WorldWideScience

Sample records for induced dopamine release

  1. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  2. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.

  3. Effects of dopamine antagonists on methamphetamine-induced dopamine release in high and low alcohol preference rats.

    Science.gov (United States)

    Nishiguchi, Minori; Kinoshita, Hiroshi; Kasuda, Shogo; Takahashi, Montonori; Yamamura, Takehiko; Matsui, Kiyoshi; Ouchi, Harumi; Minami, Takako; Hishida, Shigeru; Nishio, Hajime

    2010-03-01

    The authors have previously shown that high alcohol preference rats (HAP) have a significantly higher sensitivity than low alcohol preference rats (LAP) for methamphetamine (MAP). In this study, changes in dopamine and serotonin release induced by MAP (1 mg/kg, intraperitoneally) after pre-treatment with D1 and D2 receptor antagonists were examined in the striatum of rats with different alcohol preferences to elucidate differences in receptor levels between the two rat strains. D1 receptor antagonist SCH23390 or D2 receptor antagonist haloperidol were administrated intracerebroventricularly 10 min before MAP stimulation. This study investigated the effect of methamphetamine-induced dopamine and serotonin release in striatum using microdialysis of freely moving rats coupled to ECD-HPLC. With haloperidol treatment both strains of rats showed a significantly greater maximum increase on MAP-induced dopamine release compared with respective control rats. However, after SCH23390 treatment only HAP rats showed a significantly greater increase in dopamine release compared with controls. SCH23390 blocks mainly D1 receptors only in the post-synaptic membrane, whereas haloperidol blocks D2 receptors in both the pre-synaptic and post-synaptic membranes. The MAP-induced increase in dopamine release following haloperidol pre-treatment was greater than SCH23390 pre-treatment in both strains. This result indicates that D2 receptors (autoreceptors) in the pre-synaptic membrane were blocked, leading to the elimination of the feedback function that regulates dopamine release. These data suggested that alcohol preference is associated with the action of MAP, and the dopaminergic mechanism, specifically the D1 system in the striatum, might have a different pathway dependent on alcohol preference.

  4. Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia

    Science.gov (United States)

    Nevalainen, Nina; af Bjerkén, Sara; Lundblad, Martin; Gerhardt, Greg A.; Strömberg, Ingrid

    2011-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) is the most commonly used treatment for symptomatic control in patients with Parkinson’s disease. Unfortunately, most patients develop severe side effects, such as dyskinesia, upon chronic L-DOPA treatment. The patophysiology of dyskinesia is unclear, however, involvement of serotonergic nerve fibers in converting L-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of L-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned L-DOPA naïve, and dopamine-denervated chronically L-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local L-DOPA administration into normal and intact hemisphere of dopamine-lesioned L-DOPA naïve animals significantly increased the potassium-evoked dopamine release. L-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted L-DOPA naïve striatum, although these dopamine levels were several-folds lower than in the normal striatum, while no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local L-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared to those measured in L-DOPA naïve dopamine-denervated striatum. To conclude, L-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, L-DOPA loading does not increase the dopamine release in dyskinetic animals as found in L-DOPA naïve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior. PMID:21534956

  5. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons.

    Science.gov (United States)

    Salum, Cristiane; Schmidt, Fanny; Michel, Patrick P; Del-Bel, Elaine; Raisman-Vozari, Rita

    2016-01-01

    Previous research has shown that nitric oxide (NO) synthase inhibitors prevent rodents' sensorimotor gating impairments induced by dopamine releasing drugs, such as amphetamine (Amph) and methylphenidate. The mechanisms of this effect have not been entirely understood. In the present work, we investigated some possible mechanisms by which the NO donor, NOC-12 (3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene), influence spontaneous and Amph-induced dopamine release, using rat mesencephalic primary cultured neurons preparations. Our results showed that NOC-12 increased dopamine release in a concentration-dependent manner and potentiated the Amph-induced one. Dopamine release induced by NOC-12 was disrupted by N-acetyl-L-cystein (NAC-a free radical scavenger) and MK-801, a NMDA (N-methyl-D-aspartate) non-competitive antagonist, and was concentration dependently affected by oxadiazolo[4,3]quinoxalin-1-one, an inhibitor of the soluble guanylate cyclase (sGC). In contrast, dopamine released by Amph was facilitated by NAC and by MK-801 and not affected by nifedipine (a L-type-Ca(+2) channel blocker), which enhanced NOC-12-induced dopamine release. The present work demonstrates that DA release induced by NOC-12 is partially dependent on sGC and on NMDA activation, and is modulated by L-type Ca(+2) channel and the antioxidant NAC. This mechanism differs from the Amph-induced one, which appears not to depend on L-type Ca(+2) channel and seems to be facilitated by NMDA channel blocking and by NAC. These results suggest that Amph and NOC-12 induce dopamine release through complementary pathways, which may explain the potentiation of Amph-induced dopamine release by NOC-12. These findings contribute to understand the involvement of NO in dopamine-related neuropsychiatric and neurodegenerative diseases.

  6. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    Science.gov (United States)

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [(11)C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [(11)C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase

  7. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Science.gov (United States)

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  8. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD.

    Science.gov (United States)

    Cherkasova, Mariya V; Faridi, Nazlie; Casey, Kevin F; O'Driscoll, Gillian A; Hechtman, Lily; Joober, Ridha; Baker, Glen B; Palmer, Jennifer; Dagher, Alain; Leyton, Marco; Benkelfat, Chawki

    2014-05-01

    Converging evidence from clinical, preclinical, neuroimaging, and genetic research implicates dopamine neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD). The in vivo neuroreceptor imaging evidence also suggests alterations in the dopamine system in ADHD; however, the nature and behavioral significance of those have not yet been established. Here, we investigated striatal dopaminergic function in ADHD using [(11)C]raclopride PET with a d-amphetamine challenge. We also examined the relationship of striatal dopamine responses to ADHD symptoms and neurocognitive function. A total of 15 treatment-free, noncomorbid adult males with ADHD (age: 29.87 ± 8.65) and 18 healthy male controls (age: 25.44 ± 6.77) underwent two PET scans: one following a lactose placebo and the other following d-amphetamine (0.3 mg/kg, p.o.), administered double blind and in random order counterbalanced across groups. In a separate session without a drug, participants performed a battery of neurocognitive tests. Relative to the healthy controls, the ADHD patients, as a group, showed greater d-amphetamine-induced decreases in striatal [(11)C]raclopride binding and performed more poorly on measures of response inhibition. Across groups, a greater magnitude of d-amphetamine-induced change in [(11)C]raclopride binding potential was associated with poorer performance on measures of response inhibition and ADHD symptoms. Our findings suggest an augmented striatal dopaminergic response in treatment-naive ADHD. Though in contrast to results of a previous study, this finding appears consistent with a model proposing exaggerated phasic dopamine release in ADHD. A susceptibility to increased phasic dopamine responsivity may contribute to such characteristics of ADHD as poor inhibition and impulsivity.

  9. [Suppression by dopamine of GH release induced by GRF in a case of acromegaly].

    Science.gov (United States)

    Matsubara, M; Odagaki, E; Morioka, T

    1987-03-20

    Inhibition of plasma GH by dopaminergic agonists is one of the characteristics of the GH secretion in acromegaly. GRF is known to stimulate GH secretion in most patients with acromegaly. In order to elucidate the relationship between GRF and dopamine in regulating the secretion of GH in this disease, we examined plasma GH responses to dopamine (DA) infusion (4 micrograms/kg/min), GRF injection (100 micrograms i.v.), sulpiride (SP) injection (200 mg i.v.), a DA blocker, DA plus GRF and SP plus GRF in a 51-year-old male patient with acromegaly. Plasma GH was reduced to 14% of the initial level by iv infusion of DA, and was elevated to 158% by iv injection of GRF. No considerable change was observed in plasma GH by iv infusion of SP (114% of the initial level). GH release induced by GRF was remarkably reduced by simultaneous administration of DA (28% of the initial level), whereas SP administration did not affect GRF-induced GH release (154%). The marked reduction of GH release after DA plus GRF seems to suggest that the effect of DA on the GH regulation is stronger than that of GRF in this acromegalic patient. It is suggested also that endogenous DA may not play an inhibitory role in GH secretion in this case since DA blockade by SP did not raise basal GH levels and the GH response to GRF.

  10. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  11. D2 autoreceptor inhibition reveals oxygen-glucose deprivation-induced release of dopamine in guinea-pig cochlea

    NARCIS (Netherlands)

    Halmos, G; Doleviczényi, Z; Répássy, G; Kittel, A; Vizi, E S; Lendvai, B; Zelles, T

    2005-01-01

    Dopamine (DA), released from the lateral olivocochlear (LOC) efferent terminals, the efferent arm of the short-loop feedback in the cochlea, is considered as a protective factor in the inner ear since it inhibits auditory nerve dendrite firing in ischemia- or noise-induced excitotoxicity leading to

  12. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  13. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  14. Effect of MK-801 on methamphetamine-induced dopaminergic neurotoxicity: long-term attenuation of methamphetamine-induced dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun; Kim, Yu Ri; Hwang, Se Hwan [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Repeated administration of methamphetamine (METH) produces high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. The effect of MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, on METH-induced changes in DA transporter (DAT) and DA release evoked by an acute METH challenge was evaluated in rodent striatum using [{sup 3}H] WIN 38,428 ex vivo auto-radiography and in vivo microdialysis. Four injections of METH (10 mg/kg, i.p.), each given 2 h apart, produced 71% decrease in DAT levels in mouse striatum 3 d after administration. Pretreatment with MK-801 (2.5 g/kg, i.p.) 15 min before each of the four METH injections protected completely against striatal DAT depletions. Four injections of MK-801 alone did not significantly change striatal DAT levels. Striatal DA release evoked by an acute METH challenge (4mg/kg, i.p.) at 3 d after repeated administration of METH in rats was decreased but significant compared with controls, which was attenuated by repeated pretreatment with MK-801. Also, repeated injections of MK-801 alone attenuated acute METH-induced striatal DA release 3 d after administration. These results suggest that repeated administration of MK-801 may exert a preventive effect against METH-induced DA terminal injury through long-term attenuation of DA release induced by METH and other stimuli.

