations of fluid helium.

  19. Characterization of genomic instability in Saccharomyces cerevisiae and engaging teaching strategies described in two curricula

    Science.gov (United States)

    Keller, Alexandra P.

    Cancer arises through an accumulation of mutations in the genome. In cancer cells, mutations are frequently caused by DNA rearrangements, which include chromosomal breakages, deletions, insertions, and translocations. Such events contribute to genomic instability, a known hallmark of cancer. To study cycles of chromosomal instability, we are using baker's yeast as a model organism. In yeast, a ChrVII system was previously developed (Admire et al., 2006), in which a disomic yeast strain was used to identify regions of instability on ChrVII. Using this system, a fragile site on the left arm of ChrVII (Admire et al., 2006) was identified and characterized. This study led to insight into mechanisms involved in chromosomal rearrangements and mutations that arise from them as well as to an understanding of mechanisms involved in genomic instability. To further our understanding of genomic instability, I devised a strategy to study instability on a different chromosome (ChrV) (Figure 3), so that we could determine whether lessons learned from the ChrVII system are applicable to other chromosomes, and/or whether other mechanisms of instability could be identified. A suitable strain was generated and analyzed, and our findings suggest that frequencies of instability on the right arm of ChrV are similar to those found in ChrVII. The results from the work in ChrV described in this paper support the idea that the instability found on ChrVII is not an isolated occurrence. My research was supported by an NSF GK-12 grant. The aim of this grant is to improve science education in middle schools, and as part of my participation in this program, I studied and practiced effective science communication methodologies. In attempts to explain my research to middle school students, I collaborated with others to develop methods for explaining genetics and the most important techniques I used in my research. While developing these methods, I learned more about what motivates people to learn

  20. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    Science.gov (United States)

    Stirling, Peter C; Hieter, Philip

    2016-07-22

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers.

  1. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells

    DEFF Research Database (Denmark)

    Machado, Ana Manuel Dantas; Figueiredo, Ceu; Touati, Eliette

    2009-01-01

    of genetic instabilities in the nuclear and mitochondrial DNA (mtDNA) were examined. EXPERIMENTAL DESIGN: We observed the effects of H. pylori infection on a gastric cell line (AGS), on C57BL/6 mice, and on individuals with chronic gastritis. In AGS cells, the effect of H. pylori infection on base excision...... cells and chronic gastritis tissue were determined by PCR, single-stranded conformation polymorphism, and sequencing. H. pylori vacA and cagA genotyping was determined by multiplex PCR and reverse hybridization. RESULTS: Following H. pylori infection, the activity and expression of base excision repair...... and MMR are down-regulated both in vitro and in vivo. Moreover, H. pylori induces genomic instability in nuclear CA repeats in mice and in mtDNA of AGS cells and chronic gastritis tissue, and this effect in mtDNA is associated with bacterial virulence. CONCLUSIONS: Our results suggest that H. pylori...

  2. Gastric cancers of Western European and African patients show different patterns of genomic instability

    Directory of Open Access Journals (Sweden)

    Mulder Chris JJ

    2011-01-01

    Full Text Available Abstract Background Infection with H. pylori is important in the etiology of gastric cancer. Gastric cancer is infrequent in Africa, despite high frequencies of H. pylori infection, referred to as the African enigma. Variation in environmental and host factors influencing gastric cancer risk between different populations have been reported but little is known about the biological differences between gastric cancers from different geographic locations. We aim to study genomic instability patterns of gastric cancers obtained from patients from United Kingdom (UK and South Africa (SA, in an attempt to support the African enigma hypothesis at the biological level. Methods DNA was isolated from 67 gastric adenocarcinomas, 33 UK patients, 9 Caucasian SA patients and 25 native SA patients. Microsatellite instability and chromosomal instability were analyzed by PCR and microarray comparative genomic hybridization, respectively. Data was analyzed by supervised univariate and multivariate analyses as well as unsupervised hierarchical cluster analysis. Results Tumors from Caucasian and native SA patients showed significantly more microsatellite instable tumors (p Conclusions Gastric cancers from SA and UK patients show differences in genetic instability patterns, indicating possible different biological mechanisms in patients from different geographical origin. This is of future clinical relevance for stratification of gastric cancer therapy.

  3. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer.

    Science.gov (United States)

    Rao, Chinthalapally V; Asch, Adam S; Yamada, Hiroshi Y

    2017-01-01

    The incidence of liver cancer has increased in recent years. Worldwide, liver cancer is common: more than 600000 related deaths are estimated each year. In the USA, about 27170 deaths due to liver cancer are estimated for 2016. Liver cancer is highly resistant to conventional chemotherapy and radiotherapy. For all stages combined, the 5-year survival rate is 15-17%, leaving much to be desired for liver cancer prevention and therapy. Heterogeneity, which can originate from genomic instability, is one reason for poor outcome. About 80-90% of liver cancers are hepatocellular carcinoma (HCC), and recent cancer genome sequencing studies have revealed frequently mutated genes in HCC. In this review, we discuss the cause of the tumor heterogeneity based on the functions of genes that are frequently mutated in HCC. We overview the functions of the genes that are most frequently mutated (e.g. TP53, CTNNB1, AXIN1, ARID1A and WWP1) that portray major pathways leading to HCC and identify the roles of these genes in preventing genomic instability. Notably, the pathway analysis suggested that oxidative stress management may be critical to prevent accumulation of DNA damage and further mutations. We propose that both chromosome instability (CIN) and microsatellite instability (MIN) are integral to the hepatic carcinogenesis process leading to heterogeneity in HCC and that the pathways leading to heterogeneity may be targeted for prognosis, prevention and treatment.

  4. Analysis of beam loss induced abort kicker instability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang W.; Sandberg, J.; Ahrens, L.; Fischer, W.; Hahn, H.; Mi, J.; Pai, C.; Tan, Y.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems and improved stability of the RHIC operation.

  5. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis.

    Science.gov (United States)

    Gascoigne, Karen E; Cheeseman, Iain M

    2013-07-01

    Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a "dicentric" chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.

  6. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    Science.gov (United States)

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A

  7. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Oikawa Masahiro

    2011-12-01

    Full Text Available Abstract Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN, which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH. Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread, which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05. The concordance of results between aCGH and fluorescence in situ hybridization (FISH for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively. The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15. Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40. Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005 independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for

  8. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  9. Transgenerational genomic instability in children of irradiated parents as a result of the Chernobyl Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanyan, Anna, E-mail: ann-aghajanyan@yandex.ru [Cytogenetics Laboratory, FSI Russian Scientific Center of Roentgenology and Radiology, Profsoyuznaya 86, GSP-7, Moscow, 117997 (Russian Federation); Suskov, Igor [Laboratory of Ecological Genetics, N.I. Vavilov Institute of General Genetics Russian Academy of Sciences, Gybkin st. 3, Moscow 119991 (Russian Federation)

    2009-12-01

    The study of families irradiated as a result of the accident at the Chernobyl Nuclear Power Plant revealed significantly increased aberrant genomes frequencies (AGFs) not only in irradiated parents (n = 106, p < 0.01), but also in their children born after the accident (n = 159, p < 0.05). This is an indicative of the phenomenon of transgenerational genomic instability. To elucidate this phenomenon, experiments were undertaken to model genomic instability by using single and fractional in vitro {gamma}-irradiation ({sup 137}Cs) of peripheral blood samples from the children and their parents at doses of 0.1, 0.2 and 0.3 Gy. The spectrum and frequency of chromosome aberrations were studied in the 1st and 2nd cell generations. The average AGF was significantly increased at all doses (except 0.1 Gy) in children of irradiated parents, as compared to children born from non-irradiated parents. Amplification of cells with single-break chromosome aberrations in mitosis 2, as compared to mitosis 1, suggests the replication mechanism of realization of potential damage in DNA and the occurrence of genomic instability in succeeding cell generations.

  10. Lack of major genome instability in tumors of p53 null rats.

    Directory of Open Access Journals (Sweden)

    Roel Hermsen

    Full Text Available Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53, genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats mainly develop osteosarcomas. Using genome-wide analyses, we find that the tumors that arise in the heterozygous and homozygous Tp53C273X mutant animals are also different in their genomic instability profiles. While p53 was fully inactivated in both heterozygous and homozygous knockout rats, tumors from homozygous animals show very limited aneuploidy and low degrees of somatic copy number variation as compared to the tumors from heterozygous animals. In addition, complex structural rearrangements such as chromothripsis and breakage-fusion-bridge cycles were never found in tumors from homozygous animals, while these were readily detectable in tumors from heterozygous animals. Finally, we measured telomere length and telomere lengthening pathway activity and found that tumors of homozygous animals have longer telomeres but do not show clear telomerase or alternative lengthening of telomeres (ALT activity differences as compared to the tumors from heterozygous animals. Taken together, our results demonstrate that host p53 status in this rat p53 knockout model has a large effect on both tumor type and genomic instability characteristics, where full loss of functional p53 is not the main driver of large-scale structural variations. Our results also suggest that chromothripsis primarily occurs under p53 heterozygous rather than p53 null conditions.

  11. Lack of major genome instability in tumors of p53 null rats.

    Science.gov (United States)

    Hermsen, Roel; Toonen, Pim; Kuijk, Ewart; Youssef, Sameh A; Kuiper, Raoul; van Heesch, Sebastiaan; de Bruin, Alain; Cuppen, Edwin; Simonis, Marieke

    2015-01-01

    Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53), genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats mainly develop osteosarcomas. Using genome-wide analyses, we find that the tumors that arise in the heterozygous and homozygous Tp53C273X mutant animals are also different in their genomic instability profiles. While p53 was fully inactivated in both heterozygous and homozygous knockout rats, tumors from homozygous animals show very limited aneuploidy and low degrees of somatic copy number variation as compared to the tumors from heterozygous animals. In addition, complex structural rearrangements such as chromothripsis and breakage-fusion-bridge cycles were never found in tumors from homozygous animals, while these were readily detectable in tumors from heterozygous animals. Finally, we measured telomere length and telomere lengthening pathway activity and found that tumors of homozygous animals have longer telomeres but do not show clear telomerase or alternative lengthening of telomeres (ALT) activity differences as compared to the tumors from heterozygous animals. Taken together, our results demonstrate that host p53 status in this rat p53 knockout model has a large effect on both tumor type and genomic instability characteristics, where full loss of functional p53 is not the main driver of large-scale structural variations. Our results also suggest that chromothripsis primarily occurs under p53 heterozygous rather than p53 null conditions.

  12. Genomic instability, bystander effect, cytoplasmic irradiation and other phenomena that may achieve fame without fortune

    Science.gov (United States)

    Hall, E. J.

    2001-01-01

    The possible risk of induced malignancies in astronauts, as a consequence of the radiation environment in space, is a factor of concern for long term missions. Cancer risk estimates for high doses of low LET radiation are available from the epidemiological studies of the A-bomb survivors. Cancer risks at lower doses cannot be detected in epidemiological studies and must be inferred by extrapolation from the high dose risks. The standard setting bodies, such as the ICRP recommend a linear, no-threshold extrapolation of risks from high to low doses, but this is controversial. A study of mechanisms of carcinogenesis may shed some light on the validity of a linear extrapolation. The multi-step nature of carcinogenesis suggests that the role of radiation may be to induce a mutation leading to a mutator phenotype. High energy Fe ions, such as those encountered in space are highly effective in inducing genomic instability. Experiments involving the single particle microbeam have demonstrated a "bystander effect", ie a biological effect in cells not themselves hit, but in close proximity to those that are, as well as the induction of mutations in cells where only the cytoplasm, and not the nucleus, have been traversed by a charged particle. These recent experiments cast doubt on the validity of a simple linear extrapolation, but the data are so far fragmentary and conflicting. More studies are necessary. While mechanistic studies cannot replace epidemiology as a source of quantitative risk estimates, they may shed some light on the shape of the dose response relationship and therefore on the limitations of a linear extrapolation to low doses.

  13. Links between persistent DNA damage, genome instability, and aging

    Energy Technology Data Exchange (ETDEWEB)

    Dynan, William S. [Emory Univ., Atlanta, GA (United States). Dept. of Radiation Oncology

    2016-11-14

    The goal of this study was to examine long-term effects of low-dose radiation exposure. One of the hypotheses was that radiation exposure would accelerate the normal aging process. The study was jointly funded by NASA and examined both low-LET radiation (γ-rays) and high-LET radiation (1000 MeV/nucleon 56Fe ions) at doses of 0.1 Gy and up. The work used the Japanese medaka fish (Oryzias latipes), as a vertebrate model organism that can be maintained in large numbers at low cost for lifetime studies. Like other small laboratory fish, Japanese medaka share many anatomical and histological characteristics with other vertebrates, and a variety of genetic and genomic resources are available. Some work also used the zebrafish (Danio rerio), another widely used laboratory model organism.

  14. The criterion of gravity wave instability induced by photochemistry in summer polar mesopause region

    Institute of Scientific and Technical Information of China (English)

    XU; Jiyao(徐寄遥); WU; Yongfu(吴永富); WANG; Yongmei(王咏梅); FU; Liping(傅利平)

    2002-01-01

    This paper studies the effect of photochemistry on the gravity wave instability in summer polar mesopause region. The calculation method of the effects of eddy viscosity, conductivity and eddy diffusion of chemical species on the gravity wave instability induced by photochemistry are studied. The critical wavelength of the instability is given in this paper. The influences of some parameters on it are discussed. The study shows that the gravity wave instability induced by photochemistry is sensitive to the temperature and atomic oxygen profiles.

  15. A mathematical model of radiation carcinogenesis with induction of genomic instability and cell death.

    Science.gov (United States)

    Ohtaki, M; Niwa, O

    2001-11-01

    We developed a mathematical model of carcinogenesis that incorporates genomic instability, a feature characterized by long-term destabilization of the genome in irradiated cells that leads to an increase in cancer risk in the exposed individuals at the cancer-prone age. This model also considers the induction of cell death, another important effect of radiation on cells. It is assumed that cell killing by radiation may occur at all stages of the carcinogenic process. The resulting model can explain not only the paradoxical relationship between low mutation rates and high cancer incidence but also the low-order dose-response relationship of cancer risk.

  16. Analysis of fast ion induced instabilities in tokamak plasmas

    CERN Document Server

    Horváth, László

    2015-01-01

    In magnetic confinement fusion devices like tokamaks, it is crucial to confine the high energy fusion-born helium nuclei ($\\alpha$-particles) to maintain the energy equilibrium of the plasma. However, energetic ions can excite various instabilities which can lead to their enhanced radial transport. Consequently, these instabilities may degrade the heating efficiency and they can also cause harmful power loads on the plasma-facing components of the device. Therefore, the understanding of these modes is a key issue regarding future burning plasma experiments. One of the main open questions concerning energetic particle (EP) driven instabilities is the non-linear evolution of the mode structure. In this thesis, I present my results on the investigation of $\\beta$-induced Alfv\\'{e}n eigenmodes (BAEs) and EP-driven geodesic acoustic modes (EGAMs) observed in the ramp-up phase of off-axis NBI heated plasmas in the ASDEX Upgrade tokamak. These modes were well visible on several line-of-sights (LOSs) of the soft X-ra...

  17. Mass-loss induced instabilities in fast rotating stars

    CERN Document Server

    Lignières, F; Mangeney, A

    2000-01-01

    To explain the origin of Herbig Ae/Be stars activity, it has been recently proposed that strong mass-losses trigger rotational instabilities in the envelope of fast rotating stars. The kinetic energy transferred to turbulent motions would then be the energy source of the active phenomena observed in the outer atmosphere of Herbig Ae/Be stars (Vigneron et al. 1990; Lignieres et al. 1996). In this paper, we present a one-dimensional model of angular momentum transport which allows to estimate the degree of differential rotation induced by mass-loss. Gradients of angular velocity are very close to - 2 Ømega / R mass-loss, this process occurs in a short time scale as compared to other processes of angular momentum transport. Application of existing stability criteria indicates that rotational instabilities should develop for fast rotating star. Thus, in fast rotating stars with strong winds, shear instabilities are expected to develop and to generate subphotospheric turbulent motions. Albeit very simple, this mo...

  18. with Genomic Instability in Untreated Breast Cancer Patients and Healthy Women

    Directory of Open Access Journals (Sweden)

    Raquel Alves dos Santos

    2011-01-01

    Full Text Available In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.

  19. Amplification of HER2 is a marker for global genomic instability

    Directory of Open Access Journals (Sweden)

    Love Brad

    2008-10-01

    Full Text Available Abstract Background Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. Methods HER2 status was determined using the PathVysion® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39 or HER2 negative (n = 142 tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. Results The frequency of AI was significantly higher (P P Conclusion The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification. These data not only improve our understanding of HER in breast pathogenesis but may allow more accurate risk profiles and better treatment options to be developed.

  20. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji, E-mail: kzsuzuki@nagasaki-u.ac.jp [Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Kodama, Seiji [Research Institute for Advanced Science and Technology, Osaka Prefecture University, 1-2 Gakuen-machi, Sakai 599-8570 (Japan); Watanabe, Masami [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun, Osaka 590-0494 (Japan)

    2010-01-05

    Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell death was absent in Ku80-deficient Chinese hamster ovary (CHO) cells, however, the mechanism of their defect has not been determined. We found that delayed induction of DNA double strand breaks and chromosomal breaks were intact in Ku80-deficient cells surviving X-irradiation, whereas there was no sign for the production of chromosome bridges between divided daughter cells. Moreover, delayed induction of dicentric chromosomes was significantly compromised in those cells compared to the wild-type CHO cells. Reintroduction of the human Ku86 gene complimented the defective DNA repair and recovered delayed induction of dicentric chromosomes and delayed cell death, indicating that defective Ku80-dependent dicentric induction was the cause of the absence of delayed cell death. Since DNA-PKcs-defective cells showed delayed phenotypes, Ku80-dependent illegitimate rejoining is involved in delayed impairment of the integrity of the genome in radiation-survived cells.

  1. Cascades of genetic instability resulting from compromised break-induced replication.

    Directory of Open Access Journals (Sweden)

    Soumini Vasan

    2014-02-01

    Full Text Available Break-induced replication (BIR is a mechanism to repair double-strand breaks (DSBs that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs. An important type of genomic rearrangement specifically linked to BIR is half-crossovers (HCs, which result from fusions between parts of recombining chromosomes. Because HC formation produces a fused molecule as well as a broken chromosome fragment, these events could be highly destabilizing. Here we demonstrate that HC formation results from the interruption of BIR caused by a damaged template, defective replisome or premature onset of mitosis. Additionally, we document that checkpoint failure promotes channeling of BIR into half-crossover-initiated instability cascades (HCC that resemble cycles of non-reciprocal translocations (NRTs previously described in human tumors. We postulate that HCs represent a potent source of genetic destabilization with significant consequences that mimic those observed in human diseases, including cancer.

  2. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    Science.gov (United States)

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells.

  3. TopBP1/Dpb11 binds DNA anaphase bridges to prevent genome instability

    DEFF Research Database (Denmark)

    Germann, Susanne M; Schramke, Vera; Pedersen, Rune Troelsgaard

    2014-01-01

    DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding...... yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion...... instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination....

  4. Corona-induced electrohydrodynamic instabilities in low conducting liquids

    Energy Technology Data Exchange (ETDEWEB)

    Vega, F.; Perez, A.T. [Depto. Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes, s/n. 41012, Sevilla (Spain)

    2003-06-01

    The rose-window electrohydrodynamic (EHD) instability has been observed when a perpendicular field with an additional unipolar ion injection is applied onto a low conducting liquid surface. This instability has a characteristic pattern with cells five to 10 times greater than those observed in volume instabilities caused by unipolar injection. We have used corona discharge from a metallic point to perform some measurements of the rose-window instability in low conducting liquids. The results are compared to the linear theoretical criterion for an ohmic liquid. They confirmed that the minimum voltage for this instability is much lower than that for the interfacial instability in high conducting liquids. This was predicted theoretically in the dependence of the critical voltage as a function of the non-dimensional conductivity. It is shown that in a non-ohmic liquid the rose window appears as a secondary instability after the volume instability. (orig.)

  5. Genomic instability and cellular stress in organ biopsies and peripheral blood lymphocytes from patients with colorectal cancer and predisposing pathologies

    Science.gov (United States)

    Lombardi, Sara; Fuoco, Ilenia; di Fluri, Giorgia; Costa, Francesco; Ricchiuti, Angelo; Biondi, Graziano; Nardini, Vincenzo; Scarpato, Roberto

    2015-01-01

    Inflammatory bowel disease (IBD) and polyps, are common colorectal pathologies in western society and are risk factors for development of colorectal cancer (CRC). Genomic instability is a cancer hallmark and is connected to changes in chromosomal structure, often caused by double strand break formation (DSB), and aneuploidy. Cellular stress, may contribute to genomic instability. In colorectal biopsies and peripheral blood lymphocytes of patients with IBD, polyps and CRC, we evaluated 1) genomic instability using the γH2AX assay as marker of DSB and micronuclei in mononuclear lymphocytes kept under cytodieresis inhibition, and 2) cellular stress through expression and cellular localization of glutathione-S-transferase omega 1 (GSTO1). Colon biopsies showed γH2AX increase starting from polyps, while lymphocytes already from IBD. Micronuclei frequency began to rise in lymphocytes of subjects with polyps, suggesting a systemic genomic instability condition. Colorectal tissues lost GSTO1 expression but increased nuclear localization with pathology progression. Lymphocytes did not change GSTO1 expression and localization until CRC formation, where enzyme expression was increased. We propose that the growing genomic instability found in our patients is connected with the alteration of cellular environment. Evaluation of genomic damage and cellular stress in colorectal pathologies may facilitate prevention and management of CRC. PMID:26046795

  6. [CHANGING OF PHYSICO-CHEMICAL PARAMETERS OF NON-CONTACT (ELECTROCHEMICAL) ACTIVATED DRINKING WATER IS ASSOCIATED WITH INDUCTION OF GENOMIC INSTABILITY OF CULTIVATED HUMAN BLOOD LYMPHOCYTES].

    Science.gov (United States)

    Zatsepina, O V; Ingel, F I

    2016-01-01

    In the article there are presented data which are the fragment of large multidisciplinary study of genetic safety of non-contact electrochemically activated water (NAW). The aim of this study was the analysis of the relation of impacts of genomic instability (micronucleus test with cytochalasin B) detected in human blood cells, cultured in medias prepared on the base of these NAWs, with physical and chemical properties of these NaWs. In experiments there were used catholytes and anolytes obtained by activation of osmotic, tap and dining bottled water As a result of such activation, all waters were shown to acquire the ability to induce genomic instability in cellular cultures. Notably in cell cultures on catholytes and anolytes these effects differed between themselves and have been associated with different physical and chemical properties of the NAWs.

  7. The role of APC/C(Cdh1) in replication stress and origin of genomic instability.

    Science.gov (United States)

    Greil, C; Krohs, J; Schnerch, D; Follo, M; Felthaus, J; Engelhardt, M; Wäsch, R

    2016-06-01

    It has been proposed that the APC/C(Cdh1) functions as a tumor suppressor by maintaining genomic stability. However, the exact nature of genomic instability following loss of Cdh1 is unclear. Using biochemistry and live cell imaging of single cells we found that Cdh1 knockdown (kd) leads to strong nuclear stabilization of the substrates cyclin A and B and deregulated kinetics of DNA replication. Restoration of the Cdh1-dependent G2 DNA damage checkpoint did not result in G2 arrest but blocked cells in prometaphase, suggesting that these cells enter mitosis despite incomplete replication. This results in DNA double-strand breaks, anaphase bridges, cytokinesis defects and tetraploidization. Tetraploid cells are the source of supernumerary centrosomes following Cdh1-kd, leading to multipolar mitosis or centrosome clustering, in turn resulting in merotelic attachment and lagging chromosomes. Whereas some of these events cause apoptosis during mitosis, surviving cells may accumulate chromosomal aberrations.

  8. Amplification of HER2 is a marker for global genomic instability.

    Science.gov (United States)

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Love, Brad; Hooke, Jeffrey A; Shriver, Craig D

    2008-10-14

    Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. HER2 status was determined using the PathVysion assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n=39) or HER2 negative (n=142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. The frequency of AI was significantly higher (P.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (P.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21. The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification

  9. Genomic instability in squamous cell carcinoma of the head and neck.

    Science.gov (United States)

    Field, J K

    1996-01-01

    The role of genomic instability in the development of squamous cell carcinoma (SCCHN) has become apparent with the publication of three major allelotype analysis of this disease, as well as many publications which have concentrated on specific target regions. The measurement of accumulated genetic alterations or fractional allele loss, as determined by allelotype analysis, provides a useful molecular indicator of tumour behaviour. In one major study, a positive correlation was found between FAL > median value and lymph node metastasis and also with a poor clinical outcome. In addition the recognition of microsatellite instability as a marker of DNA repair defects has provided a further molecular marker of the disease process and that loss of heterozygosity analysis and microsatellite instability appear to be independent genetic events in the development of SCCHN. Furthermore, the recognition of a number of novel target regions in SCCHN on chromosome arms, 1 p, 3p, 8p, 9p, 13q, 17p and 18q and our understanding of the role of certain oncogenes and tumour suppressor genes and their interaction with human papillomavirus has provided further elucidation of the neoplastic process. Even though this review describes a number of molecular events in SCCHN, the sequence of events still eludes the scientific community at present.

  10. Genome instability in AZFc region on Y chromosome in leukocytes of fertile and infertile individuals following exposure to gamma radiation.

    Science.gov (United States)

    Moghbeli-Nejad, Sahar; Mozdarani, Hossein; Behmanesh, Mehrdad; Rezaiean, Zahra; Fallahi, Parvin

    2012-01-01

    Men are exposed to various doses of ionizing radiation due to living in regions with high natural background radiation, accidentally, occupationally or for cancer treatment. To study genomic instability of AZFc region to gamma radiation, blood samples from normal, oligozoospermia, and azoospermia individuals were irradiated by a Co-60 source. Irradiated cells were kept for 48 h in order to repair initial DNA damages. Real time PCR was performed for three markers (SY 1206, SY 1197, SY 579) for testing copy number variation before and after irradiation. Copy number variations were compared by calculation of cycle threshold comparative method. Copy number variations of studied markers in AZFc region (microdeletion and duplication) in all samples after exposure to radiation increased with a dose dependent fashion. The frequency of instability was significantly higher in samples from infertile men in comparison with fertile ones (p  0.05). This observation might be a possible explanation for induction of azoospermia and oligozoospermia after radiotherapy. Increased frequency of induced microdeletion and duplication in infertile men compared with normal might be attributed to the deficiency in repair systems and the genetic factors involved in incomplete spermatogenesis of infertile men.

  11. Transgenerational developmental effects and genomic instability after X-irradiation of preimplantation embryos: Studies on two mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P., E-mail: pjacquet@sckcen.be [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Buset, J.; Neefs, M. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Vankerkom, J. [Division of Environmental Research, VITO, Boeretang 200, B-2400 Mol (Belgium); Benotmane, M.A.; Derradji, H. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Hildebrandt, G. [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, D-04103 Leipzig (Germany); Department of Radiotherapy, University of Rostock, Suedring 75, D-18059 Rostock (Germany); Baatout, S. [Molecular and Cellular Biology, Institute for Environment, Health and Safety, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-05-01

    Recent results have shown that irradiation of a single cell, the zygote or 1-cell embryo of various mouse strains, could lead to congenital anomalies in the fetuses. In the Heiligenberger strain, a link between the radiation-induced congenital anomalies and the development of a genomic instability was also suggested. Moreover, further studies showed that in that strain, both congenital anomalies and genomic instability could be transmitted to the next generation. The aim of the experiments described in this paper was to investigate whether such non-targeted transgenerational effects could also be observed in two other radiosensitive mouse strains (CF1 and ICR), using lower radiation doses. Irradiation of the CF1 and ICR female zygotes with 0.2 or 0.4 Gy did not result in a decrease of their fertility after birth, when they had reached sexual maturity. Moreover, females of both strains that had been X-irradiated with 0.2 Gy exhibited higher rates of pregnancy, less resorptions and more living fetuses. Additionally, the mean weight of living fetuses in these groups had significantly increased. Exencephaly and dwarfism were observed in CF1 fetuses issued from control and X-irradiated females. In the control group of that strain, polydactyly and limb deformity were also found. The yields of abnormal fetuses did not differ significantly between the control and X-irradiated groups. Polydactyly, exencephaly and dwarfism were observed in fetuses issued from ICR control females. In addition to these anomalies, gastroschisis, curly tail and open eye were observed at low frequencies in ICR fetuses issued from X-irradiated females. Again, the frequencies of abnormal fetuses found in the different groups did not differ significantly. In both CF1 and ICR mouse strains, irradiation of female zygotes did not result in the development of a genomic instability in the next generation embryos. Overall, our results suggest that, at the moderate doses used, developmental defects

  12. Synergistic interaction of Rnf8 and p53 in the protection against genomic instability and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    Full Text Available Rnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8(-/- mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8(-/- mice in a tissue- and cell type-specific manner. To investigate the role of the p53-pathway inactivation on the phenotype observed in Rnf8(-/- mice, we have generated Rnf8(-/-p53(-/- mice. Double-knockout mice showed similar growth retardation defects and impaired class switch recombination compared to Rnf8(-/- mice. In contrast, loss of p53 fully rescued the increased apoptosis and reduced number of thymocytes and splenocytes in Rnf8(-/- mice. Similarly, the senescence phenotype of Rnf8(-/- mouse embryonic fibroblasts was rescued in p53 null background. Rnf8(-/-p53(-/- cells displayed defective cell cycle checkpoints and DNA double-strand break repair. In addition, Rnf8(-/-p53(-/- mice had increased levels of genomic instability and a remarkably elevated tumor incidence compared to either Rnf8(-/- or p53(-/- mice. Altogether, the data in this study highlight the importance of p53-pathway activation upon loss of Rnf8, suggesting that Rnf8 and p53 functionally interact to protect against genomic instability and tumorigenesis.

  13. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    Science.gov (United States)

    Albrecht, C.; Knaapen, A. M.; Cakmak Demircigil, G.; Coskun, Erdem; van Schooten, F. J.; Borm, P. J. A.; Schins, R. P. F.

    2009-02-01

    the aluminium coated quartz intermediate effects were found. These findings were in line with the kinetics of inflammation and epithelial proliferation in the rat lungs for the different treatments. Notably, a highly significant correlation was observed between neutrophil numbers and micronucleus frequencies, indicative for a role of inflammation in eliciting genomic instability in target cells of quartz-induced carcinogenesis. Our ongoing investigations focus on the evaluation of the causality between both in relation to quartz exposure.

  14. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, C; Schins, R P F [Institut fuer Umweltmedizinische Forschung (IUF) at the Heinrich Heine University Duesseldorf (Germany); Demircigil, G Cakmak; Coskun, Erdem [Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara (Turkey); Schooten, F J van [Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology, University of Maastricht (Netherlands); Borm, P J A [Centre of Expertise in Life Sciences (Cel), Hogeschool Zuyd, Heerlen (Netherlands); Knaapen, A M, E-mail: catrin.albrecht@uni-duesseldorf.d

    2009-02-01

    the aluminium coated quartz intermediate effects were found. These findings were in line with the kinetics of inflammation and epithelial proliferation in the rat lungs for the different treatments. Notably, a highly significant correlation was observed between neutrophil numbers and micronucleus frequencies, indicative for a role of inflammation in eliciting genomic instability in target cells of quartz-induced carcinogenesis. Our ongoing investigations focus on the evaluation of the causality between both in relation to quartz exposure.

  15. Combining magnetic sorting of mother cells and fluctuation tests to analyze genome instability during mitotic cell aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Patterson, Melissa N; Maxwell, Patrick H

    2014-10-16

    Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on

  16. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A.

    Science.gov (United States)

    Musich, Phillip R; Zou, Yue

    2009-01-01

    Progeria syndromes have in common a premature aging phenotype and increased genome instability. The susceptibility to DNA damage arises from a compromised repair system, either in the repair proteins themselves or in the DNA damage response pathways. The most severe progerias stem from mutations affecting lamin A production, a filamentous protein of the nuclear lamina. Hutchinson-Gilford progeria syndrome (HGPS) patients are heterozygous for aLMNA gene mutation while Restrictive Dermopathy (RD) individuals have a homozygous deficiency in the processing protease Zmpste24. These mutations generate the mutant lamin A proteins progerin and FC-lamina A, respectively, which cause nuclear deformations and chromatin perturbations. Genome instability is observed even though genome maintenance and repair genes appear normal. The unresolved question is what features of the DNA damage response pathways are deficient in HGPS and RD cells. Here we review and discuss recent findings which resolve some mechanistic details of how the accumulation of progerin/FC-lamin A proteins may disrupt DNA damage response pathways in HGPS and RD cells. As the mutant lamin proteins accumulate they sequester replication and repair factors, leading to stalled replication forks which collapse into DNA double-strand beaks (DSBs). In a reaction unique to HGPS and RD cells these accessible DSB termini bind Xeroderma pigmentosum group A (XPA) protein which excludes normal binding by DNA DSB repair proteins. The bound XPA also signals activation of ATM and ATR, arresting cell cycle progression, leading to arrested growth. In addition, the effective sequestration of XPA at these DSB damage sites makes HGPS and RD cells more sensitive to ultraviolet light and other mutagens normally repaired by the nucleotide excision repair pathway of which XPA is a necessary and specific component.

  17. Instability of water jet: Aerodynamically induced acoustic and capillary waves

    Science.gov (United States)

    Broman, Göran I.; Rudenko, Oleg V.

    2012-09-01

    High-speed water jet cutting has important industrial applications. To further improve the cutting performance it is critical to understand the theory behind the onset of instability of the jet. In this paper, instability of a water jet flowing out from a nozzle into ambient air is studied. Capillary forces and compressibility of the liquid caused by gas bubbles are taken into account, since these factors have shown to be important in previous experimental studies. A new dispersion equation, generalizing the analogous Rayleigh equation, is derived. It is shown how instability develops because of aerodynamic forces that appear at the streamlining of an initial irregularity of the equilibrium shape of the cross-section of the jet and how instability increases with increased concentration of gas bubbles. It is also shown how resonance phenomena are responsible for strong instability. On the basis of the theoretical explanations given, conditions for stable operation are indicated.

  18. Neutron matter instabilities induced by strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, R. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP-CCT-La Plata, CONICET (Argentina); Bauer, E., E-mail: bauer@fisica.unlp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP-CCT-La Plata, CONICET (Argentina)

    2013-04-10

    We study some properties of spin-polarized neutron matter in the presence of a strong magnetic field at finite temperature. Using the Skyrme model together with the Hartree–Fock approximation we obtain an energy density functional that is employed to extract the spin polarization, the effective mass and the magnetic free energy of the system. In order to find the equilibrium state, we have analyzed different global spin configurations over a wide range of matter density (0induce a transition from one polarization state to the other. The transition takes place in a surface in the (n,T,B)-phase space, which represents an instability of the system. We have also found a discontinuity in the internal energy associated with this change in the state of magnetization.

