WorldWideScience

Sample records for induced gene therapy

  1. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  2. Image Guidance and Assessment of Radiation Induced Gene Therapy

    National Research Council Canada - National Science Library

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  3. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  4. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  5. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    International Nuclear Information System (INIS)

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  6. Gene therapy pf HPV-16 induced tumours in rodents

    Czech Academy of Sciences Publication Activity Database

    Vonka, V.; Sobotková, E.; Šmahel, M.; Žák, R.; Hamšíková, E.; Bubeník, Jan

    1999-01-01

    Roč. 19, - (1999), s. 2014 ISSN 0250-7005. [Symposium on Local Cytokine Therapy of Cancer: Interleukin-2, Interferon and Related Cytokines /1./. Hamburg, 29.04.1999-01.05.1999] Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.375, year: 1999

  7. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  8. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hotta, Akitsu; Yamanaka, Shinya

    2015-01-01

    The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

  9. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  10. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    International Nuclear Information System (INIS)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Murawaki, Yoshikazu; Kawasaki, Hironaka; Shiota, Goshi

    2006-01-01

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRα promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes

  11. Radiotechnologies and gene therapy

    International Nuclear Information System (INIS)

    Xia Jinsong

    2001-01-01

    Gene therapy is an exciting frontier in medicine today. Radiologist will make an uniquely contribution to these exciting new technologies at every level by choosing sites for targeting therapy, perfecting and establishing routes of delivery, developing imaging strategies to monitor therapy and assess gene expression, developing radiotherapeutic used of gene therapy

  12. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  13. History of gene therapy.

    Science.gov (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  15. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy

    International Nuclear Information System (INIS)

    Gopinath, P; Ghosh, Siddhartha Sankar; Gogoi, Sonit Kumar; Chattopadhyay, Arun

    2008-01-01

    The impact of manufactured nanomaterials on human health and the environment is a major concern for commercial use of nanotechnology based products. A judicious choice of selective usage, lower nanomaterial concentration and use in combination with conventional therapeutic materials may provide the best solution. For example, silver nanoparticles (Ag NPs) are known to be bactericidal and also cytotoxic to mammalian cells. Herein, we investigate the molecular mechanism of Ag NP mediated cytotoxicity in both cancer and non-cancer cells and find that optimum particle concentration leads to programmed cell death in vitro. Also, the benefit of the cytotoxic effects of Ag NPs was tested for therapeutic use in conjunction with conventional gene therapy. The synergistic effect of Ag NPs on the uracil phosphoribosyltransferase expression system sensitized the cells more towards treatment with the drug 5-fluorouracil. Induction of the apoptotic pathway makes Ag NPs a representative of a new chemosensitization strategy for future application in gene therapy

  16. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  17. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  18. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  19. Targeting factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice.

    Science.gov (United States)

    Baumgartner, C K; Mattson, J G; Weiler, H; Shi, Q; Montgomery, R R

    2017-01-01

    Essentials Platelet-Factor (F) VIII gene therapy is a promising treatment in hemophilia A. This study aims to evaluate if platelet-FVIII expression would increase the risk for thrombosis. Targeting FVIII expression to platelets does not induce or elevate thrombosis risk. Platelets expressing FVIII are neither hyper-activated nor hyper-responsive. Background Targeting factor (F) VIII expression to platelets is a promising gene therapy approach for hemophilia A, and is successful even in the presence of inhibitors. It is well known that platelets play important roles not only in hemostasis, but also in thrombosis and inflammation. Objective To evaluate whether platelet-FVIII expression might increase thrombotic risk and thereby compromise the safety of this approach. Methods In this study, platelet-FVIII-expressing transgenic mice were examined either in steady-state conditions or under prothrombotic conditions induced by inflammation or the FV Leiden mutation. Native whole blood thrombin generation assay, rotational thromboelastometry analysis and ferric chloride-induced vessel injury were used to evaluate the hemostatic properties. Various parameters associated with thrombosis risk, including D-dimer, thrombin-antithrombin complexes, fibrinogen, tissue fibrin deposition, platelet activation status and activatability, and platelet-leukocyte aggregates, were assessed. Results We generated a new line of transgenic mice that expressed 30-fold higher levels of platelet-expressed FVIII than are therapeutically required to restore hemostasis in hemophilic mice. Under both steady-state conditions and prothrombotic conditions induced by lipopolysaccharide-mediated inflammation or the FV Leiden mutation, supratherapeutic levels of platelet-expressed FVIII did not appear to be thrombogenic. Furthermore, FVIII-expressing platelets were neither hyperactivated nor hyperactivatable upon agonist activation. Conclusion We conclude that, in mice, more than 30-fold higher levels of

  20. Enhanced efficacy of radiation-induced gene therapy in mice bearing lung adenocarcinoma xenografts using hypoxia responsive elements

    International Nuclear Information System (INIS)

    Wang Wei-dong; Chen Zheng-tang; Li De-zhi; Duan Yu-zhong; Cao Zheng-huai; Li Rong

    2005-01-01

    The aim of the present study was to investigate whether the hypoxia responsive element (HRE) could be used to enhance suicide gene (HSV-tk) expression and tumoricidal activity in radiation-controlled gene therapy of human lung adenocarcinoma xenografts. A chimeric promoter, HRE-Egr, was generated by directly linking a 0.3-kb fragment of HRE to a 0.6-kb human Egr-1 promoter. Retroviral vectors containing luciferase or the HSV-tk gene driven by Egr-1 or HRE-Egr were constructed. A human adenocarcinoma cell line (A549) was stably transfected with the above vectors using the lipofectamine method. The sensitivity of transfected cells to prodrug ganciclovir (GCV) and cell survival rates were analyzed after exposure to a dose of 2 Gy radiation and hypoxia (1%). In vivo, tumor xenografts in BALB/c mice were transfected with the constructed retroviruses and irradiated to a total dose of 6 Gy, followed by GCV treatment (20 mg/kg for 14 days). When the HSV-tk gene controlled by the HRE-Egr promoter was introduced into A549 cells by a retroviral vector, the exposure to 1% O 2 and 2 Gy radiation induced significant enhancement of GCV cytotoxicity to the cells. Moreover, in nude mice bearing solid tumor xenografts, only the tumors infected with the hybrid promoter-containing virus gradually disappeared after GCV administration and radiation. These results indicate that HRE can enhance transgene expression and tumoricidal activity in HSV-tk gene therapy controlled by ionizing radiation in hypoxic human lung adenocarcinoma. (author)

  1. RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy.

    Science.gov (United States)

    Kehler, James; Greco, Marianna; Martino, Valentina; Pachiappan, Manickam; Yokoe, Hiroko; Chen, Alice; Yang, Miranda; Auerbach, Jonathan; Jessee, Joel; Gotte, Martin; Milanesi, Luciano; Albertini, Alberto; Bellipanni, Gianfranco; Zucchi, Ileana; Reinbold, Rolland A; Giordano, Antonio

    2017-06-01

    Cellular reprogramming by epigenomic remodeling of chromatin holds great promise in the field of human regenerative medicine. As an example, human-induced Pluripotent Stem Cells (iPSCs) obtained by reprograming of patient somatic cells are sufficiently similar to embryonic stem cells (ESCs) and can generate all cell types of the human body. Clinical use of iPSCs is dependent on methods that do not utilize genome altering transgenic technologies that are potentially unsafe and ethically unacceptable. Transient delivery of exogenous RNA into cells provides a safer reprogramming system to transgenic approaches that rely on exogenous DNA or viral vectors. RNA reprogramming may prove to be more suitable for clinical applications and provide stable starting cell lines for gene-editing, isolation, and characterization of patient iPSC lines. The introduction and rapid evolution of CRISPR/Cas9 gene-editing systems has provided a readily accessible research tool to perform functional human genetic experiments. Similar to RNA reprogramming, transient delivery of mRNA encoding Cas9 in combination with guide RNA sequences to target specific points in the genome eliminates the risk of potential integration of Cas9 plasmid constructs. We present optimized RNA-based laboratory procedure for making and editing iPSCs. In the near-term these two powerful technologies are being harnessed to dissect mechanisms of human development and disease in vitro, supporting both basic, and translational research. J. Cell. Physiol. 232: 1262-1269, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. The ethics of gene therapy.

    Science.gov (United States)

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  3. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  4. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  5. Imaging reporter gene for monitoring gene therapy

    International Nuclear Information System (INIS)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L.; Tamgac, G.

    2002-01-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  6. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  7. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  8. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... Gene & Cell Therapy Defined Gene therapy and cell therapy are overlapping fields of biomedical research that aim to repair the direct cause of genetic diseases. Read More Gene & Cell Therapy FAQ's Read the most common questions raised by ...

  9. Gene therapy for hemophilia

    Science.gov (United States)

    Rogers, Geoffrey L.; Herzog, Roland W.

    2015-01-01

    Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors. PMID:25553466

  10. Gene Therapy and Children (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Gene Therapy and Children KidsHealth / For Parents / Gene Therapy ... that don't respond to conventional therapies. About Genes Our genes help make us unique. Inherited from ...

  11. Gene therapy for ocular diseases.

    Science.gov (United States)

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  12. Gene therapy and reproductive medicine.

    Science.gov (United States)

    Stribley, John M; Rehman, Khurram S; Niu, Hairong; Christman, Gregory M

    2002-04-01

    To review the literature on the principles of gene therapy and its potential application in reproductive medicine. Literature review. Gene therapy involves transfer of genetic material to target cells using a delivery system, or vector. Attention has primarily focused on viral vectors. Significant problems remain to be overcome including low efficacy of gene transfer, the transient expression of some vectors, safety issues with modified adenoviruses and retroviruses, and ethical concerns. If these issues can be resolved, gene therapy will be applicable to an increasing spectrum of single and multiple gene disorders, as the Human Genome Project data are analyzed, and the genetic component of human disease becomes better understood. Gynecologic gene therapy has advanced to human clinical trials for ovarian carcinoma, and shows potential for the treatment of uterine leiomyomata. Obstetric applications of gene therapy, including fetal gene therapy, remain more distant goals. Concerns about the safety of human gene therapy research are being actively addressed, and remarkable progress in improving DNA transfer has been made. The first treatment success for a genetic disease (severe combined immunodeficiency disease) has been achieved, and ongoing research efforts will eventually yield clinical applications in many spheres of reproductive medicine.

  13. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  14. Gene therapy of thyroid carcinoma

    International Nuclear Information System (INIS)

    Zheng Wei; Tan Jian

    2007-01-01

    Normally, differentiated thyroid carcinoma(DTC) is a disease of good prognosis, but about 30% of the tumors are dedifferentiate, which are inaccessible to standard therapeutic procedures such as 'operation, 131 I therapy and thyroid hormone'. Both internal and abroad experts are researching a new therapy of dedifferentiated thyroid carcinoma--gene therapy. Many of them utilize methods of it, but follow different strategies: (1) transduction of the thyroid sodium/iodide transporter gene to make tissues that do not accumulate iodide treatable by 131 I therapy; (2) strengthening of the anti-tumor immune response; (3) suicide gene therapy; (4) depression the generation of tumor cells; (5) gene therapy of anti- vascularization. (authors)

  15. Measurement of feline cytokines interleukin-12 and interferon- g produced by heat inducible gene therapy adenoviral vector using real time PCR

    International Nuclear Information System (INIS)

    Siddiqui, F.; Avery, P.R.; Ullrich, R.L.; LaRue, S.M.; Dewhirst, M.W.; Li, C.-Y.

    2003-01-01

    Biologic tumor therapy using Interleukin-12 (IL-12) has shown promise as an adjuvant to radiation therapy. The goals for cancer gene immunotherapy include effective eradication of established tumors and generation of a lasting systemic immune response. Among the cytokines, IL-12 has been found to be most effective gene in eradicating experimental tumors, preventing the development of metastases, and eliciting long-term antitumor immunity. Depending on the tumor model, IL-12 can exert antitumor activities via T cells, NK cells or NKT cells. It induces the production of IFN-g and IFN-inducible protein-10. It is also postulated to have antiangiogenic effects, thus inhibiting tumor formation and metastases. However, its use in clinical trials has been restricted largely owing to its systemic hematologic and hepatotoxicity. We tested the efficacy of adenovirus mediated expression of feline IL-12 gene placed under the control of an inducible promoter, the heat shock proteins (hsp70B). This places gene expression under the control of an external physical agent (hyperthermia), thus offering an 'on-off' switch and potentially reducing systemic toxicity by restricting its expression locally to the tumor. Crandell Feline Kidney (CrFK) cells were infected using the construct and the supernatant was then used to stimulate production of interferon g (IFN-g) in feline peripheral blood mononuclear cells (PBMC). As there is no commercially available ELISA kit currently available to detect or measure feline cytokines, we used real time-PCR to measure cytokine mRNA. These results will be used to initiate a clinical trial in cats with soft tissue sarcomas examining hyperthermia Induced gene therapy in conjunction with radiation therapy. The real time- PCR techniques developed here will be used to quantitatively measure cytokine mRNA levels in the punch biopsy samples obtained from the cats during the clinical trial. Support for this study was in part by NCI grant CA72745

  16. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  17. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  18. The bystander effect of cancer gene therapy

    International Nuclear Information System (INIS)

    Lumniczky, K.; Safrany, G.

    2008-01-01

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  19. Gene therapy in cystic fibrosis.

    Science.gov (United States)

    Flotte, T R; Laube, B L

    2001-09-01

    Theoretically, cystic fibrosis transmembrane conductance regulator (CFTR) gene replacement during the neonatal period can decrease morbidity and mortality from cystic fibrosis (CF). In vivo gene transfers have been accomplished in CF patients. Choice of vector, mode of delivery to airways, translocation of genetic information, and sufficient expression level of the normalized CFTR gene are issues that currently are being addressed in the field. The advantages and limitations of viral vectors are a function of the parent virus. Viral vectors used in this setting include adenovirus (Ad) and adeno-associated virus (AAV). Initial studies with Ad vectors resulted in a vector that was efficient for gene transfer with dose-limiting inflammatory effects due to the large amount of viral protein delivered. The next generation of Ad vectors, with more viral coding sequence deletions, has a longer duration of activity and elicits a lesser degree of cell-mediated immunity in mice. A more recent generation of Ad vectors has no viral genes remaining. Despite these changes, the problem of humoral immunity remains with Ad vectors. A variety of strategies such as vector systems requiring single, or widely spaced, administrations, pharmacologic immunosuppression at administration, creation of a stealth vector, modification of immunogenic epitopes, or tolerance induction are being considered to circumvent humoral immunity. AAV vectors have been studied in animal and human models. They do not appear to induce inflammatory changes over a wide range of doses. The level of CFTR messenger RNA expression is difficult to ascertain with AAV vectors since the small size of the vector relative to the CFTR gene leaves no space for vector-specific sequences on which to base assays to distinguish endogenous from vector-expressed messenger RNA. In general, AAV vectors appear to be safe and have superior duration profiles. Cationic liposomes are lipid-DNA complexes. These vectors generally have been

  20. Translational approach for gene therapy in epilepsy

    DEFF Research Database (Denmark)

    Ledri, Litsa Nikitidou; Melin, Esbjörn; Christiansen, Søren H.

    2016-01-01

    clinical trial for gene therapy of temporal lobe epilepsy was explored: We investigated (i) whether the post intrahippocampal kainate-induced status epilepticus (SE) model of chronic epilepsy in rats could be clinically relevant; and (ii) whether a translationally designed neuropeptide Y (NPY)/Y2 receptor...

  1. Gene Therapy for Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Rachel Denyer

    2012-01-01

    Full Text Available Current pharmacological and surgical treatments for Parkinson's disease offer symptomatic improvements to those suffering from this incurable degenerative neurological disorder, but none of these has convincingly shown effects on disease progression. Novel approaches based on gene therapy have several potential advantages over conventional treatment modalities. These could be used to provide more consistent dopamine supplementation, potentially providing superior symptomatic relief with fewer side effects. More radically, gene therapy could be used to correct the imbalances in basal ganglia circuitry associated with the symptoms of Parkinson's disease, or to preserve or restore dopaminergic neurons lost during the disease process itself. The latter neuroprotective approach is the most exciting, as it could theoretically be disease modifying rather than simply symptom alleviating. Gene therapy agents using these approaches are currently making the transition from the laboratory to the bedside. This paper summarises the theoretical approaches to gene therapy for Parkinson's disease and the findings of clinical trials in this rapidly changing field.

  2. New tools in regenerative medicine: gene therapy.

    Science.gov (United States)

    Muñoz Ruiz, Miguel; Regueiro, José R

    2012-01-01

    Gene therapy aims to transfer genetic material into cells to provide them with new functions. A gene transfer agent has to be safe, capable of expressing the desired gene for a sustained period of time in a sufficiently large population of cells to produce a biological effect. Identifying a gene transfer tool that meets all of these criteria has proven to be a difficult objective. Viral and nonviral vectors, in vivo, ex vivo and in situ strategies co-exist at present, although ex vivo lenti-or retroviral vectors are presently the most popular.Natural stem cells (from embryonic, hematopoietic, mesenchymal, or adult tissues) or induced progenitor stem (iPS) cells can be modified by gene therapy for use in regenerative medicine. Among them, hematopoietic stem cells have shown clear clinical benefit, but iPS cells hold humongous potential with no ethical concerns.

  3. Gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Zhang Yaowen; Cao Yongzhen; Li Jin; Wang Qin

    2008-01-01

    Tumor treatment is one of the most important fields in medical research. Nowadays, a novel method which is combined gene therapy with radiotherapy plays an important role in the field of cancer research, and mainly includes immune gene therapy combined with radiotherapy, suicide gene therapy or tumor suppressor gene therapy combined with radiotherapy, antiangiogenesis gene therapy combined with radiotherapy and protective gene therapy combined with radiotherapy based on the technical features. This review summarized the current status of combined therapies of gene therapy and radiotherapy and possible mechanism. (authors)

  4. Gene Therapy Approaches to Hemoglobinopathies.

    Science.gov (United States)

    Ferrari, Giuliana; Cavazzana, Marina; Mavilio, Fulvio

    2017-10-01

    Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Gene therapy for lipid disorders

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2000-10-01

    Full Text Available Abstract Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.

  6. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  7. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors

    International Nuclear Information System (INIS)

    Wang, Changdong; Ma, Yongping; Hu, Qiongwen; Xie, Tingting; Wu, Jiayan; Zeng, Fan; Song, Fangzhou

    2016-01-01

    Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim

  8. Reporter gene imaging: potential impact on therapy

    International Nuclear Information System (INIS)

    Serganova, Inna; Blasberg, Ronald

    2005-01-01

    Positron emission tomography (PET)-based molecular-genetic imaging in living organisms has enjoyed exceptional growth over the past 5 years; this is particularly striking since it has been identified as a new discipline only within the past decade. Positron emission tomography is one of three imaging technologies (nuclear, magnetic resonance and optical) that has begun to incorporate methods that are established in molecular and cell biology research. The convergence of these disciplines and the wider application of multi-modality imaging are at the heart of this success story. Most current molecular-genetic imaging strategies are 'indirect,' coupling a 'reporter gene' with a complimentary 'reporter probe.' Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of trans gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as 'sensors' to regulate the magnitude of reporter gene expression and can be used to provide information about endogenous cell processes. Reporter systems can also be constructed to monitor mRNA stabilization and specific protein-protein interactions. Promoters can be cell specific and restrict transgene expression to certain tissue and organs. The translation of reporter gene imaging to specific clinical applications is discussed. Several examples that have potential for patient imaging studies in the near future include monitoring adenoviral-based gene therapy, oncolytic herpes virus therapy, adoptive cell-based therapies and Salmonella-based tumor-targeted cancer therapy and imaging. The primary translational applications of noninvasive in vivo reporter gene imaging are likely to be (a) quantitative monitoring of the gene therapy vector and the efficacy of transduction in clinical protocols, by imaging the location, extent and duration of transgene expression; (b) monitoring cell trafficking, targeting

  9. Gene Therapy in Cardiac Arrhythmias

    OpenAIRE

    Praveen, S.V; Francis, Johnson; Venugopal, K

    2006-01-01

    Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV...

  10. Gene Therapy for Color Blindness.

    Science.gov (United States)

    Hassall, Mark M; Barnard, Alun R; MacLaren, Robert E

    2017-12-01

    Achromatopsia is a rare congenital cause of vision loss due to isolated cone photoreceptor dysfunction. The most common underlying genetic mutations are autosomal recessive changes in CNGA3 , CNGB3 , GNAT2 , PDE6H , PDE6C , or ATF6 . Animal models of Cnga3 , Cngb3 , and Gnat2 have been rescued using AAV gene therapy; showing partial restoration of cone electrophysiology and integration of this new photopic vision in reflexive and behavioral visual tests. Three gene therapy phase I/II trials are currently being conducted in human patients in the USA, the UK, and Germany. This review details the AAV gene therapy treatments of achromatopsia to date. We also present novel data showing rescue of a Cnga3 -/- mouse model using an rAAV.CBA.CNGA3 vector. We conclude by synthesizing the implications of this animal work for ongoing human trials, particularly, the challenge of restoring integrated cone retinofugal pathways in an adult visual system. The evidence to date suggests that gene therapy for achromatopsia will need to be applied early in childhood to be effective.

  11. Gene therapy for lung cancer.

    Science.gov (United States)

    Toloza, Eric M; Morse, Michael A; Lyerly, H Kim

    2006-09-01

    Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer. (c) 2006 Wiley-Liss, Inc.

  12. Ethics of Gene Therapy Debated.

    Science.gov (United States)

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  13. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia.

    Science.gov (United States)

    Modares Sadeghi, Mehran; Shariati, Laleh; Hejazi, Zahra; Shahbazi, Mansoureh; Tabatabaiefar, Mohammad Amin; Khanahmad, Hossein

    2018-03-01

    β-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of β-chains. Evidences show that increased HbF levels improve the symptoms in patients with β-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 μg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with β-thalassemia. © 2017 Wiley Periodicals, Inc.

  14. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  15. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  16. Ghrelin gene polymorphism as a genetic biomarker for prediction of therapy induced clearance in Egyptian chronic HCV patients.

    Science.gov (United States)

    Hamdy, Marwa; Kassim, Samar Kamal; Khairy, Eman; Maher, Mohsen; Mansour, Khaled Amr; Albreedy, Ashraf M

    2018-04-05

    Ghrelin (GHRL) has important implications for liver disease. It has anti-inflammatory effects, regulates cell proliferation, modulates the fibrogenic response and protects liver tissue. Genetic variations in the GHRL gene may play a crucial role in the development of chronic hepatitis (CH), liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Therefore, we examined the association of GHRL gene polymorphisms (rs26312 and rs27647), and its serum level to virologic responses to combined sofosbuvir and Simeprevir therapy for a course of 12 successive weeks in Egyptian chronic hepatitis C (CHC) patients. Human genomic and clinical data were collected from 100 Egyptian participants in this study, 90 HCV patients who received sofosbuvir and Simeprevir and 10 non-HCV healthy subjects. Genotyping of GHRL rs26312 and rs27647, were determined with the TaqMan qRT-PCR allele detection assay. The serum GHRL concentrations were determined using enzyme-linked immunosorbent assay (ELISA). GHRL polymorphisms (rs26312 and rs27647) genotype distributions and allele frequencies did not differ between HCV patients and normal healthy subjects or between patient groups when compared according to the therapeutic response. In addition, we found significant lower serum GHRL levels in CHC patients compared with the healthy controls. However, there was no significant association of the GHRL rs26312 and rs27647 polymorphisms with GHRL levels in CHC patients. We conclude that GHRL SNPs (rs26312 and rs27647) do not affect response to combined sofosbuvir and Simeprevir treatment in chronic Egyptian HCV patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Gene therapy: theoretical and bioethical concepts.

    Science.gov (United States)

    Smith, Kevin R

    2003-01-01

    Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.

  18. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    Science.gov (United States)

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  19. Gene Therapy in Cardiac Arrhythmias

    Directory of Open Access Journals (Sweden)

    Praveen S.V

    2006-04-01

    Full Text Available Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV node mimicking beta blockade can be therapeutic in the management of atrial fibrillation. G protein overexpression to modify the AV node also is experimental. Modification and expression of potassium channel genes altering the delayed rectifier potassium currents may permit better management of congenital long QT syndromes. Arrhythmias in a failing heart are due to abnormal calcium cycling. Potential targets for genetic modulation include the sarcoplasmic reticulum calcium pump, calsequestrin and sodium calcium exchanger.Lastly the ethical concerns need to be addressed.

  20. Endocrine aspects of cancer gene therapy.

    Science.gov (United States)

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  1. Terapia gênica Gene therapy

    Directory of Open Access Journals (Sweden)

    Nance Beyer Nardi

    2002-01-01

    Full Text Available Terapia gênica é um procedimento médico que envolve a modificação genética de células como forma de tratar doenças. Os genes influenciam praticamente todas as doenças humanas, seja pela codificação de proteínas anormais diretamente responsáveis pela doença, seja por determinar suscetibilidade a agentes ambientais que a induzem. A terapia gênica é ainda experimental, e está sendo estudada em protocolos clínicos para diferentes tipos de doenças. O desenvolvimento de métodos seguros e eficientes de transferência gênica para células humanas é um dos pontos mais importantes na terapia gênica. Apesar do grande esforço dirigido na última década para o aperfeiçoamento dos protocolos de terapia gênica humana, e dos avanços importantes na pesquisa básica, as aplicações terapêuticas da tecnologia de transferência gênica continuam ainda em grande parte teóricas. O potencial da terapia gênica é muito grande, devendo ainda causar grande impacto em todos os aspectos da medicina.Gene therapy is a medical intervention that involves modifying the genetic material of living cells to fight disease. Genes influence virtually every human disease, either by encoding for abnormal proteins, which are directly responsible for the disease, or by causing a susceptibility to environmental agents which induce it. Gene therapy is still experimental, and is being studied in clinical trials for many different types of diseases. The development of safe and effective methods of implanting normal genes into the human cell is one of the most important technical issues in gene therapy. Although much effort has been directed in the last decade toward improvement of protocols in human gene therapy, and in spite of many considerable achievements in basic research, the therapeutic applications of gene transfer technology still remain mostly theoretical. The potential for gene therapy is huge and likely to impact on all aspects of medicine.

  2. Targeted cytosine deaminase-uracil phosphoribosyl transferase suicide gene therapy induces small cell lung cancer-specific cytotoxicity and tumor growth delay

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Gjetting, Torben; Poulsen, Thomas Tuxen

    2010-01-01

    Small cell lung cancer (SCLC) is a highly malignant cancer for which there is no curable treatment. Novel therapies are therefore in great demand. In the present study we investigated the therapeutic effect of transcriptionally targeted suicide gene therapy for SCLC based on the yeast cytosine...... deaminase (YCD) gene alone or fused with the yeast uracil phosphoribosyl transferase (YUPRT) gene followed by administration of 5-fluorocytosine (5-FC) prodrug. Experimental design: The YCD gene or the YCD-YUPRT gene was placed under regulation of the SCLC-specific promoter insulinoma-associated 1 (INSM1...

  3. Soluble TGF-β type II receptor gene therapy reduces TGF-β activity in irradiated lung tissue and protects lungs from radiation-induced injury

    International Nuclear Information System (INIS)

    Vujaskovic, Z.; Rabbani, Z.; Zhang, X.; Samulski, T.V.; Li, C.-Y.; Anscher, M.S.

    2003-01-01

    Full text: The objective was to determine whether administration of recombinant human adenoviral vector carrying soluble TGF-β1 type II receptor (TβR-II) gene reduces availability of active TGFβ1 and protects lung from radiation-induced injury. Female Fisher-344 rats were randomized into four groups to receive: 1) Control 2) Adenoviral green fluorescent protein vector (AdGFP) alone 3) Radiation (RT) + Adenoviral vector with TGF-β1 type II receptor gene (AdexTβR-II-Fc) 4) RT alone. Animals were irradiated to right hemithorax using a single dose of 30 Gy. The packaging and production of a recombinant adenovirus carrying the fused human TβR-II-IgG1 Fc gene was achieved by use of the AdEasy system. The treatment vector AdexTbR-II-Fc (1.5*1010 PFU) and control vector AdGFP (1*109 PFU) were injected i.v. 24 hrs after RT. Respiratory rate was measured as an index of pulmonary function weekly for 5 weeks post RT. Structural damage was scored histologically. Immunohistochemistry was performed to identify activated macrophages. ELISA was used to quantify active TGF-β1 in tissue homogenate. Western blot was used to determine TβR-II expression in plasma and lung tissue. Animals receiving treatment vector AdexTbR-II-Fc have elevated plasma levels of soluble TβR-II at 24 and 48 hours after injection. In the RT+AdexTbR-II-Fc group, there was a significant reduction in respiratory rate (p = 0.002) at four weeks after treatment compared to RT alone group. Histology revealed a significant reduction in lung structural damage in animals receiving gene therapy after RT vs RT alone (p=0.0013). There was also a decrease in the number of activated macrophage (p= 0.02) in RT+AdexTbR-II-Fc group vs RT alone. The tissue protein expression of active TGF-β1 was significantly reduced in rats receiving RT+AdexTbR-II-Fc treatment (p<0.05). This study shows the ability of adenovirus mediated soluble TβR-II gene therapy to reduce tissue levels of active TGF-β1 and ameliorate radiation-induced

  4. Gene therapy and its implications in Periodontics

    Science.gov (United States)

    Mahale, Swapna; Dani, Nitin; Ansari, Shumaila S.; Kale, Triveni

    2009-01-01

    Gene therapy is a field of Biomedicine. With the advent of gene therapy in dentistry, significant progress has been made in the control of periodontal diseases and reconstruction of dento-alveolar apparatus. Implementation in periodontics include: -As a mode of tissue engineering with three approaches: cell, protein-based and gene delivery approach. -Genetic approach to Biofilm Antibiotic Resistance. Future strategies of gene therapy in preventing periodontal diseases: -Enhances host defense mechanism against infection by transfecting host cells with an antimicrobial peptide protein-encoding gene. -Periodontal vaccination. Gene therapy is one of the recent entrants and its applications in the field of periodontics are reviewed in general here. PMID:20376232

  5. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Florian Willecke

    Full Text Available We tested whether a high fat diet (HFD containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/- mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR. After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD, showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states.

  6. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  7. Gene Therapy Targeting HIV Entry

    Directory of Open Access Journals (Sweden)

    Chuka Didigu

    2014-03-01

    Full Text Available Despite the unquestionable success of antiretroviral therapy (ART in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.

  8. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  9. In vitro and in vivo gene therapy with CMV vector-mediated presumed dog beta-nerve growth factor in pyridoxine-induced neuropathy dogs.

    Science.gov (United States)

    Chung, Jin Young; Choi, Jung Hoon; Shin, Il Seob; Choi, Eun Wha; Hwang, Cheol Yong; Lee, Sang Koo; Youn, Hwa Young

    2008-12-01

    Due to the therapeutic potential of gene therapy for neuronal injury, many studies of neurotrophic factors, vectors, and animal models have been performed. The presumed dog beta-nerve growth factor (pdbeta-NGF) was generated and cloned and its expression was confirmed in CHO cells. The recombinant pdbeta-NGF protein reacted with a human beta-NGF antibody and showed bioactivity in PC12 cells. The pdbeta-NGF was shown to have similar bioactivity to the dog beta-NGF. The recombinant pdbeta-NGF plasmid was administrated into the intrathecal space in the gene therapy group. Twenty-four hours after the vector inoculation, the gene therapy group and the positive control group were intoxicated with excess pyridoxine for seven days. Each morning throughout the test period, the dogs' body weight was taken and postural reaction assessments were made. Electrophysiological recordings were performed twice, once before the experiment and once after the test period. After the experimental period, histological analysis was performed. Dogs in the gene therapy group had no weight change and were normal in postural reaction assessments. Electrophysiological recordings were also normal for the gene therapy group. Histological analysis showed that neither the axons nor the myelin of the dorsal funiculus of L4 were severely damaged in the gene therapy group. In addition, the dorsal root ganglia of L4 and the peripheral nerves (sciatic nerve) did not experience severe degenerative changes in the gene therapy group. This study is the first to show the protective effect of NGF gene therapy in a dog model.

  10. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  11. Progress in Gene Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A.; Davis, Brian J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Wilson, Torrence M. [Department of Urology, Mayo Clinic, Rochester, MN (United States); Wiseman, Gregory A. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States); Federspiel, Mark J. [Department of Molecular Medicine, Mayo Clinic, Rochester, MN (United States); Morris, John C., E-mail: davis.brian@mayo.edu [Division of Endocrinology, Mayo Clinic, Rochester, MN (United States)

    2012-11-19

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  12. Progress in Gene Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Davis, Brian J.; Wilson, Torrence M.; Wiseman, Gregory A.; Federspiel, Mark J.; Morris, John C.

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  13. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  14. Republished review: Gene therapy for ocular diseases.

    Science.gov (United States)

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-07-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  15. A Comprehensive Review of Retinal Gene Therapy

    OpenAIRE

    Boye, Shannon E; Boye, Sanford L; Lewin, Alfred S; Hauswirth, William W

    2013-01-01

    Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral co...

  16. Radio-induced genes

    International Nuclear Information System (INIS)

    Rigaud, O.; Kazmaier, M.