  15. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.

    Directory of Open Access Journals (Sweden)

    Kenji Yoshimi

    Full Text Available In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011; however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.

  16. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.

    Science.gov (United States)

    Yoshimi, Kenji; Kumada, Shiori; Weitemier, Adam; Jo, Takayuki; Inoue, Masato

    2015-01-01

    In-vivo voltammetry has successfully been used to detect dopamine release in rodent brains, but its application to monkeys has been limited. We have previously detected dopamine release in the caudate of behaving Japanese monkeys using diamond microelectrodes (Yoshimi 2011); however it is not known whether the release pattern is the same in various areas of the forebrain. Recent studies have suggested variations in the dopaminergic projections to forebrain areas. In the present study, we attempted simultaneous recording at two locations in the striatum, using fast-scan cyclic voltammetry (FSCV) on carbon fibers, which has been widely used in rodents. Responses to unpredicted food and liquid rewards were detected repeatedly. The response to the liquid reward after conditioned stimuli was enhanced after switching the prediction cue. These characteristics were generally similar between the ventral striatum and the putamen. Overall, the technical application of FSCV recording in multiple locations was successful in behaving primates, and further voltammetric recordings in multiple locations will expand our knowledge of dopamine reward responses.

  17. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release...... using M (5) (-/-) mice backcrossed to the C57BL/6NTac strain. STATISTICAL ANALYSES: Sensitization of the locomotor response is considered a model for chronic adaptations to repeated substance exposure, which might be related to drug craving and relapse. The effects of amphetamine on locomotor activity......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  18. Studies, using in vivo microdialysis, on the effect of the dopamine uptake inhibitor GBR 12909 on 3,4-methylenedioxymethamphetamine ('ecstasy')-induced dopamine release and free radical formation in the mouse striatum.

    Science.gov (United States)

    Camarero, Jorge; Sanchez, Veronica; O'Shea, Esther; Green, A Richard; Colado, M Isabel

    2002-06-01

    The present study examined the mechanisms by which 3,4-methylenedioxymethamphetamine (MDMA) produces long-term neurotoxicity of striatal dopamine neurones in mice and the protective action of the dopamine uptake inhibitor GBR 12909. MDMA (30 mg/kg, i.p.), given three times at 3-h intervals, produced a rapid increase in striatal dopamine release measured by in vivo microdialysis (maximum increase to 380 +/- 64% of baseline). This increase was enhanced to 576 +/- 109% of baseline by GBR 12909 (10 mg/kg, i.p.) administered 30 min before each dose of MDMA, supporting the contention that MDMA enters the terminal by diffusion and not via the dopamine uptake site. This, in addition to the fact that perfusion of the probe with a low Ca(2+) medium inhibited the MDMA-induced increase in extracellular dopamine, indicates that the neurotransmitter may be released by a Ca(2+) -dependent mechanism not related to the dopamine transporter. MDMA (30 mg/kg x 3) increased the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) from salicylic acid perfused through a probe implanted in the striatum, indicating that MDMA increased free radical formation. GBR 12909 pre-treatment attenuated the MDMA-induced increase in 2,3-DHBA formation by approximately 50%, but had no significant intrinsic radical trapping activity. MDMA administration increased lipid peroxidation in striatal synaptosomes, an effect reduced by approximately 60% by GBR 12909 pre-treatment. GBR 12909 did not modify the MDMA-induced changes in body temperature. These data suggest that MDMA-induced toxicity of dopamine neurones in mice results from free radical formation which in turn induces an oxidative stress process. The data also indicate that the free radical formation is probably not associated with the MDMA-induced dopamine release and that MDMA does not induce dopamine release via an action at the dopamine transporter.

  19. Effects of extracerebral dopamine on salsolinol- or thyrotropin-releasing hormone-induced prolactin (PRL) secretion in goats.

    Science.gov (United States)

    Inaba, Yuki; Kato, Yuki; Itou, Azumi; Chiba, Aoi; Sawai, Ken; Fülöp, Ferenc; Nagy, György Miklos; Hashizume, Tsutomu

    2016-12-01

    The aim of the present study was to clarify the effect of extracerebral dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) secretion in goats. An intravenous injection of SAL or thyrotropin-releasing hormone (TRH) was given to female goats before and after treatment with an extracerebral DA receptor antagonist, domperidone (DOM), and the PRL-releasing response to SAL was compared with that to TRH. DOM alone increased plasma PRL concentrations and the PRL-releasing response to DOM alone was greater than that to either SAL alone or TRH alone. The PRL-releasing response to DOM plus SAL was similar to that to DOM alone, and no additive effect of DOM and SAL on the secretion of PRL was observed. In contrast, the PRL-releasing response to DOM plus TRH was greater than that to either TRH alone or DOM alone and DOM synergistically increased TRH-induced PRL secretion. The present results demonstrate that the mechanism involved in PRL secretion by SAL differs from that by TRH, and suggest that the extracerebral DA might be associated in part with the modulation of SAL-induced PRL secretion in goats.

  20. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens.

    Science.gov (United States)

    Yorgason, Jordan T; Zeppenfeld, Douglas M; Williams, John T

    2017-02-22

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met(5)]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake.SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  1. Noradrenaline-induced release of newly-synthesized accumbal dopamine: differential role of alpha- and beta-adrenoceptors

    Directory of Open Access Journals (Sweden)

    Francisca eMeyer

    2014-08-01

    Full Text Available Previous studies have shown that intra-accumbens infusion of isoproterenol (ISO, a beta-adrenoceptor-agonist, and phenylephrine (PE, an alpha-adrenoceptor-agonist, increase the release of accumbal dopamine (DA. In the present study we analyzed whether the ISO-induced release of DA is sensitive to pretreatment with the DA synthesis inhibitor alpha-methyl-para-tyrosine (AMPT. Earlier studies have shown that the PE-induced release of DA is derived from DA pools that are resistant to AMPT. In addition to PE, the alpha-adrenoceptor-antagonist phentolamine (PA was also found to increase accumbal DA release. Therefore, we investigated whether similar to the DA-increasing effect of PE, the DA increase induced by PA is resistant to AMPT. Pretreatment with AMPT prevented the ISO-induced increase of accumbal DA. The accumbal DA increase after PA was not reduced by the DA synthesis inhibitor, independently of the amount of DA released. These results show that mesolimbic beta-, but not alpha-adrenoceptors, control the release of accumbal newly-synthesized DA pools. The DA-increasing effects of PE have previously been ascribed to stimulation of presynaptic receptors located on noradrenergic terminals, whereas the DA-increasing effects of PA and ISO have been ascribed to an action of these drugs at postsynaptic receptors on dopaminergic terminals. The fact that AMPT did not affect the accumbal DA response to PE and PA, whereas it did prevent the accumbal DA increase to ISO, supports our previously reported hypothesis that the noradrenergic neurons of the nucleus accumbens containing presynaptic alpha-adrenoceptors impinge upon the dopaminergic terminals in the nucleus accumbens containing postsynaptic adrenoceptors of the alpha but not of the beta type. The putative therapeutic effects of noradrenergic agents in the treatment of DA-related disorders are shortly discussed.

  2. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  3. Effects of the NMDA receptor antagonists on deltamethrin-induced striatal dopamine release in conscious unrestrained rats.

    Science.gov (United States)

    Morikawa, Takuya; Furuhama, Kazuhisa

    2009-08-01

    To better understand the neurotoxicity caused by the pyrethroid pesticide, we examined the effects of the N-methyl-D-aspartate (NMDA) receptor antagonists MK-801, a non-competitive cation channel blocker, and 2-amino-5-phosphonovaleric acid (APV), a competitive Na(+) channel blocker, on extracellular dopamine levels in male Sprague-Dawley rats receiving the type II pyrethroid deltamethrin using an in vivo microdialysis system. Deltamethrin (60 mg/kg, i.p.) evidently increased striatal dopamine levels with a peak time of 120 min, and the local infusion (i.c.) of either MK-801(650 muM) or APV (500 muM) completely blocked these actions. The fluctuation in the dopamine metabolite 3-MT also resembled that in dopamine. Our results suggest that dopamine-releasing neurons would be modulated via the NMDA receptor by the excitatory glutamatergic neurons after deltamethrin treatment.

  4. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices.

    Science.gov (United States)

    Ferris, Mark J; Calipari, Erin S; Yorgason, Jordan T; Jones, Sara R

    2013-05-15

    Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.

  5. GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans.

    Science.gov (United States)

    Villemagne, V L; Wong, D F; Yokoi, F; Stephane, M; Rice, K C; Matecka, D; Clough, D J; Dannals, R F; Rothman, R B

    1999-09-15

    Major neurochemical effects of methamphetamine include release of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) via a carrier-mediated exchange mechanism. Preclinical research supports the hypothesis that elevations of mesolimbic DA mediate the addictive and reinforcing effects of methamphetamine and amphetamine. This hypothesis has not been adequately tested in humans. Previous in vivo rodent microdialysis demonstrated that the high affinity DA uptake inhibitor, GBR12909, attenuates cocaine- and amphetamine-induced increases in mesolimbic DA. The present study determined the ability of GBR12909 to attenuate amphetamine-induced increases in striatal DA as measured by [(11)C]raclopride continuous infusion positron emission tomography (PET) scans in two Papio anubis baboons. [(11)C]Raclopride was given in a continuous infusion paradigm resulting in a flat volume of distribution vs. time for up to 45 min postinjection. At that time, a 1.5 mg/kg amphetamine i.v. bolus was administered which caused a significant (30.3%) reduction in the volume of distribution (V(3)"). The percent reduction in the volume of distribution and, hence, a measure of the intrasynaptic DA release ranged between 22-41%. GBR12909 (1 mg/kg, slow i.v. infusion) was administered 90 min before the administration of the radiotracer. The comparison of the volume of distribution before and after administration of GBR12909 showed that GBR12909 inhibited amphetamine-induced DA release by 74%. These experiments suggest that GBR12909 is an important prototypical medication to test the hypothesis that stimulant-induced euphoria is mediated by DA and, if the DA hypothesis is correct, a potential treatment agent for cocaine and methamphetamine abuse. Furthermore, this quantitative approach demonstrates a way of testing various treatment medications, including other forms of GBR12909 such as a decanoate derivative.

