WorldWideScience

Sample records for induced epigenetic modifications

  1. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Science.gov (United States)

    Tricker, Penny J

    2015-01-01

    The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defense "priming" and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity's adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  2. Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin.

    Directory of Open Access Journals (Sweden)

    Penny J Tricker

    2015-09-01

    Full Text Available The transgenerational inheritance of stress-induced epigenetic modifications is still controversial. Despite several examples of defence ‘priming’ and induced genetic rearrangements, the involvement and persistence of transgenerational epigenetic modifications is not known to be general. Here I argue that non-transmission of epigenetic marks through meiosis may be regarded as an epigenetic modification in itself, and that we should understand the implications for plant evolution in the context of both selection for and selection against transgenerational epigenetic memory. Recent data suggest that both epigenetic inheritance and resetting are mechanistically directed and targeted. Stress-induced epigenetic modifications may buffer against DNA sequence-based evolution to maintain plasticity, or may form part of plasticity’s adaptive potential. To date we have tended to concentrate on the question of whether and for how long epigenetic memory persists. I argue that we should now re-direct our question to investigate the differences between where it persists and where it does not, to understand the higher order evolutionary methods in play and their contribution.

  3. Epigenetic modifications in valproic acid-induced teratogenesis

    International Nuclear Information System (INIS)

    Tung, Emily W.Y.; Winn, Louise M.

    2010-01-01

    Exposure to the anticonvulsant drug valproic acid (VPA) in utero is associated with a 1-2% increase in neural tube defects (NTDs), however the molecular mechanisms by which VPA induces teratogenesis are unknown. Previous studies demonstrated that VPA, a direct inhibitor of histone deacetylase, can induce histone hyperacetylation and other epigenetic changes such as histone methylation and DNA demethylation. The objective of this study was to determine if maternal exposure to VPA in mice has the ability to cause these epigenetic alterations in the embryo and thus contribute to its mechanism of teratogenesis. Pregnant CD-1 mice (GD 9.0) were administered a teratogenic dose of VPA (400 mg/kg, s.c.) and embryos extracted 1, 3, 6, and 24 h after injection. To assess embryonic histone acetylation and histone methylation, Western blotting was performed on whole embryo homogenates, as well as immunohistochemical staining on embryonic sections. To measure DNA methylation changes, the cytosine extension assay was performed. Results demonstrated that a significant increase in histone acetylation that peaked 3 h after VPA exposure was accompanied by an increase in histone methylation at histone H3 lysine 4 (H3K4) and a decrease in histone methylation at histone H3 lysine 9 (H3K9). Immunohistochemical staining revealed increased histone acetylation in the neuroepithelium, heart, and somites. A decrease in methylated histone H3K9 staining was observed in the neuroepithelium and somites, METHYLATED histone H3K4 staining was observed in the neuroepithelium. No significant differences in global or CpG island DNA methylation were observed in embryo homogenates. These results support the possibility that epigenetic modifications caused by VPA during early mouse organogenesis results in congenital malformations.

  4. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  5. Epigenetic Modifications and Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2013-01-01

    Full Text Available Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2 and matrix metalloproteinase-9 (MMP-9 are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1, and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  6. Epigenetic modifications: An important mechanism in diabetic disturbances.

    Science.gov (United States)

    Rorbach-Dolata, Anna; Kubis, Adriana; Piwowar, Agnieszka

    2017-11-29

    In the search for explanations of diabetes pathomechanisms, especially the development of its vascular complications (micro- and macrovascular ), although current, good metabolic control of diabetes, attention was drawn to the role of epigenetic inheritance associated with epigenetic modifications of histone proteins and DNA in hyperglycemia conditions. This study showed the significant role of DNA methylation and histone epigenetic modifications (a different nature and a different degree) in the transmission of information that is not connected with gene inheritance but concerns the persistent changes induced by hyperglycemia..Attention was paid to the role of DNA methylation of pancreatic cells in the pathogenesis of type 1 diabetes, but also type 2. The important role of DNA methylation changes in a so-called intrauterine growth restriction (IUGR) as reason of subsequent development of diabetes was particularly emphasized. In the pathogenesis of type 2 diabetes and its complications, especially microvascular complications, the greatest share and importance of epigenetic modifications on mitochondrial DNA metylation are the most important. The multidirectionality Complicaand complexity of epigenetic modifications of histone proteins indicate their importance in the development of diabetic disturbances. An especially important role is attributed to methylation and acetylation of histone proteins, in particular on arginine and lysine, whose changes occur most frequently. Moreover, epigenetic modifications of the enzymes, especially methylases, responsible for these processes are the underlying. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may be a useful prognostic biomarker of susceptibility to the disease development in the future. Moreover, they may become a potential target for future therapeutic interventions for clinical disorders in diabetes.

  7. Epigenetic Modifications: Therapeutic Potential in Cancer

    Directory of Open Access Journals (Sweden)

    Manisha Sachan

    2015-08-01

    Full Text Available Epigenetic modifications and alterations in chromatin structure and function contribute to the cumulative changes observed as normal cells undergo malignant transformation. These modifications and enzymes (DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases related to them have been deeply studied to develop new drugs, epigenome-targeted therapies and new diagnostic tools. Epigenetic modifiers aim to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. Four of them (azacitidine, decitabine, vorinostat and romidepsin are approved by the U.S. Food and Drug Administration. This article provides an overview about the known functional roles of epigenetic enzymes in cancer development.

  8. Epigenetic modifications in prostate cancer.

    Science.gov (United States)

    Ngollo, Marjolaine; Dagdemir, Aslihan; Karsli-Ceppioglu, Seher; Judes, Gaelle; Pajon, Amaury; Penault-Llorca, Frederique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique J

    2014-01-01

    Prostate cancer is the most common cancer in men and the second leading cause of cancer deaths in men in France. Apart from the genetic alterations in prostate cancer, epigenetics modifications are involved in the development and progression of this disease. Epigenetic events are the main cause in gene regulation and the three most epigenetic mechanisms studied include DNA methylation, histone modifications and microRNA expression. In this review, we summarized epigenetic mechanisms in prostate cancer. Epigenetic drugs that inhibit DNA methylation, histone methylation and histone acetylation might be able to reactivate silenced gene expression in prostate cancer. However, further understanding of interactions of these enzymes and their effects on transcription regulation in prostate cancer is needed and has become a priority in biomedical research. In this study, we summed up epigenetic changes with emphasis on pharmacologic epigenetic target agents.

  9. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    International Nuclear Information System (INIS)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-01-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  10. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Cui, Xiang-Shun; Kim, Nam-Hyung [Department of Animal Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sun, Shao-Chen, E-mail: sunsc@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-06-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  11. Epigenetics and Evolution: Transposons and the Stochastic Epigenetic Modification Model

    Directory of Open Access Journals (Sweden)

    Sergio Branciamore

    2015-04-01

    Full Text Available In addition to genetic variation, epigenetic variation and transposons can greatly affect the evolutionary fitnesses landscape and gene expression. Previously we proposed a mathematical treatment of a general epigenetic variation model that we called Stochastic Epigenetic Modification (SEM model. In this study we follow up with a special case, the Transposon Silencing Model (TSM, with, once again, emphasis on quantitative treatment. We have investigated the evolutionary effects of epigenetic changes due to transposon (T insertions; in particular, we have considered a typical gene locus A and postulated that (i the expression level of gene A depends on the epigenetic state (active or inactive of a cis- located transposon element T, (ii stochastic variability in the epigenetic silencing of T occurs only in a short window of opportunity during development, (iii the epigenetic state is then stable during further development, and (iv the epigenetic memory is fully reset at each generation. We develop the model using two complementary approaches: a standard analytical population genetics framework (di usion equations and Monte-Carlo simulations. Both approaches led to similar estimates for the probability of fixation and time of fixation of locus TA with initial frequency P in a randomly mating diploid population of effective size Ne. We have ascertained the e ect that ρ, the probability of transposon Modification during the developmental window, has on the population (species. One of our principal conclusions is that as ρ increases, the pattern of fixation of the combined TA locus goes from "neutral" to "dominant" to "over-dominant". We observe that, under realistic values of ρ, epigenetic Modifications can provide an e cient mechanism for more rapid fixation of transposons and cis-located gene alleles. The results obtained suggest that epigenetic silencing, even if strictly transient (being reset at each generation, can still have signi cant

  12. Epigenetic modifications and diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Marpadga A. Reddy

    2012-09-01

    Full Text Available Diabetic nephropathy (DN is a major complication associated with both type 1 and type 2 diabetes, and a leading cause of end-stage renal disease. Conventional therapeutic strategies are not fully efficacious in the treatment of DN, suggesting an incomplete understanding of the gene regulation mechanisms involved in its pathogenesis. Furthermore, evidence from clinical trials has demonstrated a “metabolic memory” of prior exposure to hyperglycemia that continues to persist despite subsequent glycemic control. This remains a major challenge in the treatment of DN and other vascular complications. Epigenetic mechanisms such as DNA methylation, nucleosomal histone modifications, and noncoding RNAs control gene expression through regulation of chromatin structure and function and post-transcriptional mechanisms without altering the underlying DNA sequence. Emerging evidence indicates that multiple factors involved in the etiology of diabetes can alter epigenetic mechanisms and regulate the susceptibility to diabetes complications. Recent studies have demonstrated the involvement of histone lysine methylation in the regulation of key fibrotic and inflammatory genes related to diabetes complications including DN. Interestingly, histone lysine methylation persisted in vascular cells even after withdrawal from the diabetic milieu, demonstrating a potential role of epigenetic modifications in metabolic memory. Rapid advances in high-throughput technologies in the fields of genomics and epigenomics can lead to the identification of genome-wide alterations in key epigenetic modifications in vascular and renal cells in diabetes. Altogether, these findings can lead to the identification of potential predictive biomarkers and development of novel epigenetic therapies for diabetes and its associated complications.

  13. Epigenetic remodeling and modification to preserve skeletogenesis in vivo.

    Science.gov (United States)

    Godfrey, Tanner C; Wildman, Benjamin J; Javed, Amjad; Lengner, Christopher J; Hassan, Mohammad Quamarul

    2018-12-01

    Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a Cl ZIP ) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.

  14. Local epigenetic reprogramming induced by G-quadruplex ligands

    Science.gov (United States)

    Guilbaud, Guillaume; Murat, Pierre; Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-11-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

  15. Epigenetic inheritance in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.

    2016-01-01

    Epigenetic variation, such as changes in DNA methylations, regulatory small RNAs (sRNAs) and chromatin modifications can be induced by environmental stress. There is increasing information that such induced epigenetic modifications can be transmitted to offspring, potentially mediating adaptive

  16. Analysis of epigenetic modifications of DNA in human cells

    DEFF Research Database (Denmark)

    Kristensen, Lasse Sommer; Treppendahl, Marianne Bach; Grønbæk, Kirsten

    2013-01-01

    Epigenetics, the study of somatically heritable changes in gene expression not related to changes in the DNA sequence, is a rapidly expanding research field that plays important roles in healthy as well as in diseased cells. DNA methylation and hydroxymethylation are epigenetic modifications found...

  17. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine.

    Science.gov (United States)

    Ghare, Smita S; Donde, Hridgandh; Chen, Wei-Yang; Barker, David F; Gobejishvilli, Leila; McClain, Craig J; Barve, Shirish S; Joshi-Barve, Swati

    2016-09-01

    Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans.

    Science.gov (United States)

    Wang, Yan; Liu, Huijie; Sun, Zhongsheng

    2017-11-01

    Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental

  19. How stable 'should' epigenetic modifications be? Insights from adaptive plasticity and bet hedging.

    Science.gov (United States)

    Herman, Jacob J; Spencer, Hamish G; Donohue, Kathleen; Sultan, Sonia E

    2014-03-01

    Although there is keen interest in the potential adaptive value of epigenetic variation, it is unclear what conditions favor the stability of these variants either within or across generations. Because epigenetic modifications can be environmentally sensitive, existing theory on adaptive phenotypic plasticity provides relevant insights. Our consideration of this theory suggests that stable maintenance of environmentally induced epigenetic states over an organism's lifetime is most likely to be favored when the organism accurately responds to a single environmental change that subsequently remains constant, or when the environmental change cues an irreversible developmental transition. Stable transmission of adaptive epigenetic states from parents to offspring may be selectively favored when environments vary across generations and the parental environment predicts the offspring environment. The adaptive value of stability beyond a single generation of parent-offspring transmission likely depends on the costs of epigenetic resetting. Epigenetic stability both within and across generations will also depend on the degree and predictability of environmental variation, dispersal patterns, and the (epi)genetic architecture underlying phenotypic responses to environment. We also discuss conditions that favor stability of random epigenetic variants within the context of bet hedging. We conclude by proposing research directions to clarify the adaptive significance of epigenetic stability. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. Epi-genetics modifications induced by a depleted uranium exposure in the zebra fish

    Energy Technology Data Exchange (ETDEWEB)

    Gombeau, K.; Pereira, S.; Adam-Guillermin, C. [IRSN/PRP-ENV/SERIS/LECO (France); Bourdineaud, J.P. [UMR CNRS 5805 EPOC (France); Ravanat, J.L. [INAC/Scib UMR E3 CEA-UJF (France)

    2014-07-01

    The work presented here integrates in the general framework of assessment of effects of chronic exposure to low doses of radionuclides. This evaluation necessarily involves the study of the mechanisms of toxic action at the cellular or subcellular level, in order to better understand the processes of propagation of effects to the level of the populations or ecosystems. As such, the question of the mechanisms underlying the trans-generational effects and the adaptive capacity of organisms is central, both in humans and in animal species. Epigenetic refer to changes in gene function that do not involve changes in DNA sequence, and which are transmitted in a hereditary manner by mitosis or meiosis. The latter plays a key role in these trans-generational effects. Among these changes, DNA-methylation is one of the most studied epigenetic parameters. This work is part of a PhD, included in the European COMET project (Euratom 7. Framework Program), and focuses on epigenetic modifications induced in zebra fish after a chronic exposure to radionuclides. Male and female fishes were exposed to 2 and 20 μg.L{sup -1} of depleted uranium for 24 days. After 7 and 24 days of exposure, brain, gonads, and eyes were collected in order to study changes in DNA methylation. In addition, genotoxicity was measured by the γH2AX assay. The overall changes in DNA methylation were studied by AFLP-MS and HPLC-MS, in order to know if the exposure to depleted uranium changes the global status of DNA methylation. We have found a decrease in the global level of methylation in the eyes of males after 24 days of exposure, the diminution being much more important and significant at the higher concentration of exposure (11.79 ± 3.62 against 52.43 ± 3.01 for controls) This study will be refined by analyzing the methylation of specific regions of the genome, because it represent the sequences of genes involved in major physiological functions and that may be subject to variations in the methylation

  1. Epigenetic Modifications and Potential New Treatment Targets in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Lorena Perrone

    2014-01-01

    Full Text Available Retinopathy is a debilitating vascular complication of diabetes. As with other diabetic complications, diabetic retinopathy (DR is characterized by the metabolic memory, which has been observed both in DR patients and in DR animal models. Evidences have provided that after a period of poor glucose control insulin or diabetes drug treatment fails to prevent the development and progression of DR even when good glycemic control is reinstituted (glucose normalization, suggesting a metabolic memory phenomenon. Recent studies also underline the role of epigenetic chromatin modifications as mediators of the metabolic memory. Indeed, epigenetic changes may lead to stable modification of gene expression, participating in DR pathogenesis. Moreover, increasing evidences suggest that environmental factors such as chronic hyperglycemia are implicated DR progression and may also affect the epigenetic state. Here we review recent findings demonstrating the key role of epigenetics in the progression of DR. Further elucidation of epigenetic mechanisms, acting both at the cis- and trans-chromatin structural elements, will yield new insights into the pathogenesis of DR and will open the way for the discovery of novel therapeutic targets to prevent DR progression.

  2. Epigenetic Modifications of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Kathleen Saavedra

    2016-08-01

    Full Text Available Major depressive disorder (MDD is a chronic disease whose neurological basis and pathophysiology remain poorly understood. Initially, it was proposed that genetic variations were responsible for the development of this disease. Nevertheless, several studies within the last decade have provided evidence suggesting that environmental factors play an important role in MDD pathophysiology. Alterations in epigenetics mechanism, such as DNA methylation, histone modification and microRNA expression could favor MDD advance in response to stressful experiences and environmental factors. The aim of this review is to describe genetic alterations, and particularly altered epigenetic mechanisms, that could be determinants for MDD progress, and how these alterations may arise as useful screening, diagnosis and treatment monitoring biomarkers of depressive disorders.

  3. Role of Epigenetic Histone Modifications in Diabetic Kidney Disease Involving Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-01-01

    Full Text Available One of the commonest causes of end-stage renal disease is diabetic kidney disease (DKD. Renal fibrosis, characterized by the accumulation of extracellular matrix (ECM proteins in glomerular basement membranes and the tubulointerstitium, is the final manifestation of DKD. The TGF-β pathway triggers epithelial-to-mesenchymal transition (EMT, which plays a key role in the accumulation of ECM proteins in DKD. DCCT/EDIC studies have shown that DKD often persists and progresses despite glycemic control in diabetes once DKD sets in due to prior exposure to hyperglycemia called “metabolic memory.” These imply that epigenetic factors modulate kidney gene expression. There is evidence to suggest that in diabetes and hyperglycemia, epigenetic histone modifications have a significant effect in modulating renal fibrotic and ECM gene expression induced by TGF-β1, as well as its downstream profibrotic genes. Histone modifications are also implicated in renal fibrosis through its ability to regulate the EMT process triggered by TGF-β signaling. In view of this, efforts are being made to develop HAT, HDAC, and HMT inhibitors to delay, stop, or even reverse DKD. In this review, we outline the latest advances that are being made to regulate histone modifications involved in DKD.

  4. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression

    Directory of Open Access Journals (Sweden)

    Francesco Rusconi

    2018-05-01

    Full Text Available Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.

  5. Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine

    Directory of Open Access Journals (Sweden)

    Kátia Maria Sampaio Gomes

    Full Text Available Summary Induced pluripotent stem cells (iPSCs are somatic cells reprogrammed into an embryonic-like pluripotent state by the expression of specific transcription factors. iPSC technology is expected to revolutionize regenerative medicine in the near future. Despite the fact that these cells have the capacity to self-renew, they present low efficiency of reprogramming. Recent studies have demonstrated that the previous somatic epigenetic signature is a limiting factor in iPSC performance. Indeed, the process of effective reprogramming involves a complete remodeling of the existing somatic epigenetic memory, followed by the establishment of a "new epigenetic signature" that complies with the new type of cell to be differentiated. Therefore, further investigations of epigenetic modifications associated with iPSC reprogramming are required in an attempt to improve their self-renew capacity and potency, as well as their application in regenerative medicine, with a new strategy to reduce the damage in degenerative diseases. Our review aimed to summarize the most recent findings on epigenetics and iPSC, focusing on DNA methylation, histone modifications and microRNAs, highlighting their potential in translating cell therapy into clinics.

  6. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series)

    OpenAIRE

    Loscalzo, Joseph; Handy, Diane E.

    2014-01-01

    Abstract Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  7. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series).

    Science.gov (United States)

    Loscalzo, Joseph; Handy, Diane E

    2014-06-01

    Epigenetics refers to heritable traits that are not a consequence of DNA sequence. Three classes of epigenetic regulation exist: DNA methylation, histone modification, and noncoding RNA action. In the cardiovascular system, epigenetic regulation affects development, differentiation, and disease propensity or expression. Defining the determinants of epigenetic regulation offers opportunities for novel strategies for disease prevention and treatment.

  8. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; van der Putten, Wim H; Verhoeven, Koen J F

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  9. Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

    NARCIS (Netherlands)

    Preite, Veronica; Oplaat, Carla; Biere, Arjen; Kirschner, Jan; Putten, van der Wim H.; Verhoeven, Koen J.F.

    2018-01-01

    DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced

  10. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat.

    Science.gov (United States)

    Guo, Xiang; Han, Fangpu

    2014-11-01

    rRNA genes consist of long tandem repeats clustered on chromosomes, and their products are important functional components of the ribosome. In common wheat (Triticum aestivum), rDNA loci from the A and D genomes were largely lost during the evolutionary process. This biased DNA elimination may be related to asymmetric transcription and epigenetic modifications caused by the polyploid formation. Here, we observed both sets of parental nucleolus organizing regions (NORs) were expressed after hybridization, but asymmetric silencing of one parental NOR was immediately induced by chromosome doubling, and reversing the ploidy status could not reactivate silenced NORs. Furthermore, increased CHG and CHH DNA methylation on promoters was accompanied by asymmetric silencing of NORs. Enrichment of H3K27me3 and H3K9me2 modifications was also observed to be a direct response to increased DNA methylation and transcriptional inactivation of NOR loci. Both A and D genome NOR loci with these modifications started to disappear in the S4 generation and were completely eliminated by the S7 generation in synthetic tetraploid wheat. Our results indicated that asymmetric epigenetic modification and elimination of rDNA sequences between different donor genomes may lead to stable allopolyploid wheat with increased differentiation and diversity. © 2014 American Society of Plant Biologists. All rights reserved.

  11. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy

    Directory of Open Access Journals (Sweden)

    Rogerio M. Castilho

    2017-07-01

    Full Text Available Head and neck squamous carcinoma (HNSCC is the sixth most prevalent cancer and one of the most aggressive malignancies worldwide. Despite continuous efforts to identify molecular markers for early detection, and to develop efficient treatments, the overall survival and prognosis of HNSCC patients remain poor. Accumulated scientific evidences suggest that epigenetic alterations, including DNA methylation, histone covalent modifications, chromatin remodeling and non-coding RNAs, are frequently involved in oral carcinogenesis, tumor progression, and resistance to therapy. Epigenetic alterations occur in an unsystematic manner or as part of the aberrant transcriptional machinery, which promotes selective advantage to the tumor cells. Epigenetic modifications also contribute to cellular plasticity during tumor progression and to the formation of cancer stem cells (CSCs, a small subset of tumor cells with self-renewal ability. CSCs are involved in the development of intrinsic or acquired therapy resistance, and tumor recurrences or relapse. Therefore, the understanding and characterization of epigenetic modifications associated with head and neck carcinogenesis, and the prospective identification of epigenetic markers associated with CSCs, hold the promise for novel therapeutic strategies to fight tumors. In this review, we focus on the current knowledge on epigenetic modifications observed in HNSCC and emerging Epi-drugs capable of sensitizing HNSCC to therapy.

  12. Cell cycle arrest induced by inhibitors of epigenetic modifications in maize (Zea mays) seedling leaves: characterization of the process and possible mechanisms involved.

    Science.gov (United States)

    Wang, Pu; Zhang, Hao; Hou, Haoli; Wang, Qing; Li, Yingnan; Huang, Yan; Xie, Liangfu; Gao, Fei; He, Shibin; Li, Lijia

    2016-07-01

    Epigenetic modifications play crucial roles in the regulation of chromatin architecture and are involved in cell cycle progression, including mitosis and meiosis. To explore the relationship between epigenetic modifications and the cell cycle, we treated maize (Zea mays) seedlings with six different epigenetic modification-related inhibitors and identified the postsynthetic phase (G2 ) arrest via flow cytometry analysis. Total H4K5ac levels were significantly increased and the distribution of H3S10ph signalling was obviously changed in mitosis under various treatments. Further statistics of the cells in different periods of mitosis confirmed that the cell cycle was arrested at preprophase. Concentrations of hydrogen peroxide were relatively higher in the treated plants and the antioxidant thiourea could negate the influence of the inhibitors. Moreover, all of the treated plants displayed negative results in the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and γ-H2AX immunostaining assays after exposure for 3 d. Additionally, the expression level of topoisomerase genes in the treated plants was relatively lower than that in the untreated plants. These results suggest that these inhibitors of epigenetic modifications could cause preprophase arrest via reactive oxygen species formation inhibiting the expression of DNA topoisomerase genes, accompanied by changes in the H4K5ac and H3S10ph histone modifications. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Epigenetic modification and inheritance in sexual reversal of fish.

    Science.gov (United States)

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei; Zhang, Yong; Wang, Jun; Zhang, Guojie

    2014-04-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model-a marine fish that has both ZW chromosomal GSD and temperature-dependent ESD-we investigated the role of DNA methylation in transition from GSD to ESD. Comparative analysis of the gonadal DNA methylomes of pseudomale, female, and normal male fish revealed that genes in the sex determination pathways are the major targets of substantial methylation modification during sexual reversal. Methylation modification in pseudomales is globally inherited in their ZW offspring, which can naturally develop into pseudomales without temperature incubation. Transcriptome analysis revealed that dosage compensation occurs in a restricted, methylated cytosine enriched Z chromosomal region in pseudomale testes, achieving equal expression level in normal male testes. In contrast, female-specific W chromosomal genes are suppressed in pseudomales by methylation regulation. We conclude that epigenetic regulation plays multiple crucial roles in sexual reversal of tongue sole fish. We also offer the first clues on the mechanisms behind gene dosage balancing in an organism that undergoes sexual reversal. Finally, we suggest a causal link between the bias sex chromosome assortment in the offspring of a pseudomale family and the transgenerational epigenetic inheritance of sexual reversal in tongue sole fish.

  14. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Kotaro [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Department of Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194 (Japan); Semi, Katsunori [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507 (Japan); Yamada, Yasuhiro, E-mail: y-yamada@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507 (Japan)

    2014-12-05

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotency in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo.

  15. Epigenetic regulation leading to induced pluripotency drives cancer development in vivo

    International Nuclear Information System (INIS)

    Ohnishi, Kotaro; Semi, Katsunori; Yamada, Yasuhiro

    2014-01-01

    Highlights: • Epigenetic regulation of failed reprogramming-associated cancer cells is discussed. • Similarity between pediatric cancer and reprogramming-associated cancer is discussed. • Concept for epigenetic cancer is discussed. - Abstract: Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by the transient expression of reprogramming factors. During the reprogramming process, somatic cells acquire the ability to undergo unlimited proliferation, which is also an important characteristic of cancer cells, while their underlying DNA sequence remains unchanged. Based on the characteristics shared between pluripotent stem cells and cancer cells, the potential involvement of the factors leading to reprogramming toward pluripotency in cancer development has been discussed. Recent in vivo reprogramming studies provided some clues to understanding the role of reprogramming-related epigenetic regulation in cancer development. It was shown that premature termination of the in vivo reprogramming result in the development of tumors that resemble pediatric cancers. Given that epigenetic modifications play a central role during reprogramming, failed reprogramming-associated cancer development may have provided a proof of concept for epigenetics-driven cancer development in vivo

  16. Generalized nucleation and looping model for epigenetic memory of histone modifications

    Science.gov (United States)

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  17. Drug Addiction and DNA Modifications.

    Science.gov (United States)

    Brown, Amber N; Feng, Jian

    2017-01-01

    Drug addiction is a complex disorder which can be influenced by both genetic and environmental factors. Research has shown that epigenetic modifications can translate environmental signals into changes in gene expression, suggesting that epigenetic changes may underlie the causes and possibly treatment of substance use disorders. This chapter will focus on epigenetic modifications to DNA, which include DNA methylation and several recently defined additional DNA epigenetic changes. We will discuss the functions of DNA modifications and methods for detecting them, followed by a description of the research investigating the function and consequences of drug-induced changes in DNA methylation patterns. Understanding these epigenetic changes may provide us translational tools for the diagnosis and treatment of addiction in the future.

  18. Epigenetics of peripheral B cell differentiation and the antibody response

    Directory of Open Access Journals (Sweden)

    Hong eZan

    2015-12-01

    Full Text Available Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs and long non-coding RNAs (lncRNAs, are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin class switch DNA recombination (CSR and somatic hypermutation (SHM, as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase (AID, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens

  19. Environmentally induced epigenetic toxicity: potential public health concerns.

    Science.gov (United States)

    Marczylo, Emma L; Jacobs, Miriam N; Gant, Timothy W

    2016-09-01

    Throughout our lives, epigenetic processes shape our development and enable us to adapt to a constantly changing environment. Identifying and understanding environmentally induced epigenetic change(s) that may lead to adverse outcomes is vital for protecting public health. This review, therefore, examines the present understanding of epigenetic mechanisms involved in the mammalian life cycle, evaluates the current evidence for environmentally induced epigenetic toxicity in human cohorts and rodent models and highlights the research considerations and implications of this emerging knowledge for public health and regulatory toxicology. Many hundreds of studies have investigated such toxicity, yet relatively few have demonstrated a mechanistic association among specific environmental exposures, epigenetic changes and adverse health outcomes in human epidemiological cohorts and/or rodent models. While this small body of evidence is largely composed of exploratory in vivo high-dose range studies, it does set a precedent for the existence of environmentally induced epigenetic toxicity. Consequently, there is worldwide recognition of this phenomenon, and discussion on how to both guide further scientific research towards a greater mechanistic understanding of environmentally induced epigenetic toxicity in humans, and translate relevant research outcomes into appropriate regulatory policies for effective public health protection.

  20. Interplay of Inflammatory Mediators with Epigenetics and Cartilage Modifications in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Swarna Raman

    2018-03-01

    Full Text Available Osteoarthritis (OA, a degenerative disease of diarthrodial joints, is influenced by mechanical and inflammatory factors with aging, obesity, chronic injuries, and secondary diseases thought to be major factors driving the process of articular cartilage degeneration. Chondrocytes, the cellular component of cartilage, reside in an avascular environment and normally have limited potential to replicate. However, extrinsic factors such as injury to the joint or intrinsic alterations to the chondrocytes themselves can lead to an altered phenotype and development of OA. Synovial inflammation is also a pivotal element of the osteoarthritic, degenerative process: influx of pro-inflammatory cytokines and production of matrix metalloproteinases accelerate advanced cellular processes such as synovitis and cartilage damage. As well as a genetic input, recent data have highlighted epigenetic factors as contributing to disease. Studies conducted over the last decade have focused on three key aspects in OA; inflammation and the immune response, genome-wide association studies that have identified important genes undergoing epigenetic modifications, and finally how chondrocytes transform in their function during development and disease. Data highlighted here have identified critical inflammatory genes involved in OA and how these factors impact chondrocyte hypertrophy in the disease. This review also addresses key inflammatory factors in synovial inflammation, epigenetics, and chondrocyte fate, and how agents that inhibit epigenetic mechanisms like DNA methylation and histone modifications could aid in development of long-term treatment strategies for the disease.

  1. Epigenetics of Obesity.

    Science.gov (United States)

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health.

    Science.gov (United States)

    Smolkova, Bozena; El Yamani, Naouale; Collins, Andrew R; Gutleb, Arno C; Dusinska, Maria

    2015-03-01

    Disturbed epigenetic mechanisms, which developmentally regulate gene expression via modifications to DNA, histone proteins, and chromatin, have been hypothesized to play a key role in many human diseases. Recently it was shown that engineered nanoparticles (NPs), that already have a wide range of applications in various fields including food production, could dramatically affect epigenetic processes, while their ability to induce diseases remains poorly understood. Besides the obvious benefits of the new technologies, it is critical to assess their health effects before proceeding with industrial production. In this article, after surveying the applications of NPs in food technology, we review recent advances in the understanding of epigenetic pathological effects of NPs, and discuss their possible health impact with the aim of avoiding potential health risks posed by the use of nanomaterials in foods and food-packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Epigenetics and cancer

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development. This is e......Epigenetic mechanisms act to change the accessibility of chromatin to transcriptional regulation locally and globally via modifications of the DNA and by modification or rearrangement of nucleosomes. Epigenetic gene regulation collaborates with genetic alterations in cancer development....... This is evident from every aspect of tumor biology including cell growth and differentiation, cell cycle control, DNA repair, angiogenesis, migration, and evasion of host immunosurveillance. In contrast to genetic cancer causes, the possibility of reversing epigenetic codes may provide new targets for therapeutic...

  4. Male germ cell apoptosis and epigenetic histone modification induced by Tripterygium wilfordii Hook F.

    Directory of Open Access Journals (Sweden)

    Ji Xiong

    Full Text Available Multiglycosides of Tripterygium wilfordii Hook f (GTW, a Chinese herb-derived medicine used as a remedy for rheumatoid arthritis, are considered to be a reversible anti-fertility drug affecting the mammalian spermatids. However, the mechanism behind this effect is still unknown. To study the possible mechanism behind the impact of GTW on spermatogenesis, we administered 4 groups of 4-week-old male mice with different doses of GTW. We found a dose-dependent decrease in the number of germ cells after 40 days of GTW treatment, and an increase in apoptotic cells from the low-dose to the high-dose group. During this same period the dimethylated level of histone H3 lysine 9 (H3K9me2 in GTW-treated testes germ cells declined. Additionally, spermatogonial stem cells (SSCs from 6-day-old mice were isolated to evaluate the possible effect of GTW or triptolide on development of SSCs. We found a significantly higher incidence of apoptosis and lower dimethylation level of H3K9me2 in the SSCs of GTW or triptolide treatment than in controls. Thus, these data suggest that the GTW-induced apoptosis might be responsible for the fertility impairment in mice. This damage could be traced back to the early stages of spermatogenesis. GTW also affected the epigenetic modification of H3K9 in spermatogenesis. Molecular dynamics simulation suggested that triptolide and dimethylated or trimethylated H3K9 might have similar interaction mechanisms with EED (embryonic ectoderm development. These candidate activation mechanisms provide the first glimpse into the pathway of GTW-induced gonad toxicity, which is crucial for further research and clinical application.

  5. Epigenetics in prostate cancer.

    Science.gov (United States)

    Albany, Costantine; Alva, Ajjai S; Aparicio, Ana M; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a "normal" epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  6. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease.

    Science.gov (United States)

    Tharmalingam, Sujeenthar; Sreetharan, Shayenthiran; Kulesza, Adomas V; Boreham, Douglas R; Tai, T C

    2017-10-01

    Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.

  7. Environmental chemical exposures and human epigenetics

    Science.gov (United States)

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  8. Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

    Directory of Open Access Journals (Sweden)

    Balapal S. Basavarajappa

    2016-04-01

    Full Text Available Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS, which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD. Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD.

  9. The Interactions of microRNA and Epigenetic Modifications in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Singh

    2013-08-01

    Full Text Available Epigenetic modifiers play important roles in fine-tuning the cellular transcriptome. Any imbalance in these processes may lead to abnormal transcriptional activity and thus result in disease state. Distortions of the epigenome have been reported in cancer initiation and progression. DNA methylation and histone modifications are principle components of this epigenome, but more recently it has become clear that microRNAs (miRNAs are another major component of the epigenome. Interactions of these components are apparent in prostate cancer (CaP, which is the most common non-cutaneous cancer and second leading cause of death from cancer in the USA. Changes in DNA methylation, altered histone modifications and miRNA expression are functionally associated with CaP initiation and progression. Various aspects of the epigenome have also been investigated as biomarkers for different stages of CaP detection, though with limited success. This review aims to summarize key aspects of these mechanistic interactions within the epigenome and to highlight their translational potential as functional biomarkers. To this end, exploration of TCGA prostate cancer data revealed that expression of key CaP miRNAs inversely associate with DNA methylation. Given the importance and prevalence of these epigenetic events in CaP biology it is timely to understand further how different epigenetic components interact and influence each other.

  10. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components

    International Nuclear Information System (INIS)

    Verma, Ranjana; Xu, Xiufen; Jaiswal, Manoj K.; Olsen, Cara; Mears, David; Caretti, Giuseppina; Galdzicki, Zygmunt

    2011-01-01

    Tungsten-alloy has carcinogenic potential as demonstrated by cancer development in rats with intramuscular implanted tungsten-alloy pellets. This suggests a potential involvement of epigenetic events previously implicated as environmental triggers of cancer. Here, we tested metal induced cytotoxicity and epigenetic modifications including H3 acetylation, H3-Ser10 phosphorylation and H3-K4 trimethylation. We exposed human embryonic kidney (HEK293), human neuroepithelioma (SKNMC), and mouse myoblast (C2C12) cultures for 1-day and hippocampal primary neuronal cultures for 1-week to 50-200 μg/ml of tungsten-alloy (91% tungsten/6% nickel/3% cobalt), tungsten, nickel, and cobalt. We also examined the potential role of intracellular calcium in metal mediated histone modifications by addition of calcium channel blockers/chelators to the metal solutions. Tungsten and its alloy showed cytotoxicity at concentrations > 50 μg/ml, while we found significant toxicity with cobalt and nickel for most tested concentrations. Diverse cell-specific toxic effects were observed, with C2C12 being relatively resistant to tungsten-alloy mediated toxic impact. Tungsten-alloy, but not tungsten, caused almost complete dephosphorylation of H3-Ser10 in C2C12 and hippocampal primary neuronal cultures with H3-hypoacetylation in C2C12. Dramatic H3-Ser10 dephosphorylation was found in all cobalt treated cultures with a decrease in H3 pan-acetylation in C2C12, SKNMC and HEK293. Trimethylation of H3-K4 was not affected. Both tungsten-alloy and cobalt mediated H3-Ser10 dephosphorylation were reversed with BAPTA-AM, highlighting the role of intracellular calcium, confirmed with 2-photon calcium imaging. In summary, our results for the first time reveal epigenetic modifications triggered by tungsten-alloy exposure in C2C12 and hippocampal primary neuronal cultures suggesting the underlying synergistic effects of tungsten, nickel and cobalt mediated by changes in intracellular calcium homeostasis and

  11. Epigenetics in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Costantine Albany

    2011-01-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.

  12. Epigenetics as a basis for diagnosis of neurodevelopmental disorders: challenges and opportunities.

    Science.gov (United States)

    Kubota, Takeo; Miyake, Kunio; Hariya, Natsuyo; Mochizuki, Kazuki

    2014-07-01

    Neurodevelopmental disorders, such as autism, are complex entities that can be caused by biological and social factors. In a subset of patients with congenital neurodevelopmental disorders, clear diagnosis can be achieved using DNA sequence-based analysis to identify changes in the DNA sequence (genetic variation). However, it has recently become clear that changes to the secondary modifications of DNA and histone structures (epigenetic variation) can also cause neurodevelopmental disorders via alteration of neural gene function. Moreover, it has recently been demonstrated that epigenetic modifications are more susceptible to alterations induced by environmental factors than are DNA sequences, and that some drugs commonly used reverse mental-stress induced alterations to histone modifications in neural genes. Therefore, application of diagnostic assays to detect epigenetic alterations will provide new insight into the characterization and treatment of neurodevelopmental disorders.

  13. Molecular targets of epigenetic regulation and effectors of environmental influences

    International Nuclear Information System (INIS)

    Choudhuri, Supratim; Cui Yue; Klaassen, Curtis D.

    2010-01-01

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  14. Epigenetics of reproductive infertility.

    Science.gov (United States)

    Das, Laxmidhar; Parbin, Sabnam; Pradhan, Nibedita; Kausar, Chahat; Patra, Samir K

    2017-06-01

    Infertility is a complex pathophysiological condition. It may caused by specific or multiple physical and physiological factors, including abnormalities in homeostasis, hormonal imbalances and genetic alterations. In recent times various studies implicated that, aberrant epigenetic mechanisms are associated with reproductive infertility. There might be transgenerational effects associated with epigenetic modifications of gametes and studies suggest the importance of alterations in epigenetic modification at early and late stages of gametogenesis. To determine the causes of infertility it is necessary to understand the altered epigenetic modifications of associated gene and mechanisms involved therein. This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility. It includes environmental, nutritional, hormonal and physiological factors and influence of internal structural architecture of chromatin nucleosomes affecting DNA and histone modifications in both male and female gametes, early embryogenesis and offspring. Finally, we would like to emphasize that research on human infertility by gene knock out of epigenetic modifiers genes must be relied upon animal models.