  19. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Luukkonen, Jukka; Liimatainen, Anu; Juutilainen, Jukka; Naarala, Jonne

    2014-02-01

    Epidemiological studies have suggested that exposure to 50Hz magnetic fields (MF) increases the risk of childhood leukemia, but there is no mechanistic explanation for carcinogenic effects. In two previous studies we have observed that a 24-h pre-exposure to MF alters cellular responses to menadione-induced DNA damage. The aim of this study was to investigate the cellular changes that must occur already during the first 24h of exposure to MF, and to explore whether the MF-induced changes in DNA damage response can lead to genomic instability in the progeny of the exposed cells. In order to answer these questions, human SH-SY5Y neuroblastoma cells were exposed to a 50-Hz, 100-μT MF for 24h, followed by 3-h exposure to menadione. The main finding was that MF exposure was associated with increased level of micronuclei, used as an indicator of induced genomic instability, at 8 and 15d after the exposures. Other delayed effects in MF-exposed cells included increased mitochondrial activity at 8d, and increased reactive oxygen species (ROS) production and lipid peroxidation at 15d after the exposures. Oxidative processes (ROS production, reduced glutathione level, and mitochondrial superoxide level) were affected by MF immediately after the exposure. In conclusion, the present results suggest that MF exposure disturbs oxidative balance immediately after the exposure, which might explain our previous findings on MF altered cellular responses to menadione-induced DNA damage. Persistently elevated levels of micronuclei were found in the progeny of MF-exposed cells, indicating induction of genomic instability.

  20. The Transient Inactivation of the Master Cell Cycle Phosphatase Cdc14 Causes Genomic Instability in Diploid Cells of Saccharomyces cerevisiae

    Science.gov (United States)

    Quevedo, Oliver; Ramos-Pérez, Cristina; Petes, Thomas D.; Machín, Félix

    2015-01-01

    Genomic instability is a common feature found in cancer cells . Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instability would occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny. PMID:25971663

  1. Separase phosphosite mutation leads to genome instability and primordial germ cell depletion during oogenesis.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available To ensure equal chromosome segregation and the stability of the genome during cell division, Separase is strictly regulated primarily by Securin binding and inhibitory phosphorylation. By generating a mouse model that contained a mutation to the inhibitory phosphosite of Separase, we demonstrated that mice of both sexes are infertile. We showed that Separase deregulation leads to chromosome mis-segregation, genome instability, and eventually apoptosis of primordial germ cells (PGCs during embryonic oogenesis. Although the PGCs of mutant male mice were completely depleted, a population of PGCs from mutant females survived Separase deregulation. The surviving PGCs completed oogenesis but produced deficient initial follicles. These results indicate a sexual dimorphism effect on PGCs from Separase deregulation, which may be correlated with a gender-specific discrepancy of Securin. Our results reveal that Separase phospho-regulation is critical for genome stability in oogenesis. Furthermore, we provided the first evidence of a pre-zygotic mitotic chromosome segregation error resulting from Separase deregulation, whose sex-specific differences may be a reason for the sexual dimorphism of aneuploidy in gametogenesis.

  2. A three-dimensional phase diagram of growth-induced surface instabilities

    Science.gov (United States)

    Wang, Qiming; Zhao, Xuanhe

    2015-01-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825

  3. Parametric instability induced by X-mode wave heating at EISCAT

    Science.gov (United States)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  4. Centrosome Dysfunction Contributes To Chromosome Instability, Chromoanagenesis And Genome Reprograming In Cancer.

    Directory of Open Access Journals (Sweden)

    German A Pihan

    2013-11-01

    Full Text Available The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker’s precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegreated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.

  5. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    Science.gov (United States)

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.

  6. Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin’s Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Hans, E-mail: hans.knecht@usherbrooke.ca [Division d‘Hématologie, Département de Médecine, CHUS, Université de Sherbrooke, Québec, J1H 5N4 (Canada); Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, Manitoba, R3E 0V9 (Canada); Righolt, Christiaan [Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, Manitoba, R3E 0V9 (Canada); Department of Imaging Science and Technology, Delft University of Technology, 2628 CJ Delft (Netherlands); Mai, Sabine [Manitoba Institute of Cell Biology, The Genomic Centre for Cancer Research and Diagnosis, University of Manitoba, Winnipeg, Manitoba, R3E 0V9 (Canada)

    2013-06-05

    In classical Hodgkin’s lymphoma (HL) the malignant mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells are rare and generally make up <3% of the total cellular mass of the affected lymph nodes. During recent years, the introduction of laser micro-dissection techniques at the single cell level has substantially improved our understanding of the molecular pathogenesis of HL. Gene expression profiling, comparative genomic hybridization analysis, micro-RNA expression profiling and viral oncogene sequencing have deepened our knowledge of numerous facets of H- and RS-cell gene expression deregulation. The question remains whether disturbed signaling pathways and deregulated transcription factors are at the origin of refractory/relapsing Hodgkin’s lymphoma or whether these hallmarks are at least partially related to another major factor. We recently showed that the 3D nuclear organization of telomeres and chromosomes marked the transition from H- to RS-cells in HL cell lines. This transition is associated with progression of telomere dysfunction, shelterin disruption and progression of complex chromosomal rearrangements. We reported analogous findings in refractory/relapsing HL and identified the shelterin proteins TRF1, TRF2 and POT1 as targets of the LMP1 oncogene in post-germinal center B-cells. Here we summarize our findings, including data not previously published, and propose a model in which progressive disruption of nuclear integrity, a form of genomic instability, is the key-player in refractory/relapsing HL. Therapeutic approaches should take these findings into account.

  7. T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Pandita, Raj K; Pae, Juhee; Komal, K; Singh, Mayank; Shay, Jerry W; Kumar, Rakesh; Ariizumi, Kiyoshi; Horikoshi, Nobuo; Hittelman, Walter N; Guha, Chandan; Ludwig, Thomas; Pandita, Tej K

    2013-05-01

    role in T-cell differentiation and that depletion of Mof in T cells reduces T-cell numbers and, by an undefined mechanism, induces genomic instability in B cells through bystander mechanism. As a result, these mice have a shorter lifespan and reduced survival after irradiation.

  8. Effects of two organomodified clays intended to food contact materials on the genomic instability and gene expression of hepatoma cells.

    Science.gov (United States)

    Maisanaba, Sara; Jordá-Beneyto, María; Cameán, Ana M; Jos, Ángeles

    2016-02-01

    Globally, food industries have made significant progress in order to increase the shelf-life of food products and have fewer economic losses. In this sense, the use of organomodified clays destined to be incorporated in polymer matrices play a novel role, leading to improved materials named nanocomposites with enhanced technological profiles. Due to the presence of these clays into the package, the safety of the consumers is a main concern. Cloisite(®)30B and Clay1 are two organomodified clays containing quaternary ammonium salts as modifiers, that can be potentially used to reinforce packaging polymers. Available toxicity data about these clays, specifically genotoxicity, is still limited and inconclusive in some aspects. Thus, the purpose of this work was to evaluate both clays ability to induce genomic instability through the cytokinesis block micronucleus cytome assay (CBMN) and for the first time, their influence in the modulation of several genes involved in genotoxicity and cell death mechanisms. Overall, no genotoxicity response was obtained in any case at the conditions tested. On the other hand, significant expression changes were observed on the genes selected. Nevertheless, further studies are highly needed to elucidate and increase the knowledge about the molecular mechanisms of clays toxicity.

  9. A novel strategy to identify the critical conditions for growth-induced instabilities.

    Science.gov (United States)

    Javili, A; Steinmann, P; Kuhl, E

    2014-01-01

    Geometric instabilities in living structures can be critical for healthy biological function, and abnormal buckling, folding, or wrinkling patterns are often important indicators of disease. Mathematical models typically attribute these instabilities to differential growth, and characterize them using the concept of fictitious configurations. This kinematic approach toward growth-induced instabilities is based on the multiplicative decomposition of the total deformation gradient into a reversible elastic part and an irreversible growth part. While this generic concept is generally accepted and well established today, the critical conditions for the formation of growth-induced instabilities remain elusive and poorly understood. Here we propose a novel strategy for the stability analysis of growing structures motivated by the idea of replacing growth by prestress. Conceptually speaking, we kinematically map the stress-free grown configuration onto a prestressed initial configuration. This allows us to adopt a classical infinitesimal stability analysis to identify critical material parameter ranges beyond which growth-induced instabilities may occur. We illustrate the proposed concept by a series of numerical examples using the finite element method. Understanding the critical conditions for growth-induced instabilities may have immediate applications in plastic and reconstructive surgery, asthma, obstructive sleep apnoea, and brain development. © 2013 Elsevier Ltd. All rights reserved.

  10. The gravity wave instability induced by photochemistry in summer polar mesopause region

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of diabatic process due to the photochemical heating and cooling on the gravity wave propagation in middle atmosphere is studied. A linear gravity wave model which considers the diabatic process is established. The unstable region and the growth rate of the gravity wave caused by photochemistry are calculated. And the comparison between the model and the adiabatic gravity wave theory of pure dynamics is made. The results indicate that the photochemical heating process can induce the instability of gravity wave at mesopause. The intensity of the instability becomes stronger as the temperature decreases. The temperature feature and the altitude characteristics of the instability are consistent with the observation. Therefore, the instability of the gravity wave induced by photochemistry may be an important mechanism in polar mesopause region in summer.

  11. Exposure to estrogen and ionizing radiation causes epigenetic dysregulation, activation of mitogen-activated protein kinase pathways, and genome instability in the mammary gland of ACI rats.

    Science.gov (United States)

    Kutanzi, Kristy; Kovalchuk, Olga

    2013-07-01

    The impact of environmental mutagens and carcinogens on the mammary gland has recently received a lot of attention. Among the most generally accepted carcinogenic agents identified as factors that may increase breast cancer incidence are ionizing radiation and elevated estrogen levels. However, the molecular mechanisms of mammary gland aberrations associated with radiation and estrogen exposure still need to be further elucidated, especially the interplay between elevated hormone levels and radiation. Therefore, in the present study, we investigated molecular changes induced in rat mammary gland tissue by estrogen, ionizing radiation, and the combined action of these two carcinogens using a well-established ACI rat model. We found that continuous exposure of intact female ACI rats to elevated levels of estrogen or to both estrogen and radiation resulted in significant hyperproliferative changes in rat mammary glands. In contrast, radiation exposure alone did not induce hyperplasia. Interestingly, despite the obvious disparity in mammary gland morphology, we did not detect significant differences in the levels of genomic methylation among animals exposed to estrogen, radiation, or both agents together. Specifically, we observed a significant global genomic hypomethylation at 6 weeks of exposure. However, by 12 and 18 weeks, the levels of global DNA methylation returned to those of age-matched controls. We also found that combined exposure to radiation and estrogen significantly altered the levels of histone H3 and H4 methylation and acetylation. Most importantly, we for the first time demonstrated that estrogen and radiation exposure caused a significant induction of p42/44 MAPK and p38 pathways that was paralleled by elevated levels of H3S10 phosphorylation, a well-established biomarker of genome and chromosome instability. The precise role of MAPK pathways and their inter-relationship with H3S10 phosphorylation and genome instability in mammary gland tissues needs

  12. Dispersion-Induced Beam Instability in Circular Accelerators

    Science.gov (United States)

    Yuan, Y. S.; Boine-Frankenheim, O.; Franchetti, G.; Hofmann, I.

    2017-04-01

    The envelope instability near the 90° phase advance in periodically focused space charge dominated beams is a well-known phenomenon in linear transport sections or linacs. The corresponding stop band is usually avoided because of the resulting strong mismatch oscillations and beam loss. We show that in circular accelerators or transport sections including bending magnets the instability is modified due to the effect of dispersion. Using the two-dimensional envelope equations extended by the dispersion equation we identify an additional stop band above 120°. For periodic focusing the stop band results from the confluence of an envelope mode with the newly identified coherent dispersion mode. Results from perturbation theory are compared with the full envelope model and particle-in-cell simulation, which all show good agreement. The newly identified mode has several implications and applications for the characterization of intense beams in circular machines.

  13. Volcano instability induced by strike-slip faulting

    Science.gov (United States)

    Lagmay, A. M. F.; van Wyk de Vries, B.; Kerle, N.; Pyle, D. M.

    2000-09-01

    Analogue sand cone experiments were conducted to study instability generated on volcanic cones by basal strike-slip movement. The results of the analogue models demonstrate that edifice instability may be generated when strike-slip faults underlying a volcano move as a result of tectonic adjustment. This instability occurs on flanks of the volcano above the strike-slip shear. On the surface of the volcano this appears as a pair of sigmoids composed of one reverse and one normal fault. In the interior of the cone the faults form a flower structure. Two destabilised regions are created on the cone flanks between the traces of the sigmoidal faults. Bulging, intense fracturing and landsliding characterise these unstable flanks. Additional analogue experiments conducted to model magmatic intrusion show that fractures and faults developed within the volcanic cone due to basal strike-slip motions strongly control the path of the intruding magma. Intrusion is diverted towards the areas where previous development of reverse and normal faults have occurred, thus causing further instability. We compare our model results to two examples of volcanoes on strike-slip faults: Iriga volcano (Philippines), which underwent non-magmatic collapse, and Mount St. Helens (USA), where a cryptodome was emplaced prior to failure. In the analogue and natural examples, the direction of collapse takes place roughly parallel to the orientation of the underlying shear. The model presented proposes one mechanism for strike-parallel breaching of volcanoes, recently recognised as a common failure direction of volcanoes found in regions with transcurrent and transtensional deformation. The recognition of the effect of basal shearing on volcano stability enables prediction of the likely direction of eventual flank failure in volcanoes overlying strike-slip faults.

  14. Three-Dimensional Turbulent Reconnection Induced by the Plasmoid Instability

    Science.gov (United States)

    Bhattacharjee, A.; Huang, Y. M.

    2014-12-01

    It has been established that the Sweet-Parker current layer in high-Lundquist-number reconnection is unstable to the super-Alfvenic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime in which the Sweet-Parker current layer evolves into a chain of plasmoids connected by secondary current sheets and the averaged reconnection rate becomes nearly independent of the Lundquist number. In a three-dimensional configuration with a guide field, the additional degree of freedom allows plasmoid instabilities to grow at oblique angles [S. Baalrud et al. Phys. Plasmas 19, 022101 (2012)] and develop the complex dynamics of flux ropes which overlap, cause field-line stochasticization, and self-generate a turbulent state. Three-dimensional simulations in the high-Lundquist-number regime show the formation of cigar-shaped eddies elongated in the direction of the local magnetic field, which is a signature of anisotropic MHD turbulence. Furthermore, the energy fluctuation spectra are found to satisfy power laws in the inertial range. The averaged 3D reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfven speed, which is an order of magnitude lower than the reconnection rate reported in recent studies of externally driven 3D turbulent reconnection. The physical reasons for these differences will be discussed.

  15. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    Science.gov (United States)

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  16. Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion.

    Science.gov (United States)

    Manning, Amity L; Yazinski, Stephanie A; Nicolay, Brandon; Bryll, Alysia; Zou, Lee; Dyson, Nicholas J

    2014-03-20

    Chromosome instability (CIN), a common feature of solid tumors, promotes tumor evolution and increases drug resistance during therapy. We previously demonstrated that loss of the retinoblastoma protein (pRB) tumor suppressor causes changes in centromere structure and generates CIN. However, the mechanism and significance of this change was unclear. Here, we show that defects in cohesion are key to the pRB loss phenotype. pRB loss alters H4K20 methylation, a prerequisite for efficient establishment of cohesion at centromeres. Changes in cohesin regulation are evident during S phase, where they compromise replication and increase DNA damage. Ultimately, such changes compromise mitotic fidelity following pRB loss. Remarkably, increasing cohesion suppressed all of these phenotypes and dramatically reduced CIN in cancer cells lacking functional pRB. These data explain how loss of pRB undermines genomic integrity. Given the frequent functional inactivation of pRB in cancer, conditions that increase cohesion may provide a general strategy to suppress CIN.

  17. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epigenetic instability.

    Directory of Open Access Journals (Sweden)

    Shingo Iwami

    Full Text Available The human immune system functions to provide continuous body-wide surveillance to detect and eliminate foreign agents such as bacteria and viruses as well as the body's own cells that undergo malignant transformation. To counteract this surveillance, tumor cells evolve mechanisms to evade elimination by the immune system; this tumor immunoescape leads to continuous tumor expansion, albeit potentially with a different composition of the tumor cell population ("immunoediting". Tumor immunoescape and immunoediting are products of an evolutionary process and are hence driven by mutation and selection. Higher mutation rates allow cells to more rapidly acquire new phenotypes that help evade the immune system, but also harbor the risk of an inability to maintain essential genome structure and functions, thereby leading to an error catastrophe. In this paper, we designed a novel mathematical framework, based upon the quasispecies model, to study the effects of tumor immunoediting and the evolution of (epigenetic instability on the abundance of tumor and immune system cells. We found that there exists an optimum number of tumor variants and an optimum magnitude of mutation rates that maximize tumor progression despite an active immune response. Our findings provide insights into the dynamics of tumorigenesis during immune system attacks and help guide the choice of treatment strategies that best inhibit diverse tumor cell populations.

  18. Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies

    Directory of Open Access Journals (Sweden)

    Ruiz-Herrera Aurora

    2007-10-01

    Full Text Available Abstract Background Extant placental mammals are divided into four major clades (Laurasiatheria, Supraprimates, Xenarthra and Afrotheria. Given that Afrotheria is generally thought to root the eutherian tree in phylogenetic analysis of large nuclear gene data sets, the study of the organization of the genomes of afrotherian species provides new insights into the dynamics of mammalian chromosomal evolution. Here we test if there are chromosomal bands with a high tendency to break and reorganize in Afrotheria, and by analyzing the expression of aphidicolin-induced common fragile sites in three afrotherian species, whether these are coincidental with recognized evolutionary breakpoints. Results We described 29 fragile sites in the aardvark (OAF genome, 27 in the golden mole (CAS, and 35 in the elephant-shrew (EED genome. We show that fragile sites are conserved among afrotherian species and these are correlated with evolutionary breakpoints when compared to the human (HSA genome. Inddition, by computationally scanning the newly released opossum (Monodelphis domestica and chicken sequence assemblies for use as outgroups to Placentalia, we validate the HSA 3/21/5 chromosomal synteny as a rare genomic change that defines the monophyly of this ancient African clade of mammals. On the other hand, support for HSA 1/19p, which is also thought to underpin Afrotheria, is currently ambiguous. Conclusion We provide evidence that (i the evolutionary breakpoints that characterise human syntenies detected in the basal Afrotheria correspond at the chromosomal band level with fragile sites, (ii that HSA 3p/21 was in the amniote ancestor (i.e., common to turtles, lepidosaurs, crocodilians, birds and mammals and was subsequently disrupted in the lineage leading to marsupials. Its expansion to include HSA 5 in Afrotheria is unique and (iii that its fragmentation to HSA 3p/21 + HSA 5/21 in elephant and manatee was due to a fission within HSA 21 that is probably shared

  19. MTHFR Functional Polymorphism C677T and Genomic Instability in the Etiology of Idiopathic Autism in Simplex Families

    Science.gov (United States)

    2014-12-01

    AWARD NUMBER: W81XWH-12-1-0298 TITLE: MTHFR Functional Polymorphism C677T and Genomic Instability in the Etiology of Idiopathic Autism in... Autism in Simplex Families 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0298 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Xudong Liu, PhD 5d...DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autism Spectrum Disorder (ASD

  20. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    Science.gov (United States)

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-07-25

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  1. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.

    Science.gov (United States)

    Liu, Guoqi; Chen, Xiaomi; Leffak, Michael

    2013-02-01

    (CTG)(n) · (CAG)(n) trinucleotide repeat (TNR) expansion in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG)(n) · (CAG)(n) structures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG)(45) · (CAG)(45) causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG)(45) · (CAG)(45) lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG)(45) · (CAG)(45) expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linked in vivo.

  2. Ion-Induced Beam Instability in an Electron Storage Ring

    Institute of Scientific and Technical Information of China (English)

    LI Yong-Jun; JIN Yu-Ming; LI Wei-Min; LIU Zu-Ping

    2000-01-01

    In a small electron storage ring, such as the Hefei Light Source (HLS) ring, the newly generated ions, which can not escape from the beam potential and then are trapped from turn to turn, will lead to the beam instability. The ions created by the leading bunches can perturb the trailing bunches and also themselves during their subsequent passage, which will make the amplitude of beam oscillation be damped and anti-damped periodically. A computer simulation based on the strong-weak model shows a good agreement with our analytical model using the linear theory.

  3. The Adaptive Response in p53 Cancer Prone Mice: Loss of heterozygosity and Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Josee, Lavoie [McMaster Univ., Hamilton, ON (Canada). Medical Physics and Applied Radiation Sciences; Dolling, Jo-Anna [Credit Valley Hospital, Missassauga, ON (Canada); Mitchel, Ron E.J. [Atomic Energy of Canada (AECL), Limited, Chalk River, ON (Canada); Boreham, Douglas R. [McMaster Univ., Hamilton, ON (Canada). Medical Physics and Applied Radiation Sciences

    2004-09-28

    mice, only numerical aberrations were observed in 5 to 20% of the cells. There seem to be an age related increase in numerical aberrations as mice grow old. The results indicate that the presence of a defective copy of the Trp53 gene does not seem to affect spontaneous chromosomal instability or in response to chronic low dose exposure to g-radiation. In previous studies it was speculated that low dose and low dose rate in vivo exposure to g-radiation induces an adaptive response, which reduces the risk of cancer death generated by subsequent DNA damage from either spontaneous or radiation induced events due to enhanced recombinational repair. Induced recombination could result from reversion to homozygosity at Trp53 gene locus (Trp53 +/- to +/+) or loss of heterozygosity in unexposed mice (Trp53 +/- to -/-). This hypothesis was investigated using the quantitative real-time Polymerase Chain Reaction (QRT-PCR) quantification method and the novel Rolling Circle Amplification technique (RCA). For these purposes, spleenocytes and bone marrow cells from all the mice were isolated for cell fixation and DNA extraction. The defective Trp53 allele is generated by integration of a portion of the cloning vector pKONEO DNA into the coding sequence. Therefore, the genotypic changes are monitored based on the detection of the NEO allele and the normal Trp53 allele in the cells. To evaluate loss of heterozygosity at the Trp53 gene locus in a cell, detection of the NEO allele and the normal Trp53 allele using the dual color RCA was utilized. In our hands, this protocol did not give the required sensitivity. The gene signal enumeration was inconsistent and not reproducible. The protocol was modified and could not be optimized. Therefore, the QRT-PCR method was selected to evaluate the loss of heterozygosity with greater sensitivity and efficiency. A set of 4 primers was designed to target the NEO allele and the normal Trp53 allele in a PCR experiment using the LightCycler instrument

  4. Membrane shape instabilities induced by BAR domain proteins

    Science.gov (United States)

    Baumgart, Tobias

    2014-03-01

    Membrane curvature has developed into a forefront of membrane biophysics. Numerous proteins involved in membrane curvature sensing and membrane curvature generation have recently been discovered, including proteins containing the crescent-shaped BAR domain as membrane binding and shaping module. Accordingly, the structure determination of these proteins and their multimeric complexes is increasingly well-understood. Substantially less understood, however, are thermodynamic and kinetic aspects and the detailed mechanisms of how these proteins interact with membranes in a curvature-dependent manner. New experimental approaches need to be combined with established techniques to be able to fill in these missing details. Here we use model membrane systems in combination with a variety of biophysical techniques to characterize mechanistic aspects of BAR domain protein function. This includes a characterization of membrane curvature sensing and membrane generation. We also establish kinetic and thermodynamic aspects of BAR protein dimerization in solution, and investigate kinetic aspects of membrane binding. We present two new approaches to investigate membrane shape instabilities and demonstrate that membrane shape instabilities can be controlled by protein binding and lateral membrane tension. This work is supported through NIH grant GM-097552 and NSF grant CBET-1053857.

  5. Theoretical study on the influence of residual stress on adhesion-induced instability in MEMS

    Institute of Scientific and Technical Information of China (English)

    WANG ShiJi; LI Xian; CHEN ZhengHan

    2009-01-01

    Adhesion and residual stress play a critical role in the performance and reliability of MEMS.The influence of residual stress on the adhesion-induced instability in MEMS is examined within the framework of thin elastic plate theory.The results show that the adhesion-induced instability will be mitigated if the residual stress exists in certain component of MEMS.Moreover,we find that the influence is significant only when the residual stress is under a proper magnitude (β≤20).

  6. Detection of cis- and trans-acting factors in DNA structure-induced genetic instability using in silico and cellular approaches

    Directory of Open Access Journals (Sweden)

    Guliang Wang

    2016-08-01

    Full Text Available Sequences that can adopt alternative DNA structures (i.e. non-B DNA are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in-silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development.

  7. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability.

    Science.gov (United States)

    Patterson, Melissa N; Scannapieco, Alison E; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A; Maxwell, Patrick H

    2015-10-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Turbulent mixing induced by Richtmyer-Meshkov instability

    Science.gov (United States)

    Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.

    2017-01-01

    Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.

  9. X-ray lasing as a result of an induced instability in an ablative capillary discharge

    NARCIS (Netherlands)

    Ellwi, S. S.; Juschkin, L.; Ferri, S.; Kunze, H. J.; Koshelev, K. N.; E. Louis,

    2001-01-01

    We report lasing of the CVI Balmer-alpha line at 18.22 nm using the new technique of an induced MHD instability in an ablative capillary discharge. A large spike of this line during the second half-cycle of the discharge is observed. The spike is identified as amplified spontaneous emission (ASE), a

  10. Experimental investigation of fundamental processes in mining induced fracturing and rock instability.

    CSIR Research Space (South Africa)

    Napier, JAL

    2002-03-01

    Full Text Available Final Report Experimental investigation of fundamental processes in mining induced fracturing and rock instability J.A.L. Napier, K. Drescher, M.W. Hildyard, M.O. Kataka, D.F. Malan, E.J. Sellers Research Agency : CSIR Miningtek Project No : GAP...

  11. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  12. Self-induced temporal instability from a neutrino antenna

    CERN Document Server

    Capozzi, Francesco; Mirizzi, Alessandro

    2016-01-01

    It has been recently shown that the flavor composition of a self-interacting neutrino gas can spontaneously acquire a time-dependent pulsating component during its flavor evolution. In this work, we perform a more detailed study of this effect in a model where neutrinos are assumed to be emitted in a two-dimensional plane from an infinite line that acts as a neutrino antenna. We consider several examples with varying matter and neutrino densities and find that temporal instabilities with various frequencies are excited in a cascade. We compare the numerical calculations of the flavor evolution with the predictions of linearized stability analysis of the equations of motion. The results obtained with these two approaches are in good agreement in the linear regime, while a dramatic speed-up of the flavor conversions occurs in the non-linear regime due to the interactions among the different pulsating modes. We show that large flavor conversions can take place if some of the temporal modes are unstable for long ...

  13. Self-induced temporal instability from a neutrino antenna

    Science.gov (United States)

    Capozzi, Francesco; Dasgupta, Basudeb; Mirizzi, Alessandro

    2016-04-01

    It has been recently shown that the flavor composition of a self-interacting neutrino gas can spontaneously acquire a time-dependent pulsating component during its flavor evolution. In this work, we perform a more detailed study of this effect in a model where neutrinos are assumed to be emitted in a two-dimensional plane from an infinite line that acts as a neutrino antenna. We consider several examples with varying matter and neutrino densities and find that temporal instabilities with various frequencies are excited in a cascade. We compare the numerical calculations of the flavor evolution with the predictions of linearized stability analysis of the equations of motion. The results obtained with these two approaches are in good agreement in the linear regime, while a dramatic speed-up of the flavor conversions occurs in the non-linear regime due to the interactions among the different pulsating modes. We show that large flavor conversions can take place if some of the temporal modes are unstable for long enough, and that this can happen even if the matter and neutrino densities are changing, as long as they vary slowly.

  14. Surface instabilities and reorientation induced by vibration in microgravity conditions

    Science.gov (United States)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier; Ezquerro Navarro, Jose Miguel

    2012-07-01

    The behavior of vibrated fluids and, in particular, the surface or interfacial instabilities that commonly arise in these systems have been the subject of continued experimental and theoretical attention since Faraday's seminal experiments in 1831. Both orientation and frequency are critical in determining the response of the fluid to excitation. Low frequencies are associated with sloshing while higher frequencies may generate Faraday waves or cross-waves, depending on whether the axis of vibration is perpendicular or parallel to the interface. In addition, high frequency vibrations are known to produce large scale reorientation of the fluid (vibroequilibria), an effect that becomes especially pronounced in the absence of gravity. We describe the results of investigations conducted at the ESA affiliated Spanish User Support and Operations Centre (E-USOC) on the effect of vibrations on fluid interfaces, particularly the interaction between Faraday waves, which arise in vertically vibrated systems, cross-waves, which are found in horizontally forced systems, and large scale reorientation (vibroequilibria). Ongoing ground experiments utilizing a dual-axis shaker configuration are described, including the effect on pattern formation of varying the two independent forcing frequencies, amplitudes, and phases. Theoretical results, based on the analysis of reduced models, and on numerical simulations, are then described and compared to experiment. Finally, the interest of a corresponding microgravity experiment is discussed and implications for fluid management strategies considered.

  15. Self-induced temporal instability from a neutrino antenna

    Energy Technology Data Exchange (ETDEWEB)

    Capozzi, Francesco [Dipartimento di Fisica e Astronomia “Galileo Galilei”,Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dasgupta, Basudeb [Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai, 400005 (India); Mirizzi, Alessandro [Dipartimento Interateneo di Fisica “Michelangelo Merlin”,Via Amendola 173, 70126 Bari (Italy); INFN - Sezione di Bari,Via Amendola 173, 70126 Bari (Italy)

    2016-04-21

    It has been recently shown that the flavor composition of a self-interacting neutrino gas can spontaneously acquire a time-dependent pulsating component during its flavor evolution. In this work, we perform a more detailed study of this effect in a model where neutrinos are assumed to be emitted in a two-dimensional plane from an infinite line that acts as a neutrino antenna. We consider several examples with varying matter and neutrino densities and find that temporal instabilities with various frequencies are excited in a cascade. We compare the numerical calculations of the flavor evolution with the predictions of linearized stability analysis of the equations of motion. The results obtained with these two approaches are in good agreement in the linear regime, while a dramatic speed-up of the flavor conversions occurs in the non-linear regime due to the interactions among the different pulsating modes. We show that large flavor conversions can take place if some of the temporal modes are unstable for long enough, and that this can happen even if the matter and neutrino densities are changing, as long as they vary slowly.

  16. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  17. Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas

    Science.gov (United States)

    Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.

    2016-01-01

    Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.

  18. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells

    Directory of Open Access Journals (Sweden)

    Ulises Urzúa

    2016-10-01

    suggests altered control of nuclear RNA maturation, features recently linked to impaired DNA damage response leading to genome instability. These results, combined with cytogenetic analysis by other authors in this model, suggest that transcriptional profile at passage 14 might induce cytokinesis failure by which tetraploid cells approach a near-tetraploid stage containing primary chromosome aberrations that initiate the tumorigenic drive.

  19. Helicobacter pylori Infection Induces Genetic Instability of Nuclear and Mitochondrial DNA in Gastric Cells

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Figueiredo, Ceu; Touati, Eliette;

    2009-01-01

    Purpose: Helicobacter pylori is a major cause of gastric carcinoma. To investigate a possible link between bacterial infection and genetic instability of the host genome, we examined the effect of H. pylori infection on known cellular repair pathways in vitro and in vivo. Moreover, various types...... of genetic instabilities in the nuclear and mitochondrial DNA (mtDNA) were examined. Experimental Design: We observed the effects of H pylori infection on a gastric cell line (AGS), on C57BL/6 mice, and on individuals with chronic gastritis. In AGS cells, the effect of H pylori infection on base excision...... cells and chronic gastritis tissue were determined by PCR, single-stranded conformation polymorphism, and sequencing. H pylori vacA and cagA genotyping was determined by multiplex PCR and reverse hybridization. Results: Following H pylori infection, the activity and expression of base excision repair...

  20. Mitigation of radiation-pressure-induced angular instability of a Fabry–Perot cavity consisting of suspended mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Koji, E-mail: knagano@icrr.u-tokyo.ac.jp [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Enomoto, Yutaro; Nakano, Masayuki [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Kawamura, Seiji [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan)

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system. - Highlights: • High laser power could cause angular instability to a suspended Fabry–Perot cavity. • To mitigate the instability, the control system using radiation pressure is applied. • Mitigating the radiation-pressure-induced angular instability is demonstrated. • It is also confirmed that the cavity would be unstable without the control system.

  1. Lead Exposure Induces Telomere Instability in Human Cells.

    Directory of Open Access Journals (Sweden)

    Géraldine Pottier

    Full Text Available Lead (Pb is an important environmental contaminant due to its widespread use over many centuries. While it affects primarily every organ system of the body, the most pernicious effects of Pb are on the central nervous system leading to cognitive and behavioral modification. Despite decades of research, the mechanisms responsible for Pb toxicity remain poorly understood. Recent work has suggested that Pb exposure may have consequences on chromosomal integrity as it was shown that Pb exposure leads to the generation of γH2Ax foci, a well-established biomarker for DNA double stranded break (DSB formation. As the chromosomal localization of γH2Ax foci plays an important role in determining the molecular mechanism responsible for their formation, we examined the localization of Pb-induced foci with respect to telomeres. Indeed, short or dysfunctional telomeres (uncapped or damaged telomeres may be recognized as DSB by the DNA repair machinery, leading to "telomere-Induced Foci" (TIFs. In the current study, we show that while Pb exposure did not increase intra-chromosomal foci, it significantly induced TIFs, leading in some cases, to chromosomal abnormalities including telomere loss. The evidence suggests that these chromosomal abnormalities are likely due to perturbation of telomere replication, in particular on the lagging DNA strand. We propose a mechanism by which Pb exposure leads to the loss of telomere maintenance. As numerous studies have demonstrated a role for telomere maintenance in brain development and tissue homeostasis, our results suggest a possible mechanism for lead-induced neurotoxicity.

  2. Cavitation instabilities and rotordynamic effects in turbopumps and hydroturbines turbopump and inducer cavitation, experiments and design

    CERN Document Server

    Salvetti, Maria

    2017-01-01

    The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating...

  3. Electromagnetic interference-induced instability in CPP-GMR read heads

    Energy Technology Data Exchange (ETDEWEB)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A. [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Mewes, T.; Mewes, C.K.A. [Department of Physics and Astronomy, MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Kruesubthaworn, A., E-mail: anankr@kku.ac.th [KKU-Seagate Cooperation Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2016-08-15

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads. - Highlights: • The instability induced by electromagnetic interference in read head is examined. • The magnetization orientation can be fluctuated by electromagnetic interference. • The electromagnetic interference can induce additional noise spectra to the system. • The noise is mainly located at stripe height of the read head. • The noise induced by electromagnetic interference is a crucial factor for the head.

  4. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays.

    Science.gov (United States)

    Erturk, Filiz Aygun; Aydin, Murat; Sigmaz, Burcu; Taspinar, M Sinan; Arslan, Esra; Agar, Guleray; Yagci, Semra

    2015-12-01

    Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.