  6. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  7. The Anorexigenic Peptide Neuromedin U (NMU Attenuates Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release and Expression of Conditioned Place Preference in Mice.

    Directory of Open Access Journals (Sweden)

    Daniel Vallöf

    Full Text Available Amphetamine dependence, besides its substantial economical consequence, is a serious cause of mortality and morbidity. By investigations of the neurochemical correlates through which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine system unique targets for treatment of drug addiction can be identified. This reward link consists of a dopamine projection from the ventral tegmental area to the nucleus accumbens (NAc suggesting that these brain areas are important for reward. The physiological function of gut-brain peptides has expanded beyond food intake modulation and involves regulation of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide neuromedin U (NMU. We therefore investigated the effects of intracerebroventricular (icv administration of NMU on amphetamine's well-documented effects on the mesoaccumbal dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In addition, the effect of accumbal NMU administration on locomotor activity was examined. The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference (CPP was elucidated. Firstly, we showed that icv administration of NMU attenuate the amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of CPP in mice. Secondly, we found that a lower dose of NMU (icv reduce the amphetamine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU administration into the NAc block the ability of amphetamine to cause a locomotor stimulation in mice. However, accumbal NMU administration did not attenuate the amphetamine-induced expression of CPP in mice. Our novel data suggest that central NMU signalling is involved in development of amphetamine dependence.

  8. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-01-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  9. Actions of dopamine antagonists on stimulated striatal and limbic dopamine release: an in vivo voltammetric study.

    OpenAIRE

    Stamford, J. A.; Kruk, Z L; Millar, J.

    1988-01-01

    1. Fast cyclic voltammetry at carbon fibre microelectrodes was used to study the effects of several dopamine antagonists upon stimulated dopamine release in the rat striatum and nucleus accumbens. 2. In both nuclei, stimulated dopamine release was increased by D2-receptor-selective and mixed D1/D2-receptor antagonists. The D1-selective antagonist SCH 23390 had no effect. 3. Striatal and limbic dopamine release were elevated by cis- but not trans-flupenthixol. 4. The 'atypical' neuroleptics (c...

  10. Dopamine control of LH release in the tench (Tinca tinca).

    Science.gov (United States)

    Podhorec, Peter; Socha, Magdalena; Sokolowska-Mikolajczyk, Miroslawa; Policar, Tomas; Svinger, Viktor W; Drozd, Borek; Kouril, Jan

    2012-01-01

    Tench (Tinca tinca) is apparently the only known member of the Cyprinidae in which ovulation is stimulated following administration of a low dose of GnRH analogue (GnRHa) without a dopamine inhibitor. This study evaluated LH release effectiveness of the most commonly used GnRHa and clarified whether LH secretion followed by ovulation is subject to inhibitory dopaminergic control in tench. Fish were intraperitoneally injected with three types of GnRHa, GnRHa with dopamine inhibitor metoclopramide (combined treatment), or the dopamine inhibitor metoclopramide alone. LH concentrations at five sampling times (0, 6, 12, 24, and 33 h) together with ovulation success and fecundity index were recorded. The combined treatment triggered an almost immediate LH release peak with a gradual decline, and resulted in a high ovulation rate. In contrast to the combined treatment, an application of GnRHa alone at 10 μg kg(-1) induced gradual increase of LH concentrations with peaks close to ovulation time, and with high ovulation success. Significant differences in LH concentrations at 6 and 12h and no differences in ovulation success were found between the combined and the GnRHa alone treatments. Metoclopramide alone induced a small increase in LH with no ovulation. The study presents clear evidence of dopaminergic control of LH release in tench, with a high ovulation rate obtained after application of GnRHa alone or in combination with dopamine inhibitor.

  11. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    Science.gov (United States)

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  12. Neuronal release of endogenous dopamine from corpus of guinea pig stomach.

    Science.gov (United States)

    Shichijo, K; Sakurai-Yamashita, Y; Sekine, I; Taniyama, K

    1997-11-01

    Neuronal release of endogenous dopamine was identified in mucosa-free preparations (muscle layer including intramural plexus) from guinea pig stomach corpus by measuring tissue dopamine content and dopamine release and by immunohistochemical methods using a dopamine antiserum. Dopamine content in mucosa-free preparations of guinea pig gastric corpus was one-tenth of norepinephrine content. Electrical transmural stimulation of mucosa-free preparations of gastric corpus increased the release of endogenous dopamine in a frequency-dependent (3-20 Hz) manner. The stimulated release of dopamine was prevented by either removal of external Ca2+ or treatment with tetrodotoxin. Dopamine-immunopositive nerve fibers surrounding choline acetyltransferase-immunopositive ganglion cells were seen in the myenteric plexus of whole mount preparations of gastric corpus even after bilateral transection of the splanchnic nerve proximal to the junction with the vagal nerve (section of nerves between the celiac ganglion and stomach). Domperidone and sulpiride potentiated the stimulated release of acetylcholine and reversed the dopamine-induced inhibition of acetylcholine release from mucosa-free preparations. These results indicate that dopamine is physiologically released from neurons and from possible dopaminergic nerve terminals and regulates cholinergic neuronal activity in the corpus of guinea pig stomach.

  13. The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.

    Science.gov (United States)

    Bagosi, Zsolt; Jászberényi, Miklós; Bujdosó, Erika; Szabó, Gyula; Telegdy, Gyula

    2006-12-01

    The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.

  14. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  15. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [(18)F]Fallypride.

    Science.gov (United States)

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D2/D3 receptor availability in the nonhuman primate brain with the use of the radioligand [(18)F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D2/D3 antagonist, [(18)F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUVROI/SUVcerebellum) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [(18)F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  16. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man--a PET study with [11C]raclopride.

    Science.gov (United States)

    Vollenweider, F X; Vontobel, P; Hell, D; Leenders, K L

    1999-05-01

    The modulating effects of serotonin on dopamine neurotransmission are not well understood, particularly in acute psychotic states. Positron emission tomography was used to examine the effect of psilocybin on the in vivo binding of [11C]raclopride to D2-dopamine receptors in the striatum in healthy volunteers after placebo and a psychotomimetic dose of psilocybin (n = 7). Psilocybin is a potent indoleamine hallucinogen and a mixed 5-HT2A and 5-HT1A receptor agonist. Psilocybin administration (0.25 mg/kg p.o.) produced changes in mood, disturbances in thinking, illusions, elementary and complex visual hallucinations and impaired ego-functioning. Psilocybin significantly decreased [11C]raclopride receptor binding potential (BP) bilaterally in the caudate nucleus (19%) and putamen (20%) consistent with an increase in endogenous dopamine. Changes in [11C]raclopride BP in the ventral striatum correlated with depersonalization associated with euphoria. Together with previous reports of 5-HT receptor involvement in striatal dopamine release, it is concluded that stimulation of both 5-HT2A and 5-HT1A receptors may be important for the modulation of striatal dopamine release in acute psychoses. The present results indirectly support the hypothesis of a serotonin-dopamine dysbalance in schizophrenia and suggest that psilocybin is a valuable tool in the analysis of serotonin-dopamine interactions in acute psychotic states.

  17. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  18. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  19. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  20. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    NARCIS (Netherlands)

    Bossong, MG; Mehta, Mitul; van Berckel, Bart; Howes, Oliver; Kahn, RS; Stokes, Paul

    2015-01-01

    RATIONALE: Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human

  1. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  2. Chlorpromazine, haloperidol, metoclopramide and domperidone release prolactin through dopamine antagonism at low concentrations but paradoxically inhibit prolactin release at high concentrations.

    Science.gov (United States)

    Besser, G. M.; Delitala, G.; Grossman, A.; Stubbs, W. A.; Yeo, T.

    1980-01-01

    1. The effects of chlorpromazine, haloperidol, metoclopramide and domperidone on the release of prolactin from perfused columns of dispersed rat anterior pituitary cells were studied. 2. Chlorpromazine, haloperidol, metoclopramide and domperidone antagonized the dopamine-mediated inhibition of prolactin release at low concentrations. 3. Each dopamine antagonist displaced the dose-response curve for dopamine-induced suppression of prolactin release to the right in a parallel manner. 4. At higher concentrations, the four drugs became less effective as dopamine antagonists. 5. At high concentrations in the absence of dopamine, chlorpromazine, haloperidol, metoclopramide and domperidone paradoxically suppressed prolactin secretion by an unknown mechanism. PMID:6110459

  3. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.

    Science.gov (United States)

    Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R

    2016-12-20

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.

  4. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J;

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  5. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats.

    Science.gov (United States)

    El Arfani, Anissa; Bentea, Eduard; Aourz, Najat; Ampe, Ben; De Deurwaerdère, Philippe; Van Eeckhaut, Ann; Massie, Ann; Sarre, Sophie; Smolders, Ilse; Michotte, Yvette

    2014-10-01

    Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.

  6. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  7. Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice.