    2000-01-01

    The monitoring system of the DNA integrity of an irradiated cell does not satisfy oneself to recruit the enzymes allowing the repair of detected damages. It sends an alarm signal whom transmission leads to the activation of specific genes in charge of stopping the cell cycle, the time to make the repair works, or to lead to the elimination of a too much damaged cell. Among the numerous genes participating to the monitoring of cell response to irradiation, the target genes of the mammalian P53 protein are particularly studied. Caretaker of the genome, this protein play a central part in the cell response to ionizing radiations. this response is less studied among plants. A way to tackle it is to be interested in the radioinduced genes identification in the vegetal cell, while taking advantage of knowledge got in the animal field. The knowledge of the complete genome of the arabette (arabidopsis thaliana), the model plant and the arising of new techniques allow to lead this research at a previously unknown rhythm in vegetal biology. (N.C.)

  17. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  18. Preclinical and clinical experience in vascular gene therapy: advantages over conservative/standard therapy.

    Science.gov (United States)

    Nikol, S; Huehns, T Y

    2001-04-01

    No systemic pharmacological treatment has been shown to convincingly reduce the incidence of restenosis after angioplasty or increase the formation of collaterals in ischemic tissue in patients. The lack of success of many pharmaceutical agents in reducing restenosis rates or in inducing angiogenesis post-angioplasty and following stent implantation has encouraged the development of new technological treatment approaches. Gene therapy is a novel strategy with the potential to prevent some of the sequelae after arterial injury, particularly cell proliferation, and to induce growth of new vessels or remodeling of pre-existing vessel branches, which may help patients with critical ischemia. Gene therapy strategies have the advantage of minimizing systemic side effects and may have a long-term effect as the encoded protein is released. Most clinical trials investigating gene therapy for vascular disease have been uncontrolled phase I and IIa trials. Gene therapy into vessels with the genes for growth factors has been demonstrated to be feasible and efficient. Local drug delivery devices have been used in combination with gene therapy in several trials to maximize safety and efficiency. Data from experimental animal work indicates that gene therapy may modify intimal hyperplasia after arterial injury, but there are few clinical trials on restenosis in patients. Preliminary clinical results show only limited success in altering restenosis rates. In vitro and experimental in vivo investigations into gene therapy for angiogenesis demonstrate increased formation of collaterals and functional improvement of limb ischemia. There is some evidence of increased collateral formation and clinical improvement in patients with critical limb ischemia. Results of placebo-controlled and double-blind trials of gene therapy for vascular disease are awaited.

  19. Cancer suicide gene therapy: a patent review.

    Science.gov (United States)

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  20. Stem cell and gene therapies for diabetes mellitus.

    Science.gov (United States)

    Calne, Roy Y; Gan, Shu Uin; Lee, Kok Onn

    2010-03-01

    In this Perspectives article, we comment on the progress in experimental stem cell and gene therapies that might one day become a clinical reality for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Finally, gene therapy shows some promise for the generation of insulin-producing cells. Here, we discuss two of the most frequently used approaches: in vitro gene delivery into cells which are then transplanted into the recipient and direct delivery of genes in vivo.

  1. Gene Therapy: Potential, Pros, Cons and Ethics

    OpenAIRE

    Ananth Nanjunda Rao

    2002-01-01

    Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  2. Gene Therapy: Potential, Pros, Cons and Ethics

    Directory of Open Access Journals (Sweden)

    Ananth Nanjunda Rao

    2002-07-01

    Full Text Available Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  3. Strategies in Gene Therapy for Glioblastoma

    International Nuclear Information System (INIS)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy

  4. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  5. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer

  6. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  7. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  8. Natural Gene Therapy in Dystrophic Epidermolysis Bullosa

    NARCIS (Netherlands)

    van den Akker, Peter C.; Nijenhuis, Albertine; Hofstra, Robert M. W.; Jonkman, Marcel F.; Pasmooij, Anna M. G.; Meijer, G.

    Background: Dystrophic epidermolysis bullosa is a genetic blistering disorder caused by mutations in the type VII collagen gene, COL7A1. In revertant mosaicism, germline mutations are corrected by somatic events resulting in a mosaic disease distribution. This "natural gene therapy" phenomenon long

  9. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  10. Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier.

    Science.gov (United States)

    Papapetrou, Eirini P

    2017-01-01

    In recent years, breakthroughs in human pluripotent stem cell (hPSC) research, namely cellular reprogramming and the emergence of sophisticated genetic engineering technologies, have opened new frontiers for cell and gene therapy. The prospect of using hPSCs, either autologous or histocompatible, as targets of genetic modification and their differentiated progeny as cell products for transplantation, presents a new paradigm of regenerative medicine of potential tremendous value for the treatment of blood disorders, including beta-thalassemia (BT) and sickle cell disease (SCD). Despite advances at a remarkable pace and great promise, many roadblocks remain before clinical translation can be realistically considered. Here we discuss the theoretical advantages of cell therapies utilizing hPSC derivatives, recent proof-of-principle studies and the main challenges towards realizing the potential of hPSC therapies in the clinic.

  11. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  12. Recent trends in the gene therapy of β-thalassemia

    Science.gov (United States)

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  13. Role of PET in gene therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2002-01-01

    In addition to the well-established use of positron emission tomography (PET) in clinical oncology, novel roles for PET are rapidly emerging in the field of gene therapy. Methods for controlled gene delivery to living bodies, made available through advances in molecular biology, are currently being employed in animals for reasearch purposes and in humans to treat diseases such as cancer. Although gene therapy is still in its early developmental stage, it is perceived that many serious illnesses could be treated successfully by the use of therapeutic gene delivery. A major challenge for the widespread use of human gene therapy is to achieve a controlled and effective delivery of foreign genes to target cells and subsequently, adequate levels of expression. As such, the availability of noninvasive imaging methods to accurately assess the location, duration, and level of transgene expression is critical for optimizing gene therapy strategies. Current endeavors to achieve this goal include methods that utilize magnetic resonance imaging, optical imaging, and nuclear imaging techniques. As for PET, reporter systems that utilize gene encoding enzymes that accumulate postion labeled substrates and those transcribing surface receptors that bind specific positron labeled ligands have been successfully developed. More recent advances in this area include improved reporter gene constructs and radiotracers, introduction of potential strategies to monitor endogenous gene expression, and human pilot studies evaluating the distribution and safety of reporter PET tracers. The remarkably rapid progress occuring in gene imaging technology indicates its importance and wide range of application. As such, gene imaging is likely to become a major and exciting new area for future application of PET technology

  14. Role of PET in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Han [School of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2002-02-01

    In addition to the well-established use of positron emission tomography (PET) in clinical oncology, novel roles for PET are rapidly emerging in the field of gene therapy. Methods for controlled gene delivery to living bodies, made available through advances in molecular biology, are currently being employed in animals for reasearch purposes and in humans to treat diseases such as cancer. Although gene therapy is still in its early developmental stage, it is perceived that many serious illnesses could be treated successfully by the use of therapeutic gene delivery. A major challenge for the widespread use of human gene therapy is to achieve a controlled and effective delivery of foreign genes to target cells and subsequently, adequate levels of expression. As such, the availability of noninvasive imaging methods to accurately assess the location, duration, and level of transgene expression is critical for optimizing gene therapy strategies. Current endeavors to achieve this goal include methods that utilize magnetic resonance imaging, optical imaging, and nuclear imaging techniques. As for PET, reporter systems that utilize gene encoding enzymes that accumulate postion labeled substrates and those transcribing surface receptors that bind specific positron labeled ligands have been successfully developed. More recent advances in this area include improved reporter gene constructs and radiotracers, introduction of potential strategies to monitor endogenous gene expression, and human pilot studies evaluating the distribution and safety of reporter PET tracers. The remarkably rapid progress occuring in gene imaging technology indicates its importance and wide range of application. As such, gene imaging is likely to become a major and exciting new area for future application of PET technology.

  15. A titratable two-step transcriptional amplification strategy for targeted gene therapy based on ligand-induced intramolecular folding of a mutant human estrogen receptor

    DEFF Research Database (Denmark)

    Chen, Ian Y; Paulmurugan, Ramasamy; Nielsen, Carsten Haagen

    2014-01-01

    PURPOSE: The efficacy and safety of cardiac gene therapy depend critically on the level and the distribution of therapeutic gene expression following vector administration. We aimed to develop a titratable two-step transcriptional amplification (tTSTA) vector strategy, which allows modulation...... of transcriptionally targeted gene expression in the myocardium. PROCEDURES: We constructed a tTSTA plasmid vector (pcTnT-tTSTA-fluc), which uses the cardiac troponin T (cTnT) promoter to drive the expression of the recombinant transcriptional activator GAL4-mER(LBD)-VP2, whose ability to transactivate the downstream...... induction of myocardial fluc expression. HTV injection of pcTnT-tTSTA-fluc led to negligible long-term hepatic fluc expression, regardless of the raloxifene dose given. CONCLUSIONS: The tTSTA vector strategy can effectively modulate transgene expression in a tissue-specific manner. Further refinement...

  16. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  17. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-01

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy

  18. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-15

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy.

  19. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  20. Shock wave induced sonoporation and gene transfer

    Science.gov (United States)

    Miller, Douglas L.

    2003-10-01

    During shockwave (SW) treatment, cavitation activity can be applied for cell killing. A bonus is that some surviving cells appear to be briefly permeabilized, or sonoporated, allowing them to take up large molecules including DNA. In vitro research has indicated that as the number of SW increased, survival declined exponentially but the number of sonoporated cells increased to better than 50% of survivors for 1000 SW. In vivo tests have demonstrated SW-induced tumor ablation could indeed be accompanied by the transfection of marker plasmids into mouse B16 melanoma tumors in vivo. With intratumor injection of plasmid DNA and air bubbles, significant results were obtained for only 400 SW. In a trial of cancer therapy, the effects of 500 SW combined with interleukin-12 immuno-gene therapy was observed on the progression of two mouse tumors, B16 melanoma and RENCA renal carcinoma. The combination of SW and IL-12 plasmid injection provided a statistically significant inhibition of tumor growth relative to SW alone for both tumor models, demonstrating feasibility for this treatment method. In the future, the development of intravenous gene delivery and improved transfection, together with image-guided ultrasound treatment, should lead to the clinical application of ultrasound enhanced gene therapy. [Work supported by NIH Grant No. EB002782.

  1. Current Experimental Studies of Gene Therapy in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Jing-ya Lin

    2017-05-01

    Full Text Available Parkinson's disease (PD was characterized by late-onset, progressive dopamine neuron loss and movement disorders. The progresses of PD affected the neural function and integrity. To date, most researches had largely addressed the dopamine replacement therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the drug. And the mechanism of PD is so complicated that it's hard to solve the problem by just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson's disease, searching for new method that may affect the neurodegeneration processes in it. In this paper, we reviewed current delivery methods used in gene therapies for PD, we also summarized the primary target of the gene therapy in the treatment of PD, such like neurotrophic factor (for regeneration, the synthesis of neurotransmitter (for prolong the duration of L-dopa, and the potential proteins that might be a target to modulate via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson's disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling features of different gene therapies in the treatment of PD.

  2. Ethical issues of perinatal human gene therapy.

    Science.gov (United States)

    Fletcher, J C; Richter, G

    1996-01-01

    This paper examines some key ethical issues raised by trials of human gene therapy in the perinatal period--i.e., in infants, young children, and the human fetus. It describes five resources in ethics for researchers' considerations prior to such trials: (1) the history of ethical debate about gene therapy, (2) a literature on the relevance of major ethical principles for clinical research, (3) a body of widely accepted norms and practices, (4) knowledge of paradigm cases, and (5) researchers' own professional integrity. The paper also examines ethical concerns that must be met prior to any trial: benefits to and safety of subjects, informed assent of children and informed parental permission, informed consent of pregnant women in fetal gene therapy, protection of privacy, and concerns about fairness in the selection of subjects. The paper criticizes the position that cases of fetal gene therapy should be restricted only to those where the pregnant woman has explicitly refused abortion. Additional topics include concerns about genetic enhancement and germ-line gene therapy.

  3. Gene Therapy and its applications in Dentistry

    Directory of Open Access Journals (Sweden)

    Sharma Lakhanpal Manisha

    2006-01-01

    Full Text Available This era of advanced technology is marked by progress in identifying and understanding the molecular and cellular cause of a disease. With the conventional methods of treatment failing to render satisfactory results, gene therapy is not only being used for the cure of inherited diseases but also the acquired ones. The broad spectrum of gene therapy includes its application in the treatment of oral cancer and precancerous conditions and lesions, treatment of salivary gland diseases, bone repair, autoimmune diseases, DNA vaccination, etc. The aim of this article is to throw light on the history, methodology, applications and future of gene therapy as it would change the nature and face of dentistry in the coming years.

  4. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  5. Gene therapy of cancer by vaccines carrying inserted immunostimulatory genes

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2007-01-01

    Roč. 53, č. 3 (2007), s. 71-73 ISSN 0015-5500 Grant - others:EU-FP6 NoE Clinigene(XE) 018933; Liga proti rakovině, Praha(CZ) XX Institutional research plan: CEZ:AV0Z50520514 Keywords : gene therapy * immunostimulatory genes * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.596, year: 2007

  6. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy.

    Science.gov (United States)

    Javan, Bita; Atyabi, Fatemeh; Shahbazi, Majid

    2018-04-12

    This investigation was conducted to construct a hypoxia/colorectal dual-specific bidirectional short hairpin RNA (shRNA) expression vector and to transfect it into the colon cancer cell line HT-29 with PEI/chitosan-TBA nanoparticles for the simultaneous knock down of β-catenin and Bcl-2 under hypoxia. To construct a pRNA-bipHRE-CEA vector, the carcinoma embryonic antigen (CEA) promoter designed in two directions and the vascular endothelial growth factor (VEGF) enhancer were inserted between two promoters for hypoxic cancer specific gene expression. To confirm the therapeutic effect of the dual-specific vector, β-catenin and Bcl-2 shRNAs were inserted downstream of each promoter. The physicochemical properties, the cytotoxicity, and the transfection efficiency of these PEI/chitosan-TBA nanoparticles were investigated. In addition, the antitumor effects of the designed vector on the expression of β-catenin and Bcl-2, cell cycle distribution, and apoptosis were investigated in vitro. The silencing effect of the hypoxia-response shRNA expression vector was relatively low (18%-25%) under normoxia, whereas it was significantly increased to approximately 50%-60% in the HT-29 cell line. Moreover, the cancer cells showed significant G0/G1 arrest and increased apoptosis due to gene silencing under hypoxia. Furthermore, MTS assay, fluorescence microscopy images, and flow cytometry analyses confirmed that the PEI/chitosan-TBA blend system provided effective transfection with low cytotoxicity. This novel hypoxia-responsive shRNA expression vector may be useful for RNA interference (RNAi)-based cancer gene therapy in hypoxic colorectal tumors. Moreover, the PEI/chitosan-TBA copolymer might be a promising gene carrier for use in gene transfer in vivo. Copyright © 2017. Published by Elsevier Inc.

  7. Theranostic Imaging of Cancer Gene Therapy.

    Science.gov (United States)

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.

  8. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  9. Recent trends in the gene therapy of β-thalassemia

    Directory of Open Access Journals (Sweden)

    Finotti A

    2015-02-01

    Full Text Available Alessia Finotti,1–3 Laura Breda,4 Carsten W Lederer,6,7 Nicoletta Bianchi,1–3 Cristina Zuccato,1–3 Marina Kleanthous,6,7 Stefano Rivella,4,5 Roberto Gambari1–3 1Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy; 2Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy; 3Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy; 4Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA; 5Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA; 6Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; 7Cyprus School of Molecular Medicine, Nicosia, Cyprus Abstract: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most

  10. The gene therapy revolution in ophthalmology.

    Science.gov (United States)

    Al-Saikhan, Fahad I

    2013-04-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber's Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red-green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable.

  11. Application of shRNA-containing herpes simplex virus type 1 (HSV-1)-based gene therapy for HSV-2-induced genital herpes.

    Science.gov (United States)

    Liu, Zhihong; Xiang, Yang; Wei, Zhun; Yu, Bo; Shao, Yong; Zhang, Jie; Yang, Hong; Li, Manmei; Guan, Ming; Wan, Jun; Zhang, Wei

    2013-11-01

    HSV-1-based vectors have been widely used to achieve targeted delivery of genes into the nervous system. In the current study, we aim to use shRNA-containing HSV-1-based gene delivery system for the therapy of HSV-2 infection. Guinea pigs were infected intravaginally with HSV-2 and scored daily for 100 days for the severity of vaginal disease. HSV-2 shRNA-containing HSV-1 was applied intravaginally daily between 8 and 14 days after HSV-2 challenge. Delivery of HSV-2 shRNA-containing HSV-1 had no effect on the onset of disease and acute virus shedding in animals, but resulted in a significant reduction in both the cumulative recurrent lesion days and the number of days with recurrent disease. Around half of the animals in the HSV-2 shRNA group did not develop recurrent disease 100 days post HSV-2 infection. In conclusion, HSV-2 shRNA-containing HSV-1 particles are effective in reducing the recurrence of genital herpes caused by HSV-2. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  13. Conditional RNAi: towards a silent gene therapy.

    Science.gov (United States)

    Lee, Sang-Kyung; Kumar, Priti

    2009-07-02

    RNA interference (RNAi) has the potential to permit the downregulation of virtually any gene. While transgenic RNAi enables stable propagation of the resulting phenotype to progeny, the dominant nature of RNAi limits its use to applications where the continued suppression of gene expression does not disturb normal cell functioning. This is of particular importance when the target gene product is essential for cell survival, development or differentiation. It is therefore desirable that knockdown be externally regulatable. This review is aimed at providing an overview of the approaches for conditional RNAi in mammalian systems, with a special mention of studies employing these approaches to target therapeutically/biologically relevant molecules, their advantages and disadvantages, and a pointer towards approaches best suited for RNAi-based gene therapy.

  14. Gene therapy for Stargardt disease associated with ABCA4 gene.

    Science.gov (United States)

    Han, Zongchao; Conley, Shannon M; Naash, Muna I

    2014-01-01

    Mutations in the photoreceptor-specific flippase ABCA4 lead to accumulation of the toxic bisretinoid A2E, resulting in atrophy of the retinal pigment epithelium (RPE) and death of the photoreceptor cells. Many blinding diseases are associated with these mutations including Stargardt's disease (STGD1), cone-rod dystrophy, retinitis pigmentosa (RP), and increased susceptibility to age-related macular degeneration. There are no curative treatments for any of these dsystrophies. While the monogenic nature of many of these conditions makes them amenable to treatment with gene therapy, the ABCA4 cDNA is 6.8 kb and is thus too large for the AAV vectors which have been most successful for other ocular genes. Here we review approaches to ABCA4 gene therapy including treatment with novel AAV vectors, lentiviral vectors, and non-viral compacted DNA nanoparticles. Lentiviral and compacted DNA nanoparticles in particular have a large capacity and have been successful in improving disease phenotypes in the Abca4 (-/-) murine model. Excitingly, two Phase I/IIa clinical trials are underway to treat patients with ABCA4-associated Startgardt's disease (STGD1). As a result of the development of these novel technologies, effective therapies for ABCA4-associated diseases may finally be within reach.

  15. Understanding and Prevention of “Therapy-” Induced Dyskinesias

    Directory of Open Access Journals (Sweden)

    Iciar Aviles-Olmos

    2012-01-01

    Full Text Available L-dopa is the most effective, currently available treatment for Parkinson’s disease (PD, but it leads to the development of involuntary movements known as L-dopa-induced dyskinesia (LID in the majority of patients after long-term use. Both gene and cell therapy approaches are the subject of multiple ongoing studies as potential ways of relieving symptoms of PD without the complication of dyskinesia. However, the spectre of dyskinesia in the absence of L-dopa, the so-called “off-phase” or graft-induced dyskinesia (GID, remains a major obstacle particularly in the further development of cell therapy in PD, but it is also a concern for proponents of gene therapy approaches. LID results from nonphysiological dopamine release, supersensitivity of dopamine receptors, and consequent abnormal signalling through mechanisms of synaptic plasticity. Restoration of physiological circuitry within the basal ganglia loops is ultimately the aim of all cell and gene therapy approaches but each using distinctive strategies and accompanied by risks of exacerbation of LID or development of “off-phase”/GID. In this paper we discuss the details of what is understood regarding the development of dyskinesias with relevance to cell and gene therapy and potential strategies to minimize their occurrence.

  16. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  17. Gene Therapy of T Helper Cells in HIV Infection. Mathematical Model of the Criteria for Clinical Effect

    DEFF Research Database (Denmark)

    Lund, Ole; Lund, Ole søgaard; Gram, Gregers

    1997-01-01

    The paper presents a mathematical model of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. Our main results are that the therapy should be designed to give the transduced cells a significant but not necessarily total protection against HIV-induced cell...... deaths, and to avoid the production of viral mutants that are insensitive to gene therapy. The transduced cells will not survive if the gene therapy only blocks the spread of virus....

  18. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  19. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  20. Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis

    Science.gov (United States)

    Tim, Carla Roberta; Bossini, Paulo Sérgio; Kido, Hueliton Wilian; Malavazi, Iran; von Zeska Kress, Marcia Regina; Carazzolle, Marcelo Falsarella; Rennó, Ana Cláudia; Parizotto, Nivaldo Antonio

    2016-08-01

    This study investigates the histological modifications produced by low level laser therapy (LLLT) on the first day of bone repair, as well as evaluates the LLLT effects on collagen expression on the site of a fracture. Twenty Wistar rats were distributed into a control group (CG) and a laser group (LG). Laser irradiation of Ga-Al-As laser 830 nm, 30 mW, 94 s, 2.8 J was performed in five sessions. Animals were euthanized on day 5 postsurgery. Histopathological analysis showed that LLLT was able to increase deposition of granulation tissue and newly formed bone at the site of the injury. In addition, picrosirius analysis showed that collagen fiber organization in the LG was enhanced compared to CG. Microarray analysis demonstrated that LLLT produced an upregulation type I collagen (COL-I). Immunohistochemical analysis revealed that the subjects that were treated presented a higher immunoexpression of COL-I. Our findings indicated that LLLT improves bone healing by producing a significant increase in the expression of collagen genes.

  1. Targeting Gene-Viro-Therapy with AFP driving Apoptin gene shows potent antitumor effect in hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Zhang Kang-Jian

    2012-02-01

    Full Text Available Abstract Background Gene therapy and viral therapy are used for cancer therapy for many years, but the results are less than satisfactory. Our aim was to construct a new recombinant adenovirus which is more efficient to kill hepatocarcinoma cells but more safe to normal cells. Methods By using the Cancer Targeting Gene-Viro-Therapy strategy, Apoptin, a promising cancer therapeutic gene was inserted into the double-regulated oncolytic adenovirus AD55 in which E1A gene was driven by alpha fetoprotein promoter along with a 55 kDa deletion in E1B gene to form AD55-Apoptin. The anti-tumor effects and safety were examined by western blotting, virus yield assay, real time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide assay, Hoechst33342 staining, Fluorescence-activated cell sorting, xenograft tumor model, Immunohistochemical assay, liver function analysis and Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay. Results The recombinant virus AD55-Apoptin has more significant antitumor effect for hepatocelluar carcinoma cell lines (in vitro than that of AD55 and even ONYX-015 but no or little impair on normal cell lines. Furthermore, it also shows an obvious in vivo antitumor effect on the Huh-7 liver carcinoma xenograft in nude mice with bigger beginning tumor volume till about 425 mm3 but has no any damage on the function of liver. The induction of apoptosis is involved in AD55-Apoptin induced antitumor effects. Conclusion The AD55-Apoptin can be a potential anti-hepatoma agent with remarkable antitumor efficacy as well as higher safety in cancer targeting gene-viro-therapy system.

  2. Cancer gene therapy with targeted adenoviruses.

    Science.gov (United States)

    Bachtarzi, Houria; Stevenson, Mark; Fisher, Kerry

    2008-11-01

    Clinical experience with adenovirus vectors has highlighted the need for improved delivery and targeting. This manuscript aims to provide an overview of the techniques currently under development for improving adenovirus delivery to malignant cells in vivo. Primary research articles reporting improvements in adenoviral gene delivery are described. Strategies include genetic modification of viral coat proteins, non-genetic modifications including polymer encapsulation approaches and pharmacological interventions. Reprogramming adenovirus tropism in vitro has been convincingly demonstrated using a range of genetic and physical strategies. These studies have provided new insights into our understanding of virology and the field is progressing. However, there are still some limitations that need special consideration before adenovirus-targeted cancer gene therapy emerges as a routine treatment in the clinical setting.

  3. Radiation-induced gene responses

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-01-01

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5' region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression

  4. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  5. Hereditary hemochromatosis: An opportunity for gene therapy

    Directory of Open Access Journals (Sweden)

    FERNANDO EZQUER

    2006-01-01

    Full Text Available Levels of body iron should be tightly controlled to prevent the formation of oxygen radicals, lipoperoxidation, genotoxicity, and the production of cytotoxic cytokines, which result in damage to a number of organs. Enterocytes in the intestinal villae are involved in the apical uptake of iron from the intestinal lumen; iron is further exported from the cells into the circulation. The apical divalent metal transporter-1 (DMT1 transports ferrous iron from the lumen into the cells, while the basolateral transporter ferroportin extrudes iron from the enterocytes into the circulation. Patients with hereditary hemochromatosis display an accelerated transepithelial uptake of iron, which leads to body iron accumulation that results in cirrhosis, hepatocellular carcinoma, pancreatitis, and cardiomyopathy. Hereditary hemochromatosis, a recessive genetic condition, is the most prevalent genetic disease in Caucasians, with a prevalence of one in 300 subjects. The majority of patients with hereditary hemochromatosis display mutations in the gene coding for HFE, a protein that normally acts as an inhibitor of transepithelial iron transport. We discuss the different control points in the homeostasis of iron and the different mutations that exist in patients with hereditary hemochromatosis. These control sites may be influenced by gene therapeutic approaches; one general therapy for hemochromatosis of different etiologies is the inhibition of DMT1 synthesis by antisense-generating genes, which has been shown to markedly inhibit apical iron uptake by intestinal epithelial cells. We further discuss the most promising strategies to develop gene vectors and deliver them into enterocytes

  6. Anti-tumor effect of adenovirus-mediated suicide gene therapy under control of tumor-specific and radio-inducible chimeric promoter in combination with γ-ray irradiation in vivo

    International Nuclear Information System (INIS)

    Sun Wenjie; Yu Haijun; Xiongjie; Xu Yu; Liao Zhengkai; Zhou Fuxiang; Xie Conghua; Zhou Yunfeng

    2011-01-01

    Objective: To detect the selective inhibitory effects of irradiation plus adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic acid (IAA) suicide gene system using tumor-specific and radio-inducible chimeric promoter on human hepatocellular carcinoma subcutaneously xenografted in nude mouse. Methods: Recombinant replicated-deficient adenovirus vector containing HRP gene and chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 radio-inducible CArG elements was constructed. A human subcutaneous transplanting hepatocellular carcinoma (MHCC97 cell line) model was treated with γ-ray irradiation plus intra-tumor injections of adenoviral vector and intra-peritoneal injections of prodrug IAA. The change of tumor volume and tumor growth inhibiting rate, the survival time of nude mice, as well as histopathology of xenograft tumor and normal tissues were evaluated. Results: Thirty one days after the treatment, the relative tumor volumes in the negative, adenovirus therapy, irradiation, and combination groups were 49.23±4.55, 27.71±7.74, 28.53±10.48 and 11.58±3.23, respectively.There was a significantly statistical difference among them (F=16.288, P<0.01).The inhibition effect in the combination group was strongest as compared with that in other groups, and its inhibition ratio was 76.5%. The survival period extended to 43 d in the combination group, which showed a significantly difference with that in the control group (χ 2 =18.307, P<0.01). The area of tumors necrosis in the combination group was larger than that in the other groups, and the normal tissues showed no treatment-related toxic effect in all groups. However, multiple hepatocellular carcinoma metastases were observed in the liver in the control group, there were a few metastases in the monotherapy groups and no metastasis in the combination group. Conclusions: Adenovirus-mediated suicide gene therapy plus radiotherapy dramatically could inhibit tumor growth and prolong

  7. Gene therapy in animal models of autosomal dominant retinitis pigmentosa

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success. PMID:23077406

  8. Personalizing gene therapy in gastric cancer.

    Science.gov (United States)

    Vogiatzi, P; Cassone, M; Claudio, P P

    2006-11-01

    Gene therapy was proposed many decades ago as a more straightforward and definitive way of curing human diseases, but only recently technical advancements and improved knowledge have allowed its active development as a broad and promising research field. After the first successes in the cure of genetic and infectious diseases, it has been actively investigated as a means to decrease the burden and suffering generated by cancer. The field of gastric cancer is witnessing an impressive flourishing of studies testing the possibilities and actual efficacy of the many different strategies employed in gene therapy, and overall results seem to be two-sided: while original ideas and innovative protocols are providing extremely interesting contributions with great potential, more advanced-phase studies concluded so far have fallen short of expectations regarding efficacy, although invariably demonstrating little or no toxicity. An overview of the major efforts in this field is provided here, and a critical discussion is presented on the single strategies undertaken and on the overall balance between potentiality and pitfalls. Copyright 2006 Prous Science. All rights reserved.

  9. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  11. Gene replacement therapy for genetic hepatocellular jaundice.

    Science.gov (United States)

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  12. Applications of lipid nanoparticles in gene therapy.

    Science.gov (United States)

    Del Pozo-Rodríguez, Ana; Solinís, María Ángeles; Rodríguez-Gascón, Alicia

    2016-12-01

    Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been recognized, among the large number of non-viral vectors for gene transfection, as an effective and safety alternative to potentially treat both genetic and not genetic diseases. A key feature is the possibility to be designed to overcome the numerous challenges for successful gene delivery. Lipid nanoparticles (LNs) are able to overcome the main biological barriers for cell transfection, including degradation by nucleases, cell internalization intracellular trafficking, and selectively targeting to a specific cell type. Additionally, they present important advantages: from a safety point of view LNs are prepared with well tolerated components, and from a technological point of view, they can be easily produced at large-scale, can be subjected to sterilization and lyophilization, and have shown good storage stability. This review focuses on the potential of SLNs and NLCs for gene therapy, including the main advances in their application for the treatment of ocular diseases, infectious diseases, lysosomal storage disorders and cancer, and current research for their future clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Advances in study of reporter gene imaging for monitoring gene therapy

    International Nuclear Information System (INIS)

    Mu Chuanjie; Zhou Jiwen

    2003-01-01

    To evaluate the efficiency of gene therapy, it is requisite to monitor localization and expression of the therapeutic gene in vivo. Monitoring expression of reporter gene using radionuclide reporter gene technique is the best method. Adenoviral vectors expressing reporter gene are constructed using gene fusion, bicistronic, double promoter or bidirectional transcriptional recombination techniques, and transferred into target cells and tissues, then injected radiolabeled reporter probes which couple to the reporter genes. The reporter genes can be imaged invasively, repeatedly, quantitatively with γ-camera, PET and SPECT. Recently, several reporter gene and reporter probe systems have been used in studies of gene therapy. The part of them has been used for clinic trials

  14. Progresses towards safe and efficient gene therapy vectors.

    Science.gov (United States)

    Chira, Sergiu; Jackson, Carlo S; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A; Berindan-Neagoe, Ioana

    2015-10-13

    The emergence of genetic engineering at the beginning of the 1970's opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.

  15. Beta-Adrenergic gene therapy for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Koch Walter J

    2000-10-01

    Full Text Available Abstract Gene therapy using in vivo recombinant adenovirus-mediated gene transfer is an effective technique that offers great potential to improve existing drug treatments for the complex cardiovascular diseases of heart failure and vascular smooth muscle intimal hyperplasia. Cardiac-specific adenovirus-mediated transfer of the carboxyl-terminus of the β-adrenergic receptor kinase (βARKct, acting as a Gβγ-β-adrenergic receptor kinase (βARK1 inhibitor, improves basal and agonist-induced cardiac performance in both normal and failing rabbit hearts. In addition, βARKct adenovirus infection of vascular smooth muscle is capable of significantly diminishing neointimal proliferation after angioplasty. Therefore, further investigation is warranted to determine whether inhibition of βARK1 activity and sequestration of Gβγ via an adenovirus that encodes the βARKct transgene might be a useful clinical tool for the treatment of cardiovascular pathologies.