  5. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  6. Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yung-Tuen Chiu

    Full Text Available The ATM/ATR DNA damage checkpoint functions in the maintenance of genetic stability and some missense variants of the ATM gene have been shown to confer a moderate increased risk of prostate cancer. However, whether inactivation of this checkpoint contributes directly to prostate specific cancer predisposition is still unknown. Here, we show that exposure of non-malignant prostate epithelial cells (HPr-1AR to androgen led to activation of the ATM/ATR DNA damage response and induction of cellular senescence. Notably, knockdown of the ATM gene expression in HPr-1AR cells can promote androgen-induced TMPRSS2: ERG rearrangement, a prostate-specific chromosome translocation frequently found in prostate cancer cells. Intriguingly, unlike the non-malignant prostate epithelial cells, the ATM/ATR DNA damage checkpoint appears to be defective in prostate cancer cells, since androgen treatment only induced a partial activation of the DNA damage response. This mechanism appears to preserve androgen induced autophosphorylation of ATM and phosphorylation of H2AX, lesion processing and repair pathway yet restrain ATM/CHK1/CHK2 and p53 signaling pathway. Our findings demonstrate that ATM/ATR inactivation is a crucial step in promoting androgen-induced genomic instability and prostate carcinogenesis.

  7. Genome-Wide Demethylation Promotes Triplet Repeat Instability Independently of Homologous Recombination

    Science.gov (United States)

    Dion, Vincent; Lin, Yunfu; Price, Brandee A.; Fyffe, Sharyl L.; Seluanov, Andrei; Gorbunova, Vera; Wilson, John H.

    2008-01-01

    Trinucleotide repeat instability is intrinsic to a family of human neurodegenerative diseases. The mechanism leading to repeat length variation is unclear. We previously showed that treatment with the demethylating agent 5-aza-2′-deoxycytidine (5-aza-CdR) dramatically increases triplet repeat instability in mammalian cells. Based on previous reports that demethylation increases homologous recombination (HR), and our own observations that HR destabilizes triplet repeats, we hypothesized that demethylation alters repeat stability by stimulating HR. Here, we test that hypothesis at the Aprt (adenosine phosphoribosyl transferase) locus in CHO cells, where CpG demethylation and HR have both been shown to increase CAG repeat instability. We find that the rate of HR at the Aprt locus is not altered by demethylation. The spectrum of recombinants, however, was shifted from the usual 6:1 ratio of conversions to crossovers to more equal proportions in 5-aza-CdR-treated cells. The subtle influences of demethylation on HR at the Aprt locus are not sufficient to account for its dramatic effects on repeat instability. We conclude that 5-aza-CdR promotes triplet repeat instability independently of HR. PMID:18083071

  8. Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism.

    Science.gov (United States)

    Rodriguez, E; Azevedo, R; Moreira, H; Souto, L; Santos, Conceição

    2013-01-01

    Lead (Pb) is a toxic element, but its putative mutagenic effects in plant cells, using molecular markers, remain to unveil. To evaluate if Pb induces mutagenicity, Pisum sativum L. seedlings were exposed to Pb(2+) (up to 2000 mg L(-1)) for 28 days and the instability of microsatellites (or Simple Sequence Repeats, SSR) was analyzed in leaves and roots. The analysis of eight selected microsatellites (SSR1-SSR8) demonstrated that only at the highest dosage microsatellite instability (MSI) occurred, at a frequency of 4.2%. Changes were detected in one microsatellite (SSR6) that is inserted in the locus for glutamine synthetase. SSR6 products of roots exposed to the highest concentration of Pb were 3 bp larger than those of the control. Our data demonstrate that: (a) SSR technique is sensitive to detect Pb-induced mutagenicity in plants. MSI instability is Pb dose dependent and organ dependent (roots are more sensitive); (b) the Pb-sensitive SSR6 is inserted in the glutamine synthetase locus, with still unknown relation with functional changes of this enzyme; (c) Pb levels inducing MSI are much above the maximum admitted levels in some European Union countries for agricultural purpose waters. In conclusion, we propose here the potential use of SSR to evaluate Pb(2+)-induced mutagenicity, in combination with other genetic markers.

  9. Tolerance of Deregulated G1/S Transcription Depends on Critical G1/S Regulon Genes to Prevent Catastrophic Genome Instability

    Directory of Open Access Journals (Sweden)

    Catia Caetano

    2014-12-01

    Full Text Available Expression of a G1/S regulon of genes that are required for DNA replication is a ubiquitous mechanism for controlling cell proliferation; moreover, the pathological deregulated expression of E2F-regulated G1/S genes is found in every type of cancer. Cellular tolerance of deregulated G1/S transcription is surprising because this regulon includes many dosage-sensitive proteins. Here, we used the fission yeast Schizosaccharomyces pombe to investigate this issue. We report that deregulating the MBF G1/S regulon by eliminating the Nrm1 corepressor increases replication errors. Homology-directed repair proteins, including MBF-regulated Ctp1CtIP, are essential to prevent catastrophic genome instability. Surprisingly, the normally inconsequential MBF-regulated S-phase cyclin Cig2 also becomes essential in the absence of Nrm1. This requirement was traced to cyclin-dependent kinase inhibition of the MBF-regulated Cdc18Cdc6 replication origin-licensing factor. Collectively, these results establish that, although deregulation of G1/S transcription is well tolerated by cells, nonessential G1/S target genes become crucial for preventing catastrophic genome instability.

  10. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.

    Directory of Open Access Journals (Sweden)

    Cyril Ribeyre

    2009-05-01

    Full Text Available In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4 secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.

  11. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Boerkamp, Kim M., E-mail: K.M.Boerkamp@uu.nl; Rutteman, Gerard R. [Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Kik, Marja J. L. [Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht (Netherlands); Kirpensteijn, Jolle [Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Schulze, Christoph; Grinwis, Guy C. M. [Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht (Netherlands)

    2012-12-03

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.

  12. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Directory of Open Access Journals (Sweden)

    Christoph Schulze

    2012-12-01

    Full Text Available DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.

  13. Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability

    Science.gov (United States)

    Wang, Feifei; Yu, Haibo; Liu, Na; Mai, John D.; Liu, Lianqing; Lee, Gwo-Bin; Jung Li, Wen

    2013-11-01

    We report here an approach to rapidly construct organized formations of micron-scale pillars from a thin polydimethylsiloxane (PDMS) film by optically induced electrohydrodynamic instability (OEHI). In OEHI, a heterogeneous electric field is induced across two thin fluidic layers by stimulating a photoconductive thin film in a parallel-plate capacitor configuration with visible light. We demonstrated that this OEHI method could control nucleation sites of pillars formed by electrohydrodynamic instability. To investigate this phenomenon, a tangential electric force component is assumed to have arisen from the surface polarization charge and is introduced into the traditional perfect dielectric model for PDMS films. Numerical simulation results showed that this tangential electric force played an important role in OEHI.

  14. Prediction of Streamwise Flow-Induced Vibration of A Circular Cylinder in the First Instability Range

    Institute of Scientific and Technical Information of China (English)

    Xu Wan-hai; Yu Jian-xing; Du Jie; CHENG An-kang; KANG Hao

    2012-01-01

    The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated,and a wake oscillator model for the dynamic response prediction is proposed.An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model.It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.

  15. Bias-stress-induced instability of polymer thin-film transistor based on poly(3-hexylthiophene)

    OpenAIRE

    Liu, YR; Liao, R.; Lai, PT; Yao, RH

    2012-01-01

    A polymer thin-film transistor (PTFT) based on poly(3-hexylthiophene) (P3HT) is fabricated by a spin-coating process and characterized. Its bias-stress-induced instability during operation is investigated as a function of time and temperature. For negative gate-bias stress, the carrier mobility remains unchanged, the off-state current decreases, and the threshold voltage shifts toward the negative direction. On the other hand, for negative drain-bias stress, the carrier mobility decreases sli...

  16. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines

    Directory of Open Access Journals (Sweden)

    Nestor Luis Lopez Corrales

    2012-12-01

    Full Text Available The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH and multiplex fluorescence in situ hybridization (M-FISH techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.

  17. The numerical study of shock-induced hydrodynamic instability and mixing

    Institute of Scientific and Technical Information of China (English)

    Wang Tao; Bai Jing-Song; Li Ping; Zhong Min

    2009-01-01

    Based on multi-fluid volume fraction and piecewise parabolic method (PPM), a multi-viscosity-fluid hydrodynamic code MVPPM (Multi-Viscosity-Fluid Piecewise Parabolic Method) is developed and applied to the problems of shock-induced hydrodynamic interfacial instability and mixing. Simulations of gas/liquid interface instability show that the influences of initial perturbations on the fluid mixing zone (FMZ) growth are significant, especially at the late stages, while grids have only a slight effect on the FMZ width, when the interface is impulsively accelerated by a shock wave passing through it. A numerical study of the hydrodynamic interfacial instability and mixing of gaseous flows impacted by re-shocks is presented. It reveals that the numerical results are in good agreement with the experimental results and the mixing growth rate strongly depends on initial conditions. Ultimately, the jelly layer experiment relevant to the instability impacted by exploding is simulated. The shape of jelly interface, position of front face of jelly layer, crest and trough of perturbation versus time are given; their simulated results are in good agreement with experimental results.

  18. Nonlinear instabilities induced by the F coil power amplifier at FTU: Modeling and control

    Energy Technology Data Exchange (ETDEWEB)

    Zaccarian, L. [Dip. di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1 - 00133 Roma (Italy); Boncagni, L. [Associazione Euratom/ENEA sulla fusione, Centro Ricerche Frascati, CP 65 - 00044 Frascati (Roma) (Italy); Cascone, D. [Dip. di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1 - 00133 Roma (Italy); Centioli, C. [Associazione Euratom/ENEA sulla fusione, Centro Ricerche Frascati, CP 65 - 00044 Frascati (Roma) (Italy); Cerino, S. [Dip. di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1 - 00133 Roma (Italy); Gravanti, F.; Iannone, F. [Associazione Euratom/ENEA sulla fusione, Centro Ricerche Frascati, CP 65 - 00044 Frascati (Roma) (Italy); Mecocci, F.; Pangione, L. [Dip. di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1 - 00133 Roma (Italy); Podda, S. [Associazione Euratom/ENEA sulla fusione, Centro Ricerche Frascati, CP 65 - 00044 Frascati (Roma) (Italy); Vitale, V. [Associazione Euratom/ENEA sulla fusione, Centro Ricerche Frascati, CP 65 - 00044 Frascati (Roma) (Italy)], E-mail: vitale@frascati.enea.it; Vitelli, R. [Dip. di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1 - 00133 Roma (Italy)

    2009-06-15

    In this paper we focus on the instabilities caused by the nonlinear behavior of the F coil current amplifier at FTU. This behavior induces closed-loop instability of the horizontal position stabilizing loop whenever the requested current is below the circulating current level. In the paper we first illustrate a modeling phase where nonlinear dynamics are derived and identified to reproduce the open-loop responses measured by the F coil current amplifier. The derived model is shown to successfully reproduce the experimental behavior by direct comparison with experimental data. Based on this dynamic model, we then reproduce the closed-loop scenario of the experiment and show that the proposed nonlinear model successfully reproduces the nonlinear instabilities experienced in the experimental sessions. Given the simulation setup, we next propose a nonlinear control solution to this instability problem. The proposed solution is shown to recover stability in closed-loop simulations. Experimental tests are scheduled for the next experimental campaign after the FTU restart.

  19. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, D.F.; Rose, H.A. [Los Alamos National Lab., NM (United States); Russell, D. [Lodestar Research Inc., Boulder, CO (United States)

    1995-12-01

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where the weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.

  20. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    Full Text Available Abstract Background Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. Results First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme α-chymotrypsin (α-CT under controlled humidity conditions. Results showed that α-CT aggregates and inactivates as a function of increased relative humidity (RH. Furthermore, α-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that α-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution. To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa. The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. Conclusion Water sorption leads to

  1. Evaluation of Genomic Instability as an Early Event in the Progression of Breast Cancer

    Science.gov (United States)

    2008-04-01

    instability allows additional classifying of the known aneuploid, diploid, and tetraploid categories of primary breast adenocarcinomas into low and high...expression analysis using stromal and epithelial cell RNA from CHN tissues by microarray hybridization . Determine molecular signatures as a function of...microarray hybridization experiments where performed on “bulk” breast tissues 1cm from tumor margin (N=5), breast tissues 5cm from tumor margin (N=5), and

  2. Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe.

    Science.gov (United States)

    Sarbajna, Shriparna; Davies, Derek; West, Stephen C

    2014-05-15

    The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM-TopoIIIα-RMI1-RMI2 (BTR complex), SLX1-SLX4-MUS81-EME1 (SLX-MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX-MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX-MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1-SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1-SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells.

  3. System dynamic instabilities induced by sliding contact: A numerical analysis with experimental validation

    Science.gov (United States)

    Brunetti, J.; Massi, F.; Saulot, A.; Renouf, M.; D`Ambrogio, W.

    2015-06-01

    Mechanical systems present several contact surfaces between deformable bodies. The contact interface can be either static (joints) or in sliding (active interfaces). The sliding interfaces can have several roles and according to their application they can be developed either for maximizing the friction coefficient and the energy dissipation (e.g. brakes) or rather to allow the relative displacement at joints with a maximum efficiency. In both cases the coupling between system and local contact dynamics can bring to system dynamics instabilities (e.g. brake squeal or squeaking of hip prostheses). This results in unstable vibrations of the system, induced by the oscillation of the contact forces. In the literature, a large number of works deal with such kind of instabilities and are mainly focused on applied problems such as brake squeal noise. This paper shows a more general numerical analysis of a simple system constituted by two bodies in sliding contact: a rigid cylinder rotating inside a deformable one. The parametrical Complex Eigenvalue Analysis and the transient numerical simulations show how the friction forces can give rise to in-plane dynamic instabilities due to the interaction between two system modes, even for such a simple system characterized by one deformable body. Results from transient simulations highlight the key role of realistic values of the material damping to have convergence of the model and, consequently, reliable physical results. To this aim an experimental estimation of the material damping has been carried out. Moreover, the simplicity of the system allows for a deeper analysis of the contact instability and a balance of the energy flux among friction, system vibrations and damping. The numerical results have been validated by comparison with experimental ones, obtained by a specific test bench developed to reproduce and analyze the contact friction instabilities.

  4. Living with genome instability: the adaptation of phytoplasmas todiverse environments of their insect and plant hosts

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaodong; Zhang, Jianhua; Ewing, Adam; Miller, Sally A.; Radek, Agnes; Shevchenko, Dimitriy; Tsukerman, Kiryl; Walunas, Theresa; Lapidus, Alla; Campbell, John W.; Hogenhout Saskia A.

    2006-02-17

    Phytoplasmas (Candidatus Phytoplasma, Class Mollicutes) cause disease in hundreds of economically important plants, and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. The repeated DNAs are organized into large clusters, potential mobile units (PMUs), which contain tra5 insertion sequences (ISs), and specialized sigma factors and membrane proteins. So far, PMUs are unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore phytoplasmas probably use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of {approx}250 kb, located between genes lplA and glnQ are syntenic between the two phytoplasmas, contain the majority of the metabolic genes and no ISs. AY-WB is further along in the reductive evolution process than OY-M. The AY-WB genome is {approx}154 kb smaller than the OY-M genome, primarily as a result of fewer multicopy sequences, including PMUs. Further, AY-WB lacks genes that are truncated and are part of incomplete pathways in OY-M. This is the first comparative phytoplasma genome analysis and report of the existence of PMUs in phytoplasma genomes.

  5. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Kemp

    2015-12-01

    Full Text Available Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  6. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer

    Science.gov (United States)

    Kemp, Jacqueline; Longworth, Michelle

    2015-12-01

    Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises approximately 17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.

  7. Three-dimensional geometry of magnetic reconnection induced by ballooning instability in a generalized Harris sheet

    Science.gov (United States)

    Zhu, Ping; Bhattacharjee, Amitava; Sangari, Arash; Wang, Zechen; Bonofiglo, Phillip

    2017-02-01

    We report for the first time the intrinsically three-dimensional (3D) geometry of the magnetic reconnection process induced by ballooning instability in a generalized Harris sheet. The spatial distribution and the structure of the quasi-separatrix layers, as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a 3D geometry, which is irreducible to that of any two-dimensional reconnection process. Such a finding provides a new perspective to the long-standing controversy over the substorm onset problem and elucidates the combined roles of reconnection and ballooning instabilities. It also connects to the universal presence of 3D reconnection processes previously discovered in various natural and laboratory plasmas.

  8. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont

    Directory of Open Access Journals (Sweden)

    Amelia R. I. Lindsey

    2016-07-01

    Full Text Available Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.

  9. Accumulation and Phosphorylation of RecQ-Mediated Genome Instability Protein 1 (RMI1) at Serine 284 and Serine 292 during Mitosis.

    Science.gov (United States)

    Xu, Chang; Wang, Yan; Wang, Lu; Wang, Qin; Du, Li-Qing; Fan, Saijun; Liu, Qiang; Li, Lei

    2015-11-04

    Chromosome instability usually leads to tumorigenesis. Bloom syndrome (BS) is a genetic disease associated with chromosome instability. The BS gene product, BLM, has been reported to function in the spindle assembly checkpoint (SAC) to prevent chromosome instability. BTR complex, composed of BLM, topoisomerase IIIα (Topo IIIα), RMI1 (RecQ-mediated genome instability protein 1, BLAP75) and RMI2 (RecQ-mediated genome instability protein 2, BLAP18), is crucial for maintaining genome stability. Recent work has demonstrated that RMI2 also plays critical role in SAC. However, little is know about RMI1 regulation during the cell cycle. Here we present that RMI1 protein level does not change through G1, S and G2 phases, but significantly increases in M phase. Moreover, phosphorylation of RMI1 occurs in mitosis. Upon microtubule-disturbing agent, RMI1 is phosphorylated primarily at the sites of Serine 284 and Serine 292, which does not interfere with the formation of BTR complex. Additionally, this phosphorylation is partially reversed by roscovitine treatment, implying cycling-dependent kinase 1 (CDK1) might be one of the upstream kinases.

  10. Accumulation and Phosphorylation of RecQ-Mediated Genome Instability Protein 1 (RMI1 at Serine 284 and Serine 292 during Mitosis

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2015-11-01

    Full Text Available Chromosome instability usually leads to tumorigenesis. Bloom syndrome (BS is a genetic disease associated with chromosome instability. The BS gene product, BLM, has been reported to function in the spindle assembly checkpoint (SAC to prevent chromosome instability. BTR complex, composed of BLM, topoisomerase IIIα (Topo IIIα, RMI1 (RecQ-mediated genome instability protein 1, BLAP75 and RMI2 (RecQ-mediated genome instability protein 2, BLAP18, is crucial for maintaining genome stability. Recent work has demonstrated that RMI2 also plays critical role in SAC. However, little is know about RMI1 regulation during the cell cycle. Here we present that RMI1 protein level does not change through G1, S and G2 phases, but significantly increases in M phase. Moreover, phosphorylation of RMI1 occurs in mitosis. Upon microtubule-disturbing agent, RMI1 is phosphorylated primarily at the sites of Serine 284 and Serine 292, which does not interfere with the formation of BTR complex. Additionally, this phosphorylation is partially reversed by roscovitine treatment, implying cycling-dependent kinase 1 (CDK1 might be one of the upstream kinases.

  11. Structural alterations of the bladder induced by detrusor instability: experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Joao L. Amaro

    2005-12-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate the histopathological and immunohistochemical alterations induced by detrusor instability in the bladder of rabbits submitted to partial bladder outlet obstruction. MATERIALS AND METHODS: Thirty male Norfolk rabbits were divided into 2 groups, a clinical control and a group with detrusor instability. Urine culture, cystometric study, histopathological and immunohistochemical analysis were performed in all animals prior to surgery (M1 and 4 weeks after-surgery (M2. RESULTS: Partial obstruction (G2 resulted in a 2.5 fold increment (p < 0.05 in bladder weight when compared to control (G1. Four weeks after surgery, 93% of animals in G2 developed cystitis. Partial obstruction resulted in detrusor instability at M2 and bladder capacity was significantly increased (p < 0.05 from M1 to M2. The incidence of mild to moderate mucosal and adventitious fibrosis at M2 was higher in G2 (p < 0.05 when compared to G1. Inflammatory reaction at M2 was statistically higher (p < 0.05 in G2. There was no difference in muscular hypertrophy between M1 and M2 in G1. However, 67% of G2 bladders showed a moderate to intense muscular hypertrophy at M2. Hyperplasia of the epithelium was also increased in G2 when M1 and M2 were compared (p < 0.05. CONCLUSION: Detrusor instability induced by partial bladder outlet obstruction caused significant histopathological and immunohistochemical alterations in the bladder of rabbits.

  12. Cytokinesis Failure Leading to Chromosome Instability in v-Src-Induced Oncogenesis.

    Science.gov (United States)

    Nakayama, Yuji; Soeda, Shuhei; Ikeuchi, Masayoshi; Kakae, Keiko; Yamaguchi, Naoto

    2017-04-12

    v-Src, an oncogene found in Rous sarcoma virus, is a constitutively active variant of c-Src. Activation of Src is observed frequently in colorectal and breast cancers, and is critical in tumor progression through multiple processes. However, in some experimental conditions, v-Src causes growth suppression and apoptosis. In this review, we highlight recent progress in our understanding of cytokinesis failure and the attenuation of the tetraploidy checkpoint in v-Src-expressing cells. v-Src induces cell cycle changes-such as the accumulation of the 4N cell population-and increases the number of binucleated cells, which is accompanied by an excess number of centrosomes. Time-lapse analysis of v-Src-expressing cells showed that cytokinesis failure is caused by cleavage furrow regression. Microscopic analysis revealed that v-Src induces delocalization of cytokinesis regulators including Aurora B and Mklp1. Tetraploid cell formation is one of the causes of chromosome instability; however, tetraploid cells can be eliminated at the tetraploidy checkpoint. Interestingly, v-Src weakens the tetraploidy checkpoint by inhibiting the nuclear exclusion of the transcription coactivator YAP, which is downstream of the Hippo pathway and its nuclear exclusion is critical in the tetraploidy checkpoint. We also discuss the relationship between v-Src-induced chromosome instability and growth suppression in v-Src-induced oncogenesis.

  13. Theoretical investigation of coherent synchrotron radiation induced microbunching instability in transport and recirculation arcs

    CERN Document Server

    Tsai, Cheng-Ying; Li, Rui; Tennant, Christopher

    2014-01-01

    The coherent synchrotron radiation (CSR) of a high brightness electron beam traversing a series of dipoles, such as recirculation or transport arcs, may lead to the microbunching instability. We extend and develop a semi-analytical approach of the CSR-induced microbunching instability for a general lattice, based on the previous formulation with 1-D CSR model [Phys. Rev. ST Accel. Beams 5, 064401 (2002)] and apply it to investigate the physical processes of microbunching amplification for two example transport arc lattices. We find that the microbunching instability in transport arcs has a distinguishing feature of multistage amplification (e.g, up to 6th stage for our example arcs in contrast to two stage amplification for a 3-dipole chicane). By further extending the concept of stage gain as proposed by Huang and Kim [Phys. Rev. ST Accel. Beams 5, 074401 (2002)], we developed a method to quantitatively characterize the microbunching amplification in terms of iterative or staged orders that allows the compar...

  14. Phosphate steering by Flap Endonuclease 1 promotes 5′-flap specificity and incision to prevent genome instability

    KAUST Repository

    Tsutakawa, Susan E.

    2017-06-27

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5\\'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5\\'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5\\'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering\\', basic residues energetically steer an inverted ss 5\\'-flap through a gateway over FEN1\\'s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5\\'-flap specificity and catalysis, preventing genomic instability.

  15. Pad-mode-induced instantaneous mode instability for simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2015-10-01

    Automotive disc brake squeal is fugitive, transient and remains difficult to predict. In particular, instantaneous mode squeal observed experimentally does not seem to be associated with mode coupling and its mechanism is not clear. The effects of contact pressures, friction coefficients as well as material properties (pressure and temperature dependency and anisotropy) for brake squeal propensity have not been systematically explored. By analysing a finite element model of an isotropic pad sliding on a plate similar to that of a previously reported experimental study, pad modes have been identified and found to be stable using conventional complex eigenvalue analysis. However, by subjecting the model to contact pressure harmonic excitation for a range of pressures and friction coefficients, a forced response analysis reveals that the dissipated energy for pad modes is negative and becomes more negative with increasing contact pressures and friction coefficients, indicating the potential for instabilities. The frequency of the pad mode in the sliding direction is within the range of squeal frequencies observed experimentally. Nonlinear time series analysis of the vibration velocity also confirms the evolution of instabilities induced by pad modes as the friction coefficient increases. By extending this analysis to a more realistic but simple brake model in the form of a pad-on-disc system, in-plane pad-modes, which a complex eigenvalue analysis predicts to be stable, have also been identified by negative dissipated energy for both isotropic and anisotropic pad material properties. The influence of contact pressures on potential instabilities has been found to be more dominant than changes in material properties owing to changes in pressure or temperature. Results here suggest that instantaneous mode squeal is likely caused by in-plane pad-mode instabilities.

  16. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    Energy Technology Data Exchange (ETDEWEB)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  17. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    Science.gov (United States)

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

  18. p16(INK4a prevents centrosome dysfunction and genomic instability in primary cells.

    Directory of Open Access Journals (Sweden)

    Kimberly M McDermott

    2006-03-01

    Full Text Available Aneuploidy, frequently observed in premalignant lesions, disrupts gene dosage and contributes to neoplastic progression. Theodor Boveri hypothesized nearly 100 years ago that aneuploidy was due to an increase in centrosome number (multipolar mitoses and the resultant abnormal segregation of chromosomes. We performed immunocytochemistry, quantitative immunofluorescence, karyotypic analysis, and time-lapse microscopy on primary human diploid epithelial cells and fibroblasts to better understand the mechanism involved in the production of supernumerary centrosomes (more than two microtubule nucleating bodies to directly demonstrate that the presence of supernumerary centrosomes in genomically intact cells generates aneuploid daughter cells. We show that loss of p16(INK4a generates supernumerary centrosomes through centriole pair splitting. Generation of supernumerary centrosomes in human diploid epithelial cells was shown to nucleate multipolar spindles and directly drive production of aneuploid daughter cells as a result of unequal segregation of the genomic material during mitosis. Finally, we demonstrate that p16(INK4a cooperates with p21 through regulation of cyclin-dependent kinase activity to prevent centriole pair splitting. Cells with loss of p16(INK4a activity have been found in vivo in histologically normal mammary tissue from a substantial fraction of healthy, disease-free women. Demonstration of centrosome dysfunction in cells due to loss of p16(INK4a suggests that, under the appropriate conditions, these cells can become aneuploid. Gain or loss of genomic material (aneuploidy may provide the necessary proproliferation and antiapoptotic mechanisms needed for the earliest stages of tumorigenesis.

  19. Genomic landscape of copy number variation and copy neutral loss of heterozygosity events in equine sarcoids reveals increased instability of the sarcoid genome.

    Science.gov (United States)

    Pawlina-Tyszko, Klaudia; Gurgul, Artur; Szmatoła, Tomasz; Ropka-Molik, Katarzyna; Semik-Gurgul, Ewelina; Klukowska-Rötzler, Jolanta; Koch, Christoph; Mählmann, Kathrin; Bugno-Poniewierska, Monika

    2017-09-01

    Although they are the most common neoplasms in equids, sarcoids are not fully characterized at the molecular level. Therefore, the objective of this study was to characterize the landscape of structural rearrangements, such as copy number variation (CNV) and copy neutral loss of heterozygosity (cnLOH), in the genomes of sarcoid tumor cells. This information will not only broaden our understanding of the characteristics of this genome but will also improve the general knowledge of this tumor and the mechanisms involved in its generation. To this end, Equine SNP64K Illumina microarrays were applied along with bioinformatics tools dedicated for signal intensity analysis. The analysis revealed increased instability of the genome of sarcoid cells compared with unaltered skin tissue samples, which was manifested by the prevalence of CNV and cnLOH events. Many of the identified CNVs overlapped with the other research results, but the simultaneously observed variability in the number and sizes of detected aberrations indicated a need for further studies and the development of more reliable bioinformatics algorithms. The functional analysis of genes co-localized with the identified aberrations revealed that these genes are engaged in vital cellular processes. In addition, a number of these genes directly contribute to neoplastic transformation. Furthermore, large numbers of cnLOH events identified in the sarcoids suggested that they may play no less significant roles than CNVs in the carcinogenesis of this tumor. Thus, our results indicate the importance of cnLOH and CNV in equine sarcoid oncogenesis and present a direction of future research. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Comparative genomic analysis of eutherian interferon-γ-inducible GTPases.

    Science.gov (United States)

    Premzl, Marko

    2012-11-01

    The interferon-γ-inducible GTPases, IFGGs, are intracellular proteins involved in immune response against pathogens. A comprehensive comparative genomic review and analysis of eutherian IFGGs was carried out using public genomic sequences. The 64 eutherian IFGG genes were examined in detail and annotated. The eutherian IFGG promoter types were first catalogued followed by a phylogenetic analysis of eutherian IFGGs, which described five major IFGG clusters. The patterns of differential gene expansions and protein regions that may regulate IFGG catalytic features suggested a new classification of eutherian IFGGs. This mini-review has also provided new tests of reliability of public genomic sequences as well as tests of protein molecular evolution.

  1. Latarjet Procedure for Anterior Shoulder Instability Due to Tramadol-Induced Seizures: A Multicenter Study.

    Science.gov (United States)

    Khater, Ahmad Hany; Sobhy, Mohamed H; Said, Hatem G; Kandil, Ahmed; Reda, Walid; Seifeldin, Ahmed Fouad; Moustafa, Ramez; Elassal, Maher A; Kamel, Ezzat M

    2016-04-01

    Seizures, commonly due to epilepsy, are known to cause shoulder instability. Tramadol addiction has recently been found to induce seizures in patients who exceed the recommended dose. Because of the easy accessibility and low cost of tramadol, an increasingly alarming phenomenon of tramadol abuse has been demonstrated in recent years. The purpose of this multicenter study was to investigate shoulder instability resulting from tramadol-induced seizure (TIS) as well as to recommended management for such shoulder instability. The hypothesis was that TIS leads to anterior shoulder dislocations with major bony defects, which favors bony reconstructive procedures as a suitable method of treatment. Case series; Level of evidence, 4. This prospective case series study was conducted on 73 patients (78 shoulders) who presented with anterior shoulder dislocations and a clear history of tramadol abuse. The mean age of the patients was 26.8 years, and the mean number of dislocations was 14. The mean duration of addiction was 17 months, with a mean dose of 752 mg of tramadol hydrochloride per day. Glenoid and humeral bone loss ranged from 15% to 35% and from 15% to 40%, respectively. The mean follow-up period was 28 months. All patients underwent an open Latarjet procedure. Postoperative mean Rowe score and American Shoulder and Elbow Surgeons score at final follow-up (24 months) improved significantly from 20 to 84 and from 44 to 91, respectively (P Latarjet procedure is recommended for these patients, after control of addiction, and provides 95% satisfaction at midterm follow-up. © 2016 The Author(s).

  2. Temperature effect on negative bias-induced instability of HfInZnO amorphous oxide thin film transistor

    Science.gov (United States)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Kim, Wandong; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2011-02-01

    Negative bias-induced instability of amorphous hafnium indium zinc oxide (α-HIZO) thin film transistors (TFTs) was investigated at various temperatures. In order to examine temperature-induced effects, fabricated TFTs with different combinations of gate insulator and gate metal were stressed by a negative gate bias at various temperatures. As a result, it is proved that negative bias-induced hole-trapping in the gate insulators and temperature-enhanced electron injection from the gate metals occurs at the same time at all temperatures, and the instability of HIZO TFT is more affected by the dominant factor out of the two mechanisms.

  3. Detecting Single-Nucleotide Substitutions Induced by Genome Editing.

    Science.gov (United States)

    Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R

    2016-08-01

    The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells.

  4. Electromagnetic interference-induced instability in CPP-GMR read heads

    Science.gov (United States)

    Khunkitti, P.; Siritaratiwat, A.; Kaewrawang, A.; Mewes, T.; Mewes, C. K. A.; Kruesubthaworn, A.

    2016-08-01

    Electromagnetic interference (EMI) has been a significant issue for the current perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) read heads because it can cause magnetic failure. Furthermore, the magnetic noise induced by the spin transfer torque (STT) effect has played an important role in the CPP read heads because it can affect the stability of the heads. Accordingly, this work proposed an investigation of the magnetic instabilities induced by EMI through the STT effect in a CPP-GMR read head via micromagnetic simulations. The magnetization fluctuation caused by EMI was examined, and then, magnetic noise was evaluated by using power spectral density analysis. It was found that the magnetization orientation can be fluctuated by EMI in close proximity to the head. The results also showed a multimode spectral density. The main contributions of the spectral density were found to originate at the edges of the stripe height sides due to the characteristics of the demagnetization field inside the free layer. Hence, the magnetic instabilities produced by EMI become a significant factor that essentially impacts the reliability of the CPP-GMR read heads.

  5. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors

    Science.gov (United States)

    Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-09-01

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs.

  6. Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome.

    Science.gov (United States)

    Rossi, Giacomina; Conconi, Donatella; Panzeri, Elena; Redaelli, Serena; Piccoli, Elena; Paoletta, Laura; Dalprà, Leda; Tagliavini, Fabrizio

    2013-01-01

    In addition to the main function of promoting polymerization and stabilization of microtubules, other roles are being attributed to tau, now considered a multifunctional protein. In particular, previous studies suggest that tau is involved in chromosome stability and genome protection. We performed cytogenetic analysis, including molecular karyotyping, on lymphocytes and fibroblasts from patients affected by frontotemporal lobar degeneration carrying different mutations in the microtubule-associated protein tau gene, to investigate the effects of these mutations on genome stability. Furthermore, we analyzed the response of mutated lymphoblastoid cell lines to genotoxic agents to evaluate the participation of tau to DNA repair systems. We found a significantly higher level of chromosome aberrations in mutated than in control cells. Mutated lymphocytes showed higher percentages of stable lesions, clonal and total aneuploidy (medians: 2 versus 0, p $\\ll$ 0.01; 1.5 versus 0, p $\\ll$ 0.01; 16.5 versus 0, p $\\ll$ 0.01, respectively). Fibroblasts of patients showed higher percentages of stable lesions, structural aberrations and total aneuploidy (medians: 0 versus 0, p = 0.03; 5.8 versus 0, p = 0.02; 26.5 versus 12.6, p $\\ll$ 0.01, respectively). In addition, the in depth analysis of DNA copy number variations showed a higher tendency to non-allelic homologous recombination in mutated cells. Finally, while our analysis did not support an involvement of tau in DNA repair systems, it revealed its role in stabilization of chromatin. In summary, our findings indicate a role of tau in genome and chromosome stability that can be ascribed to its function as a microtubule-associated protein as well as a protein protecting chromatin integrity through interaction with DNA.

  7. Surface heat transfer and flow properties of vortex arrays induced artificially and from centrifugal instabilities

    Science.gov (United States)

    Subramanian, C. S.; Ligrani, P. M.; Tuzzolo, M. F.

    1992-01-01

    The paper presents and compares fluid-flow and heat transfer properties from artificially induced vortices in a flat-plate turbulent boundary layer and naturally occurring vortices due to centrifugal instabilities in a curved-channel laminar flow. Pairs and arrays of vortices are artificially induced by placing half-delta wings on the plate surface. With both arrays and pairs of vortices, streamwise velocities and total pressures are high, and surface heat transfer is locally augmented in vortex downwash regions. In contrast to vortices in the arrays vortices in the pairs tend to move in the streamwise direction with significant divergence (when the common flow between pair is toward the wall) or convergence (when the common flow between pair is away from the wall). The vortices in the arrays cause maximum peak-to-peak heat transfer variations of up to 12 percent of local spanwise-averaged values for initial vortex spacings between 1 to 2.5 generator heights.