    Science.gov (United States)

    Stout, Kristen A; Dunn, Amy R; Lohr, Kelly M; Alter, Shawn P; Cliburn, Rachel A; Guillot, Thomas S; Miller, Gary W

    2016-10-19

    Drugs of abuse induce sensitization, which is defined as enhanced response to additional drug following a period of withdrawal. Sensitization occurs in both humans and animal models of drug reinforcement and contributes substantially to the addictive nature of drugs of abuse, because it is thought to represent enhanced motivational wanting for drug. The ventral pallidum, a key member of the reward pathway, contributes to behaviors associated with reward, such as sensitization. Dopamine inputs to the ventral pallidum have not been directly characterized. Here we provide anatomical, neurochemical, and behavioral evidence demonstrating that dopamine terminals in the ventral pallidum contribute to reward in mice. We report subregional differences in dopamine release, measured by ex vivo fast-scan cyclic voltammetry: rostral ventral pallidum exhibits increased dopamine release and uptake compared with caudal ventral pallidum, which is correlated with tissue expression of dopaminergic proteins. We then subjected mice to a methamphetamine-sensitization protocol to investigate the contribution of dopaminergic projections to the region in reward related behavior. Methamphetamine-sensitized animals displayed a 508% and 307% increase in baseline dopamine release in the rostral and caudal ventral pallidum, respectively. Augmented dopamine release in the rostral ventral pallidum was significantly correlated with sensitized locomotor activity. Moreover, this presynaptic dopaminergic plasticity occurred only in the ventral pallidum and not in the ventral or dorsal striatum, suggesting that dopamine release in the ventral pallidum may be integrally important to drug-induced sensitization.

  8. CyPPA, a positive SK3/SK2 modulator, reduces activity of dopaminergic neurons, inhibits dopamine release, and counteracts hyperdopaminergic behaviors induced by methylphenidate

    Directory of Open Access Journals (Sweden)

    Kjartan F. Herrik

    2012-02-01

    Full Text Available Dopamine (DA containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder (ADHD, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson’s disease. Pharmacological modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca2+-activated K+ channels (SK channels, in particular the SK3 subtype, are important in the physiology of DA neurons, and agents modifying SK channel activity could potentially affect DA-signaling and DA-related behaviors. Here we show that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine, a subtype-selective positive modulator of SK channels (SK3 > SK2 >>> SK1, IK, decreased spontaneous firing rate, increased the duration of the apamin-sensitive, medium duration afterhyperpolarization (mAHP, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both mouse and rat midbrain slices. Using a immunohistochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo studies revealed that systemic administration of CyPPA attenuated methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together, the data accentuate the important role played by SK3 channels in the physiology of DA neurons, and indicate that their facilitation by CyPPA profoundly influences physiological as well as pharmacologically induced hyperdopaminergic behavior.

  9. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice.

    Directory of Open Access Journals (Sweden)

    Emil Egecioglu

    Full Text Available The gastrointestinal peptide glucagon-like peptide 1 (GLP-1 is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4, on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans.

  10. Striatal dopamine release codes uncertainty in pathological gambling.

    Science.gov (United States)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert

    2012-10-30

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors.

  11. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R. [Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 (Israel)

    1996-09-01

    Human neuroblastoma NMB cells take up [{sup 3}H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [{sup 3}H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [{sup 3}H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996

  12. Simultaneous radioenzymatic assay of dopamine and dihydroxyphenylacetic acid: an index of in vivo dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.H.; Wooten, G.F.

    1981-03-01

    The relative brain tissue concentrations of dopamine (DA) and its deaminated metabolite, dihydroxyphenylacetic acid (DOPAC), appears to be a reliable index of the functional activity of dopaminergic neurons. In order to apply this approach to the assessment of dopaminergic neuronal activity in small regions of brain, we have developed a sensitive radioenzymatic assay for simultaneous measurement of DA and DOPAC. The sensitivity of the assay for DA is approximately 10 pg and for DOPAC 100 pg. In addition, the assay is highly specific, simple, and relatively inexpensive. The concurrent estimation of tissue DA and DOPAC concentrations seems to be a reliable means of evaluating the rate of DA turnover or release in behavioral, electrical stimulation, and certain drug paradigms. However, the release or turnover of DA as induced by D-amphetamine (and perhaps other indirectly-acting dopaminemimetic drugs) cannot be meaningfully assessed by measurement of DA and DOPAC alone.

  13. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake.

    Science.gov (United States)

    Wheeler, Daniel S; Ebben, Amanda L; Kurtoglu, Beliz; Lovell, Marissa E; Bohn, Austin T; Jasek, Isabella A; Baker, David A; Mantsch, John R; Gasser, Paul J; Wheeler, Robert A

    2017-10-01

    Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our lab and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling. However, prior studies in behaving animals have not provided mechanistic insight. Using fast-scan cyclic voltammetry, we examined the effect of systemic corticosterone on spontaneous dopamine release events (transients) in the NAc core and shell in behaving rats. A physiologically relevant systemic injection of corticosterone (2 mg/kg i.p.) induced an increase in dopamine transient amplitude and duration (both voltammetric measures sensitive to decreases in dopamine clearance), but had no effect on the frequency of transient release events. This effect was compounded by cocaine (2.5 mg/kg i.p.). However, a second experiment indicated that the same injection of corticosterone had no detectable effect on the dopaminergic encoding of a palatable natural reward (saccharin). Taken together, these results suggest that corticosterone interferes with naturally-occurring dopamine uptake locally, and this effect is a critical determinant of dopamine concentration specifically in situations in which the dopamine transporter is pharmacologically blocked by cocaine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release.

    Science.gov (United States)

    Pes, Romina; Godar, Sean C; Fox, Andrew T; Burgeno, Lauren M; Strathman, Hunter J; Jarmolowicz, David P; Devoto, Paola; Levant, Beth; Phillips, Paul E; Fowler, Stephen C; Bortolato, Marco

    2017-03-01

    Pramipexole (PPX) is a high-affinity D2-like dopamine receptor agonist, used in the treatment of Parkinson's disease (PD) and restless leg syndrome. Recent evidence indicates that PPX increases the risk of problem gambling and impulse-control disorders in vulnerable patients. Although the molecular bases of these complications remain unclear, several authors have theorized that PPX may increase risk propensity by activating presynaptic dopamine receptors in the mesolimbic system, resulting in the reduction of dopamine release in the nucleus accumbens (NAcc). To test this possibility, we subjected rats to a probability-discounting task specifically designed to capture the response to disadvantageous options. PPX enhanced disadvantageous decision-making at a dose (0.3 mg/kg/day, SC) that reduced phasic dopamine release in the NAcc. To test whether these modifications in dopamine efflux were responsible for the observed neuroeconomic deficits, PPX was administered in combination with the monoamine-depleting agent reserpine (RES), at a low dose (1 mg/kg/day, SC) that did not affect baseline locomotor and operant responses. Contrary to our predictions, RES surprisingly exacerbated the effects of PPX on disadvantageous decision-making, even though it failed to augment PPX-induced decreases in phasic dopamine release. These results collectively suggest that PPX impairs the discounting of probabilistic losses and that the enhancement in risk-taking behaviors secondary to this drug may be dissociated from dynamic changes in mesolimbic dopamine release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Optical suppression of drug-evoked phasic dopamine release.

    Science.gov (United States)

    McCutcheon, James E; Cone, Jackson J; Sinon, Christopher G; Fortin, Samantha M; Kantak, Pranish A; Witten, Ilana B; Deisseroth, Karl; Stuber, Garret D; Roitman, Mitchell F

    2014-01-01

    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre(+) rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  16. Optical suppression of drug-evoked phasic dopamine release

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2014-09-01

    Full Text Available Brief fluctuations in dopamine concentration (dopamine transients play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc of urethane-anesthetized rats. We targeted halorhodopsin (NpHR specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats. Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  17. Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration.

    Science.gov (United States)

    Porcu, Patrizia; Lallai, Valeria; Locci, Andrea; Catzeddu, Sandro; Serra, Valeria; Pisu, Maria Giuseppina; Serra, Mariangela; Dazzi, Laura; Concas, Alessandra

    2017-03-01

    Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. Female rats were treated with 10 μg of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.

  18. CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate

    DEFF Research Database (Denmark)

    Herrik, Kjartan F; Redrobe, John P; Holst, Dorte

    2012-01-01

    Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological...... modulation of DA receptors and transporters are well established approaches for treatment of DA-related disorders. Direct modulation of the DA system by influencing the discharge pattern of these autonomously firing neurons has yet to be exploited as a potential therapeutic strategy. Small conductance Ca(2...... mouse and rat midbrain slices. Using an immunocytochemically and pharmacologically validated DA release assay employing cultured DA neurons from rats, we show that CyPPA repressed DA release in a concentration-dependent manner with a maximal effect equal to the D2 receptor agonist quinpirole. In vivo...

  19. Hypofunction of prefrontal cortex NMDA receptors does not change stress-induced release of dopamine and noradrenaline in amygdala but disrupts aversive memory.

    Science.gov (United States)

    Del Arco, Alberto; Ronzoni, Giacomo; Mora, Francisco

    2015-07-01

    A dysfunction of prefrontal cortex has been associated with the exacerbated response to stress observed in schizophrenic patients and high-risk individuals to develop psychosis. The hypofunction of NMDA glutamatergic receptors induced by NMDA antagonists produces cortico-limbic hyperactivity, and this is used as an experimental model to resemble behavioural abnormalities observed in schizophrenia. The aim of the present study was to investigate whether injections of NMDA antagonists into the medial prefrontal cortex of the rat change (1) the increases of dopamine, noradrenaline and corticosterone concentrations produced by acute stress in amygdala, and (2) the acquisition of aversive memory related to a stressful event. Male Wistar rats were implanted with guide cannulae to perform microdialysis and bilateral microinjections (0.5 μl/side) of the NMDA antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phophonic acid (CPP) (25 and 100 ng). Prefrontal injections were performed 60 min before restraint stress in microdialysis experiments, or training (footshock; 0.6 mA, 2 s) in inhibitory avoidance test. Retention latency was evaluated 24 h after training as an index of aversive memory. Acute stress increased amygdala dialysate concentrations of dopamine (160% of baseline), noradrenaline (145% of baseline) and corticosterone (170% of baseline). Prefrontal injections of CPP did not change the increases of dopamine, noradrenaline or corticosterone produced by stress. In contrast, CPP significantly reduced the retention latency in the inhibitory avoidance test. These results suggest that the hypofunction of prefrontal NMDA receptors does not change the sensitivity to acute stress of dopamine and noradrenaline projections to amygdala but impairs the acquisition of aversive memory.