  16. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  17. Simian virus 40 vectors for pulmonary gene therapy

    Directory of Open Access Journals (Sweden)

    Oppenheim Ariella

    2007-10-01

    Full Text Available Abstract Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS. Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40 vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP. SV40 vectors carrying the luciferase reporter gene (SV/luc were administered intratracheally immediately after sepsis induction. Sham operated (SO as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C. Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

  18. Immunological Monitoring to Rationally Guide AAV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Cedrik Michael Britten

    2013-09-01

    Full Text Available Recent successes with adeno-associated virus (AAV-based gene therapies fuel the hope for new treatments for hereditary diseases. Pre-existing as well as therapy-induced immune responses against both AAV and the encoded transgenes have been described and may impact on safety and efficacy of gene-therapy approaches. Consequently, monitoring of vector- and transgene-specific immunity is mandated and may rationally guide clinical development. Next to the humoral immune response, the cellular response is central in our understanding of the host reaction in gene therapy. But in contrast to the monitoring of antibodies, which has matured over many decades, sensitive and robust monitoring of T cells is a relatively new development. To make cellular immune assessments fit for purpose, investigators need to know, control and report the critical assay variables that influence the results. In addition, the quality of immune assays needs to be continuously adjusted to allow for exploratory hypothesis generation in early stages and confirmatory hypothesis validation in later stages of clinical development. The concept of immune assay harmonization which includes use of field-wide benchmarks, harmonization guidelines, and external quality control can support the context-specific evolution of immune assays. Multi-center studies pose particular challenges to sample logistics and quality control of sample specimens. Cooperative groups need to define if immune assessments should be performed in one central facility, in peripheral labs or including a combination of both. Finally, engineered reference samples that contain a defined number of antigen-specific T cells may become broadly applicable tools to control assay performance over time or across institutions.

  19. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  20. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  1. HIV-derived vectors for gene therapy targeting dendritic cells.

    Science.gov (United States)

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  2. Progress toward Gene Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Chamberlain, Joel R; Chamberlain, Jeffrey S

    2017-05-03

    Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups. Progress in the development of DMD gene therapy has been well documented in Molecular Therapy over the past 20 years and will be reviewed here to highlight prospects for success in the imminent human clinical trials planned by several groups. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  3. Modifier genes: Moving from pathogenesis to therapy.

    Science.gov (United States)

    McCabe, Edward R B

    2017-09-01

    This commentary will focus on how we can use our knowledge about the complexity of human disease and its pathogenesis to identify novel approaches to therapy. We know that even for single gene Mendelian disorders, patients with identical mutations often have different presentations and outcomes. This lack of genotype-phenotype correlation led us and others to examine the roles of modifier genes in the context of biological networks. These investigations have utilized vertebrate and invertebrate model organisms. Since one of the goals of research on modifier genes and networks is to identify novel therapeutic targets, the challenges to patient access and compliance because of the high costs of medications for rare genetic diseases must be recognized. A recent article explored protective modifiers, including plastin 3 (PLS3) and coronin 1C (CORO1C), in spinal muscular atrophy (SMA). SMA is an autosomal recessive deficit of survival motor neuron protein (SMN) caused by mutations in SMN1. However, the severity of SMA is determined primarily by the number of SMN2 copies, and this results in significant phenotypic variability. PLS3 was upregulated in siblings who were asymptomatic compared with those who had SMA2 or SMA3, but identical homozygous SMN1 deletions and equal numbers of SMN2 copies. CORO1C was identified by interrogation of the PLS3 interactome. Overexpression of these proteins rescued endocytosis in SMA models. In addition, antisense RNA for upregulation of SMN2 protein expression is being developed as another way of modifying the SMA phenotype. These investigations suggest the practical application of protective modifiers to rescue SMA phenotypes. Other examples of the potential therapeutic value of novel protective modifiers will be discussed, including in Duchenne muscular dystrophy and glycerol kinase deficiency. This work shows that while we live in an exciting era of genomic sequencing, a functional understanding of biology, the impact of its

  4. Constraint-induced movement therapy after stroke

    NARCIS (Netherlands)

    Kwakkel, G.; Veerbeek, J.M.; van Wegen, E.E.H.; Wolf, S.L.

    2015-01-01

    Constraint-induced movement therapy (CIMT) was developed to overcome upper limb impairments after stroke and is the most investigated intervention for the rehabilitation of patients. Original CIMT includes constraining of the non-paretic arm and task-oriented training. Modified versions also apply

  5. Neuroplasticity in Constraint-Induced Movement Therapy

    DEFF Research Database (Denmark)

    Blicher, Jakob; Near, Jamie; Næss-Schmidt, Erhard

    2014-01-01

    In healthy subjects, decreasing GABA facilitates motor learning[1]. Recent studies, using PET[2], TMS[3-5], and pharmacological challenges[6], have pointed indirectly to a decrease in neuronal inhibitory activity after stroke. Therefore, we hypothesize that a suppression of GABA levels post strok...... might be beneficial to motor recovery during Constraint-Induced Movement Therapy (CIMT)....

  6. Prospects for Gene Therapy in the Fragile X Syndrome

    Science.gov (United States)

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  7. Twenty Years of European Union Support to Gene Therapy and Gene Transfer.

    Science.gov (United States)

    Gancberg, David

    2017-11-01

    For 20 years and throughout its research programmes, the European Union has supported the entire innovation chain for gene transfer and gene therapy. The fruits of this investment are ripening as gene therapy products are reaching the European market and as clinical trials are demonstrating the safety of this approach to treat previously untreatable diseases.

  8. Restoration of Haemoglobin Level Using Hydrodynamic Gene Therapy with Erythropoietin Does Not Alleviate the Disease Progression in an Anaemic Mouse Model for TGFβ1-Induced Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Pedersen, Lea Hougaard; Wogensen, Lise; Marcussen, N.

    2015-01-01

    . The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition...... of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol...... treatment in this model of chronic kidney disease normalises haemoglobin levels but has no effect on kidney fibrosis or function....

  9. Gene therapy for the inner ear: challenges and promises.

    Science.gov (United States)

    Ryan, Allen F; Dazert, Stefan

    2009-01-01

    Since the recognition of genes as the discrete units of heritability, and of DNA as their molecular substrate, the utilization of genes for therapeutic purposes has been recognized as a potential means of correcting genetic disorders. The tools of molecular biology, which allow the manipulation of DNA sequence, provided the means to put this concept into practice. However, progress in the implementation of these ideas has been slow. Here we review the history of the idea of gene therapy and the complexity of genetic disorders. We also discuss the requirements for sequence-based therapy to be accomplished for different types of inherited diseases, as well as the methods available for gene manipulation. The challenges that have limited the applications of gene therapy are reviewed, as are ethical concerns. Finally, we discuss the promise of gene therapy to address inherited and acquired disorders of the inner ear. Copyright (c) 2009 S. Karger AG, Basel.

  10. Factitious panniculitis induced by cupping therapy.

    Science.gov (United States)

    Moon, Suk-Ho; Han, Hyun-Ho; Rhie, Jong-Won

    2011-11-01

    Cupping therapy is an alternative medical procedure that has been widely performed in Asian countries to relieve pain. It is known that there is no complication to this therapy, so many non-health care professionals have performed this procedure. However, there have been few reports on complications, such as iron deficiency anemia, hemorrhagic bullae, kelloids, vasovagal syncope, and foreign body reactions. Masses associated with panniculitis induced by cupping are extremely rare, and they require a unique approach.A 56-year-old woman presented with a 10-month history of multiple masses in the posterior neck and right shoulder areas. The patient repeatedly attempted cupping therapy by herself, and multiple palpable masses developed in the posterior neck and right shoulder area where cupping therapy had been performed. The masses were enlarged by repeated cupping, and they decreased in size when cupping was stopped. Among all lesions, the 2 masses with tenderness were surgically excised. The remaining masses resolved after cupping therapy was ceased. When a patient with subcutaneous mass has a history of cupping or trace of cupping marks, panniculitis induced by cupping should be suspected. The lesion seems to spontaneously resolve unless they are repeatedly stimulated. However, surgical resection is considered in patients with infections or severe tenderness as a complication.

  11. Gene therapy for sickle cell disease: An update.

    Science.gov (United States)

    Demirci, Selami; Uchida, Naoya; Tisdale, John F

    2018-05-30

    Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice. Published by Elsevier Inc.

  12. Leber’s congenital amaurosis and the role of gene therapy in congenital retinal disorders

    Directory of Open Access Journals (Sweden)

    Walid Sharif

    2017-03-01

    Full Text Available Leber’s congenital amaurosis (LCA and recent gene therapy advancement for treating inherited retinopathies were extensive literature reviewed using MEDLINE, PubMed and EMBASE. Adeno-associated viral vectors were the most utilised vectors for ocular gene therapy. Cone photoreceptor cells might use an alternate pathway which was not reliant of the retinal pigment epithelium (RPE derived retinoid isomerohydrolase (RPE65 to access the 11-cis retinal dehydechromophore. Research efforts dedicated on the progression of a gene-based therapy for the treatment of LCA2. Such gene therapy approaches were extremely successful in canine, porcine and rodent LCA2 models. The recombinant AAV2.hRPE65v2 adeno-associated vector contained the RPE65 cDNA and was replication deficient. Its in vitro injection in target cells induced RPE65 protein production. The gene therapy trials that were so far conducted for inherited retinopathies have generated promising results. Phase I clinical trials to cure LCA and choroideremia demonstrated that adeno-associated viral vectors containing RPE genes and photoreceptors respectively, could be successfully administered to inherited retinopathy patients. A phase III trial is presently ongoing and if successful, it will lead the way to additional gene therapy attempts to cure monogenic, inherited retinopathies.

  13. Leber’s congenital amaurosis and the role of gene therapy in congenital retinal disorders

    Institute of Scientific and Technical Information of China (English)

    Walid; Sharif; Zuhair; Sharif

    2017-01-01

    Leber’s congenital amaurosis(LCA)and recent gene therapy advancement for treating inherited retinopathies were extensive literature reviewed using MEDLINE,Pub Med and EMBASE. Adeno-associated viral vectors were the most utilised vectors for ocular gene therapy. Cone photoreceptor cells might use an alternate pathway which was not reliant of the retinal pigment epithelium(RPE)derived retinoid isomerohydrolase(RPE65)to access the 11-cis retinal dehydechromophore. Research efforts dedicated on the progression of a gene-based therapy for the treatment of LCA2. Such gene therapy approaches were extremely successful in canine,porcine and rodent LCA2 models. The recombinant AAV2.h RPE65v2 adenoassociated vector contained the RPE65 cDNA and was replication deficient. Its in vitro injection in target cells induced RPE65 protein production. The gene therapy trials that were so far conducted for inherited retinopathies have generated promising results. Phase I clinical trials to cure LCA and choroideremia demonstrated that adeno-associated viral vectors containing RPE genes and photoreceptors respectively,could be successfully administered to inherited retinopathy patients. A phase III trial is presently ongoing and if successful,it will lead the way to additional gene therapy attempts to cure monogenic,inherited retinopathies.

  14. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  15. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  16. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  17. Communicating the promise for ocular gene therapies: challenges and recommendations.

    Science.gov (United States)

    Benjaminy, Shelly; Kowal, Stephanie P; MacDonald, Ian M; Bubela, Tania

    2015-09-01

    To identify challenges and pose solutions for communications about ocular gene therapy between patients and clinicians as clinical research progresses. Literature review with recommendations. Literature review of science communication best practices to inform recommendations for patient-clinician discussions about ocular gene therapy. Clinicians need to employ communications about ocular gene therapy that are both attentive to patient priorities and concerns and responsive to other sources of information, including overly positive news media and the Internet. Coverage often conflates research with therapy-clinical trials are experimental and are not risk free. If proven safe and efficacious, gene therapy may present a treatment but not a cure for patients who have already experienced vision loss. Clinicians can assist patients by providing realistic estimates for lengthy clinical development timelines and positioning current research within models of clinical translation. This enables patients to weigh future therapeutic options when making current disease management decisions. Ocular gene therapy clinical trials are raising hopes for treating a myriad of hereditary retinopathies, but most such therapies are many years in the future. Clinicians should be prepared to counter overly positive messaging, found in news media and on the Internet, with optimism tempered by evidence to support the ethical translation of gene therapy and other novel biotherapeutics. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    Science.gov (United States)

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  19. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  20. Gene therapy, early promises, subsequent problems, and recent breakthroughs.

    Science.gov (United States)

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist's ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non-life-threatening conditions including those adversely influence on a patient's quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.

  1. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    Directory of Open Access Journals (Sweden)

    Saeideh Razi Soofiyani

    2013-08-01

    Full Text Available Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.

  2. Fetal gene therapy: recent advances and current challenges.

    Science.gov (United States)

    Mattar, Citra N; Choolani, Mahesh; Biswas, Arijit; Waddington, Simon N; Chan, Jerry K Y

    2011-10-01

    Fetal gene therapy (FGT) can potentially be applied to perinatally lethal monogenic diseases for rescuing clinically severe phenotypes, increasing the probability of intact neurological and other key functions at birth, or inducing immune tolerance to a transgenic protein to facilitate readministration of the vector/protein postnatally. As the field is still at an experimental stage, there are several important considerations regarding the practicality and the ethics of FGT. Here, through a review of FGT studies, the authors discuss the role and applications of FGT, the progress made with animal models that simulate human development, possible adverse effects in the recipient fetus and the mother and factors that affect clinical translation. Although there are valid safety and ethical concerns, the authors argue that there may soon be enough convincing evidence from non-human primate models to take the next step towards clinical trials in the near future. © 2011 Informa UK, Ltd.

  3. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2012-11-29

    ...] Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products,'' dated November... Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies (OCTGT). The product areas covered by this...

  4. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation

    International Nuclear Information System (INIS)

    Anstett, A.

    2005-09-01

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  5. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes.

    Science.gov (United States)

    Rouanet, Marie; Lebrin, Marine; Gross, Fabian; Bournet, Barbara; Cordelier, Pierre; Buscail, Louis

    2017-06-08

    A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.

  6. Communicating in context: a priority for gene therapy researchers.

    Science.gov (United States)

    Robillard, Julie M

    2015-03-01

    History shows that public opinion of emerging biotechnologies has the potential to impact the research process through mechanisms such as funding and advocacy. It is critical, therefore, to consider public attitudes towards modern biotechnology such as gene therapy and more specifically towards the ethics of gene therapy, alongside advances in basic and clinical research. Research conducted through social media recently assessed how online users view the ethics of gene therapy and showed that while acceptability is high, significant ethical concerns remain. To address these concerns, the development of effective and evidence-based communication strategies that engage a wide range of stakeholders should be a priority for researchers.

  7. Germ-line gene therapy and the medical imperative.

    Science.gov (United States)

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  8. Design of radiopharmaceuticals for monitoring gene transfer therapy

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Staehler, P.; Kley, J.; Spiegel, M.; Gross, C.; Graepler, F.T.C.; Gregor, M.; Lauer, U.; Oberdorfer, F.

    1998-01-01

    The development of radiopharmaceuticals for monitoring gene transfer therapy with emission tomography is expected to lead to improved management of cancer by the year 2010. There are now only a few examples and approaches to the design of radiopharmaceuticals for gene transfer therapy. This paper introduces a novel concept for the monitoring of gene therapy. We present the optimisation of the labelling of recombinant human β-NGF ligands for in vitro studies prior to using 123 I for SPET and 124 I for PET studies. (author)

  9. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  10. The use of genes for performance enhancement: doping or therapy?

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira

    2011-12-01

    Full Text Available Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO, vascular endothelial growth factor (VEGF, insulin-like growth factor type 1 (IGF-1, myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  11. The use of genes for performance enhancement: doping or therapy?

    Science.gov (United States)

    Oliveira, R S; Collares, T F; Smith, K R; Collares, T V; Seixas, F K

    2011-12-01

    Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM) to enhance athletic performance. In such 'gene doping', exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO), vascular endothelial growth factor (VEGF), insulin-like growth factor type 1 (IGF-1), myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products) in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  12. A novel double-enhanced suicide gene therapy in a colon cancer cell line mediated by gef and apoptin.

    Science.gov (United States)

    Boulaiz, Houria; Aránega, Antonia; Cáceres, Blanca; Blanca, Cáceres; Alvarez, Pablo; Pablo, Alvarez; Serrano-Rodríguez, Fernando; Fernando, Rodríguez-Serrano; Carrillo, Esmeralda; Esmeralda, Carrillo; Melguizo, Consolación; Consolación, Melguizo; Prados, Jose; Jose, Prados

    2014-02-01

    Double-suicide gene therapy is a promising strategy for the treatment of advanced cancer. It has become an important research line in the development of gene therapy to overcome the drawbacks of single-gene therapy. The aim of this study was to investigate the usefulness of double-suicide gene therapy with the two suicide genes, gef and apoptin, in colon carcinoma. gef and apoptin genes were cloned into a doxycycline-regulated retrovirus-mediated gene expression system. Expression of both genes in the DLD-1 cell line was confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). Cell viability was determined with the sulforhodamine B colorimetric assay, and the cell cycle was studied by propidium iodide (PI) staining. Annexin V-FITC and PI assays were used to evaluate apoptosis, and the results were confirmed by electron microscopy. The mitochondrial membrane potential was measured by JC-1 assay. Our results showed that the combined expression of gef and apoptin genes was strikingly more effective than the expression of either gene alone. Co-expression of gef and apoptin synergistically enhanced the decrease in cell viability, increasing necrosis and inducing apoptosis in colon cancer cells via the mitochondrial pathway, which can be deficient in advanced or metastatic colon cancer. Double-suicide gene therapy based on gef and apoptin genes may be a candidate for the development of new colon cancer strategies, and further studies are warranted to establish the usefulness of double-suicide gene therapy in vivo.

  13. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    Science.gov (United States)

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  14. Bone Marrow Gene Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Elena Herrera-Carrillo

    2015-07-01

    Full Text Available Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS caused by human immunodeficiency virus (HIV. This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  15. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Arun K. Nalla

    2016-03-01

    Full Text Available Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC. Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.

  16. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  17. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    Science.gov (United States)

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  18. Adeno-associated virus LPL(S447X) gene therapy in LDL receptor knockout mice

    NARCIS (Netherlands)

    Rip, Jaap; Sierts, Jeroen A.; Vaessen, Stefan F. C.; Kastelein, John J. P.; Twisk, Jaap; Kuivenhoven, Jan Albert

    2007-01-01

    BACKGROUND: Overexpression of lipoprotein lipase (LPL) protects against atherosclerosis in genetically engineered mice. We tested whether a gene therapy vector that delivers human (h) LPL(S447X) cDNA to skeletal muscle could induce similar effects. METHODS: LDL receptor knockout (LDLr-/-) mice were

  19. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy

    NARCIS (Netherlands)

    Mahasreshti, PJ; Kataram, M; Wu, HJ; Yalavarthy, LP; Carey, D; Dent, P; Chada, S; Alvarez, RD; Haisma, HJ; Fisher, PB; Curiel, DT

    Objective. We have previously shown that adenoviral-mediated melanoma differentiation-associated gene-7 (Ad.mda-7) therapy induces apoptosis in ovarian cancer cells. However, the apoptosis induction was low and directly correlated with infectivity of Ad.mda-7. The objective of this study was to

  20. Investor Outlook: Gene Therapy Picking up Steam; At a Crossroads.

    Science.gov (United States)

    Schimmer, Joshua; Breazzano, Steven

    2016-09-01

    The gene therapy field continues to pick up steam with recent successes in a number of different therapeutic indications that highlight the potential for the platform. As the field continues to make progress, a growing data set of long-term safety and efficacy data will continue to define gene therapy's role, determining ultimately how widely it may be used beyond rare, serious diseases with high unmet needs. New technologies often take unanticipated twists and turns as patient exposure accumulates, and gene therapy may be no exception. That said, with many diseases that have no other treatment options beyond gene therapy and that present considerable morbidity and mortality, the field appears poised to withstand some minor and even major bumps in the road should they emerge.

  1. Gene therapy for CNS diseases – Krabbe disease

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rafi

    2016-06-01

    Full Text Available This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases.

  2. Molecular Genetic and Gene Therapy Studies of the Musculoskeletal System

    National Research Council Canada - National Science Library

    Baylink, David

    2004-01-01

    The primary goal of the proposed work is to apply several state of the art molecular genetic and gene therapy technologies to address fundamental questions in bone biology with a particular emphasis on attempting: l...

  3. Gene Therapy with the Sleeping Beauty Transposon System.

    Science.gov (United States)

    Kebriaei, Partow; Izsvák, Zsuzsanna; Narayanavari, Suneel A; Singh, Harjeet; Ivics, Zoltán

    2017-11-01

    The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Prevailing public perceptions of the ethics of gene therapy.

    Science.gov (United States)

    Robillard, Julie M; Roskams-Edris, Dylan; Kuzeljevic, Boris; Illes, Judy

    2014-08-01

    Gene therapy research is advancing rapidly, and hopes of treating a large number of brain disorders exist alongside ethical concerns. Most surveys of public attitudes toward these ethical issues are already dated and the content of these surveys has been researcher-driven. To examine current public perceptions, we developed an online instrument that is responsive and relevant to the latest research about ethics, gene therapy, and the brain. The 16-question survey was launched with the platform Amazon Mechanical Turk and was made available to residents of Canada and the United States. The survey was divided into six themes: (1) demographic information, (2) general opinions about gene therapy, (3) medical applications of gene therapy, (4) identity and moral/belief systems, (5) enhancement, and (6) risks. We received and analyzed responses from a total of 467 participants. Our results show that a majority of respondents (>90%) accept gene therapy as a treatment for severe illnesses such as Alzheimer disease, but this receptivity decreases for conditions perceived as less severe such as attention deficit hyperactivity disorder (79%), and for nontherapeutic applications (47%). The greatest area of concern for the application of gene therapy to brain conditions is the fear of not receiving sufficient information before undergoing the treatment. The main ethical concerns with enhancement were the potential for disparities in resource allocation, access to the procedure, and discrimination. When comparing these data with those from the 1990s, our findings suggest that the acceptability of gene therapy is increasing and that this trend is occurring despite lingering concerns over ethical issues. Providing the public and patients with up-to-date information and opportunities to engage in the discourse about areas of research in gene therapy is a priority.

  5. Bioethical conflicts of gene therapy: a brief critical review

    Directory of Open Access Journals (Sweden)

    José Ednésio da Cruz Freire

    2014-12-01

    Full Text Available Methods and techniques employed in gene therapy are reviewed in parallel with pertinent ethical conflicts. Clinical interventions based on gene therapy techniques preferentially use vectors for the transportation of therapeutic genes, however little is known about the potential risks and damages to the patient. Thus, attending carefully to the clinical complications arising as well as to security is essential. Despite the scientific and technological advances, there are still many uncertainties about the side effects of gene therapy. Moreover, there is a need, above all, to understand the principles of bioethics as both science and ethics, in accordance with its socioecological responsibility, in order to prioritize the health and welfare of man and nature, using properly natural resources and technology. Therefore, it is hard to determine objective results and to which extent the insertion of genes can affect the organism, as well as the ethical implication

  6. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  8. Gene set analysis of purine and pyrimidine antimetabolites cancer therapies.

    Science.gov (United States)

    Fridley, Brooke L; Batzler, Anthony; Li, Liang; Li, Fang; Matimba, Alice; Jenkins, Gregory D; Ji, Yuan; Wang, Liewei; Weinshilboum, Richard M

    2011-11-01

    Responses to therapies, either with regard to toxicities or efficacy, are expected to involve complex relationships of gene products within the same molecular pathway or functional gene set. Therefore, pathways or gene sets, as opposed to single genes, may better reflect the true underlying biology and may be more appropriate units for analysis of pharmacogenomic studies. Application of such methods to pharmacogenomic studies may enable the detection of more subtle effects of multiple genes in the same pathway that may be missed by assessing each gene individually. A gene set analysis of 3821 gene sets is presented assessing the association between basal messenger RNA expression and drug cytotoxicity using ethnically defined human lymphoblastoid cell lines for two classes of drugs: pyrimidines [gemcitabine (dFdC) and arabinoside] and purines [6-thioguanine and 6-mercaptopurine]. The gene set nucleoside-diphosphatase activity was found to be significantly associated with both dFdC and arabinoside, whereas gene set γ-aminobutyric acid catabolic process was associated with dFdC and 6-thioguanine. These gene sets were significantly associated with the phenotype even after adjusting for multiple testing. In addition, five associated gene sets were found in common between the pyrimidines and two gene sets for the purines (3',5'-cyclic-AMP phosphodiesterase activity and γ-aminobutyric acid catabolic process) with a P value of less than 0.0001. Functional validation was attempted with four genes each in gene sets for thiopurine and pyrimidine antimetabolites. All four genes selected from the pyrimidine gene sets (PSME3, CANT1, ENTPD6, ADRM1) were validated, but only one (PDE4D) was validated for the thiopurine gene sets. In summary, results from the gene set analysis of pyrimidine and purine therapies, used often in the treatment of various cancers, provide novel insight into the relationship between genomic variation and drug response.

  9. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  10. Current status of gene therapy for motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  11. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  12. Gene therapy: light is finally in the tunnel.

    Science.gov (United States)

    Cao, Huibi; Molday, Robert S; Hu, Jim

    2011-12-01

    After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.

  13. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies

    Directory of Open Access Journals (Sweden)

    Ayşe Öner

    2017-12-01

    Full Text Available Hereditary retinal dystrophies (HRDs are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.

  14. Nonviral Technologies for Gene Therapy in Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Cheng-Huang Su

    2008-06-01

    Full Text Available Gene therapy, which is still at an experimental stage, is a technique that attempts to correct or prevent a disease by delivering genes into an individual's cells and tissues. In gene delivery, a vector is a vehicle for transferring genetic material into cells and tissues. Synthetic vectors are considered to be prerequisites for gene delivery, because viral vectors have fundamental problems in relation to safety issues as well as large-scale production. Among the physical approaches, ultrasound with its associated bioeffects such as acoustic cavitation, especially inertial cavitation, can increase the permeability of cell membranes to macromolecules such as plasmid DNA. Microbubbles or ultrasound contrast agents lower the threshold for cavitation by ultrasound energy. Furthermore, ultrasound-enhanced gene delivery using polymers or other nonviral vectors may hold much promise for the future but is currently at the preclinical stage. We all know aging is cruel and inevitable. Currently, among the promising areas for gene therapy in acquired diseases, the incidences of cancer and ischemic cardiovascular diseases are strongly correlated with the aging process. As a result, gene therapy technology may play important roles in these diseases in the future. This brief review focuses on understanding the barriers to gene transfer as well as describing the useful nonviral vectors or tools that are applied to gene delivery and introducing feasible models in terms of ultrasound-based gene delivery.

  15. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  16. Adenovirus-mediated IL-12 gene therapy in combination with radiotherapy for murine liver cancer

    International Nuclear Information System (INIS)

    Wei Daoyan; Dai Bingbing; Wang Zhonghe; Chen Shishu

    2001-01-01

    Objective: To investigate the synergistic antitumor effects of adenovirus-mediated IL-12 gene therapy in combination with radiotherapy in mice bearing liver cancer. Methods: Balb/c mice bearing liver cancer received the treatment at day 1 with tumor local irradiation (TLI) of 20 Gy or mask irradiation when tumor size reached 0.6-1.0 cm. Within 1 hour after irradiation, adenovirus containing IL-12 gene or PBS was intra-tumor injected once a week. Forty-eight hours after the second injection, IFN-γ levels in sera and the supernatant of cultured spleen cells were assayed by ELISA, CTL activity of spleen cells was measured by 3 H-TdR release assay, and phenotypes of tumor-infiltrating lymphocytes were analysed by immunohistochemical staining. Results: The growth of tumors in animals treated with a combination of IL-12 gene therapy and TLI was inhibited more significantly than those with either single treatment (P + and CD8 + lymphocyte infiltration and tumor-specific cytolytic activities, and the levels of IFN-γ in sera were higher in IL-12 gene therapy and IL-12 gene therapy combined with TLI groups. Conclusion: These results suggest that IL-12 gene therapy combined with radiotherapy is more effective than both single treatment modalities and can induce specific antitumor immuno-response greatly

  17. Gene therapy imaging in patients for oncological applications

    International Nuclear Information System (INIS)

    Penuelas, Ivan; Haberkorn, Uwe; Yaghoubi, Shahriar; Gambhir, Sanjiv S.

    2005-01-01

    Thus far, traditional methods for evaluating gene transfer and expression have been shown to be of limited value in the clinical arena. Consequently there is a real need to develop new methods that could be repeatedly and safely performed in patients for such purposes. Molecular imaging techniques for gene expression monitoring have been developed and successfully used in animal models, but their sensitivity and reproducibility need to be tested and validated in human studies. In this review, we present the current status of gene therapy-based anticancer strategies and show how molecular imaging, and more specifically radionuclide-based approaches, can be used in gene therapy procedures for oncological applications in humans. The basis of gene expression imaging is described and specific uses of these non-invasive procedures for gene therapy monitoring illustrated. Molecular imaging of transgene expression in humans and evaluation of response to gene-based therapeutic procedures are considered. The advantages of molecular imaging for whole-body monitoring of transgene expression as a way to permit measurement of important parameters in both target and non-target organs are also analyzed. The relevance of this technology for evaluation of the necessary vector dose and how it can be used to improve vector design are also examined. Finally, the advantages of designing a gene therapy-based clinical trial with imaging fully integrated from the very beginning are discussed and future perspectives for the development of these applications outlined. (orig.)

  18. Clinical infection control in gene therapy : A multidisciplinary conference

    NARCIS (Netherlands)

    Evans, ME; Jordan, CT; Chang, SMW; Conrad, C; Gerberding, JL; Kaufman, HL; Mayhall, CG; Nolta, JA; Pilaro, AM; Sullivan, S; Weber, DJ; Wivel, NA

    2000-01-01

    Gene therapy is being studied for the treatment of a variety of acquired and inherited disorders. Retroviruses, adenoviruses, poxviruses, adeno-associated viruses, herpesviruses, and others are being engineered to transfer genes into humans. Treatment protocols using recombinant viruses are being

  19. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  20. Hyponatremia induced by hyperinsulinemia-euglycemia therapy.

    Science.gov (United States)

    Beavers, Jennifer R; Stollings, Joanna L; Rice, Todd W

    2017-07-15

    A case of symptomatic hyponatremia induced by hyperinsulinemia-euglycemia (HIE) therapy is reported. A 59-year-old, 81.65-kg woman with hypertension, major depressive disorder, and anxiety arrived at a tertiary medical center 1.5 hours after an intentional overdose of oral amlodipine 200 mg, metoprolol tartrate 2,000 mg, and isosorbide mononitrate 1,200 mg. Upon arrival, her pulse was 63 beats/min and blood pressure was 106/56 mm Hg. The patient's blood pressure was refractory to fluids, calcium gluconate, and norepinephrine, resulting in initiation of HIE therapy. She had recurrent episodes of hypoglycemia, which required increases of the dextrose infusion and resulted in the patient receiving a total of 6.9 L of dextrose with free water. Seventeen hours into the hospitalization, the patient became obtunded due to hyponatremia (serum sodium concentration, 121 mmol/L). HIE therapy was discontinued, an infusion of 5% dextrose injection with sodium bicarbonate added was started, and a bolus of 3% sodium chloride was administered. Nine hours after the presentation of hyponatremia, the patient's serum sodium concentration normalized (137 mmol/L), and her symptoms resolved. The patient's blood pressure, pulse, and mental status continued to improve, and the patient was transferred out of the medical intensive care unit 41 hours after her arrival at the hospital. A woman who overdosed on amlodipine, metoprolol tartrate, and isosorbide mononitrate was treated with HIE therapy and developed symptomatic hyponatremia. Hyponatremia resolved after administration of dextrose with sodium bicarbonate infusion and 3% sodium chloride infusion and cessation of HIE therapy. Copyright © 2017 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Gene Therapy for the Inner Ear: Challenges and Promises

    OpenAIRE

    Ryan, Allen F.; Dazert, Stefan

    2009-01-01

    Since the recognition of genes as the discrete units of heritability, and of DNA as their molecular substrate, the utilization of genes for therapeutic purposes has been recognized as a potential means of correcting genetic disorders. The tools of molecular biology, which allow the manipulation of DNA sequence, provided the means to put this concept into practice. However, progress in the implementation of these ideas has been slow. Here we review the history of the idea of gene therapy and t...

  2. Applications of the Preclinical Molecular Imaging in Biomedicine: Gene Therapy

    International Nuclear Information System (INIS)

    Collantes, M.; Peñuelas, I.

    2014-01-01

    Gene therapy constitutes a promising option for efficient and targeted treatment of several inherited disorders. Imaging techniques using ionizing radiation as PET or SPECT are used for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In this review the main reporter gene/reporter probe strategies are summarized, as well as the contribution of preclinical models to the development of this new imaging modality previously to its application in clinical arena. [es

  3. Advances of reporter gene imaging monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Pei Zhijun; Zhang Yongxue

    2010-01-01

    Stem cell transplantation in the treatment of various tissue damage or degenerative diseases are research hotspots both at home and abroad. However, ignorance of the homing, differentiation and functional expression of the stem cell in vivo influence the further development of stem cell therapy. As an important component of molecular imaging technology, reporter gene imaging dynamically monitors the change of stem cell in vivo via monitoring the expression of transfected reporter gene. This paper briefly describes the latest research progress and the future development trend of the monitoring of reporter gene imaging in stem cell therapy in vivo. (authors)

  4. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  5. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  6. Specific gene mutations induced by heavy ions

    International Nuclear Information System (INIS)

    Freeling, M.; Karoly, C.W.; Cheng, D.S.K.

    1980-01-01

    This report summarizes our heavy-ion research rationale, progress, and plans for the near future. The major project involves selecting a group of maize Adh1 mutants induced by heavy ions and correlating their altered behavior with altered DNA nucleotide sequences and sequence arrangements. This research requires merging the techniques of classical genetics and recombinant DNA technology. Our secondary projects involve (1) the use of the Adh gene in the fruit fly, Drosophila melanogaster, as a second system with which to quantify the sort of specific gene mutants induced by heavy ions as compared to x rays, and (2) the development of a maize Adh1 pollen in situ monitor for environmental mutagens

  7. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  8. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    Science.gov (United States)

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  9. Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation.