  15. DLEC1 Expression Is Modulated by Epigenetic Modifications in Hepatocelluar Carcinoma Cells: Role of HBx Genotypes

    International Nuclear Information System (INIS)

    Niu, Dandan; Feng, Huixing; Chen, Wei Ning

    2010-01-01

    Deleted in Lung and Esophageal Cancer 1 (DLEC1) is a functional tumor suppressor gene (TSG). It has been found to be silenced in a variety of human cancers including hepatocellular carcinoma (HCC). The silencing of DLEC1 can be modulated by epigenetic modifications, such as DNA hypermethylation and histone hypoacetylation. In the case of HCC, hepatitis B virus X protein (HBx) has been implicated in methylation of target promoters resulting in the down-regulation of tumor suppressor genes, which in turn contributes to the development of HCC. In the present study, we first established a cell system in which epigenetic modifications can be modulated using inhibitors of either DNA methylation or histone deacetylation. The cell system was used to reveal that the expression of DLEC1 was upregulated by HBx in a genotype-dependent manner. In particular, HBx genotype A was found to decrease DNA methylation of the DLEC1 promoter. Our results have provided new insights on the impact of HBx in HCC development by epigenetic modifications

  16. Epigenetic considerations in aquaculture

    Directory of Open Access Journals (Sweden)

    Mackenzie R. Gavery

    2017-12-01

    Full Text Available Epigenetics has attracted considerable attention with respect to its potential value in many areas of agricultural production, particularly under conditions where the environment can be manipulated or natural variation exists. Here we introduce key concepts and definitions of epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, review the current understanding of epigenetics in both fish and shellfish, and propose key areas of aquaculture where epigenetics could be applied. The first key area is environmental manipulation, where the intention is to induce an ‘epigenetic memory’ either within or between generations to produce a desired phenotype. The second key area is epigenetic selection, which, alone or combined with genetic selection, may increase the reliability of producing animals with desired phenotypes. Based on aspects of life history and husbandry practices in aquaculture species, the application of epigenetic knowledge could significantly affect the productivity and sustainability of aquaculture practices. Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may upend traditional assumptions about selection practices. Ultimately, there are still many unanswered questions regarding how epigenetic mechanisms might be leveraged in aquaculture.

  17. Epigenetic cell response to an influence of ionizing radiation

    International Nuclear Information System (INIS)

    Mikheev, A.N.; Gushcha, N.I.; Malinovskij, Yu.Yu.

    1999-01-01

    Importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. Inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify level of spontaneous genetic instability inherited in a number of cell generations on epigenetic mechanism [ru

  18. Epigenetics primer: why the clinician should care about epigenetics.

    Science.gov (United States)

    Duarte, Julio D

    2013-12-01

    Epigenetics describes heritable alterations of gene expression that do not involve DNA sequence variation and are changeable throughout an organism's lifetime. Not only can epigenetic status influence drug response, but it can also be modulated by drugs. In this review, the three major epigenetic mechanisms are described: covalent DNA modification, histone protein modification, and regulation by noncoding RNA. Further, this review describes how drug therapy can influence, and be influenced by, these mechanisms. Drugs with epigenetic mechanisms are already in use, with many more likely to be approved within the next few years. As the understanding of epigenetic processes improves, so will the ability to use these data in the clinic to improve patient care. © 2013 Pharmacotherapy Publications, Inc.

  19. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view.

    Science.gov (United States)

    Hodjat, Mahshid; Rahmani, Soheila; Khan, Fazlullah; Niaz, Kamal; Navaei-Nigjeh, Mona; Mohammadi Nejad, Solmaz; Abdollahi, Mohammad

    2017-07-01

    Epigenotoxicology is an emerging field of study that investigates the non-genotoxic epigenetic effects of environmental toxicants resulting in alteration of normal gene expression and disruption of cell function. Recent findings on the role of toxicant-induced epigenetic modifications in the development of degenerative diseases have opened up a promising research direction to explore epigenetic therapy approaches and related prognostic biomarkers. In this review, we presented comprehensive data on epigenetic alterations identified in various diseases, including cancer, autoimmune disorders, pulmonary conditions as well as cardiovascular, gastrointestinal and bone disease. Although data on abnormalities of DNA methylation and their role in the development of diseases are abundant, less is known about the impact of histone modifications and microRNA expressions. Further, we discussed the effects of selected common environmental toxicants on epigenetic modifications and their association with particular abnormalities. A number of different environmental toxicants have been identified for their role in aberrant DNA methylation, histone modifications, and microRNA expression. Such epigenetic effects were shown to be tissue-type specific and highly associated with the level and duration of exposure. Finally, we described present and future therapeutic strategies, including medicines and dietary compounds for combating the toxicant-induced epigenetic alterations. There are currently seven histone deacetylase inhibitors and two DNA methyltransferase inhibitors approved for clinical use and many other promising candidates are in preclinical and clinical testing. Dietary compounds are thought to be the effective and safe strategies for treating and prevention of epigenetic pathophysiological conditions. Still more concentrated epigenetic researches are required for evaluation of chemical toxicity and identifying the causal association between key epigenetic alteration and

  20. Prostate cancer: The main risk and protective factors-Epigenetic modifications.

    Science.gov (United States)

    Adjakly, Mawussi; Ngollo, Marjolaine; Dagdemir, Aslihan; Judes, Gaëlle; Pajon, Amaury; Karsli-Ceppioglu, Seher; Penault-Llorca, Frédérique; Boiteux, Jean-Paul; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2015-02-01

    With 13 million new cases worldwide every year, prostate cancer is as a very real public health concern. Prostate cancer is common in over-50s men and the sixth-leading cause of cancer-related death in men worldwide. Like all cancers, prostate cancer is multifactorial - there are non-modifiable risk factors like heredity, ethnicity and geographic location, but also modifiable risk factors such as diet. Diet-cancer linkages have risen to prominence in the last few years, with accruing epidemiological data pointing to between-population incidence differentials in numerous cancers. Indeed, there are correlations between fat-rich diet and risk of hormone-dependent cancers like prostate cancer and breast cancer. Diet is a risk factor for prostate cancer, but certain micronutrients in specific diets are considered protective factors against prostate cancer. Examples include tomato lycopene, green tea epigallocatechin gallate, and soy phytoestrogens. These micronutrients are thought to exert cancer-protective effects via anti-oxidant pathways and inhibition of cell proliferation. Here, we focus in on the effects of phytoestrogens, and chiefly genistein and daidzein, which are the best-researched to date. Soy phytoestrogens are nonsteroid molecules whose structural similarity lends them the ability to mimic the effects of 17ß-estradiol. On top of anti-oxidant effects, there is evidence that soy phytoestrogens can modulate the epigenetic modifications found in prostate cancer. We also studied the impact of phytoestrogens on epigenetic modifications in prostate cancer, with special focus on DNA methylation, miRNA-mediated regulation and histone modifications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. A Functional Role for the Epigenetic Regulator ING1 in Activity-induced Gene Expression in Primary Cortical Neurons.

    Science.gov (United States)

    Leighton, Laura J; Zhao, Qiongyi; Li, Xiang; Dai, Chuanyang; Marshall, Paul R; Liu, Sha; Wang, Yi; Zajaczkowski, Esmi L; Khandelwal, Nitin; Kumar, Arvind; Bredy, Timothy W; Wei, Wei

    2018-01-15

    Epigenetic regulation of activity-induced gene expression involves multiple levels of molecular interaction, including histone and DNA modifications, as well as mechanisms of DNA repair. Here we demonstrate that the genome-wide deposition of inhibitor of growth family member 1 (ING1), which is a central epigenetic regulatory protein, is dynamically regulated in response to activity in primary cortical neurons. ING1 knockdown leads to decreased expression of genes related to synaptic plasticity, including the regulatory subunit of calcineurin, Ppp3r1. In addition, ING1 binding at a site upstream of the transcription start site (TSS) of Ppp3r1 depends on yet another group of neuroepigenetic regulatory proteins, the Piwi-like family, which are also involved in DNA repair. These findings provide new insight into a novel mode of activity-induced gene expression, which involves the interaction between different epigenetic regulatory mechanisms traditionally associated with gene repression and DNA repair. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  3. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    International Nuclear Information System (INIS)

    Mann, Monica; Cortez, Valerie; Vadlamudi, Ratna K.

    2011-01-01

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications

  4. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  5. Epigenetic modification of the oxytocin and glucocorticoid receptor genes is linked to attachment avoidance in young adults.

    Science.gov (United States)

    Ein-Dor, Tsachi; Verbeke, Willem J M I; Mokry, Michal; Vrtička, Pascal

    2018-08-01

    Attachment in the context of intimate pair bonds is most frequently studied in terms of the universal strategy to draw near, or away, from significant others at moments of personal distress. However, important interindividual differences in the quality of attachment exist, usually captured through secure versus insecure - anxious and/or avoidant - attachment orientations. Since Bowlby's pioneering writings on the theory of attachment, it has been assumed that attachment orientations are influenced by both genetic and social factors - what we would today describe and measure as gene by environment interaction mediated by epigenetic DNA modification - but research in humans on this topic remains extremely limited. We for the first time examined relations between intra-individual differences in attachment and epigenetic modification of the oxytocin receptor (OXTR) and glucocorticoid receptor (NR3C1) gene promoter in 109 young adult human participants. Our results revealed that attachment avoidance was significantly and specifically associated with increased OXTR and NR3C1 promoter methylation. These findings offer first tentative clues on the possible etiology of attachment avoidance in humans by showing epigenetic modification in genes related to both social stress regulation and HPA axis functioning.

  6. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan; Perkins, Jordan T. [Superfund Research Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536 (United States); Petriello, Michael C. [Superfund Research Center, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Hennig, Bernhard, E-mail: bhennig@uky.edu [Superfund Research Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40536 (United States)

    2015-12-15

    Epigenetic modifications of DNA and histones alter cellular phenotypes without changing genetic codes. Alterations of epigenetic marks can be induced by exposure to environmental pollutants and may contribute to associated disease risks. Here we test the hypothesis that endothelial cell dysfunction induced by exposure to polychlorinated biphenyls (PCBs) is mediated in part though histone modifications. In this study, human vascular endothelial cells were exposed to physiologically relevant concentrations of several PCBs congeners (e.g., PCBs 77, 118, 126 and 153) followed by quantification of inflammatory gene expression and changes of histone methylation. Only exposure to coplanar PCBs 77 and 126 induced the expression of histone H3K9 trimethyl demethylase jumonji domain-containing protein 2B (JMJD2B) and nuclear factor-kappa B (NF-κB) subunit p65, activated NF-κB signaling as evidenced by nuclear translocation of p65, and up-regulated p65 target inflammatory genes, such as interleukin (IL)-6, C-reactive protein (CRP), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-1α/β. The increased accumulation of JMJD2B in the p65 promoter led to a depletion of H3K9me3 repression mark, which accounts for the observed up-regulation of p65 and associated inflammatory genes. JMJD2B gene knockdown confirmed a critical role for this histone demethylase in mediating PCB-induced inflammation of the vascular endothelium. Finally, it was determined, via chemical inhibition, that PCB-induced up-regulation of JMJD2B was estrogen receptor-alpha (ER-α) dependent. These data suggest that coplanar PCBs may exert endothelial cell toxicity through changes in histone modifications. - Highlights: • Coplanar PCBs significantly induced histone demethylase JMJD2B expression. • Coplanar PCBs activated NF-κB through p65 up-regulation and nuclear translocation. • Histone H3K4 and K9 modifications were mediated by ER-α/JMJD2B/MLL2 complex.

  7. Heterogeneity of chromatin modifications in testicular spermatocytic seminoma point toward an epigenetically unstable phenotype

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Mlynarska, Olga; Nielsen, John E

    2012-01-01

    Testicular spermatocytic seminoma (SS) is a rare tumor type predominantly found in elderly men. It is thought to originate from spermatogonia and shows cytological and genetic heterogeneity. In this study, we performed for the first time a comprehensive analysis of epigenetic modifications in a s...

  8. Epigenetic reprogramming in Mist1(-/- mice predicts the molecular response to cerulein-induced pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rashid Mehmood

    Full Text Available Gene expression is affected by modifications to histone core proteins within chromatin. Changes in these modifications, or epigenetic reprogramming, can dictate cell fate and promote susceptibility to disease. The goal of this study was to determine the extent of epigenetic reprogramming in response to chronic stress that occurs following ablation of MIST1 (Mist1(-/- , which is repressed in pancreatic disease. Chromatin immunoprecipitation for trimethylation of lysine residue 4 on histone 3 (H3K4Me3 in purified acinar cells from wild type and Mist1(-/- mice was followed by Next Generation sequencing (ChIP-seq or ChIP-qPCR. H3K4Me3-enriched genes were assessed for expression by qRT-PCR in pancreatic tissue before and after induction of cerulein-induced pancreatitis. While most of H3K4Me3-enrichment is restricted to transcriptional start sites, >25% of enrichment sites are found within, downstream or between annotated genes. Less than 10% of these sites were altered in Mist1(-/- acini, with most changes in H3K4Me3 enrichment not reflecting altered gene expression. Ingenuity Pathway Analysis of genes differentially-enriched for H3K4Me3 revealed an association with pancreatitis and pancreatic ductal adenocarcinoma in Mist1(-/- tissue. Most of these genes were not differentially expressed but several were readily induced by acute experimental pancreatitis, with significantly increased expression in Mist1(-/- tissue relative to wild type mice. We suggest that the chronic cell stress observed in the absence of MIST1 results in epigenetic reprogramming of genes involved in promoting pancreatitis to a poised state, thereby increasing the sensitivity to events that promote disease.

  9. Daphnia as an Emerging Epigenetic Model Organism

    Directory of Open Access Journals (Sweden)

    Kami D. M. Harris

    2012-01-01

    Full Text Available Daphnia offer a variety of benefits for the study of epigenetics. Daphnia’s parthenogenetic life cycle allows the study of epigenetic effects in the absence of confounding genetic differences. Sex determination and sexual reproduction are epigenetically determined as are several other well-studied alternate phenotypes that arise in response to environmental stressors. Additionally, there is a large body of ecological literature available, recently complemented by the genome sequence of one species and transgenic technology. DNA methylation has been shown to be altered in response to toxicants and heavy metals, although investigation of other epigenetic mechanisms is only beginning. More thorough studies on DNA methylation as well as investigation of histone modifications and RNAi in sex determination and predator-induced defenses using this ecologically and evolutionarily important organism will contribute to our understanding of epigenetics.

  10. Epigenetic memory in mammals

    Directory of Open Access Journals (Sweden)

    Zoe eMigicovsky

    2011-06-01

    Full Text Available Epigenetic information can be passed on from one generation to another via DNA methylation, histone modifications and changes in small RNAs, a process called epigenetic memory. During a mammal’s lifecycle epigenetic reprogramming, or the resetting of most epigenetic marks, occurs twice. The first instance of reprogramming occurs in primordial germ cells and the second occurs following fertilization. These processes may be both passive and active. In order for epigenetic inheritance to occur the epigenetic modifications must be able to escape reprogramming. There are several examples supporting this non-Mendelian mechanism of inheritance including the prepacking of early developmental genes in histones instead of protamines in sperm, genomic imprinting via methylation marks, the retention of CenH3 in mammalian sperm and the inheritance of piwi-associated interfering RNAs. The ability of mammals to pass on epigenetic information to their progeny provides clear evidence that inheritance is not restricted to DNA sequence and epigenetics plays a key role in producing viable offspring.

  11. The multifaceted interplay between lipids and epigenetics.

    Science.gov (United States)

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  12. Is Glioblastoma an Epigenetic Malignancy?

    International Nuclear Information System (INIS)

    Maleszewska, Marta; Kaminska, Bozena

    2013-01-01

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens

  13. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  14. Epigenetic Regulation of Adipokines

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2017-08-01

    Full Text Available Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.

  15. Polymicrobial infection and bacterium-mediated epigenetic modification of DNA tumor viruses contribute to pathogenesis.

    Science.gov (United States)

    Doolittle, J M; Webster-Cyriaque, J

    2014-04-29

    ABSTRACT The human body plays host to a wide variety of microbes, commensal and pathogenic. In addition to interacting with their host, different microbes, such as bacteria and viruses, interact with each other, sometimes in ways that exacerbate disease. In particular, gene expression of a number of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV), and human immunodeficiency virus (HIV), is known to be regulated by epigenetic modifications induced by bacteria. These viruses establish latent infection in their host cells and can be reactivated by bacterial products. Viral reactivation has been suggested to contribute to periodontal disease and AIDS. In addition, bacterium-virus interactions may play a role in cancers, such as Kaposi's sarcoma, gastric cancer, and head and neck cancer. It is important to consider the effects of coexisting bacterial infections when studying viral diseases in vivo.

  16. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Shatadru Ghosh Roy

    2016-11-01

    Full Text Available Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV, the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.

  17. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Takeo Kubota

    2016-05-01

    Full Text Available Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs. Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  18. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders.

    Science.gov (United States)

    Kubota, Takeo; Mochizuki, Kazuki

    2016-05-14

    Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.

  19. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    Directory of Open Access Journals (Sweden)

    Saber Imani

    2015-08-01

    Full Text Available Sulfur mustard (SM, bis- (2-chloroethyl sulphide is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD and compared with mustard lung.

  20. Genetic variation and epigenetic modification of the prodynorphin gene in peripheral blood cells in alcoholism.

    Science.gov (United States)

    D'Addario, Claudio; Shchetynsky, Klementy; Pucci, Mariangela; Cifani, Carlo; Gunnar, Agneta; Vukojević, Vladana; Padyukov, Leonid; Terenius, Lars

    2017-06-02

    Dynorphins are critically involved in the development, maintenance and relapse of alcoholism. Alcohol-induced changes in the prodynorphin gene expression may be influenced by both gene polymorphisms and epigenetic modifications. The present study of human alcoholics aims to evaluate DNA methylation patterns in the prodynorphin gene (PDYN) promoter and to identify single nucleotide polymorphisms (SNPs) associated with alcohol dependence and with altered DNA methylation. Genomic DNA was isolated from peripheral blood cells of alcoholics and healthy controls, and DNA methylation was studied in the PDYN promoter by bisulfite pyrosequencing. In alcoholics, DNA methylation increased in three of the seven CpG sites investigated, as well as in the average of the seven CpG sites. Data stratification showed lower increase in DNA methylation levels in individuals reporting craving and with higher levels of alcohol consumption. Association with alcoholism was observed for rs2235751 and the presence of the minor allele G was associated with reduced DNA methylation at PDYN promoter in females and younger subjects. Genetic and epigenetic factors within PDYN are related to risk for alcoholism, providing further evidence of its involvement on ethanol effects. These results might be of relevance for developing new biomarkers to predict disease trajectories and therapeutic outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. An introduction to the science of epigenetics

    Directory of Open Access Journals (Sweden)

    JB Thapa

    2013-03-01

    Full Text Available Epigenetics has emerged as an important new discipline. This review provides deeper insights into understanding basic defects in methylation, histone modification, and RNA induced silencing of tumours. These mechanisms have important diagnostic and therapeutic implications for many tumours and diseases. New anti-epigenetic based drug therapies have been developed and drug trials are underway. The future will see further developments in this field. Journal of Pathology of Nepal (2013 Vol. 3, No.1, Issue 5, 408-410 DOI: http://dx.doi.org/10.3126/jpn.v3i5.7870

  2. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    Science.gov (United States)

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Epigenetics and colorectal cancer pathogenesis.

    Science.gov (United States)

    Bardhan, Kankana; Liu, Kebin

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  4. Epigenetics and Colorectal Cancer Pathogenesis

    International Nuclear Information System (INIS)

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy

  5. Epigenetics and Colorectal Cancer Pathogenesis

    Directory of Open Access Journals (Sweden)

    Kebin Liu

    2013-06-01

    Full Text Available Colorectal cancer (CRC develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  6. Epigenetics and Colorectal Cancer Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, Kankana; Liu, Kebin, E-mail: Kliu@gru.edu [Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912 (United States)

    2013-06-05

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.

  7. Epigenetic diet: impact on the epigenome and cancer

    Science.gov (United States)

    Hardy, Tabitha M; Tollefsbol, Trygve O

    2011-01-01

    A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an ‘epigenetic diet’. Bioactive nutritional components of an epigenetic diet may be incorporated into one’s regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies. PMID:22022340

  8. Transgenerational epigenetic effects on animal behaviour.

    Science.gov (United States)

    Jensen, Per

    2013-12-01

    Over the last decade a shift in paradigm has occurred with respect to the interaction between environment and genes. It is now clear that animal genomes are regulated to a large extent as a result of input from environmental events and experiences, which cause short- and long-term modifications in epigenetic markings of DNA and histones. In this review, the evidence that such epigenetic modifications can affect the behaviour of animals is explored, and whether such acquired behaviour alterations can transfer across generation borders. First, the mechanisms by which experiences cause epigenetic modifications are examined. This includes, for example, methylation of cytosine in CpG positions and acetylation of histones, and studies showing that this can be modified by early experiences. Secondly, the evidence that specific modifications in the epigenome can be the cause of behaviour variation is reviewed. Thirdly, the extent to which this phenotypically active epigenetic variants can be inherited either through the germline or through reoccurring environmental conditions is examined. A particularly interesting observation is that epigenetic modifications are often linked to stress, and may possibly be mediated by steroid effects. Finally, the idea that transgenerationally stable epigenetic variants may serve as substrates for natural selection is explored, and it is speculated that they may even predispose for directed, non-random mutations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Epigenetics in schistosomes: what we know and what we need know

    Directory of Open Access Journals (Sweden)

    Liu Weiwei

    2016-11-01

    Full Text Available Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.

  10. Epigenetics in women's health care.

    Science.gov (United States)

    Pozharny, Yevgeniya; Lambertini, Luca; Clunie, Garfield; Ferrara, Lauren; Lee, Men-Jean

    2010-01-01

    Epigenetics refers to structural modifications to genes that do not change the nucleotide sequence itself but instead control and regulate gene expression. DNA methylation, histone modification, and RNA regulation are some of the mechanisms involved in epigenetic modification. Epigenetic changes are believed to be a result of changes in an organism's environment that result in fixed and permanent changes in most differentiated cells. Some environmental changes that have been linked to epigenetic changes include starvation, folic acid, and various chemical exposures. There are periods in an organism's life cycle in which the organism is particularly susceptible to epigenetic influences; these include fertilization, gametogenesis, and early embryo development. These are also windows of opportunity for interventions during the reproductive life cycle of women to improve maternal-child health. New data suggest that epigenetic influences might be involved in the regulation of fetal development and the pathophysiology of adult diseases such as cancer, diabetes, obesity, and neurodevelopmental disorders. Various epigenetic mechanisms may also be involved in the pathogenesis of preeclampsia and intrauterine growth restriction. Additionally, environmental exposures are being held responsible for causing epigenetic changes that lead to a disease process. Exposure to heavy metals, bioflavonoids, and endocrine disruptors, such as bisphenol A and phthalates, has been shown to affect the epigenetic memory of an organism. Their long-term effects are unclear at this point, but many ongoing studies are attempting to elucidate the pathophysiological effects of such gene-environment interactions. (c) 2010 Mount Sinai School of Medicine.

  11. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    Science.gov (United States)

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  12. [Epigenetics and obesity].

    Science.gov (United States)

    Casanello, Paola; Krause, Bernardo J; Castro-Rodríguez, José A; Uauy, Ricardo

    Current evidence supports the notion that exposure to various environmental conditions in early life may induce permanent changes in the epigenome that persist throughout the life-course. This article focuses on early changes associated with obesity in adult life. A review is presented on the factors that induce changes in whole genome (DNA) methylation in early life that are associated with adult onset obesity and related disorders. In contrast, reversal of epigenetic changes associated with weight loss in obese subjects has not been demonstrated. This contrasts with well-established associations found between obesity related DNA methylation patterns at birth and adult onset obesity and diabetes. Epigenetic markers may serve to screen indivuals at risk for obesity and assess the effects of interventions in early life that may delay or prevent obesity in early life. This might contribute to lower the obesity-related burden of death and disability at the population level. The available evidence indicates that epigenetic marks are in fact modifiable, based on modifications in the intrauterine environment and changes in food intake, physical activity and dietary patterns patterns during pregnancy and early years of adult life. This offers the opportunity to intervene before conception, during pregnancy, infancy, childhood, and also in later life. There must be documentation on the best preventive actions in terms of diet and physical activity that will modify or revert the adverse epigenetic markers, thus preventing obesity and diabetes in suceptible individuals and populations. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. The Interaction between Epigenetics, Nutrition and the Development of Cancer

    Directory of Open Access Journals (Sweden)

    Karen S. Bishop

    2015-01-01

    Full Text Available Unlike the genome, the epigenome can be modified and hence some epigenetic risk markers have the potential to be reversed. Such modifications take place by means of drugs, diet or environmental exposures. It is widely accepted that epigenetic modifications take place during early embryonic and primordial cell development, but it is also important that we gain an understanding of the potential for such changes later in life. These “later life” epigenetic modifications in response to dietary intervention are the focus of this paper. The epigenetic modifications investigated include DNA methylation, histone modifications and the influence of microRNAs. The epigenotype could be used not only to predict susceptibility to certain cancers but also to assess the effectiveness of dietary modifications to reduce such risk. The influence of diet or dietary components on epigenetic modifications and the impact on cancer initiation or progression has been assessed herein.

  14. Advancement of Phenotype Transformation of Cancer-associated Fibroblasts: 
from Genetic Alterations to Epigenetic Modification

    Directory of Open Access Journals (Sweden)

    Dali CHEN

    2015-02-01

    Full Text Available In the field of human cancer research, even though the vast majority attentions were paid to tumor cells as “the seeds”, the roles of tumor microenvironments as “the soil” are gradually explored in recent years. As a dominant compartment of tumor microenvironments, cancer-associated fibroblasts (CAFs were discovered to correlated with tumorigenesis, tumor progression and prognosis. And the exploration of the mechanisms of CAF phenotype transformation would conducive to the further understand of the CAFs function in human cancers. As we known that CAFs have four main origins, including epithelial cells, endothelial cells, mesenchymal stem cells (MSCs and local mesenchymal cells. However, researchers found that all these origins finally conduct similiar phenotypes from intrinsic to extrinsic ones. Thus, what and how a mechanism can conduct the phenotype transformation of CAFs with different origins? Two viewpoints are proposed to try to answer the quetsion, involving genetic alterations and epigenetic modifications. This review will systematically summarize the advancement of mechanisms of CAF phenotype transformations in the aspect of genentic and epigenetic modifications.

  15. Epigenetic regulation in dental pulp inflammation

    Science.gov (United States)

    Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L

    2016-01-01

    Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577

  16. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  17. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  18. Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in Arabidopsis thaliana

    NARCIS (Netherlands)

    Kooke, R.; Johannes, F.; Wardenaar, R.; Becker, F.F.M.; Etcheverry, M.; Colot, V.; Vreugdenhil, D.; Keurentjes, J.J.B.

    2015-01-01

    Epigenetics is receiving growing attention in the plant science community. Epigenetic modifications are thought to play a particularly important role in fluctuating environments. It is hypothesized that epigenetics contributes to plant phenotypic plasticity because epigenetic modifications, in

  19. Epigenetics in plant tissue culture

    NARCIS (Netherlands)

    Smulders, M.J.M.; Klerk, de G.J.M.

    2011-01-01

    Plants produced vegetatively in tissue culture may differ from the plants from which they have been derived. Two major classes of off-types occur: genetic ones and epigenetic ones. This review is about epigenetic aberrations. We discuss recent studies that have uncovered epigenetic modifications at

  20. The potential of epigenetics in stress-enhanced fear learning models of PTSD.

    Science.gov (United States)

    Blouin, Ashley M; Sillivan, Stephanie E; Joseph, Nadine F; Miller, Courtney A

    2016-10-01

    Prolonged distress and dysregulated memory processes are the core features of post-traumatic stress disorder (PTSD) and represent the debilitating, persistent nature of the illness. However, the neurobiological mechanisms underlying the expression of these symptoms are challenging to study in human patients. Stress-enhanced fear learning (SEFL) paradigms, which encompass both stress and memory components in rodents, are emerging as valuable preclinical models of PTSD. Rodent models designed to study the long-term mechanisms of either stress or fear memory alone have identified a critical role for numerous epigenetic modifications to DNA and histone proteins. However, the epigenetic modifications underlying SEFL remain largely unknown. This review will provide a brief overview of the epigenetic modifications implicated in stress and fear memory independently, followed by a description of existing SEFL models and the few epigenetic mechanisms found to date to underlie SEFL. The results of the animal studies discussed here highlight neuroepigenetics as an essential area for future research in the context of PTSD through SEFL studies, because of its potential to identify novel candidates for neurotherapeutics targeting stress-induced pathogenic memories. © 2016 Blouin et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  2. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  3. Epigenetics and the Developmental Origins of Health and ...

    Science.gov (United States)

    Epigenetic programming is likely to be an important mechanism underlying the lasting influence of the developmental environment on lifelong health, a concept known as the Developmental Origins of Health and Disease (DOHaD). DNA methylation, posttranslational histone protei n modifications, noncoding RNAs and recruited protein complexes are elements of the epigenetic regulation of gene transcription. These heritable but reversible changes in gene function are dynamic and labile during specific stages of the reproductive cycle and development. Epigenetic marks may be maintained throughout an individual's lifespan and can alter the life-long risk of disease; the nature of these epigenetic marks and their potential alteration by environmental factors is an area of active research. This chapter provides an overview of epigenetic regulation, particularly as it occurs as an essential component of embryo-fetal development. In this chapter we will present key features of DNA methylation and histone protein modifications, including the enzymes involved and the effects of these modifications on gene transcription. We will discuss the interplay of these dynamic modifications and the emerging role of noncoding RNAs in epigenetic gene regulation.

  4. Epigenetics and maternal nutrition: nature v. nurture.

    Science.gov (United States)

    Simmons, Rebecca

    2011-02-01

    Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.

  5. Role of epigenetics in developmental biology and transgenerational inheritance.

    Science.gov (United States)

    Skinner, Michael K

    2011-03-01

    The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution. Copyright © 2011 Wiley-Liss, Inc.

  6. Final Report - Epigenetics of low dose radiation effects in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga

    2014-10-22

    This project sought mechanistic understanding of the epigenetic response of tissues as well as the consequences of those responses, when induced by low dose irradiation in a well-established model system (mouse). Based on solid and extensive preliminary data we investigated the molecular epigenetic mechanisms of in vivo radiation responses, particularly – effects of low, occupationally relevant radiation exposures on the genome stability and adaptive response in mammalian tissues and organisms. We accumulated evidence that low dose irradiation altered epigenetic profiles and impacted radiation target organs of the exposed animals. The main long-term goal was to dissect the epigenetic basis of induction of the low dose radiation-induced genome instability and adaptive response and the specific fundamental roles of epigenetic changes (i.e. DNA methylation, histone modifications and miRNAs) in their generation. We hypothesized that changes in global and regional DNA methylation, global histone modifications and regulatory microRNAs played pivotal roles in the generation and maintenance low-dose radiation-induced genome instability and adaptive response. We predicted that epigenetic changes influenced the levels of genetic rearrangements (transposone reactivation). We hypothesized that epigenetic responses from low dose irradiation were dependent on exposure regimes, and would be greatest when organisms are exposed in a protracted/fractionated manner: fractionated exposures > acute exposures. We anticipated that the epigenetic responses were correlated with the gene expression levels. Our immediate objectives were: • To investigate the exact nature of the global and locus-specific DNA methylation changes in the LDR exposed cells and tissues and dissect their roles in adaptive response • To investigate the roles of histone modifications in the low dose radiation effects and adaptive response • To dissect the roles of regulatory microRNAs and their targets in low

  7. Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases.

    Science.gov (United States)

    Niller, Hans Helmut; Banati, Ferenc; Salamon, Daniel; Minarovits, Janos

    2016-01-01

    Latent Epstein-Bar virus genomes undergo epigenetic modifications which are dependent on the respective tissue type and cellular phenotype. These define distinct viral epigenotypes corresponding with latent viral gene expression profiles. Viral Latent Membrane Proteins 1 and 2A can induce cellular DNA methyltransferases, thereby influencing the methylation status of the viral and cellular genomes. Therefore, not only the viral genomes carry epigenetic modifications, but also the cellular genomes adopt major epigenetic alterations upon EBV infection. The distinct cellular epigenotypes of EBV-infected cells differ from the epigenotypes of their normal counterparts. In Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC) significant changes in the host cell methylome with a strong tendency towards CpG island hypermethylation are observed. Hypermethylated genes unique for EBVaGC suggest the existence of an EBV-specific "epigenetic signature". Contrary to the primary malignancies carrying latent EBV genomes, lymphoblastoid cells (LCs) established by EBV infection of peripheral B cells in vitro are characterized by a massive genome-wide demethylation and a significant decrease and redistribution of heterochromatic histone marks. Establishing complete epigenomes of the diverse EBV-associated malignancies shall clarify their similarities and differences and further clarify the contribution of EBV to the pathogenesis, especially for the epithelial malignancies, NPC and EBVaGC.

  8. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease.

    Science.gov (United States)

    Ben Maamar, Millissia; Sadler-Riggleman, Ingrid; Beck, Daniel; McBirney, Margaux; Nilsson, Eric; Klukovich, Rachel; Xie, Yeming; Tang, Chong; Yan, Wei; Skinner, Michael K

    2018-04-01

    Epigenetic transgenerational inheritance of disease and phenotypic variation can be induced by several toxicants, such as vinclozolin. This phenomenon can involve DNA methylation, non-coding RNA (ncRNA) and histone retention, and/or modification in the germline (e.g. sperm). These different epigenetic marks are called epimutations and can transmit in part the transgenerational phenotypes. This study was designed to investigate the vinclozolin-induced concurrent alterations of a number of different epigenetic factors, including DNA methylation, ncRNA, and histone retention in rat sperm. Gestating females (F0 generation) were exposed transiently to vinclozolin during fetal gonadal development. The directly exposed F1 generation fetus, the directly exposed germline within the fetus that will generate the F2 generation, and the transgenerational F3 generation sperm were studied. DNA methylation and ncRNA were altered in each generation rat sperm with the direct exposure F1 and F2 generations being distinct from the F3 generation epimutations. Interestingly, an increased number of differential histone retention sites were found in the F3 generation vinclozolin sperm, but not in the F1 or F2 generations. All three different epimutation types were affected in the vinclozolin lineage transgenerational sperm (F3 generation). The direct exposure generations (F1 and F2) epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene pathways associated with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Our results show that the three different types of epimutations are involved and integrated in the mediation of the epigenetic transgenerational inheritance phenomenon.

  9. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer

    NARCIS (Netherlands)

    Falahi, Fahimeh; van Kruchten, Michel; Martinet, Nadine; Hospers, Geesiena; Rots, Marianne G.

    2014-01-01

    DNA methylation and histone modifications are important epigenetic modifications associated with gene (dys) regulation. The epigenetic modifications are balanced by epigenetic enzymes, so-called writers and erasers, such as DNA (de)methylases and histone (de)acetylases. Aberrant epigenetic

  10. Small molecule modulators of epigenetic modifications: implications in therapeutics

    International Nuclear Information System (INIS)

    Ruthrotha Selvi, B.; Senapati, Parijat; Kundu, Tapas K.

    2012-01-01

    The eukaryotic genome is organized into chromatin, a nucleoprotein complex and a dynamic entity that regulates the spatio-temporal expression of genes in response to the intracellular and extracellular signals. This dynamicity is maintained by several factors, including the chromatin modifying Machineries. Chromatin modifying enzymes (for example, lysine (K) acetyl transferases for acetylation, lysine and arginine (R) methyltransferases for methylation, etc.) by virtue of their modifying abilities of both histones and the non histone components, are vital regulatory factors for gene expression both in physiological as well as pathophysiological conditions. Hence the modulators (inhibitors/activators) of these enzymes, which are capable of altering the gene expression globally, could also be useful in understanding the epigenetic mechanism of gene expression as well as for therapeutic purposes. We have found that acetylation of histone chaperone NPM1 and histones is essential for chromatin-mediated transcriptional activation. Remarkably, NPM1 as well as histones get hyperacetylated predominantly in oral cancer patient samples. We identified NPM1 as a positive regulator of the KAT, p300 autoacetylation, the possible causal mechanism of hyperacetylation. Targeting the acetylation by a water-soluble KAT inhibitor, CTK7A in oral tumour xenografted mice, we could demonstrate that the tumour growth could indeed be retarded upon the inhibition of KAT autoacetylation. Presently, we are studying the histone modification language in oral cancer, especially in the context of acetylation and methylation which could be potential targets for combinatorial epigenetic therapeutics. (author)

  11. Epigenetic control of mobile DNA as an interface between experience and genome change

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2014-04-01

    Full Text Available Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.

  12. Epigenetics and depression: return of the repressed.

    Science.gov (United States)

    Dalton, Victoria S; Kolshus, Erik; McLoughlin, Declan M

    2014-02-01

    Epigenetics has recently emerged as a potential mechanism by which adverse environmental stimuli can result in persistent changes in gene expression. Epigenetic mechanisms function alongside the DNA sequence to modulate gene expression and ultimately influence protein production. The current review provides an introduction and overview of epigenetics with a particular focus on preclinical and clinical studies relevant to major depressive disorder (MDD). PubMed and Web of Science databases were interrogated from January 1995 up to December 2012 using combinations of search terms, including "epigenetic", "microRNA" and "DNA methylation" cross referenced with "depression", "early life stress" and "antidepressant". There is an association between adverse environmental stimuli, such as early life stress, and epigenetic modification of gene expression. Epigenetic changes have been reported in humans with MDD and may serve as biomarkers to improve diagnosis. Antidepressant treatments appear to reverse or initiate compensatory epigenetic alterations that may be relevant to their mechanism of action. As a narrative review, the current report was interpretive and qualitative in nature. Epigenetic modification of gene expression provides a mechanism for understanding the link between long-term effects of adverse life events and the changes in gene expression that are associated with depression. Although still a developing field, in the future, epigenetic modifications of gene expression may provide novel biomarkers to predict future susceptibility and/or onset of MDD, improve diagnosis, and aid in the development of epigenetics-based therapies for depression. © 2013 Published by Elsevier B.V.

  13. Effects of environmental stressors on histone modifications and their relevance to carcinogenesis: a systematic review.

    NARCIS (Netherlands)

    Dik, S.; Scheepers, P.T.J.; Godderis, L.