  20. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    Science.gov (United States)

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  1. Opposing effects of narcotic gases and pressure on the striatal dopamine release in rats.

    Science.gov (United States)

    Balon, Norbert; Kriem, Badreddine; Dousset, Erick; Weiss, Michel; Rostain, Jean-Claude

    2002-08-30

    Nitrogen-oxygen breathing mixtures, for pressures higher than 0.5 MPa, decrease the release of dopamine in the rat striatum, due to the narcotic potency of nitrogen. In contrast, high pressures of helium-oxygen breathing mixtures of more than 1-2 MPa induce an increase of the striatal dopamine release and an enhancement of motor activity, referred to as the high pressure nervous syndrome (HPNS), and attributed to the effect of pressure per se. It has been demonstrated that the effect of pressure could be antagonized by narcotic gas in a ternary mixture, but most of the narcotic gas studies measuring DA release were executed below the threshold for pressure effect. To examine the effect of narcotic gases at pressure on the rat striatal dopamine release, we have used two gases, with different narcotic potency, at sublethargic pressure, nitrogen at 3 MPa and argon at 2 MPa. In addition, to dissociate the effect of the pressure, we have used nitrous oxide at 0.1 MPa to induce narcosis at very low pressure, and helium at 8 MPa to study the effect of pressure per se. In all the narcotic conditions we have recorded a decrease of the striatal dopamine release. In contrast, helium pressure induced an increase of DA release. For the pressures used, the results suggest that the decrease of dopamine release was independent of such an effect of the pressure. However, for the same narcotic gas, the measurements of the extracellular DA performed in the striatum seem to reflect an opposing effect of pressure, since the decrease in DA release is lower with increasing pressure.

  2. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    Science.gov (United States)

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  3. Intrahippocampal Infusions of Anisomycin Produce Amnesia: Contribution of Increased Release of Norepinephrine, Dopamine, and Acetylcholine

    Science.gov (United States)

    Qi, Zhenghan; Gold, Paul E.

    2009-01-01

    Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…

  4. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  5. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex.

  6. Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo.

    Science.gov (United States)

    Kang, Xinjiang; Xu, Huadong; Teng, Sasa; Zhang, Xiaoyu; Deng, Zijun; Zhou, Li; Zuo, Panli; Liu, Bing; Liu, Bin; Wu, Qihui; Wang, Li; Hu, Meiqin; Dou, Haiqiang; Liu, Wei; Zhu, Feipeng; Li, Qing; Guo, Shu; Gu, Jingli; Lei, Qian; Lü, Jing; Mu, Yu; Jin, Mu; Wang, Shirong; Jiang, Wei; Liu, Kun; Wang, Changhe; Li, Wenlin; Zhang, Kang; Zhou, Zhuan

    2014-11-04

    Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.

  7. Chorein Sensitive Dopamine Release from Pheochromocytoma (PC12 Cells

    Directory of Open Access Journals (Sweden)

    Sabina Honisch

    2015-12-01

    Full Text Available Background: Chorein, a protein supporting activation of phosphoinositide 3 kinase (PI3K, participates in the regulation of actin polymerization and cell survival. A loss of function mutation of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A leads to chorea-acanthocytosis (ChAc, a neurodegenerative disorder with simultaneous erythrocyte akanthocytosis. In blood platelets chorein deficiency has been shown to compromise expression of vesicle-associated membrane protein 8 (VAMP8 and thus degranulation. The present study explored whether chorein is similarly involved in VAMP8 expression and dopamine release of pheochromocytoma (PC12 cells. Methods: Chorein was down-regulated by silencing in PC12 cells. Transmission electron microscopy was employed to quantify the number of vesicles, RT-PCR to determine transcript levels, Western blotting to quantify protein expression and ELISA to determine dopamine release. Results: Chorein silencing significantly reduced the number of vesicles, VAMP8 transcript levels and VAMP8 protein abundance. Increase of extracellular K+ from 5 mM to 40 mM resulted in marked stimulation of dopamine release, an effect significantly blunted by chorein silencing. Conclusions: Chorein deficiency down-regulates VAMP8 expression, vesicle numbers and dopamine release in pheochromocytoma cells.

  8. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO.

    Science.gov (United States)

    Boileau, I; Payer, D; Chugani, B; Lobo, D S S; Houle, S; Wilson, A A; Warsh, J; Kish, S J; Zack, M

    2014-12-01

    Drug addiction has been associated with deficits in mesostriatal dopamine (DA) function, but whether this state extends to behavioral addictions such as pathological gambling (PG) is unclear. Here we used positron emission tomography and the D3 receptor-preferring radioligand [(11)C]-(+)-PHNO during a dual-scan protocol to investigate DA release in response to oral amphetamine in pathological gamblers (n=12) and healthy controls (n=11). In contrast with human neuroimaging findings in drug addiction, we report the first evidence that PG is associated with greater DA release in dorsal striatum (54-63% greater [(11)C]-(+)-PHNO displacement) than controls. Importantly, dopaminergic response to amphetamine in gamblers was positively predicted by D3 receptor levels (measured in substantia nigra), and related to gambling severity, allowing for construction of a mechanistic model that could help explain DA contributions to PG. Our results are consistent with a hyperdopaminergic state in PG, and support the hypothesis that dopaminergic sensitization involving D3-related mechanisms might contribute to the pathophysiology of behavioral addictions.

  9. Optogenetic control of serotonin and dopamine release in Drosophila larvae.

    Science.gov (United States)

    Xiao, Ning; Privman, Eve; Venton, B Jill

    2014-08-20

    Optogenetic control of neurotransmitter release is an elegant method to investigate neurobiological mechanisms with millisecond precision and cell type-specific resolution. Channelrhodopsin-2 (ChR2) can be expressed in specific neurons, and blue light used to activate those neurons. Previously, in Drosophila, neurotransmitter release and uptake have been studied after continuous optical illumination. In this study, we investigated the effects of pulsed optical stimulation trains on serotonin or dopamine release in larval ventral nerve cords. In larvae with ChR2 expressed in serotonergic neurons, low-frequency stimulations produced a distinct, steady-state response while high-frequency patterns were peak shaped. Evoked serotonin release increased with increasing stimulation frequency and then plateaued. The steady-state response and the frequency dependence disappeared after administering the uptake inhibitor fluoxetine, indicating that uptake plays a significant role in regulating the extracellular serotonin concentration. Pulsed stimulations were also used to evoke dopamine release in flies expressing ChR2 in dopaminergic neurons and similar frequency dependence was observed. Release due to pulsed optical stimulations was modeled to determine the uptake kinetics. For serotonin, Vmax was 0.54 ± 0.07 μM/s and Km was 0.61 ± 0.04 μM; and for dopamine, Vmax was 0.12 ± 0.03 μM/s and Km was 0.45 ± 0.13 μM. The amount of serotonin released per stimulation pulse was 4.4 ± 1.0 nM, and the amount of dopamine was 1.6 ± 0.3 nM. Thus, pulsed optical stimulations can be used to mimic neuronal firing patterns and will allow Drosophila to be used as a model system for studying mechanisms underlying neurotransmission.

  10. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  11. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  12. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man - A PET study with [C-11]raclopride

    NARCIS (Netherlands)

    Vollenweider, FX; Vontobel, P; Hell, D; Leenders, KL

    The modulating effects of serotonin on dopamine neurotransmission are not well understood, particularly in acute psychotic states. Positron emission tomography was used to examine the effect of psilocybin on the in vivo binding of [C-11]raclopride to D-2-dopamine receptors in the striatum in healthy

  13. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man - A PET study with [C-11]raclopride

    NARCIS (Netherlands)

    Vollenweider, FX; Vontobel, P; Hell, D; Leenders, KL

    1999-01-01

    The modulating effects of serotonin on dopamine neurotransmission are not well understood, particularly in acute psychotic states. Positron emission tomography was used to examine the effect of psilocybin on the in vivo binding of [C-11]raclopride to D-2-dopamine receptors in the striatum in healthy

  14. Striatal dopamine release and biphasic pattern of locomotor and motor activity under gas narcosis.

    Science.gov (United States)

    Balon, Norbert; Risso, Jean-Jacques; Blanc, François; Rostain, Jean-Claude; Weiss, Michel

    2003-05-02

    Inert gas narcosis is a neurological syndrome appearing when humans or animals are exposed to hyperbaric inert gases (nitrogen, argon) composed by motor and cognitive impairments. Inert gas narcosis induces a decrease of the dopamine release at the striatum level, structure involved in the regulation of the extrapyramidal motricity. We have investigated, in freely moving rats exposed to different narcotic conditions, the relationship between the locomotor and motor activity and the striatal dopamine release, using respectively a computerized device that enables a quantitative analysis of this behavioural disturbance and voltammetry. The use of 3 MPa of nitrogen, 2 MPa of argon and 0.1 MPa of nitrous oxide, revealed after a transient phase of hyperactivity, a lower level of the locomotor and motor activity, in relation with the decrease of the striatal dopamine release. It is concluded that the striatal dopamine decrease could be related to the decrease of the locomotor and motor hyperactivity, but that other(s) neurotransmitter(s) could be primarily involved in the behavioural motor disturbances induced by narcotics. This biphasic effect could be of major importance for future pharmacological investigations, and motor categorization, on the basic mechanisms of inert gas at pressure.