  8. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    Science.gov (United States)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  9. Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells Using the CRISPR System

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-09-01

    Full Text Available Genome manipulation of human induced pluripotent stem (iPS cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.

  10. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system.

    Science.gov (United States)

    Horii, Takuro; Tamura, Daiki; Morita, Sumiyo; Kimura, Mika; Hatada, Izuho

    2013-09-30

    Genome manipulation of human induced pluripotent stem (iPS) cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs) has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR) system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF) syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B) in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.

  11. Electric-field-induced interfacial instabilities of a soft elastic membrane confined between viscous layers.

    Science.gov (United States)

    Dey, Mohar; Bandyopadhyay, Dipankar; Sharma, Ashutosh; Qian, Shizhi; Joo, Sang Woo

    2012-10-01

    We explore the electric-field-induced interfacial instabilities of a trilayer composed of a thin elastic film confined between two viscous layers. A linear stability analysis (LSA) is performed to uncover the growth rate and length scale of the different unstable modes. Application of a normal external electric field on such a configuration can deform the two coupled elastic-viscous interfaces either by an in-phase bending or an antiphase squeezing mode. The bending mode has a long-wave nature, and is present even at a vanishingly small destabilizing field. In contrast, the squeezing mode has finite wave-number characteristics and originates only beyond a threshold strength of the electric field. This is in contrast to the instabilities of the viscous films with multiple interfaces where both modes are found to possess long-wave characteristics. The elastic film is unstable by bending mode when the stabilizing forces due to the in-plane curvature and the elastic stiffness are strong and the destabilizing electric field is relatively weak. In comparison, as the electric field increases, a subdominant squeezing mode can also appear beyond a threshold destabilizing field. A dominant squeezing mode is observed when the destabilizing field is significantly strong and the elastic films are relatively softer with lower elastic modulus. In the absence of liquid layers, a free elastic film is also found to be unstable by long-wave bending and finite wave-number squeezing modes. The LSA asymptotically recovers the results obtained by the previous formulations where the membrane bending elasticity is approximately incorporated as a correction term in the normal stress boundary condition. Interestingly, the presence of a very weak stabilizing influence due to a smaller interfacial tension at the elastic-viscous interfaces opens up the possibility of fabricating submicron patterns exploiting the instabilities of a trilayer.

  12. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability.

    Science.gov (United States)

    Umeda, Mayumi; Murata-Kamiya, Naoko; Saito, Yasuhiro; Ohba, Yusuke; Takahashi, Masayuki; Hatakeyama, Masanori

    2009-08-14

    Infection with cagA-positive Helicobacter pylori is the strongest risk factor for the development of gastric carcinoma. The cagA gene product CagA, which is delivered into gastric epithelial cells, specifically binds to and aberrantly activates SHP-2 oncoprotein. CagA also interacts with and inhibits partitioning-defective 1 (PAR1)/MARK kinase, which phosphorylates microtubule-associated proteins to destabilize microtubules and thereby causes epithelial polarity defects. In light of the notion that microtubules are not only required for polarity regulation but also essential for the formation of mitotic spindles, we hypothesized that CagA-mediated PAR1 inhibition also influences mitosis. Here, we investigated the effect of CagA on the progression of mitosis. In the presence of CagA, cells displayed a delay in the transition from prophase to metaphase. Furthermore, a fraction of the CagA-expressing cells showed spindle misorientation at the onset of anaphase, followed by chromosomal segregation with abnormal division axis. The effect of CagA on mitosis was abolished by elevated PAR1 expression. Conversely, inhibition of PAR1 kinase elicited mitotic delay similar to that induced by CagA. Thus, CagA-mediated inhibition of PAR1, which perturbs microtubule stability and thereby causes microtubule-based spindle dysfunction, is involved in the prophase/metaphase delay and subsequent spindle misorientation. Consequently, chronic exposure of cells to CagA induces chromosomal instability. Our findings reveal a bifunctional role of CagA as an oncoprotein: CagA elicits uncontrolled cell proliferation by aberrantly activating SHP-2 and at the same time induces chromosomal instability by perturbing the microtubule-based mitotic spindle. The dual function of CagA may cooperatively contribute to the progression of multistep gastric carcinogenesis.

  13. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    Directory of Open Access Journals (Sweden)

    Lada Artem G

    2012-12-01

    Full Text Available Abstract Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm, are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.

  14. Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?

    Science.gov (United States)

    Rassool, Feyruz V; Gaymes, Terry J; Omidvar, Nader; Brady, Nicola; Beurlet, Stephanie; Pla, Marika; Reboul, Murielle; Lea, Nicholas; Chomienne, Christine; Thomas, Nicholas S B; Mufti, Ghulam J; Padua, Rose Ann

    2007-09-15

    Myelodysplastic syndromes (MDS) comprise a heterogeneous group of disorders characterized by ineffective hematopoiesis, with an increased propensity to develop acute myelogenous leukemia (AML). The molecular basis for MDS progression is unknown, but a key element in MDS disease progression is loss of chromosomal material (genomic instability). Using our two-step mouse model for myeloid leukemic disease progression involving overexpression of human mutant NRAS and BCL2 genes, we show that there is a stepwise increase in the frequency of DNA damage leading to an increased frequency of error-prone repair of double-strand breaks (DSB) by nonhomologous end-joining. There is a concomitant increase in reactive oxygen species (ROS) in these transgenic mice with disease progression. Importantly, RAC1, an essential component of the ROS-producing NADPH oxidase, is downstream of RAS, and we show that ROS production in NRAS/BCL2 mice is in part dependent on RAC1 activity. DNA damage and error-prone repair can be decreased or reversed in vivo by N-acetyl cysteine antioxidant treatment. Our data link gene abnormalities to constitutive DNA damage and increased DSB repair errors in vivo and provide a mechanism for an increase in the error rate of DNA repair with MDS disease progression. These data suggest treatment strategies that target RAS/RAC pathways and ROS production in human MDS/AML.

  15. Saffman-Taylor-like instability in a narrow gap induced by dielectric barrier discharge

    Science.gov (United States)

    Hou, Shang-Yan; Chu, Hong-Yu

    2015-07-01

    This work is inspired by the expansion of the plasma bubble in a narrow gap reported by Chu and Lee [Phys. Rev. Lett. 107, 225001 (2011)], 10.1103/PhysRevLett.107.225001. We report the unstable phenomena of the plasma-liquid interface with different curvature in a Hele-Shaw cell. Dielectric barrier discharge is produced in the cell at atmospheric pressure which is partially filled with silicone oil. We show that the Saffman-Taylor-like instability is observed on the bubble-type, channel-type, and drop-type interfaces. The Schlieren observation of the plasma-drop interaction reveals that there is a vapor layer around the drop and the particle image velocimetry shows the liquid flow inside the drop. We propose that the thermal Marangoni effect induced by the plasma heating is responsible for the unstable phenomena of the plasma-liquid interaction. The fluctuation of the interface is shown consistently with the Saffman-Taylor instability modified by the temperature-dependent velocity and surface tension.

  16. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    Science.gov (United States)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  17. Ionization instability induced striations in atmospheric pressure He/H2O RF and DC discharges

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2017-04-01

    One-dimensional particle-in-cell (PIC) simulations of a 1 mm gap atmospheric pressure He/2%{{\\text{H}}2}\\text{O} rf capacitive discharge showed standing striations in the bulk (Kawamura et al 2016 Plasma Sources Sci. Technol. 25 054009). We found that these striations were consistent with an ionization instability induced by non-local electron kinetics. We developed a theoretical instability criterion in good agreement with the numerical results which showed that discharges with larger bulk recombination rates tend to be more unstable. We also determined a critical wavelength such that shorter wavelengths are suppressed by diffusion while longer wavelengths may be restricted by the gap width. In this paper, we extend the gap size of the atmospheric pressure He/2%{{\\text{H}}2}\\text{O} discharges in the PIC simulations to 2 and 4 mm and drive them by either dc or rf current sources. We compare the results to the 1 mm gap rf simulations and theoretical model in Kawamura et al (2016 Plasma Sources Sci. Technol. 25 054009). We find that wider gap discharges tend to be more unstable as they can accommodate a wider range of wavelengths. Furthermore, the mixture of the various excited modes in the wider gaps can lead to distinctly non-sinusoidal spatial oscillations.

  18. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  19. DNA end resection by CtIP and exonuclease 1 prevents genomic instability

    DEFF Research Database (Denmark)

    Eid, Wassim; Steger, Martin; El-Shemerly, Mahmoud

    2010-01-01

    End resection of DNA-which is essential for the repair of DNA double-strand breaks (DSBs) by homologous recombination-relies first on the partnership between MRE11-RAD50-NBS1 (MRN) and CtIP, followed by a processive step involving helicases and exonucleases such as exonuclease 1 (EXO1). In this s......End resection of DNA-which is essential for the repair of DNA double-strand breaks (DSBs) by homologous recombination-relies first on the partnership between MRE11-RAD50-NBS1 (MRN) and CtIP, followed by a processive step involving helicases and exonucleases such as exonuclease 1 (EXO1......). In this study, we show that the localization of EXO1 to DSBs depends on both CtIP and MRN. We also establish that CtIP interacts with EXO1 and restrains its exonucleolytic activity in vitro. Finally, we show that on exposure to camptothecin, depletion of EXO1 in CtIP-deficient cells increases the frequency...... of DNA-PK-dependent radial chromosome formation. Thus, our study identifies new functions of CtIP and EXO1 in DNA end resection and provides new information on the regulation of DSB repair pathways, which is a key factor in the maintenance of genome integrity....

  20. Transgenerational inheritance of diet-induced genome rearrangements in Drosophila.

    Directory of Open Access Journals (Sweden)

    John C Aldrich

    2015-04-01

    Full Text Available Ribosomal RNA gene (rDNA copy number variation modulates heterochromatin formation and influences the expression of a large fraction of the Drosophila genome. This discovery, along with the link between rDNA, aging, and disease, high-lights the importance of understanding how natural rDNA copy number variation arises. Pursuing the relationship between rDNA expression and stability, we have discovered that increased dietary yeast concentration, emulating periods of dietary excess during life, results in somatic rDNA instability and copy number reduction. Modulation of Insulin/TOR signaling produces similar results, indicating a role for known nutrient sensing signaling pathways in this process. Furthermore, adults fed elevated dietary yeast concentrations produce offspring with fewer rDNA copies demonstrating that these effects also occur in the germline, and are transgenerationally heritable. This finding explains one source of natural rDNA copy number variation revealing a clear long-term consequence of diet.

  1. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

    Science.gov (United States)

    Morillo-Huesca, Macarena; Clemente-Ruiz, Marta; Andújar, Eloísa; Prado, Félix

    2010-08-12

    The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Delta can be partially or totally suppressed if SWR1 is not formed (swr1Delta), if it forms but cannot bind to chromatin (swc2Delta) or if it binds to chromatin but lacks histone replacement activity (swc5Delta and the ATPase-dead swr1-K727G). These results suggest that in htz1Delta the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Delta, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Delta. In addition, SWR1 causes DSBs sensitivity in htz1Delta; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.

  2. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

    Directory of Open Access Journals (Sweden)

    Macarena Morillo-Huesca

    Full Text Available The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Delta can be partially or totally suppressed if SWR1 is not formed (swr1Delta, if it forms but cannot bind to chromatin (swc2Delta or if it binds to chromatin but lacks histone replacement activity (swc5Delta and the ATPase-dead swr1-K727G. These results suggest that in htz1Delta the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Delta, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Delta. In addition, SWR1 causes DSBs sensitivity in htz1Delta; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.

  3. Genome Instability of Chironomus riparius Mg. (Diptera, Chironomidae from Polluted Water Basins in Bulgaria

    Directory of Open Access Journals (Sweden)

    Julia Ilkova

    2014-04-01

    Full Text Available Larvae of Chironomus riparius Mg. (Chironomidae, Diptera collected from two polluted water basins in Bulgaria, the Maritsa and Chaya Rivers (adjacent to Plovdiv and Asenovgrad respectively, a small pool (near Plovdiv plus controls reared in the laboratory were studied. High concentrations of the heavy metals Pb, Cu and Cd were recorded in the sediments of the polluted stations. Marked somatic structural chromosome aberrations were found in C. riparius salivary polytene chromosomes from the field stations and their frequency was significantly higher (p<0.01 compared to the control. The observed somatic chromosome changes are discussed as a response of the chironomid genome to aquatic pollution. A new cytogenetic index based on the number of aberrations found in larvae from polluted regions in comparison with the control was applied to the data to more easily evaluate the degree of heavy metal pollution in aquatic ecosystems. Our study of a polluted site near the River Chaya showed that the somatic index was very high at 3.35 for 2010 and 11.66 for 2013 compared to 0.5 in the control. The cytogenetic index was effective in showing that all studied sites were highly polluted in comparison with the control. To determine the mechanism involved in the concentration of aberration breakpoints within specific regions of the chironomid polytene chromosome the FISH method was applied. The localization of a transposable element TFB1 along the polytene chromosomes of C. riparius was analyzed and the sites of localization were compared with breakpoints of chromosome aberrations. A significant correlation (p<0.05 was found which shows that most of the aberrations do not appear randomly but are concentrated in sites rich in transposable elements.

  4. Richtmyer-Meshkov Instability Induced Mixing Enhancement in the Scramjet Combustor with a Central Strut

    Directory of Open Access Journals (Sweden)

    Qingchun Yang

    2014-01-01

    Full Text Available Experimental and numerical study of Richtmyer-Meshkov instability (RMI induced mixing enhancement has been conducted in a liquid-fueled scramjet engine with a central strut. To generate the RMI in the scramjet engine, transverse high temperature jets are employed downstream the strut injector. Compared to the transverse ordinary temperature jet, the jet penetration into the supersonic airstream of high temperature jet increases by 60%. The numerical results indicate that the RMI phenomenon markedly enhances the mixing efficiency (up to 43%, which is necessary to initiate the chemical reactions. Ground experiments were carried out in the combustor, which verify the numerical method from the perspective of wall pressures of the combustor. In particular, the experiment results indicate that the RMI can benefit flame-holding due to the mixing enhancement.

  5. Large eddy simulation of a shocked gas cylinder instability induced turbulence

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Navier-Stokes equations for compressible fluid are solved with the operator splitting technique and LES (large eddy simulation) with the Smagorinsky model. A computational code MVFT (multi-viscosity-fluid and turbulence) is developed to study hydrodynamic instability and the induced turbulent mixing for multi compressible fluid. In order to validate the code MVFT,the LANL’s shock tube experiment of shocked SF6 gas cylinder is simulated with the initial state of SF6 gas cylinder described by dissipative ITL (interface transition layer). It is shown that the width and height of gas cylinder calculated with MVFT are closer to the experimental results than RAGE,and that the velocities of upstream edge,downstream edge and vortex edge agree with the experimental results,and are appreciably smaller than the RAGE results. The code MVFT has been pre-liminarily validated.

  6. Polarization Effects on Thermal-Induced Mode Instabilities in High Power Fiber Lasers

    CERN Document Server

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We present detailed studies of the effect of polarization on thermal-induced mode instability (MI) in ytterbium-doped fiber amplifiers. Based on a steady-state theoretical model, which takes both electric fields along the two principal axes into consideration, the effect of polarization effects on the gain of Stokes wave was analyzed, which shows that the polarization characteristics of the fiber laser have no impact on the threshold of MI. Experimental validation of the theoretical analysis is presented with experimental results agreeing well with the theoretical results, in which polarization-maintained and non-polarization-maintained fiber lasers with core/inner cladding diameter of 30/250um and core NA of 0.07 were employed. The MI threshold power is measured to be about 367~386W.

  7. Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill

    Directory of Open Access Journals (Sweden)

    Ren Peng

    2016-01-01

    Full Text Available In June 2008, the Shenzhen landfill slope failed. This case is used as an example to study the deformation characteristics and failure mode of a slope induced by high water levels. An integrated monitoring system, including water level gauges, electronic total stations, and inclinometers, was used to monitor the slope failure process. The field measurements suggest that the landfill landslide was caused by a deep slip along the weak interface of the composite liner system at the base of the landfill. The high water level is considered to be the main factor that caused this failure. To calculate the relative interface shear displacements in the geosynthetic multilayer liner system, a series of numerical direct shear tests were carried out. Based on the numerical results, the composite lining system simplified and the centrifuge modeling technique was used to quantitatively evaluate the effect of water levels on landfill instability.

  8. Coarse-grained molecular dynamics simulations of shear-induced instabilities of lipid bilayer membranes in water

    Science.gov (United States)

    Hanasaki, Itsuo; Walther, Jens H.; Kawano, Satoyuki; Koumoutsakos, Petros

    2010-11-01

    We study shear-induced instabilities of lipid bilayers immersed in water using coarse-grained molecular dynamics simulations. The shear imposed by the flow of the water induces initially microscopic structural changes of the membrane, starting with tilting of the molecules in the direction of the shear. The tilting propagates in the spanwise direction when the shear rate exceeds a critical value and the membrane undergoes a bucklinglike deformation in the direction perpendicular to the shear. The bucklinglike undulation continues until a localized Kelvin-Helmholtz-like instability leads to membrane rupture. We study the different modes of membrane undulation using membranes of different geometries and quantify the relative importance of the bucklinglike bending and the Kelvin-Helmholtz-like instability of the membrane.

  9. Toxicogenetic study of Persea americana fruit pulp oil and its effect on genomic instability.

    Science.gov (United States)

    Nicolella, Heloiza Diniz; Neto, Francisco Rinaldi; Corrêa, Mariana Beltrame; Lopes, Danillo Henrique; Rondon, Edilaura Nunes; Dos Santos, Luiz Felipe Ribeiro; de Oliveira, Pollyanna Francielli; Damasceno, Jaqueline Lopes; Acésio, Nathália Oliveira; Turatti, Izabel Cristina Casanova; Tozatti, Marcos Gomide; Cunha, Wilson Roberto; Furtado, Ricardo Andrade; Tavares, Denise Crispim

    2017-03-01

    Persea americana Mill., commonly known as avocado, is a tree native to Central America that is widely used as a food source and for the treatment of diseases. This plant has various biological properties such as analgesic, anti-inflammatory and total cholesterol-lowering activity. In view of its pharmacological potential, we conducted a toxicogenetic study of the fruit pulp oil of P. americana (PAO) and investigated its influence on genotoxicity induced by methyl methanesulfonate (MMS) and doxorubicin. V79 cells and Swiss mice were used for the assays. The results showed no genotoxic effects of PAO in the in vitro or in vivo test systems. However, the highest PAO dose tested led to an increase in the levels of aspartate aminotransferase, indicating hepatic/tissue damage. This effect may be related to high concentrations of palmitic acid, the main component of PAO. Furthermore, PAO was effective in reducing the chromosome damage induced by MMS and doxorubicin. These results contribute to the safety assessment of PAO as a medicinal plant for human use.

  10. Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Christine Richardson

    2015-01-01

    Full Text Available Reactive oxygen species (ROS can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.

  11. p38 (MAPK) stress signalling in replicative senescence in fibroblasts from progeroid and genomic instability syndromes.

    Science.gov (United States)

    Tivey, Hannah S E; Brook, Amy J C; Rokicki, Michal J; Kipling, David; Davis, Terence

    2013-02-01

    Werner Syndrome (WS) is a human segmental progeria resulting from mutations in a DNA helicase. WS fibroblasts have a shortened replicative capacity, an aged appearance, and activated p38 MAPK, features that can be modulated by inhibition of the p38 pathway. Loss of the WRNp RecQ helicase has been shown to result in replicative stress, suggesting that a link between faulty DNA repair and stress-induced premature cellular senescence may lead to premature ageing in WS. Other progeroid syndromes that share overlapping pathophysiological features with WS also show defects in DNA processing, raising the possibility that faulty DNA repair, leading to replicative stress and premature cellular senescence, might be a more widespread feature of premature ageing syndromes. We therefore analysed replicative capacity, cellular morphology and p38 activation, and the effects of p38 inhibition, in fibroblasts from a range of progeroid syndromes. In general, populations of young fibroblasts from non-WS progeroid syndromes do not have a high level of cells with an enlarged morphology and F-actin stress fibres, unlike young WS cells, although this varies between strains. p38 activation and phosphorylated HSP27 levels generally correlate well with cellular morphology, and treatment with the p38 inhibitor SB203580 effects cellular morphology only in strains with enlarged cells and phosphorylated HSP27. For some syndromes fibroblast replicative capacity was within the normal range, whereas for others it was significantly shorter (e.g. HGPS and DKC). However, although in most cases SB203580 extended replicative capacity, with the exception of WS and DKC the magnitude of the effect was not significantly different from normal dermal fibroblasts. This suggests that stress-induced premature cellular senescence via p38 activation is restricted to a small subset of progeroid syndromes.

  12. Ac/Ds-induced chromosomal rearrangements in rice genomes.

    Science.gov (United States)

    Xuan, Yuan Hu; Zhang, Jianbo; Peterson, Thomas; Han, Chang-Deok

    2012-03-01

    A closely-linked pair of Ac/Ds elements induces chromosomal rearrangements in Arabidopsis and maize. This report summarizes the Ac/Ds systems that generate an exceptionally high frequency of chromosomal rearrangements in rice genomes. From a line containing a single Ds element inserted at the OsRLG5 locus, plants containing a closely-linked pair of inversely-oriented Ds elements were obtained at 1% frequency among the population regenerated from tissue culture. Subsequent regeneration of the lines containing cis-paired Ds elements via tissue culture led to a high frequency (35.6%) of plants containing chromosomal rearrangements at the OsRLG5 locus. Thirty-four rearrangement events were characterized, revealing diverse chromosomal aberrations including deletions, inversions and duplications. Many rearrangements could be explained by sister chromatid transposition (SCT) and homologous recombination (HR), events previously demonstrated in Arabidopsis and maize. In addition, novel events were detected and presumably generated via a new alternative transposition mechanism. This mechanism, termed single chromatid transposition (SLCT), resulted in juxtaposed inversions and deletions on the same chromosome. This study demonstrated that the Ac/Ds system coupled with tissue culture-mediated plant regeneration could induce higher frequencies and a greater diversity of chromosomal rearrangements than previously reported. Understanding transposon-induced chromosomal rearrangements can provide new insights into the relationship between transposable elements and genome evolution, as well as a means to perform chromosomal engineering for crop improvement. Rice is a staple cereal crop worldwide. Complete genome sequencing and rich genetic resources are great advantages for the study of the genomic complexity induced by transposable elements.(1) (-) (2) The combination of tissue culture with genetic lines carrying a pair of closely located Ac/Ds elements greatly increases the

  13. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    Science.gov (United States)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  14. Observation of energetic-ion losses induced by various MHD instabilities in the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Toi, K. [National Institute for Fusion Science, Toki, Japan; Watanabe, F. [Kyoto University, Japan; Spong, Donald A [ORNL; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Ohdachi, S. [National Institute for Fusion Science, Toki, Japan; Sakakibara, S. [National Institute for Fusion Science, Toki, Japan

    2010-01-01

    Energetic-ion losses induced by toroidicity-induced Alfven eigenmodes (TAEs) and resistive interchange modes (RICs) were observed in neutral-beam heated plasmas of the Large Helical Device (LHD) at a relatively low toroidal magnetic field level (<= 0.75 T). The energy and pitch angle of the lost ions are detected using a scintillator-based lost-fast ion probe. Each instability increases the lost ions having a certain energy/pitch angle. TAE bursts preferentially induce energetic beam ions in co-passing orbits having energy from the injection energy E = 190keV down to 130 keV, while RICs expel energetic ions of E = 190 keV down to similar to 130 keV in passing-toroidally trapped boundary orbits. Loss fluxes induced by these instabilities increase with different dependences on the magnetic fluctuation amplitude: nonlinear and linear dependences for TAEs and RICs, respectively.

  15. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability?

    Directory of Open Access Journals (Sweden)

    Jing Lin

    Full Text Available BACKGROUND: Macrophage death in advanced lesion has been confirmed to play an important role in plaque instability. However, the mechanism underlying lesion macrophage death still remains largely unknown. METHODS AND RESULTS: Immunohistochemistry showed that caspase-1 activated in advanced lesion and co-located with macrophages and TUNEL positive reaction. In in-vitro experiments showed that ox-LDL induced caspase-1 activation and this activation was required for ox-LDL induced macrophages lysis, IL-1β and IL-18 production as well as DNA fragmentation. Mechanism experiments showed that CD36 and NLRP3/caspase-1/pathway involved in ox-LDL induced macrophage pyroptosis. CONCLUSION: Our study here identified a novel cell death, pyroptosis in ox-LDL induced human macrophage, which may be implicated in lesion macrophages death and play an important role in lesion instability.

  16. Cadmium-induced microsatellite instability in the kidneys and leukocytes of C57BL/6J mice.

    Science.gov (United States)

    Du, Xiaoyan; Lan, Tianfeng; Yuan, Bao; Chen, Jian; Hu, Jinping; Ren, Wenzhi; Chen, Zhenwen

    2015-01-01

    Cadmium is a cytotoxic, carcinogenic, and mutagenic industrial product or byproduct. The correlation between metal exposure and microsatellite instability (MSI) has been reported by several groups. In the present study, 50 C57BL/6J mice at 6 weeks of age were divided into five groups and intraperitoneally injected with 0, 0.25, 0.5, 1, or 2 mg/kg cadmium chloride quaque die alterna for 4 weeks. Then, the liver, kidney, testis, leukocytes, bone marrow, and small intestine were collected from the treated mice and weighed. Portions of these tissues were fixed for further histological analysis, and the remaining tissues were subjected to genomic DNA extraction for the analysis of a panel of 42 microsatellite markers. The liver and testis weight coefficients were significantly changed in the 1 and 2 mg/kg cadmium chloride-treated groups compared with the control group. Simultaneously, severe histopathologic changes in the liver and kidneys, along with a complete disorganization of testicular structure and obvious severe necrosis in the testes were observed in the cadmium-treated group. The cadmium accumulated in the liver and kidneys of the mice in all cadmium-treated groups; the tissue cadmium concentrations were significantly higher than those in the control group. After STR scanning, MSI was found at three loci (D15Mit5, D10Mit266, and DxMit172) in the kidneys and leukocytes of mice in the lower dose groups (0.25 and 0.5 mg/kg). In summary, we have successfully established a sub-chronic cadmium exposure model and confirmed that cadmium exposure can induce MSI in mice. We also identified two loci that could be regarded as "hotspots" of microsatellite mutation in mice.

  17. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    Science.gov (United States)

    Lin, Liang

    2013-10-01

    Multiple bursty energetic-particle (EP) modes with fishbone-like structures are observed during 1 MW tangential neutral-beam injection into MST reversed field pinch (RFP) plasmas. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to large fast ion beta and stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of these instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport and interaction with global tearing modes. Internal magnetic field fluctuations associated with the EP modes are directly observed for the first time by Faraday-effect polarimetry (frequency ~ 90 kHz and amplitude ~ 2 G). Simultaneously measured density fluctuations exhibit a dynamically evolving and asymmetric spatial structure that peaks near the core where fast ions reside and shifts outward as the instability evolves. Furthermore, the EP mode frequencies appear at ~k∥VA , consistent with continuum modes destabilized by strong drive. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growing phase arising from the beam fueling followed by a rapid drop (~ 15 %) when the EP modes peak, indicating the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced (× 2) with the onset of multiple nonlinearly-interacting EP modes. The fast ions also impact global tearing modes, reducing their amplitudes by up to 65%. This mode reduction is lessened following the EP-bursts, further evidence for fast ion redistribution that weakens the suppression mechanism. Possible tearing mode suppression mechanisms will be discussed. Work supported by US DoE.

  18. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  19. Phonon instability and pressure-induced isostructural semiconductor-semimetal transition of monoclinic V O2

    Science.gov (United States)

    He, Huabing; Gao, Heng; Wu, Wei; Cao, Shixun; Hong, Jiawang; Yu, Dehong; Deng, Guochu; Gao, Yanfeng; Zhang, Peihong; Luo, Hongjie; Ren, Wei

    2016-11-01

    Recent experiments have revealed an intriguing pressure-induced isostructural transition of the low temperature monoclinic V O2 and hinted to the existence of a new metallization mechanism in this system. The physics behind this isostructural phase transition and the metallization remains unresolved. In this work, we show that the isostructural transition is a result of pressure-induced instability of a phonon mode that relates to a CaC l2 -type of rotation of the oxygen octahedra, which alleviates, but does not completely remove, the dimerization and zigzagging arrangement of V atoms in the M1 phase. This phonon mode shows an increasing softening with pressure, ultimately leading to an isostructural phase transition characterized by the degree of the rotation of the oxygen octahedra. We also find that this phase transition is accompanied by an anisotropic compression, in excellent agreement with experiments. More interestingly, in addition to the experimentally identified M1' phase, we find a closely related M1 '' phase, which is nearly degenerate with the M1 ' phase. Unlike the M1 ' phase, which has a nearly pressure-independent electronic band gap, the gap of the M1 '' drops quickly at high pressures and vanishes at a theoretical pressure of about 40 GPa.

  20. Growth instability due to lattice-induced topological currents in limited-mobility epitaxial growth models.

    Science.gov (United States)

    Kanjanaput, Wittawat; Limkumnerd, Surachate; Chatraphorn, Patcha

    2010-10-01

    The energetically driven Ehrlich-Schwoebel barrier had been generally accepted as the primary cause of the growth instability in the form of quasiregular moundlike structures observed on the surface of thin film grown via molecular-beam epitaxy (MBE) technique. Recently the second mechanism of mound formation was proposed in terms of a topologically induced flux of particles originating from the line tension of the step edges which form the contour lines around a mound. Through large-scale simulations of MBE growth on a variety of crystalline lattice planes using limited-mobility, solid-on-solid models introduced by Wolf-Villain and Das Sarma-Tamborenea in 2+1 dimensions, we show that there exists a topological uphill particle current with strong dependence on specific lattice crystalline structure. Without any energetically induced barriers, our simulations produce spectacular mounds very similar, in some cases, to what have been observed in many recent MBE experiments. On a lattice where these currents cease to exist, the surface appears to be scale invariant, statistically rough as predicted by the conventional continuum growth equation.

  1. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    Science.gov (United States)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  2. Effects of chronic ankle instability and induced mediolateral muscular fatigue of the ankle on competitive taekwondo athletes.

    Science.gov (United States)

    Lee, Myeounggon; Youm, Changhong; Son, Minji; Kim, Jinhee; Kim, Youkyung

    2017-08-01

    [Purpose] The purpose of this study was to investigate the effects of chronic ankle instability and induced mediolateral muscular fatigue of the ankle on competitive Taekwondo athletes during single-leg drop landing. [Subjects and Methods] Fourteen competitive taekwondo athletes with chronic ankle instability and 14 healthy adults participated, and they performed three single-leg drop landings from a 40-cm height before and after induced fatigue. Ankle angular position, peak vertical ground reaction force, loading rate, eccentric work, and contribution were calculated and analyzed. [Results] Athletes had lower ankle eversion and abduction angle than the controls did at maximum knee flexion both pre- and post-fatigue. Furthermore, athletes had lower eccentric work of the hip than the controls did post-fatigue, and they had lower eccentric work of the knee than controls at both pre- and post-fatigue. The eccentric work of the knee increased while, peak vertical ground reaction force decreased in both, athletes as well as controls post-fatigue. [Conclusion] Taekwondo athletes with chronic ankle instability who participate in a high-intensity training program are continuously exposed to potential injuries of their ankle or knee joints. Therefore, competitive taekwondo athletes with chronic ankle instability should limit their participation in regular training until they complete the rehabilitation process.

  3. Loss of the histone pre-mRNA processing factor stem-loop binding protein in Drosophila causes genomic instability and impaired cellular proliferation.

    Directory of Open Access Journals (Sweden)

    Harmony R Salzler

    Full Text Available BACKGROUND: Metazoan replication-dependent histone mRNAs terminate in a conserved stem-loop structure rather than a polyA tail. Formation of this unique mRNA 3' end requires Stem-loop Binding Protein (SLBP, which directly binds histone pre-mRNA and stimulates 3' end processing. The 3' end stem-loop is necessary for all aspects of histone mRNA metabolism, including replication coupling, but its importance to organism fitness and genome maintenance in vivo have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In Drosophila, disruption of the Slbp gene prevents normal histone pre-mRNA processing and causes histone pre-mRNAs to utilize the canonical 3' end processing pathway, resulting in polyadenylated histone mRNAs that are no longer properly regulated. Here we show that Slbp mutants display genomic instability, including loss of heterozygosity (LOH, increased presence of chromosome breaks, tetraploidy, and changes in position effect variegation (PEV. During imaginal disc growth, Slbp mutant cells show defects in S phase and proliferate more slowly than control cells. CONCLUSIONS/SIGNIFICANCE: These data are consistent with a model in which changing the 3' end of histone mRNA disrupts normal replication-coupled histone mRNA biosynthesis and alters chromatin assembly, resulting in genomic instability, inhibition of cell proliferation, and impaired development.

  4. Controlled generation of high-intensity optical rogue waves by induced modulation instability.

    Science.gov (United States)

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-04

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  5. Temperature-induced valence instability in the charge-transfer crystal TMB-TCNQ

    Science.gov (United States)

    Castagnetti, Nicola; Kociok-Köhn, Gabriele; Da Como, Enrico; Girlando, Alberto

    2017-01-01

    The occurrence of so-called temperature-induced neutral-ionic transitions (TINIT) in mixed-stack charge-transfer crystals is quite rare. Here we reinvestigate one of the crystals which has been claimed to undergo such a transition, 3 ,3',5 ,5' -tetramethylbenzidine-tetracyanoquinodimethane (TMB-TCNQ). Extensive optical data allow us to conclude that the transition should be classified as a valence instability, and not as a "true" TINIT, as the ˜0.5 neutral-ionic borderline is not crossed. The ionicity ϱ , or average charge at the molecular sites, indeed changes very little at the transition, from about 0.3 to about 0.4, and is accompanied by stack dimerization. The transition is first order with large hysteresis, and the crystal may crack or break. For this reason we have been unable to collect x-ray structural data on the low-temperature phase, but with the help of semiempirical calculations we are able to assess a plausible scenario for this peculiar phase transition and its mechanism.

  6. Influence of core NA on Thermal-Induced Mode Instabilities in High Power Fiber Amplifiers

    CERN Document Server

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We report on the influence of core NA on thermal-induced mode instabilities (MI) in high power fiber amplifiers. Influence of core NA and V-parameter on MI has been investigated numerically. It shows that core NA has larger influence on MI for fibers with smaller core-cladding-ratio, and the influence of core NA on threshold is more obvious when the amplifiers are pumped at 915nm. The dependence of threshold on V-parameter revealed that the threshold increases linearly as V-parameter decreases when V-parameter is larger than 3.5, and the threshold shows exponentially increase as V-parameter decreases when V-parameter is less than 3.5. We also discussed the effect of linewidth on MI, which indicates that the influence of linewidth can be neglected for linewidth smaller than 1nm when the fiber core NA is smaller than 0.07 and fiber length is shorter than 20m. Fiber amplifiers with different core NA were experimentally analyzed, which agreed with the theoretical predictions.