    2012-01-01

    Carcinogenesis is a complex process involving both genetic and epigenetic mechanisms. The cellular molecular epigenetic machinery, including histone modifications, is associated with changes in gene expression induced by exposure to environmental agents. In this paper, we systematically reviewed

  14. Epigenetic modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS).

    Science.gov (United States)

    de Vega, Wilfred C; Herrera, Santiago; Vernon, Suzanne D; McGowan, Patrick O

    2017-02-23

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating idiopathic disease characterized by unexplained fatigue that fails to resolve with sufficient rest. Diagnosis is based on a list of symptoms and exclusion of other fatigue-related health conditions. Despite a heterogeneous patient population, immune and hypothalamic-pituitary-adrenal (HPA) axis function differences, such as enhanced negative feedback to glucocorticoids, are recurring findings in ME/CFS studies. Epigenetic modifications, such as CpG methylation, are known to regulate long-term phenotypic differences and previous work by our group found DNA methylome differences in ME/CFS, however the relationship between DNA methylome modifications, clinical and functional characteristics associated with ME/CFS has not been examined. We examined the DNA methylome in peripheral blood mononuclear cells (PBMCs) of a larger cohort of female ME/CFS patients using the Illumina HumanMethylation450 BeadChip Array. In parallel to the DNA methylome analysis, we investigated in vitro glucocorticoid sensitivity differences by stimulating PBMCs with phytohaemagglutinin and suppressed growth with dexamethasone. We explored DNA methylation differences using bisulfite pyrosequencing and statistical permutation. Linear regression was implemented to discover epigenomic regions associated with self-reported quality of life and network analysis of gene ontology terms to biologically contextualize results. We detected 12,608 differentially methylated sites between ME/CFS patients and healthy controls predominantly localized to cellular metabolism genes, some of which were also related to self-reported quality of life health scores. Among ME/CFS patients, glucocorticoid sensitivity was associated with differential methylation at 13 loci. Our results indicate DNA methylation modifications in cellular metabolism in ME/CFS despite a heterogeneous patient population, implicating these processes in immune and HPA

  15. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  16. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals

    Directory of Open Access Journals (Sweden)

    Naifeng Zhang

    2018-03-01

    Full Text Available DNA methylation is one of the main epigenetic phenomena affecting gene expression. It is an important mechanism for the development of embryo, growth and health of animals. As a key nutritional factor limiting the synthesis of protein, methionine serves as the precursor of S-adenosylmethionine (SAM in the hepatic one-carbon metabolism. The dietary fluctuation of methionine content can alter the levels of metabolic substrates in one-carbon metabolism, e.g., the SAM, S-adenosylhomocysteine (SAH, and change the expression of genes related to the growth and health of animals by DNA methylation reactions. The ratio of SAM to SAH is called ‘methylation index’ but it should be carefully explained because the complexity of methylation reaction. Alterations of methylation in a specific cytosine-guanine (CpG site, rather than the whole promoter region, might be enough to change gene expression. Aberrant methionine cycle may provoke molecular changes of one-carbon metabolism that results in deregulation of cellular hemostasis and health problems. The importance of DNA methylation has been underscored but the mechanisms of methionine affecting DNA methylation are poorly understood. Nutritional epigenomics provides a promising insight into the targeting epigenetic changes in animals from a nutritional standpoint, which will deepen and expand our understanding of genes, molecules, tissues, and animals in which methionine alteration influences DNA methylation and gene expression. Keywords: Epigenetics, Methionine, DNA methylation, Gene expression, Epigenetic modification

  17. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  18. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Khin, Sann Sanda; Kitazawa, Riko; Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo; Haraguchi, Ryuma; Mori, Kiyoshi; Kitazawa, Sohei

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  19. MicroRNAs, epigenetics and disease

    DEFF Research Database (Denmark)

    Silahtaroglu, Asli; Stenvang, Jan

    2010-01-01

    Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules...... which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation...... diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer....

  20. Epigenetics and assisted reproductive technologies

    DEFF Research Database (Denmark)

    Pinborg, Anja; Loft, Anne; Romundstad, Liv Bente

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been...

  1. Epigenetic Effects of Environmental Chemicals Bisphenol A and Phthalates

    Directory of Open Access Journals (Sweden)

    Steven Shoei-Lung Li

    2012-08-01

    Full Text Available The epigenetic effects on DNA methylation, histone modification, and expression of non-coding RNAs (including microRNAs of environmental chemicals such as bisphenol A (BPA and phthalates have expanded our understanding of the etiology of human complex diseases such as cancers and diabetes. Multiple lines of evidence from in vitro and in vivo models have established that epigenetic modifications caused by in utero exposure to environmental toxicants can induce alterations in gene expression that may persist throughout life. Epigenetics is an important mechanism in the ability of environmental chemicals to influence health and disease, and BPA and phthalates are epigenetically toxic. The epigenetic effect of BPA was clearly demonstrated in viable yellow mice by decreasing CpG methylation upstream of the Agouti gene, and the hypomethylating effect of BPA was prevented by maternal dietary supplementation with a methyl donor like folic acid or the phytoestrogen genistein. Histone H3 was found to be trimethylated at lysine 27 by BPA effect on EZH2 in a human breast cancer cell line and mice. BPA exposure of human placental cell lines has been shown to alter microRNA expression levels, and specifically, miR-146a was strongly induced by BPA treatment. In human breast cancer MCF7 cells, treatment with the phthalate BBP led to demethylation of estrogen receptor (ESR1 promoter-associated CpG islands, indicating that altered ESR1 mRNA expression by BBP is due to aberrant DNA methylation. Maternal exposure to phthalate DEHP was also shown to increase DNA methylation and expression levels of DNA methyltransferases in mouse testis. Further, some epigenetic effects of BPA and phthalates in female rats were found to be transgenerational. Finally, the available new technologies for global analysis of epigenetic alterations will provide insight into the extent and patterns of alterations between human normal and diseased tissues.

  2. Epigenetics in autism and other neurodevelopmental diseases.

    Science.gov (United States)

    Miyake, Kunio; Hirasawa, Takae; Koide, Tsuyoshi; Kubota, Takeo

    2012-01-01

    Autism was previously thought to be caused by environmental factors. However, genetic factors are now considered to be more contributory to the pathogenesis of autism, based on the recent findings of mutations in the genes which encode synaptic molecules associated with the communication between neurons. Epigenetic is a mechanism that controls gene expression without changing DNA sequence but by changing chromosomal histone modifications and its abnormality is associated with several neurodevelopmental diseases. Since epigenetic modifications are known to be affected by environmental factors such as nutrition, drugs and mental stress, autistic diseases are not only caused by congenital genetic defects, but may also be caused by environmental factors via epigenetic mechanism. In this chapter, we introduce autistic diseases caused by epigenetic failures and discuss epigenetic changes by environmental factors and discuss new treatments for neurodevelopmental diseases based on the recent epigenetic findings.

  3. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    International Nuclear Information System (INIS)

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-01-01

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation

  4. Bisphenol A in Reproduction: Epigenetic Effects.

    Science.gov (United States)

    Chianese, Rosanna; Troisi, Jacopo; Richards, Sean; Scafuro, Marika; Fasano, Silvia; Guida, Maurizio; Pierantoni, Riccardo; Meccariello, Rosaria

    2018-02-21

    Bisphenol A (BPA) is an endocrine disrupting chemical widely used in the manufacture of polycarbonate plastic and epoxy resin to produce a multitude of consumer products, food and drink containers, and medical devices. BPA is similar to estradiol in structure and thus interferes in steroid signalling with different outcomes on reproductive health depending on doses, life stage, mode, and timing of exposure. In this respect, it has an emerging and controversial role as a "reproductive toxicant" capable of inducing short and long-term effects including the modulation of gene expression through epigenetic modification (i.e. methylation of CpG islands, histone modifications and production of non-coding RNA) with direct and trans-generational effects on exposed organisms and their offspring, respectively. This review provides an overview about BPA effects on reproductive health and aims to summarize the epigenetic effects of BPA in male and female reproduction. BPA exerts epigenetic effects in both male and female reproduction. In males, BPA affects spermatogenesis and sperm quality and possible trans-generational effects on the reproductive ability of the offspring. In females, BPA affects ovary, embryo development, and gamete quality for successful in vivo and in vitro fertilization (IVF). The exact mechanisms of BPA-mediated effects in reproduction are not fully understood; however, the environmental exposure to BPA - especially in fetal and neonatal period - deserves attention to preserve the reproductive ability in both sexes and to reduce the epigenetic risk for the offspring. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration.

    Science.gov (United States)

    Cho, Young-Dan; Ryoo, Hyun-Mo

    2018-02-01

    In regenerative medicine, growing cells or tissues in the laboratory is necessary when damaged cells can not heal by themselves. Acquisition of the required cells from the patient's own cells or tissues is an ideal option without additive side effects. In this context, cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) and trans-differentiation, have been widely studied in regenerative research. Both approaches have advantages and disadvantages, and the possibility of de-differentiation because of the epigenetic memory of iPSCs has strengthened the need for controlling the epigenetic background for successful cell reprogramming. Therefore, interest in epigenetics has increased in the field of regenerative medicine. Herein, we outline in detail the cell trans-differentiation method using epigenetic modification for bone regeneration in comparison to the use of iPSCs.

  6. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders.

    Science.gov (United States)

    Varadinova, Miroslava; Boyadjieva, Nadka

    2015-12-01

    The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparative epigenetics: relevance to the regulation of production and health traits in cattle.

    Science.gov (United States)

    Doherty, Rachael; O' Farrelly, Cliona; Meade, Kieran G

    2014-08-01

    With the development of genomic, transcriptomic and bioinformatic tools, recent advances in molecular technologies have significantly impacted bovine bioscience research and are revolutionising animal selection and breeding. Integration of epigenetic information represents yet another challenging molecular frontier. Epigenetics is the study of biochemical modifications to DNA and to histones, the proteins that provide stability to DNA. These epigenetic changes are induced by environmental stimuli; they alter gene expression and are potentially heritable. Epigenetics research holds the key to understanding how environmental factors contribute to phenotypic variation in traits of economic importance in cattle including development, nutrition, behaviour and health. In this review, we discuss the potential applications of epigenetics in bovine research, using breakthroughs in human and murine research to signpost the way. © 2014 Stichting International Foundation for Animal Genetics.

  8. [Epigenetic alterations in acute lymphoblastic leukemia].

    Science.gov (United States)

    Navarrete-Meneses, María Del Pilar; Pérez-Vera, Patricia

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. It is well-known that genetic alterations constitute the basis for the etiology of ALL. However, genetic abnormalities are not enough for the complete development of the disease, and additional alterations such as epigenetic modifications are required. Such alterations, like DNA methylation, histone modifications, and noncoding RNA regulation have been identified in ALL. DNA hypermethylation in promoter regions is one of the most frequent epigenetic modifications observed in ALL. This modification frequently leads to gene silencing in tumor suppressor genes, and in consequence, contributes to leukemogenesis. Alterations in histone remodeling proteins have also been detected in ALL, such as the overexpression of histone deacetylases enzymes, and alteration of acetyltransferases and methyltransferases. ALL also shows alteration in the expression of miRNAs, and in consequence, the modification in the expression of their target genes. All of these epigenetic modifications are key events in the malignant transformation since they lead to the deregulation of oncogenes as BLK, WNT5B and WISP1, and tumor suppressors such as FHIT, CDKN2A, CDKN2B, and TP53, which alter fundamental cellular processes and potentially lead to the development of ALL. Both genetic and epigenetic alterations contribute to the development and evolution of ALL. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Epigenetics and obesity cardiomyopathy: From pathophysiology to prevention and management.

    Science.gov (United States)

    Zhang, Yingmei; Ren, Jun

    2016-05-01

    Uncorrected obesity has been associated with cardiac hypertrophy and contractile dysfunction. Several mechanisms for this cardiomyopathy have been identified, including oxidative stress, autophagy, adrenergic and renin-angiotensin aldosterone overflow. Another process that may regulate effects of obesity is epigenetics, which refers to the heritable alterations in gene expression or cellular phenotype that are not encoded on the DNA sequence. Advances in epigenome profiling have greatly improved the understanding of the epigenome in obesity, where environmental exposures during early life result in an increased health risk later on in life. Several mechanisms, including histone modification, DNA methylation and non-coding RNAs, have been reported in obesity and can cause transcriptional suppression or activation, depending on the location within the gene, contributing to obesity-induced complications. Through epigenetic modifications, the fetus may be prone to detrimental insults, leading to cardiac sequelae later in life. Important links between epigenetics and obesity include nutrition, exercise, adiposity, inflammation, insulin sensitivity and hepatic steatosis. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissues from obese subjects compared with non-obese controls. In addition, aging and intrauterine environment are associated with differential DNA methylation. Given the intense research on the molecular mechanisms of the etiology of obesity and its complications, this review will provide insights into the current understanding of epigenetics and pharmacological and non-pharmacological (such as exercise) interventions targeting epigenetics as they relate to treatment of obesity and its complications. Particular focus will be on DNA methylation, histone modification and non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  11. Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris.

    Science.gov (United States)

    Cardoso-Júnior, Carlos A M; Fujimura, Patrícia Tieme; Santos-Júnior, Célio Dias; Borges, Naiara Araújo; Ueira-Vieira, Carlos; Hartfelder, Klaus; Goulart, Luiz Ricardo; Bonetti, Ana Maria

    2017-01-01

    Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.

  12. Epigenetic modifications and their relation to caste and sex determination and adult division of labor in the stingless bee Melipona scutellaris

    Directory of Open Access Journals (Sweden)

    Carlos A.M. Cardoso-Júnior

    2017-03-01

    Full Text Available Abstract Stingless bees of the genus Melipona, have long been considered an enigmatic case among social insects for their mode of caste determination, where in addition to larval food type and quantity, the genotype also has a saying, as proposed over 50 years ago by Warwick E. Kerr. Several attempts have since tried to test his Mendelian two-loci/two-alleles segregation hypothesis, but only recently a single gene crucial for sex determination in bees was evidenced to be sex-specifically spliced and also caste-specifically expressed in a Melipona species. Since alternative splicing is frequently associated with epigenetic marks, and the epigenetic status plays a major role in setting the caste phenotype in the honey bee, we investigated here epigenetic chromatin modification in the stingless bee Melipona scutellaris. We used an ELISA-based methodology to quantify global methylation status and western blot assays to reveal histone modifications. The results evidenced DNA methylation/demethylation events in larvae and pupae, and significant differences in histone methylation and phosphorylation between newly emerged adult queens and workers. The epigenetic dynamics seen in this stingless bee species represent a new facet in the caste determination process in Melipona bees and suggest a possible mechanism that is likely to link a genotype component to the larval diet and adult social behavior of these bees.

  13. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Brianne Cruickshank

    2018-04-01

    Full Text Available Immunogenic cell death (ICD activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various “hallmarks” of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.

  14. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  15. Epigenetic Influences During the Periconception Period and Assisted Reproduction.

    Science.gov (United States)

    Amoako, Akwasi A; Nafee, Tamer M; Ola, Bolarinde

    2017-01-01

    The periconception period starts 6 months before conception and lasts until the tenth week of gestation. In this chapter, we will focus on epigenetic modifications to DNA and gene expression within this period and during assisted reproduction. There are two critical times during the periconception window when significant epigenetic 'reprogramming' occur: one during gametogenesis and another during the pre-implantation embryonic stage. Furthermore, assisted conception treatments, laboratory protocols and culture media can affect the embryo development and birth weights in laboratory animals. There is, however, an ongoing debate as to whether epigenetic changes in humans, causing embryo mal-development, placenta dysfunction and birth defects, result from assisted reproductive technologies or are consequences of pre-existing medical and/or genetic conditions in the parents. The periconception period starts from ovarian folliculogenesis, through resumption of oogenesis, fertilisation, peri-implantation embryo development, embryogenesis until the end of organogenesis. In men, it is the period from spermatogenesis to epididymal sperm storage and fertilisation. Gametes and developing embryos are sensitive to environmental factors during this period, and epigenetic modifications can occur in response to adverse lifestyles and environmental factors. We now know that lifestyle factors such as advanced parentage age, obesity or undernutrition, smoking, excessive alcohol and caffeine intake and recreational drugs used during gamete production and embryogenesis could induce epigenetic alterations, which could impact adversely on pregnancy outcomes and health of the offspring. Furthermore, these can also result in a permanent and irreversible effect in a dose-dependent manner, which can be passed on to the future generations.

  16. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets.

    Science.gov (United States)

    Lindsay, Cameron; Seikaly, Hadi; Biron, Vincent L

    2017-01-31

    Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.

  17. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease.

    Science.gov (United States)

    Imm, Jennifer; Kerrigan, Talitha L; Jeffries, Aaron; Lunnon, Katie

    2017-11-01

    It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.

  18. "Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges."

    Directory of Open Access Journals (Sweden)

    Paul eRay

    2014-07-01

    Full Text Available Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are somatically inherited alterations to an individual’s genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.

  19. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    Science.gov (United States)

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  20. Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-Modification.

    Science.gov (United States)

    Turner, Alexander P; Caves, Leo S D; Stepney, Susan; Tyrrell, Andy M; Lones, Michael A

    2017-01-01

    This paper describes the artificial epigenetic network, a recurrent connectionist architecture that is able to dynamically modify its topology in order to automatically decompose and solve dynamical problems. The approach is motivated by the behavior of gene regulatory networks, particularly the epigenetic process of chromatin remodeling that leads to topological change and which underlies the differentiation of cells within complex biological organisms. We expected this approach to be useful in situations where there is a need to switch between different dynamical behaviors, and do so in a sensitive and robust manner in the absence of a priori information about problem structure. This hypothesis was tested using a series of dynamical control tasks, each requiring solutions that could express different dynamical behaviors at different stages within the task. In each case, the addition of topological self-modification was shown to improve the performance and robustness of controllers. We believe this is due to the ability of topological changes to stabilize attractors, promoting stability within a dynamical regime while allowing rapid switching between different regimes. Post hoc analysis of the controllers also demonstrated how the partitioning of the networks could provide new insights into problem structure.

  1. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes.

    Directory of Open Access Journals (Sweden)

    Thomas Günther

    Full Text Available Herpesvirus latency is generally thought to be governed by epigenetic modifications, but the dynamics of viral chromatin at early timepoints of latent infection are poorly understood. Here, we report a comprehensive spatial and temporal analysis of DNA methylation and histone modifications during latent infection with Kaposi Sarcoma-associated herpesvirus (KSHV, the etiologic agent of Kaposi Sarcoma and primary effusion lymphoma (PEL. By use of high resolution tiling microarrays in conjunction with immunoprecipitation of methylated DNA (MeDIP or modified histones (chromatin IP, ChIP, our study revealed highly distinct landscapes of epigenetic modifications associated with latent KSHV infection in several tumor-derived cell lines as well as de novo infected endothelial cells. We find that KSHV genomes are subject to profound methylation at CpG dinucleotides, leading to the establishment of characteristic global DNA methylation patterns. However, such patterns evolve slowly and thus are unlikely to control early latency. In contrast, we observed that latency-specific histone modification patterns were rapidly established upon a de novo infection. Our analysis furthermore demonstrates that such patterns are not characterized by the absence of activating histone modifications, as H3K9/K14-ac and H3K4-me3 marks were prominently detected at several loci, including the promoter of the lytic cycle transactivator Rta. While these regions were furthermore largely devoid of the constitutive heterochromatin marker H3K9-me3, we observed rapid and widespread deposition of H3K27-me3 across latent KSHV genomes, a bivalent modification which is able to repress transcription in spite of the simultaneous presence of activating marks. Our findings suggest that the modification patterns identified here induce a poised state of repression during viral latency, which can be rapidly reversed once the lytic cycle is induced.

  2. Conference Scene: epigenetics eh! The first formal meeting of the Canadian epigenetics community.

    Science.gov (United States)

    Underhill, Alan; Hendzel, Michael J

    2011-08-01

    In recognition of Canada's longstanding interest in epigenetics - and a particular linguistic interjection - the inaugural 'Epigenetics, Eh!' conference was held between 4-7 May 2011 in London, Ontario. The meeting struck an excellent balance between Canadian and international leaders in epigenetic research while also providing a venue to showcase up-and-coming talent. Almost without exception, presentations touched on the wide-ranging and severe consequences of epigenetic dysfunction, as well as current and emerging therapeutic opportunities. While gaining a deeper understanding of how DNA and histone modifications, together with multiple classes of ncRNAs, act to functionalize our genome, participants were also provided with a glimpse of the astounding complexity of chromatin structure, challenging existing dogma.

  3. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  4. Computational micromodel for epigenetic mechanisms.

    LENUS (Irish Health Repository)

    Raghavan, Karthika

    2010-11-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach.

  5. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  6. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    Science.gov (United States)

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Dietary regulation of developmental programming in ruminants: epigenetic modifications in the germline.

    Science.gov (United States)

    Sinclair, K D; Karamitri, A; Gardner, D S

    2010-01-01

    Ruminants have been utilised extensively to investigate the developmental origins of health and disease, with the sheep serving as the model species of choice to complement dietary studies in the rat and mouse. Surprisingly few studies, however, have investigated delayed effects of maternal undernutrition during pregnancy on adult offspring health and a consistent phenotype, together with underlying mechanistic pathways, has not emerged. Nevertheless, when broad consideration is given to all studies with ruminants it is apparent that interventions that are initiated very early in gestation, and/or prior to conception, lead to greater effects on adult physiology than those that are specifically targeted to late gestation. Effects induced following dietary interventions at the earliest stages of mammalian development have been shown to arise as a consequence of alterations to key epigenetic processes that occur in germ cells and pluripotent embryonic cells. Currently, our understanding of epigenetic programming in the germline is greatest for the mouse, and is considered in detail in this article together with what is known in ruminants. This species imbalance, however, looks set to change as fully annotated genomic maps are developed for domesticated large animal species, and with the advent of 'next-generation' DNA sequencing technologies that have the power to globally map the epigenome at single-base-pair resolution. These developments would help to address such issues as sexually dimorphic epigenetic alterations to DNA methylation that have been found to arise following dietary restrictions during the peri-conceptional period, the effects of paternal nutritional status on epigenetic programming through the germline, and transgenerational studies where, in future, greater emphasis in domesticated ruminants should be placed on traits of agricultural importance.

  8. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective.

    Science.gov (United States)

    Wang, Ting; Garcia, Joe Gn; Zhang, Wei

    2012-12-01

    Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.

  9. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice

    International Nuclear Information System (INIS)

    Philbrook, Nicola A.; Winn, Louise M.

    2015-01-01

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.

  10. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Philbrook, Nicola A. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, ON K7L3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, ON K7L3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, ON K7L3N6 (Canada)

    2015-11-15

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.

  11. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps.

    Science.gov (United States)

    O'Dea, Rose E; Noble, Daniel W A; Johnson, Sheri L; Hesselson, Daniel; Nakagawa, Shinichi

    2016-01-01

    Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications can facilitate evolutionary rescue through 'epigenetic buffering'. By facilitating the inheritance of novel phenotypic variants that are generated by environmental change-a strategy we call 'heritable bet hedging'-epigenetic modifications could maintain and increase the evolutionary potential of a population. This process may facilitate genetic adaptation by preserving existing genetic variation, releasing cryptic genetic variation and/or facilitating mutations in functional loci. Although we show that examples of non-genetic inheritance are often maladaptive in the short term, accounting for phenotypic variance and non-adaptive plasticity may reveal important evolutionary implications over longer time scales. We also discuss the possibility that maladaptive epigenetic responses may be due to 'epigenetic traps', whereby evolutionarily novel factors (e.g. endocrine disruptors) hack into the existing epigenetic machinery. We stress that more ecologically relevant work on transgenerational epigenetic inheritance is required. Researchers conducting studies on transgenerational environmental effects should report measures of phenotypic variance, so that the possibility of both bet hedging and heritable bet hedging can be assessed. Future empirical and theoretical work is required to assess the relative importance of genetic and epigenetic variation, and their interaction, for evolutionary rescue.

  12. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?

    Science.gov (United States)

    Andreu-Vieyra, Claudia; Matzuk, Martin M

    2007-02-01

    Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.

  13. Sexually selected traits: a fundamental framework for studies on behavioral epigenetics.

    Science.gov (United States)

    Jašarević, Eldin; Geary, David C; Rosenfeld, Cheryl S

    2012-01-01

    Emerging evidence suggests that epigenetic-based mechanisms contribute to various aspects of sex differences in brain and behavior. The major obstacle in establishing and fully understanding this linkage is identifying the traits that are most susceptible to epigenetic modification. We have proposed that sexual selection provides a conceptual framework for identifying such traits. These are traits involved in intrasexual competition for mates and intersexual choice of mating partners and generally entail a combination of male-male competition and female choice. These behaviors are programmed during early embryonic and postnatal development, particularly during the transition from the juvenile to adult periods, by exposure of the brain to steroid hormones, including estradiol and testosterone. We evaluate the evidence that endocrine-disrupting compounds, including bisphenol A, can interfere with the vital epigenetic and gene expression pathways and with the elaboration of sexually selected traits with epigenetic mechanisms presumably governing the expression of these traits. Finally, we review the evidence to suggest that these steroid hormones can induce a variety of epigenetic changes in the brain, including the extent of DNA methylation, histone protein alterations, and even alterations of noncoding RNA, and that many of the changes differ between males and females. Although much previous attention has focused on primary sex differences in reproductive behaviors, such as male mounting and female lordosis, we outline why secondary sex differences related to competition and mate choice might also trace their origins back to steroid-induced epigenetic programming in disparate regions of the brain.

  14. Epigenetics and lifestyle.

    Science.gov (United States)

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2011-06-01

    The concept of 'lifestyle' includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and miRNA expression. It has been identified that several lifestyle factors such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress and working on night shifts might modify epigenetic patterns. Most of the studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. This article reviews current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms.

  15. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Science.gov (United States)

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  16. Epigenetics in Breast and Prostate Cancer

    OpenAIRE

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methy...

  17. Epigenetic Findings in Autism: New Perspectives for Therapy

    Directory of Open Access Journals (Sweden)

    James Jeffrey Bradstreet

    2013-09-01

    Full Text Available Autism and autism spectrum disorders (ASDs are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.

  18. Rice epigenomics and epigenetics: challenges and opportunities.

    Science.gov (United States)

    Chen, Xiangsong; Zhou, Dao-Xiu

    2013-05-01

    During recent years rice genome-wide epigenomic information such as DNA methylation and histone modifications, which are important for genome activity has been accumulated. The function of a number of rice epigenetic regulators has been studied, many of which are found to be involved in a diverse range of developmental and stress-responsive pathways. Analysis of epigenetic variations among different rice varieties indicates that epigenetic modification may lead to inheritable phenotypic variation. Characterizing phenotypic consequences of rice epigenomic variations and the underlining chromatin mechanism and identifying epialleles related to important agronomic traits may provide novel strategies to enhance agronomically favorable traits and grain productivity in rice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2016-05-01

    The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.

  20. [Epigenetics of schizophrenia: a review].

    Science.gov (United States)

    Rivollier, F; Lotersztajn, L; Chaumette, B; Krebs, M-O; Kebir, O

    2014-10-01

    Schizophrenia is a frequent and disabling disease associated with heterogeneous psychiatric phenotypes. It emerges during childhood, adolescence or young adulthood and has dramatic consequences for the affected individuals, causing considerable familial and social burden, as well as increasing health expenses. Although some progress has been made in the understanding of their physiopathology, many questions remain unsolved, and the disease is still poorly understood. The prevailing hypothesis regarding psychotic disorders proposes that a combination of genetic and/or environmental factors, during critical periods of brain development increases the risk for these illnesses. Epigenetic regulations, such as DNA methylation, can mediate gene x environment interactions at the level of the genome and may provide a potential substrate to explain the variability in symptom severity and family heritability. Initially, epigenetics was used to design mitotic and meiotic changes in gene transcription that could not be attributed to genetic mutations. It referred later to changes in the epigenome not transmitted through the germline. Thus, epigenetics refers to a wide range of molecular mechanisms including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. These mechanisms alter the way the transcriptional factors bind the DNA, modulating its expression. Prenatal and postnatal environmental factors may affect these epigenetics factors, having responsability in long-term DNA transcription, and influencing the development of psychiatric disorders. The object of this review is to present the state of knowledge in epigenetics of schizophrenia, outlining the most recent findings in the matter. We did so using Pubmed, researching words such as 'epigenetics', 'epigenetic', 'schizophrenia', 'psychosis', 'psychiatric'. This review summarizes evidences mostly for two epigenetic mechanisms: DNA methylation and post

  1. Computational Micromodel for Epigenetic Mechanisms

    Science.gov (United States)

    Raghavan, Karthika; Ruskin, Heather J.; Perrin, Dimitri; Goasmat, Francois; Burns, John

    2010-01-01

    Characterization of the epigenetic profile of humans since the initial breakthrough on the human genome project has strongly established the key role of histone modifications and DNA methylation. These dynamic elements interact to determine the normal level of expression or methylation status of the constituent genes in the genome. Recently, considerable evidence has been put forward to demonstrate that environmental stress implicitly alters epigenetic patterns causing imbalance that can lead to cancer initiation. This chain of consequences has motivated attempts to computationally model the influence of histone modification and DNA methylation in gene expression and investigate their intrinsic interdependency. In this paper, we explore the relation between DNA methylation and transcription and characterize in detail the histone modifications for specific DNA methylation levels using a stochastic approach. PMID:21152421

  2. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Eva Yi Kong

    2016-12-01

    Full Text Available Exposure to ionizing radiations (IRs is ubiquitous in our environment and can be categorized into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid (DNA damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence. Using an appropriate model to study the biological effects of radiation is crucial to better understand IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific advances in several fields and recent studies show the usefulness of this vertebrate model in radiation biology. This review briefly describes both “targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA methylation, histone modifications and miRNA expression. Other in vivo models are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish, including changes in genome-wide DNA methylation, histone modifications and miRNA expression, are also described in this review.

  3. Epigenetic impact of curcumin on stroke prevention

    OpenAIRE

    Kalani, Anuradha; Kamat, Pradip K; Kalani, Komal; Tyagi, Neetu

    2014-01-01

    The epigenetic impact of curcumin in stroke and neurodegenerative disorders is curiosity-arousing. It is derived from Curcuma longa (spice), possesses anti-oxidative, anti-inflammatory, anti-lipidemic, neuro-protective and recently shown to exhibit epigenetic modulatory properties. Epigenetic studies include DNA methylation, histone modifications and RNA-based mechanisms which regulate gene expression without altering nucleotide sequences. Curcumin has been shown to affect cancer by altering ...

  4. Epigenetics in prostate cancer: biologic and clinical relevance.

    Science.gov (United States)

    Jerónimo, Carmen; Bastian, Patrick J; Bjartell, Anders; Carbone, Giuseppina M; Catto, James W F; Clark, Susan J; Henrique, Rui; Nelson, William G; Shariat, Shahrokh F

    2011-10-01

    Prostate cancer (PCa) is one of the most common human malignancies and arises through genetic and epigenetic alterations. Epigenetic modifications include DNA methylation, histone modifications, and microRNAs (miRNA) and produce heritable changes in gene expression without altering the DNA coding sequence. To review progress in the understanding of PCa epigenetics and to focus upon translational applications of this knowledge. PubMed was searched for publications regarding PCa and DNA methylation, histone modifications, and miRNAs. Reports were selected based on the detail of analysis, mechanistic support of data, novelty, and potential clinical applications. Aberrant DNA methylation (hypo- and hypermethylation) is the best-characterized alteration in PCa and leads to genomic instability and inappropriate gene expression. Global and locus-specific changes in chromatin remodeling are implicated in PCa, with evidence suggesting a causative dysfunction of histone-modifying enzymes. MicroRNA deregulation also contributes to prostate carcinogenesis, including interference with androgen receptor signaling and apoptosis. There are important connections between common genetic alterations (eg, E twenty-six fusion genes) and the altered epigenetic landscape. Owing to the ubiquitous nature of epigenetic alterations, they provide potential biomarkers for PCa detection, diagnosis, assessment of prognosis, and post-treatment surveillance. Altered epigenetic gene regulation is involved in the genesis and progression of PCa. Epigenetic alterations may provide valuable tools for the management of PCa patients and be targeted by pharmacologic compounds that reverse their nature. The potential for epigenetic changes in PCa requires further exploration and validation to enable translation to the clinic. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Epigenetics and obesity.

    Science.gov (United States)

    Campión, Javier; Milagro, Fermin; Martínez, J Alfredo

    2010-01-01

    The etiology of obesity is multifactorial, involving complex interactions among the genetic makeup, neuroendocrine status, fetal programming, and different unhealthy environmental factors, such as sedentarism or inadequate dietary habits. Among the different mechanisms causing obesity, epigenetics, defined as the study of heritable changes in gene expression that occur without a change in the DNA sequence, has emerged as a very important determinant. Experimental evidence concerning dietary factors influencing obesity development through epigenetic mechanisms has been described. Thus, identification of those individuals who present with changes in DNA methylation profiles, certain histone modifications, or other epigenetically related processes could help to predict their susceptibility to gain or lose weight. Indeed, research concerning epigenetic mechanisms affecting weight homeostasis may play a role in the prevention of excessive fat deposition, the prediction of the most appropriate weight reduction plan, and the implementation of newer therapeutic approaches. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Epigenetics modifications and therapeutic prospects in human thyroid cancer

    Directory of Open Access Journals (Sweden)

    Maria Graziella eCatalano

    2012-03-01

    Full Text Available At present no successful treatment is available for advanced thyroid cancer, which comprises poorly differentiated, anaplastic, and metastatic or recurrent differentiated thyroid cancer not responding to radioiodine. In the last few years, biologically targeted therapies for advanced thyroid carcinomas have been proposed on the basis of the recognition of key oncogenic mutations. Although the results of several phase II trials look promising, none of the patients treated had a complete response, and only a minority of them had a partial response, suggesting that the treatment is, at best, effective in stabilizing patients with progressive disease. Epigenetic refers to the study of heritable changes in gene expression that occur without any alteration in the primary DNA sequence. The epigenetic processes establish and maintain the global and local chroma¬tin states that determine gene expression. Epigenetic abnormalities are present in almost all cancers and, together with genetic changes, drive tumour progression. Various genes involved in the control of cell proliferation and invasion (p16INK4A, RASSF1A,PTEN, Rap1GAP, TIMP3, DAPK, RARβ2, E-cadherin, and CITED1 as well as genes specific of thyroid differentiation (Na+/I- symport, TSH receptor, pendrin, SL5A8, and TTF-1 present aberrant methylation in thyroid cancer.This review deals with the most frequent epigenetic alterations in thyroid cancer and focuses on epigenetic therapy, whose goal is to target the chromatin in rapidly dividing tumour cells and potentially restore normal cell functions. Experimental data and clinical trials, especially using deacetylase inhibitors and demethylating agents, are discussed.

  7. Advances in epigenetics and epigenomics for neurodegenerative diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2011-10-01

    In the post-genomic era, epigenetic factors-literally those that are "over" or "above" genetic ones and responsible for controlling the expression and function of genes-have emerged as important mediators of development and aging; gene-gene and gene-environmental interactions; and the pathophysiology of complex disease states. Here, we provide a brief overview of the major epigenetic mechanisms (ie, DNA methylation, histone modifications and chromatin remodeling, and non-coding RNA regulation). We highlight the nearly ubiquitous profiles of epigenetic dysregulation that have been found in Alzheimer's and other neurodegenerative diseases. We also review innovative methods and technologies that enable the characterization of individual epigenetic modifications and more widespread epigenomic states at high resolution. We conclude that, together with complementary genetic, genomic, and related approaches, interrogating epigenetic and epigenomic profiles in neurodegenerative diseases represent important and increasingly practical strategies for advancing our understanding of and the diagnosis and treatment of these disorders.

  8. Epigenetics in Prostate Cancer

    OpenAIRE

    Albany, Costantine; Alva, Ajjai S.; Aparicio, Ana M.; Singal, Rakesh; Yellapragada, Sarvari; Sonpavde, Guru; Hahn, Noah M.

    2011-01-01

    Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequ...

  9. DNA Methylation: An Epigenetic Risk Factor in Preterm Birth

    Science.gov (United States)

    Menon, Ramkumar; Conneely, Karen N.; Smith, Alicia K.

    2012-01-01

    Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modifications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation patterns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several issues and limitations that should be considered when planning DNA methylation studies. PMID:22228737

  10. Epigenetics of autism spectrum disorders.

    Science.gov (United States)

    Schanen, N Carolyn

    2006-10-15

    The autism spectrum disorders (ASD) comprise a complex group of behaviorally related disorders that are primarily genetic in origin. Involvement of epigenetic regulatory mechanisms in the pathogenesis of ASD has been suggested by the occurrence of ASD in patients with disorders arising from epigenetic mutations (fragile X syndrome) or that involve key epigenetic regulatory factors (Rett syndrome). Moreover, the most common recurrent cytogenetic abnormalities in ASD involve maternally derived duplications of the imprinted domain on chromosome 15q11-13. Thus, parent of origin effects on sharing and linkage to imprinted regions on chromosomes 15q and 7q suggest that these regions warrant specific examination from an epigenetic perspective, particularly because epigenetic modifications do not change the primary genomic sequence, allowing risk epialleles to evade detection using standard screening strategies. This review examines the potential role of epigenetic factors in the etiology of ASD.

  11. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  12. The developmental environment, epigenetic biomarkers and long-term health.

    Science.gov (United States)

    Godfrey, K M; Costello, P M; Lillycrop, K A

    2015-10-01

    Evidence from both human and animal studies has shown that the prenatal and early postnatal environments influence susceptibility to chronic disease in later life and suggests that epigenetic processes are an important mechanism by which the environment alters long-term disease risk. Epigenetic processes, including DNA methylation, histone modification and non-coding RNAs, play a central role in regulating gene expression. The epigenome is highly sensitive to environmental factors in early life, such as nutrition, stress, endocrine disruption and pollution, and changes in the epigenome can induce long-term changes in gene expression and phenotype. In this review we focus on how the early life nutritional environment can alter the epigenome leading to an altered susceptibility to disease in later life.

  13. Interactions between epigenetics and metabolism in cancers

    Directory of Open Access Journals (Sweden)

    Jihye eYun

    2012-11-01

    Full Text Available Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. Although it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA, are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, many enzymes that carry out post-translational modifications that alter epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  14. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders.

    Science.gov (United States)

    Nardone, Stefano; Elliott, Evan

    2016-01-01

    Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  15. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Stefano Nardone

    2016-07-01

    Full Text Available Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as process susceptible to environmental influences and potentially causative of ASD. In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  16. Chromatin proteins and modifications as drug targets

    DEFF Research Database (Denmark)

    Helin, Kristian; Dhanak, Dashyant

    2013-01-01

    A plethora of groundbreaking studies have demonstrated the importance of chromatin-associated proteins and post-translational modifications of histones, proteins and DNA (so-called epigenetic modifications) for transcriptional control and normal development. Disruption of epigenetic control...... is a frequent event in disease, and the first epigenetic-based therapies for cancer treatment have been approved. A generation of new classes of potent and specific inhibitors for several chromatin-associated proteins have shown promise in preclinical trials. Although the biology of epigenetic regulation...