    Science.gov (United States)

    Nomikou, N; Feichtinger, G A; Saha, S; Nuernberger, S; Heimel, P; Redl, H; McHale, A P

    2018-01-01

    Gene-activated matrix (GAM)-based therapeutics for tissue regeneration are limited by efficacy, the lack of spatiotemporal control and availability of target cells, all of which impact negatively on their translation to the clinic. Here, an advanced ultrasound-responsive GAM is described containing target cells that facilitates matrix-assisted sonoporation (MAS) to induce osteogenic differentiation. Ultrasound-responsive GAMs consisting of fibrin/collagen hybrid-matrices containing microbubbles, bone morphogenetic protein BMP2/7 coexpression plasmids together with C2C12 cells were treated with ultrasound either in vitro or following parenteral intramuscular implantation in vivo. Using direct measurement for alkaline phosphatase activity, von Kossa staining and immunohistochemical analysis for osteocalcin expression, MAS-stimulated osteogenic differentiation was confirmed in the GAMs in vitro 7 days after treatment with ultrasound. At day 30 post-treatment with ultrasound, ectopic osteogenic differentiation was confirmed in vivo using X-ray microcomputed tomography and histological analysis. Osteogenic differentiation was indicated by the presence of ectopic bone structures in all animals treated with MAS. In addition, bone volumes in this group were statistically greater than those in the control groups. This novel approach of incorporating a MAS capability into GAMs could be exploited to facilitate ex vivo gene transfer with subsequent surgical implantation or alternatively provide a minimally invasive means of stimulating in situ transgene delivery for osteoinductive gene-based therapies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Tetracycline inducible gene manipulation in serotonergic neurons.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA mouse line (TPH2-tTA that allows temporal and spatial control of tetracycline (Ptet controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ. In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox. Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20 were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We

  11. Combinatorial gene therapy renders increased survival in cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Armendáriz-Borunda Juan S

    2010-05-01

    Full Text Available Abstract Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively or with Ad-beta-Gal (4.5 × 1011 and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8 showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis.

  12. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    International Nuclear Information System (INIS)

    Wiebe, L. I.

    1997-01-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of 'biologicals', in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  13. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  14. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model.

    Science.gov (United States)

    Kodippili, Kasun; Hakim, Chady H; Pan, Xiufang; Yang, Hsiao T; Yue, Yongping; Zhang, Yadong; Shin, Jin-Hong; Yang, N Nora; Duan, Dongsheng

    2018-03-01

    Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 10 13 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.

  15. Insulin gene therapy for type 1 diabetes mellitus.

    Science.gov (United States)

    Handorf, Andrew M; Sollinger, Hans W; Alam, Tausif

    2015-04-01

    Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of pancreatic β cells. Current treatments for patients with type 1 diabetes mellitus include daily insulin injections or whole pancreas transplant, each of which are associated with profound drawbacks. Insulin gene therapy, which has shown great efficacy in correcting hyperglycemia in animal models, holds great promise as an alternative strategy to treat type 1 diabetes mellitus in humans. Insulin gene therapy refers to the targeted expression of insulin in non-β cells, with hepatocytes emerging as the primary therapeutic target. In this review, we present an overview of the current state of insulin gene therapy to treat type 1 diabetes mellitus, including the need for an alternative therapy, important features dictating the success of the therapy, and current obstacles preventing the translation of this treatment option to a clinical setting. In so doing, we hope to shed light on insulin gene therapy as a viable option to treat type 1 diabetes mellitus.

  16. Sjogren Syndrome-Gene Therapy and its Prospective

    Directory of Open Access Journals (Sweden)

    R Rahpeyma

    2003-02-01

    Full Text Available Sjogren syndrome is one of the autoimmune diseases which is characterized by lymphocytic infiltration to exocrine glands and causes keratoconjunctivitis sicca and xerostomia. Today, a large population, with a majority of women over 40, suffer from this disease and have several complications regarding oral health and reduced life quality such as severe dental caries, painful eyes, olfactory and gustatory deficiency, speech, mastication and swallowing discomforts. Unfortunately, these patients do not respond to the conventional therapies. Nowadays in medical world, which its target is basic therapy and not symptomatic one, several gene therapy approaches, have gained importance in treatment of this apparently incurable diseases. Due to the facts that this disease is the second prevelant autoimmune disease, after rheumatoid arthritis, and the conventional therapies of the disease are all relative and symptomatic, researchers have insisted on the basic and causative therapy through gene transfer more than before. In the Present article, through reviewing 58 references containing recent scientific and investigatory findings it has been tried, to consider the pathogenesis and conventional therapies of this syndrome. Another purpose of this study was to investigate several and potentially very effective gene transfer systems and different theraputic genes (mainly membrane water channels, ione transporter molecules, transcription factors, antifungal proteins and free radical scavengers.

  17. Gene engineering biological therapy for juvenile arthritis

    Directory of Open Access Journals (Sweden)

    Kh Mikhel's

    2011-01-01

    However, GEBA therapy cannot completely cure the disease as before despite the progress achieved. GEBAs have potentially a number of serious side effects, among which there are severe infections and there is a risk of developing malignancies and autoimmune processes. Their administration requires careful monitoring to reveal the early development of serious adverse reactions, thus preventing a poor outcome.

  18. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  19. Gene therapy clinical trials worldwide to 2017: An update.

    Science.gov (United States)

    Ginn, Samantha L; Amaya, Anais K; Alexander, Ian E; Edelstein, Michael; Abedi, Mohammad R

    2018-03-25

    To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  1. Photorhabdus luminescens genes induced upon insect infection

    Directory of Open Access Journals (Sweden)

    Jung Kirsten

    2008-05-01

    Full Text Available Abstract Background Photorhabdus luminescens is a Gram-negative luminescent enterobacterium and a symbiote to soil nematodes belonging to the species Heterorhabditis bacteriophora. P.luminescens is simultaneously highly pathogenic to insects. This bacterium exhibits a complex life cycle, including one symbiotic stage characterized by colonization of the upper nematode gut, and a pathogenic stage, characterized by release from the nematode into the hemocoel of insect larvae, resulting in rapid insect death caused by bacterial toxins. P. luminescens appears to sense and adapt to the novel host environment upon changing hosts, which facilitates the production of factors involved in survival within the host, host-killing, and -exploitation. Results A differential fluorescence induction (DFI approach was applied to identify genes that are up-regulated in the bacterium after infection of the insect host Galleria mellonella. For this purpose, a P. luminescens promoter-trap library utilizing the mCherry fluorophore as a reporter was constructed, and approximately 13,000 clones were screened for fluorescence induction in the presence of a G. mellonella larvae homogenate. Since P. luminescens has a variety of regulators that potentially sense chemical molecules, like hormones, the screen for up-regulated genes or operons was performed in vitro, excluding physicochemical signals like oxygen, temperature or osmolarity as variables. Clones (18 were obtained exhibiting at least 2.5-fold induced fluorescence and regarded as specific responders to insect homogenate. In combination with a bioinformatics approach, sequence motifs were identified in these DNA-fragments that are similar to 29 different promoters within the P. luminescens genome. By cloning each of the predicted promoters upstream of the reporter gene, induction was verified for 27 promoters in vitro, and for 24 promoters in viable G. mellonella larvae. Among the validated promoters are some known

  2. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes.

    Science.gov (United States)

    Iizuka, Shunsuke; Sakurai, Fuminori; Tachibana, Masashi; Ohashi, Kazuo; Mizuguchi, Hiroyuki

    2017-09-15

    Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  3. Clinical adenoviral gene therapy for prostate cancer

    Czech Academy of Sciences Publication Activity Database

    Schenk, E.; Essand, M.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Danielsson, A.; Dautzenberg, I. J. C.; Dzojic, H.; Erbacher, P.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Hoeben, R.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Lindholm, L.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nilsson, B.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schooten, E.; Seymour, L.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; Veldhoven-Zweistra, J. L. M.; de Vrij, J.; van Weerden, W.; Wagner, E.; Willemsen, R.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 807-813 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  4. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    Directory of Open Access Journals (Sweden)

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  5. Trojan horse at cellular level for tumor gene therapies.

    Science.gov (United States)

    Collet, Guillaume; Grillon, Catherine; Nadim, Mahdi; Kieda, Claudine

    2013-08-10

    Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    Science.gov (United States)

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  7. Factoring nonviral gene therapy into a cure for hemophilia A.

    Science.gov (United States)

    Gabrovsky, Vanessa; Calos, Michele P

    2008-10-01

    Gene therapy for hemophilia A has fallen short of success despite several clinical trials conducted over the past decade. Challenges to its success include vector immunogenicity, insufficient transgene expression levels of Factor VIII, and inhibitor antibody formation. Gene therapy has been dominated by the use of viral vectors, as well as the immunogenic and oncogenic concerns that accompany these strategies. Because of the complexity of viral vectors, the development of nonviral DNA delivery methods may provide an efficient and safe alternative for the treatment of hemophilia A. New types of nonviral strategies, such as DNA integrating vectors, and the success of several nonviral animal studies, suggest that nonviral gene therapy has curative potential and justifies its clinical development.

  8. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  9. Building for Biology: A Gene Therapy Trial Infrastructure

    Directory of Open Access Journals (Sweden)

    Samuel Taylor-Alexander

    2017-06-01

    Full Text Available In this article, we examine the construction of the infrastructure for a Phase II gene therapy trial for Cystic Fibrosis (CF. Tracing the development of the material technologies and physical spaces used in the trial, we show how the trial infrastructure took form at the uncertain intersection of scientific norms, built environments, regulatory negotiations, patienthood, and the biologies of both disease and therapy. We define infrastructures as material and immaterial (including symbols and affect composites that serve a selective distributive purpose and facilitate projects of making and doing. There is a politics to this distributive action, which is itself twofold, because whilst infrastructures enable and delimit the movement of matter, they also mediate the very activity for which they provide the grounds. An infrastructural focus allows us to show how purposeful connections are made in a context of epistemic and regulatory uncertainty. The gene therapy researchers were working in a context of multiple uncertainties, regarding not only how to do gene therapy, but also how to anticipate and enact ambiguous regulatory requirements in a context of limited resources (technical, spatial, and financial. At the same time, the trial infrastructure had to accommodate Cystic Fibrosis biology by bridging the gap between pathology and therapy. The consortium’s approach to treating CF required that they address concerns about contamination and safety while finding a way of getting a modified gene product into the lungs of the trial participants.

  10. Fight fire with fire: Gene therapy strategies to cure HIV.

    Science.gov (United States)

    Huyghe, Jon; Magdalena, Sips; Vandekerckhove, Linos

    2017-08-01

    Human Immunodeficiency Virus (HIV) to date remains one of the most notorious viruses mankind has ever faced. Despite enormous investments in HIV research for more than 30 years an effective cure for HIV has been elusive. Areas covered: Combination antiretroviral therapy (cART) suppresses active viral replication, but is not able to eliminate the virus completely due to stable integration of HIV inside the host genome of infected cells and the establishment of a latent reservoir, that is insensitive to cART. Nevertheless, this latent HIV reservoir is fully capable to refuel viral replication when treatment is stopped, creating a major obstacle towards a cure for HIV. Several gene therapy approaches ranging from the generation of HIV resistant CD4 + T cells to the eradication of HIV infected cells by immune cell engineering are currently under pre-clinical and clinical investigation and may present a promising road to a cure. In this review, we focus on the status and the prospects of gene therapy strategies to cure/eradicate HIV. Expert commentary: Recent advances in gene therapy for oncology and infectious diseases indicate that gene therapy may be a feasible and very potent cure strategy, and therefore a potential game changer in the search for an effective HIV cure.

  11. Non-viral gene therapy for bone tissue engineering.

    Science.gov (United States)

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  12. Advances of reporter gene monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Zhou Xiang; Yin Hongyan; Zhang Yifan

    2010-01-01

    Stem cell therapy research has made great progress, demonstrating a broad application prospects. However, stem cell therapy as a new disease treatment, there are still many problems to be solved. Reporter gene imaging is a rapid development in recent years, a non-invasive, sensitive method of monitoring of stem cells, in particular radionuclide reporter gene imaging has high sensitivity and specificity of the advantages of strong and can carry out imaging of deep tissue and repeat imaging, is a tracer in vivo conditions, the most promising stem cell transplantation technique, showing good prospects for development. (authors)

  13. Gene Therapy in Thalassemia and Hemoglobinopathies

    OpenAIRE

    Breda, Laura; Gambari, Roberto; Rivella, Stefano

    2009-01-01

    Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approac...

  14. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    -blind placebo-controlled trials could not confirm the initial high efficacy of either the growth factor protein or the gene therapy approaches observed in earlier small trials. The clinical studies so far have all been without any gene-related serious adverse events. Future trials will focus on whether...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  15. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  16. Gene transfer strategies for improving radiolabeled peptide imaging and therapy

    International Nuclear Information System (INIS)

    Rogers, B.E.; Buchsbaum, D.J.; Zinn, K.R.

    2000-01-01

    Utilization of molecular biology techniques offers attractive options in nuclear medicine for improving cancer imaging and therapy with radiolabeled peptides. Two of these options include utilization of phage-panning to identify novel tumor specific peptides or single chain antibodies and gene transfer techniques to increase the antibodies and gene transfer techniques to increase the number of antigen/receptor sites expressed on malignant cells. The group has focused on the latter approach for improving radiolabeled peptide imaging and therapy. The most widely used gene transfer vectors in clinical gene therapy trials include retrovirus, cationic lipids and adenovirus. It has been utilized adenovirus vectors for gene transfer because of their ability to accomplish efficient in vivo gene transfer. Adenovirus vectors encoding the genes for a variety of antigens/receptors (carcinoembryonic antigen, gastrin-releasing peptide receptor, somatostatin receptor subtype 2 (SSTr2) have all shown that their expression is increased on cancer cells both in vitro and in vivo following adenovirus infection. Of particular interest has been the adenovirus encoding for SSTr2 (AdCMVSSTr2). Various radioisotopes have been attached to somatostatin analogues for imaging and therapy of SSTr2-positive tumors both clinically and in animal models. The use of these analogues in combination with AdCMVSSTr2 is a promising approach for improving the detection sensitivity and therapeutic efficacy of these radiolabeled peptides against solid tumors. In addition, it has been proposed the use of SSTr2 as a marker for imaging the expression of another cancer therapeutic transgene (e.g. cytosine deaminase, thymidine kinase) encoded within the same vector. This would allow for non-invasive monitoring of gene delivery to tumor sites

  17. Anti-Angiogenic Gene Therapy for Prostate Cancer

    Science.gov (United States)

    2004-04-01

    S. Parvovirus vectors for cancer gene therapy. Expert. Opin. Bid. Ther., 2004, 4: 53-64. Ponnazhagan, S., and Hoover, F. Delivery of DNA to tumor... vaccine with plasmid adjuvants 95h Annual Meeting of the American Society for Cancer Research, Orlando, FL, April 2004. Chaudhuri, T.R., Cao, Z...with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther., 5: 40-49, 1998. 2ś 35. Bohl, D., Bosch, A

  18. The interplay of post-translational modification and gene therapy

    Directory of Open Access Journals (Sweden)

    Osamor VC

    2016-02-01

    Full Text Available Victor Chukwudi Osamor,1–3 Shalom N Chinedu,3,4 Dominic E Azuh,3,5 Emeka Joshua Iweala,3,4 Olubanke Olujoke Ogunlana3,4 1Covenant University Bioinformatics Research (CUBRe Unit, Department of Computer and Information Sciences, College of Science and Technology (CST, Covenant University, Ota, Ogun State, Nigeria; 2Institute of Informatics (Computational biology and Bioinformatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw (Uniwersytet Warszawski, Warszawa, Poland; 3Covenant University Public Health and Well-being Research Group (CUPHWERG, Covenant University, 4Biochemistry and Molecular Biology Unit, Department of Biological Sciences, College of Science and Technology, Covenant University, Canaan Land, 5Department of Economics and Development Studies, Covenant University, Ota, Ogun State, Nigeria Abstract: Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. Keywords: post-translational modification, gene therapy, epigenetics, histone, methylation

  19. Study on radiation-inducible genes

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-01

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis

  20. Study on radiation-inducible genes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-15

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis.

  1. Improving Islet Engraftment by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Islet cell transplantation is currently the only feasible long-term treatment option for patients with type 1 diabetes. However, the majority of transplanted islets experience damage and apoptosis during the isolation process, a blood-mediated inflammatory microenvironment in the portal vein upon islet infusion, hypoxia induced by the low oxygenated milieu, and poor-revascularization-mediated lack of nutrients, and impaired hormone modulation in the local transplanted site. Strategies using genetic modification methods through overexpression or silencing of those proteins involved in promoting new formation of blood vessels or inhibition of apoptosis may overcome these hurdles and improve islet engraftment outcomes.

  2. Towards a durable RNAi gene therapy for HIV-AIDS

    NARCIS (Netherlands)

    Berkhout, Ben; ter Brake, Olivier

    2009-01-01

    Background: RNA interference (RNAi) can be employed as a potent antiviral mechanism Objective: To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. Methods: A review of relevant literature.

  3. Gene therapy in nonhuman primate models of human autoimmune disease

    NARCIS (Netherlands)

    t'Hart, B. A.; Vervoordeldonk, M.; Heeney, J. L.; Tak, P. P.

    2003-01-01

    Before autoimmune diseases in humans can be treated with gene therapy, the safety and efficacy of the used vectors must be tested in valid experimental models. Monkeys, such as the rhesus macaque or the common marmoset, provide such models. This publication reviews the state of the art in monkey

  4. The feasibility of incorporating Vpx into lentiviral gene therapy vectors

    Directory of Open Access Journals (Sweden)

    Samantha A McAllery

    2016-01-01

    Full Text Available While current antiretroviral therapy has significantly improved, challenges still remain in life-long targeting of HIV-1 reservoirs. Lentiviral gene therapy has the potential to deliver protective genes into the HIV-1 reservoir. However, inefficient reverse transcription (RT occurs in HIV-1 reservoirs during lentiviral gene delivery. The viral protein Vpx is capable of increasing lentiviral RT by antagonizing the restriction factor SAMHD1. Incorporating Vpx into lentiviral vectors could substantially increase gene delivery into the HIV-1 reservoir. The feasibility of this Vpx approach was tested in resting cell models utilizing macrophages and dendritic cells. Our results showed Vpx exposure led to increased permissiveness of cells over a period that exceeded 2 weeks. Consequently, significant lower potency of HIV-1 antiretrovirals inhibiting RT and integration was observed. When Vpx was incorporated with anti-HIV-1 genes inhibiting either pre-RT or post-RT stages of the viral life-cycle, transduction levels significantly increased. However, a stronger antiviral effect was only observed with constructs that inhibit pre-RT stages of the viral life cycle. In conclusion this study demonstrates a way to overcome the major delivery obstacle of gene delivery into HIV-1 reservoir cell types. Importantly, incorporating Vpx with pre-RT anti-HIV-1 genes, demonstrated the greatest protection against HIV-1 infection.

  5. In vivo PET imaging with 18F-FHBG of hepatoma cancer gene therapy using herpes simplex virus thymidine kinase and ganciclovir

    International Nuclear Information System (INIS)

    Lee, TaeSup; Kim, JunYoup; Moon, ByungSeok; Kang, JooHyun; Song, Inho; Kwon, HeeChung; Kim, KyungMin; Cheon, GiJeong; Choi, ChangWoon; Lim, SangMoo

    2007-01-01

    Monitoring gene expression in vivo to evaluate the gene therapy efficacy is a critical issue for scientists and physicians. Non-invasive nuclear imaging can offer information regarding the level of gene expression and its location when an appropriate reporter gene is constructed in the therapeutic gene therapy. Herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is the most common reporter gene and is used in cancer gene therapy by activating relatively nontoxic compounds, such as acyclovir or ganciclovir (GCV), to induce cell death. In this study, we investigate the feasibility of monitoring cancer gene therapy using retroviral vector transduced HSV1-tk and GCV, in vitro cellular uptake and in vivo animal studies, including biodistribution and small animal positron emission tomography (PET) imaging, were performed in HSV1-tk and luciferase (Luc)-transduced MCA-TK/Luc and enhanced green fluorescent protein (eGFP)-transduced MCA-eGFP hepatoma cell lines

  6. Evaluating Risks of Insertional Mutagenesis by DNA Transposons in Gene Therapy

    Science.gov (United States)

    Hackett, Perry B.; Largaespada, David A.; Switzer, Kirsten C.; Cooper, Laurence J.N.

    2013-01-01

    Investigational therapy can be successfully undertaken using viral- and non-viral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. Recently the Sleeping Beauty (SB) transposon/transposase system has been applied in clinical trials to stably insert a chimeric antigen receptor (CAR) to redirect T-cell specificity. We discuss the context in which the SB system can be harnessed for gene therapy and describe the human application of SB-modified CAR+ T cells. We have focused on theoretical issues relating to insertional mutagenesis in the context of human genomes that are naturally subjected to remobilization of transposons and the experimental evidence over the last decade of employing SB transposons for defining genes that induce cancer. These findings are put into the context of the use of SB transposons in the treatment of human disease. PMID:23313630

  7. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs.

    Science.gov (United States)

    Borrás, Teresa

    2017-01-01

    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  8. Neurotrophin gene therapy for sustained neural preservation after deafness.

    Science.gov (United States)

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Hume, Clifford R; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2012-01-01

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.

  9. Gene therapy decreases seizures in a model of Incontinentia pigmenti.

    Science.gov (United States)

    Dogbevia, Godwin K; Töllner, Kathrin; Körbelin, Jakob; Bröer, Sonja; Ridder, Dirk A; Grasshoff, Hanna; Brandt, Claudia; Wenzel, Jan; Straub, Beate K; Trepel, Martin; Löscher, Wolfgang; Schwaninger, Markus

    2017-07-01

    Incontinentia pigmenti (IP) is a genetic disease leading to severe neurological symptoms, such as epileptic seizures, but no specific treatment is available. IP is caused by pathogenic variants that inactivate the Nemo gene. Replacing Nemo through gene therapy might provide therapeutic benefits. In a mouse model of IP, we administered a single intravenous dose of the adeno-associated virus (AAV) vector, AAV-BR1-CAG-NEMO, delivering the Nemo gene to the brain endothelium. Spontaneous epileptic seizures and the integrity of the blood-brain barrier (BBB) were monitored. The endothelium-targeted gene therapy improved the integrity of the BBB. In parallel, it reduced the incidence of seizures and delayed their occurrence. Neonate mice intravenously injected with the AAV-BR1-CAG-NEMO vector developed no hepatocellular carcinoma or other major adverse effects 11 months after vector injection, demonstrating that the vector has a favorable safety profile. The data show that the BBB is a target of antiepileptic treatment and, more specifically, provide evidence for the therapeutic benefit of a brain endothelial-targeted gene therapy in IP. Ann Neurol 2017;82:93-104. © 2017 American Neurological Association.

  10. Update on gene therapy of inherited immune deficiencies.

    Science.gov (United States)

    Engel, Barbara C; Kohn, Donald B; Podsakoff, Greg M

    2003-10-01

    Gene therapy has been under development as a way to correct inborn errors for many years. Recently, patients with two forms of inherited severe combined immunodeficiency (SCID), adenosine deaminase and X-linked, treated by three different clinical investigative teams, have shown significant immune reconstitution leading to protective immunity. These advances irrefutably prove the concept that hematopoietic progenitor cell gene therapy can ameliorate these diseases. However, due to proviral insertional oncogenesis, two individuals in one of the X-SCID studies developed T-cell leukemia more than two years after the gene transfer. Depending upon the results of long-term follow-up, the successes together with the side effects highlight the relative merits of this therapeutic approach.

  11. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  12. The use of molecular imaging of gene expression by radiotracers in gene therapy

    International Nuclear Information System (INIS)

    Richard-Fiardo, P.; Franken, P.R.; Harrington, K.J.; Vassaux, G.; Cambien, B.

    2011-01-01

    Introduction: Progress with gene-based therapies has been hampered by difficulties in monitoring the biodistribution and kinetics of vector-mediated gene expression. Recent developments in non-invasive imaging have allowed researchers and clinicians to assess the location, magnitude and persistence of gene expression in animals and humans. Such advances should eventually lead to improvement in the efficacy and safety of current clinical protocols for future treatments. Areas Covered: The molecular imaging techniques for monitoring gene therapy in the living subject, with a specific highlight on the key reporter gene approaches that have been developed and validated in preclinical models using the latest imaging modalities. The applications of molecular imaging to biotherapy, with a particular emphasis on monitoring of gene and vector biodistribution and on image-guided radiotherapy. Expert Opinion: Among the reporter gene/probe combinations that have been described so far, one stands out, in our view, as the most versatile and easy to implement: the Na/I symporter. This strategy, exploiting more than 50 years of experience in the treatment of differentiated thyroid carcinomas, has been validated in different types of experimental cancers and with different types of oncolytic viruses and is likely to become a key tool in the implementation of human gene therapy. (authors)

  13. Improving the Safety of Cell Therapy Products by Suicide Gene Transfer

    Directory of Open Access Journals (Sweden)

    Antonio eDi Stasi

    2014-11-01

    Full Text Available Adoptive T-cell therapy can involve donor lymphocyte infusion (DLI after allogeneic hematopoietic stem cell transplantation, the administration of tumor infiltrating lymphocyte (TILs expanded ex-vivo, or more recently the use of T cell receptor (TCR or chimeric antigen receptor (CAR redirected T cells. However cellular therapies can pose significant risks, including graft-versus-host-disease and other on and off-target effects, and therefore strategies need to be implemented to permanently reverse any sign of toxicity. A suicide gene is a genetically encoded molecule that allows selective destruction of adoptively transferred cells. Suicide gene addition to cellular therapeutic products can lead to selective ablation of gene-modified cells, preventing collateral damage to contiguous cells and/or tissues. The ‘ideal’ suicide gene would ensure the safety of gene modified cellular applications by granting irreversible elimination of ‘all’ and ‘only’ the cells responsible for the unwanted toxicity. This review presents the suicide gene safety systems reported to date, with a focus on the state-of-the-art and potential applications regarding two of the most extensively validated suicide genes, including the clinical setting: herpes-simplex-thymidine-kinase (HSV-TK and inducible-caspase-9 (iCasp9.

  14. [Progress in research on pathogenic genes and gene therapy for inherited retinal diseases].

    Science.gov (United States)

    Zhu, Ling; Cao, Cong; Sun, Jiji; Gao, Tao; Liang, Xiaoyang; Nie, Zhipeng; Ji, Yanchun; Jiang, Pingping; Guan, Minxin

    2017-02-10

    Inherited retinal diseases (IRDs), including retinitis pigmentosa, Usher syndrome, Cone-Rod degenerations, inherited macular dystrophy, Leber's congenital amaurosis, Leber's hereditary optic neuropathy are the most common and severe types of hereditary ocular diseases. So far more than 200 pathogenic genes have been identified. With the growing knowledge of the genetics and mechanisms of IRDs, a number of gene therapeutic strategies have been developed in the laboratory or even entered clinical trials. Here the progress of IRD research on the pathogenic genes and therapeutic strategies, particularly gene therapy, are reviewed.

  15. Advances in Viral Vector-Based TRAIL Gene Therapy for Cancer

    International Nuclear Information System (INIS)

    Norian, Lyse A.; James, Britnie R.; Griffith, Thomas S.

    2011-01-01

    Numerous biologic approaches are being investigated as anti-cancer therapies in an attempt to induce tumor regression while circumventing the toxic side effects associated with standard chemo- or radiotherapies. Among these, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown particular promise in pre-clinical and early clinical trials, due to its preferential ability to induce apoptotic cell death in cancer cells and its minimal toxicity. One limitation of TRAIL use is the fact that many tumor types display an inherent resistance to TRAIL-induced apoptosis. To circumvent this problem, researchers have explored a number of strategies to optimize TRAIL delivery and to improve its efficacy via co-administration with other anti-cancer agents. In this review, we will focus on TRAIL-based gene therapy approaches for the treatment of malignancies. We will discuss the main viral vectors that are being used for TRAIL gene therapy and the strategies that are currently being attempted to improve the efficacy of TRAIL as an anti-cancer therapeutic

  16. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  17. Applications of Gene Editing Technologies to Cellular Therapies.

    Science.gov (United States)

    Rein, Lindsay A M; Yang, Haeyoon; Chao, Nelson J

    2018-03-27

    Hematologic malignancies are characterized by genetic heterogeneity, making classic gene therapy with a goal of correcting 1 genetic defect ineffective in many of these diseases. Despite initial tribulations, gene therapy, as a field, has grown by leaps and bounds with the recent development of gene editing techniques including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR) sequences and CRISPR-associated protein-9 (Cas9) nuclease or CRISPR/Cas9. These novel technologies have been applied to efficiently and specifically modify genetic information in target and effector cells. In particular, CRISPR/Cas9 technology has been applied to various hematologic malignancies and has also been used to modify and improve chimeric antigen receptor-modified T cells for the purpose of providing effective cellular therapies. Although gene editing is in its infancy in malignant hematologic diseases, there is much room for growth and application in the future. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  19. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  20. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations

    Directory of Open Access Journals (Sweden)

    Seo-Young Lee

    2016-01-01

    Full Text Available The recent advent of induced pluripotent stem cells (iPSCs and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson’s disease, it has been well known that induced neural stem cells (iNSCs were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S. Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S, it would be ideal to simultaneously treat the LRRK2 (G2019S fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required.

  1. Nanoparticle-mediated delivery of suicide genes in cancer therapy.

    Science.gov (United States)

    Vago, Riccardo; Collico, Veronica; Zuppone, Stefania; Prosperi, Davide; Colombo, Miriam

    2016-09-01

    Conventional chemotherapeutics have been employed in cancer treatment for decades due to their efficacy in killing the malignant cells, but the other side of the coin showed off-target effects, onset of drug resistance and recurrences. To overcome these limitations, different approaches have been investigated and suicide gene therapy has emerged as a promising alternative. This approach consists in the introduction of genetic materials into cancerous cells or the surrounding tissue to cause cell death or retard the growth of the tumor mass. Despite promising results obtained both in vitro and in vivo, this innovative approach has been limited, for long time, to the treatment of localized tumors, due to the suboptimal efficiency in introducing suicide genes into cancer cells. Nanoparticles represent a valuable non-viral delivery system to protect drugs in the bloodstream, to improve biodistribution, and to limit side effects by achieving target selectivity through surface ligands. In this scenario, the real potential of suicide genes can be translated into clinically viable treatments for patients. In the present review, we summarize the recent advances of inorganic nanoparticles as non-viral vectors in terms of therapeutic efficacy, targeting capacity and safety issues. We describe the main suicide genes currently used in therapy, with particular emphasis on toxin-encoding genes of bacterial and plant origin. In addition, we discuss the relevance of molecular targeting and tumor-restricted expression to improve treatment specificity to cancer tissue. Finally, we analyze the main clinical applications, limitations and future perspectives of suicide gene therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Gene mutation-based and specific therapies in precision medicine.

    Science.gov (United States)

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Engineered CRISPR Systems for Next Generation Gene Therapies.

    Science.gov (United States)

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  4. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  5. Engineering adeno-associated viruses for clinical gene therapy.

    Science.gov (United States)

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  6. Status and advances of p53-gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Duan Xin; Chinese Academy of Sciences, Beijing; Zhang Hong

    2006-01-01

    Cancer treatment is one of the most important fields in medical research. All strategies such as radio-therapy, chemotherapy, surgery, and gene-based therapy have their own advantages and disadvantages. Nowadays, a novel method which combined p53-gene therapy with radiotherapy plays an important role in the field of cancer research. This review summarized the current state of combined therapies of p53-gene therapy and radiotherapy, possible mechanism and recent progress. (authors)

  7. Analysis of the clonal repertoire of gene-corrected cells in gene therapy.

    Science.gov (United States)

    Paruzynski, Anna; Glimm, Hanno; Schmidt, Manfred; Kalle, Christof von

    2012-01-01

    Gene therapy-based clinical phase I/II studies using integrating retroviral vectors could successfully treat different monogenetic inherited diseases. However, with increased efficiency of this therapy, severe side effects occurred in various gene therapy trials. In all cases, integration of the vector close to or within a proto-oncogene contributed substantially to the development of the malignancies. Thus, the in-depth analysis of integration site patterns is of high importance to uncover potential clonal outgrowth and to assess the safety of gene transfer vectors and gene therapy protocols. The standard and nonrestrictive linear amplification-mediated PCR (nrLAM-PCR) in combination with high-throughput sequencing exhibits technologies that allow to comprehensively analyze the clonal repertoire of gene-corrected cells and to assess the safety of the used vector system at an early stage on the molecular level. It enables clarifying the biological consequences of the vector system on the fate of the transduced cell. Furthermore, the downstream performance of real-time PCR allows a quantitative estimation of the clonality of individual cells and their clonal progeny. Here, we present a guideline that should allow researchers to perform comprehensive integration site analysis in preclinical and clinical studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  9. Advances in gene therapy of myocardial ischemia and the monitoring with molecular imaging

    International Nuclear Information System (INIS)

    Zhang Guopeng; Zhang Yongxue

    2008-01-01

    Cardiovascular diseases are harmful for people. Recent advances in understanding the molecular basis of cardiovascular diseases, together with some studies of the gene therapy on cardiovascular disorders, have offered possibilities for new treatments. Gene therapies have demonstrated potential usefulness in treating myocardial ischemia. Therefore, the monitoring of the expression of therapy gene and therapeutic efficacy has become an important issue. (authors)

  10. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ...] Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop AGENCY: Food and Drug... Biologics Evaluation and Research (CBER) is announcing a public workshop entitled ``Cell and Gene Therapy... Institutional Review Boards (IRBs), gene and cellular therapy clinical researchers, and other stakeholders...