  7. Microbunching-instability-induced sidebands in a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2016-05-01

    Full Text Available Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL undulator. We show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulator length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.

  8. Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival.

    Science.gov (United States)

    Weigman, Victor J; Chao, Hann-Hsiang; Shabalin, Andrey A; He, Xiaping; Parker, Joel S; Nordgard, Silje H; Grushko, Tatyana; Huo, Dezheng; Nwachukwu, Chika; Nobel, Andrew; Kristensen, Vessela N; Børresen-Dale, Anne-Lise; Olopade, Olufunmilayo I; Perou, Charles M

    2012-06-01

    Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher's exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11-35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.

  9. Remote monitoring of the mechanical instability induced by fluid substitution and water weakening in the laboratory

    Science.gov (United States)

    Dautriat, Jeremie; Sarout, Joel; David, Christian; Bertauld, Delphine; Macault, Romaric

    2016-12-01

    We studied the effect of fluid injection on the mechanical behaviour of the poorly consolidated and layered Sherwood sandstone under varying stresses, with micro-seismic (MS) monitoring. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties, derive the ultrasonic signature of the saturation front for each fluid, and the potential development of damage. To this end, the specimens were instrumented with 16 ultrasonic P-wave transducers used for both passive and active monitoring during loading and fluid injection. A first set of injection tests in hydrostatic conditions, using either water or inert oil, has been performed on samples subjected to low confining pressure. Water invasion in the pore space induces a significant decrease of the P-wave velocity, whereas oil invasion shows a velocity increase. The velocity decrease associated with water injection is analysed in terms of attenuation mechanisms and corresponding critical frequencies. A second series of injection tests with the same fluids has been performed during creep tests on critically-loaded samples. The development of mechanical instability inducing micro-seismic activity is observed only when water is injected into the sample. The recorded micro-seismic events are spatially and temporally located thanks to the dedicated velocity models accounting for the initially homogeneous sample anisotropy and for the heterogeneous velocity field associated with fluid migration within the sample. The consistency between the relocated clusters of events and the final damage pattern is verified thanks to X-ray computed tomography images of the samples taken post-mortem.

  10. Mitigation of ion-induced drift instability in electron plasma by a transverse current through the Landau-resonant layer

    Science.gov (United States)

    Kabantsev, A. A.; Driscoll, C. F.

    2016-10-01

    Experiments and theory on electron columns have characterized an algebraic damping of diocotron modes, caused by a flux of electrons through the resonance (critical) layer. This flux-driven damping also eliminates the ion-induced exponential instability of diocotron modes. Our plasmas rotate at rate ωE × B, and the (nominally stable) diocotron modes are described by amplitude Ad ,kz = 0 ,mθ = 1 , 2 , . . , frequency ωd(mθ) , and a wave/plasma critical radius rc(mθ) , where ωE × B(rc) =ωd/mθ mθ. External fields produce a low density (1/100) halo of electrons moving radially outward from the plasma core, with flux rate F ≡(- 1/-1Ne) dNe/dt) dNe dt. We find that algebraicdamping of the diocotron modes begins when the halo reaches the critical radius rc(mθ) , proceeding as Ad(Δt) =Ad(0) - γΔt , with γ = β(mθ) F . We also investigated the diocotron instability which occurs when a small number of ions are transiting the electron plasma. Dissimilar bounce-averaged drifts of electrons and ions polarize the diocotron mode density perturbations, developing instability analogous to the classical flute instability. The exponential growth rate Γ is proportional to the fractional neutralization (Ni/Ne) and to the separation between electrons and ions in the wave perturbation. We have found that the algebraic damping can suppress the exponential ion-induced instability only for amplitudes satisfying Ad <= βF/Γ. Supported by NSF Grant PHY-1414570, DOE Grants DE-SC0002451.

  11. Observations of Cloud Top Entrainment Instability Induced by Aircraft Wake Downwash

    Science.gov (United States)

    Walcek, C. J.

    2012-12-01

    Aircraft produce considerable turbulence and generate 20-80 m/s downward velocity impulses immediately below the airframe and wings. This downward-propagating air produces turbulent vortices that descend 100-300 meters before dissipating. If an aircraft flies very close to the tops of stratiform clouds, it can induce mixing between cloudy air and clear air pushed into the cloud from above cloud top. Here we present photographs and evidence that aircraft flying close to the tops of stable stratiform clouds can trigger the release of cloud-top entrainment instability (CTEI). Negatively-buoyant air can be produced as warm air forced into a cloud from above cloud top mixes with colder cloudy air, inducing evaporation and further cooling below the cloud temperature, thus initiating turbulent downdrafts that can propagate the CTEI mechanism that ultimately dissipates and evaporates the top several hundred meters near cloud top. Photographs taken from observation chase planes flying 1-2 km above another aircraft flying very close to cloud top show 50-100 m wide swaths cleared within 3-4 seconds after fly-over, and growth rates of 2-3 m/s lateral to the flight track are observed. Ultimately "canal cloud" or "hole punch" features 2-3 km wide are generated in 20-30 minutes following the flyover from this mechanism. Here the mechanism of aircraft downwash is reviewed, CTEI is described, and evidence of the importance of evaporation and entrainment is provided from unpublished results from the late 1940s-era "project CIRRUS" and more recent images of hole-punch and canal-clouds. Since the propagation of this turbulent process occurs in turbulent filaments of mixtures of clear and cloudy air, modeling this process will require resolutions of less than several meters, yet require simulation domains several 1000s of meters wide. Similarly, measurements of dissipated cloud regions induced by aircraft would require resolutions of several meters or 10s of Hz to unambiguously

  12. Recent studies of the electron cloud induced beam instability at the Los Alamos PSR

    Energy Technology Data Exchange (ETDEWEB)

    Macek, Robert James [Los Alamos National Laboratory; Mc Crady, Rodney C [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory; Zaugg, Thomas J [Los Alamos National Laboratory

    2010-12-09

    Recent beam studies have demonstrated that a stable beam with the standard production bunch width of 290 ns and near the e-p instability threshold will become unstable when the bunch width is shortened significantly. This was not the case years earlier when the ring rf operated at the 72.000 integer subharmonic of the Linac bunch frequency. The present operating frequency is set at the 72.070 non-integer subharmonic and appears to be responsible for the recently observed 'short pulse instability phenomenon'. Experimental characteristics of the short pulse instability are presented along with comparisons to the instability under 72.000 subharmonic operating conditions.

  13. Recent studies of the electron cloud induced beam instability at the Los Alamos PSR

    Energy Technology Data Exchange (ETDEWEB)

    Macek, Robert James [Los Alamos National Laboratory; Mc Crady, Rodney C [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory; Zaugg, Thomas J [Los Alamos National Laboratory; Holmes, Jeffrey A [SNS, ORNL

    2011-01-06

    Recent beam studies have demonstrated that a stable beam with the standard production bunch width of 290 ns and near the e-p instability threshold will become unstable when the bunch width is shortened significantly. This was not the case years earlier when the ring rf operated at the 72.000 integer subharmonic of the Linac bunch frequency. The present operating frequency is set at the 72.070 non-integer subharmonic and appears to be responsible for the recently observed 'short pulse instability phenomenon'. Experimental characteristics of the short pulse instability are presented along with comparisons to the instability under 72.000 subharmonic operating conditions.

  14. Observations of near-inertial waves induced by parametric subharmonic instability

    Science.gov (United States)

    Li, Bingtian; Cao, Anzhou; Lü, Xianqing

    2017-06-01

    Near-inertial waves (NIWs), which can be generated by wind or the parametric subharmonic instability (PSI) of internal tides, are common in the South China Sea (SCS). Moored current observations from the northern SCS have revealed that the PSI of semidiurnal (D2) internal tides is another source of NIWs. The objective of this study was to examine the energy variance in the PSI of D2 tides. The PSI of D2 internal tides generated NIWs and waves with frequencies around the difference frequency of D2 and f. The observed NIWs induced by PSI could be distinguished clearly from those elicited by typhoon Krosa. Shortly after Krosa entered the SCS, NIWs began to intensify on the surface and they propagated downward over subsequent days. The near-inertial currents were damped quickly and they became relatively weak before the waves were reinforced beneath the mixed layer when wind stress was relatively weak. Rotation spectra indicated an energy peak at exactly the difference frequency D2-f of the NIWs and D2, indicating nonlinear wave-wave interaction among D2, f, and D2-f. Depth-time maps of band-pass filtered velocities of D2-f showed the waves amplified when the NIWs were reinforced, and they intensified at depths with strong D2 tides. The energies of the NIWs and D2-f had high correlation with the D2 tides. The PSI transferred energy of low-mode D2 internal tides to high-mode NIWs and D2-f waves. For the entire observational period, PSI reinforcement was observed only when mesoscale eddies emerged and when D2 was in spring tide, revealing a close connection between mesoscale eddies and NIWs. Mesoscale eddies could increase the energy in the f-band by enhancing the PSI of D2 internal tides. Thus, this represents another mechanism linking the energy of mesoscale eddies to that of NIWs.

  15. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Schüler, D.; Alonso, S.; Bär, M. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Torcini, A. [CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi - Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  16. Formation and instability of spiral wave induced by Gaussian coloured noise

    Institute of Scientific and Technical Information of China (English)

    Gan Zheng-Ning; Ma Jun; Zhang Guo-Yong; Chen Yong

    2008-01-01

    In this paper,we studied the effect of Gauesian coloured noise on the formation and instability of spiral waves described by one class of modified FitzHugh-Nagumo equation.It was found that Gaussian coloured noise plays a constructive role in the formation,transition and instability of spiral wave.Too weak or too strong noise may act against the formation of spiral waves.At a certain noise level,spiral wave is maintained in a medium,in which spiral wave cannot be observed in the absence of the noise.It is difficult to make a stable spiral wave into unstable state by Gaussian coloured noise,unless the noise level is very high.The parameter regions of Gaussian coloured noise for spiral forming and spiral instability were given and discussed with numerical simulations.

  17. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  18. Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability.

    Science.gov (United States)

    Zhao, Jie; Guan, Tao; Wang, Jianhua; Xiang, Qian; Wang, Mingsheng; Wang, Xiuwei; Guan, Zhen; Xie, Qiu; Niu, Bo; Zhang, Ting

    2013-09-01

    Impaired folate metabolism is considered a risk factor for neural tube defects (NTDs). However, the relationship between folate deficiency and the risk of NTDs remains unclear, because experimentally induced dietary folate deficiency is insufficient to cause NTDs in non-mutant mice. Methotrexate (MTX) is a specific folate antagonist that competitively inhibits dihydrofolate reductase (DHFR) activity. The objective of this study was to develop a folate dysmetabolism murine model, and study the development of NTDs and its mechanism. Pregnant mice were injected with different doses of MTX [0, 0.5, 1.0, 3.0, 4.5 and 6.0 mg kg(-1) body weight (b/w) intraperitoneally (i.p.)] on gestational day 7.5 and sacrificed on gestational day 11.5. DHFR activity in embryonic tissues was detected, and folate concentrations were analyzed using LC/MS/MS. Copy number variations (CNVs) in neural tube tissues were detected using array comparative genomic hybridization (aCGH). A dose of MTX 4.5 mg kg(-1) b/w, resulted in the highest incidence of NTDs (31.4%) compared with the other groups, and DHFR activities, 5-MeTHF and 5-FoTHF concentrations in embryonic tissues decreased significantly after MTX injection. Furthermore, we found three high-confidence CNVs on chromosome X using aCGH, which was confirmed by RT-PCR and MassARRAY. These results indicate that MTX could cause a folate-associated dysmetabolism, which is similar to that of dietary folate deficiency in mice. The presence of CNVs in neural tube tissues was associated with the development of NTDs.

  19. Observations of parametric subharmonic instability-induced near-inertialwaves equatorward of the critical diurnal latitude

    NARCIS (Netherlands)

    Xie, X.H.; Shang, X.D.; van Haren, H.; Chen, G.Y.; Zhang, Y.Z.

    2011-01-01

    Moored current observations of 75 days duration in the northeastern South China Sea (similar to 20 degrees N) suggest that parametric subharmonic instability (PSI) of semidiurnal (D(2)) internal tides can not only generate waves of frequencies close to D(2)/2, but also excite near-inertial waves who

  20. Vibro-acoustical instabilities induced by combustion dynamics in gas turbine combustors

    NARCIS (Netherlands)

    Pozarlik, Artur

    2010-01-01

    The lean premixed combustion suffers from a high sensitivity to thermo-acoustic instabilities which may occur in a combustion chamber of a gas turbine. The high level of acoustic excitation is hazardous to the combustion chamber walls (liner). The situation is even worse when mutual interaction betw

  1. [Therapeutic effect of p-tyrosol on myocardial electric instability induced by coronary occlusion].

    Science.gov (United States)

    Chernyshov, G A; Plotnikov, M B; Smol'iakova, V I; Krasnov, E A

    2007-01-01

    In experiments on rats with left coronary artery occlusion, p-tyrosol (20 mg/kg, intravenously) showed the ability to decrease myocardial electric instability in phase 1b of ventricular arrhythmias: a fraction of rats without arrhythmia was increased by 36%, and the mean value of ventricular arrhythmia index exhibited a 3-fold decrease.

  2. Lung adenocarcinoma of never smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of genomic instability.

    Directory of Open Access Journals (Sweden)

    Kelsie L Thu

    Full Text Available Recent evidence suggests that the observed clinical distinctions between lung tumors in smokers and never smokers (NS extend beyond specific gene mutations, such as EGFR, EML4-ALK, and KRAS, some of which have been translated into targeted therapies. However, the molecular alterations identified thus far cannot explain all of the clinical and biological disparities observed in lung tumors of NS and smokers. To this end, we performed an unbiased genome-wide, comparative study to identify novel genomic aberrations that differ between smokers and NS. High resolution whole genome DNA copy number profiling of 69 lung adenocarcinomas from smokers (n = 39 and NS (n = 30 revealed both global and regional disparities in the tumor genomes of these two groups. We found that NS lung tumors had a greater proportion of their genomes altered than those of smokers. Moreover, copy number gains on chromosomes 5q, 7p, and 16p occurred more frequently in NS. We validated our findings in two independently generated public datasets. Our findings provide a novel line of evidence distinguishing genetic differences between smoker and NS lung tumors, namely, that the extent of segmental genomic alterations is greater in NS tumors. Collectively, our findings provide evidence that these lung tumors are globally and genetically different, which implies they are likely driven by distinct molecular mechanisms.

  3. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    Science.gov (United States)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  4. Bacterial Responses and Genome Instability Induced by Subinhibitory Concentrations of Antibiotics

    Directory of Open Access Journals (Sweden)

    Arnaud Gutierrez

    2013-03-01

    Full Text Available Nowadays, the emergence and spread of antibiotic resistance have become an utmost medical and economical problem. It has also become evident that subinhibitory concentrations of antibiotics, which pollute all kind of terrestrial and aquatic environments, have a non-negligible effect on the evolution of antibiotic resistance in bacterial populations. Subinhibitory concentrations of antibiotics have a strong effect on mutation rates, horizontal gene transfer and biofilm formation, which may all contribute to the emergence and spread of antibiotic resistance. Therefore, the molecular mechanisms and the evolutionary pressures shaping the bacterial responses to subinhibitory concentrations of antibiotics merit to be extensively studied. Such knowledge is valuable for the development of strategies to increase the efficacy of antibiotic treatments and to extend the lifetime of antibiotics used in therapy by slowing down the emergence of antibiotic resistance.

  5. Do Deregulated Cas Proteins Induce Genomic Instability In Early Stage Ovarian Cancer?

    Science.gov (United States)

    2007-12-01

    produce renal cysts, infertility, respiratory disorders, situs inversus, and predisposition to obesity , diabetes, and hypertension. Notably, recent...Eppendorf, West- bury, NY). Cells were plated on gridded coverslips (Belco) and starved for 48 hr before cytoplasmic microinjection of 0.05mM preactivated... Tet RAS+;Ink4a/Arf/ mutant mice, as well as in a similar percentage of human metastatic melanomas (5). Importantly, elevated HEF1 protein expression

  6. Genome instability in mismatch repair and its role on radiation-induced cancer

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Nobuo; Morohoshi, Fumiko [National Cancer Center, Tokyo (Japan). Research Inst

    2000-02-01

    Studies on mismatch repair mechanism have been progressed using Caenorhabditis elegans, a nematode since its genetic analysis is comparatively easy. In this study, homologue gene for mismatch repairing of nematoda were investigated and 3 kinds of homologue genes of mut S; msh G, msh Z and msh F and two kinds of mut L homologue genes were identified. Based on these genes, each cDNA was isolated aiming to determine the sequence and clarify the phylogenetic relationship. Either of msh G, msh Z and msh F is present in the cDNA library, suggesting that these genes might be expressed in every stage of development. Northern analysis was made using the RNA fractions extracted from nematoda at various stages of development as a probe for cDNA of msh G and msh Z, and each corresponding bands were detected for the imago and the matured larva, but not so distinct for the larva and embryo, suggesting that both genes would be regulated in the transcription step at each development stage. Then, resistant larva in which Tcl transposon is activated was cultured and its DNA was extracted to use as a template DNA. Thus, Tcl transposon inserted strains for three of 8 repair related genes were obtained. The passages of these strains were kept comparatively stable. However, the sensitivities to ionizing radiation, ultraviolet light and alkyl agents of these inserted strains were not so different from the control. PCR reaction revealed that DNA fragments of which Tcl was excluded were produced in a certain stage of development. This suggest in vivo exclusion of Tcl in somatic cells. (M.N.)

  7. Folate rescues vitamin B12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability.

    Science.gov (United States)

    Palmer, Ashley M; Kamynina, Elena; Field, Martha S; Stover, Patrick J

    2017-05-16

    Clinical vitamin B12 deficiency can result in megaloblastic anemia, which results from the inhibition of DNA synthesis by trapping folate cofactors in the form of 5-methyltetrahydrofolate (5-methylTHF) and subsequent inhibition of de novo thymidylate (dTMP) biosynthesis. In the cytosol, vitamin B12 functions in the remethylation of homocysteine to methionine, which regenerates THF from 5-methylTHF. In the nucleus, THF is required for de novo dTMP biosynthesis, but it is not understood how 5-methylTHF accumulation in the cytosol impairs nuclear dTMP biosynthesis. The impact of vitamin B12 depletion on nuclear de novo dTMP biosynthesis was investigated in methionine synthase-null human fibroblast and nitrous oxide-treated HeLa cell models. The nucleus was the most sensitive cellular compartment to 5-methylTHF accumulation, with levels increasing greater than fourfold. Vitamin B12 depletion decreased de novo dTMP biosynthesis capacity by 5-35%, whereas de novo purine synthesis, which occurs in the cytosol, was not affected. Phosphorylated histone H2AX (γH2AX), a marker of DNA double-strand breaks, was increased in vitamin B12 depletion, and this effect was exacerbated by folate depletion. These studies also revealed that 5-formylTHF, a slow, tight-binding inhibitor of serine hydroxymethyltransferase (SHMT), was enriched in nuclei, accounting for 35% of folate cofactors, explaining previous observations that nuclear SHMT is not a robust source of one-carbons for de novo dTMP biosynthesis. These findings indicate that a nuclear 5-methylTHF trap occurs in vitamin B12 depletion, which suppresses de novo dTMP biosynthesis and causes DNA damage, accounting for the pathophysiology of megaloblastic anemia observed in vitamin B12 and folate deficiency.

  8. Do Deregulated Cas Proteins Induce Genomic Instability in Early-Stage Ovarian Cancer

    Science.gov (United States)

    2006-12-01

    utilized both mammalian hippocampal neurons and Drosophila third instar neurons ,20 it was shown that formation of a neurite projection from an apparently...with increased numbers of centrosomes and multipolar spindles, which arise as a consequence of failed cytokinesis. As the overexpressed AurA is not...types and tissues.71,72,96,97 It is most abundant in vivo in tissues with polarized cell populations, including epithelial cells, neuronal and glial

  9. Cell geometry dictates TNFα-induced genome response.

    Science.gov (United States)

    Mitra, Aninda; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Shivashankar, G V

    2017-05-16

    Cells in physiology integrate local soluble and mechanical signals to regulate genomic programs. Whereas the individual roles of these signals are well studied, the cellular responses to the combined chemical and physical signals are less explored. Here, we investigated the cross-talk between cellular geometry and TNFα signaling. We stabilized NIH 3T3 fibroblasts into rectangular anisotropic or circular isotropic geometries and stimulated them with TNFα and analyzed nuclear translocation of transcription regulators -NFκB (p65) and MKL and downstream gene-expression patterns. We found that TNFα induces geometry-dependent actin depolymerization, which enhances IκB degradation, p65 nuclear translocation, nuclear exit of MKL, and sequestration of p65 at the RNA-polymerase-II foci. Further, global transcription profile of cells under matrix-TNFα interplay reveals a geometry-dependent gene-expression pattern. At a functional level, we find cell geometry affects TNFα-induced cell proliferation. Our results provide compelling evidence that fibroblasts, depending on their geometries, elicit distinct cellular responses for the same cytokine.

  10. Pathogenesis of spinal cord involvement induced by lower cervical instability in rheumatoid spondylitis

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Hironobu; Kuwabara, Shigeru; Fukuda, Kenji; Kuroki, Tatsuji; Tajima, Naoya (Miyazaki Medical Coll., Kiyotake (Japan))

    1994-07-01

    To examine prognostic factors in rheumatoid arthritis (RA), plain radiography findings and magnetic resonance imaging (MRI) findings were compared with histopathological findings in 129 RA patients who had local or neurologic symptoms due to the cervical spine. All patients underwent plain radiography, and subdislocation more than 2 mm towards the anterior and posterior directions on plain radiographs was defined as instability. In predicting induction of instability of the inferior cervical spine and risk for spinal compression, erosion of the vertebral rim, as seen on plain X-rays, and irregular findings of the end-plate of the vertebral body and Gd-enhanced nodules around the intervertebral disk, as seen on MRI, seemed to be important. (N.K.).

  11. Pyrimidine pool imbalance induced by BLM helicase deficiency contributes to genetic instability in Bloom syndrome.

    Science.gov (United States)

    Chabosseau, Pauline; Buhagiar-Labarchède, Géraldine; Onclercq-Delic, Rosine; Lambert, Sarah; Debatisse, Michelle; Brison, Olivier; Amor-Guéret, Mounira

    2011-06-28

    Defects in DNA replication are associated with genetic instability and cancer development, as illustrated in Bloom syndrome. Features of this syndrome include a slowdown in replication speed, defective fork reactivation and high rates of sister chromatid exchange, with a general predisposition to cancer. Bloom syndrome is caused by mutations in the BLM gene encoding a RecQ helicase. Here we report that BLM deficiency is associated with a strong cytidine deaminase defect, leading to pyrimidine pool disequilibrium. In BLM-deficient cells, pyrimidine pool normalization leads to reduction of sister chromatid exchange frequency and is sufficient for full restoration of replication fork velocity but not the fork restart defect, thus identifying the part of the Bloom syndrome phenotype because of pyrimidine pool imbalance. This study provides new insights into the molecular basis of control of replication speed and the genetic instability associated with Bloom syndrome. Nucleotide pool disequilibrium could be a general phenomenon in a large spectrum of precancerous and cancer cells.

  12. Drift-kink instability induced by beam ions in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Kazumi; Horiuchi, Ritoku; Sato, Tetsuya [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    The drift-kink instability in field-reversed configurations with a beam component is investigated by means of a three-dimensional particle simulation. The unstable mode with the toroidal mode number n=4 grows with the rate {gamma} {approx} 0.1 - 1.0{omega}{sub ci} for a strong beam current and deforms the plasma profile along the beam orbit in the vicinity of the field-null line. This mode is nonlinearly saturated as a result of the relaxation of current profile. Both the saturation level and the growth rate tend to increase as the ratio of the beam current to the plasma current I{sub b}/I{sub p} increases. It is also found that there is a threshold value of the beam velocity {upsilon}{sub b} {approx} {upsilon}{sub Ti} (ion thermal velocity) for the excitation of the instability. (author)

  13. Formation of coastline features by large-scale instabilities induced by high-angle waves.

    Science.gov (United States)

    Ashton, A; Murray, A B; Arnault, O

    2001-11-15

    Along shore sediment transport that is driven by waves is generally assumed to smooth a coastline. This assumption is valid for small angles between the wave crest lines and the shore, as has been demonstrated in shoreline models. But when the angle between the waves and the shoreline is sufficiently large, small perturbations to a straight shoreline will grow. Here we use a numerical model to investigate the implications of this instability mechanism for large-scale morphology over long timescales. Our simulations show growth of coastline perturbations that interact with each other to produce large-scale features that resemble various kinds of natural landforms, including the capes and cuspate forelands observed along the Carolina coast of southeastern North America. Wind and wave data from this area support our hypothesis that such an instability mechanism could be responsible for the formation of shoreline features at spatial scales up to hundreds of kilometres and temporal scales up to millennia.

  14. Vortex formation in protoplanetary discs induced by the vertical shear instability

    CERN Document Server

    Richard, Samuel; Umurhan, Orkan M

    2016-01-01

    We present the results of 2D and 3D hydrodynamic simulations of idealized protoplanetary discs that examine the formation and evolution of vortices by the vertical shear instability (VSI). In agreement with recent work, we find that discs with radially decreasing temperature profiles and short thermal relaxation time-scales, are subject to the axisymmetric VSI. In three dimensions, the resulting velocity perturbations give rise to quasi-axisymmetric potential vorticity perturbations that break-up into discrete vortices, in a manner that is reminiscent of the Rossby wave instability. Discs with very short thermal evolution time-scales (i.e. {\\tau}<0.1 local orbit periods) develop strong vorticity perturbations that roll up into vortices that have small aspect ratios ({\\chi}<2) and short lifetimes (~ a few orbits). Longer thermal time-scales give rise to vortices with larger aspect ratios (6<{\\chi}<10), and lifetimes that depend on the entropy gradient. A steeply decreasing entropy profile leads to ...

  15. Observation of geometric parametric instability induced by the periodic spatial self-imaging of multimode waves

    CERN Document Server

    Krupa, Katarzyna; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parame...

  16. A Hierarchical FEM approach for Simulation of Geometrical and Material induced Instability of Composite Structures

    DEFF Research Database (Denmark)

    Hansen, Anders L.; Lund, Erik; Pinho, Silvestre T.

    2009-01-01

    In this paper a hierarchical FE approach is utilized to simulate delamination in a composite plate loaded in uni-axial compression. Progressive delamination is modelled by use of cohesive interface elements that are automatically embedded. The non-linear problem is solved quasi-statically in which...... the interaction between material degradation and structural instability is solved iteratively. The effect of fibre bridging is studied numerically and in-plane failure is predicted using physically based failure criteria....

  17. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella.

    Science.gov (United States)

    Bayly, P V; Dutcher, S K

    2016-10-01

    Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This 'flutter' instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force.

  18. Roll/streak Structure Instability Induced by Free-stream Turbulence in Couette Flow

    Science.gov (United States)

    Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios

    2016-11-01

    Statistical state dynamics (SSD) provides a new perspective for studying mechanisms underlying turbulence in shear flow including instabilities which arise intrinsically from interaction between coherent and incoherent components of the turbulence. Implementations of SSD in the form of a closure at second order is used in this work to analyze the instability emergent from the statistical interaction between coherent perturbations of roll/streak form and the incoherent free-stream turbulence in a minimal channel configuration of Couette flow. By perturbing the nonlinear SSD dynamics a new manifold of stable modes with roll/streak structure is shown to exist in the presence of small amplitude free-stream turbulence. With increase in a parameter controlling the free-stream turbulence energy, a member of this set of stable roll/streak structures is destabilized at a bifurcation and the associated roll/streak eigenmode is found to equilibrate at finite amplitude. The bifurcation structure predicted by the SSD roll/streak instability is reflected in both a closely related quasi-linear dynamical system, referred to as the restricted non-linear (RNL) system, and in DNS. This correspondence is further verified using ensemble implementations of the RNL and DNS systems.

  19. Analysis of gradient-diffusion modeling of Rayleigh-Taylor and Richtmyer-Meshkov instability-induced mixing

    Science.gov (United States)

    Schilling, Oleg; Mueschke, Nicholas; Latini, Marco; Don, Wai Sun; Andrews, Malcolm

    2006-11-01

    Gradient-diffusion models of turbulent transport in Rayleigh- Taylor and Richtmyer-Meshkov instability-induced mixing are assessed using direct numerical simulation (DNS) and implicit large-eddy simulation (ILES) data. Mean and fluctuating fields, defined from spatial averages over the periodic directions of the DNS, are used to construct the unclosed terms in the turbulent kinetic energy transport equation. These terms are then compared a priori with the corresponding terms modeled using the gradient-diffusion approximation to assess the validity of this approximation for these buoyancy- and shock- driven flows. Implications for two-equation turbulence modeling of Rayleigh-Taylor and Richtmyer-Meshkov instability-induced mixing are discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. This research was also sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances Program through DOE Research Grant No. DE-FG03- 02NA00060. UCRL-ABS-223369

  20. Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Matsui Sei-Ichi

    2010-01-01

    Full Text Available Abstract Background Folate (vitamin B9 is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP and s-adenosylmethionine (AdoMet. The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction. Results We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion. Conclusions This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with

  1. Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Science.gov (United States)

    2010-01-01

    Background Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction. Results We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion. Conclusions This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological

  2. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast.

    Science.gov (United States)

    Paek, Andrew L; Kaochar, Salma; Jones, Hope; Elezaby, Aly; Shanks, Lisa; Weinert, Ted

    2009-12-15

    Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.

  3. HA novel approach to investigate tissue-specific trinucleotide repeat instability

    Directory of Open Access Journals (Sweden)

    Boily Marie-Josee

    2010-03-01

    Full Text Available Abstract Background In Huntington's disease (HD, an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors. Results Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability. Conclusion Our study clearly demonstrates that multiple tissue factors reflect the level of

  4. Analysis of rainfall-induced slope instability using a field of local factor of safety

    Science.gov (United States)

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  5. Current stress induced electrical instability in transparent zinc tin oxide thin-film transistors.

    Science.gov (United States)

    Cheong, Woo-Seok; Shin, Jae-Heon; Chung, Sung Mook; Hwang, Chi-Sun; Lee, Jeong-Min; Lee, Jong-Ho

    2012-04-01

    Transparent zinc tin oxide thin-film transistors (ZTO-TFTs) [Zn:Sn = 4:1-2:1] have been fabricated so as to estimate the electrical instability under constant current stress. The relative intensity of the drain current noise power spectra density has been shown to have a typical 1/f-noise character, and it is implied that the mobility fluctuation in ZTO-TFT [Zn:Sn = 4:1] can be enhanced by a short-range ordering in amorphous Zn-Sn-oxide, causing a larger shift of the threshold voltage (deltaV(th)).

  6. Instability of the roll-streak structure induced by background turbulence in pretransitional Couette flow

    Science.gov (United States)

    Farrell, Brian F.; Ioannou, Petros J.; Nikolaidis, Marios-Andreas

    2017-03-01

    Although the roll-streak structure is ubiquitous in both observations and simulations of pretransitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll-streak structure has been invoked to explain its appearance as resulting from chance occurrence in the background turbulence of perturbations configured to optimally excite it. However, there is an alternative interpretation for the role of free-stream turbulence in the genesis of the roll-streak structure, which is that the background turbulence interacts with the roll-streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type that arise from interaction between the coherent and incoherent components of turbulence. SSD in the form of a closure at second order is used in this work to analyze the cooperative eigenmodes arising from interaction between the coherent streamwise invariant component and the incoherent background component of turbulence. In pretransitional Couette flow a manifold of stable modes with roll-streak form is found to exist in the presence of low-intensity background turbulence. The least stable mode of this manifold is destabilized at a critical value of a parameter controlling the background turbulence intensity and a finite-amplitude roll-streak structure arises from this instability through a bifurcation in this parameter. Although this bifurcation has analytical expression only in the infinite ensemble formulation of second order SSD, referred in this work as the S3T system, it is closely reflected in numerical simulations of both the dynamically similar quasilinear system, referred to as the restricted nonlinear (RNL) system, as well as in the full Navier-Stokes equations. This correspondence is verified using ensemble implementations of the RNL system and the Navier-Stokes equations. The S3T

  7. Peroxiredoxin Tsa1 Is the Key Peroxidase Suppressing Genome Instability and Protecting against Cell Death in Saccharomyces cerevisiae

    OpenAIRE

    2009-01-01

    Peroxiredoxins (Prxs) constitute a family of thiol-specific peroxidases that utilize cysteine (Cys) as the primary site of oxidation during the reduction of peroxides. To gain more insight into the physiological role of the five Prxs in budding yeast Saccharomyces cerevisiae, we performed a comparative study and found that Tsa1 was distinguished from the other Prxs in that by itself it played a key role in maintaining genome stability and in sustaining aerobic viability of rad51 mutants that ...

  8. An array CGH based genomic instability index (G2I is predictive of clinical outcome in breast cancer and reveals a subset of tumors without lymph node involvement but with poor prognosis

    Directory of Open Access Journals (Sweden)

    Bonnet Françoise

    2012-11-01

    Full Text Available Abstract Background Despite entering complete remission after primary treatment, a substantial proportion of patients with early stage breast cancer will develop metastases. Prediction of such an outcome remains challenging despite the clinical use of several prognostic parameters. Several reports indicate that genomic instability, as reflected in specific chromosomal aneuploidies and variations in DNA content, influences clinical outcome but no precise definition of this parameter has yet been clearly established. Methods To explore the prognostic value of genomic alterations present in primary tumors, we performed a comparative genomic hybridization study on BAC arrays with a panel of breast carcinomas from 45 patients with metastatic relapse and 95 others, matched for age and axillary node involvement, without any recurrence after at least 11 years of follow-up. Array-CGH data was used to establish a two-parameter index representative of the global level of aneusomy by chromosomal arm, and of the number of breakpoints throughout the genome. Results Application of appropriate thresholds allowed us to distinguish three classes of tumors highly associated with metastatic relapse. This index used with the same thresholds on a published set of tumors confirms its prognostic significance with a hazard ratio of 3.24 [95CI: 1.76-5.96] p = 6.7x10-5 for the bad prognostic group with respect to the intermediate group. The high prognostic value of this genomic index is related to its ability to individualize a specific group of breast cancers, mainly luminal type and axillary node negative, showing very high genetic instability and poor outcome. Indirect transcriptomic validation was obtained on independent data sets. Conclusion Accurate evaluation of genetic instability in breast cancers by a genomic instability index (G2I helps individualizing specific tumors with previously unexpected very poor prognosis.

  9. Miscible experiments on the Rayleigh-Taylor instability using planar laser induced fluorescence visualization

    Science.gov (United States)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2011-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified miscible liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Experiments are presented with and without forced initial perturbations produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The resulting fluorescent images are recorded using a monochromatic high speed video camera. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface allowing for the measurement of spike and bubble mixing layer growth rates.

  10. Miscible and immiscible experiments on the Rayleigh-Taylor instability using planar laser induced fluorescence visualization

    Science.gov (United States)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2013-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using both immiscible and miscible liquid combinations. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The resulting fluorescent images are recorded using a monochromatic high speed video camera. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface allowing for the measurement of spike and bubble growth. Comparisons between miscible and immiscible mixing layer distributions are made from the resulting interface concentration profiles.