  17. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    International Nuclear Information System (INIS)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR

  18. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  19. Fluoxetine Increases Hippocampal Neurogenesis and Induces Epigenetic Factors But Does Not Improve Functional Recovery after Traumatic Brain Injury

    Science.gov (United States)

    Wang, Yonggang; Neumann, Melanie; Hansen, Katharina; Hong, Shuwhey M.; Kim, Sharon; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract The selective serotonin reuptake inhibitor fluoxetine induces hippocampal neurogenesis, stimulates maturation and synaptic plasticity of adult hippocampal neurons, and reduces motor/sensory and memory impairments in several CNS disorders. In the setting of traumatic brain injury (TBI), its effects on neuroplasticity and function have yet to be thoroughly investigated. Here we examined the efficacy of fluoxetine after a moderate to severe TBI, produced by a controlled cortical impact. Three days after TBI or sham surgery, mice were treated with fluoxetine (10 mg/kg/d) or vehicle for 4 weeks. To evaluate the effects of fluoxetine on neuroplasticity, hippocampal neurogenesis and epigenetic modification were studied. Stereologic analysis of the dentate gyrus revealed a significant increase in doublecortin-positive cells in brain-injured animals treated with fluoxetine relative to controls, a finding consistent with enhanced hippocampal neurogenesis. Epigenetic modifications, including an increase in histone 3 acetylation and induction of methyl-CpG-binding protein, a transcription factor involved in DNA methylation, were likewise seen by immunohistochemistry and quantitative Western immunoblots, respectively, in brain-injured animals treated with fluoxetine. To determine if fluoxetine improves neurological outcomes after TBI, gait function and spatial learning and memory were assessed by the CatWalk-assisted gait test and Barnes maze test, respectively. No differences in these parameters were seen between fluoxetine- and vehicle-treated animals. Thus while fluoxetine enhanced neuroplasticity in the hippocampus after TBI, its chronic administration did not restore locomotor function or ameliorate memory deficits. PMID:21175261

  20. Imaging epigenetics in Alzheimer's disease.

    Science.gov (United States)

    Lista, Simone; Garaci, Francesco G; Toschi, Nicola; Hampel, Harald

    2013-01-01

    Sporadic Alzheimer's disease (AD) is a prevalent, complex and chronically progressive brain disease. Its course is non-linear, dynamic, adaptive to maladaptive, and compensatory to decompensatory, affecting large-scale neural networks through a plethora of mechanistic and signaling pathway alterations that converge into regional and cell type-specific neurodegeneration and, finally, into clinically overt cognitive and behavioral decline. This decline includes reductions in the activities of daily living, quality of life, independence, and life expectancy. Evolving lines of research suggest that epigenetic mechanisms may play a crucial role during AD development and progression. Epigenetics designates molecular mechanisms that alter gene expression without modifications of the genetic code. This topic includes modifications on DNA and histone proteins, the primary elements of chromatin structure. Accumulating evidence has revealed the relevant processes that mediate epigenetic modifications and has begun to elucidate how these processes are apparently dysregulated in AD. This evidence has led to the clarification of the roles of specific classes of therapeutic compounds that affect epigenetic pathways and characteristics of the epigenome. This insight is accompanied by the development of new methods for studying the global patterns of DNA methylation and chromatin alterations. In particular, high-throughput sequencing approaches, such as next-generation DNA sequencing techniques, are beginning to drive the field into the next stage of development. In parallel, genetic imaging is beginning to answer additional questions through its ability to uncover genetic variants, with or without genome-wide significance, that are related to brain structure, function and metabolism, which impact disease risk and fundamental network-based cognitive processes. Neuroimaging measures can further be used to define AD systems and endophenotypes. The integration of genetic neuroimaging

  1. Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells

    DEFF Research Database (Denmark)

    Hattori, Naoko; Niwa, Tohru; Kimura, Kana

    2013-01-01

    . Bivalent modification was clearly visualized by iChmo in wild-type embryonic stem cells (ESCs) known to have it, whereas rarely in Suz12 knockout ESCs and mouse embryonic fibroblasts known to have little of it. iChmo was applied to analysis of epigenetic and phenotypic changes of heterogeneous cell......Combinations of histone modifications have significant biological roles, such as maintenance of pluripotency and cancer development, but cannot be analyzed at the single cell level. Here, we visualized a combination of histone modifications by applying the in situ proximity ligation assay, which...... population, namely, ESCs at an early stage of differentiation, and this revealed that the bivalent modification disappeared in a highly concerted manner, whereas phenotypic differentiation proceeded with large variations among cells. Also, using this method, we were able to visualize a combination...

  2. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Launay

    Full Text Available BACKGROUND: Postulating that serotonin (5-HT, released from smoking-activated platelets could be involved in smoking-induced vascular modifications, we studied its catabolism in a series of 115 men distributed as current smokers (S, never smokers (NS and former smokers (FS who had stopped smoking for a mean of 13 years. METHODOLOGY/PRINCIPAL FINDINGS: 5-HT, monoamine oxidase (MAO-B activities and amounts were measured in platelets, and 5-hydroxyindolacetic acid (5-HIAA--the 5-HT/MAO catabolite--in plasma samples. Both platelet 5-HT and plasma 5-HIAA levels were correlated with the 10-year cardiovascular Framingham relative risk (P<0.01, but these correlations became non-significant after adjustment for smoking status, underlining that the determining risk factor among those taken into account in the Framingham risk calculation was smoking. Surprisingly, the platelet 5-HT content was similar in S and NS but lower in FS with a parallel higher plasma level of 5-HIAA in FS. This was unforeseen since MAO-B activity was inhibited during smoking (P<0.00001. It was, however, consistent with a higher enzyme protein concentration found in S and FS than in NS (P<0.001. It thus appears that MAO inhibition during smoking was compensated by a higher synthesis. To investigate the persistent increase in MAO-B protein concentration, a study of the methylation of its gene promoter was undertaken in a small supplementary cohort of similar subjects. We found that the methylation frequency of the MAOB gene promoter was markedly lower (P<0.0001 for S and FS vs. NS due to cigarette smoke-induced increase of nucleic acid demethylase activity. CONCLUSIONS/SIGNIFICANCE: This is one of the first reports that smoking induces an epigenetic modification. A better understanding of the epigenome may help to further elucidate the physiopathology and the development of new therapeutic approaches to tobacco addiction. The results could have a larger impact than cardiovascular

  3. Epigenetic modification and inheritance in sexual reversal of fish

    OpenAIRE

    Shao, Changwei; Li, Qiye; Chen, Songlin; Zhang, Pei; Lian, Jinmin; Hu, Qiaomu; Sun, Bing; Jin, Lijun; Liu, Shanshan; Wang, Zongji; Zhao, Hongmei; Jin, Zonghui; Liang, Zhuo; Li, Yangzhen; Zheng, Qiumei

    2014-01-01

    Environmental sex determination (ESD) occurs in divergent, phylogenetically unrelated taxa, and in some species, co-occurs with genetic sex determination (GSD) mechanisms. Although epigenetic regulation in response to environmental effects has long been proposed to be associated with ESD, a systemic analysis on epigenetic regulation of ESD is still lacking. Using half-smooth tongue sole (Cynoglossus semilaevis) as a model—a marine fish that has both ZW chromosomal GSD and temperature-dependen...

  4. The danger of epigenetics misconceptions (epigenetics and stuff…).

    Science.gov (United States)

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.

  5. The physics of epigenetics

    Science.gov (United States)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  6. Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders

    Directory of Open Access Journals (Sweden)

    Hodes Georgia E

    2013-01-01

    Full Text Available Abstract Women have a higher incidence of stress related disorders including depression and generalized anxiety disorder, and epigenetic mechanisms likely contribute to this sex difference. Evidence from preclinical research suggests that epigenetic mechanisms are responsible for both sexual dimorphism of brain regions and sensitivity of the stress response. Epigenetic modifications such as DNA methylation and histone modifications can occur transgenerationally, developmentally, or in response to environmental stimuli such as stress exposure. This review will provide an overview of the various forms of epigenetic modifications observed in the central nervous system and will explain how these mechanisms contribute to a sexually dimorphic brain. It will also discuss the ways in which epigenetic alterations coincide with, and functionally contribute to, the behavioral response to stress across the lifespan. Ultimately, this review will focus on novel research utilizing animal models to investigate sex differences in epigenetic mechanisms that influence susceptibility to stress. Exploration of this relationship reveals epigenetic mechanisms with the potential to explain sexual dimorphism in the occurrence of stress related disorders.

  7. Maintaining epigenetic inheritance during DNA replication in plants

    Directory of Open Access Journals (Sweden)

    Francisco eIglesias

    2016-02-01

    Full Text Available Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are remembered temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance. This memory effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.

  8. Distinguishing epigenetic marks of developmental and imprinting regulation

    Directory of Open Access Journals (Sweden)

    McEwen Kirsten R

    2010-01-01

    Full Text Available Abstract Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two

  9. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits.

    Science.gov (United States)

    Nye, Monica D; Fry, Rebecca C; Hoyo, Cathrine; Murphy, Susan K

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response to prenatal exposure to inorganic arsenic (iAs) and lead (Pb), focusing specifically on their effects on DNA methylation. We then describe how epigenetic alterations are being studied in newborns as potential biomarkers of in utero environmental toxicant exposure, and the benefits and challenges of this approach. In summary, the studies highlighted herein indicate how epigenetic mechanisms are impacted by early life exposure to iAs and Pb, and the research that is being done to move towards understanding the relationships between toxicant-induced epigenetic alterations and disease development. Although much remains unknown, several groups are working to understand the correlative and causal effects of early life toxic metal exposure on epigenetic changes and how these changes may result in later development of disease.

  10. Epigenetics of host-pathogen interactions: the road ahead and the road behind.

    Directory of Open Access Journals (Sweden)

    Elena Gómez-Díaz

    Full Text Available A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer. With the (partial elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.

  11. Nutritional influences on epigenetics and age-related disease

    Science.gov (United States)

    Nutritional epigenetics has emerged as a novel mechanism underlying gene–diet interactions, further elucidating the modulatory role of nutrition in aging and age-related disease development. Epigenetics is defined as a heritable modification to the DNA that regulates chromosome architecture and modu...

  12. How to stomach an epigenetic insult: the gastric cancer epigenome.

    Science.gov (United States)

    Padmanabhan, Nisha; Ushijima, Toshikazu; Tan, Patrick

    2017-08-01

    Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.

  13. Modification of epigenetic patterns in low birth weight children: importance of hypomethylation of the ACE gene promoter.

    Science.gov (United States)

    Rangel, Marina; dos Santos, Jéssica Cassilla; Ortiz, Paula Helena Lima; Hirata, Mario; Jasiulionis, Miriam Galvonas; Araujo, Ronaldo C; Ierardi, Daniela Filippini; Franco, Maria do Carmo

    2014-01-01

    There is a growing body of evidence that epigenetic alterations are involved in the pathological mechanisms of many chronic disorders linked to fetal programming. Angiotensin-converting enzyme (ACE) appears as one candidate gene that brings new insights into the epigenetic control and later development of diseases. In this view, we have postulated that epigenetic modifications in the ACE gene might show different interactions between birth weight (BW), blood pressure levels, plasma ACE activity and ACE I/D polymorphism. To explore this hypothesis, we performed a cross-sectional study to evaluate the DNA methylation of 3 CpG sites using pyrosequencing within the ACE gene promoter of peripheral blood leukocytes from 45 LBW children compared with 70 NBW children. Our results have revealed that LBW children have lower methylation levels (PACE activity (P = 0.001). Adjusting for prematurity, gender, age, body mass index, and family history of cardiovascular disease did not alter these findings. We have also performed analyses of individual CpG sites. The frequency of DNA methylation was significantly different at two CpG sites (site 1: nucleotide position +555; and site 3: nucleotide position +563). In addition, we have found a significant inverse correlation between degree of DNA methylation and both ACE activity (PACE gene promoter is associated with LBW in 6 to 12 year-old children. The magnitude of these epigenetic changes appears to be clinically important, which is supported by the observation that discrete changes in DNA methylation can affect systolic blood pressure and ACE protein activity levels.

  14. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential.

    Directory of Open Access Journals (Sweden)

    Hélio Belo

    Full Text Available Fanconi anaemia (FA is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average. Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.

  15. Epigenetic mechanisms in experience-driven memory formation and behavior

    Science.gov (United States)

    Puckett, Rosemary E; Lubin, Farah D

    2011-01-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior. PMID:22126252

  16. Epigenetic changes in solid and hematopoietic tumors.

    Science.gov (United States)

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  17. Recent developments in epigenetics of acute and chronic kidney diseases.

    Science.gov (United States)

    Reddy, Marpadga A; Natarajan, Rama

    2015-08-01

    The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post-translational modifications of histones in chromatin, are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNAme and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.

  18. Epigenetics, autism spectrum, and neurodevelopmental disorders.

    Science.gov (United States)

    Rangasamy, Sampathkumar; D'Mello, Santosh R; Narayanan, Vinodh

    2013-10-01

    Epigenetic marks are modifications of DNA and histones. They are considered to be permanent within a single cell during development, and are heritable across cell division. Programming of neurons through epigenetic mechanisms is believed to be critical in neural development. Disruption or alteration in this process causes an array of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Recent studies have provided evidence for an altered epigenetic landscape in ASDs and demonstrated the central role of epigenetic mechanisms in their pathogenesis. Many of the genes linked to the ASDs encode proteins that are involved in transcriptional regulation and chromatin remodeling. In this review we highlight selected neurodevelopmental disorders in which epigenetic dysregulation plays an important role. These include Rett syndrome, fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, and Kabuki syndrome. For each of these disorders, we discuss how advances in our understanding of epigenetic mechanisms may lead to novel therapeutic approaches.

  19. Bioinformatics Tools for Genome-Wide Epigenetic Research.

    Science.gov (United States)

    Angarica, Vladimir Espinosa; Del Sol, Antonio

    2017-01-01

    Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.

  20. High levels of glucose induce "metabolic memory" in cardiomyocyte via epigenetic histone H3 lysine 9 methylation.

    Science.gov (United States)

    Yu, Xi-Yong; Geng, Yong-Jian; Liang, Jia-Liang; Zhang, Saidan; Lei, He-Ping; Zhong, Shi-Long; Lin, Qiu-Xiong; Shan, Zhi-Xin; Lin, Shu-Guang; Li, Yangxin

    2012-09-01

    Diabetic patients continue to develop inflammation and cardiovascular complication even after achieving glycemic control, suggesting a "metabolic memory". Metabolic memory is a major challenge in the treatment of diabetic complication, and the mechanisms underlying metabolic memory are not clear. Recent studies suggest a link between chromatin histone methylation and metabolic memory. In this study, we tested whether histone 3 lysine-9 tri-methylation (H3K9me3), a key epigenetic chromatin marker, was involved in high glucose (HG)-induced inflammation and metabolic memory. Incubating cardiomyocyte cells in HG resulted in increased levels of inflammatory cytokine IL-6 mRNA when compared with myocytes incubated in normal culture media, whereas mannitol (osmotic control) has no effect. Chromatin immunoprecipitation (ChIP) assays showed that H3K9me3 levels were significantly decreased at the promoters of IL-6. Immunoblotting demonstrated that protein levels of the H3K9me3 methyltransferase, Suv39h1, were also reduced after HG treatment. HG-induced apoptosis, mitochondrial dysfunction and cytochrome-c release were reversible. However, the effects of HG on the expression of IL-6 and the levels of H3K9me3 were irreversible after the removal of HG from the culture. These results suggest that HG-induced sustained inflammatory phenotype and epigenetic histone modification, rather than HG-induced mitochondrial dysfunction and apoptosis, are main mechanisms responsible for metabolic memory. In conclusion, our data demonstrate that HG increases expression of inflammatory cytokine and decreases the levels of histone-3 methylation at the cytokine promoter, and suggest that modulating histone 3 methylation and inflammatory cytokine expression may be a useful strategy to prevent metabolic memory and cardiomyopathy in diabetic patients.

  1. Epigenetics Europe conference. Munich, Germany, 8-9 September 2011.

    Science.gov (United States)

    Jeltsch, Albert

    2011-12-01

    At the Epigenetics Europe conference in Munich, Germany, held on 8-9 September 2011, 19 speakers from different European countries were presenting novel data and concepts on molecular epigenetics. The talks were mainly focused on questions of the generation, maintenance, flexibility and erasure of DNA methylation patterns in context of other epigenetic signals like histone tail modifications and ncRNAs.

  2. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    2010-04-01

    Full Text Available Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored.We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation.Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.

  3. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    Science.gov (United States)

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  4. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  5. Epigenetics modifications and Subclinical Atherosclerosis in Obstructive Sleep Apnea: The EPIOSA study.

    Science.gov (United States)

    Marin, Jose M; Artal, Jorge; Martin, Teresa; Carrizo, Santiago J; Andres, Marta; Martin-Burriel, Inmaculada; Bolea, Rosa; Sanz, Arianne; Varona, Luis; Godino, Javier; Gallego, Begoña; Garcia-Erce, Jose A; Villar, Isabel; Gil, Victoria; Forner, Marta; Cubero, Jose P; Ros, Luis

    2014-07-12

    Obstructive sleep apnea (OSA) is associated with increased risk for cardiovascular morbidity and mortality. Epidemiological and animal models studies generate hypotheses for innovative strategies in OSA management by interfering intermediates mechanisms associated with cardiovascular complications. We have thus initiated the Epigenetics modification in Obstructive Sleep Apnea (EPIOSA) study (ClinicalTrials.gov identifier: NCT02131610). EPIOSA is a prospective cohort study aiming to recruit 350 participants of caucasian ethnicity and free of other chronic or inflammatory diseases: 300 patients with prevalent OSA and 50 non-OSA subjects. All of them will be follow-up for at least 5 years. Recruitment and study visits are performed in single University-based sleep clinic using standard operating procedures. At baseline and at each one year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized questionnaire and physical examination to determine incident comorbidities and health resources utilization, with a primary focus on cardiovascular events. Confirmatory outcomes information is requested from patient records and the regional Department of Health Services. Every year, OSA status will be assessed by full sleep study and blood samples will be obtained for immediate standard biochemistry, hematology, inflammatory cytokines and cytometry analysis. For biobanking, aliquots of serum, plasma, urine, mRNA and DNA are also obtained. Bilateral carotid echography will be performed to assess subclinical atherosclerosis and atherosclerosis progression. OSA patients are treated according with national guidelines. EPIOSA will enable the prospective evaluation of inflammatory and epigenetics mechanism involved in cardiovascular complication of treated and non-treated patients with OSA compared with non OSA subjects.

  6. Epigenetics: general characteristics and implications for oral health

    Directory of Open Access Journals (Sweden)

    Ji-Yun Seo

    2015-02-01

    Full Text Available Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.

  7. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions

    Science.gov (United States)

    Atack, John M; Yang, Yuedong; Jennings, Michael P

    2018-01-01

    Abstract Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions — phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine DNA-methyltransferases. We report that 17.4% of Type III mod genes (662/3805) contain simple sequence repeats. Of these, only one-fifth have been previously identified. The newly discovered examples are widely distributed and include many examples in opportunistic pathogens as well as in environmental species. In many cases, multiple phasevarions exist in one genome, with examples of up to 4 independent phasevarions in some species. We found several new types of phase-variable mod genes, including the first example of a phase-variable methyltransferase in pathogenic Escherichia coli. Phasevarions are a common epigenetic regulation contingency strategy used by both pathogenic and non-pathogenic bacteria. PMID:29554328

  8. Epigenetic regulation and chromatin remodeling in learning and memory.

    Science.gov (United States)

    Kim, Somi; Kaang, Bong-Kiun

    2017-01-13

    Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.

  9. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  10. Epigenetics in breast and prostate cancer.

    Science.gov (United States)

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V

    2015-01-01

    Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.

  11. Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population.

    Science.gov (United States)

    Singh, Virendra; Singh, Laishram C; Singh, Avninder P; Sharma, Jagannath; Borthakur, Bibhuti B; Debnath, Arundhati; Rai, Avdhesh K; Phukan, Rup K; Mahanta, Jagadish; Kataki, Amal C; Kapur, Sujala; Saxena, Sunita

    2015-01-01

    Esophageal cancer incidence is reported in high frequency in northeast India. The etiology is different from other population at India due to wide variations in dietary habits or nutritional factors, tobacco/betel quid chewing and alcohol habits. Since DNA methylation, histone modification and miRNA-mediated epigenetic processes alter the gene expression, the involvement of these processes might be useful to find out epigenetic markers of esophageal cancer risk in northeast Indian population. The present investigation was aimed to carryout differential expression profiling of chromatin modification enzymes in tumor and normal tissue collected from esophageal squamous cell carcinoma (ESCC) patients. Differential mRNA expression profiling and their validation was done by quantitative real time PCR and tissue microarray respectively. Univariate and multiple logistic regression analysis were used to analyze the epidemiological data. mRNA expression data was analyzed by Student t-test. Fisher exact test was used for tissue microarray data analysis. Higher expression of enzymes regulating methylation (DOT1L and PRMT1) and acetylation (KAT7, KAT8, KAT2A and KAT6A) of histone was found associated with ESCC risk. Tissue microarray done in independent cohort of 75 patients revealed higher nuclear protein expression of KAT8 and PRMT1 in tumor similar to mRNA expression. Expression status of PRMT1 and KAT8 was found declined as we move from low grade to high grade tumor. Betel nut chewing, alcohol drinking and dried fish intake were significantly associated with increased risk of esophageal cancer among the study subject. Study suggests the association of PRMT1 and KAT8 with esophageal cancer risk and its involvement in the transition process of low to high grade tumor formation. The study exposes the differential status of chromatin modification enzymes between tumor and normal tissue and points out that relaxed state of chromatin facilitates more transcriptionally active

  12. Interactions between epigenetics and metabolism in cancers

    International Nuclear Information System (INIS)

    Yun, Jihye; Johnson, Jared L.; Hanigan, Christin L.; Locasale, Jason W.

    2012-01-01

    Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. While it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, most of the enzymatic machinery of epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  13. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available A number of environmental factors (e.g. toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation progeny in regards to the primordial germ cell (PGC epigenetic reprogramming of the F3 generation (i.e. great-grandchildren. The F3 generation germline transcriptome and epigenome (DNA methylation were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13 and after cord formation in the testis at embryonic day 16 (E16. A larger number of DNA methylation abnormalities (epimutations and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  14. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Marco Proietto

    2015-07-01

    Full Text Available Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC, a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ, the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM. The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.

  15. Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells

    Science.gov (United States)

    Hew, K. M.; Walker, A. I.; Kohli, A.; Garcia, M.; Syed, A.; McDonald-Hyman, C.; Noth, E. M.; Mann, J. K.; Pratt, B.; Balmes, J.; Hammond, S. Katharine; Eisen, E. A.; Nadeau, K. C.

    2015-01-01

    Summary Background Evidence suggests that exposure to polycyclic aromatic hydrocarbons (PAHs) increases atopy; it is unclear how PAH exposure is linked to increased severity of atopic diseases. Objective We hypothesized that ambient PAH exposure is linked to impairment of immunity in atopic children (defined as children with asthma and/or allergic rhinitis) from Fresno, California, an area with elevated ambient PAHs. Methods We recruited 256 subjects from Fresno, CA. Ambient PAH concentrations (ng/m3) were measured using a spatial-temporal regression model over multiple time periods. Asthma diagnosis was determined by current NHLBI criteria. Phenotyping and functional immune measurements were performed from isolated cells. For epigenetic measurements, DNA was isolated and pyrosequenced. Results We show that higher average PAH exposure was significantly associated with impaired Treg function and increased methylation in the forkhead box protein 3 (FOXP3) locus (P < 0.05), conditional on atopic status. These epigenetic modifications were significantly linked to differential protein expression of FOXP3 (P < 0.001). Methylation was associated with cellular functional changes, specifically Treg dysfunction, and an increase in total plasma IgE levels. Protein expression of IL-10 decreased and IFN-γ increased as the extent of PAH exposure increased. The strength of the associations generally increased as the time window for average PAH exposure increased from 24 hr to 1 year, suggesting more of a chronic response. Significant associations with chronic PAH exposure and immune outcomes were also observed in subjects with allergic rhinitis. Conclusions and Clinical Relevance Collectively, these results demonstrate that increased ambient PAH exposure is associated with impaired systemic immunity and epigenetic modifications in a key locus involved in atopy: FOXP3, with a higher impact on atopic children. The results suggest that increased atopic clinical symptoms in children

  16. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  17. Genetic and epigenetic control of plant heat responses

    Directory of Open Access Journals (Sweden)

    Junzhong eLiu

    2015-04-01

    Full Text Available Plants have evolved sophisticated genetic and epigenetic regulatory systems to respond quickly to unfavorable environmental conditions such as heat, cold, drought, and pathogen infections. In particular, heat greatly affects plant growth and development, immunity and circadian rhythm, and poses a serious threat to the global food supply. According to temperatures exposing, heat can be usually classified as warm ambient temperature (about 22-27℃, high temperature (27-30℃ and extremely high temperature (37-42℃, also known as heat stress for the model plant Arabidopsis thaliana. The genetic mechanisms of plant responses to heat have been well studied, mainly focusing on elevated ambient temperature-mediated morphological acclimation and acceleration of flowering, modulation of plant immunity and circadian clock by high temperatures, and thermotolerance to heat stress. Recently, great progress has been achieved on epigenetic regulation of heat responses, including DNA methylation, histone modifications, histone variants, ATP-dependent chromatin remodeling, histone chaperones, small RNAs, long non-coding RNAs and other undefined epigenetic mechanisms. These epigenetic modifications regulate the expression of heat-responsive genes and function to prevent heat-related damage. This review focuses on recent progresses regarding the genetic and epigenetic control of heat responses in plants, and pays more attention to the role of the major epigenetic mechanisms in plant heat responses. Further research perspectives are also discussed.

  18. Epigenetic Mechanisms and Therapeutic Perspectives for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Kunio Miyake

    2012-04-01

    Full Text Available The number of children with mild neurodevelopmental disorders, such as autism, has been recently increasing in advanced countries. This increase is probably caused by environmental factors rather than genetic factors, because it is unlikely that genetic mutation rates suddenly increased within a short period. Epigenetics is a mechanism that regulates gene expression, depending not on the underlying DNA sequence but on the chemical modifications of DNA and histone proteins. Because mental stress can alter the epigenetic status in neuronal cells, environmental factors may alter brain function through epigenetic changes. However, one advantage of epigenetic changes is their reversibility. Therefore, diseases due to abnormal epigenetic regulation are theoretically treatable. In fact, several drugs for treating mental diseases are known to have restoring effects on aberrant epigenetic statuses, and a novel therapeutic strategy targeting gene has been developed. In this review, we discuss epigenetic mechanisms of congenital and acquired neurodevelopmental disorders, drugs with epigenetic effects, novel therapeutic strategies for epigenetic diseases, and future perspectives in epigenetic medicine.

  19. Neurological and Epigenetic Implications of Nutritional Deficiencies on Psychopathology: Conceptualization and Review of Evidence

    Science.gov (United States)

    Liu, Jianghong; Zhao, Sophie R.; Reyes, Teresa

    2015-01-01

    In recent years, a role for epigenetic modifications in the pathophysiology of disease has received significant attention. Many studies are now beginning to explore the gene–environment interactions, which may mediate early-life exposure to risk factors, such as nutritional deficiencies and later development of behavioral problems in children and adults. In this paper, we review the current literature on the role of epigenetics in the development of psychopathology, with a specific focus on the potential for epigenetic modifications to link nutrition and brain development. We propose a conceptual framework whereby epigenetic modifications (e.g., DNA methylation) mediate the link between micro- and macro-nutrient deficiency early in life and brain dysfunction (e.g., structural aberration, neurotransmitter perturbation), which has been linked to development of behavior problems later on in life. PMID:26251900

  20. Neurological and Epigenetic Implications of Nutritional Deficiencies on Psychopathology: Conceptualization and Review of Evidence

    Directory of Open Access Journals (Sweden)

    Jianghong Liu

    2015-08-01

    Full Text Available In recent years, a role for epigenetic modifications in the pathophysiology of disease has received significant attention. Many studies are now beginning to explore the gene–environment interactions, which may mediate early-life exposure to risk factors, such as nutritional deficiencies and later development of behavioral problems in children and adults. In this paper, we review the current literature on the role of epigenetics in the development of psychopathology, with a specific focus on the potential for epigenetic modifications to link nutrition and brain development. We propose a conceptual framework whereby epigenetic modifications (e.g., DNA methylation mediate the link between micro- and macro-nutrient deficiency early in life and brain dysfunction (e.g., structural aberration, neurotransmitter perturbation, which has been linked to development of behavior problems later on in life.

  1. The Relevance of Epigenetics to PTSD: Implications for the DSM-V

    OpenAIRE

    Yehuda, Rachel; Bierer, Linda M.

    2009-01-01

    Epigenetic modifications, such as DNA methylation, can occur in response to environmental influences to alter the functional expression of genes in an enduring and potentially, intergenerationally transmissible manner. As such, they may explain inter-individual variation, as well as the long-lasting effects of trauma exposure. While there are currently no findings that suggest epigenetic modifications that are specific to PTSD or PTSD risk, many recent observations are compatible with epigene...

  2. Dietary factors and epigenetic regulation for prostate cancer prevention.

    Science.gov (United States)

    Ho, Emily; Beaver, Laura M; Williams, David E; Dashwood, Roderick H

    2011-11-01

    The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.

  3. Epigenetic control of plant immunity.

    Science.gov (United States)

    Alvarez, María E; Nota, Florencia; Cambiagno, Damián A

    2010-07-01

    In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.

  4. Epigenetics and Epigenomics of Plants.

    Science.gov (United States)

    Yadav, Chandra Bhan; Pandey, Garima; Muthamilarasan, Mehanathan; Prasad, Manoj

    2018-01-23

    The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.

  5. Low Dose Radiation-Induced Genome and Epigenome Instability Symposium and Epigenetic Mechanisms, DNA Repair, and Chromatin Symposium at the EMS 2008 Annual Meeting - October 2008

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, William F; Kovalchuk, Olga; Dolinoy, Dana C; Dubrova, Yuri E; Coleman, Matthew A; Schär, Primo; Pogribny, Igor; Hendzel, Michael

    2010-02-19

    The Low Dose Radiation Symposium thoughtfully addressed ionizing radiation non-mutational but transmissable alterations in surviving cells. Deregulation of epigenetic processes has been strongly implicated in carcinogenesis, and there is increasing realization that a significant fraction of non-targeted and adaptive mechanisms in response to ionizing radiation are likely to be epigenetic in nature. Much remains to be learned about how chromatin and epigenetic regulators affect responses to low doses of radiation, and how low dose radiation impacts other epigenetic processes. The Epigenetic Mechanisms Symposium focused on on epigenetic mechanisms and their interplay with DNA repair and chromatin changes. Addressing the fact that the most well understood mediators of epigenetic regulation are histone modifications and DNA methylation. Low levels of radiation can lead to changes in the methylation status of certain gene promoters and the expression of DNA methyltransferases, However, epigenetic regulation can also involve changes in higher order chromosome structure.

  6. Epigenetics Research on the International Space Station

    Science.gov (United States)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  7. [Epigenetics of prostate cancer].

    Science.gov (United States)

    Yi, Xiao-Ming; Zhou, Wen-Quan

    2010-07-01

    Prostate cancer is one of the most common malignant tumors in males, and its etiology and pathogenesis remain unclear. Epigenesis is involved in prostate cancer at all stages of the process, and closely related with its growth and metastasis. DNA methylation and histone modification are the most important manifestations of epigenetics in prostate cancer. The mechanisms of carcinogenesis of DNA methylation include whole-genome hypomethylation, aberrant local hypermethylation of promoters and genomic instability. DNA methylation is closely related to the process of prostate cancer, as in DNA damage repair, hormone response, tumor cell invasion/metastasis, cell cycle regulation, and so on. Histone modification causes corresponding changes in chromosome structure and the level of gene transcription, and it may affect the cycle, differentiation and apoptosis of cells, resulting in prostate cancer. Some therapies have been developed targeting the epigenetic changes in prostate cancer, including DNA methyltransferases and histone deacetylase inhibitors, and have achieved certain desirable results.

  8. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  9. Conference scene: Select Biosciences Epigenetics Europe 2010.

    Science.gov (United States)

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts.

  10. Using Epigenetic Therapy to Overcome Chemotherapy Resistance.

    Science.gov (United States)

    Strauss, Julius; Figg, William D

    2016-01-01

    It has been known for decades that as cancer progresses, tumors develop genetic alterations, making them highly prone to developing resistance to therapies. Classically, it has been thought that these acquired genetic changes are fixed. This has led to the paradigm of moving from one cancer therapy to the next while avoiding past therapies. However, emerging data on epigenetic changes during tumor progression and use of epigenetic therapies have shown that epigenetic modifications leading to chemotherapy resistance have the potential to be reversible with epigenetic therapy. In fact, promising clinical data exist that treatment with epigenetic agents can diminish chemotherapy resistance in a number of tumor types including chronic myelogenous leukemia, colorectal, ovarian, lung and breast cancer. The potential for epigenetic-modifying drugs to allow for treatment of resistant disease is exciting and clinical trials have just begun to evaluate this area. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Epigenetic Induction of Definitive and Pancreatic Endoderm Cell Fate in Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rangarajan Sambathkumar

    2016-01-01

    Full Text Available Reprogramming can occur by the introduction of key transcription factors (TFs as well as by epigenetic changes. We demonstrated that histone deacetylase inhibitor (HDACi Trichostatin A (TSA combined with a chromatin remodeling medium (CRM induced expression of a number of definitive endoderm and early and late pancreatic marker genes. When CRM was omitted, endoderm/pancreatic marker genes were not induced. Furthermore, treatment with DNA methyltransferase inhibitor (DNMTi 5-azacytidine (5AZA CRM did not affect gene expression changes, and when 5AZA was combined with TSA, no further increase in gene expression of endoderm, pancreatic endoderm, and endocrine markers was seen over levels induced with TSA alone. Interestingly, TSA-CRM did not affect expression of pluripotency and hepatocyte genes but induced some mesoderm transcripts. Upon removal of TSA-CRM, the endoderm/pancreatic gene expression profile returned to baseline. Our findings underscore the role epigenetic modification in transdifferentiation of one somatic cell into another. However, full reprogramming of fibroblasts to β-cells will require combination of this approach with TF overexpression and/or culture of the partially reprogrammed cells under β-cell specific conditions.

  12. Obesity: epigenetic aspects.

    Science.gov (United States)

    Kaushik, Prashant; Anderson, James T

    2016-06-01

    Epigenetics, defined as inheritable and reversible phenomena that affect gene expression without altering the underlying base pair sequence has been shown to play an important role in the etiopathogenesis of obesity. Obesity is associated with extensive gene expression changes in tissues throughout the body. Epigenetics is emerging as perhaps the most important mechanism through which the lifestyle-choices we make can directly influence the genome. Considerable epidemiological, experimental and clinical data have been amassed showing that the risk of developing disease in later life is dependent on early life conditions, mainly operating within the normative range of developmental exposures. In addition to the 'maternal' interactions, there has been increasing interest in the epigenetic mechanisms through which 'paternal' influences on offspring development can be achieved. Nutrition, among many other environmental factors, is a key player that can induce epigenetic changes not only in the directly exposed organisms but also in subsequent generations through the transgenerational inheritance of epigenetic traits. Overall, significant progress has been made in the field of epigenetics and obesity and the first potential epigenetic markers for obesity that could be detected at birth have been identified. Fortunately, epigenetic phenomena are dynamic and rather quickly reversible with intensive lifestyle changes. This is a very promising and sustainable resolution to the obesity pandemic.

  13. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.

    Science.gov (United States)

    Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E

    2018-01-01

    DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.

  14. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions

    NARCIS (Netherlands)

    Preite, V.; Snoek, L.B.; Oplaat, C.; Biere, A.; Putten, van der W.H.; Verhoeven, K.J.F.

    2015-01-01

    Epigenetic modifications, such as DNA methylation variation, can generate heritable phenotypic variation independent of the underlying genetic code. However, epigenetic variation in natural plant populations is poorly documented and little understood. Here, we test if northward range expansion of

  15. Microbiome, inflammation, epigenetic alterations, and mental diseases.

    Science.gov (United States)

    Alam, Reza; Abdolmaleky, Hamid M; Zhou, Jin-Rong

    2017-09-01

    Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders. © 2017 Wiley Periodicals, Inc.

  16. Epigenetics application in the diagnosis and treatment of bladder cancer.

    Science.gov (United States)

    Harb-de la Rosa, Alfredo; Acker, Matthew; Kumar, Raj A; Manoharan, Murugesan

    2015-10-01

    Bladder cancer is the sixth most common cancer in the Western world. Patients with bladder cancer require close monitoring, which may include frequent cystoscopy and urine cytology. Such monitoring results in significant health care cost. The application of epigenetics may allow for a risk adapted approach and more cost-effective method of monitoring. A number of epigenetic changes have been described for many cancer sites, including the urinary bladder. In this review, we discuss the use of epigenetics in bladder cancer and the potential diagnostic and therapeutic applications. A comprehensive search of the English medical literature was conducted in PubMed using the terms microRNA regulation, DNA methylation, histone modification and bladder cancer. The most important epigenetic changes include DNA methylation, histone modification and microRNA regulation. Both DNA hypomethylation and hypermethylation have been associated with higher rate of cancer. The association of epigenetic changes with bladder cancer has led to the research of its diagnostic and prognostic implications as well as to the development of novel drugs to target these changes with the aim of achieving a survival benefit. Recently, epigenetics has been shown to play a much greater role than previously anticipated in the initiation and propagation of many tumors. The use of epigenetics for the diagnosis and treatment of bladder cancer is an evolving and promising field. The possibility of reversing epigenetic changes may facilitate additional cancer treatment options in the future.

  17. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    Science.gov (United States)

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Sung-Min Chun

    Full Text Available Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer.

  19. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells.

    Science.gov (United States)

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of histone acetylation, resulting in the inhibition of cell proliferation. ChIP-on-chip analysis with an H4K16ac antibody showed altered H4K16 acetylation on genes critical for cell growth inhibition, although decreased at the transcription start site of a subset of genes. Altered H4K16ac was associated with changes in mRNA expression of the corresponding genes, which were further validated in quantitative RT-PCR and western blotting assays. Our results demonstrated that CG200745 causes NSCLC cell growth inhibition through epigenetic modification of critical genes in cancer cell survival, providing pivotal clues as a promising chemotherapeutics against lung cancer.

  20. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility.

    Science.gov (United States)

    Nilsson, Eric E; Skinner, Michael K

    2015-01-01

    Environmental insults, such as exposure to toxicants or nutritional abnormalities, can lead to epigenetic changes that are in turn related to increased susceptibility to disease. The focus of this review is on the transgenerational inheritance of such epigenetic abnormalities (epimutations), and how it is that these inherited epigenetic abnormalities can lead to increased disease susceptibility, even in the absence of continued environmental insult. Observations of environmental toxicant specificity and exposure-specific disease susceptibility are discussed. How epimutations are transmitted across generations and how epigenetic changes in the germline are translated into an increased disease susceptibility in the adult is reviewed with regard to disease etiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Exploiting Epigenetic Alterations in Prostate Cancer.

    Science.gov (United States)

    Baumgart, Simon J; Haendler, Bernard

    2017-05-09

    Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  2. Exploiting Epigenetic Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Simon J. Baumgart

    2017-05-01

    Full Text Available Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.

  3. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid

    International Nuclear Information System (INIS)

    Creppy, Edmond Ekue; Traore, Adama; Baudrimont, Isabelle; Cascante, Marta; Carratu, Maria-Rosaria

    2002-01-01

    Okadaic acid (OA) is a phycotoxin produced by dinoflagellates. It accumulates in the digestive tracts of shellfish causing diarrhetic shellfish poisoning (DSP) in consumers. OA is a tumour promoter, and an inhibitor of both protein phosphatases and protein synthesis. OA induces DNA adducts, suggesting it may be carcinogenic. Since the Ames test without S 9 was negative, but a mutagenesis test was positive in mammalian cells, the question as to whether its molecular mechanism is genotoxic or epigenetic became unavoidable. Therefore, experiments were performed to search for epigenetic effects, since evidence for DNA-adduct formation using the γ- 32 P-ATP post-labelling method was not obtained. We found that OA is a potent inducer of lipid peroxidation in human intestinal cells (Caco-2) at low concentrations (0.75-7.5 ng/ml versus IC50 of 15 ng/ml) with increased rates of 8-OH-dG and m 5 dC formation causing CG to AT transversion mutations and gene deregulation, respectively. The transcription and translation of connexin 43-specific mRNA were inhibited, and 3 H-uridine incorporation in RNA was concomitantly increased. Consequently gap junction intracellular communication (GJIC) was inhibited, making possible cellular anarchic proliferation. Higher OA concentrations also disorganized the cellular cytoskeleton, since both actin and tubulin formations were impaired. Our results suggest that OA may induce tumours via an epigenetic mechanism

  4. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  5. Cancer Progenitor Cells: The Result of an Epigenetic Event?