  11. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Science.gov (United States)

    2011-02-16

    ...] Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability AGENCY: Food and... Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene... for Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance...

  12. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-07-23

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... documents issued from the Office of Cellular, Tissue and Gene Therapies, Center for Biologics Evaluation and...

  13. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-21

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... June 29, 2011, the committee will discuss cellular and gene therapy products for the treatment of...

  14. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2013-11-25

    ...] Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy Products... Assessment of Investigational Cellular and Gene Therapy Products'' dated November 2013. The guidance document... products reviewed by the Office of Cellular, Tissue and Gene Therapies (OCTGT). The product areas covered...

  15. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-10-30

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice AGENCY: Food and Drug... notice of a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting was... announced that a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee would be held on...

  16. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-31

    ...] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide... updates on guidance documents issued from the Office of Cellular, Tissue, and Gene Therapies, Center for...

  17. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Eun Ji; Kang, Ki Ho; Ju, Ji Hyeon

    2017-01-01

    Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology-and particularly clustered regularly interspaced short palindromic repeats (CRISPR)-will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed.

  18. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Cartier, Nathalie; Hacein-Bey-Abina, Salima; Bartholomae, Cynthia C; Bougnères, Pierre; Schmidt, Manfred; Kalle, Christof Von; Fischer, Alain; Cavazzana-Calvo, Marina; Aubourg, Patrick

    2012-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a severe genetic demyelinating disease caused by a deficiency in ALD protein, an adenosine triphosphate-binding cassette transporter encoded by the ABCD1 gene. When performed at an early stage of the disease, allogeneic hematopoietic stem cell transplantation (HCT) can arrest the progression of cerebral demyelinating lesions. To overcome the limitations of allogeneic HCT, hematopoietic stem cell (HSC) gene therapy strategy aiming to perform autologous transplantation of lentivirally corrected cells was developed. We demonstrated the preclinical feasibility of HSC gene therapy for ALD based on the correction of CD34+ cells from X-ALD patients using an HIV1-derived lentiviral vector. These results prompted us to initiate an HSC gene therapy trial in two X-ALD patients who had developed progressive cerebral demyelination, were candidates for allogeneic HCT, but had no HLA-matched donors or cord blood. Autologous CD34+ cells were purified from the peripheral blood after G-CSF stimulation, genetically corrected ex vivo with a lentiviral vector encoding wild-type ABCD1 cDNA, and then reinfused into the patients after they had received full myeloablative conditioning. Over 3 years of follow-up, the hematopoiesis remained polyclonal in the two patients treated with 7-14% of granulocytes, monocytes, and T and B lymphocytes expressing the lentivirally encoded ALD protein. There was no evidence of clonal dominance or skewing based on the retrieval of lentiviral insertion repertoire in different hematopoietic lineages by deep sequencing. Cerebral demyelination was arrested 14 and 16months, respectively, in the two treated patients, without further progression up to the last follow-up, a clinical outcome that is comparable to that observed after allogeneic HCT. Longer follow-up of these two treated patients and HSC gene therapy performed in additional ALD patients are however needed to evaluate the safety and efficacy of lentiviral HSC

  19. Gene expression profiles in cervical cancer with radiation therapy alone and chemo-radiation therapy

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Kim, Joo Young; Hwang, You Jin; Kim, Meyoung Kon; Choi, Myung Sun; Kim, Chul Young

    2003-01-01

    To analyze the gene expression profiles of uterine cervical cancer, and its variation after radiation therapy, with or without concurrent chemotherapy, using a cDNA microarray. Sixteen patients, 8 with squamous cell carcinomas of the uterine cervix, who were treated with radiation alone, and the other 8 treated with concurrent chemo-radiation, were included in the study. Before the starting of the treatment, tumor biopsies were carried out, and the second time biopsies were performed after a radiation dose of 16.2-27 Gy. Three normal cervix tissues were used as a control group. The microarray experiments were performed with 5 groups of the total RNAs extracted individually and then admixed as control, pre-radiation therapy alone, during-radiation therapy alone, pre-chemoradiation therapy, and during chemoradiation therapy. The 33P-labeled cDNAs were synthesized from the total RNAs of each group, by reverse transcription, and then they were hybridized to the cDNA microarray membrane. The gene expression of each microarrays was captured by the intensity of each spot produced by the radioactive isotopes. The pixels per spot were counted with an Arrayguage, and were exported to Microsoft Excel. The data were normalized by the Z transformation, and the comparisons were performed on the Z-ratio values calculated. The expressions of 15 genes, including integrin linked kinase (ILK), CDC28 protein kinase 2, Spry 2, and ERK 3, were increased with the Z-ratio values of over 2.0 for the cervix cancer tissues compared to those for the normal controls. Those genes were involved in cell growth and proliferation, cell cycle control, or signal transduction. The expressions of the other 6 genes, including G protein coupled receptor kinase 6, were decreased with the Z-ratio values of below -2.0. After the radiation therapy, most of the genes, with a previously increase expressions, represented the decreased expression profiles, and the genes, with the Z-ratio values of over 2.0, were

  20. Global Regulatory Differences for Gene- and Cell-Based Therapies

    DEFF Research Database (Denmark)

    Coppens, Delphi G M; De Bruin, Marie L; Leufkens, Hubert G M

    2017-01-01

    Gene- and cell-based therapies (GCTs) offer potential new treatment options for unmet medical needs. However, the use of conventional regulatory requirements for medicinal products to approve GCTs may impede patient access and therapeutic innovation. Furthermore, requirements differ between...... jurisdictions, complicating the global regulatory landscape. We provide a comparative overview of regulatory requirements for GCT approval in five jurisdictions and hypothesize on the consequences of the observed global differences on patient access and therapeutic innovation....

  1. The role of gene therapy. Fact or fiction?

    Science.gov (United States)

    Muzzonigro, T S; Ghivizzani, S C; Robbins, P D; Evans, C H

    1999-01-01

    Current research in molecular biology and genetics has dramatically advanced the understanding of the cellular events involved in homeostasis, disease, injury, and healing processes of the tissues of the musculoskeletal system. Recently, genetic predispositions to diseases have been described which offer novel means to address musculoskeletal disorders. Growth factors and cytokines have been identified as key elements in both the injured and healing states. Gene therapy offers an elegant solution to the delivery of therapeutic proteins to the site of disease or injury.

  2. Contemporary Animal Models For Human Gene Therapy Applications.

    Science.gov (United States)

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Nelson, Everette Jacob Remington

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  3. Synergistic gene and drug tumor therapy using a chimeric peptide.

    Science.gov (United States)

    Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-06-01

    Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Gene therapy for inherited retinal and optic nerve degenerations.

    Science.gov (United States)

    Moore, Nicholas A; Morral, Nuria; Ciulla, Thomas A; Bracha, Peter

    2018-01-01

    The eye is a target for investigational gene therapy due to the monogenic nature of many inherited retinal and optic nerve degenerations (IRD), its accessibility, tight blood-ocular barrier, the ability to non-invasively monitor for functional and anatomic outcomes, as well as its relative immune privileged state.Vectors currently used in IRD clinical trials include adeno-associated virus (AAV), small single-stranded DNA viruses, and lentivirus, RNA viruses of the retrovirus family. Both can transduce non-dividing cells, but AAV are non-integrating, while lentivirus integrate into the host cell genome, and have a larger transgene capacity. Areas covered: This review covers Leber's congenital amaurosis, choroideremia, retinitis pigmentosa, Usher syndrome, Stargardt disease, Leber's hereditary optic neuropathy, Achromatopsia, and X-linked retinoschisis. Expert opinion: Despite great potential, gene therapy for IRD raises many questions, including the potential for less invasive intravitreal versus subretinal delivery, efficacy, safety, and longevity of response, as well as acceptance of novel study endpoints by regulatory bodies, patients, clinicians, and payers. Also, ultimate adoption of gene therapy for IRD will require widespread genetic screening to identify and diagnose patients based on genotype instead of phenotype.

  5. Human gene therapy and imaging in neurological diseases

    International Nuclear Information System (INIS)

    Jacobs, Andreas H.; Winkler, Alexandra; Castro, Maria G.; Lowenstein, Pedro

    2005-01-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being promoted through the use of

  6. Regulatory Oversight of Cell and Gene Therapy Products in Canada.

    Science.gov (United States)

    Ridgway, Anthony; Agbanyo, Francisca; Wang, Jian; Rosu-Myles, Michael

    2015-01-01

    Health Canada regulates gene therapy products and many cell therapy products as biological drugs under the Canadian Food and Drugs Act and its attendant regulations. Cellular products that meet certain criteria, including minimal manipulation and homologous use, may be subjected to a standards-based approach under the Safety of Human Cells, Tissues and Organs for Transplantation Regulations. The manufacture and clinical testing of cell and gene therapy products (CGTPs) presents many challenges beyond those for protein biologics. Cells cannot be subjected to pathogen removal or inactivation procedures and must frequently be administered shortly after final formulation. Viral vector design and manufacturing control are critically important to overall product quality and linked to safety and efficacy in patients through concerns such as replication competence, vector integration, and vector shedding. In addition, for many CGTPs, the value of nonclinical studies is largely limited to providing proof of concept, and the first meaningful data relating to appropriate dosing, safety parameters, and validity of surrogate or true determinants of efficacy must come from carefully designed clinical trials in patients. Addressing these numerous challenges requires application of various risk mitigation strategies and meeting regulatory expectations specifically adapted to the product types. Regulatory cooperation and harmonisation at an international level are essential for progress in the development and commercialisation of these products. However, particularly in the area of cell therapy, new regulatory paradigms may be needed to harness the benefits of clinical progress in situations where the resources and motivation to pursue a typical drug product approval pathway may be lacking.

  7. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  8. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    Science.gov (United States)

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy.

  9. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    Full Text Available The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors against factor VIII (FVIII. The current method for eradicating inhibitors, termed immune tolerance induction (ITI, is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8 gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.

  10. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders

    Directory of Open Access Journals (Sweden)

    Vincenzo Cavalieri

    2018-06-01

    Full Text Available Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.

  11. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  12. Gene therapy and genome surgery in the retina.

    Science.gov (United States)

    DiCarlo, James E; Mahajan, Vinit B; Tsang, Stephen H

    2018-06-01

    Precision medicine seeks to treat disease with molecular specificity. Advances in genome sequence analysis, gene delivery, and genome surgery have allowed clinician-scientists to treat genetic conditions at the level of their pathology. As a result, progress in treating retinal disease using genetic tools has advanced tremendously over the past several decades. Breakthroughs in gene delivery vectors, both viral and nonviral, have allowed the delivery of genetic payloads in preclinical models of retinal disorders and have paved the way for numerous successful clinical trials. Moreover, the adaptation of CRISPR-Cas systems for genome engineering have enabled the correction of both recessive and dominant pathogenic alleles, expanding the disease-modifying power of gene therapies. Here, we highlight the translational progress of gene therapy and genome editing of several retinal disorders, including RPE65-, CEP290-, and GUY2D-associated Leber congenital amaurosis, as well as choroideremia, achromatopsia, Mer tyrosine kinase- (MERTK-) and RPGR X-linked retinitis pigmentosa, Usher syndrome, neovascular age-related macular degeneration, X-linked retinoschisis, Stargardt disease, and Leber hereditary optic neuropathy.

  13. Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors.

    Science.gov (United States)

    Galimi, Francesco; Noll, Meenakshi; Kanazawa, Yoshiyuki; Lax, Timothy; Chen, Cindy; Grompe, Markus; Verma, Inder M

    2002-10-15

    Fanconi anemia (FA) is an inherited cancer susceptibility syndrome caused by mutations in a DNA repair pathway including at least 6 genes (FANCA, FANCC, FANCD2, FANCE, FANCF, and FANCG). The clinical course of the disease is dominated by progressive, life-threatening bone marrow failure and high incidence of acute myelogenous leukemia and solid tumors. Allogeneic bone marrow transplantation (BMT) is a therapeutic option but requires HLA-matched donors. Gene therapy holds great promise for FA, but previous attempts to use retroviral vectors in humans have proven ineffective given the impaired proliferation potential of human FA hematopoietic progenitors (HPCs). In this work, we show that using lentiviral vectors efficient genetic correction can be achieved in quiescent hematopoietic progenitors from Fanca(-/-) and Fancc(-/-) mice. Long-term repopulating HPCs were transduced by a single exposure of unfractionated bone marrow mononuclear cells to lentivectors carrying the normal gene. Notably, no cell purification or cytokine prestimulation was necessary. Resistance to DNA- damaging agents was fully restored by lentiviral transduction, allowing for in vivo selection of the corrected cells with nonablative doses of cyclophosphamide. This study strongly supports the use of lentiviral vectors for FA gene therapy in humans.

  14. Reprogrammed chondrocytes engineered to produce IL-12 provide novel ex vivo immune-gene therapy for cancer.

    Science.gov (United States)

    Tada, Hiroyuki; Kishida, Tsunao; Fujiwara, Hitoshi; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Shiozaki, Atsushi; Ichikawa, Daisuke; Okamoto, Kazuma; Otsuji, Eigo; Mazda, Osam

    2017-03-01

    The somatic cell reprogramming technology was applied to a novel and promising ex vivo immune-gene therapy strategy for cancer. To establish a novel ex vivo cytokine gene therapy of cancer using the somatic cell reprogramming procedures. Mouse fibroblasts were converted into chondrocytes and subsequently transduced with IL-12 gene. The resultant IL-12 induced chondrogenic cells were irradiated with x-ray and inoculated into mice bearing CT26 colon cancer. The irradiation at 20 Gy or higher totally eliminated the proliferative potential of the cells, while less significantly influencing the IL-12 production from the cells. An inoculation of the irradiated IL-12 induced chondrogenic cells significantly suppressed tumor by inducing tumor-specific cytotoxic T lymphocytes, enhancing natural killer tumoricidal activity and inhibiting tumor neoangiogenesis in the mice. The somatic cell reprogramming procedures may provide a novel and effective means to treat malignancies.

  15. Gene therapy for carcinoma of the breast: Genetic immunotherapy

    International Nuclear Information System (INIS)

    Strong, Theresa V

    2000-01-01

    Advances in gene transfer technology have greatly expanded the opportunities for developing immunotherapy strategies for breast carcinoma. Genetic immunotherapy approaches include the transfer of genes encoding cytokines and costimulatory molecules to modulate immune function, as well as genetic immunization strategies which rely on the delivery of cloned tumor antigens. Improved gene transfer vectors, coupled with a better understanding of the processes that are necessary to elicit an immune response and an expanding number of target breast tumor antigens, have led to renewed enthusiasm that effective immunotherapy may be achieved. It is likely that immunotherapeutic interventions will find their greatest clinical application as adjuvants to traditional first-line therapies, targeting micrometastatic disease and thereby reducing the risk of cancer recurrence

  16. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  17. Gene therapy for barrett's esophagus: adenoviral gene transfer in different intestinal models

    NARCIS (Netherlands)

    Marsman, Willem A.; Buskens, Christianne J.; Wesseling, John G.; van Lanschot, J. Jan B.; Bosma, Piter J.

    2005-01-01

    Adenoviral gene therapy could potentially be used for treatment of patients with a Barrett's esophagus. In order to study the feasibility of this approach it is important to study adenoviral intestinal transduction both in vitro and in vivo. In the present study, we used differentiating Caco-2

  18. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    International Nuclear Information System (INIS)

    Dupuy, Aurélie; Sarasin, Alain

    2015-01-01

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients

  19. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  20. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  1. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    tissues after systemic injection. The microvessel density of tumor xenografts was decreased, and tumor cellular apoptosis was significantly induced in the mice treated with MSCs-NK4 compared to control mice. These findings demonstrate that MSC-based NK4 gene therapy can obviously inhibit the growth of gastric cancer xenografts, and MSCs are a better vehicle for NK4 gene therapy than lentiviral vectors. Further studies are warranted to explore the efficacy and safety of the MSC-based NK4 gene therapy in animals and cancer patients.Keywords: gastric cancer, gene therapy, tumor xenograft, hepatocyte growth factor, lentivirus, angiogenesis, apoptosis

  2. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Directory of Open Access Journals (Sweden)

    Allison M Lytle

    2016-01-01

    Full Text Available Immune responses to coagulation factors VIII (FVIII and IX (FIX represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.

  3. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV. PMID:26909355

  4. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    Science.gov (United States)

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  5. Gene Therapy in Fanconi Anemia: A Matter of Time, Safety and Gene Transfer Tool Efficiency.

    Science.gov (United States)

    Verhoeyen, Els; Roman-Rodriguez, Francisco Jose; Cosset, Francois-Loic; Levy, Camille; Rio, Paula

    2017-01-01

    Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive marrow failure. Gene therapy by infusion of FA-corrected autologous hematopoietic stem cells (HSCs) may offer a potential cure since it is a monogenetic disease with mutations in the FANC genes, coding for DNA repair enzymes [1]. However, the collection of hCD34+-cells in FA patients implies particular challenges because of the reduced numbers of progenitor cells present in their bone marrow (BM) [2] or mobilized peripheral blood [3-5]. In addition, the FA genetic defect fragilizes the HSCs [6]. These particular features might explain why the first clinical trials using murine leukemia virus derived retroviral vectors conducted for FA failed to show engraftment of corrected cells. The gene therapy field is now moving towards the use of lentiviral vectors (LVs) evidenced by recent succesful clinical trials for the treatment of patients suffering from adrenoleukodystrophy (ALD) [7], β-thalassemia [8], metachromatic leukodystrophy [9] and Wiskott-Aldrich syndrome [10]. LV trials for X-linked severe combined immunodificiency and Fanconi anemia (FA) defects were recently initiated [11, 12]. Fifteen years of preclinical studies using different FA mouse models and in vitro research allowed us to find the weak points in the in vitro culture and transduction conditions, which most probably led to the initial failure of FA HSC gene therapy. In this review, we will focus on the different obstacles, unique to FA gene therapy, and how they have been overcome through the development of optimized protocols for FA HSC culture and transduction and the engineering of new gene transfer tools for FA HSCs. These combined advances in the field hopefully will allow the correction of the FA hematological defect in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. On the scientific and ethical issues of fetal somatic gene therapy.

    Science.gov (United States)

    Coutelle, C; Rodeck, C

    2002-06-01

    Fetal somatic gene therapy is often seen as an ethically particularly controversial field of gene therapy. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently raised questions and concerns in relation to this still experimental, potentially preventive gene therapy approach. We discuss here the choice of vectors, of animal models and routes of administration to the fetus. We address the relation of fetal gene therapy to abortion, to post-implantation selection and postnatal gene therapy and the concerns of inadvertent germ-line modification. Our views on the specific risks of prenatal gene therapy and on the particular prerequisites that have to be met before human application can be considered are presented.

  7. Chinese medicine protein and peptide in gene and cell therapy.

    Science.gov (United States)

    Feng, Yinglu; Yin, Zifei; Zhang, Daniel; Srivastava, Arun; Ling, Chen

    2018-06-11

    The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Intraplacental gene therapy with Ad-IGF-1 corrects naturally occurring rabbit model of intrauterine growth restriction.

    Science.gov (United States)

    Keswani, Sundeep G; Balaji, Swathi; Katz, Anna B; King, Alice; Omar, Khaled; Habli, Mounira; Klanke, Charles; Crombleholme, Timothy M

    2015-03-01

    Intrauterine growth restriction (IUGR) due to placental insufficiency is a leading cause of perinatal complications for which there is no effective prenatal therapy. We have previously demonstrated that intraplacental injection of adenovirus-mediated insulin-like growth factor-1 (Ad-IGF-1) corrects fetal weight in a murine IUGR model induced by mesenteric uterine artery branch ligation. This study investigated the effect of intraplacental Ad-IGF-1 gene therapy in a rabbit model of naturally occurring IUGR (runt) due to placental insufficiency, which is similar to the human IUGR condition with onset in the early third trimester, brain sparing, and a reduction in liver weight. Laparotomy was performed on New Zealand White rabbits on day 21 of 30 days of gestation and litters were divided into five groups: Control (first position)+phosphate-buffered saline (PBS), control+Ad-IGF-1, runt (third position)+PBS, runt+Ad-IGF-1, and runt+Ad-LacZ. The effect of IGF-1 gene therapy on fetal, placental, liver, heart, lung, and musculoskeletal weights of the growth-restricted pups was examined. Protein expression after gene transfer was seen along the maternal-fetal placenta interface (n=12) 48 hr after gene therapy. There was minimal gene transfer detected in the pups or maternal organs. At term, compared with the normally grown first-position control, the runted third-position pups demonstrated significantly lower fetal, placental, liver, lung, and musculoskeletal weights. The fetal, liver, and musculoskeletal weights were restored to normal by intraplacental Ad-IGF-1 gene therapy (p<0.01), with no change in the placental weight. Intraplacental gene therapy is a novel strategy for the treatment of IUGR caused by placental insufficiency that takes advantage of an organ that will be discarded at birth. Development of nonviral IGF-1 gene delivery using placenta-specific promoters can potentially minimize toxicity to the mother and fetus and facilitate clinical translation of

  9. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging.

    Science.gov (United States)

    Peñuelas, Iván; Boán, JoséF; Martí-Climent, Josep M; Sangro, Bruno; Mazzolini, Guillermo; Prieto, Jesús; Richter, José A

    2004-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. This review focuses on the molecular biology basis of gene therapy and molecular imaging, describing the fundamentals of in vivo gene expression imaging by PET, and the application of PET to gene therapy, as a technology that can be used in many different ways. It could be applied to avoid invasive procedures for gene therapy monitoring; accurately diagnose the pathology for better planning of the most adequate therapeutic approach; as treatment evaluation to image the functional effects of gene therapy at the biochemical level; as a quantitative noninvasive way to monitor the location, magnitude and persistence of gene expression over time; and would also help to a better understanding of vector biology and pharmacology devoted to the development of safer and more efficient vectors.

  10. Screening of microbial radiation-inducible promoter and study of its expression; Development of basic technique of radiogenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Kim Dongho; Yang, Jaeseung

    2007-02-15

    In the search for new therapeutic modalities for cancer, gene therapy has attracted enormous interest over the last few years. Recently, the use of bacteria as a tumor specific protein transfer system has attracted interest. Attenuated Salmonella has been shown to provide selective colonization in tumors. This strategy to apply gene therapy for cancer has been defined as 'Radiogenic Therapy'. In this research, firstly, we screened a radiation inducible promoter of Salmonella responding to clinically relevant low dose of 10 Gy using microarray analysis. Of all genes showing a expression ratio of at least 2-fold changes relative to wild type, 168 genes were induced. To confirm the findings of the microarray by an alternative method, we investigated the transcriptional changes of radio-inducible genes using real time PCR analysis. To verify the ability of screened genes (fadB, narK, cyoA, STM1011, STM2617, and STM2632) to produce a downstream protein by irradiation, the reporter plasmids were constructed. Finally, we found that the promoter of fadB, cyoA, and STM2617 can be activated by irradiation within cancer cells. These results suggest that these genes may be the most probable candidate used in radiogenic therapy.

  11. Screening of microbial radiation-inducible promoter and study of its expression; Development of basic technique of radiogenic therapy

    International Nuclear Information System (INIS)

    Lim, Sangyong; Kim Dongho; Yang, Jaeseung

    2007-02-01

    In the search for new therapeutic modalities for cancer, gene therapy has attracted enormous interest over the last few years. Recently, the use of bacteria as a tumor specific protein transfer system has attracted interest. Attenuated Salmonella has been shown to provide selective colonization in tumors. This strategy to apply gene therapy for cancer has been defined as 'Radiogenic Therapy'. In this research, firstly, we screened a radiation inducible promoter of Salmonella responding to clinically relevant low dose of 10 Gy using microarray analysis. Of all genes showing a expression ratio of at least 2-fold changes relative to wild type, 168 genes were induced. To confirm the findings of the microarray by an alternative method, we investigated the transcriptional changes of radio-inducible genes using real time PCR analysis. To verify the ability of screened genes (fadB, narK, cyoA, STM1011, STM2617, and STM2632) to produce a downstream protein by irradiation, the reporter plasmids were constructed. Finally, we found that the promoter of fadB, cyoA, and STM2617 can be activated by irradiation within cancer cells. These results suggest that these genes may be the most probable candidate used in radiogenic therapy

  12. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world

    NARCIS (Netherlands)

    Kastelein, John J. P.; Ross, Colin J. D.; Hayden, Michael R.

    2013-01-01

    On November 2, 2012, Glybera® (alipogene tipovarvec) was the first human gene therapy to receive long awaited market approval in the Western world. This important milestone is expected to open the door to additional gene therapies for the treatment of many diseases in the future. The development of

  13. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  14. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    Science.gov (United States)

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    genes, with resultant activation of cell signaling. No adverse pathological effects related to NGF were observed. These findings indicate that neurons of the degenerating brain retain the ability to respond to growth factors with axonal sprouting, cell hypertrophy, and activation of functional markers. Sprouting induced by NGF persists for 10 years after gene transfer. Growth factor therapy appears safe over extended periods and merits continued testing as a means of treating neurodegenerative disorders.

  15. Insulin-like growth factor-I gene therapy reverses morphologic changes and reduces hyperprolactinemia in experimental rat prolactinomas

    Directory of Open Access Journals (Sweden)

    Bracamonte Maria I

    2008-01-01

    Full Text Available Abstract Background The implementation of gene therapy for the treatment of pituitary tumors emerges as a promising complement to surgery and may have distinct advantages over radiotherapy for this type of tumors. Up to now, suicide gene therapy has been the main experimental approach explored to treat experimental pituitary tumors. In the present study we assessed the effectiveness of insulin-like growth factor I (IGF-I gene therapy for the treatment of estrogen-induced prolactinomas in rats. Results Female Sprague Dawley rats were subcutaneously implanted with silastic capsules filled with 17-β estradiol (E2 in order to induce pituitary prolactinomas. Blood samples were taken at regular intervals in order to measure serum prolactin (PRL. As expected, serum PRL increased progressively and 23 days after implanting the E2 capsules (Experimental day 0, circulating PRL had undergone a 3–4 fold increase. On Experimental day 0 part of the E2-implanted animals received a bilateral intrapituitary injection of either an adenoviral vector expressing the gene for rat IGF-I (RAd-IGFI, or a vector (RAd-GFP expressing the gene for green fluorescent protein (GFP. Seven days post vector injection all animals were sacrificed and their pituitaries morphometrically analyzed to evaluate changes in the lactotroph population. RAd-IGFI but not RAd-GFP, induced a significant fall in serum PRL. Furthermore, RAd-IGFI but not RAd-GFP significantly reversed the increase in lactotroph size (CS and volume density (VD induced by E2 treatment. Conclusion We conclude that IGF-I gene therapy constitutes a potentially useful intervention for the treatment of prolactinomas and that bioactive peptide gene delivery may open novel therapeutic avenues for the treatment of pituitary tumors.

  16. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  17. Gene therapy for carcinoma of the breast: Genetic ablation strategies

    International Nuclear Information System (INIS)

    Curiel, David T

    2000-01-01

    The gene therapy strategy of mutation compensation is designed to rectify the molecular lesions that are etiologic for neoplastic transformation. For dominant oncogenes, such approaches involve the functional knockout of the dysregulated cellular control pathways provoked by the overexpressed oncoprotein. On this basis, molecular interventions may be targeted to the transcriptional level of expression, via antisense or ribozymes, or post-transcriptionally, via intracellular single chain antibodies (intrabodies). For carcinoma of the breast, these approaches have been applied in the context of the disease linked oncogenes erbB-2 and cyclin D 1 , as well as the estrogen receptor. Neoplastic revision accomplished in modal systems has rationalized human trials on this basis

  18. Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy

    Science.gov (United States)

    Vandenburgh, Herman; DelTatto, Michael; Shansky, Janet; Lemaire, Julie; Chang, Albert; Payumo, Francis; Lee, Peter; Goodyear, Amy; Raven, Latasha

    1996-01-01

    Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid Implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postimtotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.

  19. Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy

    Science.gov (United States)

    2007-03-01

    thymidine kinase transfected EL4 cells . Further exploration of Tc-99m conjugated potential HSV1-TK substrates is still undergoing in our laboratory...prostate cancer cells , has been demonstrated the utility for tissue-specific toxic gene therapy for prostate cancer[10, 11]. Therefore, an adenovirus...BJ5183 together with pAdeasy-1, the viral DNA plasmid. The pAdeasy-1 is E1 and E3 deleted, its E1 function can be complemented in 293A cells . The

  20. Development of Non-Viral, Trophoblast-Specific Gene Delivery for Placental Therapy.

    Directory of Open Access Journals (Sweden)

    Noura Abd Ellah

    Full Text Available Low birth weight is associated with both short term problems and the fetal programming of adult onset diseases, including an increased risk of obesity, diabetes and cardiovascular disease. Placental insufficiency leading to intrauterine growth restriction (IUGR contributes to the prevalence of diseases with developmental origins. Currently there are no therapies for IUGR or placental insufficiency. To address this and move towards development of an in utero therapy, we employ a nanostructure delivery system complexed with the IGF-1 gene to treat the placenta. IGF-1 is a growth factor critical to achieving appropriate placental and fetal growth. Delivery of genes to a model of human trophoblast and mouse placenta was achieved using a diblock copolymer (pHPMA-b-pDMAEMA complexed to hIGF-1 plasmid DNA under the control of trophoblast-specific promoters (Cyp19a or PLAC1. Transfection efficiency of pEGFP-C1-containing nanocarriers in BeWo cells and non-trophoblast cells was visually assessed via fluorescence microscopy. In vivo transfection and functionality was assessed by direct placental-injection into a mouse model of IUGR. Complexes formed using pHPMA-b-pDMAEMA and CYP19a-923 or PLAC1-modified plasmids induce trophoblast-selective transgene expression in vitro, and placental injection of PLAC1-hIGF-1 produces measurable RNA expression and alleviates IUGR in our mouse model, consequently representing innovative building blocks towards human placental gene therapies.

  1. Gene Editing and CRISPR Therapeutics: Strategies Taught by Cell and Gene Therapy.

    Science.gov (United States)

    Ramirez, Juan C

    2017-01-01

    A few years ago, we assisted in the demonstration for the first time of the revolutionary idea of a type of adaptive-immune system in the bacteria kingdom. This system, named CRISPR, and variants engineered in the lab, have been demonstrated as functional with extremely high frequency and fidelity in almost all eukaryotic cells studied to date. The capabilities of this RNA-guided nuclease have added to the interest that was announced with the advent of previous technologies for genome editing tools, such as ZFN and TALEN. The capabilities exhibited by these gene editors, opens up a novel scenario that indicates the promise of a next-generation medicine based on precision and personalized objectives, mostly due to the change in the paradigm regarding gene-surgery. This has certainly attracted, like never before, the attention of the biotech business and investor community. This chapter offers a brief overview of some of the factors that have contributed to a rapid entry into the biotech and pharmaceutical company's pipeline, focusing on how cell and gene therapies (CGT), collectively known as advanced therapies, have become the driving forces toward the therapeutic uses of gene editing technology. The sum of all those efforts for more than 30years has contributed to the new paradigm of considering genes as medicines. Copyright © 2017. Published by Elsevier Inc.

  2. Towards gene therapy based on femtosecond optical transfection

    Science.gov (United States)

    Antkowiak, M.; Torres-Mapa, M. L.; McGinty, J.; Chahine, M.; Bugeon, L.; Rose, A.; Finn, A.; Moleirinho, S.; Okuse, K.; Dallman, M.; French, P.; Harding, S. E.; Reynolds, P.; Gunn-Moore, F.; Dholakia, K.

    2012-06-01

    Gene therapy poses a great promise in treatment and prevention of a variety of diseases. However, crucial to studying and the development of this therapeutic approach is a reliable and efficient technique of gene and drug delivery into primary cell types. These cells, freshly derived from an organ or tissue, mimic more closely the in vivo state and present more physiologically relevant information compared to cultured cell lines. However, primary cells are known to be difficult to transfect and are typically transfected using viral methods, which are not only questionable in the context of an in vivo application but rely on time consuming vector construction and may also result in cell de-differentiation and loss of functionality. At the same time, well established non-viral methods do not guarantee satisfactory efficiency and viability. Recently, optical laser mediated poration of cell membrane has received interest as a viable gene and drug delivery technique. It has been shown to deliver a variety of biomolecules and genes into cultured mammalian cells; however, its applicability to primary cells remains to be proven. We demonstrate how optical transfection can be an enabling technique in research areas, such as neuropathic pain, neurodegenerative diseases, heart failure and immune or inflammatory-related diseases. Several primary cell types are used in this study, namely cardiomyocytes, dendritic cells, and neurons. We present our recent progress in optimizing this technique's efficiency and post-treatment cell viability for these types of cells and discuss future directions towards in vivo applications.