  11. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: phyco-sevenface@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2014-08-15

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode.

  12. Characterizing the Larkin-Ovchinnikov-Fulde-Ferrel phase induced by the chromomagnetic instability

    CERN Document Server

    Fukushima, K

    2006-01-01

    We discuss possible destinations from the chromomagnetic instability in color superconductors with Fermi surface mismatch $\\delta\\mu$. In the two-flavor superconducting (2SC) phase we calculate the effective potential for color vector potentials $A_\\alpha$ which are interpreted as the net momenta $q$ of pairing in the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) phase. When $1/\\sqrt{2}<\\delta\\mu/\\Delta<1$ where $\\Delta$ is the gap energy, the effective potential suggests that the instability leads to a LOFF-like state which is characterized by color-rotated phase oscillations with small $q$. In the vicinity of $\\delta\\mu/\\Delta=1/\\sqrt{2}$ the magnitude of $q$ continuously increases from zero as the effective potential has negative larger curvature at vanishing $A_\\alpha$ that is the Meissner mass squared. In the gapless 2SC (g2SC) phase, in contrast, the effective potential has a minimum at $gA_\\alpha\\sim\\delta\\mu\\sim\\Delta$ even when the negative Meissner mass squared is infinitesimally small. Our results i...

  13. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves.

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-06

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  14. Hydrodynamical instabilities induced by atomic diffusion in A stars and their consequences

    CERN Document Server

    Deal, M; Vauclair, S

    2016-01-01

    Aims. Atomic diffusion, including the effect of radiative accelerations on individual elements, leads to important variations of the chemical composition inside the stars. The accumulation in specific layers of the elements, which are the main contributors of the local opacity, leads to hydrodynamical instabilities that modify the internal stellar structure and surface abundances. Our aim is to study these effects and compare the resulting surface abundances with spectroscopic observations Methods. We computed the detailed structure of A-type stars including these effects. We used the Toulouse-Geneva Evolution Code (TGEC), where radiative accelerations are computed using the Single Valued Parameter (SVP) method, and we added double-diffusive convection with mixing coefficients deduced from three-dimensional (3D) simulations. Results. We show that the modification of the initial chemical composition has important effects on the internal stellar mixing and leads to different surface abundances of the elements. ...

  15. Study of dopant concentrations on thermal induced mode instability in high power fiber amplifiers

    CERN Document Server

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    Dependence of mode instabilities (MI) on ytterbium dopant concentrations in high power fiber amplifiers has been investigated. It is theoretically shown that, by only varying the fiber length to maintain the same total small-signal pump absorption, the MI threshold is independent of dopant concentration. MI thresholds of gain fibers with ytterbium dopant concentration of 5.93X10^25/m3 and 1.02X10^26/m3 have been measured, which exhibit similar thresholds and agree with theoretical results. The result indicates that heavy doping of active fiber can be adopted to suppress nonlinear effects without decreasing MI threshold, which provides a method of maximizing the power output of fiber laser, taking into account the stimulated Brillouin scattering, stimulated Raman Scattering, and MI thresholds simultaneously.

  16. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-induced Combustion Instability

    Science.gov (United States)

    Yungster, Shaye; Radhakrishnan, Krishnan

    1994-01-01

    A new fully implicit, time accurate algorithm suitable for chemically reacting, viscous flows in the transonic-to-hypersonic regime is described. The method is based on a class of Total Variation Diminishing (TVD) schemes and uses successive Gauss-Siedel relaxation sweeps. The inversion of large matrices is avoided by partitioning the system into reacting and nonreacting parts, but still maintaining a fully coupled interaction. As a result, the matrices that have to be inverted are of the same size as those obtained with the commonly used point implicit methods. In this paper we illustrate the applicability of the new algorithm to hypervelocity unsteady combustion applications. We present a series of numerical simulations of the periodic combustion instabilities observed in ballistic-range experiments of blunt projectiles flying at subdetonative speeds through hydrogen-air mixtures. The computed frequencies of oscillation are in excellent agreement with experimental data.

  17. Vector Condensate and AdS Soliton Instability Induced by a Magnetic Field

    CERN Document Server

    Cai, Rong-Gen; Li, Li-Fang; Wu, You

    2014-01-01

    We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied magnetic field can lead to the condensate of the vector field and the AdS soliton instability. As a result, a vortex lattice structure forms in the spatial directions perpendicular to the applied magnetic field. As a comparison, we also discuss the vector condensate in the Einstein-SU(2) Yang-Mills theory and find that in the setup of the present paper, the Einstein-Maxwell-complex vector field model is a generalization of the SU(2) model in the sense that the vector field has a general mass and gyromagnetic ratio.

  18. SEMICONDUCTOR DEVICES Negative bias temperature instability induced single event transient pulse narrowing and broadening

    Science.gov (United States)

    Jianjun, Chen; Shuming, Chen; Bin, Liang; Biwei, Liu

    2010-12-01

    The effect of negative bias temperature instability (NBTI) on a single event transient (SET) has been studied in a 130 nm bulk silicon CMOS process based on 3D TCAD device simulations. The investigation shows that NBTI can result in the pulse width and amplitude of SET narrowing when the heavy ion hits the PMOS in the high-input inverter; but NBTI can result in the pulse width and amplitude of SET broadening when the heavy ion hits the NMOS in the low-input inverter. Based on this study, for the first time we propose that the impact of NBTI on a SET produced by the heavy ion hitting the NMOS has already been a significant reliability issue and should be of wide concern, and the radiation hardened design must consider the impact of NBTI on a SET.

  19. Mechanical instability induced by water weakening in laboratory fluid injection tests

    Science.gov (United States)

    David, C.; Dautriat, J.; Sarout, J.; Delle Piane, C.; Menéndez, B.; Macault, R.; Bertauld, D.

    2015-06-01

    To assess water-weakening effects in reservoir rocks, previous experimental studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks fully saturated either with water or with inert fluids. So far, little attention has been paid to the mechanical behavior during fluid injection under conditions similar to enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behavior of the weakly consolidated Sherwood sandstone in laboratory experiments. Our specimens were instrumented with 16 ultrasonic P wave transducers for both passive and active acoustic monitoring during loading and fluid injection to record the acoustic signature of fluid migration in the pore space and the development of damage. Calibration triaxial tests were conducted on three samples saturated with air, water, or oil. In a second series of experiments, water and inert oil were injected into samples critically loaded up to 80% or 70% of the dry or oil-saturated compressive strength, respectively, to assess the impact of fluid migration on mechanical strength and elastic properties. The fluids were injected with a low back pressure to minimize effective stress variations during injection. Our observations show that creep takes place with a much higher strain rate for water injection compared to oil injection. The most remarkable difference is that water injection in both dry and oil-saturated samples triggers mechanical instability (macroscopic failure) within half an hour whereas oil injection does not after several hours. The analysis of X-ray computed tomography images of postmortem samples revealed that the mechanical instability was probably linked to loss of cohesion in the water-invaded region.

  20. BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability

    Science.gov (United States)

    Slupianek, Artur; Falinski, Rafal; Znojek, Pawel; Stoklosa, Tomasz; Flis, Sylwia; Doneddu, Valentina; Pytel, Dariusz; Synowiec, Ewelina; Blasiak, Janusz; Bellacosa, Alfonso; Skorski, Tomasz

    2013-01-01

    Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of CML-CP. Unfortunately, 25% of TKI-naive patients and 50–90% of TKI-responding patients carry CML clones expressing TKI resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species (ROS), which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil-DNA glycosylase UNG2 were inhibited in BCR-ABL1 –transformed cell lines and CD34+ CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na+/K+ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI-resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML. PMID:23047475

  1. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway.

    Directory of Open Access Journals (Sweden)

    Courtney A Lovejoy

    Full Text Available The Alternative Lengthening of Telomeres (ALT pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.

  2. Radiation induced dynamic mutations and transgenerational effects.

    Science.gov (United States)

    Niwa, Ohtsura

    2006-01-01

    Many studies have confirmed that radiation can induce genomic instability in whole body systems. Although the molecular mechanisms underlying induced genomic instability are not known at present, this interesting phenomenon could be the manifestation of a cellular fail-safe system in which fidelity of repair and replication is down-regulated to tolerate DNA damage. Two features of genomic instability namely, delayed mutation and untargeted mutation, require two mechanisms of ;damage memory' and ;damage sensing, signal transduction and execution' to induce mutations at a non damaged-site. In this report, the phenomenon of transgenerational genomic instability and possible mechanisms are discussed using mouse data collected in our laboratory as the main bases.

  3. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Directory of Open Access Journals (Sweden)

    Plant Ramona N

    2006-08-01

    Full Text Available Abstract Background Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs or large scale (CGH array, FISH methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. Results All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. Conclusion Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.

  4. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination.

    Directory of Open Access Journals (Sweden)

    Randell T Libby

    2008-11-01

    Full Text Available At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7 locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting "instability elements," and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF -- a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.

  5. BCR-ABL1 kinase inhibits uracil DNA glycosylase UNG2 to enhance oxidative DNA damage and stimulate genomic instability.

    Science.gov (United States)

    Slupianek, A; Falinski, R; Znojek, P; Stoklosa, T; Flis, S; Doneddu, V; Pytel, D; Synowiec, E; Blasiak, J; Bellacosa, A; Skorski, T

    2013-03-01

    Tyrosine kinase inhibitors (TKIs) revolutionized the treatment of chronic myeloid leukemia in chronic phase (CML-CP). Unfortunately, 25% of TKI-naive patients and 50-90% of patients developing TKI-resistance carry CML clones expressing TKI-resistant BCR-ABL1 kinase mutants. We reported that CML-CP leukemia stem and progenitor cell populations accumulate high amounts of reactive oxygen species, which may result in accumulation of uracil derivatives in genomic DNA. Unfaithful and/or inefficient repair of these lesions generates TKI-resistant point mutations in BCR-ABL1 kinase. Using an array of specific substrates and inhibitors/blocking antibodies we found that uracil DNA glycosylase UNG2 were inhibited in BCR-ABL1-transformed cell lines and CD34(+) CML cells. The inhibitory effect was not accompanied by downregulation of nuclear expression and/or chromatin association of UNG2. The effect was BCR-ABL1 kinase-specific because several other fusion tyrosine kinases did not reduce UNG2 activity. Using UNG2-specific inhibitor UGI, we found that reduction of UNG2 activity increased the number of uracil derivatives in genomic DNA detected by modified comet assay and facilitated accumulation of ouabain-resistant point mutations in reporter gene Na(+)/K(+)ATPase. In conclusion, we postulate that BCR-ABL1 kinase-mediated inhibition of UNG2 contributes to accumulation of point mutations responsible for TKI resistance causing the disease relapse, and perhaps also other point mutations facilitating malignant progression of CML.

  6. High-Level HOOK3 Expression Is an Independent Predictor of Poor Prognosis Associated with Genomic Instability in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Nathaniel Melling

    Full Text Available Hook microtubule-tethering protein 3 (HOOK3 is an adaptor protein for microtubule-dependent intracellular vesicle and protein trafficking. In order to assess the role of HOOK3 in prostate cancer we analyzed HOOK3 expression by immunohistochemistry on a TMA containing more than 12,400 prostate cancers. Results were compared to tumor phenotype and PSA recurrence as well as aberrations possibly defining relevant molecular subtypes such as ERG status and deletions of 3p13, 5q21, 6q15 and PTEN. HOOK3 immunostaining was negative in normal luminal cells of prostate epithelium, whereas 53.3% of 10,572 interpretable cancers showed HOOK3 expression, which was considered low in 36.4% and high in 16.9% of cases. High-level HOOK3 expression was linked to advanced tumor stage, high Gleason score, high proliferation index, positive lymph node stage, and PSA recurrence (p<0.0001 each. The prognostic role of HOOK3 expression was independent of established clinico-pathological parameters both in preoperative and postoperative settings. Comparisons with molecular features were performed to draw conclusions on the potential function of HOOK3 in the prostate. A strong association with all examined deletions is consistent with a role of HOOK3 for maintaining genomic integrity by contributing to proper centrosome assembly. Finding HOOK3 expression in 74% of ERG positive but in only 38% of ERG negative cancers (p<0.0001 further suggests functional interactions between these genes. In conclusion, the results of our study identify HOOK3 as a strong candidate prognostic marker with a possible role in maintaining genomic integrity in prostate cancer, which may have potential for inclusion into clinical routine assays.

  7. Tumor Environmental Factors Glucose Deprivation and Lactic Acidosis Induce Mitotic Chromosomal Instability – An Implication in Aneuploid Human Tumors

    Science.gov (United States)

    Zhu, Chunpeng; Hu, Xun

    2013-01-01

    Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453

  8. Inflation in exponential scalar model and finite-time singularity induced instability

    CERN Document Server

    Odintsov, S D

    2015-01-01

    We investigate how a Type IV future singularity can be included in the cosmological evolution of a well-known exponential model of inflation. In order to achieve this we use a two scalar field model, in the context of which the incorporation of the Type IV singularity can be consistently done. In the context of the exponential model we study, when a Type IV singularity is included in the evolution, an instability occurs in the slow-roll parameters, and in particular on the second slow-roll parameter. Particularly, if we abandon the slow-roll condition for both the scalars we shall use, then the most consistent description of the dynamics of the inflationary era is provided by the Hubble slow-roll parameters $\\epsilon_H$ and $\\eta_H$. Then, the second Hubble slow-roll parameter $\\eta_H$, which measures the duration of the inflationary era, becomes singular at the point where the Type IV singularity is chosen to occur, while the Hubble slow-roll parameter $\\epsilon_H$ is regular there. Therefore, this infinite ...

  9. Strain-induced growth instability and nanoscale surface patterning in perovskite thin films

    Science.gov (United States)

    Pandya, Shishir; Damodaran, Anoop R.; Xu, Ruijuan; Hsu, Shang-Lin; Agar, Joshua C.; Martin, Lane W.

    2016-05-01

    Despite extensive studies on the effects of epitaxial strain on the evolution of the lattice and properties of materials, considerably less work has explored the impact of strain on growth dynamics. In this work, we demonstrate a growth-mode transition from 2D-step flow to self-organized, nanoscale 3D-island formation in PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 (001) heterostructures as the kinetics of the growth process respond to the evolution of strain. With increasing heterostructure thickness and misfit dislocation formation at the buried interface, a periodic, modulated strain field is generated that alters the adatom binding energy and, in turn, leads to a kinetic instability that drives a transition from 2D growth to ordered, 3D-island formation. The results suggest that the periodically varying binding energy can lead to inhomogeneous adsorption kinetics causing preferential growth at certain sites. This, in conjunction with the presence of an Ehrlich-Schwoebel barrier, gives rise to long-range, periodically-ordered arrays of so-called “wedding cake” 3D nanostructures which self-assemble along the [100] and [010].

  10. The neuromuscular fatigue induced by repeated scrums generates instability that can be limited by appropriate recovery.

    Science.gov (United States)

    Morel, B; Hautier, C A

    2017-02-01

    The aim of this study was to evaluate the influence of the fatigue on the machine scrum pushing sagittal forces during repeated scrums and to determine the origin of the knee extensor fatigue. Twelve elite U23 rugby union front row players performed six 6-s scrums every 30 s against a dynamic scrum machine with passive or active recovery. The peak, average, and the standard deviation of the force were measured. A neuromuscular testing procedure of the knee extensors was carried out before and immediately after the repeated scrum protocol including maximal voluntary force, evoked force, and voluntary activation. The average and peak forces did not decrease after six scrums with passive recovery. The standard deviation of the force increased by 70.2 ± 42.7% (P scrum pushing instability associated with central and peripheral fatigue of the knee extensors. Active recovery seems to limit all these manifestations of fatigue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Negative bias temperature instability of SiC MOSFET induced by interface trap assisted hole trapping

    Science.gov (United States)

    Yen, Cheng-Tyng; Hung, Chien-Chung; Hung, Hsiang-Ting; Lee, Chwan-Ying; Lee, Lurng-Shehng; Huang, Yao-Feng; Hsu, Fu-Jen

    2016-01-01

    We investigated the negative bias temperature instability (NBTI) characteristics of 4H-SiC metal oxide semiconductor field effect transistor (MOSFET) and metal oxide semiconductor capacitor (MOSCAP). The shift of threshold voltage approached saturation with time, and the different magnitude of mid-gap voltage shift with different starting biases observed in capacitance-voltage (CV) curves taken from MOSCAP and MOSFET suggested that the hole trapping was the primary mechanism contributing to the NBTI in this study. The trend of mid-gap voltage shift with starting bias and threshold voltage shift with stress bias showed steep change before -10 V and approached saturation after -10 V which can be explained by a process where the hole trapping was assisted by positively charged interface states. The positively charged interface states may have acted as an intermediate state which reduced the overall energy barrier and facilitated the process of hole trapping. The split-CV sweeps with 0 s and 655 s of hold time were essentially overlapped which was consistent with the time evolution characteristic of hole trapping and supported the interface trap assisted hole trapping mechanism.

  12. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells.

    Science.gov (United States)

    Kinoshita, Taisuke; Nagamatsu, Go; Kosaka, Takeo; Takubo, Keiyo; Hotta, Akitsu; Ellis, James; Suda, Toshio

    2011-04-08

    During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  13. Validation of the RELAP5 code for the modeling of flashing-induced instabilities under natural-circulation conditions using experimental data from the CIRCUS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Y. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Institute of Physics and Power Engineering, Obninsk (Russian Federation); Rohde, U., E-mail: U.Rohde@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Manera, A. [Paul Scherrer Institute (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We report about the simulation of flashing-induced instabilities in natural circulation systems. Black-Right-Pointing-Pointer Flashing-induced instabilities are of relevance for operation of pool-type reactors of small power at low pressure. Black-Right-Pointing-Pointer The RELAP5 code is validated against measurement data from natural circulation experiments. Black-Right-Pointing-Pointer The magnitude and frequency of the oscillations were reproduced in good agreement with the measurement data. - Abstract: This paper reports on the use of the RELAP5 code for the simulation of flashing-induced instabilities in natural circulation systems. The RELAP 5 code is intended to be used for the simulation of transient processes in the Russian RUTA reactor concept operating at atmospheric pressure with forced convection of coolant. However, during transient processes, natural circulation with flashing-induced instabilities might occur. The RELAP5 code is validated against measurement data from natural circulation experiments performed within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR. It was shown that the RELAP5 code is able to model all relevant phenomena related to flashing induced instabilities. The magnitude and frequency of the oscillations were reproduced in a good agreement with the measurement data. The close correspondence to the experiments was reached by detailed modeling of all components of the CIRCUS facility including the heat exchanger, the buffer vessel and the steam dome at the top of the facility.

  14. Increased genomic alteration complexity and telomere shortening in B-CLL cells resistant to radiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Salin, H.; Ricoul, M.; Morat, L.; Sabatier, L. [CEA, DSV, iRCM, LRO, F-92265 Fontenay Aux Roses (France); Salin, H. [Museum Natl Hist Nat, F-75231 Paris (France)

    2008-07-01

    B-cell chronic lymphocytic leukemia (B-CLL) results in an accumulation of mature CD5{sup +}/CD23{sup +} B cells due to an uncharacterised defect in apoptotic cell death. B-CLL is not characterized by a unique recurrent genomic alteration but rather by genomic instability giving rise frequently to several chromosomal aberrations. Besides we reported that similar to 15% of B-CLL patients present malignant B-cells resistant to irradiation-induced apoptosis, contrary to similar to 85% of patients and normal human lymphocytes. Telomere length shortening is observed in radioresistant B-CLL cells. Using fluorescence in situ hybridization (FISH) and multicolour FISH, we tested whether specific chromosomal aberrations might be associated with the radioresistance of a subset of B-CLL cells and whether they are correlated with telomere shortening. In a cohort of 30 B-CLL patients, all of the radioresistant B-CLL cell samples exhibited homozygous or heterozygous deletion of 13q14.3 in contrast to 52% of the radiosensitive samples. In addition to the 13q14.3 deletion, ten out of the 11 radioresistant B-cell samples had another clonal genomic alteration such as trisomy 12, deletion 17p13.1, mutation of the p53 gene or translocations in contrast to only three out of 19 radiosensitive samples. Telomere fusions and non-reciprocal translocations, hallmarks of telomere dysfunction, are not increased in radioresistant B-CLL cells. These findings suggest (i) that the 13q14.3 deletion accompanied by another chromosomal aberration is associated with radioresistance of B-CLL cells and (ii) that telomere shortening is not causative of increased clonal chromosomal aberrations in radioresistant B-CLL cells. (authors)

  15. ON THE BEAM INDUCED QUASI-INSTABILITY TRANSFORMATION OF THE DAMPED APERIODIC MODE IN THE INTERGALACTIC MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, U.; Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- and Astrophysik, Ruhr-Universität, Bochum (Germany); Yoon, P. H., E-mail: uk@tp4.rub.de, E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [IPST, University of Maryland, College Park, Maryland 20742-2431 (United States)

    2016-02-01

    Highly relativistic electron–positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  16. On the Beam Induced Quasi-instability Transformation of the Damped Aperiodic Mode in the Intergalactic Medium

    Science.gov (United States)

    Kolberg, U.; Schlickeiser, R.; Yoon, P. H.

    2016-02-01

    Highly relativistic electron-positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  17. The pursuit of the genome instability by comet assay (single cell gel electrophoresis) in patients with cancer of the cavum in western Algerian; La recherche de l'instabilite genomique par le test des cometes (single cell gel electrophoresis) chez les malades atteints d'un cancer du cavum dans l'Ouest algerien

    Energy Technology Data Exchange (ETDEWEB)

    Boukerche, A.; Dali-Youcef, A.F. [Service de Radiotherapie, Oran (Algeria); Bouali-Youcef, Y. [Laboratoire d' Immunologie, Oran (Algeria); Mehadji, M. [Service d' ORL, Oran (Algeria); Chenal, C. [Rennes-1 Univ., UMR CNRS 6853, 35 (France)

    2007-11-15

    The analysis of results has shown a constitutional genome instability among the patients with a cavum cancer with a defect in DNA repair where some exogenous factors ( Epstein-Barr virus, EBV) seem play an important part. (N.C.)

  18. Architecture of Burkholderia cepacia complex σ70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability

    Directory of Open Access Journals (Sweden)

    Menard Aymeric

    2007-09-01

    Full Text Available Abstract Background The Burkholderia cepacia complex (Bcc groups bacterial species with beneficial properties that can improve crop yields or remediate polluted sites but can also lead to dramatic human clinical outcomes among cystic fibrosis (CF or immuno-compromised individuals. Genome-wide regulatory processes of gene expression could explain parts of this bacterial duality. Transcriptional σ70 factors are components of these processes. They allow the reversible binding of the DNA-dependent RNA polymerase to form the holoenzyme that will lead to mRNA synthesis from a DNA promoter region. Bcc genome-wide analyses were performed to investigate the major evolutionary trends taking place in the σ70 family of these bacteria. Results Twenty σ70 paralogous genes were detected in the Burkholderia cenocepacia strain J2315 (Bcen-J2315 genome, of which 14 were of the ECF (extracytoplasmic function group. Non-ECF paralogs were related to primary (rpoD, alternative primary, stationary phase (rpoS, flagellin biosynthesis (fliA, and heat shock (rpoH factors. The number of σ70 genetic determinants among this genome was of 2,86 per Mb. This number is lower than the one of Pseudomonas aeruginosa, a species found in similar habitats including CF lungs. These two bacterial groups showed strikingly different σ70 family architectures, with only three ECF paralogs in common (fecI-like, pvdS and algU. Bcen-J2315 σ70 paralogs showed clade-specific distributions. Some paralogs appeared limited to the ET12 epidemic clone (ecfA2, particular Bcc species (sigI, the Burkholderia genus (ecfJ, ecfF, and sigJ, certain proteobacterial groups (ecfA1, ecfC, ecfD, ecfE, ecfG, ecfL, ecfM and rpoS, or were broadly distributed in the eubacteria (ecfI, ecfK, ecfH, ecfB, and rpoD-, rpoH-, fliA-like genes. Genomic instability of this gene family was driven by chromosomal inversion (ecfA2, recent duplication events (ecfA and RpoD, localized (ecfG and large scale deletions (sig

  19. Depletion-induced instability in protein-DNA mixtures: Influence of protein charge and size

    NARCIS (Netherlands)

    Vries, de R.J.

    2006-01-01

    While there is abundant experimental and theoretical work on polymer-induced DNA condensation, it is still unclear whether globular proteins can condense linear DNA or not. We develop a simple analytical approximation for the depletion attraction between rodlike segments of semiflexible

  20. Effects of walk-off on cross-phase modulation induced modulation instability in an optical fibre with high-order dispersion

    Institute of Scientific and Technical Information of China (English)

    Zhong Xian-Qiong; Xiang An-Ping

    2007-01-01

    This paper investigates the effects of walk-off among optical pulses on cross-phase modulation induced modulation instability in the normal dispersion region of an optical fibre with high-order dispersion. The results indicate that, in the case of high-order dispersion, the walk-off effect takes on new characteristics and will influence considerably the shape, position and especially the number of the spectral regions of the gain spectra of modulation instability. Not only the group-velocity mismatch, but also the difference of the third-order dispersion of two optical waves will alter the gain spectra of modulation instability but in different ways. Depending on the values of the walk-off parameters, the number of the spectral regions may increase from two to at most four, and the spectral shape and position may change too.

  1. Structural instability of shell-like assemblies of a keplerate-type polyoxometalate induced by ionic strength.

    Science.gov (United States)

    Veen, Sandra J; Kegel, Willem K

    2009-11-19

    We demonstrate a new structural instability of shell-like assemblies of polyoxometalates. Besides the colloidal instability, that is, the formation of aggregates that consist of many single layered POM-shells, these systems also display an instability on a structural scale within the shell-like assemblies. This instability occurs at significantly lower ionic strength than the colloidal stability limit and only becomes evident after a relatively long time. For the polyoxometalate, abbreviated as {Mo(72)Fe(30)}, it is shown that the structural stability limit of POM-shells lies between a NaCl concentration of 1.00 and 5.00 mM in aqueous solution.

  2. Low Dose Studies with Focused X-Rays in cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    Energy Technology Data Exchange (ETDEWEB)

    Kathy Held; Kevin Prise; Barry Michael; Melvyn Folkard

    2002-12-14

    The management of the risks of exposure of people to ionizing radiation is important in relation to its uses in industry and medicine, also to natural and man-made radiation in the environment. The vase majority of exposures are at a very low level of radiation dose. The risks are of inducing cancer in the exposed individuals and a smaller risk of inducing genetic damage that can be indicate that they are low. As a result, the risks are impossible to detect in population studies with any accuracy above the normal levels of cancer and genetic defects unless the dose levels are high. In practice, this means that our knowledge depends very largely on the information gained from the follow-up of the survivors of the atomic bombs dropped on Japanese cities. The risks calculated from these high-dose short-duration exposures then have to be projected down to the low-dose long-term exposures that apply generally. Recent research using cells in culture has revealed that the relationship between high- and low-dose biological damage may be much more complex than had previously been thought. The aims of this and other projects in the DOE's Low-Dose Program are to gain an understanding of the biological actions of low-dose radiation, ultimately to provide information that will lead to more accurate quantification of low-dose risk. Our project is based on the concept that the processes by which radiation induces cancer start where the individual tracks of radiation impact on cells and tissues. At the dose levels of most low-dose exposures, these events are rare and any individual cells only ''sees'' radiation tracks at intervals averaging from weeks to years apart. This contrasts with the atomic bomb exposures where, on average, each cell was hit by hundreds of tracks instantaneously. We have therefore developed microbeam techniques that enable us to target cells in culture with any numbers of tracks, from one upwards. This approach enables us to study

  3. Low Dose Studies with Focused X-rays in Cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    Energy Technology Data Exchange (ETDEWEB)

    Barry D. Michael; Kathryn Held; Kevin Prise

    2002-12-19

    The management of the risks of exposure of people to ionizing radiation is important in relation to its uses in industry and medicine, also to natural and man-made radiation in the environment. The vase majority of exposures are at a very low level of radiation dose. The risks are of inducing cancer in the exposed individuals and a smaller risk of inducing genetic damage that can be transmitted to children conceived after exposure. Studies of these risks in exposed population studies with any accuracy above the normal levels of cancer and genetic defects unless the dose levels are high. In practice, this means that our knowledge depends very largely on the information gained from the follow-up of the survivors of the atomic bombs dropped on Japanese cities. The risks calculated from these high-dose short-duration exposures then have to be projected down to the low-dose long-term exposures that apply generally. Recent research using cells in culture has revealed that the relations hi between high- and low-dose biological damage may be much more complex than had previously been thought. The aims of this and other projects in the DOE's Low-Dose Program are to gain an understanding of the biological actions of low-dose radiation, ultimately to provide information that will lead to more accurate quantification of low-dose risk. Our project is based on the concept that the processes by which radiation induces cancer start where the individual tracks of radiation impact on cells and tissues. At the dose levels of most low-dose exposures, these events are rare and any individual cells only ''sees'' radiation tracks at intervals averaging from weeks to years apart. This contracts with the atomic bomb exposures where, on average, each cell was hit by hundreds of tracks instantaneously. We have therefore developed microbeam techniques that enable us to target cells in culture with any number of tracks, from one upwards. This approach enables us to

  4. Low Dose Studies with Focused X-Rays in cell and Tissue Models: Mechanisms of Bystander and Genomic Instability Responses

    Energy Technology Data Exchange (ETDEWEB)

    Kathy Held; Kevin Prise; Barry Michael; Melvyn Folkard

    2002-12-14

    The management of the risks of exposure of people to ionizing radiation is important in relation to its uses in industry and medicine, also to natural and man-made radiation in the environment. The vase majority of exposures are at a very low level of radiation dose. The risks are of inducing cancer in the exposed individuals and a smaller risk of inducing genetic damage that can be indicate that they are low. As a result, the risks are impossible to detect in population studies with any accuracy above the normal levels of cancer and genetic defects unless the dose levels are high. In practice, this means that our knowledge depends very largely on the information gained from the follow-up of the survivors of the atomic bombs dropped on Japanese cities. The risks calculated from these high-dose short-duration exposures then have to be projected down to the low-dose long-term exposures that apply generally. Recent research using cells in culture has revealed that the relationship between high- and low-dose biological damage may be much more complex than had previously been thought. The aims of this and other projects in the DOE's Low-Dose Program are to gain an understanding of the biological actions of low-dose radiation, ultimately to provide information that will lead to more accurate quantification of low-dose risk. Our project is based on the concept that the processes by which radiation induces cancer start where the individual tracks of radiation impact on cells and tissues. At the dose levels of most low-dose exposures, these events are rare and any individual cells only ''sees'' radiation tracks at intervals averaging from weeks to years apart. This contrasts with the atomic bomb exposures where, on average, each cell was hit by hundreds of tracks instantaneously. We have therefore developed microbeam techniques that enable us to target cells in culture with any numbers of tracks, from one upwards. This approach enables us to study

  5. Beam instability induced by rf deflectors in the combiner ring of the CLIC test facility and mitigation by damped deflecting structures

    CERN Document Server

    Alesini, D; Biscari, C; Ghigo, A; Corsini, R

    2011-01-01

    In the CTF3 (CLIC test facility 3) run of November 2007, a vertical beam instability has been found in the combiner ring during operation. After a careful analysis, the source of the instability has been identified in the vertical deflecting modes trapped in the rf deflectors and excited by the beam passage. A dedicated tracking code that includes the induced transverse wakefield and the multibunch multipassage effects has been written and the results of the beam dynamics analysis are presented in the paper. The mechanism of the instability was similar to the beam breakup in a linear accelerator or in an energy recovery linac. The results of the code allowed identifying the main key parameters driving such instability and allowed finding the main knobs to mitigate it. To completely suppress such beam instability, two new rf deflectors have been designed, constructed, and installed in the ring. In the new structures the frequency separation between the vertical and horizontal deflecting modes has been increase...

  6. Radiation-induced instability of MnS precipitates and its possible consequences on IASCC of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M. [Argonne National Lab., IL (United States); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Irradiation assisted stress corrosion cracking (IASCC) continues to be a significant materials issue for the light water reactor industry and may also pose a problem for fusion power devices that employ water cooling. Although a number of potential mechanisms have been proposed to participate in this phenomenon, at this time it is not clear that any of these candidate mechanisms are sufficient to rationalize the observed failures. A new mechanism is proposed in this paper that involves the radiation-induced release into solution of elements not usually thought to participate in IASCC. It is shown in this paper that MnS precipitates, which contain most of the sulphur in stainless steels, are probably unstable under irradiation. First, the Mn transmutes very strongly to Fe in highly thermalized neutron spectra. Second, the combination of cascade-induced disordering and the inverse-Kirkendall effect operating at the incoherent interfaces of MnS precipitates will probably act as a pump to export Mn from the precipitate surface into the alloy matrix. Both of these processes will most likely allow some of the sulphur to re-enter the alloy matrix. Sulphur is known to exert a deleterious influence on grain boundary cracking. MnS precipitates are also thought to be a reservoir of other deleterious impurities such as fluorine which could be also released due to radiation-induced instability of the precipitates. This possibility has been confirmed by Auger electron spectroscopy of Types 304, 316, and 348 stainless steel specimens sectioned from several BWR components irradiated up to 3.5x10{sup 21} n/cm{sup 2} (E > 1 MeV).

  7. A phosphomimetic mutant TDP-43 (S409/410E) induces Drosha instability and cytotoxicity in Neuro 2A cells.

    Science.gov (United States)

    Kim, Ki Yoon; Lee, Hee-Woo; Shim, Yu-Mi; Mook-Jung, Inhee; Jeon, Gye Sun; Sung, Jung-Joon

    2015-08-14

    Two DNA/RNA binding proteins, TDP-43 and FUS/TLSU, are involved in RNA processing, and their aberrant mutations induce inherited amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitinated inclusions. Wild type TDP-43 and FUS (wtTDP-43 and wtFUS) are mainly localized in the nucleus and biochemically interact with the microRNA processing enzyme Drosha. In this study, we investigated Drosha stability in Neuro 2A cells by gain and loss of function studies of wtTDP-43 and wtFUS and cycloheximide mediated protein degradation assay. We also generated three different phosphomimetic mutants of TDP-43 (S379E, S403/404E and S409/410E) by using a site-directed mutagenesis method and examined Drosha stability to elucidate a correlation between the phosphorylated TDP-43 mutants and Drosha stability. Overexpression of wtTDP-43 and/or wtFUS increased Drosha stability in Neuro 2A cells and double knockdown of wtTDP-43 and wtFUS reduced its stability. However, knockdown of wtTDP-43 or wtFUS did not affect Drosha stability in Neuro 2A cells. Interestingly, a phosphomimetic mutant TDP-43 (S409/410E) significantly reduced Drosha stability via prevention of protein-protein interactions between wtFUS and Drosha, and induced cytotoxicity in Neuro 2A cells. Our findings suggest that TDP-43 and FUS controls Drosha stability in Neuro 2A cells and that a phosphomimetic mutant TDP-43 (S409/410E) which is associated with Drosha instability can induce neuronal toxicity.