    Science.gov (United States)

    Lapinska, Karolina; Faria, Gabriela; McGonagle, Sandra; Macumber, Kate Morgan; Heerboth, Sarah; Sarkar, Sibaji

    2018-01-01

    The concept of cancer stem cells was proposed in the late 1990s. Although initially the idea seemed controversial, the existence of cancer stem cells is now well established. However, the process leading to the formation of cancer stem cells is still not clear and thus requires further research. This article discusses epigenetic events that possibly produce cancer progenitor cells from predisposed cells by the influence of their environment. Every somatic cell possesses an epigenetic signature in terms of histone modifications and DNA methylation, which are obtained during lineage-specific differentiation of pluripotent stem cells, which is specific to that particular tissue. We call this signature an epigenetic switch. The epigenetic switch is not fixed. Our epigenome alters with aging. However, depending on the predisposition of the cells of a particular tissue and their microenvironment, the balance of the switch (histone modifications and the DNA methylation) may be tilted to immortality in a few cells, which generates cancer progenitor cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Chromatin resetting mechanisms preventing trangenerational inheritance of epigenetic states

    Directory of Open Access Journals (Sweden)

    Mayumi eIwasaki

    2015-05-01

    Full Text Available Epigenetic regulation can be altered by environmental cues including abiotic and biotic stresses. In most cases, environmentally-induced epigenetic changes are transient, but in some cases they are maintained for extensive periods of time and may even be transmitted to the next generation. However, the underlying mechanisms of transgenerational transmission of environmentally-induced epigenetic states remain largely unknown. Such traits can be adaptive, but also can have negative consequences if the parentally inherited epigenetic memory interferes with canonical environmental responses of the progeny. This review highlights recent insights into the mechanisms preventing transgenerational transmission of environmentally-induced epigenetic states in plants, which resemble those of germline reprogramming in mammals.

  7. Epigenetic rejuvenation.

    Science.gov (United States)

    Manukyan, Maria; Singh, Prim B

    2012-05-01

    Induced pluripotent stem (iPS) cells have provided a rational means of obtaining histo-compatible tissues for 'patient-specific' regenerative therapies (Hanna et al. 2010; Yamanaka & Blau 2010). Despite the obvious potential of iPS cell-based therapies, there are certain problems that must be overcome before these therapies can become safe and routine (Ohi et al. 2011; Pera 2011). As an alternative, we have recently explored the possibility of using 'epigenetic rejuvenation', where the specialized functions of an old cell are rejuvenated in the absence of any change in its differentiated state (Singh & Zacouto 2010). The mechanism(s) that underpin 'epigenetic rejuvenation' are unknown and here we discuss model systems, using key epigenetic modifiers, which might shed light on the processes involved. Epigenetic rejuvenation has advantages over iPS cell techniques that are currently being pursued. First, the genetic and epigenetic abnormalities that arise through the cycle of dedifferentiation of somatic cells to iPS cells followed by redifferentiation of iPS cells into the desired cell type are avoided (Gore et al. 2011; Hussein et al. 2011; Pera 2011): epigenetic rejuvenation does not require passage through the de-/redifferentiation cycle. Second, because the aim of epigenetic rejuvenation is to ensure that the differentiated cell type retains its specialized function it makes redundant the question of transcriptional memory that is inimical to iPS cell-based therapies (Ohi et al. 2011). Third, to produce unrelated cell types using the iPS technology takes a long time, around three weeks, whereas epigenetic rejuvenation of old cells will take only a matter of days. Epigenetic rejuvenation provides the most safe, rapid and cheap route to successful regenerative medicine. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  8. Twin methodology in epigenetic studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob

    2015-01-01

    of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method...

  9. Epigenetic targets in the diagnosis and treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Murugesan Manoharan

    2007-02-01

    Full Text Available Prostate cancer (PC is one of leading cause of cancer related deaths in men. Various aspects of cancer epigenetics are rapidly evolving and the role of 2 major epigenetic changes including DNA methylation and histone modifications in prostate cancer is being studied widely. The epigenetic changes are early event in the cancer development and are reversible. Novel epigenetic markers are being studied, which have the potential as sensitive diagnostic and prognostic marker. Variety of drugs targeting epigenetic changes are being studied, which can be effective individually or in combination with other conventional drugs in PC treatment. In this review, we discuss epigenetic changes associated with PC and their potential diagnostic and therapeutic applications including future areas of research.

  10. Computational Modelling Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic Analysis

    Directory of Open Access Journals (Sweden)

    Afroza Khanam Irin

    2015-01-01

    Full Text Available Neurodegenerative as well as autoimmune diseases have unclear aetiologies, but an increasing number of evidences report for a combination of genetic and epigenetic alterations that predispose for the development of disease. This review examines the major milestones in epigenetics research in the context of diseases and various computational approaches developed in the last decades to unravel new epigenetic modifications. However, there are limited studies that systematically link genetic and epigenetic alterations of DNA to the aetiology of diseases. In this work, we demonstrate how disease-related epigenetic knowledge can be systematically captured and integrated with heterogeneous information into a functional context using Biological Expression Language (BEL. This novel methodology, based on BEL, enables us to integrate epigenetic modifications such as DNA methylation or acetylation of histones into a specific disease network. As an example, we depict the integration of epigenetic and genetic factors in a functional context specific to Parkinson’s disease (PD and Multiple Sclerosis (MS.

  11. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1.

    Directory of Open Access Journals (Sweden)

    Samuel Brocklehurst

    Full Text Available Epigenetic marks such as DNA methylation and histone modification can vary among plant accessions creating epi-alleles with different levels of expression competence. Mutations in epigenetic pathway functions are powerful tools to induce epigenetic variation. As an alternative approach, we investigated the potential of over-expressing an epigenetic function, using DNA METHYLTRANSFERASE1 (MET1 for proof-of-concept. In Arabidopsis thaliana, MET1 controls maintenance of cytosine methylation at symmetrical CG positions. At some loci, which contain dense DNA methylation in CG- and non-CG context, loss of MET1 causes joint loss of all cytosines methylation marks. We find that over-expression of both catalytically active and inactive versions of MET1 stochastically generates new epi-alleles at loci encoding transposable elements, non-coding RNAs and proteins, which results for most loci in an increase in expression. Individual transformants share some common phenotypes and genes with altered gene expression. Altered expression states can be transmitted to the next generation, which does not require the continuous presence of the MET1 transgene. Long-term stability and epigenetic features differ for individual loci. Our data show that over-expression of MET1, and potentially of other genes encoding epigenetic factors, offers an alternative strategy to identify epigenetic target genes and to create novel epi-alleles.

  12. Epigenetic suppression of potassium-chloride co-transporter 2 expression in inflammatory pain induced by complete Freund's adjuvant (CFA).

    Science.gov (United States)

    Lin, C-R; Cheng, J-K; Wu, C-H; Chen, K-H; Liu, C-K

    2017-02-01

    Multiple mechanisms contribute to the stimulus-evoked pain hypersensitivity that may be experienced after peripheral inflammation. Persistent pathological stimuli in many pain conditions affect the expression of certain genes through epigenetic alternations. The main purpose of our study was to investigate the role of epigenetic modification on potassium-chloride co-transporter 2 (KCC2) gene expression in the persistence of inflammatory pain. Persistent inflammatory pain was induced through the injection of complete Freund's adjuvant (CFA) in the left hind paw of rats. Acetyl-histone H3 and H4 level was determined by chromatin immunoprecipitation in the spinal dorsal horn. Pain behaviour and inhibitory synaptic function of spinal cord were determined before and after CFA injection. KCC2 expression was determined by real time RT-PCR and Western blot. Intrathecal KCC2 siRNA (2 μg per 10 μL per rat) or HDAC inhibitor (10 μg per 10 μL per rat) was injected once daily for 3 days before CFA injection. Persistent inflammatory pain epigenetically suppressed KCC2 expression through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in decreased inhibitory signalling efficacy. KCC2 knock-down caused by intrathecal administration of KCC2 siRNA in naïve rats reduced KCC2 expression in the spinal cord, leading to sensitized pain behaviours and impaired inhibitory synaptic transmission in their spinal cords. Moreover, intrathecal HDAC inhibitor injection in CFA rats increased KCC2 expression, partially restoring the spinal inhibitory synaptic transmission and relieving the sensitized pain behaviour. These findings suggest that the transcription of spinal KCC2 is regulated by histone acetylation epigenetically following CFA. Persistent pain suppresses KCC2 expression through HDAC-mediated histone hypoacetylation and consequently impairs the inhibitory function of inhibitory interneurons. Drugs such as HDAC inhibitors that suppress the influences of

  13. Epigenetic information in gametes: Gaming from before fertilization. Comment on ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Shi, Junchao; Zhang, Xudong; Liu, Ying; Chen, Qi

    2017-03-01

    In their interesting article [1] Wang et al. proposed a mathematical model based on evolutionary game theory [2] to tackle the fundamental question in embryo development, that how sperm and egg interact with each other, through epigenetic processes, to form a zygote and direct successful embryo development. This work is based on the premise that epigenetic reprogramming (referring to the erasure and reconstruction of epigenetic marks, such as DNA methylation and histone modifications) after fertilization might be of paramount importance to maintain the normal development of embryos, a premise we fully agree, given the compelling experimental evidence reported [3]. Wang et al. have specifically chosen to employ the well-studied DNA methylation reprogramming process during mammalian early embryo development, as a basis to develop their mathematical model, namely epigenetic game theory (epiGame). They concluded that the DNA methylation pattern in mammalian early embryo could be formulated and quantified, and their model can be further used to quantify the interactions, such as competition and/or cooperation of expressed genes that maximize the fitness of embryos. The efforts by Wang et al. in quantitatively and systematically analyzing the beginning of life apparently hold value and represent a novel direction for future embryo development research from both theoretical and experimental biologists. On the other hand, we see their theory still at its infancy, because there are plenty more parameters to consider and there are spaces for debates, such as the cases of haploid embryo development [4]. Here, we briefly comment on the dynamic process of epigenetic reprogramming that goes beyond DNA methylation, a dynamic interplay that involves histone modifications, non-coding RNAs, transposable elements et al., as well as the potential input of the various types of 'hereditary' epigenetic information in the gametes - a game that has started before the fertilization.

  14. [Epigenetics' implication in autism spectrum disorders: A review].

    Science.gov (United States)

    Hamza, M; Halayem, S; Mrad, R; Bourgou, S; Charfi, F; Belhadj, A

    2017-08-01

    The etiology of autism spectrum disorders (ASD) is complex and multifactorial, and the roles of genetic and environmental factors in its emergence have been well documented. Current research tends to indicate that these two factors act in a synergistic manner. The processes underlying this interaction are still poorly known, but epigenetic modifications could be the mediator in the gene/environment interface. The epigenetic mechanisms have been implicated in susceptibility to stress and also in the pathogenesis of psychiatric disorders including depression and schizophrenia. Currently, several studies focus on the consideration of the etiological role of epigenetic regulation in ASD. The object of this review is to present a summary of current knowledge of an epigenetic hypothesis in ASD, outlining the recent findings in this field. Using Pubmed, we did a systematic review of the literature researching words such as: autism spectrum disorders, epigenetics, DNA methylation and histone modification. Epigenetic refers to the molecular process modulating gene expression without changes in the DNA sequence. The most studied epigenetic mechanisms are those that alter the chromatin structure including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. In ASD several arguments support the epigenetic hypothesis. In fact, there is a frequent association between ASD and genetic diseases whose epigenetic etiologies are recognized. A disturbance in the expression of genes involved in the epigenetic regulation has also been described in this disorder. Some studies have demonstrated changes in the DNA methylation of several autism candidate genes including the gene encoding the oxytocin receptor (OXTR), the RELN and the SHANK3 genes. Beyond the analysis of candidate genes, recent epigenome-wide association studies have investigated the methylation level of several other genes and showed hypomethylation of the whole DNA in brain

  15. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    International Nuclear Information System (INIS)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M.

    2015-01-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult

  16. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Christina R.; Hafez, Alexander K.; Solomon, Elizabeth R.; Allan, Andrea M., E-mail: aallan@salud.unm.edu

    2015-10-01

    Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult

  17. Epigenetic Dysregulation in Laryngeal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Thian-Sze Wong

    2012-01-01

    Full Text Available Laryngeal carcinoma is a common head and neck cancer with poor prognosis. Patients with laryngeal carcinoma usually present late leading to the reduced treatment efficacy and high rate of recurrence. Despite the advance in the use of molecular markers for monitoring human cancers in the past decades, there are still no reliable markers for use to screen laryngeal carcinoma and follow the patients after treatment. Epigenetics emerged as an important field in understanding the biology of the human malignancies. Epigenetic alterations refer to the dysregulation of gene, which do not involve the alterations of the DNA sequence. Major epigenetic changes including methylation imbalance, histone modification, and small RNA dysregulation could play a role in the development of human malignancies. Global epigenetic change is now regarded as a molecular signature of cancer. The characteristics and behavior of a cancer could be predicted based on the specific epigenetic pattern. We here provide a review on the understanding of epigenetic dysregulation in laryngeal carcinoma. Further knowledge on the initiation and progression of laryngeal carcinoma at epigenetic level could promote the translation of the knowledge to clinical use.

  18. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Steven D Sheridan

    Full Text Available Fragile X syndrome (FXS is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1 gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP. Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid

  19. Regulation of gene expression and pain states by epigenetic mechanisms.

    Science.gov (United States)

    Géranton, Sandrine M; Tochiki, Keri K

    2015-01-01

    The induction of inflammatory or neuropathic pain states is known to involve molecular activity in the spinal superficial dorsal horn and dorsal root ganglia, including intracellular signaling events which lead to changes in gene expression. These changes ultimately cause alterations in macromolecular synthesis, synaptic transmission, and structural architecture which support central sensitization, a process required for the establishment of long-term pain states. Epigenetic mechanisms are essential for long-term synaptic plasticity and modulation of gene expression. This is because epigenetic modifications are known to regulate gene transcription by aiding the physical relaxation or condensation of chromatin. These processes are therefore potential regulators of the molecular changes underlying permanent pain states. A handful of studies have emerged in the field of pain epigenetics; however, the field is still very much in its infancy. This chapter draws upon other specialities which have extensively investigated epigenetic mechanisms, such as learning and memory and oncology. After defining epigenetics as well as the recent field of "neuroepigenetics" and the main molecular mechanisms involved, this chapter describes the role of these mechanisms in the synaptic plasticity seen in learning and memory, and address those epigenetic mechanisms that have been linked with the development of acute and prolonged pain states. Finally, the idea that long-lasting epigenetic modifications could contribute to the transition from acute to chronic pain states by supporting maladaptive molecular changes is discussed. © 2015 Elsevier Inc. All rights reserved.

  20. Great expectations - Epigenetics and the meandering path from bench to bedside

    DEFF Research Database (Denmark)

    Häfner, Sophia J; Lund, Anders H

    2016-01-01

    Making quick promises of major biomedical breakthroughs based on exciting discoveries at the bench is tempting. But the meandering path from fundamental science to life-saving clinical applications can be fraught with many hurdles. Epigenetics, the study of potentially heritable changes of gene...... function without modification of the underlying DNA sequence, has dominated the biological research field during the last decade and encountered a large public success. Driven by the unfolding of molecular biology and recent technological progress, the term has evolved significantly and shifted from....... However, while exciting reports of biological phenomena involving DNA methylation and histone modifications fill up the scientific literature, the realistic clinical applications of epigenetic medicines remain somewhat blurry. Here, we discuss the state of the art and speculate how epigenetics might...

  1. Epigenetic variation, phenotypic heritability, and evolution

    DEFF Research Database (Denmark)

    Furrow, Robert E.; Christiansen, Freddy Bugge; Feldman, Marcus W.

    2014-01-01

    families. The potential importance of this interaction, recognized in classical studies of the genetic epidemiology of complex diseases and other quantitative characters, has reemerged in studies of the effects of epigenetic modifications, their variation, and their transmission between generations....

  2. Testicular cancer from diagnosis to epigenetic factors

    Science.gov (United States)

    Boccellino, Mariarosaria; Vanacore, Daniela; Zappavigna, Silvia; Cavaliere, Carla; Rossetti, Sabrina; D’Aniello, Carmine; Chieffi, Paolo; Amler, Evzen; Buonerba, Carlo; Di Lorenzo, Giuseppe; Di Franco, Rossella; Izzo, Alessandro; Piscitelli, Raffaele; Iovane, Gelsomina; Muto, Paolo; Botti, Gerardo; Perdonà, Sisto; Caraglia, Michele; Facchini, Gaetano

    2017-01-01

    Testicular cancer (TC) is one of the most common neoplasms that occurs in male and includes germ cell tumors (GCT), sex cord-gonadal stromal tumors and secondary testicular tumors. Diagnosis of TC involves the evaluation of serum tumor markers alpha-fetoprotein, human chorionic gonadotropin and lactate dehydrogenase, but clinically several types of immunohistochemical markers are more useful and more sensitive in GCT, but not in teratoma. These new biomarkers are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related cells but not in normal adult germ cells and they include PLAP, OCT3/4 (POU5F1), NANOG, SOX2, REX1, AP-2γ (TFAP2C) and LIN28. Gene expression in GCT is regulated, at least in part, by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation. There are different epigenetic modifications in TG-subtypes that reflect the normal developmental switch in primordial germ cells from an under- to normally methylated genome. The main purpose of this review is to illustrate the findings of recent investigations in the classification of male genital organs, the discoveries in the use of prognostic and diagnostic markers and the epigenetic aberrations mainly affecting the patterns of DNA methylation/histone modifications of genes (especially tumor suppressors) and microRNAs (miRNAs). PMID:29262668

  3. New insights into the epigenetics of inflammatory rheumatic diseases.

    Science.gov (United States)

    Ballestar, Esteban; Li, Tianlu

    2017-10-01

    Over the past decade, awareness of the importance of epigenetic alterations in the pathogenesis of rheumatic diseases has grown in parallel with a general recognition of the fundamental role of epigenetics in the regulation of gene expression. Large-scale efforts to generate genome-wide maps of epigenetic modifications in different cell types, as well as in physiological and pathological contexts, illustrate the increasing recognition of the relevance of epigenetics. To date, although several reports have demonstrated the occurrence of epigenetic alterations in a wide range of inflammatory rheumatic conditions, epigenomic information is rarely used in a clinical setting. By contrast, several epigenetic biomarkers and treatments are currently in use for personalized therapies in patients with cancer. This Review highlights advances from the past 5 years in the field of epigenetics and their application to inflammatory rheumatic diseases, delineating the future lines of development for a rational use of epigenetic information in clinical settings and in personalized medicine. These advances include the identification of epipolymorphisms associated with clinical outcomes, DNA methylation as a contributor to disease susceptibility in rheumatic conditions, the discovery of novel epigenetic mechanisms that modulate disease susceptibility and the development of new epigenetic therapies.

  4. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  5. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  6. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  7. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Hye Joo Kim

    2012-01-01

    Full Text Available Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria, and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1 cells were cultured under control (14.5 mmol/L mannitol, normoglycemic (NG, 5.5 mmol/L glucose, or hyperglycemic (HG, 20 mmol/L glucose conditions, in the absence or presence of fisetin. Fisetin was added (3–10 μM for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.

  8. Epigenetic Mechanisms of Depression and Antidepressants Action

    Science.gov (United States)

    Vialou, Vincent; Feng, Jian; Robison, Alfred J.; Nestler, Eric J.

    2013-01-01

    Epigenetic mechanisms, which control chromatin structure and function, mediate changes in gene expression that occur in response to diverse stimuli. Recent research has established that environmental events and behavioral experience induce epigenetic changes at particular gene loci that help shape neuronal plasticity and function, and hence behavior, and that some of these changes can be very stable and even persist for a lifetime. Increasing evidence supports the hypothesis that aberrations in chromatin remodeling and subsequent effects on gene expression within limbic brain regions contribute to the pathogenesis of depression and other stress-related disorders such as post-traumatic stress disorder and other anxiety syndromes. Likewise, the gradually developing but persistent therapeutic effects of antidepressant medications may be achieved in part via epigenetic mechanisms. This review discusses recent advances in understanding epigenetic regulation of stress-related disorders and focuses on three distinct aspects of stress-induced epigenetic pathology: the effects of stress and antidepressant treatment during adulthood, the life-long effects of early life stress on subsequent stress vulnerability, and the possible trans-generational transmission of stress-induced abnormalities. PMID:23020296

  9. Epigenetics in the Vascular Endothelium: Looking From a Different Perspective in the Epigenomics Era.

    Science.gov (United States)

    Yan, Matthew S; Marsden, Philip A

    2015-11-01

    Cardiovascular diseases are commonly thought to be complex, non-Mendelian diseases that are influenced by genetic and environmental factors. A growing body of evidence suggests that epigenetic pathways play a key role in vascular biology and might be involved in defining and transducing cardiovascular disease inheritability. In this review, we argue the importance of epigenetics in vascular biology, especially from the perspective of endothelial cell phenotype. We highlight and discuss the role of epigenetic modifications across the transcriptional unit of protein-coding genes, especially the role of intragenic chromatin modifications, which are underappreciated and not well characterized in the current era of genome-wide studies. Importantly, we describe the practical application of epigenetics in cardiovascular disease therapeutics. © 2015 American Heart Association, Inc.

  10. Epigenetics: relevance and implications for public health.

    Science.gov (United States)

    Rozek, Laura S; Dolinoy, Dana C; Sartor, Maureen A; Omenn, Gilbert S

    2014-01-01

    Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.

  11. Epigenetic Regulatory Mechanisms Induced by Resveratrol

    Directory of Open Access Journals (Sweden)

    Guilherme Felipe Santos Fernandes

    2017-11-01

    Full Text Available Resveratrol (RVT is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT, histone deacetylase (HDAC and lysine-specific demethylase-1 (LSD1.

  12. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  13. What obesity research tells us about epigenetic mechanisms

    OpenAIRE

    Youngson, Neil A.; Morris, Margaret J.

    2013-01-01

    The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These d...

  14. Multigenerational epigenetic adaptation of the hepatic wound-healing response.

    Science.gov (United States)

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K; Mathers, John C; Fox, Christopher R; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L; Anstee, Quentin M; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M; Mann, Derek A; Mann, Jelena

    2012-09-01

    We investigated whether ancestral liver damage leads to heritable reprogramming of hepatic wound healing in male rats. We found that a history of liver damage corresponds with transmission of an epigenetic suppressive adaptation of the fibrogenic component of wound healing to the male F1 and F2 generations. Underlying this adaptation was less generation of liver myofibroblasts, higher hepatic expression of the antifibrogenic factor peroxisome proliferator-activated receptor γ (PPAR-γ) and lower expression of the profibrogenic factor transforming growth factor β1 (TGF-β1) compared to rats without this adaptation. Remodeling of DNA methylation and histone acetylation underpinned these alterations in gene expression. Sperm from rats with liver fibrosis were enriched for the histone variant H2A.Z and trimethylation of histone H3 at Lys27 (H3K27me3) at PPAR-γ chromatin. These modifications to the sperm chromatin were transmittable by adaptive serum transfer from fibrotic rats to naive rats and similar modifications were induced in mesenchymal stem cells exposed to conditioned media from cultured rat or human myofibroblasts. Thus, it is probable that a myofibroblast-secreted soluble factor stimulates heritable epigenetic signatures in sperm so that the resulting offspring better adapt to future fibrogenic hepatic insults. Adding possible relevance to humans, we found that people with mild liver fibrosis have hypomethylation of the PPARG promoter compared to others with severe fibrosis.

  15. Endocrine Disruptor Vinclozolin Induced Epigenetic Transgenerational Adult-Onset Disease

    Science.gov (United States)

    Anway, Matthew D.; Leathers, Charles; Skinner, Michael K.

    2018-01-01

    The fetal basis of adult disease is poorly understood on a molecular level and cannot be solely attributed to genetic mutations or a single etiology. Embryonic exposure to environmental compounds has been shown to promote various disease states or lesions in the first generation (F1). The current study used the endocrine disruptor vinclozolin (antiandrogenic compound) in a transient embryonic exposure at the time of gonadal sex determination in rats. Adult animals from the F1 generation and all subsequent generations examined (F1–F4) developed a number of disease states or tissue abnormalities including prostate disease, kidney disease, immune system abnormalities, testis abnormalities, and tumor development (e.g. breast). In addition, a number of blood abnormalities developed including hypercholesterolemia. The incidence or prevalence of these transgenerational disease states was high and consistent across all generations (F1–F4) and, based on data from a previous study, appears to be due in part to epigenetic alterations in the male germ line. The observations demonstrate that an environmental compound, endocrine disruptor, can induce transgenerational disease states or abnormalities, and this suggests a potential epigenetic etiology and molecular basis of adult onset disease. PMID:16973726

  16. Epigenetics of obesity: beyond the genome sequence.

    Science.gov (United States)

    Cordero, Paul; Li, Jiawei; Oben, Jude A

    2015-07-01

    After the study of the gene code as a trigger for obesity, epigenetic code has appeared as a novel tool in the diagnosis, prognosis and treatment of obesity, and its related comorbidities. This review summarizes the status of the epigenetic field associated with obesity, and the current epigenetic-based approaches for obesity treatment. Thanks to technical advances, novel and key obesity-associated polymorphisms have been described by genome-wide association studies, but there are limitations with their predictive power. Epigenetics is also studied for disease association, which involves decoding of the genome information, transcriptional status and later phenotypes. Obesity could be induced during adult life by feeding and other environmental factors, and there is a strong association between obesity features and specific epigenetic patterns. These patterns could be established during early life stages, and programme the risk of obesity and its comorbidities during adult life. Furthermore, recent studies have shown that DNA methylation profile could be applied as biomarkers of diet-induced weight loss treatment. High-throughput technologies, recently implemented for commercial genetic test panels, could soon lead to the creation of epigenetic test panels for obesity. Nonetheless, epigenetics is a modifiable risk factor, and different dietary patterns or environmental insights during distinct stages of life could lead to rewriting of the epigenetic profile.

  17. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ma Yuehua

    2009-06-01

    Full Text Available Abstract DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.

  18. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum

    Science.gov (United States)

    Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W

    2013-01-01

    Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938

  19. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    Science.gov (United States)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  20. Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention

    Science.gov (United States)

    Romani, Massimo; Pistillo, Maria Pia; Banelli, Barbara

    2015-01-01

    Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle. PMID:26339624

  1. Epigenetic control of CD8+ T cell differentiation.

    Science.gov (United States)

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  2. Differential effects of cocaine on histone posttranslational modifications in identified populations of striatal neurons.

    Science.gov (United States)

    Jordi, Emmanuelle; Heiman, Myriam; Marion-Poll, Lucile; Guermonprez, Pierre; Cheng, Shuk Kei; Nairn, Angus C; Greengard, Paul; Girault, Jean-Antoine

    2013-06-04

    Drugs of abuse, such as cocaine, induce changes in gene expression and epigenetic marks including alterations in histone posttranslational modifications in striatal neurons. These changes are thought to participate in physiological memory mechanisms and to be critical for long-term behavioral alterations. However, the striatum is composed of multiple cell types, including two distinct populations of medium-sized spiny neurons, and little is known concerning the cell-type specificity of epigenetic modifications. To address this question we used bacterial artificial chromosome transgenic mice, which express EGFP fused to the N-terminus of the large subunit ribosomal protein L10a driven by the D1 or D2 dopamine receptor (D1R, D2R) promoter, respectively. Fluorescence in nucleoli was used to sort nuclei from D1R- or D2R-expressing neurons and to quantify by flow cytometry the cocaine-induced changes in histone acetylation and methylation specifically in these two types of nuclei. The two populations of medium-sized spiny neurons displayed different patterns of histone modifications 15 min or 24 h after a single injection of cocaine or 24 h after seven daily injections. In particular, acetylation of histone 3 on Lys 14 and of histone 4 on Lys 5 and 12, and methylation of histone 3 on Lys 9 exhibited distinct and persistent changes in the two cell types. Our data provide insights into the differential epigenetic responses to cocaine in D1R- and D2R-positive neurons and their potential regulation, which may participate in the persistent effects of cocaine in these neurons. The method described should have general utility for studying nuclear modifications in different types of neuronal or nonneuronal cell types.

  3. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  4. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  5. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Science.gov (United States)

    Sarkar, Sibaji; Horn, Garrick; Moulton, Kimberly; Oza, Anuja; Byler, Shannon; Kokolus, Shannon; Longacre, McKenna

    2013-01-01

    Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics. PMID:24152442

  6. Cancer Development, Progression, and Therapy: An Epigenetic Overview

    Directory of Open Access Journals (Sweden)

    McKenna Longacre

    2013-10-01

    Full Text Available Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.

  7. Bifurcation in epigenetics: Implications in development, proliferation, and diseases

    Science.gov (United States)

    Jost, Daniel

    2014-01-01

    Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.

  8. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro

    Directory of Open Access Journals (Sweden)

    Craig L. Parfett

    2017-06-01

    Full Text Available An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2

  9. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  10. Skewed Epigenetics: An Alternative Therapeutic Option for Diabetes Complications

    Directory of Open Access Journals (Sweden)

    Gabriele Togliatto

    2015-01-01

    Full Text Available Vascular complications are major causes of morbidity and mortality in type 2 diabetes patients. Mitochondrial reactive oxygen species (ROS generation and a lack of efficient antioxidant machinery, a result of hyperglycaemia, mainly contribute to this problem. Although advances in therapy have significantly reduced both morbidity and mortality in diabetic individuals, diabetes-associated vascular complications are still one of the most challenging health problems worldwide. New healing options are urgently needed as current therapeutics are failing to improve long-term outcomes. Particular effort has recently been devoted to understanding the functional relationship between chromatin structure regulation and the persistent change in gene expression which is driven by hyperglycaemia and which accounts for long-lasting diabetic complications. A detailed investigation into epigenetic chromatin modifications in type 2 diabetes is underway. This will be particularly useful in the design of mechanism-based therapeutics which interfere with long-lasting activating epigenetics and improve patient outcomes. We herein provide an overview of the most relevant mechanisms that account for hyperglycaemia-induced changes in chromatin structure; the most relevant mechanism is called “metabolic memory.”

  11. Repressive but not activating epigenetic modifications are aberrant on the inactive X chromosome in live cloned cattle.

    Science.gov (United States)

    Geng-Sheng, Cao; Yu, Gao; Kun, Wang; Fang-Rong, Ding; Ning, Li

    2009-08-01

    X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements. © 2009 The Authors. Journal compilation © 2009 Japanese Society of Developmental Biologists.

  12. Epigenetic control of hypoxia inducible factor-1α-dependent expression of placental growth factor in hypoxic conditions.

    Science.gov (United States)

    Tudisco, Laura; Della Ragione, Floriana; Tarallo, Valeria; Apicella, Ivana; D'Esposito, Maurizio; Matarazzo, Maria Rosaria; De Falco, Sandro

    2014-04-01

    Hypoxia plays a crucial role in the angiogenic switch, modulating a large set of genes mainly through the activation of hypoxia-inducible factor (HIF) transcriptional complex. Endothelial cells play a central role in new vessels formation and express placental growth factor (PlGF), a member of vascular endothelial growth factor (VEGF) family, mainly involved in pathological angiogenesis. Despite several observations suggest a hypoxia-mediated positive modulation of PlGF, the molecular mechanism governing this regulation has not been fully elucidated. We decided to investigate if epigenetic modifications are involved in hypoxia-induced PlGF expression. We report that PlGF expression was induced in cultured human and mouse endothelial cells exposed to hypoxia (1% O 2), although DNA methylation at the Plgf CpG-island remains unchanged. Remarkably, robust hyperacetylation of histones H3 and H4 was observed in the second intron of Plgf, where hypoxia responsive elements (HREs), never described before, are located. HIF-1α, but not HIF-2α, binds to identified HREs. Noteworthy, only HIF-1α silencing fully inhibited PlGF upregulation. These results formally demonstrate a direct involvement of HIF-1α in the upregulation of PlGF expression in hypoxia through chromatin remodeling of HREs sites. Therefore, PlGF may be considered one of the putative targets of anti-HIF therapeutic applications.

  13. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles.

    Science.gov (United States)

    Lu, Xiaoyan; Miousse, Isabelle R; Pirela, Sandra V; Moore, Jodene K; Melnyk, Stepan; Koturbash, Igor; Demokritou, Philip

    2016-01-01

    Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.

  14. Causes and consequences of obesity: epigenetics or hypokinesis?

    Directory of Open Access Journals (Sweden)

    Graham MR

    2015-09-01

    Full Text Available Michael R Graham,1 Julien S Baker,2 Bruce Davies3 1Llantarnam Research Academy, Cwmbran, Torfaen, UK; 2Exercise Science Research Laboratory, Institute of Clinical Exercise and Health Science, School of Science, University of the West of Scotland, Hamilton, UK; 3Science Department, University of South Wales, Newport, UKEpigenetics can be defined as the study of heritable changes that affect gene function without modification of the deoxyribonucleic acid (DNA sequence.1 The transfer of epigenetic marks through generations is not well understood, and their transmission is in dispute.2 Epigenetic marks are tissue-specific and include DNA methylation and histone modifications that mediate biological processes, such as imprinting (Figure 1. Many imprinted genes are regulators of gene expression controlling growth. Imprinting disorders often feature obesity as one of their characteristics.3

  15. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  16. Eusocial insects as emerging models for behavioural epigenetics.

    Science.gov (United States)

    Yan, Hua; Simola, Daniel F; Bonasio, Roberto; Liebig, Jürgen; Berger, Shelley L; Reinberg, Danny

    2014-10-01

    Understanding the molecular basis of how behavioural states are established, maintained and altered by environmental cues is an area of considerable and growing interest. Epigenetic processes, including methylation of DNA and post-translational modification of histones, dynamically modulate activity-dependent gene expression in neurons and can therefore have important regulatory roles in shaping behavioural responses to environmental cues. Several eusocial insect species - with their unique displays of behavioural plasticity due to age, morphology and social context - have emerged as models to investigate the genetic and epigenetic underpinnings of animal social behaviour. This Review summarizes recent studies in the epigenetics of social behaviour and offers perspectives on emerging trends and prospects for establishing genetic tools in eusocial insects.

  17. Learning epigenetic regulation from mycobacteria

    Directory of Open Access Journals (Sweden)

    Sanjeev Khosla

    2016-01-01

    Full Text Available In a eukaryotic cell, the transcriptional fate of a gene is determined by the profile of the epigenetic modifications it is associated with and the conformation it adopts within the chromatin. Therefore, the function that a cell performs is dictated by the sum total of the chromatin organization and the associated epigenetic modifications of each individual gene in the genome (epigenome. As the function of a cell during development and differentiation is determined by its microenvironment, any factor that can alter this microenvironment should be able to alter the epigenome of a cell. In the study published in Nature Communications (Yaseen [2015] Nature Communications 6:8922 doi: 10.1038/ncomms9922, we show that pathogenic Mycobacterium tuberculosis has evolved strategies to exploit this pliability of the host epigenome for its own survival. We describe the identification of a methyltransferase from M. tuberculosis that functions to modulate the host epigenome by methylating a novel, non-canonical arginine, H3R42 in histone H3. In another study, we showed that the mycobacterial protein Rv2966c methylates cytosines present in non-CpG context within host genomic DNA upon infection. Proteins with ability to directly methylate host histones H3 at a novel lysine residue (H3K14 has also been identified from Legionella pnemophilia (RomA. All these studies indicate the use of non-canonical epigenetic mechanisms by pathogenic bacteria to hijack the host transcriptional machinery.

  18. Epigenetics: Making your mark on DNA

    Science.gov (United States)

    Harada, Bryan T.; He, Chuan

    2017-11-01

    Understanding the biological roles of modifications to DNA, RNA and proteins is critical to revealing how cells regulate gene expression in development and disease. Two papers now present a combination of new tools and discoveries that could enable biologists and chemical biologists to better study epigenetic regulation in mammals.

  19. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells

    DEFF Research Database (Denmark)

    Kristensen, Dina Graae; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa

    2013-01-01

    in humans. However, the common precursor of testicular cancers- the carcinoma in situ (CIS) cell- is thought to be an arrested foetal germ cell. Therefore studies of CIS cells may leverage information on human foetal germ cell development and, in particular, when neoplastic transformation is initiated....... In this review, we will focus on current knowledge of the epigenetics of CIS cells and relate it to the epigenetic changes occurring in early developing germ cells of mice during specification, migration and colonization. We will focus on DNA methylation and some of the best studied histone modifications like H3...... event in the initiation of testicular germ cell cancer. Even though only sparse information is available on epigenetic cues in human foetal germ cells, these indicate that the developmental patterns differ from the findings in mice and emphasize the need for further studies of foetal germ cell...

  20. Epigenetics of kidney disease.

    Science.gov (United States)

    Wanner, Nicola; Bechtel-Walz, Wibke

    2017-07-01

    DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

  1. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Beerman, Isabel; Rossi, Derrick J.

    2014-01-01

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  2. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  3. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?

    Science.gov (United States)

    Dusinska, Maria; Tulinska, Jana; El Yamani, Naouale; Kuricova, Miroslava; Liskova, Aurelia; Rollerova, Eva; Rundén-Pran, Elise; Smolkova, Bozena

    2017-11-01

    The unique properties of nanomaterials (NMs) are beneficial in numerous industrial and medical applications. However, they could also induce unintended effects. Thus, a proper strategy for toxicity testing is essential in human hazard and risk assessment. Toxicity can be tested in vivo and in vitro; in compliance with the 3Rs, alternative strategies for in vitro testing should be further developed for NMs. Robust, standardized methods are of great importance in nanotoxicology, with comprehensive material characterization and uptake as an integral part of the testing strategy. Oxidative stress has been shown to be an underlying mechanism of possible toxicity of NMs, causing both immunotoxicity and genotoxicity. For testing NMs in vitro, a battery of tests should be performed on cells of human origin, either cell lines or primary cells, in conditions as close as possible to an in vivo situation. Novel toxicity pathways, particularly epigenetic modification, should be assessed along with conventional toxicity testing methods. However, to initiate epigenetic toxicity screens for NM exposure, there is a need to better understand their adverse effects on the epigenome, to identify robust and reproducible causal links between exposure, epigenetic changes and adverse phenotypic endpoints, and to develop improved assays to monitor epigenetic toxicity. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Epigenetics of inflammation, maternal infection and nutrition

    Science.gov (United States)

    Studies have demonstrated that epigenetic changes such as DNA methylation, histone modification, and chromatin remodeling are linked to an increased inflammatory response as well as increased risk for chronic disease development. A few studies have begun to investigate whether dietary nutrients play...

  5. Epigenetics in comparative biology: why we should pay attention.

    Science.gov (United States)

    Burggren, Warren W; Crews, David

    2014-07-01

    The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic

  6. Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics.

    Science.gov (United States)

    Ge, Zhao-Jia; Zhang, Cui-Lian; Schatten, Heide; Sun, Qing-Yuan

    2014-06-01

    Offspring of diabetic mothers are susceptible to the onset of metabolic syndromes, such as type 2 diabetes and obesity at adulthood, and this trend can be inherited between generations. Genetics cannot fully explain how the noncommunicable disease in offspring of diabetic mothers is caused and inherited by the next generations. Many studies have confirmed that epigenetics may be crucial for the detrimental effects on offspring exposed to the hyperglycemic environment. Although the adverse effects on epigenetics in offspring of diabetic mothers may be the result of the poor intrauterine environment, epigenetic modifications in oocytes of diabetic mothers are also affected. Therefore, the present review is focused on the epigenetic alterations in oocytes and embryos of diabetic mothers. Furthermore, we also discuss initial mechanistic insight on maternal diabetes mellitus causing alterations of epigenetic modifications. © 2014 by the Society for the Study of Reproduction, Inc.