  3. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Science.gov (United States)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  4. Nerve Growth Factor Gene Therapy Activates Neuronal Responses in Alzheimer’s Disease

    Science.gov (United States)

    Tuszynski, Mark H.; Yang, Jennifer H.; Barba, David; U, H S.; Bakay, Roy; Pay, Mary M.; Masliah, Eliezer; Conner, James M.; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H.

    2016-01-01

    IMPORTANCE Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and lacks effective disease modifying therapies. In 2001 we initiated a clinical trial of Nerve Growth Factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in AD patients. We present post-mortem findings in 10 subjects with survival times ranging from 1 to 10 years post-treatment. OBJECTIVE To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. DESIGN, SETTING, AND PARTICIPANTS 10 patients with early AD underwent NGF gene therapy using either ex vivo or in vivo gene transfer. The brains of all eight patients in the first Phase 1 ex vivo trial and two patients in a subsequent Phase 1 in vivo trial were examined. MAIN OUTCOME MEASURES Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In two cases, NGF protein levels were measured by ELISA. RESULTS Degenerating neurons in the AD brain respond to NGF. All patients exhibited a trophic response to NGF, in the form of axonal sprouting toward the NGF source. Comparing treated and non-treated sides of the brain in three patients that underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P>0.05). Activation of cellular signaling and functional markers were present in two patients that underwent AAV2-mediated NGF gene transfer. Neurons exhibiting tau pathology as well as neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic genes with resulting activation of cell signaling. No adverse pathological effects related to NGF were observed. CONCLUSIONS AND RELEVANCE These findings indicate that

  5. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....

  6. Effect of immunomodulatory therapy on the endometrial inflammatory response to induced infectious endometritis in susceptible mares

    DEFF Research Database (Denmark)

    Christoffersen, Mette; Woodward, Elizabeth; Bojesen, Anders Miki

    2012-01-01

    endometritis based on their endometrial histopathology and ability to clear an induced uterine inflammation. To investigate the effect of immunomodulatory therapy, the mares were inoculated with 10(5) colony forming units (CFU) Escherichia coli in three consecutive estrus cycles in a modified cross-over study...... inoculation. Endometrial biopsies were recovered 3, 24 and 72 h post inoculation. Relative gene-expression analyses were performed by quantitative reverse transcriptase PCR (qRT-PCR). Endometrial gene expression of inflammatory cytokines was modulated by administration of GC. Expression of proinflammatory...

  7. Home-based Constraint Induced Movement Therapy Poststroke

    OpenAIRE

    Stephen Isbel HScD; Christine Chapparo PhD; David McConnell PhD; Judy Ranka PhD

    2014-01-01

    Background: This study examined the efficacy of a home-based Constraint Induced Movement Therapy (CI Therapy) protocol with eight poststroke survivors. Method: Eight ABA, single case experiments were conducted in the homes of poststroke survivors. The intervention comprised restraint of the intact upper limb in a mitt for 21 days combined with a home-based and self-directed daily activity regime. Motor changes were measured using The Wolf Motor Function Test (WMFT) and the Motor Activity L...

  8. Lipidomic Evaluation of Feline Neurologic Disease after AAV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Heather L. Gray-Edwards

    2017-09-01

    Full Text Available GM1 gangliosidosis is a fatal lysosomal disorder, for which there is no effective treatment. Adeno-associated virus (AAV gene therapy in GM1 cats has resulted in a greater than 6-fold increase in lifespan, with many cats remaining alive at >5.7 years of age, with minimal clinical signs. Glycolipids are the principal storage product in GM1 gangliosidosis whose pathogenic mechanism is not completely understood. Targeted lipidomics analysis was performed to better define disease mechanisms and identify markers of disease progression for upcoming clinical trials in humans. 36 sphingolipids and subspecies associated with ganglioside biosynthesis were tested in the cerebrospinal fluid of untreated GM1 cats at a humane endpoint (∼8 months, AAV-treated GM1 cats (∼5 years old, and normal adult controls. In untreated GM1 cats, significant alterations were noted in 16 sphingolipid species, including gangliosides (GM1 and GM3, lactosylceramides, ceramides, sphingomyelins, monohexosylceramides, and sulfatides. Variable degrees of correction in many lipid metabolites reflected the efficacy of AAV gene therapy. Sphingolipid levels were highly predictive of neurologic disease progression, with 11 metabolites having a coefficient of determination (R2 > 0.75. Also, a specific detergent additive significantly increased the recovery of certain lipid species in cerebrospinal fluid samples. This report demonstrates the methodology and utility of targeted lipidomics to examine the pathophysiology of lipid storage disorders.

  9. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  10. Mesoporous silica nanoparticles as vectors for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Crapina, Laura Cipriano; Bizeto, Marcos, E-mail: lauracrapina@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil)

    2016-07-01

    Full text: Mesoporous silica nanoparticles present unique physical-chemical properties, such as high surface area, tunable pore size, easy surface chemical modification, good biocompatibility and low toxicology. Those properties make this class of inorganic materials promising for several potential applications in the biomedical field. This work seeks to develop mesoporous silica nanoparticles with characteristics suitable to the transport of nucleic acids, such as plasmid DNA and microRNA, with the aim of substituting viral vectors in gene therapy. A successful nanocarrier must have positive charge at physiological conditions and pore diameter larger than 30 Å. The mesoporous silica was synthesized according to the method described by Bein and collaborators [1]. Based on a cocondensation synthetic route, positively charged nanoparticles were obtained through the insertion of N-3-(trimethoxysilyl)propyldiethylenetriamine in the silica walls. Pore expansion was achieved through the incorporation of 1,2,4- trimethylbenzene into the hexadecyltrimethylammonium micellar aggregates, which are a structure-directing agent for the mesopores. The resulting nanoparticles were characterized by DLS, ζ potential, XRD, FTIR, SEM, TEM, TGA and elemental analysis. In addition, the capability of nucleic acid adsorption was tested and confirmed by gel electrophoresis. Discovery of a non-viral therapeutic agent would aid the viability of gene therapy, which is a treatment for chronic ischemia, metabolic and genetic disorders. Reference: [1] K. Moeller, J. Kobler, T. Bein, Journal of Materials Chemistry, 17, 624-631, (2007). (author)

  11. Induced resistance and gene expression in wheat against leaf rust ...

    African Journals Online (AJOL)

    uvp

    2013-05-15

    May 15, 2013 ... 2Department of Soil, Crop and Climate Sciences, University of the Free State, P.O Box ... Key words: Wheat leaf rust, induced resistance, priming, gene ..... transformation: susceptibility of transgenic Nicotiana sylvestris plants.

  12. EVIDENCE FOR THE MACROPHAGE INDUCING GENE IN MYCOBACTERIUM INTRACELLULARE

    Science.gov (United States)

    Background: The Mycobacterium avium Complex (MAC) includes the species M. avium (MA), M. intracellulare (MI), and possibly others. Organisms belonging to the MAC are phylogenetically closely related, opportunistic pathogens. The macrophage inducing gene (mig) is the only well-des...

  13. TDP2 suppresses chromosomal translocations induced by DNA topoisomerase II during gene transcription.

    Science.gov (United States)

    Gómez-Herreros, Fernando; Zagnoli-Vieira, Guido; Ntai, Ioanna; Martínez-Macías, María Isabel; Anderson, Rhona M; Herrero-Ruíz, Andrés; Caldecott, Keith W

    2017-08-10

    DNA double-strand breaks (DSBs) induced by abortive topoisomerase II (TOP2) activity are a potential source of genome instability and chromosome translocation. TOP2-induced DNA double-strand breaks are rejoined in part by tyrosyl-DNA phosphodiesterase 2 (TDP2)-dependent non-homologous end-joining (NHEJ), but whether this process suppresses or promotes TOP2-induced translocations is unclear. Here, we show that TDP2 rejoins DSBs induced during transcription-dependent TOP2 activity in breast cancer cells and at the translocation 'hotspot', MLL. Moreover, we find that TDP2 suppresses chromosome rearrangements induced by TOP2 and reduces TOP2-induced chromosome translocations that arise during gene transcription. Interestingly, however, we implicate TDP2-dependent NHEJ in the formation of a rare subclass of translocations associated previously with therapy-related leukemia and characterized by junction sequences with 4-bp of perfect homology. Collectively, these data highlight the threat posed by TOP2-induced DSBs during transcription and demonstrate the importance of TDP2-dependent non-homologous end-joining in protecting both gene transcription and genome stability.DNA double-strand breaks (DSBs) induced by topoisomerase II (TOP2) are rejoined by TDP2-dependent non-homologous end-joining (NHEJ) but whether this promotes or suppresses translocations is not clear. Here the authors show that TDP2 suppresses chromosome translocations from DSBs introduced during gene transcription.

  14. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  15. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    2011-04-01

    Full Text Available Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5, and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×10(12 vg/ml expressing green fluorescent protein gene (GFP was topically applied onto normal or diseased (fibrotic or neovascularized rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point. Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5

  16. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  17. Molecular Characterization of a stress-induced NAC Gene ...

    Indian Academy of Sciences (India)

    lenovo

    1Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China. 2College of Life ... Running title: GhSNAC3 gene in Cotton ... Quantitative RT-PCR analysis indicated that GhSNAC3 was induced by high salinity, drought ..... simple and general method for transferring genes into plants. Science ...

  18. Induced mutations of rust resistance genes in wheat

    International Nuclear Information System (INIS)

    McIntosh, R.A.

    1983-01-01

    Induced mutations are being used as a tool to study genes for resistance in wheat. It was found that Pm1 can be separated from Lr20 and Sr15, but these two react like a single pleiotropic gene. Mutants were further examined in crosses and backmutations have been attempted. (author)

  19. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  20. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  1. Functionalized nanoparticles for AMF-induced gene and drug delivery

    Science.gov (United States)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the

  2. Follistatin Gene Therapy Improves Ambulation in Becker Muscular Dystrophy.

    Science.gov (United States)

    Al-Zaidy, Samiah A; Sahenk, Zarife; Rodino-Klapac, Louise R; Kaspar, Brian; Mendell, Jerry R

    2015-09-02

    Follistatin is a ubiquitous secretory propeptide that functions as a potent inhibitor of the myostatin pathway, resulting in an increase in skeletal muscle mass. Its ability to interact with the pituitary activin-inhibin axis and suppress the secretion of follicle-stimulating hormone (FSH) called for caution in its clinical applicability. This limitation was circumvented by the use of one of the alternatively spliced follistatin variants, FS344, undergoing post-translational modification to FS315. This follistatin isoform is serum-based, and has a 10-fold lower affinity to activin compared to FS288. Preclinical studies of intramuscular delivery of the follistatin gene demonstrated safety and efficacy in enhancing muscle mass. We herein review the evidence supporting the utility of follistatin as a genetic enhancer to improve cellular performance. In addition, we shed light on the results of the first clinical gene transfer trial using the FS344 isoform of follistatin in subjects with Becker muscular dystrophy as well as the future directions for clinical gene therapy trials using follistatin.

  3. Gene therapy: a lipofection approach for gene transfer into primary endothelial cells.

    Science.gov (United States)

    Young, A T L; Lakey, J R T; Murray, A G; Moore, R B

    2002-01-01

    Despite the great potential of gene therapy to become a new treatment modality in future medicine, there are still many limitations to overcome before this gene approach can pass to the stage of human trial. The foremost obstacle is the development of a safe, efficient, and efficacious vector system for in vivo gene application. This study evaluated the efficacy of lipofection as a gene delivery vehicle into primary endothelial cells. Transfection efficiency of several lipid-based reagents (Effectene, Fugene 6, DOTAP) was examined at experimental temperatures of 37 degrees C, 24 degrees C, and 6 degrees C. Human umbilical vein endothelial cells (HUVECs) were transfected with the enhanced green fluorescent protein (EGFP) using precise amounts of DNA (Effectene, 0.2 microg; Fugene 6, 0.5 microg; DOTAP, 2.5 microg) and lipids (Effectene, 10 microl; Fugene 6, 6 microl; DOTAP, 15 microl) optimized in our laboratory. Duration of incubation in the DNA/lipid transfection mixture varied for each lipid transfectant as follows: 5 h for both Fugene 6 and DOTAP and 3 h for Effectene. Efficiency of transfection was quantified by microscopic evaluation of EFGP expression in a minimum of 100 cells per group. Transfection efficiencies achieved with these lipofection agents were 34 +/- 1.3% (mean +/- SEM), 33 +/- 1.4%, and 18 +/- 1.5% for Effectene, Fugene 6, and DOTAP, respectively, at 37 degrees C. Transfection results were lower at 24 degrees C with mean efficiencies of 26 +/- 2.4% for Effectene, 14 +/- 2.9% for Fugene 6, and 15 +/- 3.2% for DOTAP. Furthermore, mean efficiencies at 6 degrees C were 6 +/- 0.5%, 8 +/- 1.5%, and 6 +/- 0.0% for Effectene, Fugene 6, and DOTAP, respectively. Efficiency of transfection appeared to be temperature dependent (ANOVA; p lipofection a potential gene delivery strategy for in vivo gene therapy.

  4. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    Science.gov (United States)

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  5. A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy

    Directory of Open Access Journals (Sweden)

    Miki Ando

    2015-10-01

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9 into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.

  6. Construction Of An Optimized Lentiviral Vector Containing Pdx-1 Gene For Transduction Of Stem Cells Towards Gene Therapy Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    S Rahmati

    2013-02-01

    Full Text Available Abstract Background & aim: Nowadays, most of gene therapy protocols are performed by lentiviral vectors. One of the most important factors which is involved in pancreas development and transcription of insulin gene is pancreatic & duodenal homeobox 1 (PDX-1 transcription factor. The goal of this study was to optimize a lentiviral construct, containing pdx-1 gene, to transfect stem cells towards gene therapy of type-1 diabetes. Methods: In this experimental study, first, the pdx-1 gene was multiplied by PCR from pcDNA3.1-pdx-1 and cloned into pTG19-T vector. Then, pdx-1 was subcloned on upstream of IRES-EGFP gene into IRES2-EGFP vector. At the next step, the cloned parts of IRES-EGFP and pdx-1 were isolated and cloned into the lentiviral expression vector pSINTREM in upstream of TRE-CMV gene. After sequencing, final construct was transfected into HEK 293 cells and gene expression of pdx-1 was evaluated using flow cytometry analysis and reverse fluorescent microscopy. Results: Flow cytometry results and inverted fluorescent microscopy observing showed that pdx-1 and GFP genes are expressed in cells transfected with final recombinant construct. Conclusion: Regarding the design of this construct, to ensure long time expression with higher in vivo and in vitro expression efficiency for stem cells and also use of Tet on induced optimized system, it seems that the current construct can be among the best ones to transfect stem cells. Key words: Gene therapy, Diabetes, Stem cells

  7. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  8. Satellite DNA-based artificial chromosomes for use in gene therapy.

    Science.gov (United States)

    Hadlaczky, G

    2001-04-01

    Satellite DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian species. These artificially generated accessory chromosomes are composed of predictable DNA sequences and they contain defined genetic information. Prototype human SATACs have been successfully constructed in different cell types from 'neutral' endogenous DNA sequences from the short arm of the human chromosome 15. SATACs have already passed a number of hurdles crucial to their further development as gene therapy vectors, including: large-scale purification; transfer of purified artificial chromosomes into different cells and embryos; generation of transgenic animals and germline transmission with purified SATACs; and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals.

  9. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph P

    2007-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  10. Screening of hypoxia-inducible genes in sporadic ALS.

    LENUS (Irish Health Repository)

    Cronin, Simon

    2008-10-01

    Genetic variations in two hypoxia-inducible angiogenic genes, VEGF and ANG, have been linked with sporadic amyotrophic lateral sclerosis (SALS). Common variations in these genes may reduce the levels or functioning of their products. VEGF and ANG belong to a larger group of angiogenic genes that are up-regulated under hypoxic conditions. We hypothesized that common genetic variation across other members of this group may also predispose to sporadic ALS. To screen other hypoxia-inducible angiogenic genes for association with SALS, we selected 112 tagging single nucleotide polymorphisms (tgSNPs) that captured the common genetic variation across 16 VEGF-like and eight ANG-like hypoxia-inducible genes. Screening for association was performed in 270 Irish individuals with typical SALS and 272 ethnically matched unrelated controls. SNPs showing association in the Irish phase were genotyped in a replication sample of 281 Swedish sporadic ALS patients and 286 Swedish controls. Seven markers showed association in the Irish. The one modest replication signal observed in the Swedish replication sample, at rs3801158 in the gene inhibin beta A, was for the opposite allele vs. the Irish cohort. We failed to detect association of common variation across 24 candidate hypoxia-inducible angiogenic genes with SALS.

  11. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression.

    Directory of Open Access Journals (Sweden)

    Marta Miró-Murillo

    Full Text Available Von Hippel Lindau (Vhl gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs, have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2. Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed-UBC-Cre-ER(T2 adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2 tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2 mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.

  12. Episomal Nonviral Gene Therapy Vectors Slow Progression of Atherosclerosis in a Model of Familial Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Alastair G Kerr

    2016-01-01

    Full Text Available Familial hypercholesterolemia (FH is a life-threatening genetic disorder characterized by elevated levels of plasma low-density lipoprotein cholesterol (LDL-cholesterol. Current attempts at gene therapy for FH have been limited by the use of strong heterologous promoters which lack genomic DNA elements essential for regulated expression. Here, we have combined a minigene vector expressing the human LDLR cDNA from a 10 kb native human LDLR locus genomic DNA promoter element, with an efficient miRNA targeting 3-hydroxy-3-methylgutaryl-coenzyme A reductase (Hmgcr, to further enhance LDLR expression. We show that the combined vector suppresses endogenous Hmgcr transcripts in vivo, leading to an increase in LDLR transgene expression. In a diet-induced Ldlr-/- mouse model of FH, we show that administration of the combined vector reduces atherogenic plasma lipids by ≃32%. Finally, we demonstrate that our episomal nonviral vectors are able to reduce atherosclerosis by ≃40% after 12 weeks in vivo. Taken together, the vector system we describe exploits the normal cellular regulation of the LDLR to provide prolonged expression of LDLR through targeted knockdown of Hmgcr. This novel gene therapy system could act alone, or in synergy with current therapies that modulate intracellular cholesterol, such as statins, greatly enhancing its therapeutic application for FH.

  13. Hypoxia-targeted suicidal gene therapy system enhances antitumor effects of radiotherapy

    International Nuclear Information System (INIS)

    Liu Junye; Guo Yao; Guo Guozhen

    2006-01-01

    Objective: To explore the effects of hypoxia-targeted suicidal gene therapy system combined with radiotherapy on pancreatic cancer. Methods: The recombinant adenovirus Ad-5HRE/hCMVmp-BCD was constructed by DNA recombinant technique. Western blot was used to detect hypoxia-induced expression of bacterial cytosine deaminase (BCD). Cell growth inhibition assay was used to determine the sensitivity of human pancreatic cancer cells MIA-PACA2 to 5-fluorocytosine (5-FC). Tumor xenograft growth delay assays was used to evaluate the effects of Ad-5HRE/hCMVmp-BCD/5-FC combined with radiotherapy on pancreatic cancer. Results: Western blot analysis demonstrated that hypoxia-induced BCD protein expression was achieved in MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD. With hypoxia treatment, the sensitivity of MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD to 5-FC significantly increased. Administration of either Ad-5HRE/hCMVmp-BCD/5-FC or radiotherapy could inhibit the growth of MIA-PACA2 xenografts in nude mice. Moreover, combination of Ad-5HRE/hCMVmp-BCD/5-FC could significantly enhance suppressing effects of radiotherapy on MIA-PACA2 xenografts. Conclusion: Hypoxia-targeted suicidal gene therapy system Ad-5HRE/hCMVmp-BCD/5-FC could enhance antitumor effects of radiotherapy on pancreatic cancer and can be used as a powerful adjunct to conventional radiotherapy. (authors)

  14. Constraint-Induced Movement Therapy (CIMT): Pediatric Applications

    Science.gov (United States)

    Brady, Kathleen; Garcia, Teressa

    2009-01-01

    The purpose of this article is to describe theoretical and research bases for constraint-induced movement therapy (CIMT), to discuss key features and variations in protocols currently in use with children, and to review the results of studies of efficacy. CIMT has been found to be an effective intervention for increasing functional use of the…

  15. A gene expression profile indicative of early stage HER2 targeted therapy response.

    Science.gov (United States)

    O'Neill, Fiona; Madden, Stephen F; Clynes, Martin; Crown, John; Doolan, Padraig; Aherne, Sinéad T; O'Connor, Robert

    2013-07-01

    Efficacious application of HER2-targetting agents requires the identification of novel predictive biomarkers. Lapatinib, afatinib and neratinib are tyrosine kinase inhibitors (TKIs) of HER2 and EGFR growth factor receptors. A panel of breast cancer cell lines was treated with these agents, trastuzumab, gefitinib and cytotoxic therapies and the expression pattern of a specific panel of genes using RT-PCR was investigated as a potential marker of early drug response to HER2-targeting therapies. Treatment of HER2 TKI-sensitive SKBR3 and BT474 cell lines with lapatinib, afatinib and neratinib induced an increase in the expression of RB1CC1, ERBB3, FOXO3a and NR3C1. The response directly correlated with the degree of sensitivity. This expression pattern switched from up-regulated to down-regulated in the HER2 expressing, HER2-TKI insensitive cell line MDAMB453. Expression of the CCND1 gene demonstrated an inversely proportional response to drug exposure. A similar expression pattern was observed following the treatment with both neratinib and afatinib. These patterns were retained following exposure to traztuzumab and lapatinib plus capecitabine. In contrast, gefitinib, dasatinib and epirubicin treatment resulted in a completely different expression pattern change. In these HER2-expressing cell line models, lapatinib, neratinib, afatinib and trastuzumab treatment generated a characteristic and specific gene expression response, proportionate to the sensitivity of the cell lines to the HER2 inhibitor.Characterisation of the induced changes in expression levels of these genes may therefore give a valuable, very early predictor of the likely extent and specificity of tumour HER2 inhibitor response in patients, potentially guiding more specific use of these agents.

  16. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  17. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    Purpose: Site-specific activation of gene expression can be achieved by the use of a promoter that is induced by physical agents such as x-rays. The purpose of the present study was to determine whether site-specific activation of gene therapy can also be achieved within the vascular endothelium by use of radiation-inducible promoters. We studied induction of promoter-reporter gene constructs using previously identified radiation-promoters from c-jun, c-fos, Egr-1, ICAM-1, ELAM-1 after transfection into in the vascular endothelium. Methods: The following radiation-inducible genetic constructs were created: The ELAM-1 promoter fragment was cloned into pOGH to obtain the pE-sel(-587 +35)GH reporter construct. The ICAM-1 promoter fragment (-1162/+1) was cloned upstream of the CAT coding region of the pCAT-plasmid (Promega) after removal of the SV40 promoter by Bgl2/Stu1 digestion to create the pBS-CAT plasmid. The 132 to +170 bp segment of the 5' untranslated region of the c-jun promoter was cloned to the CAT reporter gene to create the -132/+170 cjun-CAT. The Egr-1 promoter fragment (-425/+75) was cloned upstream of the CAT coding region to create the pE425-CAT plasmid. Tandem repeats of the AP-1 binding site were cloned upstream of the CAT coding region (3 xTRE-CAT). Tandem repeats of the Egr binding site (EBS) were cloned upstream of the CAT coding region (EBS-CAT). Human vascular endothelial cells from both large vessel and small vessel origin (HUVEC and HMEC), as well as human tumor cell lines were transfected with plasmids -132/+170 cjun-CAT, pE425-CAT, 3 xTRE-CAT, EBS-CAT, pE-sel-GH and pBS-CAT by use of liposomes. Humor tumor cell lines included SQ20B (squamous), RIT3 (sarcoma), and HL525 (leukemia). Each plasmid was cotransfected with a plasmid containing a CMV promoter linked to the LacZ gene (1 μg). Transfected cells were treated with mock irradiation or x-rays. Cell extracts were assayed for reporter gene expression. Results: Radiation-induced gene

  18. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    Science.gov (United States)

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  19. Combined anti-tumor necrosis factor-α therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    Directory of Open Access Journals (Sweden)

    Carl K Edwards

    2012-12-01

    Full Text Available Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs or anti-TNF-α therapy. We used quantitative real-time PCR to compare peripheral blood gene expression profiles in active ("unstable" RA patients on DMARDs, stable RA patients on DMARDs, and stable RA patients treated with a combination of a DMARD and an anti-TNF-α agent (infliximab or etanercept to healthy human controls. The expression of 48 inflammatory genes were compared between healthy controls (N=122, unstable DMARD patients (N=18, stable DMARD patients (N=26, and stable patients on combination therapy (N=20. Expression of 13 genes was very low or undetectable in all study groups. Compared to healthy controls, patients with unstable RA on DMARDs exhibited increased expression of 25 genes, stable DMARD patients exhibited increased expression of 14 genes and decreased expression of five genes, and combined therapy patients exhibited increased expression of six genes and decreased expression of 10 genes. These findings demonstrate that active RA is associated with increased expression of circulating inflammatory markers whereas increases in inflammatory gene expression are diminished in patients with stable disease on either DMARD or anti-TNF-α therapy. Furthermore, combination DMARD and anti-TNF-α therapy is associated with greater reductions in circulating inflammatory gene expression compared to DMARD therapy alone. These results suggest that assessment of peripheral blood gene expression may prove useful to monitor disease progression and response to therapy.

  20. Mechanisms of radiation-induced gene responses

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Paunesku, T.

    1996-01-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5' region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3' region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process

  1. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  2. The hopes and fears of in utero gene therapy for genetic disease--a review.

    Science.gov (United States)

    Coutelle, C; Themis, M; Waddington, S; Gregory, L; Nivsarkar, M; Buckley, S; Cook, T; Rodeck, C; Peebles, D; David, A

    2003-10-01

    Somatic gene delivery in utero is a novel approach to gene therapy for genetic disease. It is based on the concept that application of gene therapy vectors to the fetus in utero may prevent the development of early disease related tissue damage, may allow targeting of otherwise inaccessible organs, tissues and still expanding stem cell populations and may also provide postnatal tolerance against the therapeutic transgenic protein. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently expressed concerns raised by this still experimental, potentially preventive gene therapy approach. We describe and discuss the choice of vectors, of animal models and routes of administration to the fetus. We address potential risk factors of prenatal gene therapy such as vector toxicity, inadvertent germ line modification, developmental aberration and oncogenesis as well as specific risks of this procedure for the fetus and mother and discuss their ethical implications.

  3. Advances in gene therapy and early imaging monitoring for avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Wang Peng; Lan Xiaoli; Zhang Yongxue; Qi Hongyan

    2012-01-01

    Gene therapy is a method that transfers foreign gene to target cells, so as to correct or compensate the disease which is caused by the gene defects and abnormalities. As a new technology, gene therapy has been used in many fields, such as cancer, cardiovascular and nervous system disease, and it brings some hope for patients with difficult and complicated disease. Avascular necrosis of femoral head is a refractory and common disease in clinical, but the traditional surgery therapy and conservative treatment both have many shortcomings,and the effect is unsatisfactory. As a new technology,gene therapy showed bright future in orthopedics ischemic disease, and its potential feasibility has been confirmed by many animal experiments. This article focuses on the research progress of gene therapy and early monitoring in the avascular necrosis of the femoral head. (authors)

  4. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  5. Natural gene therapy in monozygotic twins with Fanconi anemia.

    Science.gov (United States)

    Mankad, Anuj; Taniguchi, Toshiyasu; Cox, Barbara; Akkari, Yassmine; Rathbun, R Keaney; Lucas, Lora; Bagby, Grover; Olson, Susan; D'Andrea, Alan; Grompe, Markus

    2006-04-15

    Monozygotic twin sisters, with nonhematologic symptoms of Fanconi anemia (FA), were discovered to be somatic mosaics for mutations in the FANCA gene. Skin fibroblasts, but not lymphocytes or committed hematopoietic progenitors, were sensitive to DNA cross-linking agents. Molecular analysis revealed, in skin cells of both twins, a frameshift causing deletion in exon 27 (2555deltaT) and an exon 28 missense mutation (2670G>A/R880Q). The latter resulted in primarily cytoplasmic expression and reduced function of the mutant FANCA (R880Q) protein. Surprisingly, the same acquired exon 30 missense change (2927G>A/E966K) was detected in the hematopoietic cells of both sisters, but not in their fibroblasts, nor in either parent. This compensatory mutation existed in cis with the maternal exon 28 mutation, and it restored function and nuclear localization of the resulting protein. Both sisters have been free of hematologic symptoms for more than 2 decades, suggesting that this de novo mutation occurred prenatally in a single hematopoietic stem cell (HSC) in one twin and that descendants of this functionally corrected HSC, via intra-uterine circulation, repopulated the blood lineages of both sisters. This finding suggests that treating FA patients with gene therapy might require transduction of only a few hematopoietic stem cells.

  6. Gene expression of osteogenic factors following gene therapy in mandibular lengthening.

    Science.gov (United States)

    Wu, Guoping; Zhou, Bin; Hu, Chunbing; Li, Shaolan

    2015-03-01

    This study investigated the effect of gene therapy on the expression of osteogenic mediators in mandibular distraction osteogenesis rabbits. Bilateral mandibular osteotomies were performed in 45 New-Zealand rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/d for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups: 2 μg (0.1 μg/μL) of recombinant plasmid pIRES-hVEGF165-hBMP-2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES, and the same volume of normal saline were injected into the distraction gap of groups A, B, C, D, and E, respectively, followed by electroporation. Three animals were killed at the 7th, 14th, and 28th day after gene transfected in different groups, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations; the mean optic densities (MODs) and integral optical density of bone morphogenetic protein (BMP-2) and transforming growth factor β1 (TGF-β1)-positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with SPSS (SPSS Inc, Chicago, IL). Bone morphogenetic protein 2 and TGF-β1 staining was mainly located in inflammatory cells, monocytes, fibroblasts, osteoblasts, osteocytes, and chondrocytes in the distraction zones. Their strongest expression reached to the peak at the seventh day and decreased at the 14th day of consolidation stage; at the 28th day, they expressed weakly. Image analysis results show that, at the seventh day, the expression of BMP-2 in group B (0.26 ± 0.03, 0.36 ± 0.02) was the strongest; there was significant difference among them (P < 0.01), whereas the expression of TGF-β1 in group C (0.38 ± 0.06, 1.05 ± 0.19) is strongest followed by group A (0.34 ± 0.05, 0.95 ± 0.16) and B (0.33 ± 0.07, 0.90 ± 0.19). At every time point, the level of expression of BMP-2 and TGF-β1 in gene therapy groups (groups A, B, and

  7. Low doses of neutrons induce changes in gene expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following γ-ray exposure in fibroblasts. Our past work had shown differences in the expression of β-protein kinase C and c-fos genes, both being induced following γ-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not γ-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to γ rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure

  8. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    Science.gov (United States)

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.

  9. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Hasegawa, Sumitaka; Furukawa, Takako; Saga, Tsuneo

    2010-01-01

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  10. 78 FR 26794 - Prospective Grant of Start-Up Exclusive Evaluation Option License Agreement: Gene Therapy and...

    Science.gov (United States)

    2013-05-08

    ... embryonic stem cells or mesenchymal stem cells, which are suitable for cell-based therapy. In contrast to...-Up Exclusive Evaluation Option License Agreement: Gene Therapy and Cell-Based Therapy for Cardiac... the field of use may be limited to ``Gene therapy and cell-based therapy for cardiac arrhythmias in...

  11. Gene therapy strategy to reduced bone marrow aplasia: evaluation in cynomolgus macaque exposed to a gamma total body irradiation

    International Nuclear Information System (INIS)

    Becard, N.

    2003-01-01

    The aim of this work was to assess whether direct intra-marrow injection of an adeno-viral vector expressing human IL-1α gene stimulates hematopoiesis in healthy non-irradiated and gamma irradiated cynomolgus macaques. In the first hand, we have evaluated the feasibility of this gene therapy strategy in two healthy non-irradiated macaques. In this work, we have observed an increase of neutrophil, monocyte and platelets in the two animals treated with the therapeutic construct. This effect was associated with no abnormal clinical side effect. On the other hand, we have evaluated this strategy in non-human primate exposed to a sublethal gamma irradiation. Two of three animals treated by the therapeutic construct reduced significantly the neutropenia, thrombocytopenia and anemia radio-induced. In conclusion, this gene therapy strategy gave a similar clinical benefit comparatively to systemic administration of huIL-1α but without severe side effect. (author) [fr

  12. Genes of cell-cell interactions, chemotherapy detoxification and apoptosis are induced during chemotherapy of acute myeloid leukemia

    International Nuclear Information System (INIS)

    Øyan, Anne Margrete; Ånensen, Nina; Bø, Trond Hellem; Stordrange, Laila; Jonassen, Inge; Bruserud, Øystein; Kalland, Karl-Henning; Gjertsen, Bjørn Tore

    2009-01-01

    The molecular changes in vivo in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response. The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO) terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting. Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival) are characterized by a unique gene response profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells. Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy response. Therapy-induced gene expression reflects the complex

  13. Manipulation of biliary lipids by gene therapy: potential consequences for patients with progressive familial intrahepatic cholestasis

    NARCIS (Netherlands)

    Oude Elferink, Ronald P. J.