  8. Hopf Bifurcation and Delay-Induced Turing Instability in a Diffusive lac Operon Model

    Science.gov (United States)

    Cao, Xin; Song, Yongli; Zhang, Tonghua

    In this paper, we investigate the dynamics of a lac operon model with delayed feedback and diffusion effect. If the system is without delay or the delay is small, the positive equilibrium is stable so that there are no spatial patterns formed; while the time delay is large enough the equilibrium becomes unstable so that rich spatiotemporal dynamics may occur. We have found that time delay can not only incur temporal oscillations but also induce imbalance in space. With different initial values, the system may have different spatial patterns, for instance, spirals with one head, four heads, nine heads, and even microspirals.

  9. miR-155 Over-expression Promotes Genomic Instability by Reducing High-fidelity Polymerase Delta Expression and Activating Error-prone DSB Repair

    Science.gov (United States)

    Czochor, Jennifer R.; Sulkowski, Parker; Glazer, Peter M.

    2016-01-01

    miR-155 is an oncogenic microRNA (miR) that is often over-expressed in cancer and is associated with poor prognosis. miR-155 can target several DNA repair factors including RAD51, MLH1, and MSH6, and its over-expression results in an increased mutation frequency in vitro, although the mechanism has yet to be fully understood. Here, we demonstrate that over-expression of miR-155 drives an increased mutation frequency both in vitro and in vivo, promoting genomic instability by affecting multiple DNA repair pathways. miR-155 over-expression causes a decrease in homologous recombination, but yields a concurrent increase in the error-prone non-homologous end-joining (NHEJ) pathway. Despite repressing established targets MLH1 and MSH6, the identified mutation pattern upon miR-155 over-expression does not resemble that of a mismatch repair-deficient background. Further investigation revealed that all four subunits of polymerase delta, a high-fidelity DNA replication and repair polymerase, are down-regulated at the mRNA level in the context of miR-155 over-expression. FOXO3a, a transcription factor and known target of miR-155, has one or more putative binding site(s) in the promoter of all four polymerase delta subunits. Finally, suppression of FOXO3a by miR-155 or by siRNA knockdown is sufficient to repress the expression of the catalytic subunit of polymerase delta, POLD1, at the protein level, indicating that FOXO3a contributes to the regulation of polymerase delta levels. PMID:26850462

  10. Clonal evolution and progression of 20-methylcholanthrene-induced squamous cell carcinoma of mouse epidermis as revealed by DNA instability and other malignancy markers

    Directory of Open Access Journals (Sweden)

    K Hirai

    2009-12-01

    Full Text Available We examined the clonal evolution of skin malignant lesions by repeated topical applications of 20- methylcholanthrene (20-MC to the skin, which induces hyperplastic epidermis, papillomatous lesion and invasive carcinoma in mice. The lesions were examined histologically and immunohistochemically with anti-single-stranded DNA after acid hydrolysis (DNA-instability test, p53, VEGF, DFF45, PCNA and AgNORs parameters analyses. Multiple clones with increased DNA instability comparable to that of invasive carcinoma were noted in early-stage (2-6 weeks hyperplastic epidermis, and their number increased in middle (7-11 weeks, and late-stages (12-25 weeks of hyperplastic epidermis, indicating that they belong to the malignancy category. All papillomatous lesions and invasive carcinomas showed a positive DNA-instability test. Positive immunostaining for various biomarkers and AgNORs parameters appeared in clones with a positive DNA-instability test in earlyor middle-stage hyperplastic epidermis, and markedly increased in late-stage hyperplastic epidermis, papillomatous lesions and invasive carcinomas. The percentage of PCNA-positive vascular endothelial cells was significantly higher in VEGFpositive lesions with a positive DNA-instability test and became higher toward the late-stage of progression. Cut-woundings were made to papillomatous and invasive carcinoma lesions, and the regeneration activity of vascular endothelial cells was determined by using flash labeling with tritiated thymidine (3H-TdR. In small papillomatous lesions, vascular endothelial cells showed regenerative response, but the response was weak in large lesions. No such response was noted in invasive carcinomas; rather, cut-wounding induced collapse of blood vessels, which in turn induced massive coagulative necrosis of cancer cells. These responses can be interpreted to reflect exhausted vascular growth activity due to excessive stimulation by VEGF-overexpression, which was persistently

  11. Induced dicentric chromosome formation promotes genomic rearrangements and tumorigenesis

    OpenAIRE

    Gascoigne, Karen E; Cheeseman, Iain M.

    2013-01-01

    Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a “dicentric” chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cel...

  12. Atorvastatin attenuates p-cresyl sulfate-induced atherogenesis and plaque instability in ApoE knockout mice

    Science.gov (United States)

    Han, Hui; Chen, Yanjia; Zhu, Jinzhou; Ni, Jingwei; Sun, Jiateng; Zhang, Ruiyan

    2016-01-01

    p-cresyl sulfate (PCS) is a protein-bound uremic toxin retained in the blood of patients with chronic kidney disease (CKD) As atherosclerosis is a primary cardiovascular complication for patients with CKD, the aim of the present study was to investigate the mechanisms underlying the aggravation of atherosclerosis by PCS. In addition, the effect of atorvastatin was assessed in reversing the effects of PCS. PCS was revealed to promote the initiation and progression of atherosclerosis. Following treatment with atorvastatin, apolipoprotein E knockout mice demonstrated a reduction in PCS-induced atherogenesis and plaque vulnerability. In addition, atorvastatin decreased the protein expression levels of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1, and the interaction between leukocytes and endothelia. The plasma lipid profiles of mice were not significantly affected by gavage of low-dose atorvastatin. The results of the present study indicate that PCS promotes plaque growth and instability by enhancing leukocyte-endothelium interaction, and that these effects may be attenuated by atorvastatin treatment. PMID:27574007

  13. Release of dengue virus genome induced by a peptide inhibitor.

    Directory of Open Access Journals (Sweden)

    Shee-Mei Lok

    Full Text Available Dengue virus infects approximately 100 million people annually, but there is no available therapeutic treatment. The mimetic peptide, DN59, consists of residues corresponding to the membrane interacting, amphipathic stem region of the dengue virus envelope (E glycoprotein. This peptide is inhibitory to all four serotypes of dengue virus, as well as other flaviviruses. Cryo-electron microscopy image reconstruction of dengue virus particles incubated with DN59 showed that the virus particles were largely empty, concurrent with the formation of holes at the five-fold vertices. The release of RNA from the viral particle following incubation with DN59 was confirmed by increased sensitivity of the RNA genome to exogenous RNase and separation of the genome from the E protein in a tartrate density gradient. DN59 interacted strongly with synthetic lipid vesicles and caused membrane disruptions, but was found to be non-toxic to mammalian and insect cells. Thus DN59 inhibits flavivirus infectivity by interacting directly with virus particles resulting in release of the genomic RNA.

  14. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  15. Molecular motor-induced instabilities and cross linkers determine biopolymer organization.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.; Ziebert, F.; Humphrey, D.; Duggan, C.; Steinbeck, M.; Zimmermann, W.; Kas, J.; Materials Science Division; Univ. of Leipzig; Univ. of Texas at Austin; Univ. Bayreuth

    2007-01-01

    All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling states of organization, the timescales necessary for effective cellular dynamics would require temperatures exceeding the physiologically viable temperature range. We report a mechanism whereby the molecular motor myosin II can cause near-instantaneous order-disorder transitions in reconstituted cytoskeletal actin solutions. When motor-induced filament sliding diminishes, the actin network structure rapidly and reversibly self-organizes into various assemblies. Addition of stable cross linkers was found to alter the architectures of ordered assemblies. These isothermal transitions between dynamic disorder and self-assembled ordered states illustrate that the interplay between passive crosslinking and molecular motor activity plays a substantial role in dynamic cellular organization.

  16. Pressure-induced cell wall instability and growth oscillations in pollen tubes.

    Directory of Open Access Journals (Sweden)

    Mariusz Pietruszka

    Full Text Available In the seed plants, the pollen tube is a cellular extension that serves as a conduit through which male gametes are transported to complete fertilization of the egg cell. It consists of a single elongated cell which exhibits characteristic oscillations in growth rate until it finally bursts, completing its function. The mechanism behind the periodic character of the growth has not been fully understood. In this paper we show that the mechanism of pressure--induced symmetry frustration occurring in the wall at the transition-perimeter between the cylindrical and approximately hemispherical parts of the growing pollen tube, together with the addition of cell wall material, is sufficient to release and sustain mechanical self-oscillations and cell extension. At the transition zone, where symmetry frustration occurs and one cannot distinguish either of the involved symmetries, a kind of 'superposition state' appears where either single or both symmetry(ies can be realized by the system. We anticipate that testifiable predictions made by the model (f is proportional to √P may deliver, after calibration, a new tool to estimate turgor pressure P from oscillation frequency f of the periodically growing cell. Since the mechanical principles apply to all turgor regulated walled cells including those of plant, fungal and bacterial origin, the relevance of this work is not limited to the case of the pollen tube.

  17. Mechanisms of thermally induced threshold voltage instability in GaN-based heterojunction transistors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu; Liu, Shenghou; Liu, Cheng; Lu, Yunyou; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-12-01

    In this work, we attempt to reveal the underlying mechanisms of divergent V{sub TH}-thermal-stabilities in III-nitride metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) and MOS-Channel-HEMT (MOSC-HEMT). In marked contrast to MOSC-HEMT featuring temperature-independent V{sub TH}, MIS-HEMT with the same high-quality gate-dielectric/III-nitride interface and similar interface trap distribution exhibits manifest thermally induced V{sub TH} shift. The temperature-dependent V{sub TH} of MIS-HEMT is attributed to the polarized III-nitride barrier layer, which spatially separates the critical gate-dielectric/III-nitride interface from the channel and allows “deeper” interface trap levels emerging above the Fermi level at pinch-off. This model is further experimentally validated by distinct V{sub G}-driven Fermi level movements at the critical interfaces in MIS-HEMT and MOSC-HEMT. The mechanisms of polarized III-nitride barrier layer in influencing V{sub TH}-thermal-stability provide guidelines for the optimization of insulated-gate III-nitride power switching devices.

  18. Ionization-induced asymmetric self-phase modulation and universal modulational instability in gas-filled hollow-core photonic crystal fibers

    CERN Document Server

    Saleh, Mohammed F; Travers, John C; Russell, Philip St J; Biancalana, Fabio

    2012-01-01

    We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive gas. Due to photoionization, previously unknown types of asymmetric self-phase modulation and `universal' modulational instabilities existing in both normal and anomalous dispersion regions appear. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.

  19. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation.

    Science.gov (United States)

    Sudo, Hiroko; Garbe, James; Stampfer, Martha R; Barcellos-Hoff, Mary Helen; Kronenberg, Amy

    2008-07-01

    The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.

  20. Genomic Instability and Breast Cancer

    Science.gov (United States)

    2009-10-01

    3A A nt i- Ig G e f Input Anti-Myc (katanin) IgH IgH pSer pThr M yc -k at an in W T M yc -k at an in A AA IP A nt i- ka ta ni n DYRK2... pThr Input Anti-katanin IP: Anti-Myc WB: Anti-pSer IP: Anti-Myc WB: Anti- pThr Figure 5 DYRK2 phosphorylates katanin. (a) An in vitro kinase assay was

  1. Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-06-01

    homologous recombination (HR) repair. As presented in 2008 annual report, we believe that this function of BRCA1 is at least in part mediated by its...human homologs of yeast Mei5/Swi5 complexes. We showed that this evolutionally conserved protein complex acts downstream of RPA, but is specifically...RAD51 paralogs (Figure 1A). Moreover, using bacterially expressed and purified proteins, we showed that FIGNL1 binds directly to RAD51 (Figure 1C

  2. Genomic Instability and Breast Cancer

    Science.gov (United States)

    2011-01-01

    medium containing 10% bovine serum and penicillin /streptomycin. Transient transfection was performed with the polyethyleni- mine (25 kDa) method. Stable...mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono...interstrand cross-links. Fanconi anemia (FA) is characterized bycongenital malformations, bone marrowfailure, cancer, and hypersensitivity toDNA interstrand

  3. Genome instability in Alzheimer disease

    DEFF Research Database (Denmark)

    Hou, Yujun; Song, Hyundong; Croteau, Deborah L

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis...

  4. Genome constraint through sexual reproduction: application of 4D-Genomics in reproductive biology.

    Science.gov (United States)

    Horne, Steven D; Abdallah, Batoul Y; Stevens, Joshua B; Liu, Guo; Ye, Karen J; Bremer, Steven W; Heng, Henry H Q

    2013-06-01

    Assisted reproductive technologies have been used to achieve pregnancies since the first successful test tube baby was born in 1978. Infertile couples are at an increased risk for multiple miscarriages and the application of current protocols are associated with high first-trimester miscarriage rates. Among the contributing factors of these higher rates is a high incidence of fetal aneuploidy. Numerous studies support that protocols including ovulation-induction, sperm cryostorage, density-gradient centrifugation, and embryo culture can induce genome instability, but the general mechanism is less clear. Application of the genome theory and 4D-Genomics recently led to the establishment of a new paradigm for sexual reproduction; sex primarily constrains genome integrity that defines the biological system rather than just providing genetic diversity at the gene level. We therefore propose that application of assisted reproductive technologies can bypass this sexual reproduction filter as well as potentially induce additional system instability. We have previously demonstrated that a single-cell resolution genomic approach, such as spectral karyotyping to trace stochastic genome level alterations, is effective for pre- and post-natal analysis. We propose that monitoring overall genome alteration at the karyotype level alongside the application of assisted reproductive technologies will improve the efficacy of the techniques while limiting stress-induced genome instability. The development of more single-cell based cytogenomic technologies are needed in order to better understand the system dynamics associated with infertility and the potential impact that assisted reproductive technologies have on genome instability. Importantly, this approach will be useful in studying the potential for diseases to arise as a result of bypassing the filter of sexual reproduction.

  5. Mechanical instability

    CERN Document Server

    Krysinski, Tomasz

    2013-01-01

    This book presents a study of the stability of mechanical systems, i.e. their free response when they are removed from their position of equilibrium after a temporary disturbance. After reviewing the main analytical methods of the dynamical stability of systems, it highlights the fundamental difference in nature between the phenomena of forced resonance vibration of mechanical systems subjected to an imposed excitation and instabilities that characterize their free response. It specifically develops instabilities arising from the rotor-structure coupling, instability of control systems, the se

  6. Collective instabilities

    Energy Technology Data Exchange (ETDEWEB)

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  7. Comparison of the coherent radiation-induced microbunching instability in a free-electron laser and a magnetic chicane

    Directory of Open Access Journals (Sweden)

    S. Reiche

    2003-04-01

    Full Text Available A self-amplified spontaneous emission free-electron laser (SASE FEL is a device which is based on the creation of a very intense, relativistic electron beam which has very little temperature in all three phase planes. The beam in this system is described as having “high brightness,” and when it is bent repetitively in a magnetic undulator, undergoes a radiation-mediated microbunching instability. This instability can amplify the original radiation amplitude at a particular, resonant wavelength by many orders of magnitude. In order to obtain high brightness beams, it is necessary to compress them to obtain higher currents than available from the electron source. Compression is accomplished by the use of magnetic chicanes, which are quite similar to, if much longer than, a single period of the undulator. It should not be surprising that such chicanes also support a radiation-mediated microbunching interaction, which has recently been investigated, and has been termed coherent synchrotron radiation (CSR instability. The purpose of this paper is to compare and contrast the characteristics of the closely related FEL and CSR microbunching instabilities. We show that a high-gain regime of the CSR instability exists which is formally similar to the FEL instability.

  8. Mitochondrial D310 D-Loop instability and histological subtypes in radiation-induced cutaneous basal cell carcinomas.

    Science.gov (United States)

    Boaventura, Paula; Pereira, Dina; Mendes, Adélia; Batista, Rui; da Silva, André Ferreira; Guimarães, Isabel; Honavar, Mrinalini; Teixeira-Gomes, José; Lopes, José Manuel; Máximo, Valdemar; Soares, Paula

    2014-01-01

    Basal cell carcinoma (BCC) is the most frequent skin cancer. An elevated prevalence of BCC has been associated with radiation, namely after the Tinea capitis epilation treatment, being these tumors described as more aggressive. Mitochondrial DNA (mtDNA) mutations have been reported in many human tumors, but their occurrence in BCC is poorly documented. The purpose of this work was to evaluate BCC histological subtypes in individuals subjected to X-ray epilation for Tinea capitis treatment when compared to non-irradiated patients. Moreover we also wanted to evaluate mitochondrial D-Loop instability in both groups of BCCs in order to compare the frequency of D-Loop mutations in post-irradiation BCC versus sporadic BCC. 228 histological specimens corresponding to BCCs from 75 irradiated patients and 60 non-irradiated patients were re-evaluated for histological subtype. Subsequently, we sequenced the D-Loop 310 repeat in blood, oral mucosa, tumor lesions and, whenever available, non-tumoral adjacent tissue from these patients. The infiltrative subtype of BCC, considered to be more aggressive, was significantly more frequent in irradiated patients. BCC D-Loop D310 mutation rate was significantly higher in irradiated BCCs than in the non-irradiated ones. Moreover, it was associated with a higher irradiation dose. The presence of mtDNA heteroplasmy in patients' blood was associated with a higher mutation rate in the BCCs suggesting that a more unstable genotype could predispose to mtDNA somatic mutation. Our results suggest that radiation-induced BCCs may be considered to be more aggressive tumors. Further studies are needed to clarify the role of mtDNA D-Loop mutations in tumors from irradiated patients. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Chromosomal Instability as a Driver of Tumor Heterogeneity and Evolution.

    Science.gov (United States)

    Bakhoum, Samuel F; Landau, Dan Avi

    2017-02-17

    Large-scale, massively parallel sequencing of human cancer samples has revealed tremendous genetic heterogeneity within individual tumors. Indeed, tumors are composed of an admixture of diverse subpopulations-subclones-that vary in space and time. Here, we discuss a principal driver of clonal diversification in cancer known as chromosomal instability (CIN), which complements other modes of genetic diversification creating the multilayered genomic instability often seen in human cancer. Cancer cells have evolved to fine-tune chromosome missegregation rates to balance the acquisition of heterogeneity while preserving favorable genotypes, a dependence that can be exploited for a therapeutic benefit. We discuss how whole-genome doubling events accelerate clonal evolution in a subset of tumors by providing a viable path toward favorable near-triploid karyotypes and present evidence for CIN-induced clonal speciation that can overcome the dependence on truncal initiating events.

  10. Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions.

    LENUS (Irish Health Repository)

    McCormack, Mark

    2012-03-01

    An association between carbamazepine-induced hypersensitivity and HLA-A*3101 has been reported in populations of both European and Asian descent. We aimed to investigate HLA-A*3101 and other common variants across the genome as markers for cutaneous adverse drug reactions (cADRs) attributed to lamotrigine and phenytoin.

  11. Cinerama sickness and postural instability

    NARCIS (Netherlands)

    Bos, J.E.; Ledegang, W.D.; Lubeck, A.J.A.; Stins, J.F.

    2013-01-01

    Motion sickness symptoms and increased postural instability induced by motion pictures have been reported in a laboratory, but not in a real cinema. We, therefore, carried out an observational study recording sickness severity and postural instability in 19 subjects before, immediately and 45 min af

  12. Effect of zinc and polyphenols supplementation on antioxidative defense mechanisms and the frequency of microsatellite instability in chemically-induced mammary carcinogenesis in the rat.

    Science.gov (United States)

    Bobrowska-Korczak, Barbara; Skrajnowska, Dorota; Tokarz, Andrzej; Bialek, Slawomir; Jezierska, Ewelina

    2015-01-01

    The aim of the present study was to assess the effect of dietary supplementation (with zinc or zinc and polyphenolic compounds - resveratrol or genistein) on antioxidant enzymes (glutathione peroxidase - GPx, catalase - CAT and superoxide dismutase - SOD) and the frequency of microsatellite instability (MSI) in a widely used model of mammary carcinogenesis induced in the rat by treatment with 7,12-dimethyl-1,2-benz[a]anthracene (DMBA). The impact of selected compounds on the intensity of DMBA-induced carcinogenesis was also assessed. Sixty four Sprague-Dawley female rats were divided into study groups which, apart from the standard diet and DMBA, were treated with zinc, zinc and resveratrol or zinc and genistein via gavage for a period ranging from 40 days to 20 weeks of age. On the basis of the obtained results it can be said that synergistic reaction between Zn(II) and genistein causes a delay in cancer development as compared with the animals treated with DMBA but with no food supplementation. Supplementation with Zn(II) and polyphenolic compounds resulted in the occurrence of microsatellite instabilities in tumors. LOH (loss of heterozygosity) was found in tumor samples at microsatellite D1Mgh6 and D3Mgh9. DMBA treatment increased significantly the glutathione peroxidase activity whereas it had no effect on the SOD and CAT activities, as compared with control rats. Diet supplementation has an effect on the activity of selected antioxidant enzymes. Diet supplementation has an effect on the occurrence of microsatellite instabilities as well as on the intensity of the neoplastic process. The intensity of occurrence of microsatellite instabilities does not depend on the activity of selected antioxidant enzymes.

  13. Propagating Instabilities in Solids

    Science.gov (United States)

    Kyriakides, Stelios

    1998-03-01

    Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this

  14. Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences.

    Science.gov (United States)

    Hussein, Samer M I; Elbaz, Judith; Nagy, Andras A

    2013-03-01

    In 2006, Shinya Yamanaka and colleagues discovered how to reprogram terminally differentiated somatic cells to a pluripotent stem cell state. The resulting induced pluripotent stem cells (iPSCs) made a paradigm shift in the field, further nailing down the disproval of the long-held dogma that differentiation is unidirectional. The prospect of using iPSCs for patient-specific cell-based therapies has been enticing. This promise, however, has been questioned in the last two years as several studies demonstrated intrinsic epigenetic and genomic anomalies in these cells. Here, we not only review the recent critical studies addressing the genome integrity during the reprogramming process, but speculate about the underlying mechanisms that could create de novo genome damage in iPSCs. Finally, we discuss how much an elevated mutation load really matters considering the safety of future therapies with cells heavily cultured in vitro.

  15. Genome-wide screening for genetic loci associated with noise-induced hearing loss.

    Science.gov (United States)

    White, Cory H; Ohmen, Jeffrey D; Sheth, Sonal; Zebboudj, Amina F; McHugh, Richard K; Hoffman, Larry F; Lusis, Aldons J; Davis, Richard C; Friedman, Rick A

    2009-04-01

    Noise-induced hearing loss (NIHL) is one of the more common sources of environmentally induced hearing loss in adults. In a mouse model, Castaneous (CAST/Ei) is an inbred strain that is resistant to NIHL, while the C57BL/6J strain is susceptible. We have used the genome-tagged mice (GTM) library of congenic strains, carrying defined segments of the CAST/Ei genome introgressed onto the C57BL/6J background, to search for loci modifying the noise-induced damage seen in the C57BL/6J strain. NIHL was induced by exposing 6-8-week old mice to 108 dB SPL intensity noise. We tested the hearing of each mouse strain up to 23 days after noise exposure using auditory brainstem response (ABR). This study identifies a number of genetic loci that modify the initial response to damaging noise, as well as long-term recovery. The data suggest that multiple alleles within the CAST/Ei genome modify the pathogenesis of NIHL and that screening congenic libraries for loci that underlie traits of interest can be easily carried out in a high-throughput fashion.

  16. Material Instabilities in Particulate Systems

    Science.gov (United States)

    Goddard, J. D.

    1999-01-01

    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.

  17. Simulation study of electron cloud induced instabilities and emittance growth for the CERN Large Hadron Collider proton beam

    Directory of Open Access Journals (Sweden)

    E. Benedetto

    2005-12-01

    Full Text Available The electron cloud may cause transverse single-bunch instabilities of proton beams such as those in the Large Hadron Collider (LHC and the CERN Super Proton Synchrotron (SPS. We simulate these instabilities and the consequent emittance growth with the code HEADTAIL, which models the turn-by-turn interaction between the cloud and the beam. Recently some new features were added to the code, in particular, electric conducting boundary conditions at the chamber wall, transverse feedback, and variable beta functions. The sensitivity to several numerical parameters has been studied by varying the number of interaction points between the bunch and the cloud, the phase advance between them, and the number of macroparticles used to represent the protons and the electrons. We present simulation results for both LHC at injection and SPS with LHC-type beam, for different electron-cloud density levels, chromaticities, and bunch intensities. Two regimes with qualitatively different emittance growth are observed: above the threshold of the transverse mode-coupling (TMC type of instability there is a rapid blowup of the beam, while below this threshold a slow, long-term, emittance growth remains. The rise time of the TMC instability caused by the electron cloud is compared with results obtained using an equivalent broadband resonator impedance model, demonstrating reasonable agreement.

  18. Toxico-genomics of uranium-induced cell stress

    Energy Technology Data Exchange (ETDEWEB)

    Prat, O.; Berenguer, F.; Malard, V.; Quemeneur, V. [CEA Centre de Marcoule (DSV/DIEP/SBTN), 30 - Bagnols-sur-Ceze (France)

    2006-07-01

    The possibility of exposure of workers or population to materials originating from nuclear fuel process is a major concern worldwide. The radiological hazards have been the matter of intensive research for decades, and are consequently well understood. However, the chemical toxicity of most compounds originating from the nuclear industry certainly requires further research. In this respect, uranium is an interesting model since, due to its very long half-life, it is not considered as a major radiological hazard. At large concentrations, it induces harmful effects on human health, at the level of the respiratory system in case of inhalation, of kidneys and bones after entering into the blood-stream (Bleise et al. 2003). The kidney functional regions most at risk to injury are the proximal tubule and, to a lesser extent, the glomerulus (Leggett 1989). However, the consequences of chronic uranium exposure at very low concentration are largely unknown. In particular, the conservation of response mechanisms and/or adaptative mechanisms at such low levels are still to be demonstrated. The use of mics methodologies in the pharmaceutical industry has demonstrated its tremendous potential and allowed great progress to be made both in the understanding of the pathogenesis and in the design of novel treatments. Today, these methods invest the field of toxicology by measuring global changes in biological samples exposed to toxic agents (Hamadeh et al. 2002). This approach pursues three goals: (i) the improvement of the knowledge of mechanisms ruling toxicity, (ii) the research of a signature of each toxicant i.e. a minimal number of genes or proteins able to distinguish between an exposed state and a normal state in a biological system, (iii) the research of proteins as early bio-markers of effect. With these goals in mind, we used transcriptomics and proteomics to analyze human cultured cells exposed to uranyl containing media. To identify robust targets, we compared several

  19. The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor

    Science.gov (United States)

    Kwon, Jang-Yeon; Jung, Ji Sim; Son, Kyoung Seok; Lee, Kwang-Hee; Park, Joon Seok; Kim, Tae Sang; Park, Jin-Seong; Choi, Rino; Jeong, Jae Kyeong; Koo, Bonwon; Lee, Sang Yoon

    2010-11-01

    This study examined the effect of gate dielectric materials on the light-induced bias instability of Hf-In-Zn-O (HIZO) transistor. The HfOx and SiNx gated devices suffered from a huge negative threshold voltage (Vth) shift (>11 V) during the application of negative-bias-thermal illumination stress for 3 h. In contrast, the HIZO transistor exhibited much better stability (<2.0 V) in terms of Vth movement under identical stress conditions. Based on the experimental results, we propose a plausible degradation model for the trapping of the photocreated hole carrier either at the channel/gate dielectric or dielectric bulk layer.

  20. Genome stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Haaften, G.W. van

    2006-01-01

    Genome stability is closely linked to cancer. Most, if not all tumor cells show some form of genome instability, mutations can range from single point mutations to gross chromosomal rearrangements and aneuploidy. Genome instability is believed to be the driving force behind tumorigenesis. In order t

  1. Genome stability in Caenorhabditis elegans

    NARCIS (Netherlands)

    Haaften, G.W. van

    2006-01-01

    Genome stability is closely linked to cancer. Most, if not all tumor cells show some form of genome instability, mutations can range from single point mutations to gross chromosomal rearrangements and aneuploidy. Genome instability is believed to be the driving force behind tumorigenesis. In order t

  2. Recombination instability

    DEFF Research Database (Denmark)

    D'Angelo, N.

    1967-01-01

    A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b) an af...

  3. Advances in Induced Pluripotent Stem Cells, Genomics, Biomarkers, and Antiplatelet Therapy

    Science.gov (United States)

    Barbato, Emanuele; Lara-Pezzi, Enrique; Stolen, Craig; Taylor, Angela; Barton, Paul J.; Bartunek, Jozef; Iaizzo, Paul; Judge, Daniel P.; Kirshenbaum, Lorrie; Blaxall, Burns C.; Terzic, Andre; Hall, Jennifer L.

    2014-01-01

    The Journal provides the clinician and scientist with the latest advances in discovery research, emerging technologies, pre-clinical research design and testing, and clinical trials. We highlight advances in areas of induced pluripotent stem cells, genomics, biomarkers, multi-modality imaging and antiplatelet biology and therapy. The top publications are critically discussed and presented along with anatomical reviews and FDA insight to provide context. PMID:24659088

  4. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. | Office of Cancer Genomics

    Science.gov (United States)

    Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition.

  5. Instability of the roll/streak structure induced by free-stream turbulence in pre-transitional Couette flow

    CERN Document Server

    Farrell, Brian F; Nikolaidis, Marios-Andreas

    2016-01-01

    Although the roll/streak structure is ubiquitous in pre-transitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll/streak structure has been invoked to explain its appearance as resulting from chance occurrence in the free-stream turbulence (FST) of perturbations configured to optimally excite it. However, there is an alternative interpretation which is that FST interacts with the roll/streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type which arise from interaction between the coherent and incoherent components of turbulence. Stochastic structural stability theory (S3T), which implements SSD in the form of a closure at second order, is used to analyze the SSD modes arising from interaction between the coherent streamwise invariant component and the incoherent FST component of turbulence. The least stable S3T ...

  6. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough

    DEFF Research Database (Denmark)

    Mosley, J D; Shaffer, C M; Van Driest, S L;

    2016-01-01

    The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects di...

  7. A genome-wide association study identifies variants in KCNIP4 associated with ACE inhibitor-induced cough

    NARCIS (Netherlands)

    Mosley, J D; Shaffer, C M; Van Driest, S L; Weeke, P E; Wells, Q S; Karnes, J H; Velez Edwards, D R; Wei, W-Q; Teixeira, P L; Bastarache, L; Crawford, D C; Li, R; Manolio, T A; Bottinger, E P; McCarty, C A; Linneman, J G; Brilliant, M H; Pacheco, J A; Thompson, W; Chisholm, R L; Jarvik, G P; Crosslin, D R; Carrell, D S; Baldwin, E; Ralston, J; Larson, E B; Grafton, J; Scrol, A; Jouni, H; Kullo, I J; Tromp, G; Borthwick, K M; Kuivaniemi, H; Carey, D J; Ritchie, M D; Bradford, Y; Verma, S S; Chute, C G; Veluchamy, A; Siddiqui, M K; Palmer, C N A; Doney, A; Mahmoud Pour, Seyed Hamidreza; Maitland-van der Zee, A H; Morris, A D; Denny, J C; Roden, D M

    2015-01-01

    The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and Genomics (eMERGE) network. Cases were subjects diagn

  8. The Spiral Wave Instability Induced by a Giant Planet: I. Particle Stirring in the Inner Regions of Protoplanetary Disks

    CERN Document Server

    Bae, Jaehan; Hartmann, Lee

    2016-01-01

    We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially-alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval $0.3~R_p \\leq R \\leq 0.7~R_p$, where $R_p$ denotes the semi-major axis of the planetary orbit (assumed to be 5~au), the estimated vertical diffusion rate associated with the turbulence is characterized by $\\alpha_{\\rm diff} \\sim (0.2-1.2) \\times 10^{-2}$. For the disk model considered ...

  9. Regulation of AID, the B-cell genome mutator.

    Science.gov (United States)

    Keim, Celia; Kazadi, David; Rothschild, Gerson; Basu, Uttiya

    2013-01-01

    The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.

  10. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change.

    Science.gov (United States)

    Turker, Mitchell S; Grygoryev, Dmytro; Lasarev, Michael; Ohlrich, Anna; Rwatambuga, Furaha A; Johnson, Sorrel; Dan, Cristian; Eckelmann, Bradley; Hryciw, Gwen; Mao, Jian-Hua; Snijders, Antoine M; Gauny, Stacey; Kronenberg, Amy

    2017-01-01

    Exposure to a small number of high-energy heavy charged particles (HZE ions), as found in the deep space environment, could significantly affect astronaut health following prolonged periods of space travel if these ions induce mutations and related cancers. In this study, we used an in vivo mutagenesis assay to define the mutagenic effects of accelerated 56Fe ions (1 GeV/amu, 151 keV/μm) in the mouse kidney epithelium exposed to doses ranging from 0.25 to 2.0 Gy. These doses represent fluences ranging from 1 to 8 particle traversals per cell nucleus. The Aprt locus, located on chromosome 8, was used to select induced and spontaneous mutants. To fully define the mutagenic effects, we used multiple endpoints including mutant frequencies, mutation spectrum for chromosome 8, translocations involving chromosome 8, and mutations affecting non-selected chromosomes. The results demonstrate mutagenic effects that often affect multiple chromosomes for all Fe ion doses tested. For comparison with the most abundant sparsely ionizing particle found in space, we also examined the mutagenic effects of high-energy protons (1 GeV, 0.24 keV/μm) at 0.5 and 1.0 Gy. Similar doses of protons were not as mutagenic as Fe ions for many assays, though genomic effects were detected in Aprt mutants at these doses. Considered as a whole, the data demonstrate that Fe ions are highly mutagenic at the low doses and fluences of relevance to human spaceflight, and that cells with considerable genomic mutations are readily induced by these exposures and persist in the kidney epithelium. The level of genomic change produced by low fluence exposure to heavy ions is reminiscent of the extensive rearrangements seen in tumor genomes suggesting a potential initiation step in radiation carcinogenesis.

  11. Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.

    Science.gov (United States)

    Shirasawa, Kenta; Hirakawa, Hideki; Nunome, Tsukasa; Tabata, Satoshi; Isobe, Sachiko

    2016-01-01

    Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches.

  12. [Carpal instability].

    Science.gov (United States)

    Redeker, J; Vogt, P M

    2011-01-01

    Carpal instability can be understood as a disturbed anatomical alignment between bones articulating in the carpus. This disturbed balance occurs either only dynamically (with movement) under the effect of physiological force or even statically at rest. The most common cause of carpal instability is wrist trauma with rupture of the stabilizing ligaments and adaptive misalignment following fractures of the radius or carpus. Carpal collapse plays a special role in this mechanism due to non-healed fracture of the scaphoid bone. In addition degenerative inflammatory alterations, such as chondrocalcinosis or gout, more rarely aseptic bone necrosis of the lunate or scaphoid bones or misalignment due to deposition (Madelung deformity) can lead to wrist instability. Under increased pressure the misaligned joint surfaces lead to bone arrosion with secondary arthritis of the wrist. In order to arrest or slow down this irreversible process, diagnosis must occur as early as possible. Many surgical methods have been thought out to regain stability ranging from direct reconstruction of the damaged ligaments, through ligament replacement to partial stiffening of the wrist joint.