  7. Early life nutrition, epigenetics and programming of later life disease.

    Science.gov (United States)

    Vickers, Mark H

    2014-06-02

    The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA) and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how these effects may be

  8. Early Life Nutrition, Epigenetics and Programming of Later Life Disease

    Directory of Open Access Journals (Sweden)

    Mark H. Vickers

    2014-06-01

    Full Text Available The global pandemic of obesity and type 2 diabetes is often causally linked to marked changes in diet and lifestyle; namely marked increases in dietary intakes of high energy diets and concomitant reductions in physical activity levels. However, less attention has been paid to the role of developmental plasticity and alterations in phenotypic outcomes resulting from altered environmental conditions during the early life period. Human and experimental animal studies have highlighted the link between alterations in the early life environment and increased risk of obesity and metabolic disorders in later life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. In particular, the nutritional environment in which the fetus or infant develops influences the risk of metabolic disorders in offspring. The late onset of such diseases in response to earlier transient experiences has led to the suggestion that developmental programming may have an epigenetic component, as epigenetic marks such as DNA methylation or histone tail modifications could provide a persistent memory of earlier nutritional states. Moreover, evidence exists, at least from animal models, that such epigenetic programming should be viewed as a transgenerational phenomenon. However, the mechanisms by which early environmental insults can have long-term effects on offspring are relatively unclear. Thus far, these mechanisms include permanent structural changes to the organ caused by suboptimal levels of an important factor during a critical developmental period, changes in gene expression caused by epigenetic modifications (including DNA methylation, histone modification, and microRNA and permanent changes in cellular ageing. A better understanding of the epigenetic basis of developmental programming and how

  9. Epigenetic Modulation with HDAC Inhibitor CG200745 Induces Anti-Proliferation in Non-Small Cell Lung Cancer Cells

    OpenAIRE

    Chun, Sung-Min; Lee, Ji-Young; Choi, Jene; Lee, Je-Hwan; Hwang, Jung Jin; Kim, Chung-Soo; Suh, Young-Ah; Jang, Se Jin

    2015-01-01

    Histone modification plays a pivotal role on gene regulation, as regarded as global epigenetic markers, especially in tumor related genes. Hence, chemical approaches targeting histone-modifying enzymes have emerged onto the main stage of anticancer drug discovery. Here, we investigated the therapeutic potentials and mechanistic roles of the recently developed histone deacetylase inhibitor, CG200745, in non-small cell lung cancer cells. Treatment with CG200745 increased the global level of his...

  10. Epigenetic effects of the pregnancy Mediterranean diet adherence on the offspring metabolic syndrome markers.

    Science.gov (United States)

    Lorite Mingot, David; Gesteiro, Eva; Bastida, Sara; Sánchez-Muniz, Francisco J

    2017-11-01

    Metabolic syndrome (MS) has a multifactorial and not yet fully clarified origin. Insulin resistance is a key element that connects all the accepted components of MS (obesity, dyslipemia, high blood pressure, and hyperglycemia). There is strong evidence that epigenetic changes during fetal development are key factors in the development of MS. These changes are induced by maternal nutrition, among different factors, affecting the intrauterine environment. The Mediterranean diet has been shown to be a healthy eating pattern that protects against the development of MS in adults. Similarly, the Mediterranean diet could have a similar action during pregnancy, protecting the fetus against the development of MS throughout life. This review assembles studies carried out, both in animals and humans, on the epigenetic modifications associated with the consumption, during pregnancy, of Mediterranean diet main components. The relationship between these modifications and the occurrence of factors involved in development of MS is also explained. In addition, the results of our group relating adherence to the Mediterranean diet with MS markers are discussed. The paper ends suggesting future actuation lines in order to increase knowledge on Mediterranean diet adherence as a prevention tool of MS development.

  11. Multiple levels of epigenetic control for bone biology and pathology.

    Science.gov (United States)

    Montecino, Martin; Stein, Gary; Stein, Janet; Zaidi, Kaleem; Aguilar, Rodrigo

    2015-12-01

    Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Epigenetic mechanisms in the initiation of hematological malignancies

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2011-10-01

    Full Text Available Background: Cancer development is not restricted to the genetic changes, but also to epigenetic changes. Epigenetic processes are very important in the development of hematological malignancies. The main epigenetic alterations are aberrations in DNA methylation, post-translational modifications of histones, chromatin remodeling and microRNAs patterns, and these are associated with tumor genesis. All the various cellular pathways contributing to the neoplastic phenotype are affected by epigenetic genes in cancer. These pathways can be explored as biomarkers in clinical use for early detection of disease, malignancy classification and response to treatment with classical chemotherapy agents and epigenetic drugs. Materials and Method: A literature review was performed using PUBMED from 1985 to 2008. Cross referencing of discovered articles was also reviewed.Results: In chronic lymphocytic leukemia, regional hypermethylation of gene promoters leads to gene silencing. Many of these genes have tumor suppressor phenotypes. In myelodysplastic syndrome (MDS, CDKN2B (alias, P15, a cyclin-dependent kinase inhibitor that negatively regulates the cell cycle, has been shown to be hypermethylated in marrow stem (CD34+ cells in patients with MDS. At present both Vidaza and Decitabine (DNA methyltransferase inhibitors are approved for the treatment of MDS.Conclusion: Unlike mutations or deletions, DNA hypermethylation and histone deacetylation are potentially reversible by pharmacological inhibition, therefore those epigenetic changes have been recognized as promising novel therapeutic targets in hematopoietic malignances. In this review, we discussed molecular mechanisms of epigenetics, epigenetic changes in hematological malignancies and epigenetic based treatments

  13. Microarray-based analysis of plasma cirDNA epigenetic modification profiling in xenografted mice exposed to intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rene Cortese

    2015-09-01

    Full Text Available Intermittent hypoxia (IH during sleep is one of the major abnormalities occurring in patients suffering from obstructive sleep apnea (OSA, a highly prevalent disorder affecting 6–15% of the general population, particularly among obese people. IH has been proposed as a major determinant of oncogenetically-related processes such as tumor growth, invasion and metastasis. During the growth and expansion of tumors, fragmented DNA is released into the bloodstream and enters the circulation. Circulating tumor DNA (cirDNA conserves the genetic and epigenetic profiles from the tumor of origin and can be isolated from the plasma fraction. Here we report a microarray-based epigenetic profiling of cirDNA isolated from blood samples of mice engrafted with TC1 epithelial lung cancer cells and controls, which were exposed to IH during sleep (XenoIH group, n = 3 or control conditions, (i.e., room air (RA; XenoRA group, n = 3 conditions. To prepare the targets for microarray hybridization, we applied a previously developed method that enriches the modified fraction of the cirDNA without amplification of genomic DNA. Regions of differential cirDNA modification between the two groups were identified by hybridizing the enriched fractions for each sample to Affymetrix GeneChip Human Promoter Arrays 1.0R. Microarray raw and processed data were deposited in NCBI's Gene Expression Omnibus (GEO database (accession number: GSE61070.

  14. Investigating Epigenetic Effects of Prenatal Exposure to Toxic Metals in Newborns: Challenges and Benefits

    OpenAIRE

    Nye, Monica D.; Fry, Rebecca C.; Hoyo, Cathrine; Murphy, Susan K.

    2014-01-01

    Increasing evidence suggest that epigenetic alterations can greatly impact human health, and that epigenetic mechanisms (DNA methylation, histone modifications, and microRNAs) may be particularly relevant in responding to environmental toxicant exposure early in life. The epigenome plays a vital role in embryonic development, tissue differentiation and disease development by controlling gene expression. In this review we discuss what is currently known about epigenetic alterations in response...

  15. Epigenetic mechanisms of alcoholism and stress-related disorders.

    Science.gov (United States)

    Palmisano, Martina; Pandey, Subhash C

    2017-05-01

    Stress-related disorders, such as anxiety, early life stress, and posttraumatic stress disorder appear to be important factors in promoting alcoholism, as alcohol consumption can temporarily attenuate the negative affective symptoms of these disorders. Several molecules involved in signaling pathways may contribute to the neuroadaptation induced during alcohol dependence and stress disorders, and among these, brain-derived neurotrophic factor (BDNF), corticotropin releasing factor (CRF), neuropeptide Y (NPY) and opioid peptides (i.e., nociceptin and dynorphin) are involved in the interaction of stress and alcohol. In fact, alterations in the expression and function of these molecules have been associated with the pathophysiology of stress-related disorders and alcoholism. In recent years, various studies have focused on the epigenetic mechanisms that regulate chromatin architecture, thereby modifying gene expression. Interestingly, epigenetic modifications in specific brain regions have been shown to be associated with the neurobiology of psychiatric disorders, including alcoholism and stress. In particular, the enzymes responsible for chromatin remodeling (i.e., histone deacetylases and methyltransferases, DNA methyltransferases) have been identified as common molecular mechanisms for the interaction of stress and alcohol and have become promising therapeutic targets to treat or prevent alcoholism and associated emotional disorders. Published by Elsevier Inc.

  16. Epigenetic Aspects of Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Ulrike Schmidt

    2011-01-01

    Full Text Available Development of psychiatric diseases such as posttraumatic stress disorder (PTSD invokes, as with most complex diseases, both genetic and environmental factors. The era of genome-wide high throughput technologies has sparked the initiation of genotype screenings in large cohorts of diseased and control individuals, but had limited success in identification of disease causing genetic variants. It has become evident that these efforts at the genomic level need to be complemented with endeavours in elucidating the proteome, transcriptome and epigenetic profiles. Epigenetics is attractive in particular because there is accumulating evidence that the lasting impact of adverse life events is reflected in certain covalent modifications of the chromatin.

  17. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment.

    Science.gov (United States)

    Basse, Clémence; Arock, Michel

    2015-12-15

    Nowadays, the mechanisms governing the occurrence of cancer are thought to be the consequence not only of genetic defects but also of epigenetic modifications. Therefore, epigenetic has become a very attractive and increasingly investigated field of research in order to find new ways of prevention and treatment of neoplasia, and this is particularly the case for breast cancer (BC). Thus, this review will first develop the main known epigenetic modifications that can occur in cancer and then expose the future role that control of epigenetic modifications might play in prevention, prognostication, follow-up and treatment of BC. Indeed, epigenetic biomarkers found in peripheral blood might become new tools to detect BC, to define its prognostic and to predict its outcome, whereas epi-drugs might have an increasing potential of development in the next future. However, if DNA methyltransferase inhibitors and histone desacetylase inhibitors have shown encouraging results in BC, their action remains nonspecific. Thus, additional clinical studies are needed to evaluate more precisely the effects of these molecules, even if they have provided encouraging results in cotreatment and combined therapies. This review will also deal with the potential of RNA interference (RNAi) as epi-drugs. Finally, we will focus on the potential prevention of BC through epigenetic based on diet and we will particularly develop the possible place of isothiocyanates from cruciferous vegetables or of Genistein from soybean in a dietary program that might potentially reduce the risk of BC in large populations. © 2014 UICC.

  18. The epigenetics of nuclear envelope organization and disease

    International Nuclear Information System (INIS)

    Schirmer, Eric C.

    2008-01-01

    Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics

  19. Consideration of epigenetic responses at organisms chronically exposed to low levels of radioactive substances

    International Nuclear Information System (INIS)

    Gombeau, Kevin

    2015-01-01

    This work integrates within the general framework of the European program COMET (7. Framework Programme EURATOM) and aims to assess the epigenetic responses, and particularly DNA methylation, during chronic exposure to low levels of radioactive materials within two particularly representative contexts of radioecological issues (i.e. uranium mining area and Fukushima post-accidental context). During a first experiment, zebra fish (Danio rerio) were exposed in laboratory controlled conditions to environmentally relevant concentrations of depleted uranium: 2 and 20 μg L"-"1. This experiment allowed an impact on the genomic DNA methylation to be demonstrated, mainly in exposed males, which increased with the duration and level of exposure. In a second experiment, we observed an impact on DNA methylation patterns in the progeny of exposed parents, as well as a perturbation of transcriptomics (i.e. epigenetic processes, DNA damage signaling and repair pathways, embryogenesis) and histological damage in larvae skeletal muscle from exposed parents. The methods developed were applied to the second context focusing on the study of biological effects induced by radionuclides emitted following the Fukushima Daiichi nuclear power plant accident. The analyses performed on the Japanese tree frog (Hyla japonica) revealed a positive correlation between the total dose of radiation absorbed by these frogs (correlated to "1"3"7Cs accumulation), hyper-methylation of genomic DNA as well as increasing damage to mitochondrial DNA. This work highlighted the sensitivity of epigenetic responses in different biological models exposed to low levels of radionuclides. Additionally, these epigenetic modifications are stable over the time and involved in the transfer of the parental toxicity of depleted uranium. As such, the epigenetic marks could be used to further characterize adaptation mechanisms and potential trans-generational effects induced by radionuclides. (author)

  20. Epigenetic susceptibility factors for prostate cancer with aging.

    Science.gov (United States)

    Damaschke, N A; Yang, B; Bhusari, S; Svaren, J P; Jarrard, D F

    2013-12-01

    Increasing age is a significant risk factor for prostate cancer. The prostate is exposed to environmental and endogenous stress that may underlie this remarkable incidence. DNA methylation, genomic imprinting, and histone modifications are examples of epigenetic factors known to undergo change in the aging and cancerous prostate. In this review we examine the data linking epigenetic alterations in the prostate with aging to cancer development. An online search of current and past peer reviewed literature on epigenetic changes with cancer and aging was performed. Relevant articles were analyzed. Epigenetic changes are responsible for modifying expression of oncogenes and tumor suppressors. Several of these changes may represent a field defect that predisposes to cancer development. Focal hypermethylation occurs at CpG islands in the promoters of certain genes including GSTP1, RARβ2, and RASSF1A with both age and cancer, while global hypomethylation is seen in prostate cancer and known to occur in the colon and other organs. A loss of genomic imprinting is responsible for biallelic expression of the well-known Insulin-like Growth Factor 2 (IGF2) gene. Loss of imprinting (LOI) at IGF2 has been documented in cancer and is also known to occur in benign aging prostate tissue marking the presence of cancer. Histone modifications have the ability to dictate chromatin structure and direct gene expression. Epigenetic changes with aging represent molecular mechanisms to explain the increased susceptibly of the prostate to develop cancer in older men. These changes may provide an opportunity for diagnostic and chemopreventive strategies given the epigenome can be modified. © 2013 Wiley Periodicals, Inc.

  1. The Role of Dietary Extra Virgin Olive Oil and Corn Oil on the Alteration of Epigenetic Patterns in the Rat DMBA-Induced Breast Cancer Model.

    Directory of Open Access Journals (Sweden)

    Cristina Rodríguez-Miguel

    Full Text Available Disruption of epigenetic patterns is a major change occurring in all types of cancers. Such alterations are characterized by global DNA hypomethylation, gene-promoter hypermethylation and aberrant histone modifications, and may be modified by environment. Nutritional factors, and especially dietary lipids, have a role in the etiology of breast cancer. Thus, we aimed to analyze the influence of different high fat diets on DNA methylation and histone modifications in the rat dimethylbenz(aanthracene (DMBA-induced breast cancer model. Female Sprague-Dawley rats were fed a low-fat, a high corn-oil or a high extra-virgin olive oil (EVOO diet from weaning or from induction with DMBA. In mammary glands and tumors we analyzed global and gene specific (RASSF1A, TIMP3 DNA methylation by LUMA and bisulfite pyrosequencing assays, respectively. We also determined gene expression and enzymatic activity of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b and evaluated changes in histone modifications (H3K4me2, H3K27me3, H4K20me3 and H4K16ac by western-blot. Our results showed variations along time in the global DNA methylation of the mammary gland displaying decreases at puberty and with aging. The olive oil-enriched diet, on the one hand, increased the levels of global DNA methylation in mammary gland and tumor, and on the other, changed histone modifications patterns. The corn oil-enriched diet increased DNA methyltransferase activity in both tissues, resulting in an increase in the promoter methylation of the tumor suppressor genes RASSF1A and TIMP3. These results suggest a differential effect of the high fat diets on epigenetic patterns with a relevant role in the neoplastic transformation, which could be one of the mechanisms of their differential promoter effect, clearly stimulating for the high corn-oil diet and with a weaker influence for the high EVOO diet, on breast cancer progression.

  2. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    Science.gov (United States)

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  3. Individuality and epigenetics in obesity.

    Science.gov (United States)

    Campión, J; Milagro, F I; Martínez, J A

    2009-07-01

    Excessive weight gain arises from the interactions among environmental factors, genetic predisposition and the individual behavior. However, it is becoming evident that interindividual differences in obesity susceptibility depend also on epigenetic factors. Epigenetics studies the heritable changes in gene expression that do not involve changes to the underlying DNA sequence. These processes include DNA methylation, covalent histone modifications, chromatin folding and, more recently described, the regulatory action of miRNAs and polycomb group complexes. In this review, we focus on experimental evidences concerning dietary factors influencing obesity development by epigenetic mechanisms, reporting treatment doses and durations. Moreover, we present a bioinformatic analysis of promoter regions for the search of future epigenetic biomarkers of obesity, including methylation pattern analyses of several obesity-related genes (epiobesigenes), such as FGF2, PTEN, CDKN1A and ESR1, implicated in adipogenesis, SOCS1/SOCS3, in inflammation, and COX7A1 LPL, CAV1, and IGFBP3, in intermediate metabolism and insulin signalling. The identification of those individuals that at an early age could present changes in the methylation profiles of specific genes could help to predict their susceptibility to later develop obesity, which may allow to prevent and follow-up its progress, as well as to research and develop newer therapeutic approaches.

  4. Transgenerational epigenetics and environmental justice.

    Science.gov (United States)

    Rothstein, Mark A; Harrell, Heather L; Marchant, Gary E

    2017-07-01

    Human transmission to offspring and future generations of acquired epigenetic modifications has not been definitively established, although there are several environmental exposures with suggestive evidence. This article uses three examples of hazardous substances with greater exposures in vulnerable populations: pesticides, lead, and diesel exhaust. It then considers whether, if there were scientific evidence of transgenerational epigenetic inheritance, there would be greater attention given to concerns about environmental justice in environmental laws, regulations, and policies at all levels of government. To provide a broader perspective on environmental justice the article discusses two of the most commonly cited approaches to environmental justice. John Rawls's theory of justice as fairness, a form of egalitarianism, is frequently invoked for the principle that differential treatment of individuals is justified only if actions are designed to benefit those with the greatest need. Another theory, the capabilities approach of Amartya Sen and Martha Nussbaum, focuses on whether essential capabilities of society, such as life and health, are made available to all individuals. In applying principles of environmental justice the article considers whether there is a heightened societal obligation to protect the most vulnerable individuals from hazardous exposures that could adversely affect their offspring through epigenetic mechanisms. It concludes that unless there were compelling evidence of transgenerational epigenetic harms, it is unlikely that there would be a significant impetus to adopt new policies to prevent epigenetic harms by invoking principles of environmental justice.

  5. Epigenetics: a new bridge between nutrition and health

    Science.gov (United States)

    Nutrients can reverse or change epigenetic phenomena such as DNA methylation and histone modifications, thereby modifying the expression of critical genes associated with physiologic and pathologic processes, including embryonic development, aging, and carcinogenesis. It appears that nutrients and b...

  6. Nutrients and the Pancreas: An Epigenetic Perspective

    Directory of Open Access Journals (Sweden)

    Andee Weisbeck

    2017-03-01

    Full Text Available Pancreatic cancer is the fourth most common cause of cancer-related deaths with a dismal average five-year survival rate of six percent. Substitutional progress has been made in understanding how pancreatic cancer develops and progresses. Evidence is mounting which demonstrates that diet and nutrition are key factors in carcinogenesis. In particular, diets low in folate and high in fruits, vegetables, red/processed meat, and saturated fat have been identified as pancreatic cancer risk factors with a proposed mechanism involving epigenetic modifications or gene regulation. We review the current literature assessing the correlation between diet, epigenetics, and pancreatic cancer.

  7. ELF-MF exposure affects the robustness of epigenetic programming during granulopoiesis

    Science.gov (United States)

    Manser, Melissa; Sater, Mohamad R. Abdul; Schmid, Christoph D.; Noreen, Faiza; Murbach, Manuel; Kuster, Niels; Schuermann, David; Schär, Primo

    2017-03-01

    Extremely-low-frequency magnetic fields (ELF-MF) have been classified as “possibly carcinogenic” to humans on the grounds of an epidemiological association of ELF-MF exposure with an increased risk of childhood leukaemia. Yet, underlying mechanisms have remained obscure. Genome instability seems an unlikely reason as the energy transmitted by ELF-MF is too low to damage DNA and induce cancer-promoting mutations. ELF-MF, however, may perturb the epigenetic code of genomes, which is well-known to be sensitive to environmental conditions and generally deranged in cancers, including leukaemia. We examined the potential of ELF-MF to influence key epigenetic modifications in leukaemic Jurkat cells and in human CD34+ haematopoietic stem cells undergoing in vitro differentiation into the neutrophilic lineage. During granulopoiesis, sensitive genome-wide profiling of multiple replicate experiments did not reveal any statistically significant, ELF-MF-dependent alterations in the patterns of active (H3K4me2) and repressive (H3K27me3) histone marks nor in DNA methylation. However, ELF-MF exposure showed consistent effects on the reproducibility of these histone and DNA modification profiles (replicate variability), which appear to be of a stochastic nature but show preferences for the genomic context. The data indicate that ELF-MF exposure stabilizes active chromatin, particularly during the transition from a repressive to an active state during cell differentiation.

  8. Not just gene expression: 3D implications of chromatin modifications during sexual plant reproduction.

    Science.gov (United States)

    Dukowic-Schulze, Stefanie; Liu, Chang; Chen, Changbin

    2018-01-01

    DNA methylation and histone modifications are epigenetic changes on a DNA molecule that alter the three-dimensional (3D) structure locally as well as globally, impacting chromatin looping and packaging on a larger scale. Epigenetic marks thus inform higher-order chromosome organization and placement in the nucleus. Conventional epigenetic marks are joined by chromatin modifiers like cohesins, condensins and membrane-anchoring complexes to support particularly 3D chromosome organization. The most popular consequences of epigenetic modifications are gene expression changes, but chromatin modifications have implications beyond this, particularly in actively dividing cells and during sexual reproduction. In this opinion paper, we will focus on epigenetic mechanisms and chromatin modifications during meiosis as part of plant sexual reproduction where 3D management of chromosomes and re-organization of chromatin are defining features and prime tasks in reproductive cells, not limited to modulating gene expression. Meiotic chromosome organization, pairing and synapsis of homologous chromosomes as well as distribution of meiotic double-strand breaks and resulting crossovers are presumably highly influenced by epigenetic mechanisms. Special mobile small RNAs have been described in anthers, where these so-called phasiRNAs seem to direct DNA methylation in meiotic cells. Intriguingly, many of the mentioned developmental processes make use of epigenetic changes and small RNAs in a manner other than gene expression changes. Widening our approaches and opening our mind to thinking three-dimensionally regarding epigenetics in plant development holds high promise for new discoveries and could give us a boost for further knowledge.

  9. The Real Culprit in Systemic Lupus Erythematosus: Abnormal Epigenetic Regulation

    Science.gov (United States)

    Wu, Haijing; Zhao, Ming; Chang, Christopher; Lu, Qianjin

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE. PMID:25988383

  10. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.

    Science.gov (United States)

    Dobosy, Joseph R; Roberts, J Lea W; Fu, Vivian X; Jarrard, David F

    2007-03-01

    Prostate cancer research has focused significant attention on the mutation, deletion or amplification of the DNA base sequence that encodes critical growth or suppressor genes. However, these changes have left significant gaps in our understanding of the development and progression of disease. It has become clear that epigenetic changes or modifications that influence phenotype without altering the genotype present a new and entirely different mechanism for gene regulation. Several interrelated epigenetic modifications that are altered in abnormal growth states are DNA methylation changes, histone modifications and genomic imprinting. We discuss the status of epigenetic alterations in prostate cancer and benign prostatic hyperplasia progression. In addition, the rationale and status of ongoing clinical trials altering epigenetic processes in urological diseases are reviewed. An online search of current and past peer reviewed literature on DNA methylation, histone acetylation and methylation, imprinting and epigenetics in prostate cancer and benign prostatic hyperplasia was performed. Relevant articles and reviews were examined and a synopsis of reproducible data was generated with the goal of informing the practicing urologist of these advances and their implications. Only 20 years ago the first study was published demonstrating global changes in DNA methylation patterns in tumors. Accumulating data have now identified specific genes that are commonly hypermethylated and inactivated during prostate cancer progression, including GSTpi, APC, MDR1, GPX3 and 14-3-3sigma. Altered histone modifications, including acetylation and methylation, were also recently described that may modify gene function, including androgen receptor function. These epigenetic changes are now being used to assist in prostate cancer diagnosis and cancer outcome prediction. Epigenetic changes appear to have a role in benign prostatic hyperplasia development as well as in the susceptibility of

  11. Regulation of mitochondrial gene expression, the epigenetic enigma

    NARCIS (Netherlands)

    Mposhi, Archibold; van der Wijst, Monique G. P.; Faber, Klaas Nico; Rots, Marianne G.

    2017-01-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether

  12. Epigenetics and allergy: from basic mechanisms to clinical applications.

    Science.gov (United States)

    Potaczek, Daniel P; Harb, Hani; Michel, Sven; Alhamwe, Bilal Alashkar; Renz, Harald; Tost, Jörg

    2017-04-01

    Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.

  13. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy

    Directory of Open Access Journals (Sweden)

    Mankgopo M. Kgatle

    2016-01-01

    Full Text Available Prostate cancer (PCa is the most prevalent urological cancer that affects aging men in South Africa, and mechanisms underlying prostate tumorigenesis remain elusive. Research advancements in the field of PCa and epigenetics have allowed for the identification of specific alterations that occur beyond genetics but are still critically important in the pathogenesis of tumorigenesis. Anomalous epigenetic changes associated with PCa include histone modifications, DNA methylation, and noncoding miRNA. These mechanisms regulate and silence hundreds of target genes including some which are key components of cellular signalling pathways that, when perturbed, promote tumorigenesis. Elucidation of mechanisms underlying epigenetic alterations and the manner in which these mechanisms interact in regulating gene transcription in PCa are an unmet necessity that may lead to novel chemotherapeutic approaches. This will, therefore, aid in developing combination therapies that will target multiple epigenetic pathways, which can be used in conjunction with the current conventional PCa treatment.

  14. Nanotechnology Approaches to Studying Epigenetic Changes in Cancer

    Science.gov (United States)

    Riehn, Robert

    2011-03-01

    Placing polyelectrolytes into confined geometries has a profound effect on their molecular configuration. For instance, placing long DNA molecules into channels with a cross-section of about 100 nm 2 stretches them out to about 70% of their contour length. We are using this effect to map epigenetic changes on single DNA and chromatin strands. This mapping on single molecules becomes central in the study of the heterogeneity of cell population in cancer, since rapid change of epigenetic makeup, propagated through rare cancer stem cells, is a hallmark of its progression. We demonstrate the basic building blocks for the single-molecule epigenetic analysis of genomic sized DNA. In particular, we have achieved the mapping of methylated regions in DNA with heterogeneous 5-methyl cytosine modification using a specific fluorescent marker. We further show that chromatin with an intact histone structure can be stretched similar to DNA, and that the epigenetic state of histone tails can be detected using fluorescent antibodies.

  15. Epigenetic regulation of caloric restriction in aging

    Directory of Open Access Journals (Sweden)

    Daniel Michael

    2011-08-01

    Full Text Available Abstract The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases.

  16. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR target gene Cyp2b10 in the liver of B6C3F1 mice.

    Directory of Open Access Journals (Sweden)

    Harri Lempiäinen

    2011-03-01

    Full Text Available Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  17. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    Science.gov (United States)

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  18. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    Science.gov (United States)

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  19. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  20. Epigenetics in Medullary Thyroid Cancer: From Pathogenesis to Targeted Therapy.

    Science.gov (United States)

    Vitale, Giovanni; Dicitore, Alessandra; Messina, Erika; Sciammarella, Concetta; Faggiano, Antongiulio; Colao, Annamaria

    2016-01-01

    Medullary thyroid carcinoma (MTC) originates from the parafollicular C cells of the thyroid gland. Mutations of the RET proto-oncogene are implicated in the pathogenesis of MTC. Germline activating mutations of this gene have been reported in about 88-98% of familial MTCs, while somatic mutations of RET gene have been detected in about 23-70% of sporadic forms. Although these genetic events are well characterized, much less is known about the role of epigenetic abnormalities in MTC. The present review reports a detailed description of epigenetic abnormalities (DNA methylation, histone modifications and miRNA profile), probably involved in the pathogenesis and progression of MTC. A systematic review was performed using Pubmed and Google patents databases. We report the current understanding of epigenetic patterns in MTC and discuss the potential use of current knowledge in designing novel therapeutic strategies through epigenetic drugs, focusing on recent patents in this field. Taking into account the reversibility of epigenetic alterations and the recent development in this field, epigenetic therapy may emerge for clinical use in the near future for patients with advanced MTC.

  1. Epigenetics and obesity: a relationship waiting to be explained.

    Science.gov (United States)

    Symonds, Michael E; Budge, Helen; Frazier-Wood, Alexis C

    2013-01-01

    Obesity can have multifactorial causes that may change with development and are not simply attributable to one's genetic constitution. To date, expensive and laborious genome-wide association studies have only ascribed a small contribution of genetic variants to obesity. The emergence of the field of epigenetics now offers a new paradigm with which to study excess fat mass. Currently, however, there are no compelling epigenetic studies to explain the role of epigenetics in obesity, especially from a developmental perspective. It is clear that until there are advances in the understanding of the main mechanisms by which different fat types, i.e. brown, beige, and white, are established and how these differ between depots and species, population-based studies designed to determine specific aspects of epigenetics will be potentially limited. Obesity is a slowly evolving condition that is not simply explained by changes in the intake of one macronutrient. The latest advances in epigenetics, coupled with the establishment of relevant longitudinal models of obesity, which incorporate functionally relevant end points, may now permit the precise contribution of epigenetic modifications to excess fat mass to be effectively studied. © 2013 S. Karger AG, Basel.

  2. Epigenetic regulation of neural stem cell property from embryo to adult

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    2016-03-01

    Full Text Available Neural stem cells (NSCs have the ability to self-renew and give rise to neurons and glial cells (astrocytes and oligodendrocytes in the mammalian central nervous system. This multipotency is acquired by NSCs during development and is maintained throughout life. Proliferation, fate specification, and maturation of NSCs are regulated by both cell intrinsic and extrinsic factors. Epigenetic modification is a representative intrinsic factor, being involved in many biological aspects of central nervous system development and adult neurogenesis through the regulation of NSC dynamics. In this review, we summarize recent progress in the epigenetic regulation of NSC behavior in the embryonic and adult brain, with particular reference to DNA methylation, histone modification, and noncoding RNAs.

  3. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    Science.gov (United States)

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  4. Epigenetic Basis of Neuronal and Synaptic Plasticity.

    Science.gov (United States)

    Karpova, Nina N; Sales, Amanda J; Joca, Samia R

    2017-01-01

    Neuronal network and plasticity change as a function of experience. Altered neural connectivity leads to distinct transcriptional programs of neuronal plasticity-related genes. The environmental challenges throughout life may promote long-lasting reprogramming of gene expression and the development of brain disorders. The modifications in neuronal epigenome mediate gene-environmental interactions and are required for activity-dependent regulation of neuronal differentiation, maturation and plasticity. Here, we highlight the latest advances in understanding the role of the main players of epigenetic machinery (DNA methylation and demethylation, histone modifications, chromatin-remodeling enzymes, transposons, and non-coding RNAs) in activity-dependent and long- term neural and synaptic plasticity. The review focuses on both the transcriptional and post-transcriptional regulation of gene expression levels, including the processes of promoter activation, alternative splicing, regulation of stability of gene transcripts by natural antisense RNAs, and alternative polyadenylation. Further, we discuss the epigenetic aspects of impaired neuronal plasticity and the pathogenesis of neurodevelopmental (Rett syndrome, Fragile X Syndrome, genomic imprinting disorders, schizophrenia, and others), stressrelated (mood disorders) and neurodegenerative Alzheimer's, Parkinson's and Huntington's disorders. The review also highlights the pharmacological compounds that modulate epigenetic programming of gene expression, the potential treatment strategies of discussed brain disorders, and the questions that should be addressed during the development of effective and safe approaches for the treatment of brain disorders.

  5. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation.

    Science.gov (United States)

    Chisolm, Danielle A; Weinmann, Amy S

    2018-04-26

    Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4 + T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.

  6. Clinical implications of epigenetic regulation in oral cancer.

    Science.gov (United States)

    D'Souza, Wendy; Saranath, Dhananjaya

    2015-12-01

    Oral cancer is a high incidence cancer which is of major public health concern in India being the most common cancer in males and fifth most common cancer in females in India, contributing to 26% of the global oral cancer burden. The major risk factors of oral cancer are tobacco, alcohol and high risk Human Papilloma Virus type 16/18. However, only 3-12% of the high risk individuals with dysplasia develop oral cancer. Thus, individual genomic variants representing the genomic constitution and epigenetic alterations play a critical role in the development of oral cancer. Extensive epigenetic studies on the molecular lesions including oncogenes, tumor suppressor genes, genes associated with apoptosis, DNA damage repair have been reported. The current review highlights epigenetic regulation with a focus on molecular biomarkers and epidrug therapy in oral cancer. Epigenetic regulation by hypermethylation, histone modifications and specific microRNAs are often associated with early events and advanced stages in oral cancer, and thus indicate epidrug therapy for intervention. The presence of epigenetic marks in oral lesions, cancers and tumor associated mucosa emphasizes indications as biomarkers and epidrugs with therapeutic potential for better patient management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Molecular epigenetics in the management of ovarian cancer: Are we investigating a rational clinical promise?

    Directory of Open Access Journals (Sweden)

    Ha eNguyen

    2014-04-01

    Full Text Available Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. While liquid tumors are benefitting from epigenetically-related therapies, solid tumors like ovarian cancer are not (yet?. Herein we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Preclinical and clinical research on the role of epigenetic modifications is summarized as well. Sadly, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have preclinical utility in pharmacology and clinical applications for prognosis and diagnosis. Lastly, drugs currently in clinical trials (i.e. histone deacetylase inhibitors are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; what we have now is hope.

  8. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    Science.gov (United States)

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  9. Engrampigenetics: Epigenetics of engram memory cells.

    Science.gov (United States)

    Ripoli, Cristian

    2017-05-15

    For long time, the epidemiology of late-onset sporadic Alzheimer's disease (AD) risk factors has centered on adult life-style. Recent studies have, instead, focused on the role of early life experiences in progression of such disease especially in the context of prenatal and postnatal life. Although no single unfavorable environmental event has been shown to be neither necessary nor sufficient for AD development, it is possible that the sum of several environmentally induced effects, over time, contribute to its pathophysiology through epigenetic mechanisms. Indeed, epigenetic changes are influenced by environmental factors and have been proposed to play a role in multifactorial pathologies such as AD. At the same time, recent findings suggest that epigenetic mechanisms are one method that neurons use to translate transient stimuli into stable memories. Thus, the characteristics of epigenetics being a critical link between the environment and genes and playing a crucial role in memory formation make candidate epigenetic mechanisms a natural substrate for AD research. Indeed, independent groups have reported several epigenetically dysregulated genes in AD models; however, the role of epigenetic mechanisms in AD has remained elusive owing to contradictory results. Here, I propose that restricting the analysis of epigenetic changes specifically to subpopulations of neurons (namely, engram memory cells) might be helpful in understanding the role of the epigenetic process in the memory-related specific epigenetic code and might constitute a new template for therapeutic interventions against AD. Copyright © 2016. Published by Elsevier B.V.

  10. Great expectations – Epigenetics and the meandering path from bench to bedside

    Directory of Open Access Journals (Sweden)

    Sophia J. Häfner

    2016-06-01

    Full Text Available Making quick promises of major biomedical breakthroughs based on exciting discoveries at the bench is tempting. But the meandering path from fundamental science to life-saving clinical applications can be fraught with many hurdles. Epigenetics, the study of potentially heritable changes of gene function without modification of the underlying DNA sequence, has dominated the biological research field during the last decade and encountered a large public success. Driven by the unfolding of molecular biology and recent technological progress, the term has evolved significantly and shifted from a conceptual framework to a mechanistic understanding. This shift was accompanied by much hype and raised high hopes that epigenetics might hold both the key to deciphering the molecular underpinning of complex, non-Mendelian diseases and offer novel therapeutic approaches for a large panel of pathologies. However, while exciting reports of biological phenomena involving DNA methylation and histone modifications fill up the scientific literature, the realistic clinical applications of epigenetic medicines remain somewhat blurry. Here, we discuss the state of the art and speculate how epigenetics might contribute to prognostic and therapy approaches in the future.

  11. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    Science.gov (United States)

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics.

  12. Epigenetic mechanisms in schizophrenia.

    Science.gov (United States)

    Akbarian, Schahram

    2014-09-01

    Schizophrenia is a major psychiatric disorder that lacks a unifying neuropathology, while currently available pharmacological treatments provide only limited benefits to many patients. This review will discuss how the field of neuroepigenetics could contribute to advancements of the existing knowledge on the neurobiology and treatment of psychosis. Genome-scale mapping of DMA methylation, histone modifications and variants, and chromosomal loopings for promoter-enhancer interactions and other epigenetic determinants of genome organization and function are likely to provide important clues about mechanisms contributing to dysregulated expression of synaptic and metabolic genes in schizophrenia brain, including the potential links to the underlying genetic risk architecture and environmental exposures. In addition, studies in animal models are providing a rapidly increasing list of chromatin-regulatory mechanisms with significant effects on cognition and complex behaviors, thereby pointing to the therapeutic potential of epigenetic drug targets in the nervous system.

  13. Fetal alcohol programming of hypothalamic proopiomelanocortin system by epigenetic mechanisms and later life vulnerability to stress.

    Science.gov (United States)

    Bekdash, Rola; Zhang, Changqing; Sarkar, Dipak

    2014-09-01

    Hypothalamic proopiomelanocortin (POMC) neurons, one of the major regulators of the hypothalamic-pituitary-adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure (FAE). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β-endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long-lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long-lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress-related diseases in patients with fetal alcohol spectrum disorders. Copyright © 2014 by the Research Society on Alcoholism.

  14. Challenges ahead for mass spectrometry and proteomics applications in epigenetics.

    Science.gov (United States)

    Kessler, Benedikt M

    2010-02-01

    Inheritance of biological information to future generations depends on the replication of DNA and the Mendelian principle of distribution of genes. In addition, external and environmental factors can influence traits that can be propagated to offspring, but the molecular details of this are only beginning to be understood. The discoveries of DNA methylation and post-translational modifications on chromatin and histones provided entry points for regulating gene expression, an area now defined as epigenetics and epigenomics. Mass spectrometry turned out to be instrumental in uncovering molecular details involved in these processes. The central role of histone post-translational modifications in epigenetics related biological processes has revitalized mass spectrometry based investigations. In this special report, current approaches and future challenges that lay ahead due to the enormous complexity are discussed.

  15. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma

    Science.gov (United States)

    Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.

    2014-01-01

    Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221

  16. Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells.

    Science.gov (United States)

    Daniele, Giulia; Simonetti, Giorgia; Fusilli, Caterina; Iacobucci, Ilaria; Lonoce, Angelo; Palazzo, Antonio; Lomiento, Mariana; Mammoli, Fabiana; Marsano, Renè Massimiliano; Marasco, Elena; Mantovani, Vilma; Quentmeier, Hilmar; Drexler, Hans G; Ding, Jie; Palumbo, Orazio; Carella, Massimo; Nadarajah, Niroshan; Perricone, Margherita; Ottaviani, Emanuela; Baldazzi, Carmen; Testoni, Nicoletta; Papayannidis, Cristina; Ferrari, Sergio; Mazza, Tommaso; Martinelli, Giovanni; Storlazzi, Clelia Tiziana

    2017-07-01

    We here describe a leukemogenic role of the homeobox gene UNCX , activated by epigenetic modifications in acute myeloid leukemia (AML). We found the ectopic activation of UNCX in a leukemia patient harboring a t(7;10)(p22;p14) translocation, in 22 of 61 of additional cases [a total of 23 positive patients out of 62 (37.1%)], and in 6 of 75 (8%) of AML cell lines. UNCX is embedded within a low-methylation region (canyon) and encodes for a transcription factor involved in somitogenesis and neurogenesis, with specific expression in the eye, brain, and kidney. UNCX expression turned out to be associated, and significantly correlated, with DNA methylation increase at its canyon borders based on data in our patients and in archived data of patients from The Cancer Genome Atlas. UNCX -positive and -negative patients displayed significant differences in their gene expression profiles. An enrichment of genes involved in cell proliferation and differentiation, such as MAP2K1 and CCNA1 , was revealed. Similar results were obtained in UNCX -transduced CD34 + cells, associated with low proliferation and differentiation arrest. Accordingly, we showed that UNCX expression characterizes leukemia cells at their early stage of differentiation, mainly M2 and M3 subtypes carrying wild-type NPM1 We also observed that UNCX expression significantly associates with an increased frequency of acute promyelocytic leukemia with PML-RARA and AML with t(8;21)(q22;q22.1); RUNX1-RUNX1T1 classes, according to the World Health Organization disease classification. In summary, our findings suggest a novel leukemogenic role of UNCX , associated with epigenetic modifications and with impaired cell proliferation and differentiation in AML. Copyright© 2017 Ferrata Storti Foundation.