  15. On the role of subsecond dopamine release in conditioned avoidance

    Directory of Open Access Journals (Sweden)

    Erik B Oleson

    2013-06-01

    Full Text Available Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: 1 fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, 2 the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, 3 over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety 4 the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain’s incentive-motivational circuitry.

  16. Effects of a combination of 3,4-methylenedioxymeth amphetamine and caffeine on real time stimulated dopamine release in the rat striatum: Studies using fast cyclic voltammetry.

    Science.gov (United States)

    O'Connor, J J; O'Boyle, K M; Lowry, J P

    2017-08-24

    It is well documented that caffeine exacerbates the hyperthermia associated with acute exposure to 3,4-methylenedioxymethamphetamine (MDMA) in rats. Previous reports have also indicated that MDMA-related enhancement of dopamine release is exacerbated in the presence of caffeine. In the present study we have examined whether the effects of MDMA on real-time stimulated dopamine release, in the absence of uptake inhibition, are accentuated in the presence of caffeine. Isolated striatal slices from adult male Wistar rats were treated acutely with MDMA, caffeine, or a combination, and their effects on single and 5pulse stimulated dopamine release monitored using the technique of fast cyclic voltammetry. Caffeine at 10 or 100μM had no significant effect on single pulse stimulated dopamine release. However 100μM caffeine caused a significant peak increase in 5pulse stimulated dopamine release. Both 1 and 30μM MDMA gave rise to a significant increase in both single and 5-pulse dopamine release and reuptake. A combination of 100μM caffeine and 1 or 30μM MDMA did not significantly enhance the effects of MDMA on single or 5pulse dopamine release and reuptake when compared to that applied alone. Utilizing single action potential dependent dopamine release, these results do not demonstrate a caffeine-enhanced MDMA-induced dopamine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    Science.gov (United States)

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.

  18. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca(2+)-Independent Phospholipase A₂ Pathways.

    Science.gov (United States)

    Seo, Jihui; Maeng, Jeehye; Kim, Hwa-Jung

    2016-10-24

    The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells. Treatment with recombinant TCTP (rTCTP) enhanced both basal and depolarization (50 mM KCl)-evoked [³H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca(2+)]i), the rTCTP-driven effect on dopamine release was mediated by a Ca(2+)-independent pathway, as evidenced by the fact that Ca(2+)-modulating agents such as Ca(2+) chelators and a voltage-gated L-type Ca(2+)-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A₂ (PLA₂) in rTCTP-induced dopamine release, the inhibitor for Ca(2+)-independent PLA₂ (iPLA₂) produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca(2+)-dependent cytosolic PLA₂ (cPLA₂) and secretory PLA₂ (sPLA₂) inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca(2+)-independent mechanism that involved PLA₂ in the process, suggesting the regulatory role of TCTP in the neuronal functions.

  19. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca2+-Independent Phospholipase A2 Pathways

    Directory of Open Access Journals (Sweden)

    Jihui Seo

    2016-10-01

    Full Text Available The translationally controlled tumor protein (TCTP, initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF. TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12 cells. Treatment with recombinant TCTP (rTCTP enhanced both basal and depolarization (50 mM KCl-evoked [3H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca2+]i, the rTCTP-driven effect on dopamine release was mediated by a Ca2+-independent pathway, as evidenced by the fact that Ca2+-modulating agents such as Ca2+ chelators and a voltage-gated L-type Ca2+-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A2 (PLA2 in rTCTP-induced dopamine release, the inhibitor for Ca2+-independent PLA2 (iPLA2 produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca2+-dependent cytosolic PLA2 (cPLA2 and secretory PLA2 (sPLA2 inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca2+-independent mechanism that involved PLA2 in the process, suggesting the regulatory role of TCTP in the neuronal functions.

  20. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning.

    Science.gov (United States)

    Parker, Jones G; Zweifel, Larry S; Clark, Jeremy J; Evans, Scott B; Phillips, Paul E M; Palmiter, Richard D

    2010-07-27

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue-reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm.

  1. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem.

    Science.gov (United States)

    Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F

    2017-01-15

    Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics.

    Science.gov (United States)

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V

    2015-07-01

    Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context.

  3. Intracerebroventricular administration of ouabain alters synaptic plasticity and dopamine release in rat medial prefrontal cortex.

    Science.gov (United States)

    Sui, Li; Song, Xiao-Jin; Ren, Jie; Ju, Li-Hua; Wang, Yan

    2013-08-01

    Intracerebroventricular (ICV) administration of ouabain, a specific Na-K-ATPase inhibitor, in rats mimics the manic phenotypes of bipolar disorder and thus has been proposed as one of the best animal models of mania. Bipolar mania has been known to be associated with dysfunctions of medial prefrontal cortex (mPFC), a brain area critically involved in mental functions; however, the exact mechanism underlying these dysfunctions is not yet clear. The present study investigated synaptic transmission, synaptic plasticity, and dopamine release in Sprague-Dawley rat mPFC following ICV administration of ouabain (5 μl of 1 mM ouabain). The electrophysiological results demonstrated that ouabain depressed the short- and the long-term synaptic plasticity, represented by paired-pulse facilitation and long-term potentiation, respectively, in the mPFC. These ouabain-induced alterations in synaptic plasticity can be prevented by pre-treatment with lithium (intraperitoneal injection of 47.5 mg/kg lithium, twice a day, 7 days), which acts as an effective mood stabilizer in preventing mania. The electrochemical results demonstrated that ICV administration of ouabain enhanced dopamine release in the mPFC, which did not be affected by pre-treatment with lithium. These findings suggested that alterations in synaptic plasticity and dopamine release in the mPFC might underlie the dysfunctions of mPFC accompanied with ouabain administration-induced bipolar mania.

  4. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  5. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  6. Histamine H3 receptor activation inhibits dopamine synthesis but not release or uptake in rat nucleus accumbens.

    Science.gov (United States)

    Aquino-Miranda, Guillermo; Escamilla-Sánchez, Juan; González-Pantoja, Raúl; Bueno-Nava, Antonio; Arias-Montaño, José-Antonio

    2016-07-01

    We studied the effect of activating histamine H3 receptors (H3Rs) on rat nucleus accumbens (rNAcc) dopaminergic transmission by analyzing [(3)H]-dopamine uptake by synaptosomes, and dopamine synthesis and depolarization-evoked [(3)H]-dopamine release in slices. The uptake of [(3)H]-dopamine by rNAcc synaptosomes was not affected by the H3R agonist RAMH (10(-10)-10(-6) M). In rNAcc slices perfusion with RAMH (1 μM) had no significant effect on [(3)H]-dopamine release evoked by depolarization with 30 mM K(+) (91.4 ± 4.5% of controls). The blockade of dopamine D2 autoreceptors with sulpiride (1 μM) enhanced K(+)-evoked [(3)H]-dopamine release (168.8 ± 15.5% of controls), but under this condition RAMH (1 μM) also failed to affect [(3)H]-dopamine release. Dopamine synthesis was evaluated in rNAcc slices incubated with the l-dihydroxyphenylalanine (DOPA) decarboxylase inhibitor NSD-1015 (1 mM). Forskolin-induced DOPA accumulation (220.1 ± 10.4% of controls) was significantly reduced by RAMH (41.1 ± 6.5% and 43.5 ± 9.1% inhibition at 100 nM and 1 μM, respectively), and this effect was prevented by the H3R antagonist ciproxifan (10 μM). DOPA accumulation induced by preventing cAMP degradation with IBMX (iso-butyl-methylxantine, 1 mM) or by activating receptors for the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP) with PACAP-27 (1 μM) was reduced (IBMX) or prevented (PACAP-27) by RAMH (100 nM). In contrast, DOPA accumulation induced by 8-Bromo-cAMP (1 mM) was not affected by RAMH (100 nM). These results indicate that in rNAcc H3Rs do not modulate dopamine uptake or release, but regulate dopamine synthesis by inhibiting cAMP formation and thus PKA activation. This article is part of the Special Issue entitled 'Histamine Receptors'.

  7. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    Science.gov (United States)

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  8. Treatment of Parkinson’s disease: nanostructured sol–gel silica–dopamine reservoirs for controlled drug release in the central nervous system

    Science.gov (United States)

    López, Tessy; Bata-García, José L; Esquivel, Dulce; Ortiz-Islas, Emma; Gonzalez, Richard; Ascencio, Jorge; Quintana, Patricia; Oskam, Gerko; Álvarez-Cervera, Fernando J; Heredia-López, Francisco J; Góngora-Alfaro, José L

    2011-01-01

    Introduction We have evaluated the use of silica–dopamine reservoirs synthesized by the sol–gel approach with the aim of using them in the treatment of Parkinson’s disease, specifically as a device for the controlled release of dopamine in the striatum. Theoretical calculations illustrate that dopamine is expected to assume a planar structure and exhibit weak interactions with the silica surface. Methods Several samples were prepared by varying the wt% of dopamine added during the hydrolysis of tetraethyl orthosilicate. The silica–dopamine reservoirs were characterized by N2 adsorption, scanning and transmission electron microscopy, and Fourier transform infrared spectroscopy. The in vitro release profiles were determined using ultraviolet visible absorbance spectroscopy. The textural analyses showed a maximum value for the surface area of 620 m2/g nanostructured silica materials. The stability of dopamine in the silica network was confirmed by infrared and 13C-nuclear magnetic resonance spectroscopy. The reservoirs were evaluated by means of apomorphine-induced rotation behavior in hemiparkisonian rats. Results The in vitro dopamine delivery profiles indicate two regimes of release, a fast and sustained dopamine delivery was observed up to 24 hours, and after this time the rate of delivery became constant. Histologic analysis of formalin-fixed brains performed 24–32 weeks after reservoir implantation revealed that silica–dopamine implants had a reddish-brown color, suggesting the presence of oxidized dopamine, likely caused by the fixation procedure, while implants without dopamine were always translucent. Conclusion The major finding of the study was that intrastriatal silica–dopamine implants reversed the rotational asymmetry induced by apomorphine, a dopamine agonist, in hemiparkinsonian rats. No dyskinesias or other motor abnormalities were observed in animals implanted with silica or silica–dopamine. PMID:21289978