    2005-01-01

    Gene therapy constitutes a great promise for the treatment of inherited diseases as well as cancer. Although the principle is extremely elegant, reality proves that several important problems remain to be solved before gene therapy becomes a standard application for these conditions. Meanwhile, and

  14. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would...

  15. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  16. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  17. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  18. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of...

  19. Induced marker gene mutations in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1989-01-01

    Full text: Non-fluorescent root mutants in soybean are useful as markers in genetic studies. 13 such mutants were detected among more than 150 000 seedlings derived from soybean lines treated with 6 mutagens. One of them, derived from variety 'Williams' treated with 20 kR gamma rays, did not correspond to the already known spontaneous non-fluorescent mutants. It was assigned the identification no. T285 and the gene symbol fr5. The other mutants corresponded with known loci fr1, fr2 or fr4. (author)

  20. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  1. The mechanisms of inter-effect about gene therapy and radiotherapy to tumor and the prospect of therapeutic alliance

    International Nuclear Information System (INIS)

    Zhao Yanzhi; Li Jin; Wang Qin; Mu Chuanjie

    2006-01-01

    The way about therapy include radio therapy and gene therapy in the recent years there are some improve about the therapy alliance, by the mechanism of improving the efficiency of the gene transfering, the recombination and conform of the DNA and induction the expression of the gene et. The radiotherapy can enhance the effect of the gene therapy. By the mechanism of improving of radiosensitivity some, reducing the radiation damage of radiotherapy, repairing the radiation impaired gene the gene therapy can enhance the effect of the radiotherapy. (authors)

  2. Gene expression profiling in cervical cancer: identification of novel markers for disease diagnosis and therapy.

    LENUS (Irish Health Repository)

    Martin, Cara M

    2012-02-01

    Cervical cancer, a potentially preventable disease, remains the second most common malignancy in women worldwide. Human papillomavirus is the single most important etiological agent in cervical cancer. HPV contributes to neoplastic progression through the action of two viral oncoproteins E6 and E7, which interfere with critical cell cycle pathways, p53, and retinoblastoma. However, evidence suggests that HPV infection alone is insufficient to induce malignant changes and other host genetic variations are important in the development of cervical cancer. Advances in molecular biology and high throughput gene expression profiling technologies have heralded a new era in biomarker discovery and identification of molecular targets related to carcinogenesis. These advancements have improved our understanding of carcinogenesis and will facilitate screening, early detection, management, and personalised targeted therapy. In this chapter, we have described the use of high density microarrays to assess gene expression profiles in cervical cancer. Using this approach we have identified a number of novel genes which are differentially expressed in cervical cancer, including several genes involved in cell cycle regulation. These include p16ink4a, MCM 3 and 5, CDC6, Geminin, Cyclins A-D, TOPO2A, CDCA1, and BIRC5. We have validated expression of mRNA using real-time PCR and protein by immunohistochemistry.

  3. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  4. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells.

    Science.gov (United States)

    Devarajan, Keerthana; Staecker, Hinrich; Detamore, Michael S

    2011-09-13

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  5. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  6. Gene therapy in the inner ear using adenovirus vectors.

    Science.gov (United States)

    Husseman, Jacob; Raphael, Yehoash

    2009-01-01

    Therapies for the protection and regeneration of auditory hair cells are of great interest given the significant monetary and lifestyle impact of hearing loss. The past decade has seen tremendous advances in the use of adenoviral vectors to achieve these aims. Preliminary data demonstrated the functional capacity of this technique as adenoviral-induced expression of neurotrophic and growth factors protected hair cells and spiral ganglion neurons from ototoxic insults. Subsequent efforts confirmed the feasibility of adenoviral transfection of cells in the auditory neuroepithelium via cochleostomy into the scala media. Most recently, efforts have focused on regeneration of depleted hair cells. Mammalian hearing loss is generally considered a permanent insult as the auditory epithelium lacks a basal layer capable of producing new hair cells. Recently, the transcription factor Atoh1 has been found to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo have shown the ability to regenerate auditory and vestibular hair cells by causing transdifferentiation of neighboring epithelial-supporting cells. Functional recovery of both the auditory and vestibular systems has been documented following adenoviral induced Atoh1 overexpression. Copyright (c) 2009 S. Karger AG, Basel.

  7. Genetic modification of hematopoietic stem cells: recent advances in the gene therapy of inherited diseases.

    Science.gov (United States)

    Bueren, Juan A; Guenechea, Guillermo; Casado, José A; Lamana, María Luisa; Segovia, José C

    2003-01-01

    Hematopoietic stem cells constitute a rare population of precursor cells with remarkable properties for being used as targets in gene therapy protocols. The last years have been particularly productive both in the fields of gene therapy and stem cell biology. Results from ongoing clinical trials have shown the first unquestionable clinical benefits of immunodeficient patients transplanted with genetically modified autologous stem cells. On the other hand, severe side effects in a few patients treated with gene therapy have also been reported, indicating the usefulness of further improving the vectors currently used in gene therapy clinical trials. In the field of stem cell biology, evidence showing the plastic potential of adult hematopoietic stem cells and data indicating the multipotency of adult mesenchymal precursor cells have been presented. Also, the generation of embryonic stem cells by means of nuclear transfer techniques has appeared as a new methodology with direct implications in gene therapy.

  8. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    Science.gov (United States)

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety. © 2013 American Physiological Society. Compr Physiol 3:1749-1779, 2013.

  9. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells

    Science.gov (United States)

    Kim, Eun Ji; Kang, Ki Ho; Ju, Ji Hyeon

    2017-01-01

    Recent advances in genome editing with programmable nucleases have opened up new avenues for multiple applications, from basic research to clinical therapy. The ease of use of the technology—and particularly clustered regularly interspaced short palindromic repeats (CRISPR)—will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. Here, we highlight the progress made in correcting gene mutations in monogenic hereditary disorders and discuss various CRISPR-associated applications, such as cancer research, synthetic biology, and gene therapy using induced pluripotent stem cells. The challenges, ethical issues, and future prospects of CRISPR-based systems for human research are also discussed. PMID:28049282

  10. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  11. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  12. Derivation of a triple mosaic adenovirus for cancer gene therapy.

    Directory of Open Access Journals (Sweden)

    Yizhe Tang

    2009-12-01

    Full Text Available A safe and efficacious cancer medicine is necessary due to the increasing population of cancer patients whose particular diseases cannot be cured by the currently available treatment. Adenoviral (Ad vectors represent a promising therapeutic medicine for human cancer therapy. However, several improvements are needed in order for Ad vectors to be effective cancer therapeutics, which include, but are not limited to, improvement of cellular uptake, enhanced cancer cell killing activity, and the capability of vector visualization and tracking once injected into the patients. To this end, we attempted to develop an Ad as a multifunctional platform incorporating targeting, imaging, and therapeutic motifs. In this study, we explored the utility of this proposed platform by generating an Ad vector containing the poly-lysine (pK, the herpes simplex virus type 1 (HSV-1 thymidine kinase (TK, and the monomeric red fluorescent protein (mRFP1 as targeting, tumor cell killing, and imaging motifs, respectively. Our study herein demonstrates the generation of the triple mosaic Ad vector with pK, HSV-1 TK, and mRFP1 at the carboxyl termini of Ad minor capsid protein IX (pIX. In addition, the functionalities of pK, HSV-1 TK, and mRFP1 proteins on the Ad vector were retained as confirmed by corresponding functional assays, indicating the potential multifunctional application of this new Ad vector for cancer gene therapy. The validation of the triple mosaic Ad vectors also argues for the ability of pIX modification as a base for the development of multifunctional Ad vectors.

  13. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    Science.gov (United States)

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  14. Translational control is a major contributor to hypoxia induced gene expression

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Jutten, Barry; Seigneuric, Renaud; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of solid tumors that is associated with an aggressive phenotype, resistance to therapy and poor prognosis. Major contributors to these adverse effects are the transcriptional program activated by the HIF family of transcription factors as well as the translational response mediated by PERK-dependent phosphorylation of eIF2α and inhibition of mTORC1 activity. In this study we determined the relative contribution of both transcriptional and translational responses to changes in hypoxia induced gene expression. Material and methods: Total and efficiently translated (polysomal) mRNA was isolated from DU145 prostate carcinoma cells that were exposed for up to 24 h of hypoxia ( 2 ). Changes in transcription and translation were assessed using affymetrix microarray technology. Results: Our data reveal an unexpectedly large contribution of translation control on both induced and repressed gene expression at all hypoxic time points, particularly during acute hypoxia (2-4 h). Gene ontology analysis revealed that gene classes like transcription and signal transduction are stimulated by translational control whereas expression of genes involved in cell growth and protein metabolism are repressed during hypoxic conditions by translational control. Conclusions: Our data indicate that translation influences gene expression during hypoxia on a scale comparable to that of transcription.

  15. Anti-tumor effects of Egr-IFN γ gene therapy combined with 125I-UdR radionuclide therapy

    International Nuclear Information System (INIS)

    Zhao Jingguo; Ni Yanjun; Song Xiangfu; Li Yanyi; Yang Wei; Sun Ting; Ma Qingjie; Gao Fengtong

    2008-01-01

    Objective: To explore the anti-tumor effects of Egr-IFNγ gene therapy combined with 125 I-UdR radionuclide therapy in mice bearing H22 hepatocarcinoma and its mechanism. Methods: The recombinant plasmid pcDNAEgr-IFNγ mixed with liposome was injected into tumor. 48 h later, 370 kBq 125 I-UdR was injected into tumor. The tumor growth rates at different times were observed. After 3 d gene-radionuclide therapy, the concentration of IFNγ in cytoplasm of H22 cells and cytotoxic activities of splenic CTL of the mice in different groups were examined. Results: The tumor growth rates of pcDNAEgr-IFNγ + 125 I-UdR group were obviously lower than those of control group, 125 I-UdR group and pcDNAEgr-1 + 125 I-UdR group 6-15 d after gene-radionuclide therapy. IFNγ protein was found in cytoplasm of H22 cells in pcDNAEgr-IFNγ + 125 I-UdR group after 3 d gene-radionuclide therapy. Cytotoxic activity of splenic CTL in pcDNAEgr-IFNγ + 125 I-UdR group was significantly higher than that in the other groups (P 125 I-UdR radionuclide therapy are better than those of 125 I-UdR therapy. (authors)

  16. Subthalamic hGAD65 Gene Therapy and Striatum TH Gene Transfer in a Parkinson’s Disease Rat Model

    Science.gov (United States)

    Zheng, Deyu; Jiang, Xiaohua; Zhao, Junpeng; Duan, Deyi; Zhao, Huanying; Xu, Qunyuan

    2013-01-01

    The aim of the present study is to detect a combination method to utilize gene therapy for the treatment of Parkinson’s disease (PD). Here, a PD rat model is used for the in vivo gene therapy of a recombinant adeno-associated virus (AAV2) containing a human glutamic acid decarboxylase 65 (rAAV2-hGAD65) gene delivered to the subthalamic nucleus (STN). This is combined with the ex vivo gene delivery of tyrosine hydroxylase (TH) by fibroblasts injected into the striatum. After the treatment, the rotation behavior was improved with the greatest efficacy in the combination group. The results of immunohistochemistry showed that hGAD65 gene delivery by AAV2 successfully led to phenotypic changes of neurons in STN. And the levels of glutamic acid and GABA in the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr) were obviously lower than the control groups. However, hGAD65 gene transfer did not effectively protect surviving dopaminergic neurons in the SNc and VTA. This study suggests that subthalamic hGAD65 gene therapy and combined with TH gene therapy can alleviate symptoms of the PD model rats, independent of the protection the DA neurons from death. PMID:23738148

  17. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  18. Speech language pathologists' opinions of constraint-induced language therapy.

    Science.gov (United States)

    Page, Stephen J; Wallace, Sarah E

    2014-01-01

    Constraint-induced language therapy (CILT) has received recent attention as a possible intervention to improve expressive language in people with nonfluent aphasia. Difficulties have been reported with the practical implementation of constraint-induced movement therapy due to its intensive treatment parameters. It remains unknown whether similar challenges may exist with CILT. To determine the opinions of speech-language pathologists (SLPs) about CILT for people with nonfluent aphasia. One hundred sixty-seven SLPs completed an electronic survey assessing their opinions of various aspects of CILT. Over 60% of participants felt that people with aphasia would be very unlikely or somewhat unlikely to adhere to CILT. The majority felt that people with aphasia would hold high or moderate concerns with the number of hours spent in therapy (high, 41.8%; moderate, 31.4%), the number of days spent in therapy (high, 44.4%; moderate, 24.8%), likelihood for managed care reimbursement (high, 74.8%; moderate, 15.2%), and other logistical issues (high, 39.2%; moderate, 30.7%). With respect to providing CILT, participants cited the number of hours of therapy (high, 37.3%; moderate, 21.6%) and the number of consecutive days of therapy (high, 29.4%; moderate, 20.3%) as concerns. There were 70.6% who indicated that their facilities lacked resources to provide CILT, and 90.9% felt that most facilitates do not have the resources to provide CILT. Some SLPs hold significant concerns with the administration of CILT, particularly related to its dosing and reimbursement parameters. Additional work is needed to investigate the issues that were identified in this survey using qualitative methods with SLPs and people with aphasia and to examine modified CILT protocols.

  19. Kalman Filtered MR Temperature Imaging for Laser Induced Thermal Therapies

    OpenAIRE

    Fuentes, D.; Yung, J.; Hazle, J. D.; Weinberg, J. S.; Stafford, R. J.

    2011-01-01

    The feasibility of using a stochastic form of Pennes bioheat model within a 3D finite element based Kalman filter (KF) algorithm is critically evaluated for the ability to provide temperature field estimates in the event of magnetic resonance temperature imaging (MRTI) data loss during laser induced thermal therapy (LITT). The ability to recover missing MRTI data was analyzed by systematically removing spatiotemporal information from a clinical MR-guided LITT procedure in human brain and comp...

  20. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. Progress in nonviral gene therapy for breast cancer and what comes next?

    Science.gov (United States)

    Bottai, Giulia; Truffi, Marta; Corsi, Fabio; Santarpia, Libero

    2017-05-01

    The possibility of correcting defective genes and modulating gene expression through gene therapy has emerged as a promising treatment strategy for breast cancer. Furthermore, the relevance of tumor immune microenvironment in supporting the oncogenic process has paved the way for novel immunomodulatory applications of gene therapy. Areas covered: In this review, the authors describe the most relevant delivery systems, focusing on nonviral vectors, along with the description of the major approaches used to modify target cells, including gene transfer, RNA interference (RNAi), and epigenetic regulation. Furthermore, they highlight innovative therapeutic strategies and the application of gene therapy in clinical trials for breast cancer. Expert opinion: Gene therapy has the potential to impact breast cancer research. Further efforts are required to increase the clinical application of RNAi-based therapeutics, especially in combination with conventional treatments. Innovative strategies, including genome editing and stem cell-based systems, may contribute to translate gene therapy into clinical practice. Immune-based approaches have emerged as an attractive therapeutic opportunity for selected breast cancer patients. However, several challenges need to be addressed before considering gene therapy as an actual option for the treatment of breast cancer.

  2. Combination of heavy-ion radiotherapy and p53-gene therapy by radio- and hypoxia-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2006-01-01

    In this study we have started to investigate the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing E 9ns-2 /cytomegalovirus (CMV) chimeric promoter (Scott et al: 2003) in p53-gene therapy. Our study in the first year, however, suggested the uselessness of E 9ns-2 /CMV chimeric promoter. Then we applied E 9ns-2 /Epo5/CMV-radio and hypoxia-sensitizing chimeric promoter to amplify p53 gene exopression. P53 gene with E 9ns2 /Epo5/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 1 Gy of high linear energy transfer (LET)-carbon ion beam or low-LET X-ray under various hypoxic conditions. The result suggested the possible role of 1 Gy of high LET-carbon ion beam as a ''useful trigger'' to enhance a selective anti-tumor effect toward glioma under hypoxic condition through amplification of p53 gene expression. (author)

  3. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    plasmids were associated with a single polymeric nanoparticle. To develop PBAE vectors for application in cancer drug delivery and 3-D tissue engineered cultures, the gene delivery efficacy of PBAE nanoparticles was evaluated in mammary epithelial cells used as a model for studying normal development of mammary gland as well as the events that lead to development of breast cancer. We investigated how small molecular changes to the end-capping terminal group of the polymer and changes to the polymer MW affect gene delivery in 2-D mammary cell culture compared to 3-D primary organotypic cultured mouse mammary tissue. We reported that the polymers synthesized here are more effective for gene delivery than FuGENERTM HD, one of the leading commercially available reagents for non-viral gene delivery. We also highlighted that transfection of the 3-D organotypic cultures is more difficult than transfection of 2-D cultures, but likely models some of the key challenges for in vivo gene therapy more closely than 2-D cultures. Finally, we evaluated the use of PBAE nanotechnology for genetic manipulation of stem cell fate for regenerative medicine applications. We developed a PBAE nanoparticle based non-viral protocol and compared it with an electroporation based approach to deliver episomal plasmids encoding reprogramming factors for derivation of human induced pluripotent stem cells (hiPSC). The hiPSCs generated using these approaches can be differentiated into specific cell types for in vitro disease modeling and drug screening, specifically to study retinal degeneration.

  4. Stem Cells and Gene Therapy for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA. Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.

  5. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.

    Science.gov (United States)

    Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie

    2016-08-15

    In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  7. Gene and cell therapy for children--new medicines, new challenges?

    Science.gov (United States)

    Buckland, Karen F; Bobby Gaspar, H

    2014-06-01

    The range of possible gene and cell therapy applications is expanding at an extremely rapid rate and advanced therapy medicinal products (ATMPs) are currently the hottest topic in novel medicines, particularly for inherited diseases. Paediatric patients stand to gain enormously from these novel therapies as it now seems plausible to develop a gene or cell therapy for a vast number of inherited diseases. There are a wide variety of potential gene and cell therapies in various stages of development. Patients who received first gene therapy treatments for primary immune deficiencies (PIDs) are reaching 10 and 15 years post-treatment, with robust and sustained immune recovery. Cell therapy clinical trials are underway for a variety of tissues including corneal, retinal and muscle repair and islet cell transplantation. Various cell therapy approaches are also being trialled to enhance the safety of bone marrow transplants, which should improve survival rates in childhood cancers and PIDs. Progress in genetic engineering of lymphocyte populations to target and kill cancerous cells is also described. If successful these ATMPs may enhance or replace the existing chemo-ablative therapy for several paediatric cancers. Emerging applications of gene therapy now include skin and neurological disorders such as epidermolysis bullosa, epilepsy and leukodystrophy. Gene therapy trials for haemophilia, muscular dystrophy and a range of metabolic disorders are underway. There is a vast array of potential advanced therapy medicinal products (ATMPs), and these are likely to be more cost effective than existing medicines. However, the first clinical trials have not been without setbacks and some of the key adverse events are discussed. Furthermore, the arrival of this novel class of therapies brings many new challenges for the healthcare industry. We present a summary of the key non-clinical factors required for successful delivery of these potential treatments. Technological advances

  8. Gene and cell therapy for children — New medicines, new challenges?☆

    Science.gov (United States)

    Buckland, Karen F.; Bobby Gaspar, H.

    2014-01-01

    The range of possible gene and cell therapy applications is expanding at an extremely rapid rate and advanced therapy medicinal products (ATMPs) are currently the hottest topic in novel medicines, particularly for inherited diseases. Paediatric patients stand to gain enormously from these novel therapies as it now seems plausible to develop a gene or cell therapy for a vast number of inherited diseases. There are a wide variety of potential gene and cell therapies in various stages of development. Patients who received first gene therapy treatments for primary immune deficiencies (PIDs) are reaching 10 and 15 years post-treatment, with robust and sustained immune recovery. Cell therapy clinical trials are underway for a variety of tissues including corneal, retinal and muscle repair and islet cell transplantation. Various cell therapy approaches are also being trialled to enhance the safety of bone marrow transplants, which should improve survival rates in childhood cancers and PIDs. Progress in genetic engineering of lymphocyte populations to target and kill cancerous cells is also described. If successful these ATMPs may enhance or replace the existing chemo-ablative therapy for several paediatric cancers. Emerging applications of gene therapy now include skin and neurological disorders such as epidermolysis bullosa, epilepsy and leukodystrophy. Gene therapy trials for haemophilia, muscular dystrophy and a range of metabolic disorders are underway. There is a vast array of potential advanced therapy medicinal products (ATMPs), and these are likely to be more cost effective than existing medicines. However, the first clinical trials have not been without setbacks and some of the key adverse events are discussed. Furthermore, the arrival of this novel class of therapies brings many new challenges for the healthcare industry. We present a summary of the key non-clinical factors required for successful delivery of these potential treatments. Technological advances

  9. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  10. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  11. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy.

    Science.gov (United States)

    Qin, Si-Yong; Feng, Jun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Liu, Xiang-Ji; Luo, Guo-Feng; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-02-12

    Graphene oxide (GO)-based theranostic nanohybrid is designed for tumor induced imaging and potential combinational tumor therapy. The anti-tumor drug, Doxorubicin (DOX) is chemically conjugated to the poly(ethylenimine)-co-poly(ethylene glycol) (PEI-PEG) grafted GO via a MMP2-cleavable PLGLAG peptide linkage. The therapeutic efficacy of DOX is chemically locked and its intrinsic fluorescence is quenched by GO under normal physiological condition. Once stimulated by the MMP2 enzyme over-expressed in tumor tissues, the resulting peptide cleavage permits the unloading of DOX for tumor therapy and concurrent fluorescence recovery of DOX for in situ tumor cell imaging. Attractively, this PEI-bearing nanohybrid can mediate efficient DNA transfection and shows great potential for combinational drug/gene therapy. This tumor induced imaging and potential combinational therapy will open a window for tumor treatment by offering a unique theranostic approach through merging the diagnostic capability and pathology-responsive therapeutic function. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A suicide gene therapy approach to treat epidermolysis bullosa-associated skin cancer

    International Nuclear Information System (INIS)

    Gruber, C.

    2009-01-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an inherited disease causing extensive blister formation within the basal membrane zone (BMZ) of the skin and mucous membranes. It is caused by premature STOP mutations in the COL7A1 gene, which is indispensable for proper skin assembling. RDEB is associated with the development of a highly malignant skin cancer (squamous cell carcinoma, SCC) in early adulthood that displays a life threatening complication within this patient group. To date, neither chemo- nor radiotherapies showed successful results and due to the high metastatic potential of RDEB SCC wide surgical excision is still favoured. In this study we could reveal a new promising cancer treatment using spliceosome mediated RNA trans-splicing (SMaRT) using a suicide gene therapy approach. First we identified the tumour marker gene MMP-9 expressed by RDEB SCC cells in cell culture which was used to generate various pre-mRNA trans-splicing molecules (PTM). PTMs are able to facilitate trans-splicing between a tumour target gene and a cell death inducing peptide/toxin, encoded by the PTM. As a consequence the toxin is expressed in cancer cells leading to the induction of cell death. This technique offers high specificity in cancer cell targeting compared to other conventional cDNA expression studies. Various trans-splicing molecules were pre-evaluated in a fluorescence screening model for their best trans-splicing efficiency with the target molecule. Herein we identified two potent PTMs (PTM BD0 and PTM BD6), that were further adapted for endogenous suicide studies by inserting the toxin streptolysin O. In two independent in vitro cell culture assays we were able to confirm that the trans-splicing molecules are able to induce expression of the toxin resulting in cell membrane permeabilization and increased cell death induction. The results indicate that SMaRT technology offers a new platform for a suicide gene therapy approach to treat malignant squamous cell

  13. Investor Outlook: Significance of the Positive LCA2 Gene Therapy Phase III Results.

    Science.gov (United States)

    Schimmer, Joshua; Breazzano, Steven

    2015-12-01

    Spark Therapeutics recently reported positive phase III results for SPK-RPE65 targeting the treatment of visual impairment caused by RPE65 gene mutations (often referred to as Leber congenital amaurosis type 2, or LCA2, but may include other retinal disorders), marking an important inflection point for the field of gene therapy. The results highlight the ability to successfully design and execute a randomized trial of a gene therapy and also reinforce the potentially predictive nature of early preclinical and clinical data. The results are expected to pave the way for the first approved gene therapy product in the United States and should sustain investor interest and confidence in gene therapy for many approaches, including retina targeting and beyond.

  14. Radiation-induced gene amplification in rodent and human cells

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Gloss, B.; Herrlich, P.

    1990-01-01

    Ionizing and UV radiations induce amplification of SV40 DNA sequences integrated in the genome of Chinese hamster cells and increase amplification of the dihydrofolate reductase (DHFR) gene during methotrexate selection in human skin fibroblasts of a patient with ataxia telangiectasia. Various types of external (60-Co-γ-rays, 241-Am-α-particles, UV) or internal radiation (caused by the decay of 125 I incorporated into DNA in form of I-UdR) were applied. By cell fusion experiments it could be shown that SV40 gene amplification is mediated by one or several diffusible trans-acting factors induced or activated in a dose dependent manner by all types of radiation. One of these factors binds to a 10 bp sequence within the minimal origin of replication of SV40. In vivo competition with an excess of a synthetic oligonucleotide comprising this sequence blocks radiation-induced amplification. (author) 25 refs.; 8 figs

  15. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine

    Science.gov (United States)

    Prow, Tarl W.; Rose, William A.; Wang, Nan; Reece, Lisa M.; Lvov, Yuri; Leary, James F.

    2005-04-01

    Nanomedicine involves cell-by-cell regenerative medicine, either repairing cells one at a time or triggering apoptotic pathways in cells that are not repairable. Multilayered nanoparticle systems are being constructed for the targeted delivery of gene therapy to single cells. Cleavable shells containing targeting, biosensing, and gene therapeutic molecules are being constructed to direct nanoparticles to desired intracellular targets. Therapeutic gene sequences are controlled by biosensor-activated control switches to provide the proper amount of gene therapy on a single cell basis. The central idea is to set up gene therapy "nanofactories" inside single living cells. Molecular biosensors linked to these genes control their expression. Gene delivery is started in response to a biosensor detected problem; gene delivery is halted when the cell response indicates that more gene therapy is not needed. Cell targeting of nanoparticles, both nanocrystals and nanocapsules, has been tested by a combination of fluorescent tracking dyes, fluorescence microscopy and flow cytometry. Intracellular targeting has been tested by confocal microscopy. Successful gene delivery has been visualized by use of GFP reporter sequences. DNA tethering techniques were used to increase the level of expression of these genes. Integrated nanomedical systems are being designed, constructed, and tested in-vitro, ex-vivo, and in small animals. While still in its infancy, nanomedicine represents a paradigm shift in thinking-from destruction of injured cells by surgery, radiation, chemotherapy to cell-by-cell repair within an organ and destruction of non-repairable cells by natural apoptosis.

  16. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy.

    Science.gov (United States)

    Ďuriniková, E; Kučerová, L; Matúšková, M

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) possess a set of several fairly unique properties which make them ideally suitable both for cellular therapies and regenerative medicine. These include: relative ease of isolation, the ability to differentiate along mesenchymal and non-mesenchymal lineages in vitro and the ability to be extensively expanded in culture without a loss of differentiative capacity. MSC are not only hypoimmunogenic, but they mediate immunosuppression upon transplantation, and possess pronounced anti-inflammatory properties. They are able to home to damaged tissues, tumors, and metastases following systemic administration. The ability of homing holds big promise for tumor-targeted delivery of therapeutic agents. Viruses are naturally evolved vehicles efficiently transferring their genes into host cells. This ability made them suitable for engineering vector systems for the delivery of genes of interest. MSC can be retrovirally transduced with genes encoding prodrug-converting genes (suicide genes), which are not toxic per se, but catalyze the formation of highly toxic metabolites following the application of a nontoxic prodrug. The homing ability of MSC holds advantages compared to virus vehicles which display many shortcomings in effective delivery of the therapeutic agents. Gene therapies mediated by viruses are limited by their restricted ability to track cancer cells infiltrating into the surrounding tissue, and by their low migratory capacity towards tumor. Thus combination of cellular therapy and gene delivery is an attractive option - it protects the vector from immune surveillance, and supports targeted delivery of a therapeutic gene/protein to the tumor site.

  18. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    Science.gov (United States)

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.

  19. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  20. Radiation-induced pseudotumor following therapy for soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lacey F.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Buskirk, Steven J. [Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL (United States); O' Connor, Mary I. [Mayo Clinic, Department of Orthopedic Surgery, Jacksonville, FL (United States); Menke, David M. [Mayo Clinic, Department of Pathology, Jacksonville, FL (United States)

    2009-06-15

    The purpose of this study was to describe the prevalence and imaging appearance of radiation induced pseudotumors in patients following radiation therapy for extremity soft tissue sarcomas. We retrospectively reviewed the serial magnetic resonance (MR) images of 24 patients following radiation therapy for extremity soft tissue sarcomas. A total of 208 exams were reviewed (mean, 8.7 exams per patient) and included all available studies following the start of radiation therapy. Exams were analyzed for the identification of focal signal abnormalities within the surgical bed suggesting local tumor recurrence. Histopathologic correlation was available in nine patients suspected of having local tumor recurrence. Additional information recorded included patient demographics, tumor type and location, radiation type, and dose. The study group consisted of 12 men and 12 women, having an average age of 63 years (range, 39-88 years). Primary tumors were malignant fibrous histiocytoma (n = 13), leiomyosarcoma (n = 6), liposarcoma (n = 3), synovial sarcoma (n = 1), and extraskeletal chondrosarcoma (n = 1). All lesions were high-grade sarcomas, except for two myxoid liposarcomas. Average patient radiation dose was 5,658 cGy (range, 4,500-8,040 cGy). Average follow-up time was 63 months (range, 3-204 months). Focal signal abnormalities suggesting local recurrence were seen in nine (38%) patients. Three of the nine patients with these signal abnormalities were surgically proven to have radiation-induced pseudotumor. The pseudotumors developed between 11 and 61 months following the initiation of radiation therapy (mean, 38 months), with an average radiation dose of 5,527 cGy (range, 5,040-6,500 cGy). MR imaging demonstrated a relatively ill-defined ovoid focus of abnormal signal and intense heterogeneous enhancement with little or no associated mass effect. MR imaging of radiation-induced pseudotumor typically demonstrates a relatively ill-defined ovoid mass-like focus of intense

  1. Patient Perspectives on Gene Transfer Therapy for Sickle Cell Disease.

    Science.gov (United States)

    Strong, Heather; Mitchell, Monica J; Goldstein-Leever, Alana; Shook, Lisa; Malik, Punam; Crosby, Lori E

    2017-08-01

    Sickle cell disease (SCD) is a chronic genetic disease with high morbidity and early mortality; it affects nearly 100,000 individuals in the USA. Bone marrow transplantation, the only curative treatment, is available to less than 20% of patients because of a number of access barriers. Gene transfer therapy (GTT) has been shown to be curative in animal models and is approved for use in humans for early-phase studies at a few centers. GTT would offer a more accessible treatment option available to all patients. It is important to understand patient perspectives on GTT to help ensure human clinical trial success. Two focus groups were conducted with younger (18-30 years) and older (31 years and older) adults with SCD to obtain data on patient knowledge and beliefs about GTT. Data from these two focus groups was used to develop a GTT educational brochure. A third focus group was conducted to obtain participant feedback on acceptability and feasibility of education and the brochure. Most adults, especially young adults, had little knowledge about GTT and expressed fear and uncertainty about the side effects of chemotherapy (e.g., hair loss, infertility), use of a human immunodeficiency virus (HIV)-derived viral vector, and potential for cancer risk. Participants wanted full transparency in educational materials, but advised researchers not to share the vector's relation to HIV because of cultural stigma and no HIV virus is used for the GTT vector. Older adults had more desire to participate in human clinical GTT trials than younger participants. When recruiting for trials, researchers should develop GTT educational materials that address participant lack of trust in the healthcare system, cultural beliefs, fears related to side effects, and include visual illustrations. Use of such materials will provide adults with SCD the information they need to fully evaluate GTT.

  2. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  3. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    International Nuclear Information System (INIS)

    Yuan, Chenyan; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng; An, Yanli

    2014-01-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression. (paper)

  4. Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study

    Directory of Open Access Journals (Sweden)

    Skoog Lambert

    2006-06-01

    Full Text Available Abstract Background Postmenopausal hormone-replacement therapy (HRT increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood. Methods We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women. Results HRT use in patients with estrogen receptor (ER protein positive tumors (n = 72 was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen. Conclusion Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells.