  17. Epigenetic developmental programs and adipogenesis: implications for psychotropic induced obesity.

    Science.gov (United States)

    Chase, Kayla; Sharma, Rajiv P

    2013-11-01

    Psychotropic agents are notorious for their ability to increase fat mass in psychiatric patients. The two determinants of fat mass are the production of newly differentiated adipocytes (adipogenesis), and the volume of lipid accumulation. Epigenetic programs have a prominent role in cell fate commitments and differentiation required for adipogenesis. In parallel, epigenetic effects on energy metabolism are well supported by several genetic models. Consequently, a variety of psychotropics, often prescribed in combinations and for long periods, may utilize a common epigenetic effector path causing an increase in adipogenesis or reduction in energy metabolism. In particular, the recent discovery that G protein coupled signaling cascades can directly modify epigenetic regulatory enzymes implicates surface receptor activity by psychotropic medications. The potential therapeutic implications are also suggested by the effects of the clinically approved antidepressant tranylcypromine, also a histone demethylase inhibitor, which has impressive therapeutic effects on metabolism in the obese phenotype.

  18. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants.

    Science.gov (United States)

    Machczyńska, Joanna; Zimny, Janusz; Bednarek, Piotr Tomasz

    2015-10-01

    Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.

  19. Dissecting epigenetic silencing complexity in the mouse lung cancer suppressor gene Cadm1.

    Directory of Open Access Journals (Sweden)

    Stella Marie Reamon-Buettner

    Full Text Available Disease-oriented functional analysis of epigenetic factors and their regulatory mechanisms in aberrant silencing is a prerequisite for better diagnostics and therapy. Yet, the precise mechanisms are still unclear and complex, involving the interplay of several effectors including nucleosome positioning, DNA methylation, histone variants and histone modifications. We investigated the epigenetic silencing complexity in the tumor suppressor gene Cadm1 in mouse lung cancer progenitor cell lines, exhibiting promoter hypermethylation associated with transcriptional repression, but mostly unresponsive to demethylating drug treatments. After predicting nucleosome positions and transcription factor binding sites along the Cadm1 promoter, we carried out single-molecule mapping with DNA methyltransferase M.SssI, which revealed in silent promoters high nucleosome occupancy and occlusion of transcription factor binding sites. Furthermore, M.SssI maps of promoters varied within and among the different lung cancer cell lines. Chromatin analysis with micrococcal nuclease also indicated variations in nucleosome positioning to have implications in the binding of transcription factors near nucleosome borders. Chromatin immunoprecipitation showed that histone variants (H2A.Z and H3.3, and opposing histone modification marks (H3K4me3 and H3K27me3 all colocalized in the same nucleosome positions that is reminiscent of epigenetic plasticity in embryonic stem cells. Altogether, epigenetic silencing complexity in the promoter region of Cadm1 is not only defined by DNA hypermethylation, but high nucleosome occupancy, altered nucleosome positioning, and 'bivalent' histone modifications, also likely contributed in the transcriptional repression of this gene in the lung cancer cells. Our results will help define therapeutic intervention strategies using epigenetic drugs in lung cancer.

  20. Epstein-Barr virus: a master epigenetic manipulator.

    Science.gov (United States)

    Scott, Rona S

    2017-10-01

    Like all herpesviruses, the ability of Epstein-Barr virus (EBV) to establish life-long persistent infections is related to a biphasic viral lifecycle that involves latency and reactivation/lytic replication. Memory B cells serve as the EBV latency compartment where silencing of viral gene expression allows maintenance of the viral genome, avoidance of immune surveillance, and life-long carriage. Upon viral reactivation, viral gene expression is induced for replication, progeny virion production, and viral spread. EBV uses the host epigenetic machinery to regulate its distinct viral gene expression states. However, epigenetic manipulation by EBV affects the host epigenome by reprogramming cells in ways that leave long-lasting, oncogenic phenotypes. Such virally-induced epigenetic alterations are evident in EBV-associated cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Key Role of Epigenetics in the Persistence of Asexual Lineages

    Directory of Open Access Journals (Sweden)

    Emilie Castonguay

    2012-01-01

    Full Text Available Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.

  3. Epigenetic modulators of monocytic function: implication for steady state and disease in the CNS .

    Directory of Open Access Journals (Sweden)

    F. Nina Papavasiliou

    2016-01-01

    Full Text Available Epigenetic alterations are necessary for the establishment of functional and phenotypic diversity in populations of immune cells of the monocytic lineage. The epigenetic status of individual genes at different time points defines their transcriptional responses throughout development and in response to environmental stimuli. Epigenetic states are defined at the level of DNA modifications, chromatin modifications, as well as at the level of RNA base changes through RNA editing. Drawing from lessons regarding the epigenome and epitranscriptome of cells of the monocytic lineage in the periphery, and from recently published RNAseq data deriving from brain-resident monocytes, we discuss the impact of modulation of these epigenetic states and how they affect processes important for the development of a healthy brain, as well as mechanisms of neurodegenerative disease and aging. An understanding of the varied brain responses and pathologies in light of these novel gene regulatory systems in monocytes will lead to important new insights in the understanding of the aging process and the treatment and diagnosis of neurodegenerative disease.

  4. Preserving human potential as freedom: a framework for regulating epigenetic harms.

    Science.gov (United States)

    Khan, Fazal

    2010-01-01

    Epigenetics is a rapidly evolving scientific field of inquiry examining how a wide range of environmental, social, and nutritional exposures can dramatically control how genes are expressed without changing the underlying DNA. Research has demonstrated that epigenetics plays a large role in human development and in disease causation. In a sense, epigenetics blurs the distinction between "nature" and "nurture" as experiences (nurture) become a part of intrinsic biology (nature). Remarkably, some epigenetic modifications are durable across generations, meaning that exposures from our grandparents' generation might affect our health now, even if we have not experienced the same exposures. In the same vein, current exposures could affect the health of not only individuals currently living but also future generations. Given the relative novelty of epigenetics research and the multifactorial nature of human development and disease causation, it is unlikely that conclusive proof can be established showing that particular exposures lead to epigenetic risks that manifest into specific conditions. Using the Capabilities Approach ("CA") developed by Amartya Sen and Martha Nussbaum, this article argues that epigenetic risk is not merely a medical issue, but that it more generally implicates the underlying fairness and justice of our social contract. For instance, how we develop mentally or physically has a tremendous impact upon our inherent capabilities and our set of life options. The CA prompts us to ask questions such as: (1) what impact do particular epigenetic risks have on our ability to exercise free choices; (2) are these risks avoidable; and (3) how are these risks distributed across society? Due to the complex nature of epigenetic risk, tort law is predictably incapable of addressing this harm. Further, while regulatory agencies possess the statutory authority to begin addressing epigenetic harms, currently these agencies are not attuned to measure or to respond to

  5. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms.

    Science.gov (United States)

    Royston, Kendra J; Paul, Bidisha; Nozell, Susan; Rajbhandari, Rajani; Tollefsbol, Trygve O

    2018-07-01

    Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Epigenetics and Vasculitis: a Comprehensive Review.

    Science.gov (United States)

    Renauer, Paul; Coit, Patrick; Sawalha, Amr H

    2016-06-01

    Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet's disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies.

  7. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells.

    Directory of Open Access Journals (Sweden)

    Miguel A Brieño-Enríquez

    Full Text Available In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation.

  8. Waterpipe smoking induces epigenetic changes in the small airway epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew S Walters

    Full Text Available Waterpipe (also called hookah, shisha, or narghile smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05 representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05 change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling. Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

  9. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research

    Science.gov (United States)

    Pagliaroli, Luca; Vető, Borbála; Arányi, Tamás; Barta, Csaba

    2016-01-01

    Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS. PMID:27462201

  10. CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp

    Science.gov (United States)

    Tempera, Italo; Wiedmer, Andreas; Dheekollu, Jayaraju; Lieberman, Paul M.

    2010-01-01

    The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection. PMID:20730088

  11. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  12. Genetics and epigenetics of rheumatoid arthritis

    Science.gov (United States)

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  13. An emerging role for epigenetic factors in relation to executive function.

    Science.gov (United States)

    Ibrahim, Omar; Sutherland, Heidi G; Haupt, Larisa M; Griffiths, Lyn R

    2017-11-20

    Executive function (EF) includes a range of decision-making and higher-order thinking processes. Although the genetic basis of EF has been studied and reviewed, epigenetic factors that influence EF are an emerging field of interest; here, we summarize the current research. Work relating to different word combinations of 'Executive Function' and 'Epigenetic' was identified through three academic search directories. Inclusion criteria were human populations, EF testing, epigenetic testing or genotyping related to epigenetic regulation. To date, 14 studies have been reported, which examined epigenetic variation, in particular DNA methylation, in relation to EF assessments conducted in human subjects, with some positive associations found. Study populations included healthy cohorts, as well as psychiatric and neurological patient cohorts. Epigenetics in relation to EF is an emerging area of investigation with relatively few studies to date. Most assay DNA methylation, with some studies suggesting that epigenetic factors can be associated with EF. EF constitutes complex phenotypic and genotypic correlates that differ because of cohort attributes as well as the targeted task examined. Larger studies are required to further elucidate the contribution of epigenetic factors to EF with the identification of epigenetic modifications influencing EF having potential to provide new biomarkers for neuropsychiatric disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  14. The epigenetic bottleneck of neurodegenerative and psychiatric diseases.

    Science.gov (United States)

    Sananbenesi, Farahnaz; Fischer, Andre

    2009-11-01

    The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.

  15. General-Purpose Genotype or How Epigenetics Extend the Flexibility of a Genotype

    Directory of Open Access Journals (Sweden)

    Rachel Massicotte

    2012-01-01

    Full Text Available This project aims at investigating the link between individual epigenetic variability (not related to genetic variability and the variation of natural environmental conditions. We studied DNA methylation polymorphisms of individuals belonging to a single genetic lineage of the clonal diploid fish Chrosomus eos-neogaeus sampled in seven geographically distant lakes. In spite of a low number of informative fragments obtained from an MSAP analysis, individuals of a given lake are epigenetically similar, and methylation profiles allow the clustering of individuals in two distinct groups of populations among lakes. More importantly, we observed a significant pH variation that is consistent with the two epigenetic groups. It thus seems that the genotype studied has the potential to respond differentially via epigenetic modifications under variable environmental conditions, making epigenetic processes a relevant molecular mechanism contributing to phenotypic plasticity over variable environments in accordance with the GPG model.

  16. Comparative in silico profiling of epigenetic modifiers in human tissues.

    Science.gov (United States)

    Son, Mi-Young; Jung, Cho-Rok; Kim, Dae-Soo; Cho, Hyun-Soo

    2018-04-06

    The technology of tissue differentiation from human pluripotent stem cells has attracted attention as a useful resource for regenerative medicine, disease modeling and drug development. Recent studies have suggested various key factors and specific culture methods to improve the successful tissue differentiation and efficient generation of human induced pluripotent stem cells. Among these methods, epigenetic regulation and epigenetic signatures are regarded as an important hurdle to overcome during reprogramming and differentiation. Thus, in this study, we developed an in silico epigenetic panel and performed a comparative analysis of epigenetic modifiers in the RNA-seq results of 32 human tissues. We demonstrated that an in silico epigenetic panel can identify epigenetic modifiers in order to overcome epigenetic barriers to tissue-specific differentiation.

  17. Understanding Neurological Disease Mechanisms in the Era of Epigenetics

    Science.gov (United States)

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type–specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues. PMID:23571666

  18. Implication des modifications épigénétiques dans les cancers : développement de nouvelles approches thérapeutiques

    Directory of Open Access Journals (Sweden)

    Willems L.

    2008-01-01

    Full Text Available Involvement of epigenetic modifications in cancers: development of new therapeutic approaches. Since cancer is the second cause of death after cardiovascular diseases in industrialized countries, it is urgent to elaborate new therapeutic approaches. Besides DNA mutations of essential genes, expansion of a cancer cell is frequently associated with epigenetic modifications i.e. not directly coded by the DNA sequence. Amongst epigenetic modifications, histones acetylation and DNA methylation are known to play important roles. In this context, a very promising anticancer therapy would be to correct epigenetic errors using compounds modulating histone acetylation and DNA methylation alone or in combination with other chemotherapeutic agents.

  19. Epigenetics in adipose tissue, obesity, weight loss, and diabetes.

    Science.gov (United States)

    Martínez, J Alfredo; Milagro, Fermín I; Claycombe, Kate J; Schalinske, Kevin L

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.

  20. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition

    Directory of Open Access Journals (Sweden)

    J. David Sterns

    2014-05-01

    Full Text Available Type II diabetes mellitus (T2DM is a widespread metabolic disorder characterized by insulin resistance resulting in abnormally high blood glucose levels. While the onset of T2DM is known to be influenced by a number of genetic factors, emerging research has demonstrated the additional role of a variety of epigenetic mechanisms in the development of this disorder. Epigenetics relates to the heritable changes in gene expression that cannot be explained by simple variations in the primary DNA sequence and includes DNA methylation and histone modification. These changes impact many processes, including stem cell differentiation into pancreatic endocrine cells as well as normal β-cell function. Recent studies focusing on the effects of maternal health, specifically as it is affected by famine and hyperglycemia, have found possible mechanisms to explain the increased likelihood of the fetus developing risk factors such as altered atherogenic lipid profiles, increased obesity and BMI, as well as impaired glucose tolerance (IGT for the development of T2DM later in life. It is suggested that these epigenetic influences happen early during gestation and are less susceptible to the effects of postnatal environmental modification as was previously thought. Regardless, emerging research into epigenetic-based treatment approaches for T2DM are promising and offer yet another means by which to limit the impact of this global epidemic.

  1. Epigenetic game theory and its application in plants. Comment on: ;Epigenetic game theory: How to compute the epigenetic control of maternal-to-zygotic transition; by Qian Wang et al.

    Science.gov (United States)

    Zhang, Yuan-Ming; Zhang, Yinghao; Guo, Mingyue

    2017-03-01

    Wang's et al. article [1] is the first to integrate game theory (especially evolutionary game theory) with epigenetic modification of zygotic genomes. They described and assessed a modeling framework based on evolutionary game theory to quantify, how sperms and oocytes interact through epigenetic processes, to determine embryo development. They also studied the internal mechanisms for normal embryo development: 1) evolutionary interactions between DNA methylation of the paternal and maternal genomes, and 2) the application of game theory to formulate and quantify how different genes compete or cooperate to regulate embryogenesis through methylation. Although it is not very comprehensive and profound regarding game theory modeling, this article bridges the gap between evolutionary game theory and the epigenetic control of embryo development by powerful ordinary differential equations (ODEs). The epiGame framework includes four aspects: 1) characterizing how epigenetic game theory works by the strategy matrix, in which the pattern and relative magnitude of the methylation effects on embryogenesis, are described by the cooperation and competition mechanisms, 2) quantifying the game that the direction and degree of P-M interactions over embryo development can be explained by the sign and magnitude of interaction parameters in model (2), 3) modeling epigenetic interactions within the morula, especially for two coupled nonlinear ODEs, with explicit functions in model (4), which provide a good fit to the observed data for the two sexes (adjusted R2 = 0.956), and 4) revealing multifactorial interactions in embryogenesis from the coupled ODEs in model (2) to triplet ODEs in model (6). Clearly, this article extends game theory from evolutionary game theory to epigenetic game theory.

  2. Epigenetic modulation of gene expression governs the brain's response to injury.

    Science.gov (United States)

    Simon, Roger P

    2016-06-20

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Mapping the Technological Knowledge Landscape: The Case of Epigenetics.

    Science.gov (United States)

    Song, Chie Hoon; Yoon, Janghyeok; Ko, Namuk; Han, Jeung-Whan

    2016-01-01

    Epigenetics is a biomedical novelty in drug design and disease control whose mechanisms play a significant role in transferring environmental signals to determine patterns of gene expression. Systematic identification of the main trends in epigenetics patenting activity provides insights into fundamental building blocks of this research field and policy guidance to funding agencies. The review aims at providing a comprehensive overview of the research and development trend in epigenetics by mapping the knowledge structure in patent landscape. Citation-based patent network analysis was performed to visualize the technological landscape. We focus on identifying the structure of the knowledge networks to study the technological trajectories. Patents that play an integral part in the dissemination and bridging of the technical knowledge are located and ranked. The latent topics in patent documents are highlighted by means of a topic modeling technique. Visualization of the patent network results in four main clusters. The first two clusters deal with the inhibition of histone deacetylase (HDAC). The third cluster covers inventions related to DNA methylation, which represents an epigenetic signaling tool that cells use to control gene expression. The fourth cluster encompasses computing systems and data mining techniques for identifying combinations of genetic and epigenetic attributes related to health and lifestyle improvements. We are in the growth period of gathering knowledge on various mechanisms of epigenetic regulation. There is enormous potential for improving healthcare through better understanding of the interrelationships between epigenetic control of gene expression and compounds that trigger these modifications.

  4. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development

    Science.gov (United States)

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H.

    2016-01-01

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this

  5. Epigenetics of drought-induced trans-generational plasticity: consequences for range limit development.

    Science.gov (United States)

    Alsdurf, Jacob; Anderson, Cynthia; Siemens, David H

    2015-12-18

    Genetic variation gives plants the potential to adapt to stressful environments that often exist beyond their geographic range limits. However, various genetic, physiological or developmental constraints might prevent the process of adaptation. Alternatively, environmentally induced epigenetic changes might sustain populations for several generations in stressful areas across range boundaries, but previous work on Boechera stricta, an upland mustard closely related to Arabidopsis, documented a drought-induced trans-generational plastic trade-off that could contribute to range limit development. Offspring of parents who were drought treated had higher drought tolerance, but lower levels of glucosinolate toxins. Both drought tolerance and defence are thought to be needed to expand the range to lower elevations. Here, we used methylation-sensitive amplified fragment length polymorphisms to determine whether environmentally induced DNA methylation and thus epigenetics could be a mechanism involved in the observed trans-generational plastic trade-off. We compared 110 offspring from the same self-fertilizing lineages whose parents were exposed to experimental drought stress treatments in the laboratory. Using three primer combinations, 643 polymorphic epi-loci were detected. Discriminant function analysis (DFA) on the amount of methylation detected resulted in significant combinations of epi-loci that distinguished the parent drought treatments in the offspring. Principal component (PC) and univariate association analyses also detected the significant differences, even after controlling for lineage, planting flat, developmental differences and multiple testing. Univariate tests also indicated significant associations between the amount of methylation and drought tolerance or glucosinolate toxin concentration. One epi-locus that was implicated in DFA, PC and univariate association analysis may be directly involved in the trade-off because increased methylation at this

  6. At the Frontier of Epigenetics of Brain Sex Differences

    Directory of Open Access Journals (Sweden)

    Margaret M Mccarthy

    2015-08-01

    Full Text Available The notion that epigenetics may play an important role in the establishment and maintenance of sex differences in the brain has garnered great enthusiasm but the reality in terms of actual advances have been slow. Two general approaches include the comparison of a particular epigenetic mark in males versus females and the inhibition of key epigenetic enzymes or co-factors to determine if this eliminates a particular sex difference in brain or behavior. The majority of emphasis has been on candidate genes such as steroid receptors. Only recently have more generalized survey type approaches been achieved and these promise to open new vista’s and accelerate discovery of important roles for DNA methylation, histone modification and microRNAs. Technical challenges abound and while not unique to this field will require novel thinking and new approaches by behavioral neuroendocrinogists.

  7. Dad's Snoring May Have Left Molecular Scars in Your DNA: the Emerging Role of Epigenetics in Sleep Disorders.

    Science.gov (United States)

    Morales-Lara, Daniela; De-la-Peña, Clelia; Murillo-Rodríguez, Eric

    2018-04-01

    The sleep-wake cycle is a biological phenomena under the orchestration of neurophysiological, neurochemical, neuroanatomical, and genetical mechanisms. Moreover, homeostatic and circadian processes participate in the regulation of sleep across the light-dark period. Further complexity of the understanding of the genesis of sleep engages disturbances which have been characterized and classified in a variety of sleep-wake cycle disorders. The most prominent sleep alterations include insomnia as well as excessive daytime sleepiness. On the other side, several human diseases have been linked with direct changes in DNA, such as chromatin configuration, genomic imprinting, DNA methylation, histone modifications (acetylation, methylation, ubiquitylation or sumoylation, etc.), and activating RNA molecules that are transcribed from DNA but not translated into proteins. Epigenetic theories primarily emphasize the interaction between the environment and gene expression. According to these approaches, the environment to which mammals are exposed has a significant role in determining the epigenetic modifications occurring in chromosomes that ultimately would influence not only development but also the descendants' physiology and behavior. Thus, what makes epigenetics intriguing is that, unlike genetic variation, modifications in DNA are altered directly by the environment and, in some cases, these epigenetic changes may be inherited by future generations. Thus, it is likely that epigenetic phenomena might contribute to the homeostatic and/or circadian control of sleep and, possibly, have an undescribed link with sleep disorders. An exciting new horizon of research is arising between sleep and epigenetics since it represents the relevance of the study of how the genome learns from its experiences and modulates behavior, including sleep.

  8. Epigenetic regulation in the inner ear and its potential roles in development, protection, and regeneration

    Directory of Open Access Journals (Sweden)

    Jian eZuo

    2015-01-01

    Full Text Available The burgeoning field of epigenetics is beginning to make a significant impact on our understanding of tissue development, maintenance, and function. Epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues that direct cell-type specific gene networks. The inner ear is comprised of highly specialized cell types with identical genomes that originate from a single totipotent zygote. During inner ear development specific combinations of transcription factors and epigenetic modifiers must function in a coordinated manner to establish and maintain cellular identity. These epigenetic regulatory mechanisms contribute to the maintenance of distinct chromatin states and cell-type specific gene expression patterns. In this review, we highlight emerging paradigms for epigenetic modifications related to inner ear development, and how epigenetics may have a significant role in hearing loss, protection, and regeneration.

  9. Epigenetic editing using programmable zinc ginger proteins : inherited silencing of endogenous gene expression by targeted DNA methylation

    NARCIS (Netherlands)

    Stolzenburg, Sabine

    2014-01-01

    Cancer development is not only the result of genetic mutations but also stems from modifications in the epigenetic code leading to an aberrant expression of genes relevant for cancer. The most studied epigenetic mark is DNA methylation of cytosines in the promoters of genes, which is associated with

  10. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.

    Science.gov (United States)

    Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko

    2018-05-01

    The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also

  11. DNA modification study of major depressive disorder: beyond locus-by-locus comparisons.

    Science.gov (United States)

    Oh, Gabriel; Wang, Sun-Chong; Pal, Mrinal; Chen, Zheng Fei; Khare, Tarang; Tochigi, Mamoru; Ng, Catherine; Yang, Yeqing A; Kwan, Andrew; Kaminsky, Zachary A; Mill, Jonathan; Gunasinghe, Cerisse; Tackett, Jennifer L; Gottesman, Irving I; Willemsen, Gonneke; de Geus, Eco J C; Vink, Jacqueline M; Slagboom, P Eline; Wray, Naomi R; Heath, Andrew C; Montgomery, Grant W; Turecki, Gustavo; Martin, Nicholas G; Boomsma, Dorret I; McGuffin, Peter; Kustra, Rafal; Petronis, Art

    2015-02-01

    Major depressive disorder (MDD) exhibits numerous clinical and molecular features that are consistent with putative epigenetic misregulation. Despite growing interest in epigenetic studies of psychiatric diseases, the methodologies guiding such studies have not been well defined. We performed DNA modification analysis in white blood cells from monozygotic twins discordant for MDD, in brain prefrontal cortex, and germline (sperm) samples from affected individuals and control subjects (total N = 304) using 8.1K CpG island microarrays and fine mapping. In addition to the traditional locus-by-locus comparisons, we explored the potential of new analytical approaches in epigenomic studies. In the microarray experiment, we detected a number of nominally significant DNA modification differences in MDD and validated selected targets using bisulfite pyrosequencing. Some MDD epigenetic changes, however, overlapped across brain, blood, and sperm more often than expected by chance. We also demonstrated that stratification for disease severity and age may increase the statistical power of epimutation detection. Finally, a series of new analytical approaches, such as DNA modification networks and machine-learning algorithms using binary and quantitative depression phenotypes, provided additional insights on the epigenetic contributions to MDD. Mapping epigenetic differences in MDD (and other psychiatric diseases) is a complex task. However, combining traditional and innovative analytical strategies may lead to identification of disease-specific etiopathogenic epimutations. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.

  12. Derangement of a factor upstream of RARalpha triggers the repression of a pleiotropic epigenetic network.

    Directory of Open Access Journals (Sweden)

    Francesca Corlazzoli

    Full Text Available Chromatin adapts and responds to extrinsic and intrinsic cues. We hypothesize that inheritable aberrant chromatin states in cancer and aging are caused by genetic/environmental factors. In previous studies we demonstrated that either genetic mutations, or loss, of retinoic acid receptor alpha (RARalpha, can impair the integration of the retinoic acid (RA signal at the chromatin of RA-responsive genes downstream of RARalpha, and can lead to aberrant repressive chromatin states marked by epigenetic modifications. In this study we tested whether the mere interference with the availability of RA signal at RARalpha, in cells with an otherwise functional RARalpha, can also induce epigenetic repression at RA-responsive genes downstream of RARalpha.To hamper the availability of RA at RARalpha in untransformed human mammary epithelial cells, we targeted the cellular RA-binding protein 2 (CRABP2, which transports RA from the cytoplasm onto the nuclear RARs. Stable ectopic expression of a CRABP2 mutant unable to enter the nucleus, as well as stable knock down of endogenous CRABP2, led to the coordinated transcriptional repression of a few RA-responsive genes downstream of RARalpha. The chromatin at these genes acquired an exacerbated repressed state, or state "of no return". This aberrant state is unresponsive to RA, and therefore differs from the physiologically repressed, yet "poised" state, which is responsive to RA. Consistent with development of homozygosis for epigenetically repressed loci, a significant proportion of cells with a defective CRABP2-mediated RA transport developed heritable phenotypes indicative of loss of function.Derangement/lack of a critical factor necessary for RARalpha function induces epigenetic repression of a RA-regulated gene network downstream of RARalpha, with major pleiotropic biological outcomes.

  13. Dynamic epigenetic responses to muscle contraction

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Zierath, Juleen R; Barrès, Romain

    2014-01-01

    Skeletal muscle is a malleable organ that responds to a single acute exercise bout by inducing the expression of genes involved in structural, metabolic and functional adaptations. Several epigenetic mechanisms including histone H4 deacetylation and loss of promoter methylation have been implicated...... in modifying exercise-responsive gene expression. These transient changes suggest that epigenetic mechanisms are not restricted to early stages of human development but are broad dynamic controllers of genomic plasticity in response to environmental factors....

  14. Epigenetic interplay between mouse endogenous retroviruses and host genes.

    Science.gov (United States)

    Rebollo, Rita; Miceli-Royer, Katharine; Zhang, Ying; Farivar, Sharareh; Gagnier, Liane; Mager, Dixie L

    2012-10-03

    Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes. We found that ERVs of the ETn/MusD family show decreased DNA methylation when near transcription start sites in tissues where the nearby gene is expressed. ERVs belonging to the IAP family, however, are generally heavily methylated, regardless of the genomic environment and the tissue studied. Furthermore, we found full-length ETn and IAP copies that display differential DNA methylation between their two long terminal repeats (LTRs), suggesting that the environment surrounding gene promoters can prevent methylation of the nearby LTR. Spreading from methylated ERV copies to nearby genes was rarely observed, with the regions between the ERVs and genes apparently acting as a boundary, enriched in H3K4me3 and CTCF, which possibly protects the unmethylated gene promoter. Furthermore, the flanking regions of unmethylated ERV copies harbor H3K4me3, consistent with spreading of euchromatin from the host gene toward ERV insertions. We have shown that spreading of DNA methylation from ERV copies toward active gene promoters is rare. We provide evidence that genes can be protected from ERV-induced heterochromatin spreading by either blocking the invasion of repressive marks or by spreading euchromatin toward the ERV copy.

  15. An update on the epigenetics of psychotic diseases and autism.

    Science.gov (United States)

    Abdolmaleky, Hamid Mostafavi; Zhou, Jin-Rong; Thiagalingam, Sam

    2015-01-01

    The examination of potential roles of epigenetic alterations in the pathogenesis of psychotic diseases have become an essential alternative in recent years as genetic studies alone are yet to uncover major gene(s) for psychosis. Here, we describe the current state of knowledge from the gene-specific and genome-wide studies of postmortem brain and blood cells indicating that aberrant DNA methylation, histone modifications and dysregulation of micro-RNAs are linked to the pathogenesis of mental diseases. There is also strong evidence supporting that all classes of psychiatric drugs modulate diverse features of the epigenome. While comprehensive environmental and genetic/epigenetic studies are uncovering the origins, and the key genes/pathways affected in psychotic diseases, characterizing the epigenetic effects of psychiatric drugs may help to design novel therapies in psychiatry.

  16. The path to epigenetic treatment of memory disorders.

    Science.gov (United States)

    Mikaelsson, Mikael A; Miller, Courtney A

    2011-07-01

    A new line of neuroscience research suggests that epigenetics may be the site of nature and nurture integration by providing the environment with a mechanism to directly influence the read-out of our genome. Epigenetic mechanisms in the brain are a series of post-translational chromatin and DNA modifications driven by external input. Given the critical hub that epigenetics appears to be, neuroscientists have come to suspect its fundamental influence on how our minds change in response to our unique environment and, in turn, how these changes can then impact our future interactions with the environment. The field of learning and memory is becoming particularly interested in understanding the cognitive influence of epigenetics. With the majority of us working with an eye toward therapeutics, the question naturally arises: "Has neuroepigenetics gotten us closer to treating memory disorders and if so, where do we go from here?" This review will begin with a brief exploration of recent advances in our understanding of how epigenetic mechanisms contribute to learning and memory processes that are susceptible to failure. Next the implications for disorders of cognition, such as Alzheimer's disease, will be discussed. Finally, we will use parallels from the field of cancer to speculate on where we should consider heading from here in the pursuit of therapeutics. Published by Elsevier Inc.

  17. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view.

    Science.gov (United States)

    Helsley, Robert N; Zhou, Changcheng

    2017-10-01

    Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.

  18. Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5

    DEFF Research Database (Denmark)

    Fork, Christian; Gu, Lunda; Hitzel, Juliane

    2015-01-01

    OBJECTIVE: Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. APPROACH AND RESULTS...... of JARID1B in the vascular system, Jarid1b knockout mice were studied. As global knockout results in increased mortality and developmental defects, tamoxifen-inducible and endothelial-specific knockout mice were generated. Acute knockout of Jarid1b attenuated retinal angiogenesis and endothelial sprout...

  19. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Science.gov (United States)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  20. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

    Directory of Open Access Journals (Sweden)

    Sylva Brabencová

    2017-12-01

    Full Text Available Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0 and Wassilewskija (Ws homogenized by two techniques (grinding in a cryomill or with a mortar and pestle. We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants. Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  1. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors.

    Science.gov (United States)

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  2. Epigenetic modulation of gene expression governs the brain’s response to injury

    Science.gov (United States)

    Simon, Roger P.

    2016-01-01

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain’s response to injury. PMID:26739198

  3. Epigenetic: a molecular link between testicular cancer and environmental exposures.

    Science.gov (United States)

    Vega, Aurelie; Baptissart, Marine; Caira, Françoise; Brugnon, Florence; Lobaccaro, Jean-Marc A; Volle, David H

    2012-01-01

    In the last decades, studies in rodents have highlighted links between in utero and/or neonatal exposures to molecules that alter endocrine functions and the development of genital tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis. Most of these molecules, called endocrine disrupters exert estrogenic and/or antiandrogenic activities. These data led to the hypothesis of the testicular dysgenesis syndrome which postulates that these disorders are one clinical entity and are linked by epidemiological and pathophysiological relations. Furthermore, infertility has been stated as a risk factor for testicular cancer (TC). The incidence of TC has been increasing over the past decade. Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ from fetal germ cells (primordial germ cell or gonocyte). During their development, fetal germ cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown that gene regulation through epigenetic mechanisms (DNA and histone modifications) plays an important role in normal development as well as in various diseases, including TC. Here we will review chromatin modifications which can affect testicular physiology leading to the development of TC; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.

  4. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes12

    Science.gov (United States)

    Martínez, J. Alfredo; Milagro, Fermín I.; Claycombe, Kate J.; Schalinske, Kevin L.

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them. PMID:24425725

  5. Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

    Directory of Open Access Journals (Sweden)

    Carlos Guerrero-Bosagna

    Full Text Available Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell that influences the onset of a specific disease (male infertility. A gestating female rat (F0 generation was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell epigenome and transcriptome that correlates with adult onset disease (male infertility. The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.

  6. Epigenetic Effects of Cannabis Exposure

    Science.gov (United States)

    Szutorisz, Henrietta; Hurd, Yasmin L.

    2015-01-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one’s lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076

  7. Theory for the stability and regulation of epigenetic landscapes

    International Nuclear Information System (INIS)

    Micheelsen, Mille A; Mitarai, Namiko; Sneppen, Kim; Dodd, Ian B

    2010-01-01

    Cells can often choose among several stably heritable phenotypes. Examples are the expressions of genes in eukaryotic cells where long chromosomal regions can adopt persistent and heritable silenced or active states that may be associated with positive feedback in dynamic modification of nucleosomes. We generalize this mechanism in terms of bistability associated with valleys in an epigenetic landscape. A transfer matrix method was used to rigorously follow the system through the disruptive process of cell division. This combined treatment of noisy dynamics both between and during cell division provides an efficient way to calculate the stability of alternative states in a broad range of epigenetic systems

  8. Dynorphin/KOP and nociceptin/NOP gene expression and epigenetic changes by cocaine in rat striatum and nucleus accumbens.

    Science.gov (United States)

    Caputi, Francesca Felicia; Di Benedetto, Manuela; Carretta, Donatella; Bastias del Carmen Candia, Sussy; D'Addario, Claudio; Cavina, Chiara; Candeletti, Sanzio; Romualdi, Patrizia

    2014-03-03

    Cocaine induces neurochemical changes of endogenous prodynorphin-kappa opioid receptor (pDYN-KOP) and pronociceptin/orphaninFQ-nociceptin receptor (pN/OFQ-NOP) systems. Both systems play an important role in rewarding mechanisms and addictive stimulus processing by modulating drug-induced dopaminergic activation in the mesocortico-limbic brain areas. They are also involved in regulating stress mechanisms related to addiction. The aim of this study was to investigate possible changes of gene expression of the dynorphinergic and nociceptinergic system components in the nucleus accumbens (NA) and in medial and lateral caudate putamen (mCPu and lCPu, respectively) of rats, following chronic subcutaneous infusion of cocaine. In addition, the epigenetic histone modifications H3K4me3 and H3K27me3 (an activating and a repressive marker, respectively) at the promoter level of the pDYN, KOP, pN/OFQ and NOP genes were investigated. Results showed that cocaine induced pDYN gene expression up-regulation in the NA and lCPu, and its down-regulation in the mCPu, whereas KOP mRNA levels were unchanged. Moreover, cocaine exposure decreased pN/OFQ gene expression in the NA and lCPu, while NOP mRNA levels appeared significantly increased in the NA and decreased in the lCPu. Specific changes of the H3K4me3 and H3K27me3 levels were found at pDYN, pN/OFQ, and NOP gene promoter, consistent with the observed gene expression alterations. The present findings contribute to better define the role of endogenous pDYN-KOP and pN/OFQ-NOP systems in neuroplasticity mechanisms following chronic cocaine treatment. The epigenetic histone modifications underlying the gene expression changes likely mediate the effects of cocaine on transcriptional regulation of specific gene promoters that result in long-lasting drug-induced plasticity. © 2013.

  9. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    Science.gov (United States)

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

    Directory of Open Access Journals (Sweden)

    Lori A. McEachern

    2012-01-01

    Full Text Available Non-model organisms are generally more difficult and/or time consuming to work with than model organisms. In addition, epigenetic analysis of model organisms is facilitated by well-established protocols, and commercially-available reagents and kits that may not be available for, or previously tested on, non-model organisms. Given the evolutionary conservation and widespread nature of many epigenetic mechanisms, a powerful method to analyze epigenetic phenomena from non-model organisms would be to use transgenic model organisms containing an epigenetic region of interest from the non-model. Interestingly, while transgenic Drosophila and mice have provided significant insight into the molecular mechanisms and evolutionary conservation of the epigenetic processes that target epigenetic control regions in other model organisms, this method has so far been under-exploited for non-model organism epigenetic analysis. This paper details several experiments that have examined the epigenetic processes of genomic imprinting and paramutation, by transferring an epigenetic control region from one model organism to another. These cross-species experiments demonstrate that valuable insight into both the molecular mechanisms and evolutionary conservation of epigenetic processes may be obtained via transgenic experiments, which can then be used to guide further investigations and experiments in the species of interest.

  11. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Science.gov (United States)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-κB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-κB at 276th serine residue. These modifications enhance the interaction of NF-κB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. PMID:25980739

  12. The role of epigenetics in the biology of multiple myeloma

    DEFF Research Database (Denmark)

    Dimopoulos, K; Gimsing, P; Grønbæk, K

    2014-01-01

    Several recent studies have highlighted the biological complexity of multiple myeloma (MM) that arises as a result of several disrupted cancer pathways. Apart from the central role of genetic abnormalities, epigenetic aberrations have also been shown to be important players in the development of MM......, and a lot of research during the past decades has focused on the ways DNA methylation, histone modifications and noncoding RNAs contribute to the pathobiology of MM. This has led to, apart from better understanding of the disease biology, the development of epigenetic drugs, such as histone deacetylase...... inhibitors that are already used in clinical trials in MM with promising results. This review will present the role of epigenetic abnormalities in MM and how these can affect specific pathways, and focus on the potential of novel 'epidrugs' as future treatment modalities for MM....

  13. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  14. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  15. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  16. Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system.

    Science.gov (United States)

    Hayase, Tamaki

    2017-10-01

    The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.

  17. Epigenetics of hypoxic pulmonary arterial hypertension following intrauterine growth retardation rat: epigenetics in PAH following IUGR

    Directory of Open Access Journals (Sweden)

    Xu Xue-Feng

    2013-02-01

    Full Text Available Abstract Background Accumulating evidence reveals that intrauterine growth retardation (IUGR can cause varying degrees of pulmonary arterial hypertension (PAH later in life. Moreover, epigenetics plays an important role in the fetal origin of adult disease. The goal of this study was to investigate the role of epigenetics in the development of PAH following IUGR. Methods The IUGR rats were established by maternal undernutrition during pregnancy. Pulmonary vascular endothelial cells (PVEC were isolated from the rat lungs by magnetic-activated cell sorting (MACS. We investigated epigenetic regulation of the endothelin-1 (ET-1 gene in PVEC of 1-day and 6-week IUGR rats, and response of IUGR rats to hypoxia. Results The maternal nutrient restriction increased the histone acetylation and hypoxia inducible factor-1α (HIF-1α binding levels in the ET-1 gene promoter of PVEC in IUGR newborn rats, and continued up to 6 weeks after birth. These epigenetic changes could result in an IUGR rat being highly sensitive to hypoxia later in life, causing more significant PAH or pulmonary vascular remodeling. Conclusions These findings suggest that epigenetics is closely associated with the development of hypoxic PAH following IUGR, further providing a new insight for improved prevention and treatment of IUGR-related PAH.