  9. Measuring dopamine release in the human brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York at Stony Brook, Stony Brook, NY (United States). Dept. of Psychiatry; Fowler, J.S.; Logan, J.; Wang, G.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-01

    The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors. Disruptions of dopamine (DA) function have ben implicated in neurological and psychiatric illnesses including substance abuse as well as on some of the deficits associated with aging of the human brain. This has made the DA system an important topic in research in the neurosciences and neuroimaging as well as an important molecular target for drug development. Positron Emission Tomography (PET), was the first technology that enabled direct measurement of components of the DA system in the living human brain. Imaging studies of DA in the living brain have been indirect, relying on the development of radiotracers to label DA receptors, DA transporters, compounds which have specificity for the enzymes which degrade synaptic DA. Additionally, through the use of tracers that provide information on regional brain activity (ie brain glucose metabolism and cerebral blood flow) and of appropriate pharmacological interventions, it has been possible to assess the functional consequences of changes in brain DA activity. DA specific ligands have been useful in the evaluation of patients with neuropsychiatric illnesses as well as to investigate receptor blockade by antipsychotic drugs. A limitation of strategies that rely on the use of DA specific ligands is that the measures do not necessarily reflect the functional state of the dopaminergic system and that there use to study the effects of drugs is limited to the investigation of receptor or transporter occupancy. Newer strategies have been developed in an attempt to provide with information on dopamine release and on the functional responsivity of the DA system in the human brain. This in turn allows to investigate the effects of pharmacological agent in an analogous way to what is done with microdialysis techniques.

  10. Veratridine-evoked release of dopamine from guinea pig isolated cochlea

    NARCIS (Netherlands)

    Halmos, G; Gáborján, A; Lendvai, B; Répássy, G; Szabó, L Z; Vizi, E S

    2000-01-01

    Dopamine released from the lateral olivocochlear efferent system is thought to inhibit the toxic effect of the extreme glutamate outflow from the inner hair cells during ischemia or acoustic trauma. Using in vitro microvolume superfusion, we have studied the release of [(3)H]dopamine from the latera

  11. Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum

    NARCIS (Netherlands)

    Karreman, M; Westerink, BHC; Moghaddam, B

    1996-01-01

    The role of excitatory amino acid (EAA) receptors located in the ventral tegmental area (VTA) in tonic and phasic regulation of dopamine release in the ventral striatum was investigated. Microdialysis in conscious rats was used to assess dopamine release primarily from the nucleus accumbens shell re

  12. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  13. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  14. Effects of repeated hyperbaric nitrogen-oxygen exposures on the striatal dopamine release and on motor disturbances in rats.

    Science.gov (United States)

    Lavoute, Cécile; Weiss, Michel; Rostain, Jean-Claude

    2005-09-14

    Previous studies have demonstrated disruptions of motor activities and a decrease of extracellular dopamine level in the striatum of rats exposed to high pressure of nitrogen. Men exposed to nitrogen pressure develop also motor and cognitive disturbances related to inert gas narcosis. After repetitive exposures, adaptation to narcosis was subjectively reported. To study the effects of repetitive exposures to hyperbaric nitrogen-oxygen, male Sprague-Dawley rats were implanted in the striatum with multifiber carbon dopamine-sensitive electrodes. After recovery from surgery, free-moving rats were exposed for 2 h up to 3 MPa of nitrogen-oxygen mixture before and after one daily exposure to 1 MPa of nitrogen-oxygen, for 5 consecutive days. Dopamine release was measured by differential pulse voltammetry and motor activities were quantified using piezo-electric captor. At the first exposure to 3 MPa, the striatal dopamine level decreased during the compression (-15%) to reach -20% during the stay at 3 MPa. Motor activities were increased during compression (+15%) and the first 60 min at constant pressure (+10%). In contrast, at the second exposure to 3 MPa, an increase of dopamine of +15% was obtained during the whole exposure. However, total motor activities remained unchanged as compared to the first exposure. Our results confirm that nitrogen exposure at 3 MPa led to a decreased striatal dopamine release and increased motor disturbances in naïve rats. Repetitive exposures to 1 MPa of nitrogen induced a reversal effect on the dopamine release which suggests a neurochemical change at the level of the neurotransmitter regulation processes of the basal ganglia. In contrast, motor activity remained quantitatively unchanged, thus suggesting that dopamine is not involved alone in modulating these motor disturbances.

  15. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    Science.gov (United States)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  16. Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm.

    Science.gov (United States)

    Ye, Yizhou; Xi, Wang; Peng, Yueqing; Wang, Yizheng; Guo, Aike

    2004-08-01

    Dopamine is a major neuromodulator in both vertebrates and invertebrates and has profound effects on many physiological processes, including the regulation of attention. Most studies of the functions of dopamine use models with long-term blockade of dopamine release and few effects of transient blockade have yet been reported. The goal of the present study was to determine the role of dopamine in attention-like behavior in Drosophila by taking advantage of the fly's orientation behavior during flight. The examination of several different transgenic flies in a single-target visual attention paradigm showed that flies lost their orientation ability if dopamine release was blocked from the beginning of the development of dopaminergic neurons. This is similar to the attention loss in mammals. However, if the blockade of dopamine release was induced during the experimental procedure, flies performed normally. Statistical analysis of the behavioral assessment showed a significant difference between long-term and transient blockade. Using the RNA interference approach, we generated flies with down-regulated J-domain protein, which is a potential cochaperone in synaptic vesicle release, to make an alternative form of long-term dopamine-blockade mutant. Behavioral assays revealed that flies with permanent J-domain protein down-regulation specifically in dopaminergic neurons have an attention defect similar to that induced by long-term blockade of dopamine release. Furthermore, dopamine depletion beginning at eclosion also caused an attention deficit. Our results indicate that prolonged but not transient blockade of dopamine release impairs visual attention-like behavior in Drosophila.

  17. Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation.

    Science.gov (United States)

    Howard, Christopher D; Pastuzyn, Elissa D; Barker-Haliski, Melissa L; Garris, Paul A; Keefe, Kristen A

    2013-05-01

    Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.

  18. Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices.

    Science.gov (United States)

    Patel, Jyoti C; Rice, Margaret E

    2013-01-01

    Brain dopamine pathways serve wide-ranging functions including the control of movement, reward, cognition, learning, and mood. Consequently, dysfunction of dopamine transmission has been implicated in clinical conditions such as Parkinson's disease, schizophrenia, addiction, and depression. Establishing factors that regulate dopamine release can provide novel insights into dopaminergic communication under normal conditions, as well as in animal models of disease in the brain. Here we describe methods for the study of somatodendritic and axonal dopamine release in brain slice preparations. Topics covered include preparation and calibration of carbon-fiber microelectrodes for use with fast-scan cyclic voltammetry, preparation of midbrain and forebrain slices, and procedures of eliciting and recording electrically evoked dopamine release from in vitro brain slices.

  19. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  20. Enhanced striatal dopamine release during food stimulation in binge eating disorder.

    Science.gov (United States)

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D; Telang, Frank W; Logan, Jean; Jayne, Millard C; Galanti, Kochavi; Selig, Peter A; Han, Hao; Zhu, Wei; Wong, Christopher T; Fowler, Joanna S

    2011-08-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  1. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.

    Science.gov (United States)

    Melchior, James R; Ferris, Mark J; Stuber, Garret D; Riddle, David R; Jones, Sara R

    2015-09-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse microenvironments. Local electrical stimulation excites all of the neuronal processes in the stimulation field, potentially modulating the dopamine signal - measured using cyclic voltammetry. Optogenetically targeting light stimulation to dopamine

  2. Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release.

    Science.gov (United States)

    Nimitvilai, Sudarat; Herman, Melissa; You, Chang; Arora, Devinder S; McElvain, Maureen A; Roberto, Marisa; Brodie, Mark S

    2014-07-01

    Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.

  3. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux.

    Science.gov (United States)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica; Robertson, Sabrina D; Lute, Brandon J; Fog, Jacob U; Zhang, Minjia; Sen, Namita; Colbran, Roger J; Gnegy, Margaret E; Gether, Ulrik; Javitch, Jonathan A; Erreger, Kevin; Galli, Aurelio

    2008-10-01

    The soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein syntaxin 1A (SYN1A) interacts with and regulates the function of transmembrane proteins, including ion channels and neurotransmitter transporters. Here, we define the first 33 amino acids of the N terminus of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated fraction shows that the AMPH-induced increase in DAT/SYN1A association occurs at the plasma membrane. In a superfusion assay of DA efflux, cells overexpressing SYN1A exhibited significantly greater AMPH-induced DA release with respect to control cells. By combining the patch-clamp technique with amperometry, we measured DA release under voltage clamp. At -60 mV, a physiological resting potential, AMPH did not induce DA efflux in hDAT cells and DA neurons. In contrast, perfusion of exogenous SYN1A (3 microM) into the cell with the whole-cell pipette enabled AMPH-induced DA efflux at -60 mV in both hDAT cells and DA neurons. It has been shown recently that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by AMPH and regulates AMPH-induced DA efflux. Here, we show that AMPH-induced association between DAT and SYN1A requires CaMKII activity and that inhibition of CaMKII blocks the ability of exogenous SYN1A to promote DA efflux. These data suggest that AMPH activation of CaMKII supports DAT/SYN1A association, resulting in a mode of DAT capable of DA efflux.

  4. Dopamine release dynamics change during adolescence and after voluntary alcohol intake.

    Directory of Open Access Journals (Sweden)

    Sara Palm

    Full Text Available Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum.