  13. Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv.) Makino

    Science.gov (United States)

    Gao, Ri; Wang, Haibin; Dong, Bin; Yang, Xiaodong; Chen, Sumei; Jiang, Jiafu; Zhang, Zhaohe; Liu, Chen; Zhao, Nan; Chen, Fadi

    2016-01-01

    Autopolyploidy is widespread in higher plants and plays an important role in the process of evolution. The present study successfully induced autotetraploidys from Chrysanthemum lavandulifolium by colchicine. The plant morphology, genomic, transcriptomic, and epigenetic changes between tetraploid and diploid plants were investigated. Ligulate flower, tubular flower and leaves of tetraploid plants were greater than those of the diploid plants. Compared with diploid plants, the genome changed as a consequence of polyploidization in tetraploid plants, namely, 1.1% lost fragments and 1.6% novel fragments occurred. In addition, DNA methylation increased after genome doubling in tetraploid plants. Among 485 common transcript-derived fragments (TDFs), which existed in tetraploid and diploid progenitors, 62 fragments were detected as differentially expressed TDFs, 6.8% of TDFs exhibited up-regulated gene expression in the tetraploid plants and 6.0% exhibited down-regulation. The present study provides a reference for further studying the autopolyploidization role in the evolution of C. lavandulifolium. In conclusion, the autopolyploid C. lavandulifolium showed a global change in morphology, genome and gene expression compared with corresponding diploid. PMID:27735845

  14. Morphological, Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium (Fisch. ex Trautv. Makino

    Directory of Open Access Journals (Sweden)

    Ri Gao

    2016-10-01

    Full Text Available Autopolyploidy is widespread in higher plants and plays an important role in the process of evolution. The present study successfully induced autotetraploidys from Chrysanthemum lavandulifolium by colchicine. The plant morphology, genomic, transcriptomic, and epigenetic changes between tetraploid and diploid plants were investigated. Ligulate flower, tubular flower and leaves of tetraploid plants were greater than those of the diploid plants. Compared with diploid plants, the genome changed as a consequence of polyploidization in tetraploid plants, namely, 1.1% lost fragments and 1.6% novel fragments occurred. In addition, DNA methylation increased after genome doubling in tetraploid plants. Among 485 common transcript-derived fragments (TDFs, which existed in tetraploid and diploid progenitors, 62 fragments were detected as differentially expressed TDFs, 6.8% of TDFs exhibited up-regulated gene expression in the tetraploid plants and 6.0% exhibited down-regulation. The present study provides a reference for further studying the autopolyploidization role in the evolution of C. lavandulifolium. In conclusion, the autopolyploid C. lavandulifolium showed a global change in morphology, genome and gene expression compared with corresponding diploid.

  15. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation.

    Science.gov (United States)

    Reshat, Reshat; Priestley, Catherine C; Gooderham, Nigel J

    2012-11-01

    Purine tracts in duplex DNA can bind oligonucleotide strands in a sequence specific manner to form triple-helix structures. Triple-helix forming oligonucleotides (TFOs) targeting supFG1 constructs have previously been shown to be mutagenic raising safety concerns for oligonucleotide-based pharmaceuticals. We have engineered a TFO, TFO27, to target the genomic Hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus to define the mutagenic potential of such structures at genomic DNA. We report that TFO27 was resistant to nuclease degradation and readily binds to its target motif in a cell free system. Contrary to previous studies using the supFG1 reporter construct, TFO27 failed to induce mutation within the genomic HPRT locus. We suggest that it is possible that previous reports of triplex-mediated mutation using the supFG1 reporter construct could be confounded by DNA quadruplex formation. Although the present study indicates that a TFO targeting a genomic locus lacks mutagenic activity, it is unclear if this finding can be generalised to all TFOs and their targets. For the present, we suggest that it is prudent to avoid large purine stretches in oligonucleotide pharmaceutical design to minimise concern regarding off-target genotoxicity.

  16. Instability and noise-induced thermalization of Fermi–Pasta–Ulam recurrence in the nonlinear Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia, via Branze 38, 25123 Brescia (Italy); Wetzel, Benjamin [INRS-EMT, 1650 Blvd. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada)

    2014-07-25

    We investigate the spontaneous growth of noise that accompanies the nonlinear evolution of seeded modulation instability into Fermi–Pasta–Ulam recurrence. Results from the Floquet linear stability analysis of periodic solutions of the three-wave truncation are compared with full numerical solutions of the nonlinear Schrödinger equation. The predicted initial stage of noise growth is in a good agreement with simulations, and is expected to provide further insight into the subsequent dynamics of the field evolution after recurrence breakup.

  17. FINANCIAL INSTABILITY AND POLITICAL INSTABILITY

    Directory of Open Access Journals (Sweden)

    Ionescu Cristian

    2012-12-01

    Full Text Available There is an important link between the following two variables: financial instability and political instability. Often, the link is bidirectional, so both may influence each other. This is way the lately crisis are becoming larger and increasingly complex. Therefore, the academic environment is simultaneously talking about economic crises, financial crises, political crises, social crises, highlighting the correlation and causality between variables belonging to the economic, financial, political and social areas, with repercussions and spillover effects that extend from one area to another. Given the importance, relevance and the actuality of the ones described above, I consider that at least a theoretical analysis between economic, financial and political factors is needed in order to understand the reality. Thus, this paper aims to find links and connections to complete the picture of the economic reality.

  18. Miscible and immiscible experiments on the Rayleigh-Taylor instability using simultaneous planar laser induced fluorescence and backlight visualization.

    Science.gov (United States)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2012-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Experiments are presented with and without forced initial perturbations produced by vertically oscillating the test sled prior to the start of acceleration. Half of the experimental tank is visualized using a 445nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The other half is illuminated with a white backlight. The resulting images are recorded using a monochromatic high speed video camera allowing for the measurement of spike and bubble mixing layer growth rates for both visualization techniques in a single experiment.

  19. Immiscible experiments on the Rayleigh-Taylor instability using simultaneous particle image velocimetry and planar laser induced fluorescence concentration measurements

    Science.gov (United States)

    Mokler, Matthew; Jacobs, Jeffrey

    2014-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using an immiscible liquid combination. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids and aluminum oxide particles dispersed in both fluids. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface. The resulting images are recorded using a monochromatic high speed video camera. Time dependent velocity and density fields are obtained from the recorded images allowing for 2D full field measurements of turbulent kinetic energy and turbulent mass transport.

  20. Androgen Receptor-Mediated Genomic Androgen Action Augments Ischemia-Induced Neovascularization.

    Science.gov (United States)

    Lam, Yuen Ting; Lecce, Laura; Tan, Joanne T M; Bursill, Christina A; Handelsman, David J; Ng, Martin K C

    2016-12-01

    Increasing evidence indicates that androgens regulate ischemia-induced neovascularization. However, the role of genomic androgen action mediated by androgen receptor (AR), a ligand-activated nuclear transcription factor, remains poorly understood. Using an AR knockout (KO) mouse strain that contains a transcriptionally inactive AR (AR(Δex3)KO), we examined the role of AR genomic function in modulating androgen-mediated augmentation of ischemia-induced neovascularization. Castrated wild-type (AR(WT)) and AR(Δex3)KO mice were implanted with 5α-dihydrotestosterone (DHT) or placebo pellets after hindlimb ischemia (HLI). DHT modulation of angiogenesis and vasculogenesis, key processes for vascular repair and regeneration, was examined. Laser Doppler perfusion imaging revealed that DHT enhanced blood flow recovery in AR(WT) mice post-HLI. In AR(WT) mice, DHT enhanced angiogenesis by down-regulating prolyl hydroxylase 2 and augmenting hypoxia-inducible factor-1α (HIF-1α) levels in the ischemic tissues post-HLI. DHT also enhanced the production and mobilization of Sca1+/CXCR4+ progenitor cells in the bone marrow (BM) and circulating blood, respectively, in AR(WT) mice. By contrast, DHT-mediated enhancement of blood flow recovery was abrogated in AR(Δex3)KO mice. DHT modulation of HIF-1α expression was attenuated in AR(Δex3)KO mice. DHT-induced HIF-1α transcriptional activity and DHT-augmented paracrine-mediated endothelial cell tubule formation were attenuated in fibroblasts isolated from AR(Δex3)KO mice in vitro. Furthermore, DHT-induced augmentation of Sca1+/CXCR4+ progenitor cell production and mobilization was absent in AR(Δex3)KO mice post-HLI. BM transplantation revealed that ischemia-induced mobilization of circulating progenitor cells was abolished in recipients of AR(Δex3)KO BM. Together, these results indicate that androgen-mediated augmentation of ischemia-induced neovascularization is dependent on genomic AR transcriptional activation.

  1. Niacin requirements for genomic stability.

    Science.gov (United States)

    Kirkland, James B

    2012-05-01

    Through its involvement in over 400 NAD(P)-dependent reactions, niacin status has the potential to influence every area of metabolism. Niacin deficiency has been linked to genomic instability largely through impaired function of the poly ADP-ribose polymerase (PARP) family of enzymes. In various models, niacin deficiency has been found to cause impaired cell cycle arrest and apoptosis, delayed DNA excision repair, accumulation of single and double strand breaks, chromosomal breakage, telomere erosion and cancer development. Rat models suggest that most aspects of genomic instability are minimized by the recommended levels of niacin found in AIN-93 formulations; however, some beneficial responses do occur in the range from adequate up to pharmacological niacin intakes. Mouse models show a wide range of protection against UV-induced skin cancer well into pharmacological levels of niacin intake. It is currently a challenge to compare animal and human data to estimate the role of niacin status in the risk of genomic instability in human populations. It seems fairly certain that some portion of even affluent populations will benefit from niacin supplementation, and some subpopulations are likely well below an optimal intake of this vitamin. With exposure to stressors, like chemotherapy or excess sunlight, suraphysiological doses of niacin may be beneficial.

  2. Study on Instability of Natural Circulation Induced by Subcooled Boiling%欠热沸腾诱发自然循环不稳定性的研究

    Institute of Scientific and Technical Information of China (English)

    彭天骥; 邱金荣; 郭赟; 曾和义

    2013-01-01

    The best estimate system analysis code RELAP5 was used to analyze the natural circulation systems. The instability boundaries of one natural circulation system were obtained under different conditions. According to present results, most of the boundary points were found in the low subcooled boiling zone. The natural circulation systems can tolerate high subcooled boiling, and the disturbance of bubbles departing from the wall and condensing in the subcooled boiling region may be the inherent source to induce the instability, then the flow oscillations can become self-sustained and evolve because of the phase differences among system driving force, resistance and flow rate.%以最佳估算程序RELAP5为基本分析工具,对自然循环系统进行数值分析,得出了不同条件下系统的不稳定性边界.研究发现自然循环对过冷沸腾有一定的承受能力,不稳定性一般发生在低欠热沸腾区,气泡脱离壁面和凝结时的扰动可能是自然循环系统不稳定性的诱因,系统驱动力、阻力和流量之间的相位差使振荡得以维持和发展.

  3. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  4. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    Science.gov (United States)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  5. Seismically Induced Slope Instabilities and the Corresponding Treatments: the Case of a Road in the Wenchuan Earthquake Hit Region

    Institute of Scientific and Technical Information of China (English)

    LI Xinpo; HE Siming

    2009-01-01

    On May 12, 2008, a magnitude 8.0 earthquake hit Wenchuan County, Sichuan Province resulted in great loss of life and properties. Besides, abundant landslides and slope failures were triggered in the most seriously hit areas and caused disastrous damages to infrastructures and public facilities. Moreover, abundant unstable slopes caused by the quake have the potential to cause damages for a considerable long period of time. The variety of these slopes and the corresponding treatments are connected with the topographical and geological conditions of the sites. It is decided to document and identify some of these major slope instabilities caused by the earthquake and their treatments. The paper shows the condition of a road in Dujiangyan through in situ explorations. The case history showed significant implications to the reconstruction of the quake-hit regions and future disaster prevention and management works.

  6. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth

    Directory of Open Access Journals (Sweden)

    Konstantina Rowald

    2016-06-01

    Full Text Available Chromosome instability (CIN is associated with poor survival and therapeutic outcome in a number of malignancies. Despite this correlation, CIN can also lead to growth disadvantages. Here, we show that simultaneous overexpression of the mitotic checkpoint protein Mad2 with KrasG12D or Her2 in mammary glands of adult mice results in mitotic checkpoint overactivation and a delay in tumor onset. Time-lapse imaging of organotypic cultures and pathologic analysis prior to tumor establishment reveals error-prone mitosis, mitotic arrest, and cell death. Nonetheless, Mad2 expression persists and increases karyotype complexity in Kras tumors. Faced with the selective pressure of oncogene withdrawal, Mad2-positive tumors have a higher frequency of developing persistent subclones that avoid remission and continue to grow.

  7. Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth.

    Science.gov (United States)

    Rowald, Konstantina; Mantovan, Martina; Passos, Joana; Buccitelli, Christopher; Mardin, Balca R; Korbel, Jan O; Jechlinger, Martin; Sotillo, Rocio

    2016-06-21

    Chromosome instability (CIN) is associated with poor survival and therapeutic outcome in a number of malignancies. Despite this correlation, CIN can also lead to growth disadvantages. Here, we show that simultaneous overexpression of the mitotic checkpoint protein Mad2 with Kras(G12D) or Her2 in mammary glands of adult mice results in mitotic checkpoint overactivation and a delay in tumor onset. Time-lapse imaging of organotypic cultures and pathologic analysis prior to tumor establishment reveals error-prone mitosis, mitotic arrest, and cell death. Nonetheless, Mad2 expression persists and increases karyotype complexity in Kras tumors. Faced with the selective pressure of oncogene withdrawal, Mad2-positive tumors have a higher frequency of developing persistent subclones that avoid remission and continue to grow.

  8. Negative differential conductivity induced current instability in two-dimensional electron gas system in high magnetic fields

    Science.gov (United States)

    Lee, Ching-Ping; Komiyama, Susumu; Chen, Jeng-Chung

    2015-03-01

    High mobility two-dimensional electron gas (2DEG) formed in the interface of a GaAs/AlGaAs hetero-structure in high magnetic field (B) exhibits interring nonlinear response either under microwave radiation or to a dc electric field (E). It is general believed that this kind nonlinear behavior is closely related to the occurrence of negative-differential conductance (NDC) in the presence of strong B and E. We observe a new type NDC state driven by a direct current above a threshold value (Ith) applied to a 2DEG as a function of B at relatively high temperatures (T). A current instability is observed in 2DEG system at high B ~6-8 T and at high T ~ 20- 30 K while the applied current is over Ith. The longitudinal voltage Vxx shows sub-linear behavior with the increase of I. As the current exceed Ith, Vxx suddenly drops a ΔVxx and becomes irregular associated with the appearance of hysteresis with sweeping I. We find that Ith increases with the increase of B and of T; meanwhile, ΔVxx is larger at higher B but lower T. Data analysis suggest that the onset of voltage fluctuation can be described by a NDC model proposed by Kurosawa et al. in 1976. The general behaviors of T and B dependence of current instability are analog to those recently reported at lower both T and B. This consistence suggests the same genuine mechanism of NDC phenomena observed in 2DEG system.

  9. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations.

    Directory of Open Access Journals (Sweden)

    Carlos Guerrero-Bosagna

    Full Text Available A variety of environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. The process involves exposure of a gestating female and the developing fetus to environmental factors that promote permanent alterations in the epigenetic programming of the germline. The molecular aspects of the phenomenon involve epigenetic modifications (epimutations in the germline (e.g. sperm that are transmitted to subsequent generations. The current study integrates previously described experimental epigenomic transgenerational data and web-based bioinformatic analyses to identify genomic features associated with these transgenerationally transmitted epimutations. A previously identified genomic feature associated with these epimutations is a low CpG density (<12/100bp. The current observations suggest the transgenerational differential DNA methylation regions (DMR in sperm contain unique consensus DNA sequence motifs, zinc finger motifs and G-quadruplex sequences. Interaction of molecular factors with these sequences could alter chromatin structure and accessibility of proteins with DNA methyltransferases to alter de novo DNA methylation patterns. G-quadruplex regions can promote the opening of the chromatin that may influence the action of DNA methyltransferases, or factors interacting with them, for the establishment of epigenetic marks. Zinc finger binding factors can also promote this chromatin remodeling and influence the expression of non-coding RNA. The current study identified genomic features associated with sperm epimutations that may explain in part how these sites become susceptible for transgenerational programming.

  10. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations.

    Science.gov (United States)

    Guerrero-Bosagna, Carlos; Weeks, Shelby; Skinner, Michael K

    2014-01-01

    A variety of environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. The process involves exposure of a gestating female and the developing fetus to environmental factors that promote permanent alterations in the epigenetic programming of the germline. The molecular aspects of the phenomenon involve epigenetic modifications (epimutations) in the germline (e.g. sperm) that are transmitted to subsequent generations. The current study integrates previously described experimental epigenomic transgenerational data and web-based bioinformatic analyses to identify genomic features associated with these transgenerationally transmitted epimutations. A previously identified genomic feature associated with these epimutations is a low CpG density (transgenerational differential DNA methylation regions (DMR) in sperm contain unique consensus DNA sequence motifs, zinc finger motifs and G-quadruplex sequences. Interaction of molecular factors with these sequences could alter chromatin structure and accessibility of proteins with DNA methyltransferases to alter de novo DNA methylation patterns. G-quadruplex regions can promote the opening of the chromatin that may influence the action of DNA methyltransferases, or factors interacting with them, for the establishment of epigenetic marks. Zinc finger binding factors can also promote this chromatin remodeling and influence the expression of non-coding RNA. The current study identified genomic features associated with sperm epimutations that may explain in part how these sites become susceptible for transgenerational programming.

  11. Development of a platform for single cell genomics using convex lens-induced confinement.

    Science.gov (United States)

    Mahshid, Sara; Ahamed, Mohammed Jalal; Berard, Daniel; Amin, Susan; Sladek, Robert; Leslie, Sabrina R; Reisner, Walter

    2015-07-21

    We demonstrate a lab-on-a-chip that combines micro/nano-fabricated features with a Convex Lens-Induced Confinement (CLIC) device for the in situ analysis of single cells. A complete cycle of single cell analysis was achieved that includes: cell trapping, cell isolation, lysis, protein digestion, genomic DNA extraction and on-chip genomic DNA linearization. The ability to dynamically alter the flow-cell dimensions using the CLIC method was coupled with a flow-control mechanism for achieving efficient cell trapping, buffer exchange, and loading of long DNA molecules into nanofluidic arrays. Finite element simulation of fluid flow gives rise to optimized design parameters for overcoming the high hydraulic resistance present in the micro/nano-confinement region. By tuning design parameters such as the pressure gradient and CLIC confinement, an efficient on-chip single cell analysis protocol can be obtained. We demonstrate that we can extract Mbp long genomic DNA molecules from a single human lybphoblastoid cell and stretch these molecules in the nanochannels for optical interrogation.

  12. An introduction to the statistical physics of active matter: motility-induced phase separation and the "generic instability" of active gels

    Science.gov (United States)

    Marenduzzo, Davide

    2016-11-01

    In this work we review some statistical physics techniques to coarse grain active matter systems, writing down a set of continuum fields which track the evolution of macroscopic fields such as density, momentum, etc. While the method can be applied in general, we will focus here on two simple and by now well-studied, active matter examples. First, we will consider motility-induced phase separation, the phenomenon by which a concentrated suspension of self-propelled particles spontaneously separates into a dense and a dilute phase. Second, we will review the so-called "generic instability" of active gels, which refers to the nonequilibrium phase transition between a quiescent and a spontaneously flowing phase in a concentrated suspension of rodlike active particles. For both these cases, we also outline recent developments in the literature.

  13. Homology-based double-strand break-induced genome engineering in plants.

    Science.gov (United States)

    Steinert, Jeannette; Schiml, Simon; Puchta, Holger

    2016-07-01

    This review summarises the recent progress in DSB-induced gene targeting by homologous recombination in plants. We are getting closer to efficiently inserting genes or precisely exchanging single amino acids. Although the basic features of double-strand break (DSB)-induced genome engineering were established more than 20 years ago, only in recent years has the technique come into the focus of plant biologists. Today, most scientists apply the recently discovered CRISPR/Cas system for inducing site-specific DSBs in genes of interest to obtain mutations by non-homologous end joining (NHEJ), which is the prevailing and often imprecise mechanism of DSB repair in somatic plant cells. However, predefined changes like the site-specific insertion of foreign genes or an exchange of single amino acids can be achieved by DSB-induced homologous recombination (HR). Although DSB induction drastically enhances the efficiency of HR, the efficiency is still about two orders of magnitude lower than that of NHEJ. Therefore, significant effort have been put forth to improve DSB-induced HR based technologies. This review summarises the previous studies as well as discusses the most recent developments in using the CRISPR/Cas system to improve these processes for plants.

  14. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    Science.gov (United States)

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  15. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information.

    Science.gov (United States)

    Ott, Lee W; Resing, Katheryn A; Sizemore, Alecia W; Heyen, Joshua W; Cocklin, Ross R; Pedrick, Nathan M; Woods, H Cary; Chen, Jake Y; Goebl, Mark G; Witzmann, Frank A; Harrington, Maureen A

    2007-06-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.

  16. Microphysics of cosmic ray driven plasma instabilities

    CERN Document Server

    Bykov, A M; Malkov, M A; Osipov, S M

    2013-01-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  17. Inducing mutations in the mouse genome with the chemical mutagen ethylnitrosourea

    Directory of Open Access Journals (Sweden)

    S.M.G. Massironi

    2006-09-01

    Full Text Available When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s. Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s. Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives. Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc. This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.

  18. Expression of Cyclins A, E and Topoisomerase II α correlates with centrosome amplification and genomic instability and influences the reliability of cytometric S-phase determination

    Directory of Open Access Journals (Sweden)

    Laytragoon-Lewin Nongnit

    2003-07-01

    Full Text Available Abstract Background The progression of normal cells through the cell cycle is meticulously regulated by checkpoints guaranteeing the exact replication of the genome during S-phase and its equal division at mitosis. A prerequisite for this achievement is synchronized DNA-replication and centrosome duplication. In this context the expression of cyclins A and E has been shown to play a principal role. Results Our results demonstrated a correlation between centrosome amplification, cell cycle fidelity and the level of mRNA and protein expression of cyclins A and E during the part of the cell cycle defined as G1-phase by means of DNA content based histogram analysis. It is shown that the normal diploid breast cell line HTB-125, the genomically relatively stable aneuploid breast cancer cell line MCF-7, and the genomically unstable aneuploid breast cancer cell line MDA-231 differ remarkably concerning both mRNA and protein expression of the two cyclins during G1-phase. In MDA-231 cells the expression of e.g. cyclin A mRNA was found to be ten times higher than in MCF-7 cells and about 500 times higher than in HTB-125 cells. Topoisomerase II α showed high mRNA expression in MDA compared to MCF-7 cells, but the difference in protein expression was small. Furthermore, we measured centrosome aberrations in 8.4% of the MDA-231 cells, and in only 1.3% of the more stable aneuploid cell line MCF-7. MDA cells showed 27% more incorporation of BrdU than reflected by S-phase determination with flow cytometric DNA content analysis, whereas these values were found to be of the same size in both HTB-125 and MCF-7 cells. Conclusions Our data indicate that the breast cancer cell lines MCF-7 and MDA-231, although both DNA-aneuploid, differ significantly regarding the degree of cell cycle disturbance and centrosome aberrations, which partly could explain the different genomic stability of the two cell lines. The results also question the reliability of cytometric DNA

  19. Electron proton instability in the CSNS ring

    Institute of Scientific and Technical Information of China (English)

    WANG Na; QIN Qing; LIU Yu-Dong

    2009-01-01

    The electron proton(e-p)instability has been observed in many proton accelerators.It will induce transverse beam size blow-up,cause beam loss and restrict the machine performance.Much research work has been done on the causes,dynamics and cures of this instability.A simulation code is developed to study the e-p instability in the ring of the China Spallation Neutron Source(CSNS).

  20. Carpal instability nondissociative.

    Science.gov (United States)

    Wolfe, Scott W; Garcia-Elias, Marc; Kitay, Alison

    2012-09-01

    Carpal instability nondissociative (CIND) represents a spectrum of conditions characterized by kinematic dysfunction of the proximal carpal row, often associated with a clinical "clunk." CIND is manifested at the midcarpal and/or radiocarpal joints, and it is distinguished from carpal instability dissociative (CID) by the lack of disruption between bones within the same carpal row. There are four major subcategories of CIND: palmar, dorsal, combined, and adaptive. In palmar CIND, instability occurs across the entire proximal carpal row. When nonsurgical management fails, surgical options include arthroscopic thermal capsulorrhaphy, soft-tissue reconstruction, or limited radiocarpal or intercarpal fusions. In dorsal CIND, the capitate subluxates dorsally from its reduced resting position. Dorsal CIND usually responds to nonsurgical management; refractory cases respond to palmar ligament reefing and/or dorsal intercarpal capsulodesis. Combined CIND demonstrates signs of both palmar and dorsal CIND and can be treated with soft-tissue or bony procedures. In adaptive CIND, the volar carpal ligaments are slackened and are less capable of inducing the physiologic shift of the proximal carpal row from flexion into extension as the wrist ulnarly deviates. Treatment of choice is a corrective osteotomy to restore the normal volar tilt of the distal radius.

  1. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Directory of Open Access Journals (Sweden)

    Ricardo Mouro Pinto

    2013-10-01

    Full Text Available The Huntington's disease gene (HTT CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111 than on a 129 background (129.Hdh(Q111 . Linkage mapping in (B6x129.Hdh(Q111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3 complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3. The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest

  2. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Science.gov (United States)

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  3. Chemotherapy-induced peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics.

    Science.gov (United States)

    Travis, Lois B; Fossa, Sophie D; Sesso, Howard D; Frisina, Robert D; Herrmann, David N; Beard, Clair J; Feldman, Darren R; Pagliaro, Lance C; Miller, Robert C; Vaughn, David J; Einhorn, Lawrence H; Cox, Nancy J; Dolan, M Eileen

    2014-03-12

    In view of advances in early detection and treatment, the 5-year relative survival rate for all cancer patients combined is now approximately 66%. As a result, there are more than 13.7 million cancer survivors in the United States, with this number increasing by 2% annually. For many patients, improvements in survival have been countered by therapy-associated adverse effects that may seriously impair long-term functional status, workplace productivity, and quality of life. Approximately 20% to 40% of cancer patients given neurotoxic chemotherapy develop chemotherapy-induced peripheral neurotoxicity (CIPN), which represents one of the most common and potentially permanent nonhematologic side effects of chemotherapy. Permanent bilateral hearing loss and/or tinnitus can result from several ototoxic therapies, including cisplatin- or carboplatin-based chemotherapy. CIPN and ototoxicity represent important challenges because of the lack of means for effective prevention, mitigation, or a priori identification of high-risk patients, and few studies have applied modern genomic approaches to understand underlying mechanisms/pathways. Translational genomics, including cell-based models, now offer opportunities to make inroads for the first time to develop preventive and interventional strategies for CIPN, ototoxicity, and other treatment-related complications. This commentary provides current perspective on a successful research strategy, with a focus on cisplatin, developed by an experienced, transdisciplinary group of researchers and clinicians, representing pharmacogenomics, statistical genetics, neurology, hearing science, medical oncology, epidemiology, and cancer survivorship. Principles outlined herein are applicable to the construction of research programs in translational genomics with strong clinical relevance and highlight unprecedented opportunities to understand, prevent, and treat long-term treatment-related morbidities.

  4. Thermohaline instability and rotation-induced mixing. I - Low- and intermediate-mass solar metallicity stars up to the end of the AGB

    CERN Document Server

    Charbonnel, Corinne

    2010-01-01

    (abridged) Numerous spectroscopic observations provide compelling evidence for non-canonical processes that modify the surface abundances of low- and intermediate-mass stars beyond the predictions of standard stellar theory. We study the effects of thermohaline instability and rotation-induced mixing in the 1-4 Msun range at solar metallicity. We present evolutionary models by considering both thermohaline and rotation-induced mixing in stellar interior. We discuss the effects of these processes on the chemical properties of stars from the zero age main sequence up to the end of the second dredge-up on the early-AGB for intermediate-mass stars and up to the AGB tip for low-mass stars. Model predictions are compared to observational data for lithium,12C/13C,[N/C],[Na/Fe],16O/17O, and 16O/18O in Galactic open clusters and in field stars with well-defined evolutionary status,as well as in planetary nebulae. Thermohaline mixing simultaneously accounts for the observed behaviour of 12C/13C,[N/C], and lithium in lo...

  5. Messenger RNA- versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity.

    Science.gov (United States)

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne

    2014-06-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications.

  6. [A Simple and Efficient Method of Inducing Targeted Deletions in the Drosophila Genome].

    Science.gov (United States)

    Kravchuk, O I; Mikhailov, V S; Savitsky, M Yu

    2015-11-01

    Deletion mutagenesis is one of the most efficient approaches to studying gene function. However, conventional methods of inducing targeted mutations in the drosophila genome are time- and labor-consuming. This work proposes a new, simple, and effective method of producing drosophila mutants with gene deletions. The method involves the insertion of I-Scel and I-CreI recognition sites and a fragment homologous to the target sequence into the chromosome region of interest by means of an attB-containing construct, the induction of double-strand DNA breaks by the appropriate meganuclease, and their repair by homologous recombination. The procedure results in a deletion extending from the attP-site to the target locus. A cassette was designed to enable single-step construct production for the deletion of any given genomic region. A set of markers facilitates the selection of recombination events. The efficacy of the proposed technique was confirmed by the induction of a 47-kb deletion containing the qtc gene.

  7. Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells

    Science.gov (United States)

    Luo, Lan; Kawakatsu, Miho; Guo, Chao-Wan; Urata, Yoshishige; Huang, Wen-Jing; Ali, Haytham; Doi, Hanako; Kitajima, Yuriko; Tanaka, Takayuki; Goto, Shinji; Ono, Yusuke; Xin, Hong-Bo; Hamano, Kimikazu; Li, Tao-Sheng

    2014-01-01

    Effects of antioxidants on the quality and genomic stability of induced pluripotent stem (iPS) cells were investigated with two human iPS cell lines (201B7 and 253G1). Cells used in this study were expanded from a single colony of each cell line with the addition of proprietary antioxidant supplement or homemade antioxidant cocktail in medium, and maintained in parallel for 2 months. The cells grew well in all culture conditions and kept “stemness”. Although antioxidants modestly decreased the levels of intracellular reactive oxygen species, there were no differences in the expression of 53BP1 and pATM, two critical molecules related with DNA damage and repair, under various culture conditions. CGH analysis showed that the events of genetic aberrations were decreased only in the 253G1 iPS cells with the addition of homemade antioxidant cocktail. Long-term culture will be necessary to confirm whether low dose antioxidants improve the quality and genomic stability of iPS cells. PMID:24445363

  8. Induction of genetic instability by ionizing radiation; Instabilite genetique et rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B. [Harvard School of Public Health, Boston, MA (United States). Dept. of Cancer Cell Biology

    1999-03-01

    Evidence is presented to support the hypothesis that radiation may induce a heritable, genome-wide process of instability that leads to an enhanced frequency of genetic changes occurring among the progeny of the original irradiated cell. This instability is transmissible over many generations of cell replication. Mutational instability is induced in a relatively large fraction (approximately 10 %) of the cell population, and may be modulated by factors acting in vivo. Thus, it cannot be a targeted event involving a specific gene or set of genes. There is no dose-response relationship in the range 2-12 Gy, suggesting that the instability phenotype may be induced by quite low radiation doses. The molecular mechanisms associated with the genesis of mutations in unstable populations differ from those for direct X-ray-induced mutations. These results suggest that it may not be possible to predict the nature of the dose-response relationship for the ultimate genetic effects of radiation based on a qualitative or quantitative analysis of the original DNA lesions. (author)

  9. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.

    Science.gov (United States)

    Chang, Chia-Yu; Ting, Hsiao-Chien; Su, Hong-Lin; Jeng, Jing-Ren

    2017-02-17

    In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.

  10. Genomic and proteomic analysis of soybean heritable variations induced by space flight

    Institute of Scientific and Technical Information of China (English)

    HE Jie; GAO Yong; SUN Ye-qing

    2009-01-01

    To analyze the biological effects of space environment, the diversity of genomic DNA between the space flight soybean 194(4126) with phenotype of good yield and good fruit quality induced by space flight and the soybean with ground control was studied by amplified fragment length polymorphism (AFLP) method, and the polymorphism of space flight soybean 194(4126) was 3.56%. The differences of protein expression of seeds and leaves between the two kinds of soybeans were analysed by two-dimensional electrophoresis, PDQuest software and MALDI-TOF mass spectrometry. Results show that the loss and decrease of protein expression in 194(4126) soybean are subjected to the space fight of seeds, and three special proteins including Dehydrin, MAT1 and ceQORH are identified. It is concluded that the space environment changes the phenotype and geno-type of soybeans due to the space flight of seeds.

  11. Generation of human induced pluripotent stem cells using genome integrating or non-integrating methods.

    Science.gov (United States)

    Šimara, P; Tesařová, L; Padourová, S; Koutná, I

    2014-01-01

    Preclinical studies have demonstrated the promising potential of human induced pluripotent stem cells (hiPSCs) for clinical application. To fulfil this goal, efficient and safe methods to generate them must be established. Various reprogramming techniques were presented during seven years of hiPSCs research. Genome non-integrating and completely xeno-free protocols from the first biopsy to stable hiPSC clones are highly preferable in terms of future clinical application. In this short communication, we summarize the reprogramming experiments performed in our laboratories. We successfully generated hiPSCs using STEMCCA lentivirus, Sendai virus or episomal vectors. Human neonatal fibroblasts and CD34(+) blood progenitors were used as cell sources and were maintained either on mouse embryonic feeder cells or in feeder-free conditions. The reprogramming efficiency was comparable for all three methods and both cell types, while the best results were obtained in feeder-free conditions.

  12. Development of radiation-induced mutation techniques and functional genomics studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kang, Si Yong; Kim, Jin Baek [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    This project has been performed to develop plant genetic resources using radiation (gamma-rays, ion-beam, space environments), to conduct functional genomics studies with mutant resources, and to develop new radiation plant breeding techniques using various radiation sources during 3 years. In the first section, we developed flower genetic resources, functional crop resources, and bio-industrial plant resources. In the second section, we cloned several mutated genes and studied mechanisms of gene expression and genetic diversity of mutations induced by gamma-rays. In the third section, we developed new plant breeding techniques using gamma-phytotron, heavy ion-beam, and space environments. Based on these results, a total of 8 cultivars containing Chrysanthemum, Hibiscus, kenaf, rice, and soybean were applied for plant variety protection (PVP) and a total of 4 cultivars were registered for PVP. Also, license agreement for the dwarf type Hibiscus mutant 'Ggoma' was conducted with Supro co. and the manufacturing technology for natural antioxidant pear-grape vinegar was transferred into Enzenic co. Also, 8 gene sequences, such as F3'H and LDOX genes associated with flower color in Chrysanthemum and EPSPS gene from Korean lawn grass, were registered in the database of National Center for Biotechnology Information (NCBI). In the future study, we will develop new radiation mutation breeding techniques through the mutation spectrum induced by various radiation sources, the studies for mechanism of the cellular response to radiation, and the comparative{center_dot}structural{center_dot}functional genomics studies for useful traits.

  13. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  14. Mode-locking via dissipative Faraday instability

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-08-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system--spectrally dependent losses--achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  15. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Be