  5. Current status of gene therapy for breast cancer: progress and challenges

    Directory of Open Access Journals (Sweden)

    McCrudden CM

    2014-11-01

    Full Text Available Cian M McCrudden, Helen O McCarthySchool of Pharmacy, Queen’s University Belfast, Belfast, UKAbstract: Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development.Keywords: breast cancer, gene therapy, nonviral, clinical trial

  6. Transcriptome analysis of trichothecene-induced gene expression in barley.

    Science.gov (United States)

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  7. Renal replacement therapy in sepsis-induced acute renal failure

    Directory of Open Access Journals (Sweden)

    Rajapakse Senaka

    2009-01-01

    Full Text Available Acute renal failure (ARF is a common complication of sepsis and carries a high mortality. Renal replacement therapy (RRT during the acute stage is the mainstay of therapy. Va-rious modalities of RRT are available. Continuous RRT using convective methods are preferred in sepsis-induced ARF, especially in hemodynamically unstable patients, although clear evidence of benefit over intermittent hemodialysis is still not available. Peritoneal dialysis is clearly inferior, and is not recommended. Early initiation of RRT is probably advantageous, although the optimal timing of dialysis is yet unknown. Higher doses of RRT are more likely to be beneficial. Use of bio-compatible membranes and bicarbonate buffer in the dialysate are preferred. Anticoagulation during dialysis must be carefully adjusted and monitored.

  8. Non-Invasive Gene Therapy of Experimental Parkinson's Disease

    National Research Council Canada - National Science Library

    Pardridge, William M

    2005-01-01

    The present research has developed a non-viral gene targeting technology, whereby the effects of a neurotoxin on the brain can be reversed shortly after the intravenous injection of a therapeutic gene...

  9. Specitic gene alterations in radiation-induced tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joo Mee; Kang, Chang Mo; Lee, Seung Sook; Cho, Chul Koo; Bae, Sang Woo; Lee, Su Jae; Lee, Yun Sil [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    To identify a set of genes involved in the development of radiation-induced tumorigenesis, we used DNA microarrays consisting of 1,176 mouse genes and compared expression profiles of radioresistant cells, designated NIH3T3-R1 and -R4. These cells were tumorigenic in a nude mouse grafting system, as compared to the parental NIH3T3 cells. Expressions of MDM2, CDK6 and CDC25B were found to increase more than 3-fold. Entactin protein levels were downregulated in NIH3T3-R1 and -R4 cells. Changes in expression genes were confirmed by reverse transcription-PCR or western blotting. When these genes were transfected to NIH3T3 cells, the CDC25B and MDM2 overexpressing NIH3T3 cells showed radioresistance, while 2 CDK6 overexpressing cells did not. In the case of entactin overexpressing NIH3T3-R1 or R-4 cells were still radioresistant. Furthermore, the CDC25B and MDM2 overexpressing cells grafted to nude mice, were tumorigenic. NIH3T3-R1 and R4 cells showed increased radiation-induced apoptosis, accompanied by faster growth rate, rather than and earlier radiation-induced G2/M phase arrest, suggesting that the radioresistance of NIH3T3-R1 and R4 cells was due to faster growth rate, rather than induction of apoptosis. In the case of MDM2 and CDC25B overexpressing cells, similar phenomena, such as increased apoptosis and faster growth rate, were shown. The above results, therefore, demonstrate involvement of CDC25B and MDM2 overexpression in radiation-induced tumorigenesis and provide novel targets for detection of radiation-induced carcinogenesis.

  10. Combination of Heavy-ion radiotherapy and p53-gene therapy by radio-sensitizing promoter for glioma

    International Nuclear Information System (INIS)

    Oga, Masaru; Koshikawa, Nobuko; Takenaga, Keizo; Iwadate, Yasuo; Nojima, Kumie

    2005-01-01

    In this study we have investigated the anti-tumor effect of the combination of heavy-ion radiotherapy, inducing p53-independent apoptosis, and p53-gene therapy, inducing p53-dependent apoptosis for glioma. To enhance the p53-dependent apoptosis, we chose the strategy to utilize the heavy-ion irradiation itself as a ''trigger'' by using radio-sensitizing promoter-E9ns-2/CMV chimeric promoter (Scott et al:2003) in p53-gene therapy. First, EGFP reporter gene with E9ns-2/CMV chimeric promoter was transfected in C6 rat glioma cell-line and the transfected-cell bulk was irradiated at dose of 3, 5, 10 Gy respectively with charged carbon particle (290 MeV/nucleon). The light upregulation of EGFP was observed in 24 hours after 5 Gy irradiation. On the basis of this result, p53 gene with E9ns-2/CMV chimeric promoter was transfected in p53-mutant U373MG human glioma cell-line and the transfected-cell bulk was irradiated at dose of 5 Gy. There was, however, no obvious p53-upregulation at any time-point, so far. Further investigation is needed to clarify the appropriate experimental system. (author)

  11. Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy.

    Science.gov (United States)

    Kohn, Donald B

    2017-10-01

    Gene therapy using hematopoietic stem cells (HSC) has developed over the past 3 decades, with progressive improvements in the efficacy and safety. Autologous transplantation of HSC modified with murine gammaretroviral vectors first showed clinical benefits for patients with several primary immune deficiencies, but some of these patients suffered complications from vector-related genotoxicity. Lentiviral vectors have been used recently for gene addition to HSC and have yielded clinical benefits for primary immune deficiencies, metabolic diseases, and hemoglobinopathies, without vector-related complications. Gene editing using site-specific endonucleases is emerging as a promising technology for gene therapy and is moving into clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Antiangiogenic Metargidin Peptide (AMEP) Gene Therapy in Disseminated Melanoma

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Gehl, Julie

    2015-01-01

    Gene delivery by electroporation is an efficient method for transfecting genes into various tissues including tumors. Here we present the treatment protocol used in a phase 1 study on gene electrotransfer of plasmid DNA encoding an antiangiogenic peptide into cutaneous melanoma....

  13. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    Science.gov (United States)

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (pmyostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  15. From the Cover: A polymer library approach to suicide gene therapy for cancer

    Science.gov (United States)

    Anderson, Daniel G.; Peng, Weidan; Akinc, Akin; Hossain, Naushad; Kohn, Anat; Padera, Robert; Langer, Robert; Sawicki, Janet A.

    2004-11-01

    Optimal gene therapy for cancer must (i) deliver DNA to tumor cells with high efficiency, (ii) induce minimal toxicity, and (iii) avoid gene expression in healthy tissues. To this end, we generated a library of >500 degradable, poly(-amino esters) for potential use as nonviral DNA vectors. Using high-throughput methods, we screened this library in vitro for transfection efficiency and cytotoxicity. We tested the best performing polymer, C32, in mice for toxicity and DNA delivery after intratumor and i.m. injection. C32 delivered DNA intratumorally 4-fold better than one of the best commercially available reagents, jetPEI (polyethyleneimine), and 26-fold better than naked DNA. Conversely, the highest transfection levels after i.m. administration were achieved with naked DNA, followed by polyethyleneimine; transfection was rarely observed with C32. Additionally, polyethyleneimine induced significant local toxicity after i.m. injection, whereas C32 demonstrated no toxicity. Finally, we used C32 to deliver a DNA construct encoding the A chain of diphtheria toxin (DT-A) to xenografts derived from LNCaP human prostate cancer cells. This construct regulates toxin expression both at the transcriptional level by the use of a chimeric-modified enhancer/promoter sequence of the human prostate-specific antigen gene and by DNA recombination mediated by Flp recombinase. C32 delivery of the A chain of diphtheria toxin DNA to LNCaP xenografts suppressed tumor growth and even caused 40% of tumors to regress in size. Because C32 transfects tumors locally at high levels, transfects healthy muscle poorly, and displays no toxicity, it may provide a vehicle for the local treatment of cancer. prostate | cationic polymers

  16. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. The potential of virus-induced gene silencing for speeding up functional characterization of plant genes

    NARCIS (Netherlands)

    Benedito, V.A.; Visser, P.B.; Angenent, G.C.; Krens, F.A.

    2004-01-01

    Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These

  18. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  19. Enhanced therapeutic effect of multiple injections of HSV-TK + GCV gene therapy in combination with ionizing radiation in a mouse mammary tumor model

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Chhikara, Madhu; Aguilar, Laura; Zhu Xiaohong; Chiu, Kam J.; Woo, Shiao; Teh, Bin S.; Thompson, Timothy C.; Butler, E. Brian; Aguilar-Cordova, Estuardo

    2001-01-01

    Purpose: Standard therapies for breast cancer lack tumor specificity and have significant risk for recurrence and toxicities. Herpes simplex virus-thymidine kinase (HSV-tk) gene therapy combined with radiation therapy (XRT) may be effective because of complementary mechanisms and distinct toxicity profiles. HSV-tk gene therapy followed by systemic administration of ganciclovir (GCV) enhances radiation-induced DNA damage by generating high local concentrations of phosphorylated nucleotide analogs that increase radiation-induced DNA breaks and interfere with DNA repair mechanisms. In addition, radiation-induced membrane damage enhances the 'bystander effect' by facilitating transfer of nucleotide analogs to neighboring nontransduced cells and by promoting local and systemic immune responses. This study assesses the effect of single and multiple courses of HSV-tk gene therapy in combination with ionizing radiation in a mouse mammary cancer model. Methods and Materials: Mouse mammary TM40D tumors transplanted s.c. in syngeneic immunocompetent BALB-c mice were treated with either adenoviral-mediated HSV-tk gene therapy or local radiation or the combination of gene and radiation therapy. A vector consisting of a replication-deficient (E1-deleted) adenovirus type 5 was injected intratumorally to administer the HSV-tk gene, and GCV was initiated 24 h later for a total of 6 days. Radiation was given as a single dose of 5 Gy 48 h after the HSV-tk injection. A metastatic model was developed by tail vein injection of TM40D cells on the same day that the s.c. tumors were established. Systemic antitumor effect was evaluated by counting the number of lung nodules after treating only the primary tumors with gene therapy, radiation, or the combination of gene and radiation therapy. To assess the therapeutic efficacy of multiple courses of this combinatorial approach, one, two, and three courses of HSV-tk + GCV gene therapy, in combination with radiation, were compared to HSV-tk or

  20. Strategies for Improving siRNA-Induced Gene Silencing Efficiency.

    Science.gov (United States)

    Safari, Fatemeh; Rahmani Barouji, Solmaz; Tamaddon, Ali Mohammad

    2017-12-01

    Purpose: Human telomerase reverse transcriptase (hTERT) plays a crucial role in tumorigenesis and progression of cancers. Gene silencing of hTERT by short interfering RNA (siRNA) is considered as a promising strategy for cancer gene therapy. Various algorithms have been devised for designing a high efficient siRNA which is a significant issue in the clinical usage. Thereby, in the present study, the relation of siRNA designing criteria and the gene silencing efficiency was evaluated. Methods: The siRNA sequences were designed and characterized by using on line soft wares. Cationic co-polymer (polyethylene glycol-g-polyethylene imine (PEG-g-PEI)) was used for the construction of polyelectrolyte complexes (PECs) containing siRNAs. The cellular uptake of the PECs was evaluated. The gene silencing efficiency of different siRNA sequences was investigated and the effect of observing the rational designing on the functionality of siRNAs was assessed. Results: The size of PEG-g-PEI siRNA with N/P (Nitrogen/Phosphate) ratio of 2.5 was 114 ± 0.645 nm. The transfection efficiency of PECs was desirable (95.5% ± 2.4%.). The results of Real-Time PCR showed that main sequence (MS) reduced the hTERT expression up to 90% and control positive sequence (CPS) up to 63%. These findings demonstrated that the accessibility to the target site has priority than the other criteria such as sequence preferences and thermodynamic features. Conclusion: siRNA opens a hopeful window in cancer therapy which provides a convenient and tolerable therapeutic approach. Thereby, using the set of criteria and rational algorithms in the designing of siRNA remarkably affect the gene silencing efficiency.

  1. Development of a Combination Cell and Gene Therapy Approach for Early-Stage Breast Cancer

    National Research Council Canada - National Science Library

    Lewis, Michael T

    2005-01-01

    The unique biology of the breast presents the opportunity to these cell and gene therapy techniques in a way that circumvents many of these technical limitations for the treatment of early stage breast cancer...

  2. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  3. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    International Nuclear Information System (INIS)

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-01-01

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  4. GENE EXPRESSION DYNAMICS IN PATIENTS WITH SEVERE THERAPY-RESISTANT ASTHMA DURING TREATMENT PERIOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Kulikov

    2014-01-01

    Full Text Available Introduction: The leading mechanisms and causes of severe therapy resistant asthma are poorly understood. The aim of this study was to define global patterns of gene expression in adults with severe therapy-resistant asthma in dynamic during treatment period.Methods: Performed 24-week prospective interventional study in parallel groups. Severe asthma patients was aposterior divided at therapy sensitive and resistant patients according to ATS criteria. Global transcriptome profile was characterized using the Affymetrix HuGene ST1.0 chip. Cluster analysis was performed.Results and conclusion: According to our data several mechanisms of therapy resistance may be considered: increased levels of nitric oxide and beta2-agonists nitration, dysregulation of endogenous steroids secretion and involvement in the pathogenesis of Staphylococcus aureus. Absence of suppression of gene expression KEGG-pathway “asthma" may reflect the low efficiency or long period of anti-inflammatory therapy effect realization.

  5. Interventional therapy for gastrointestinal hemorrhage induced by Dieulafoy disease

    International Nuclear Information System (INIS)

    Su Xiuqin; Yu Shiping; Zhang Jin; Zhang Caizhen; Yuan Wei; Meng Xiangwen

    2008-01-01

    Objective: To investigate and assess the efficiency and clinical value of interventional therapy for gastrointestinal hemorrhage induced by Dieulafoy disease. Methods: Ten patients definitely diagnosed with Dieulafoy disease suffering from massive acute gastrointestinal hemorrhage received celiac arterial and left gastric arterial angiography, outcoming with 8 positively and 2 negative cases. Among them, 6 were embolized with gelfoam particles and the other two with aneurismal dilatation received gelfoam particles and spring steel coils; and one of the negtive cases was given hypophysin and without intervention to the other. Results: Among the 8 intra-arterial embolized cases, only 1 case rebleeded on the third day after gelfoam embolization, and then treated by surgical operation, and the rest 7 showed no rebleeding. One case with hypophysin treatment rehabilitated after one week. Conclusions: Interventional therapeutics is a safe and effective emergency management for gastrointestinal hemorrhage induced by Dieulafoy disease. (authors)

  6. Sitaxsentan-Induced Acute Severe Hepatitis Treated with Glucocorticoid Therapy

    Directory of Open Access Journals (Sweden)

    Marcus W Chin

    2012-01-01

    Full Text Available Endothelin receptor antagonists are commonly used in the treatment of pulmonary hypertension. Sitaxsentan, a selective endothelin A receptor blocker, induces a mild transaminitis in approximately 3% to 5% of patients, but rarely an acute severe hepatitis. A case involving a 61-year-old female with sitaxsentan-induced acute severe liver failure is presented. Depite withdrawal of therapy, her liver tests failed to improve. After six weeks of monitoring, the patient was administered high-dose corticosteroids, with a good clinical and biochemical response. While endothelin receptor antagonists are postulated to cause hepatitis by inhibition of a bile salt transporter pump, an immune-mediated or idiosyncratic mechanism should be considered.

  7. [Basic and clinical studies of the gene product-targeting therapy based on leukemogenesis--editorial].

    Science.gov (United States)

    Chen, Sai-Juan; Chen, Li-Juan; Zhou, Guang-Biao

    2005-02-01

    In the last twenty years, using all-trans retinoic acid (ATRA) as a differentiation inducer, Shanghai Institute of Hematology has achieved an important breakthrough in the treatment of acute promyelocytic leukemia (APL), which realized the theory of reversing phenotype of cells and provided a successful model of differentiation therapy in cancers. Our group first discovered in the world the variant chromosome translocation t(11;17)(q23;q21) of APL, and cloned the PML-RAR alpha, PLZF-RAR alpha and NPM-RAR alpha fusion genes corresponding to the characterized chromosome translocations t(15;17); t(11;17) and t(5;17) in APL. Moreover, establishment of transgenic mice model of APL proved their effects on leukemogenesis. The ability of ATRA to modify the recruitment of nuclear receptor co-repressor with PML-RAR alpha but not PLZF-RAR alpha caused by the variant chromosome translocation elucidated the therapeutic mechanism of ATRA from the molecular level and provides new insight into transcription-modulating therapy. Since 1994, our group has successfully applied arsenic trioxide (As(2)O(3)) in treating relapsed APL patients, with the complete remission rate of 70% - 80%. The molecular mechanism study revealed that As(2)O(3) exerts a dose-dependent dual effect on APL. Low-dose As(2)O(3) induced partial differentiation of APL cells, while the higher dose induced apoptosis. As(2)O(3) binds ubiquitin like SUMO-1 through the lysine 160 of PML, resulting in the degradation of PML-RAR alpha. Taken together, ATRA and As(2)O(3) target the transcription factor PML-RAR alpha, the former by retinoic acid receptor and the latter by PML sumolization, both induce PML-RAR alpha degradation and APL cells differentiation and apoptosis. Because of the different acting pathways, ATRA and As(2)O(3) have no cross-resistance and can be used as combination therapy. Clinical trial in newly diagnosed APL patients showed that ATRA/As(2)O(3) in combination yields a longer disease-free survival

  8. Utilizing Social Media to Study Information-Seeking and Ethical Issues in Gene Therapy

    OpenAIRE

    Robillard, Julie M; Whiteley, Louise; Johnson, Thomas Wade; Lim, Jonathan; Wasserman, Wyeth W; Illes, Judy

    2013-01-01

    Background The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups. Objective To address this gap, we utilized social media to investigate the kind of information public users are seeking about gene therapy and the hopes, concerns, and attitudes they express. Methods We conducted a content ...

  9. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement

    OpenAIRE

    Cideciyan, Artur V.; Jacobson, Samuel G.; Beltran, William A.; Sumaroka, Alexander; Swider, Malgorzata; Iwabe, Simone; Roman, Alejandro J.; Olivares, Melani B.; Schwartz, Sharon B.; Komáromy, András M.; Hauswirth, William W.; Aguirre, Gustavo D.

    2013-01-01

    The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration. We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans. In the canine model, the same result occurs when treatment is at the disease stage equivalent to humans. The study ...

  10. Utilizing social media to study information-seeking and ethical issues in gene therapy

    DEFF Research Database (Denmark)

    Robillard, Julie M; Whiteley, Louise Emma; Johnson, Thomas Wade

    2013-01-01

    The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups.......The field of gene therapy is rapidly evolving, and while hopes of treating disorders of the central nervous system and ethical concerns have been articulated within the academic community, little is known about views and opinions of different stakeholder groups....

  11. Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases: An NHLBI Resource for the Gene Therapy Community

    Science.gov (United States)

    Skarlatos, Sonia I.

    2012-01-01

    Abstract The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; “proof-of-principle”; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field. PMID:22974119

  12. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. CT-guided intratumoral gene therapy in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Heussel, C.P.; Thelen, M.; Schuler, M.; Huber, C.; Weymarn, A. von; Bongartz, G.; Rochlitz, C.

    1999-01-01

    The objective of this study was to prove the principle of CT-guided gene therapy by intratumoral injection of a tumor suppressor gene as an alternative treatment approach of incurable non-small-cell lung cancer. In a prospective clinical phase I trial six patients with non-small-cell lung cancer and a mutation of the tumor suppressor gene p53 were treated by CT-guided intratumoral gene therapy. Ten milliliters of a vector solution (replication-defective adenovirus with complete wild-type p53 cDNA) were injected under CT guidance. In four cases the vector solution was completely applied to the tumor center, whereas in two cases 2 ml aliquots were injected into different tumor areas. For the procedure the scan room had been approved as a biosafety cabinet. Gene transfer was assessed by reverse transcription and polymerase chain reaction in biopsy specimens obtained under CT guidance 24-48 h after therapy. Potential therapeutic efficacy was evaluated on day 28 after treatment using spiral CT. The CT-guided gene therapy was easily performed in all six patients without intervention-related complications. Besides flu-like symptoms, no significant adverse effects of gene therapy were noted. Three of the four patients with central injection exhibited gene transfer in the posttreatment biopsy. Gene transfer could not be proven in the two patients with multiple 2 ml injections. After 28 days, four of the six patients showed stable disease at the treated tumor site, whereas other tumor manifestations progressed. Computed tomography-guided injections are an adequate and easy-to-perform procedure for intratumoral gene therapy. (orig.)

  14. [Gene Therapy for Inherited RETINAL AND OPTIC NERVE Disorders: Current Knowledge].

    Science.gov (United States)

    Ďuďáková, Ľ; Kousal, B; Kolářová, H; Hlavatá, L; Lišková, P

    The aim of this review is to provide a comprehensive summary of current gene therapy clinical trials for monogenic and optic nerve disorders.The number of genes for which gene-based therapies are being developed is growing. At the time of writing this review gene-based clinical trials have been registered for Leber congenital amaurosis 2 (LCA2), retinitis pigmentosa 38, Usher syndrome 1B, Stargardt disease, choroideremia, achromatopsia, Leber hereditary optic neuropathy (LHON) and X-linked retinoschisis. Apart from RPE65 gene therapy for LCA2 and MT-ND4 for LHON which has reached phase III, all other trials are in investigation phase I and II, i.e. testing the efficacy and safety.Because of the relatively easy accessibility of the retina and its ease of visualization which allows monitoring of efficacy, gene-based therapies for inherited retinal disorders represent a very promising treatment option. With the development of novel therapeutic approaches, the importance of establishing not only clinical but also molecular genetic diagnosis is obvious.Key words: gene therapy, monogenic retinal diseases, optic nerve atrophy, mitochondrial disease.

  15. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies.

    Science.gov (United States)

    White, Michael; Whittaker, Roger; Stoll, Elizabeth Ann

    2017-06-12

    Lentiviral vectors are increasingly the gene transfer tool of choice for gene or cell therapies, with multiple clinical investigations showing promise for this viral vector in terms of both safety and efficacy. The third-generation vector system is well-characterized, effectively delivers genetic material and maintains long-term stable expression in target cells, delivers larger amounts of genetic material than other methods, is non-pathogenic and does not cause an inflammatory response in the recipient. This report aims to help academic scientists and regulatory managers negotiate the governance framework to achieve successful translation of a lentiviral vector-based gene therapy. The focus is on European regulations, and how they are administered in the United Kingdom, although many of the principles will be similar for other regions including the United States. The report justifies the rationale for using third-generation lentiviral vectors to achieve gene delivery for in vivo and ex vivo applications; briefly summarises the extant regulatory guidance for gene therapies, categorised as advanced therapeutic medicinal products (ATMPs); provides guidance on specific regulatory issues regarding gene therapies; presents an overview of the key stakeholders to be approached when pursuing clinical trials authorization for an ATMP; and includes a brief catalogue of the documentation required to submit an application for regulatory approval of a new gene therapy.

  16. Home-based Constraint Induced Movement Therapy Poststroke

    Directory of Open Access Journals (Sweden)

    Stephen Isbel HScD

    2014-10-01

    Full Text Available Background: This study examined the efficacy of a home-based Constraint Induced Movement Therapy (CI Therapy protocol with eight poststroke survivors. Method: Eight ABA, single case experiments were conducted in the homes of poststroke survivors. The intervention comprised restraint of the intact upper limb in a mitt for 21 days combined with a home-based and self-directed daily activity regime. Motor changes were measured using The Wolf Motor Function Test (WMFT and the Motor Activity Log (MAL. Results: Grouped results showed statistically and clinically significant differences on the WMFT (WMFT [timed items]: Mean 7.28 seconds, SEM 1.41, 95% CI 4.40 – 10.18, p = 0.000; WMFT (Functional Ability: z = -4.63, p = 0.000. Seven out of the eight participants exceeded the minimal detectable change on both subscales of the MAL. Conclusion: This study offers positive preliminary data regarding the feasibility of a home-based CI Therapy protocol. This requires further study through an appropriately powered control trial.

  17. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.

  18. Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana

    NARCIS (Netherlands)

    Kop, D.A.M. van der; Schuyer, M.; Scheres, B.J.G.; Zaal, B.J. van der; Hooykaas, P.J.J.

    1996-01-01

    Genes homologous to the auxin-inducible Nt103 glutathione S-transferase (GST) gene of tobacco, were isolated from a genomic library of Arabidopsis thaliana. We isolated a λ clone containing an auxin-inducible gene, At103-1a, and part of a constitutively expressed gene, At103-1b. The coding regions

  19. Gene therapy for carcinoma of the breast: Therapeutic genetic correction strategies

    International Nuclear Information System (INIS)

    Obermiller, Patrice S; Tait, David L; Holt, Jeffrey T

    2000-01-01

    Gene therapy is a therapeutic approach that is designed to correct specific molecular defects that contribute to the cause or progression of cancer. Genes that are mutated or deleted in cancers include the cancer susceptibility genes p53 and BRCA1. Because mutational inactivation of gene function is specific to tumor cells in these settings, cancer gene correction strategies may provide an opportunity for selective targeting without significant toxicity for normal nontumor cells. Both p53 and BRCA1 appear to inhibit cancer cells that lack mutations in these genes, suggesting that the so-called gene correction strategies may have broader potential than initially believed. Increasing knowledge of cancer genetics has identified these and other genes as potential targets for gene replacement therapy. Initial patient trials of p53 and BRCA1 gene therapy have provided some indications of potential efficacy, but have also identified areas of basic and clinical research that are needed before these approaches may be widely used in patient care

  20. Effects of traditional Japanese massage therapy on gene expression: preliminary study.

    Science.gov (United States)

    Donoyama, Nozomi; Ohkoshi, Norio

    2011-06-01

    Changes in gene expression after traditional Japanese massage therapy were investigated to clarify the mechanisms of the clinical effects of traditional Japanese massage therapy. This was a pilot experimental study. The study was conducted in a laboratory at Tsukuba University of Technology. The subjects were 2 healthy female volunteers (58-year-old Participant A, 55-year-old Participant B). The intervention consisted of a 40-minute full-body massage using standard traditional Japanese massage techniques through the clothing and a 40-minute rest as a control, in which participants lie on the massage table without being massaged. Before and after an intervention, blood was taken and analyzed by microarray: (1) The number of genes whose expression was more than double after the intervention than before was examined; (2) For those genes, gene ontology analysis identified statistically significant gene ontology terms. The gene expression count in the total of 41,000 genes was 1256 genes for Participant A and 1778 for Participant B after traditional Japanese massage, and was 157 and 82 after the control, respectively. The significant gene ontology terms selected by both Participants A and B after massage were "immune response" and "immune system," whereas no gene ontology terms were selected by them in the control. It is implied that traditional Japanese massage therapy may affect the immune function. Further studies with more samples are necessary.

  1. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis.

    NARCIS (Netherlands)

    Geurts, J.; Joosten, L.A.B.; Takahashi, N.; Arntz, O.J.; Gluck, A.; Bennink, M.B.; Berg, W.B. van den; Loo, F.A.J. van de

    2009-01-01

    The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define

  2. Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor

    Science.gov (United States)

    Smith, Desmond J.; Rubin, Edward M.

    2000-01-01

    A a diagnostic test useful for prenatal identification of Down syndrome and mental retardation. A method for gene therapy for correction and treatment of Down syndrome. DYRK gene involved in the ability to learn. A method for diagnosing Down's syndrome and mental retardation and an assay therefor. A pharmaceutical composition for treatment of Down's syndrome mental retardation.

  3. Inducing Assertive Behavior in Chronic Schizophrenics: A Comparison of Socioenvironmental Desensitization, and Relaxation Therapies

    Science.gov (United States)

    Weinman, Bernard; And Others

    1972-01-01

    It is concluded that systematic desensitization or relaxation therapy is not effective in inducing assertive behavior in the male chronic schizophrenic. The treatment of choice for the older chronic male schizophrenic remains socioenvironmental therapy. (Author)

  4. Clinical application of cell, gene and tissue therapies in Spain.

    Science.gov (United States)

    Gálvez-Martín, P; Ruiz, A; Clares, B

    2018-05-01

    Scientific and technical advances in the areas of biomedicine and regenerative medicine have enabled the development of new treatments known as "advanced therapies", which encompass cell therapy, genetics and tissue engineering. The biologic products that can be manufactured from these elements are classified from the standpoint of the Spanish Agency of Medication and Health Products in advanced drug therapies, blood products and transplants. This review seeks to provide scientific and administrative information for clinicians on the use of these biologic resources. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  5. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    Science.gov (United States)

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  6. The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer.

    Science.gov (United States)

    Choi, Stephen Yiu Chuen; Xue, Hui; Wu, Rebecca; Fazli, Ladan; Lin, Dong; Collins, Colin C; Gleave, Martin E; Gout, Peter W; Wang, Yuzhuo

    2016-06-01

    The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Development of an inducible caspase-9 safety switch for pluripotent stem cell–based therapies

    Directory of Open Access Journals (Sweden)

    Chuanfeng Wu

    2014-01-01

    Full Text Available Induced pluripotent stem cell (iPSC therapies offer a promising path for patient-specific regenerative medicine. However, tumor formation from residual undifferentiated iPSC or transformation of iPSC or their derivatives is a risk. Inclusion of a suicide gene is one approach to risk mitigation. We introduced a dimerizable-“inducible caspase-9” (iCasp9 suicide gene into mouse iPSC (miPSC and rhesus iPSC (RhiPSC via a lentivirus, driving expression from either a cytomegalovirus (CMV, elongation factor-1 α (EF1α or pluripotency-specific EOS-C(3+ promoter. Exposure of the iPSC to the synthetic chemical dimerizer, AP1903, in vitro induced effective apoptosis in EF1α-iCasp9-expressing (EF1α-iPSC, with less effective killing of EOS-C(3+-iPSC and CMV-iPSC, proportional to transgene expression in these cells. AP1903 treatment of EF1α-iCasp9 miPSC in vitro delayed or prevented teratomas. AP1903 administration following subcutaneous or intravenous delivery of EF1α-iPSC resulted in delayed teratoma progression but did not ablate tumors. EF1α-iCasp9 expression was downregulated during in vitro and in vivo differentiation due to DNA methylation at CpG islands within the promoter, and methylation, and thus decreased expression, could be reversed by 5-azacytidine treatment. The level and stability of suicide gene expression will be important for the development of suicide gene strategies in iPSC regenerative medicine.

  8. Treatment of amiodarone-induced thyrotoxicosis resistant to conventional therapy

    Directory of Open Access Journals (Sweden)

    Nišić Tanja

    2017-01-01

    Full Text Available Introduction: Amiodarone as an antiarrhythmic medication is necessary in the prevention and treatment of malignant ventricular arrhythmias, however, it can induce thyroid dysfunction. Thyroid dysfunction may be either hypothyroidism or thyrotoxicosis, however, 50% of patients who have used amiodarone are euthyroid. Case report: A 27-year-old female patient, hospitalized at the Clinic for Endocrinology due to type 2 amiodarone-induced thyrotoxicosis. The patient had previously received amiodarone for two years. At age 25, the patient was diagnosed with dilated cardiomyopathy (EF 25%, EDD/ESD 56-57/47 mm with mild Ebstein’s anomaly, WPW Sy and recorded episodes of non-sustained VT. In order to reduce the risk of sudden death and prevent malignant ventricular arrhythmias, ICD-VR was implanted and amiodarone was prescribed. Treatment with propylthiouracil (PTU and dexamethasone was initiated after thyrotoxicosis was diagnosed. Three weeks after the introduction of PTU, hepatotoxicity was registered, thus the medication was discontinued. Thyrozol, which regulates the hepatotoxicity parameters, was introduced. Sodium perchlorate and glucocorticoid (per os, IV and intrathyroidal therapy was introduced. The treatment had lasted for fifty days and laboratory signs of thyrotoxicosis were still present, which is why a total of eight plasmapheresis sessions were performed. Each plasmapheresis resulted in a significant decrease in FT4 and a slight decrease in FT3. After seventy two days of treatment, an optimal hormonal status of the thyroid gland was established and total thyroidectomy was performed. Conclusion: Patient was treated for amiodarone-induced thyrotoxicosis (AIT type 2, which was resistant to conventional therapy for a long period of time. Successful treatment was achieved by applying plasmapheresis although the effect of perchlorate and glucocorticoids application cannot be disregarded.

  9. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  10. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  11. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.

    Science.gov (United States)

    Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J

    2002-02-05

    Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.

  12. Usage of U7 snRNA in gene therapy of hemoglobin C disorder ...

    African Journals Online (AJOL)

    Here, a bioinformatic analysis was performed to study the effect of co-expression between human Hb C b-globin chain gene and U7.623. The gene ontological results show that full recovery of hemoglobin function and biological process can be derived. This confirms that U7 snRNA can be a good tool for gene therapy in Hb ...

  13. Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector.

    Science.gov (United States)

    Chao, Chun-Nun; Yang, Yu-Hsuan; Wu, Mu-Sheng; Chou, Ming-Chieh; Fang, Chiung-Yao; Lin, Mien-Chun; Tai, Chien-Kuo; Shen, Cheng-Huang; Chen, Pei-Lain; Chang, Deching; Wang, Meilin

    2018-02-02

    Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.

  14. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  15. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  16. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  17. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    International Nuclear Information System (INIS)

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-01-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15–84 years). The range of external-beam radiation delivered was 50.0–75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90–120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues—Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7–70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  18. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    Science.gov (United States)

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite indus