  18. The epigenetic landscape of age-related diseases: the geroscience perspective.

    Science.gov (United States)

    Gensous, Noémie; Bacalini, Maria Giulia; Pirazzini, Chiara; Marasco, Elena; Giuliani, Cristina; Ravaioli, Francesco; Mengozzi, Giacomo; Bertarelli, Claudia; Palmas, Maria Giustina; Franceschi, Claudio; Garagnani, Paolo

    2017-08-01

    In this review, we summarize current knowledge regarding the epigenetics of age-related diseases, focusing on those studies that have described DNA methylation landscape in cardio-vascular diseases, musculoskeletal function and frailty. We stress the importance of adopting the conceptual framework of "geroscience", which starts from the observation that advanced age is the major risk factor for several of these pathologies and aims at identifying the mechanistic links between aging and age-related diseases. DNA methylation undergoes a profound remodeling during aging, which includes global hypomethylation of the genome, hypermethylation at specific loci and an increase in inter-individual variation and in stochastic changes of DNA methylation values. These epigenetic modifications can be an important contributor to the development of age-related diseases, but our understanding on the complex relationship between the epigenetic signatures of aging and age-related disease is still poor. The most relevant results in this field come from the use of the so called "epigenetics clocks" in cohorts of subjects affected by age-related diseases. We report these studies in final section of this review.

  19. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism

    OpenAIRE

    Xia, Hui; Huang, Weixia; Xiong, Jie; Tao, Tao; Zheng, Xiaoguo; Wei, Haibin; Yue, Yunxia; Chen, Liang; Luo, Lijun

    2016-01-01

    The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investig...

  20. Behavioral Fever Drives Epigenetic Modulation of the Immune Response in Fish.

    Science.gov (United States)

    Boltana, Sebastian; Aguilar, Andrea; Sanhueza, Nataly; Donoso, Andrea; Mercado, Luis; Imarai, Monica; Mackenzie, Simon

    2018-01-01

    Ectotherms choose the best thermal conditions to mount a successful immune response, a phenomenon known as behavioral fever. The cumulative evidence suggests that behavioral fever impacts positively upon lymphocyte proliferation, inflammatory cytokine expression, and other immune functions. In this study, we have explored how thermal choice during infection impacts upon underpinning molecular processes and how temperature increase is coupled to the immune response. Our results show that behavioral fever results in a widespread, plastic imprint on gene regulation, and lymphocyte proliferation. We further explored the possible contribution of histone modification and identified global associations between temperature and histone changes that suggest epigenetic remodeling as a result of behavioral fever. Together, these results highlight the critical importance of thermal choice in mobile ectotherms, particularly in response to an infection, and demonstrate the key role of epigenetic modification to orchestrate the thermocoupling of the immune response during behavioral fever.

  1. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system.

    Science.gov (United States)

    Kietzmann, Thomas; Petry, Andreas; Shvetsova, Antonina; Gerhold, Joachim M; Görlach, Agnes

    2017-06-01

    Cardiovascular diseases are among the leading causes of death worldwide. Reactive oxygen species (ROS) can act as damaging molecules but also represent central hubs in cellular signalling networks. Increasing evidence indicates that ROS play an important role in the pathogenesis of cardiovascular diseases, although the underlying mechanisms and consequences of pathophysiologically elevated ROS in the cardiovascular system are still not completely resolved. More recently, alterations of the epigenetic landscape, which can affect DNA methylation, post-translational histone modifications, ATP-dependent alterations to chromatin and non-coding RNA transcripts, have been considered to be of increasing importance in the pathogenesis of cardiovascular diseases. While it has long been accepted that epigenetic changes are imprinted during development or even inherited and are not changed after reaching the lineage-specific expression profile, it becomes more and more clear that epigenetic modifications are highly dynamic. Thus, they might provide an important link between the actions of ROS and cardiovascular diseases. This review will provide an overview of the role of ROS in modulating the epigenetic landscape in the context of the cardiovascular system. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2017 The British Pharmacological Society.

  2. Epigenetic regulation of photoperiodic flowering

    OpenAIRE

    Takeno, Kiyotoshi

    2010-01-01

    The cytidine analogue 5-azacytidine, which causes DNA demethylation, induced flowering in the non-vernalization-requiring plants Perilla frutescens var. crispa, Silene armeria and Pharbitis nil (synonym Ipomoea nil) under non-inductive photoperiodic conditions, suggesting that the expression of photoperiodic flowering-related genes is regulated epigenetically by DNA methylation. The flowering state induced by DNA demethylation was not heritable. Changes in the genome-wide methylation state we...

  3. A nursing theory-guided framework for genetic and epigenetic research.

    Science.gov (United States)

    Maki, Katherine A; DeVon, Holli A

    2018-04-01

    The notion that genetics, through natural selection, determines innate traits has led to much debate and divergence of thought on the impact of innate traits on the human phenotype. The purpose of this synthesis was to examine how innate theory informs genetic research and how understanding innate theory through the lens of Martha Rogers' theory of unitary human beings can offer a contemporary view of how innate traits can inform epigenetic and genetic research. We also propose a new conceptual model for genetic and epigenetic research. The philosophical, theoretical, and research literatures were examined for this synthesis. We have merged philosophical and conceptual phenomena from innate theory with the theory of unitary beings into the University of Illinois at Chicago model for genetic and epigenetic research. Innate traits are the cornerstone of the framework but may be modified epigenetically by biological, physiological, psychological, and social determinants as they are transcribed. These modifiers serve as important links between the concept of innate traits and epigenetic modifications, and, like the theory of unitary human beings, the process is understood in the context of individual and environmental interaction that has the potential to evolve as the determinants change. © 2018 John Wiley & Sons Ltd.

  4. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM

    DEFF Research Database (Denmark)

    Barrès, Romain; Zierath, Juleen R

    2016-01-01

    Epigenetic changes are caused by biochemical regulators of gene expression that can be transferred across generations or through cell division. Epigenetic modifications can arise from a variety of environmental exposures including undernutrition, obesity, physical activity, stress and toxins. Tra...... of mechanisms by which lifestyle factors affect the epigenetic landscape in type 2 diabetes mellitus and obesity. Evidence from the past few years about the potential mechanisms by which diet and exercise affect the epigenome over several generations is discussed....... to environmental stressors. A detailed understanding of the epigenetic signatures of insulin resistance and the adaptive response to exercise might identify new therapeutic targets that can be further developed to improve insulin sensitivity and prevent obesity. This Review focuses on the current understanding...

  5. Epigenetic modulators of thyroid cancer.

    Science.gov (United States)

    Rodríguez-Rodero, Sandra; Delgado-Álvarez, Elías; Díaz-Naya, Lucía; Martín Nieto, Alicia; Menéndez Torre, Edelmiro

    2017-01-01

    There are some well known factors involved in the etiology of thyroid cancer, including iodine deficiency, radiation exposure at early ages, or some genetic changes. However, epigenetic modulators that may contribute to development of these tumors and be helpful to for both their diagnosis and treatment have recently been discovered. The currently known changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid carcinoma are reviewed here. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Molecular and Biochemical Methods Useful for the Epigenetic Characterization of Chromatin-Associated Proteins in Bivalve Molluscs

    Directory of Open Access Journals (Sweden)

    Ciro Rivera-Casas

    2017-08-01

    Full Text Available Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE, genome walking and quantitative PCR (qPCR experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation by incorporating

  7. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Ou, Xiufang; Zhang, Yunhong; Xu, Chunming; Lin, Xiuyun; Zang, Qi; Zhuang, Tingting; Jiang, Lili; von Wettstein, Diter; Liu, Bao

    2012-01-01

    DNA methylation is sensitive and responsive to stressful environmental conditions. Nonetheless, the extent to which condition-induced somatic methylation modifications can impose transgenerational effects remains to be fully understood. Even less is known about the biological relevance of the induced epigenetic changes for potentially altered well-being of the organismal progenies regarding adaptation to the specific condition their progenitors experienced. We analyzed DNA methylation pattern by gel-blotting at genomic loci representing transposable elements and protein-coding genes in leaf-tissue of heavy metal-treated rice (Oryza sativa) plants (S0), and its three successive organismal generations. We assessed expression of putative genes involved in establishing and/or maintaining DNA methylation patterns by reverse transcription (RT)-PCR. We measured growth of the stressed plants and their unstressed progenies vs. the control plants. We found (1) relative to control, DNA methylation patterns were modified in leaf-tissue of the immediately treated plants, and the modifications were exclusively confined to CHG hypomethylation; (2) the CHG-demethylated states were heritable via both maternal and paternal germline, albeit often accompanying further hypomethylation; (3) altered expression of genes encoding for DNA methyltransferases, DNA glycosylase and SWI/SNF chromatin remodeling factor (DDM1) were induced by the stress; (4) progenies of the stressed plants exhibited enhanced tolerance to the same stress their progenitor experienced, and this transgenerational inheritance of the effect of condition accompanying heritability of modified methylation patterns. Our findings suggest that stressful environmental condition can produce transgenerational epigenetic modifications. Progenies of stressed plants may develop enhanced adaptability to the condition, and this acquired trait is inheritable and accord with transmission of the epigenetic modifications. We suggest

  8. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the pregnancy and childhood epigenetics (PACE) consortium

    NARCIS (Netherlands)

    G.C. Sharp (Gemma C.); L.A. Salas (Lucas A.); C. Monnereau; C. Allard (Catherine); P. Yousefi (Paul); Everson, T.M. (Todd M.); J. Bohlin (Jon); Z. Xu (Zongli); Huang, R.-C. (Rae-Chi); S.E. Reese (Sarah E.); C.-J. Xu (Cheng-Jian); N. Baïz (Nour); Hoyo, C. (Cathrine); Agha, G. (Golareh); Roy, R. (Ritu); J. Holloway (John); Ghantous, A. (Akram); S.K. Merid (Simon Kebede); K.M. Bakulski (Kelly M.); A.M. Küpers (Marlijn); Zhang, H. (Hongmei); R.C. Richmond (Rebecca C.); Page, C.M. (Christian M.); Duijts, L. (Liesbeth); Lie, R.T. (Rolv T.); Melton, P.E. (Phillip E.); J.M. Vonk (Judith); C. Nohr (Christian); Williams-DeVane, C. (ClarLynda); K. Huen (Karen); S.L. Rifas-Shiman (Sheryl); Ruiz-Arenas, C. (Carlos); Gonseth, S. (Semira); Rezwan, F.I. (Faisal I.); Z. Herceg (Zdenko); Ekström, S. (Sandra); Croen, L. (Lisa); F. Falahi (Fahimeh); Perron, P. (Patrice); M.R. Karagas (Margaret); B.M. Quraishi (Bilal M.); M.J. Suderman (Matthew J.); Magnus, M.C. (Maria C.); V.W.V. Jaddoe (Vincent); Taylor, J.A. (Jack A.); D. Anderson (Denise); Zhao, S. (Shanshan); H.A. Smit (Henriëtte); Josey, M.J. (Michele J.); Bradman, A. (Asa); A.A. Baccarelli (Andrea A.); M. Bustamante (Mariona); S.E. Håberg (Siri E); G. Pershagen (Göran); I. Hertz-Picciotto (Irva); Newschaffer, C. (Craig); W.E. Corpeleijn (Willemijn); L. Bouchard (Luigi); Lawlor, D.A. (Debbie A.); Maguire, R.L. (Rachel L.); L.F. Barcellos (Lisa); Smith, G.D. (George Davey); B. Eskenazi (B.); Karmaus, W. (Wilfried); Marsit, C.J. (Carmen J.); M.-F. Hivert (Marie-France); H. Snieder (Harold); Fallin, M.D. (M. Daniele); Melén, E. (Erik); M.C. Munthe-Kaas (Monica Cheng); H. Arshad (Hasan); J. Wiemels (Joseph); I. Annesi-Maesano; M. Vrijheid (Martine); E. Oken (Emily); Holland, N. (Nina); Murphy, S.K. (Susan K.); T.I.A. Sørensen (Thorkild); G.H. Koppelman (Gerard); J.P. Newnham (John); A.J. Wilcox (Allen); W. Nystad (Wenche); S.J. London (Stephanie J.); J.F. Felix (Janine); C.L. Relton (Caroline)

    2017-01-01

    textabstractPre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we

  9. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  10. Fetal programming of chronic kidney disease: the role of maternal smoking, mitochondrial dysfunction, and epigenetic modfification.

    Science.gov (United States)

    Stangenberg, Stephanie; Chen, Hui; Wong, Muh Geot; Pollock, Carol A; Saad, Sonia

    2015-06-01

    The role of an adverse in utero environment in the programming of chronic kidney disease in the adult offspring is increasingly recognized. The cellular and molecular mechanisms linking the in utero environment and future disease susceptibility remain unknown. Maternal smoking is a common modifiable adverse in utero exposure, potentially associated with both mitochondrial dysfunction and epigenetic modification in the offspring. While studies are emerging that point toward a key role of mitochondrial dysfunction in acute and chronic kidney disease, it may have its origin in early development, becoming clinically apparent when secondary insults occur. Aberrant epigenetic programming may add an additional layer of complexity to orchestrate fibrogenesis in the kidney and susceptibility to chronic kidney disease in later life. In this review, we explore the evidence for mitochondrial dysfunction and epigenetic modification through aberrant DNA methylation as key mechanistic aspects of fetal programming of chronic kidney disease and discuss their potential use in diagnostics and targets for therapy. Copyright © 2015 the American Physiological Society.

  11. Genetic Mutations and Epigenetic Modifications: Driving Cancer and Informing Precision Medicine

    Science.gov (United States)

    Coyle, Krysta Mila; Boudreau, Jeanette E.

    2017-01-01

    Cancer treatment is undergoing a significant revolution from “one-size-fits-all” cytotoxic therapies to tailored approaches that precisely target molecular alterations. Precision strategies for drug development and patient stratification, based on the molecular features of tumors, are the next logical step in a long history of approaches to cancer therapy. In this review, we discuss the history of cancer treatment from generic natural extracts and radical surgical procedures to site-specific and combinatorial treatment regimens, which have incrementally improved patient outcomes. We discuss the related contributions of genetics and epigenetics to cancer progression and the response to targeted therapies and identify challenges and opportunities for the success of precision medicine. The identification of patients who will benefit from targeted therapies is more complex than simply identifying patients whose tumors harbour the targeted aberration, and intratumoral heterogeneity makes it difficult to determine if a precision therapy is successful during treatment. This heterogeneity enables tumors to develop resistance to targeted approaches; therefore, the rational combination of therapeutic agents will limit the threat of acquired resistance to therapeutic success. By incorporating the view of malignant transformation modulated by networks of genetic and epigenetic interactions, molecular strategies will enable precision medicine for effective treatment across cancer subtypes. PMID:28685150

  12. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation : findings from the pregnancy and childhood epigenetics (PACE) consortium

    NARCIS (Netherlands)

    Sharp, Gemma C; Salas, Lucas A; Monnereau, Claire; Allard, Catherine; Yousefi, Paul; Everson, Todd M; Bohlin, Jon; Xu, Zongli; Huang, Rae-Chi; Reese, Sarah E; Xu, Cheng-Jian; Baïz, Nour; Hoyo, Cathrine; Agha, Golareh; Roy, Ritu; Holloway, John W; Ghantous, Akram; Merid, Simon K; Bakulski, Kelly M; Küpers, Leanne K; Zhang, Hongmei; Richmond, Rebecca C; Page, Christian M; Duijts, Liesbeth; Lie, Rolv T; Melton, Phillip E; Vonk, Judith M; Nohr, Ellen A; Williams-DeVane, ClarLynda; Huen, Karen; Rifas-Shiman, Sheryl L; Ruiz-Arenas, Carlos; Gonseth, Semira; Rezwan, Faisal I; Herceg, Zdenko; Ekström, Sandra; Croen, Lisa; Falahi, Fahimeh; Perron, Patrice; Karagas, Margaret R; Quraishi, Bilal M; Suderman, Matthew; Magnus, Maria C; Jaddoe, Vincent W V; Taylor, Jack A; Anderson, Denise; Zhao, Shanshan; Smit, Henriette A; Josey, Michele J; Bradman, Asa; Baccarelli, Andrea A; Bustamante, Mariona; Håberg, Siri E; Pershagen, Göran; Hertz-Picciotto, Irva; Newschaffer, Craig; Corpeleijn, Eva; Bouchard, Luigi; Lawlor, Debbie A; Maguire, Rachel L; Barcellos, Lisa F; Davey Smith, George; Eskenazi, Brenda; Karmaus, Wilfried; Marsit, Carmen J; Hivert, Marie-France; Snieder, Harold; Fallin, M Daniele; Melén, Erik; Munthe-Kaas, Monica C; Arshad, Hasan; Wiemels, Joseph L; Annesi-Maesano, Isabella; Vrijheid, Martine; Oken, Emily; Holland, Nina; Murphy, Susan K; Sørensen, Thorkild I A; Koppelman, Gerard H; Newnham, John P; Wilcox, Allen J; Nystad, Wenche; London, Stephanie J; Felix, Janine F; Relton, Caroline L

    2017-01-01

    Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the

  13. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation : Findings from the pregnancy and childhood epigenetics (PACE) consortium

    NARCIS (Netherlands)

    Sharp, Gemma C.; Salas, Lucas A.; Monnereau, Claire; Allard, Catherine; Yousefi, Paul; Everson, Todd M.; Bohlin, Jon; Xu, Zongli; Huang, Rae Chi; Reese, Sarah E.; Xu, Cheng-Jian; Baïz, Nour; Hoyo, Cathrine; Agha, Golareh; Roy, Ritu; Holloway, John W.; Ghantous, Akram; Merid, Simon K.; Bakulski, Kelly M.; Küpers, Leanne K.; Zhang, Hongmei; Richmond, Rebecca C.; Page, Christian M.; Duijts, Liesbeth; Lie, Rolv T.; Melton, Phillip E.; Vonk, Judith M.; Nohr, Ellen A.; Williams-DeVane, Clar Lynda; Huen, Karen; Rifas-Shiman, Sheryl L.; Ruiz-Arenas, Carlos; Gonseth, Semira; Rezwan, Faisal I.; Herceg, Zdenko; Ekström, Sandra; Croen, Lisa; Falahi, Fahimeh; Perron, Patrice; Karagas, Margaret R; Quraishi, Bilal M.; Suderman, Matthew J.; Magnus, Maria C.; Jaddoe, Vincent W V; Taylor, Jack A; Anderson, Denise; Zhao, Shanshan; Smit, Henriette A.; Josey, Michele J.; Bradman, Asa; Baccarelli, Andrea A.; Bustamante, Mariona; Håberg, Siri E.; Pershagen, Göran; Hertz-Picciotto, Irva; Newschaffer, Craig; Corpeleijn, Eva; Bouchard, Luigi; Lawlor, Debbie A.; Maguire, Rachel L.; Barcellos, Lisa F.; Smith, George Davey; Eskenazi, Brenda; Karmaus, Wilfried; Marsit, Carmen J.; Hivert, Marie-France; Snieder, Harold; Fallin, M. Daniele; Melén, Erik; Munthe-Kaas, Monica C.; Arshad, S Hasan; Wiemels, Joseph L.; Annesi-Maesano, Isabella; Vrijheid, Martine; Oken, Emily; Holland, Nina; Murphy, Susan K.; Sørensen, Thorkild I A; Koppelman, Gerard H; Newnham, John P; Wilcox, Allen J.; Nystad, Wenche; London, Stephanie J.; Felix, Janine F.; Relton, Caroline L

    2017-01-01

    Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the

  14. Epigenetic: a molecular link between testicular cancer and environmental exposures?

    Directory of Open Access Journals (Sweden)

    Aurelie eVega

    2012-11-01

    Full Text Available In the last decades, studies in rodents have highlighted links between in utero and/or neonatal exposures to molecules that alter endocrine functions and the development of genital tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis. Most of these molecules, called endocrine disrupters (EDs exert estrogenic and/or antiandrogenic activities. These data led to the hypothesis of the Testicular Dysgenesis Syndrome which postulates that these disorders are one clinical entity and are linked by epidemiological and pathophysiological relations. Futhermore, infertility has been stated as a risk factor for testicular cancer. The incidence of testicular cancer has been increasing over the past decades. Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ (CIS from fetal germ cells (primordial germ cell or gonocyte. During their development, fetal germ cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown that gene regulation through epigenetic mechanisms (DNA and histone modifications plays an important role in normal development as well as in various diseases, including testicular cancer.Here we will review chromatin modifications which can affect testicular physiology leading to the development of testicular cancer; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.

  15. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart

    OpenAIRE

    F. De Majo; M. Calore

    2018-01-01

    Epigenetics refers to all the changes in phenotype and gene expression which are not due to alterations in the DNA sequence. These mechanisms have a pivotal role not only in the development but also in the maintenance during adulthood of a physiological phenotype of the heart. Because of the crucial role of epigenetic modifications, their alteration can lead to the arise of pathological conditions.Heart failure affects an estimated 23 million people worldwide and leads to substantial numbers ...

  16. Epigenetic changes and transposon reactivation in Thai rice hybrids. Molecular Breeding

    NARCIS (Netherlands)

    Kantama, L.; Junbuathong, S.; Sakulkoo, J.; Jong, de J.H.S.G.M.; Apisitwanich, S.

    2013-01-01

    Inter- or intraspecific hybridization is the first step in transferring exogenous traits to the germplasm of a recipient crop. One of the complicating factors is the occurrence of epigenetic modifications of the hybrids, which in turn can change their gene expression and phenotype. In this study we

  17. Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs.

    Science.gov (United States)

    Tardito, Daniela; Mallei, Alessandra; Popoli, Maurizio

    2013-02-01

    Mood and anxiety disorders are among the major causes of disability worldwide. Despite clear need for better therapies, efforts to develop novel drugs have been relatively unsuccessful. One major reason is lack of translation into neuropsychopharmacology of the impressive recent array of knowledge accrued by clinical and preclinical researches on the brain. Here focus is on epigenetics mechanisms, including microRNAs, which seem particularly promising for the identification of new targets for alternative pharmacological approaches. First, the current knowledge about epigenetic mechanisms, including DNA methylation, posttranslational modification of histone proteins, focusing on histone methylation and acetylation, and posttranscriptional modulation of gene expression by microRNAs is described. Then evidence showing involvement of epigenetics and microRNAs in the pathophysiology of mood and anxiety disorders as well as evidence showing that some of the currently employed antidepressants and mood stabilizers also affect epigenetic and microRNA mechanisms are reviewed. Finally current evidence and novel approaches in favor of drugs regulating epigenetic and microRNA mechanisms as potential therapeutics for these disorders are discussed. Although still in its infancy, research investigating the effects of pharmacological modulation of epigenetic and microRNA mechanisms in neuropsychiatric disorders continues to provide encouraging findings, suggesting new avenues for treatment of mood and anxiety disorders.

  18. Cancer Chemoprevention by Traditional Chinese Herbal Medicine and Dietary Phytochemicals: Targeting Nrf2-Mediated Oxidative Stress/Anti-Inflammatory Responses, Epigenetics, and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Jong Hun Lee

    2013-01-01

    Full Text Available Excessive oxidative stress induced by reactive oxygen species (ROS, reactive nitrogen species (RNS, and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2-related factor 2 (Nrf2, a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(PH:quinine oxidoreductase (NQO1, heme oxygenase-1 (HO-1, UDP-glucuronosyltransferase (UGT, and glutathione S-transferase (GST. Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs. The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM. In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.

  19. Epigenetics of psoriatic disease: A systematic review and critical appraisal.

    Science.gov (United States)

    Pollock, Remy A; Abji, Fatima; Gladman, Dafna D

    2017-03-01

    Psoriasis is an inflammatory disease of the skin that is sometimes accompanied by an auto-inflammatory arthritis called psoriatic arthritis (PsA). Psoriasis and PsA are multifactorial diseases that result from complex interactions of environmental and genetic risk factors. Epigenetic marks, which are labile chemical marks with diverse functions, form a layer of biological information that sits at the interface of genetics and the environment. Aberrant epigenetic regulation has been previously implicated in other rheumatological disorders. The purpose of this review is to summarize and critically evaluate the nascent literature on epigenetics in psoriasis and PsA. A systematic review yielded 52 primary articles after applying inclusion and exclusion criteria. Data were extracted using a standardized template and study quality assessed using a methodological quality checklist. Studies reflect a broad range of epigenetic sub-disciplines, the most common being DNA methylation, followed by the parent of origin effect or genomic imprinting, expression or activity of epigenetic modifying enzymes, and histone modifications. Epidemiological studies demonstrating excessive paternal transmission provided the earliest evidence of epigenetic deregulation in psoriatic disease, however few studies have examined its molecular mechanisms. Methylation studies evolved rapidly from low resolution global to targeted analyses of known psoriatic disease susceptibility loci such as HLA-C*0602. The recent explosion of epigenome-wide association studies has provided us with novel insights into psoriasis pathogenesis, and the mechanism of action of UVB, methotrexate, and anti-TNF therapies, as well as molecular signatures of psoriasis that may have clinical relevance. Finally, recent studies of pharmacological inhibitors of epigenetic modifier enzymes demonstrate their potential applicability as novel treatment modalities for psoriasis. Challenges of epigenetics research in psoriasis and Ps

  20. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Li, Yu-Yuan

    2012-12-07

    Nonalcoholic fatty liver disease (NAFLD) is common worldwide. The importance of genetic and epigenetic changes in etiology and pathogenesis of NAFLD has been increasingly recognized. However, the exact mechanism is largely unknown. A large number of single nucleotide polymorphisms (SNPs) related to NAFLD has been documented by candidate gene studies (CGSs). Among these genes, peroxisome proliferatoractivated receptor-γ, adiponectin, leptin and tumor necrosis factor-α were frequently reported. Since the introduction of genome-wide association studies (GWASs), there have been significant advances in our understanding of genomic variations of NAFLD. Patatin-like phospholipase domain containing family member A3 (PNPLA3, SNP rs738409, encoding I148M), also termed adiponutrin, has caught most attention. The evidence that PNPLA3 is associated with increased hepatic fat levels and hepatic inflammation has been validated by a series of studies. Epigenetic modification refers to phenotypic changes caused by an adaptive mechanism unrelated to alteration of primary DNA sequences. Epigenetic regulation mainly includes microRNAs (miRs), DNA methylation, histone modifications and ubiquitination, among which miRs are studied most extensively. miRs are small natural single stranded RNA molecules regulating mRNA degradation or translation inhibition, subsequently altering protein expression of target genes. The miR-122, a highly abundant miR accounting for nearly 70% of all miRs in the liver, is significantly under-expressed in NAFLD subjects. Inhibition of miR-122 with an antisense oligonucleotide results in decreased mRNA expression of lipogenic genes and improvement of liver steatosis. The investigation into epigenetic involvement in NAFLD pathogenesis is just at the beginning and needs to be refined. This review summarizes the roles of genetics and epigenetics in the development of NAFLD. The progress made in this field may provide novel diagnostic biomarkers and therapeutic

  1. Epigenetic Consequences of Low Birth-Weight and Preterm Birth in Adult Twins

    DEFF Research Database (Denmark)

    Tan, Qihua

    2018-01-01

    could be detrimental to health later in life. Current epigenetic studies using genome-wide DNA methylation profiling have discovered molecular evidence confirming that, as important early life events, both low birth-weight and premature birth can result in long-lasting epigenetic consequences...... that impact health at adult ages. Results from our epigenome-wide association studies indicate that the two moderately correlated traits of adverse pregnancy outcome could be linked to increased susceptibility to different health problems with low birth-weight more relevant to metabolic disorders, while......Adverse birth outcomes including low birth-weight and preterm birth are associated with long-term morbidity and health consequences at adult ages. Molecular mechanisms including epigenetic modification may have been involved in the adaptation to the stressful condition in peridelivery period which...

  2. The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2017-11-01

    Full Text Available A single word, Epigenetics, underlies one exciting subject in today's Science, with different sides and with interactions with philosophy. The apparent trivial description includes everything in between genotype and phenotype that occurs for a given unique DNA sequence/genome. This Perspective article first presents an historical overview and the reasons for the lack of consensus in the field, which derives from different interpretations of the diverse operative definitions of Epigenetics. In an attempt to reconcile the different views, we propose a novel concept, the “cytocrin system.” Secondly, the article questions the inheritability requirement and makes emphasis in the epigenetic mechanisms, known or to be discovered, that provide hope for combating human diseases. Hopes in cancer are at present in deep need of deciphering mechanisms to support ad hoc therapeutic approaches. Better perspectives are for diseases of the central nervous system, in particular to combat neurodegeneration and/or cognitive deficits in Alzheimer's disease. Neurons are post-mitotic cells and, therefore, epigenetic targets to prevent neurodegeneration should operate in non-dividing diseased cells. Accordingly, epigenetic-based human therapy may not need to count much on transmissible potential.

  3. Landscaping plant epigenetics.

    Science.gov (United States)

    McKeown, Peter C; Spillane, Charles

    2014-01-01

    The understanding of epigenetic mechanisms is necessary for assessing the potential impacts of epigenetics on plant growth, development and reproduction, and ultimately for the response of these factors to evolutionary pressures and crop breeding programs. This volume highlights the latest in laboratory and bioinformatic techniques used for the investigation of epigenetic phenomena in plants. Such techniques now allow genome-wide analyses of epigenetic regulation and help to advance our understanding of how epigenetic regulatory mechanisms affect cellular and genome function. To set the scene, we begin with a short background of how the field of epigenetics has evolved, with a particular focus on plant epigenetics. We consider what has historically been understood by the term "epigenetics" before turning to the advances in biochemistry, molecular biology, and genetics which have led to current-day definitions of the term. Following this, we pay attention to key discoveries in the field of epigenetics that have emerged from the study of unusual and enigmatic phenomena in plants. Many of these phenomena have involved cases of non-Mendelian inheritance and have often been dismissed as mere curiosities prior to the elucidation of their molecular mechanisms. In the penultimate section, consideration is given to how advances in molecular techniques are opening the doors to a more comprehensive understanding of epigenetic phenomena in plants. We conclude by assessing some opportunities, challenges, and techniques for epigenetic research in both model and non-model plants, in particular for advancing understanding of the regulation of genome function by epigenetic mechanisms.

  4. ["Atypical" method for understanding dementia. How can studying epigenetics contribute?].

    Science.gov (United States)

    Iwata, Atsushi

    2011-11-01

    The pathological hallmark of neurodegeneration is presence of intra- and extra neuronal inclusion bodies such as Lewy bodies in Parkinson's disease, senile plaques and neurofibrillary tangles in Alzheimer's disease. These are consisted of aggregated conformationally abnormal proteins. The precise mechanism of aggregation remains unknown, but increased expression of aggregation-prone proteins can lead to their aggregation. For example, in Down syndrome, duplication of the 21(st) chromosome, which contains the amyloid beta precursor protein (APP) gene, leads to accumulation of amyloid beta and Alzheimer's disease pathology and multiplication of APP gene is shown to be the cause of familial Alzheimer's disease. Moreover, in rare cases of PD, duplication or triplication of SNCA gene leads to alpha-synuclein accumulation, with triplication producing a more severe phenotype than duplication, suggesting that SNCA expression level determines the severity of the pathology. Lastly, animal models of neurodegenerative disorders are generated by over-expression of causal genes, further supporting the conclusion that increased gene expression is related to pathogenesis. Additional evidence indicates that SNCA promoter polymorphisms increases alpha-synuclein expression and increases susceptibility to sporadic PD. In addition to promoter polymorphisms, epigenetic modification can alter downstream gene expression. Epigenetic regulation includes histone modification and DNA methylation, of which CpG island methylation can be gene-specific; in several different cancers, CpG methylation inhibits binding of the transcription machinery, causing silencing of a specific oncogene, which leads to carcinogenesis. In central nervous system disorders, CpG methylation has been associated with psychiatric disorders, such as autism and schizophrenia. We found several cases of Parkinson's disease with epigenetic abnormality in SNCA gene. Thus, we believe that studying epigenetics can provide

  5. New insights in oncology: Epi-genetics and cancer stem cells

    International Nuclear Information System (INIS)

    Krutovskikh, V.; Partensky, C.

    2011-01-01

    Cancer is a multi-etiologic, multistage disease with a prevalent genetic component, which happens when a large number of genes, critical for cell growth, death, differentiation, migration, and metabolic plasticity are altered irreversibly, so as to either 'gain' (oncogenes) or 'lose' (tumour suppressors) their function. Recent discoveries have revealed the previously underestimated etiologic importance of multiple epigenetic, that is to say, reversible factors (histone modifications, DNA methylation, non-coding RNA) involved in the transcriptional and post-transcriptional regulation of proteins, indispensable for the control of cancerous phenotype. Stable alterations of epigenetic machinery ('epi-mutations') turn out to play a critical role at different steps of carcinogenesis. In addition, due to substantial recent progress in stem cell biology, the new concept of cancer stem cells has emerged. This, along with newly discovered epigenetic cancer mechanisms, gives rise to a hope to overcome radio- and chemo-resistance and to eradicate otherwise incurable neoplasms. (authors)

  6. THE EPIGENETICS OF RENAL CELL TUMORS: FROM BIOLOGY TO BIOMARKERS

    Directory of Open Access Journals (Sweden)

    Rui eHenrique

    2012-05-01

    Full Text Available Renal cell tumors (RCT collectively constitute the third most common type of genitourinary neoplasms, only surpassed by prostate and bladder cancer. They comprise a heterogeneous group of neoplasms with distinctive clinical, morphological and genetic features. Epigenetic alterations are a hallmark of cancer cells and their role in renal tumorigenesis is starting to emerge. Aberrant DNA methylation, altered chromatin remodeling / histone onco-modifications and deregulated microRNA expression not only contribute to the emergence and progression of RCTs, but owing to their ubiquity, they also constitute a promising class of biomarkers tailored for disease detection, diagnosis, assessment of prognosis and prediction of response to therapy. Moreover, due to their dynamic and reversible properties, those alterations represent a target for epigenetic-directed therapies. In this review, the current knowledge about epigenetic mechanisms and their altered status in RCT is summarized and their envisaged use in a clinical setting is also provided.

  7. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    Science.gov (United States)

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 5-Hydroxymethylcytosine Promotes Proliferation of Human Uterine Leiomyoma: A Biological Link to a New Epigenetic Modification in Benign Tumors

    Science.gov (United States)

    Navarro, Antonia; Yin, Ping; Ono, Masanori; Monsivais, Diana; Moravek, Molly B.; Coon, John S.; Dyson, Matthew T.; Wei, Jian-Jun

    2014-01-01

    Context: Uterine leiomyoma, or fibroids, represent the most common benign tumors of the female reproductive tract. A newly discovered epigenetic modification, 5-hydroxymethylation (5-hmC), and its regulators, the TET (Ten Eleven Translocation) enzymes, were implicated in the pathology of malignant tumors; however, their roles in benign tumors, including uterine fibroids, remain unknown. Objective: To determine the role of 5-hmC and TET proteins in the pathogenesis of leiomyoma using human uterine leiomyoma and normal matched myometrial tissues and primary cells. Design: 5-hmC levels were determined by ELISA and immunofluorescent staining in matched myometrial and leiomyoma tissues. TET expression was analyzed by quantitative RT-PCR and immunoblotting. TET1 or TET3 were silenced or inhibited by small interfering RNA or 2-hydroxyglutarate to study their effects on 5-hmC content and cell proliferation. Results: We demonstrated significantly higher 5-hmC levels in the genomic DNA of leiomyoma tissue compared to normal myometrial tissue. The increase in 5-hmC levels was associated with the up-regulation of TET1 or TET3 mRNA and protein expression in leiomyoma tissue. TET1 or TET3 knockdown significantly reduced 5-hmC levels in leiomyoma cells and decreased cell proliferation. Treatment with 2-hydroxyglutarate, a competitive TET enzyme inhibitor, significantly decreased both 5-hmC content and cell proliferation of leiomyoma cells. Conclusion: An epigenetic imbalance in the 5-hmC content of leiomyoma tissue, caused by up-regulation of the TET1 and TET3 enzymes, might lead to discovery of new therapeutic targets in leiomyoma. PMID:25057885

  9. Epigenetics, eh! A meeting summary of the Canadian Conference on Epigenetics.

    Science.gov (United States)

    Rodenhiser, David I; Bérubé, Nathalie G; Mann, Mellissa R W

    2011-10-01

    In May 2011, the Canadian Conference on Epigenetics: Epigenetics Eh! was held in London, Canada. The objectives of this conference were to showcase the breadth of epigenetic research on environment and health across Canada and to provide the catalyst to develop collaborative Canadian epigenetic research opportunities, similar to existing international epigenetic initiatives in the US and Europe. With ten platform sessions and two sessions with over 100 poster presentations, this conference featured cutting-edge epigenetic research, presented by Canadian and international principal investigators and their trainees in the field of epigenetics and chromatin dynamics. An EpigenART competition included ten artists, creating a unique opportunity for artists and scientists to interact and explore their individual interpretations of this scientific discipline. The conference provided a unique venue for a significant cross-section of Canadian epigenetic researchers from diverse disciplines to meet, interact, collaborate and strategize at the national level.

  10. dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes

    Science.gov (United States)

    Singh Nanda, Jagpreet; Kumar, Rahul; Raghava, Gajendra P. S.

    2016-01-01

    We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem.

  11. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  12. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  13. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  14. Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes.

    Science.gov (United States)

    Nagy, Corina; Turecki, Gustavo

    2012-08-01

    Genetic studies have attempted to elucidate causal mechanisms for the development of complex disease, but genome-wide associations have been largely unsuccessful in establishing these links. As an alternative link between genes and disease, recent efforts have focused on mechanisms that alter the function of genes without altering the underlying DNA sequence. Known as epigenetic mechanisms, these include DNA methylation, chromatin conformational changes through histone modifications, ncRNAs and, most recently, 5-hydroxymethylcytosine. Although DNA methylation is involved in normal development, aging and gene regulation, altered methylation patterns have been associated with disease. It is generally believed that early life constitutes a period during which there is increased sensitivity to the regulatory effects of epigenetic mechanisms. The purpose of this review is to outline the contribution of epigenetic mechanisms to genomic function, particularly in the development of complex behavioral phenotypes, focusing on the sensitive periods.

  15. Epigenetic changes in neurology: DNA methylation in multiple sclerosis.

    Science.gov (United States)

    Iridoy Zulet, M; Pulido Fontes, L; Ayuso Blanco, T; Lacruz Bescos, F; Mendioroz Iriarte, M

    2017-09-01

    Epigenetics is defined as the study of the mechanisms that regulate gene expression without altering the underlying DNA sequence. The best known is DNA methylation. Multiple Sclerosis (MS) is a disease with no entirely known etiology, in which it is stated that the involvement of environmental factors on people with a genetic predisposition, may be key to the development of the disease. It is at this intersection between genetic predisposition and environmental factors where DNA methylation may play a pathogenic role. A literature review of the effects of environmental risk factors for the development of MS can have on the different epigenetic mechanisms as well as the implication that such changes have on the development of the disease. Knowledge of epigenetic modifications involved in the pathogenesis of MS, opens a new avenue of research for identification of potential biomarkers, as well as finding new therapeutic targets. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.