  5. D4 and D1 dopamine receptors modulate [3H] GABA release in the substantia nigra pars reticulata of the rat.

    Science.gov (United States)

    Acosta-García, Jacqueline; Hernández-Chan, Nancy; Paz-Bermúdez, Francisco; Sierra, Arturo; Erlij, David; Aceves, Jorge; Florán, Benjamín

    2009-12-01

    Neurons of the globus pallidus express dopamine D4 receptors that can modulate transmitter release by their axon terminals. Indeed, GABA release from pallidal terminals in the subthalamic nucleus and in the reticular nucleus of the thalamus is inhibited by activation of D4 receptors. Here we investigated whether GABA release by pallidal projections to the substantia nigra reticulate (SNr) is also modulated by D4 receptors. Dopamine-stimulated depolarization-induced GABA release in slices of the SNr; however, after selective blockade of D1 receptors, dopamine inhibited release. The selective D4 agonist PD 168,077 (IC(50) = 5.30 nM) mimicked the inhibition of release while the selective D4 antagonist L-745,870 blocked the inhibition. To identify the source of D1 and D4 modulated terminals, we unilaterally injected kainic acid in either the GP or the striatum. After lesions of the pallidum, the D4 induced inhibition of release was blocked while the D1 induced stimulation was still significant. Lesions of the striatum had the converse effects. We conclude that release of dopamine in the SNr enhances GABA release mainly through activation of D1 receptors in striatonigral projections and inhibits release mainly through activation of D4 receptors in pallidonigral projections. Because deficient D4 receptor signaling in globus pallidus terminals will lead to disinhibition of impulse traffic through the thalamus we speculate that the D4 abnormalities observed in ADHD patients may be important in the generation of the syndrome.

  6. Sensitized nucleus accumbens dopamine terminal responses to methylphenidate and dopamine transporter releasers after intermittent-access self-administration.

    Science.gov (United States)

    Calipari, Erin S; Jones, Sara R

    2014-07-01

    Long-access methylphenidate (MPH) self-administration has been shown to produce enhanced amphetamine potency at the dopamine transporter and concomitant changes in reinforcing efficacy, suggesting that MPH abuse may change the dopamine system in a way that promotes future drug abuse. While long-access self-administration paradigms have translational validity for cocaine, it may not be as relevant a model of MPH abuse, as it has been suggested that people often take MPH intermittently. Although previous work outlined the neurochemical and behavioral consequences of long-access MPH self-administration, it was not clear whether intermittent access (6 h session; 5 min access/30 min) would result in similar changes. For cocaine, long-access self-administration resulted in tolerance to cocaine's effects on dopamine and behavior while intermittent-access resulted in sensitization. Here we assessed the neurochemical consequences of intermittent-access MPH self-administration on dopamine terminal function. We found increased maximal rates of uptake, increased stimulated release, and subsensitive D2-like autoreceptors. Consistent with previous work using extended-access MPH paradigms, the potencies of amphetamine and MPH, but not cocaine, were increased, demonstrating that unlike cocaine, MPH effects were not altered by the pattern of intake. Although the potency results suggest that MPH may share properties with releasers, dopamine release was increased following acute application of MPH, similar to cocaine, and in contrast to the release decreasing effects of amphetamine. Taken together, these data demonstrate that MPH exhibits properties of both blockers and releasers, and that the compensatory changes produced by MPH self-administration may increase the abuse liability of amphetamines, independent of the pattern of administration.

  7. Real-time electrochemical recording of dopamine release under optogenetic stimulation.

    Directory of Open Access Journals (Sweden)

    Wen-Tai Chiu

    Full Text Available Dopaminergic PC12 cells can synthesize and release dopamine, providing a good cellular model for investigating dopamine regulation. Optogenetic stimulation of channelrhodopsin-2 provides high spatial and temporal precision for selective stimulation as a powerful neuromodulation tool for neuroscience studies. The aim of this study is to measure dopamine release from dopaminergic PC12 cells under optogenetic stimulation using electrochemical recording of self-assembled monolayers modified microelectrode with amperometric measurement in real time. The activation of PC12 cells under various optogenetic stimulation schemes are characterized by measuring single-cell Ca(2+ imaging. After 10 seconds of optogenetic stimulation, the evoked intracellular Ca(2+ level and dopamine current of channelrhodopsin-2-transfected PC12 cells were 1.6- and 3.5-fold higher than those of the control cells. The optogenetic stimulation effects on Ca(2+ influx and dopamine release were 81% and 63% inhibition by using a Ca(2+ channel antagonist Nifedipine. The results indicate that optogenetic stimulation can evoke voltage-gated Ca(2+ channel-dependent dopamine exocytosis from PC12 cells in a cell specific, temporally precise and dose-dependent manner. This proposed dopamine recording system can be developed to be a good cell model for dopamine regulation and drug screening in vitro, or dopaminergic cell implantation therapy in vivo using optogenetic stimulation in a precise and convenient way.

  8. Real-time electrochemical recording of dopamine release under optogenetic stimulation.

    Science.gov (United States)

    Chiu, Wen-Tai; Lin, Che-Ming; Tsai, Tien-Chun; Wu, Chun-Wei; Tsai, Ching-Lin; Lin, Sheng-Hsiang; Chen, Jia-Jin Jason

    2014-01-01

    Dopaminergic PC12 cells can synthesize and release dopamine, providing a good cellular model for investigating dopamine regulation. Optogenetic stimulation of channelrhodopsin-2 provides high spatial and temporal precision for selective stimulation as a powerful neuromodulation tool for neuroscience studies. The aim of this study is to measure dopamine release from dopaminergic PC12 cells under optogenetic stimulation using electrochemical recording of self-assembled monolayers modified microelectrode with amperometric measurement in real time. The activation of PC12 cells under various optogenetic stimulation schemes are characterized by measuring single-cell Ca(2+) imaging. After 10 seconds of optogenetic stimulation, the evoked intracellular Ca(2+) level and dopamine current of channelrhodopsin-2-transfected PC12 cells were 1.6- and 3.5-fold higher than those of the control cells. The optogenetic stimulation effects on Ca(2+) influx and dopamine release were 81% and 63% inhibition by using a Ca(2+) channel antagonist Nifedipine. The results indicate that optogenetic stimulation can evoke voltage-gated Ca(2+) channel-dependent dopamine exocytosis from PC12 cells in a cell specific, temporally precise and dose-dependent manner. This proposed dopamine recording system can be developed to be a good cell model for dopamine regulation and drug screening in vitro, or dopaminergic cell implantation therapy in vivo using optogenetic stimulation in a precise and convenient way.

  9. Doped Overoxidized Polypyrrole Microelectrodes as Sensors for the Detection of Dopamine Released from Cell Populations

    DEFF Research Database (Denmark)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco

    2013-01-01

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an 10 aqueous pyrrole solution onto...... in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively....... The optimal dopant for dopamine detection was found to be polystyrenesulfonate anion (PSS-15 ). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS--doped PPy film. The modified electrodes were used...

  10. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate...

  11. Attenuated Tonic and Enhanced Phasic Release of Dopamine in Attention Deficit Hyperactivity Disorder.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available It is unclear whether attention deficit hyperactive disorder (ADHD is a hypodopaminergic or hyperdopaminergic condition. Different sets of data suggest either hyperactive or hypoactive dopamine system. Since indirect methods used in earlier studies have arrived at contradictory conclusions, we directly measured the tonic and phasic release of dopamine in ADHD volunteers. The tonic release in ADHD and healthy control volunteers was measured and compared using dynamic molecular imaging technique. The phasic release during performance of Eriksen's flanker task was measured in the two groups using single scan dynamic molecular imaging technique. In these experiments volunteers were positioned in a positron emission tomography (PET camera and administered a dopamine receptor ligand (11C-raclopride intravenously. After the injection PET data were acquired dynamically while volunteers either stayed still (tonic release experiments or performed the flanker task (phasic release experiments. PET data were analyzed to measure dynamic changes in ligand binding potential (BP and other receptor kinetic parameters. The analysis revealed that at rest the ligand BP was significantly higher in the right caudate of ADHD volunteers suggesting reduced tonic release. During task performance significantly lower ligand BP was observed in the same area, indicating increased phasic release. In ADHD tonic release of dopamine is attenuated and the phasic release is enhanced in the right caudate. By characterizing the nature of dysregulated dopamine neurotransmission in ADHD, the results explain earlier findings of reduced or increased dopaminergic activity.

  12. Dopamine-sensitive signaling mediators modulate psychostimulant-induced ultrasonic vocalization behavior in rats.

    Science.gov (United States)

    Williams, Stacey N; Undieh, Ashiwel S

    2016-01-01

    The mesolimbic dopamine system plays a major role in psychostimulant-induced ultrasonic vocalization (USV) behavior in rodents. Within this system, psychostimulants elevate synaptic concentrations of dopamine thereby leading to exaggerated activation of postsynaptic dopamine receptors within the D1-like and D2-like subfamilies. Dopamine receptor stimulation activate several transmembrane signaling systems and cognate intracellular mediators; downstream activation of transcription factors then conveys the information from receptor activation to appropriate modulation of cellular and physiologic functions. We previously showed that cocaine-induced USV behavior was associated with enhanced expression of the neurotrophin BDNF. Like cocaine, amphetamine also increases synaptic dopamine levels, albeit primarily through facilitating dopamine release. Therefore, in the present study we investigated whether amphetamine and cocaine similarly activate dopamine-linked signaling cascades to regulate intracellular mediators leading to induction of USV behavior. The results show that amphetamine increased the emission of 50 kHz USVs and this effect was blocked by SCH23390, a D1 receptor antagonist. Similar to cocaine, amphetamine increased BDNF protein expression in discrete brain regions, while pretreatment with K252a, a trkB neurotrophin receptor inhibitor, significantly reduced amphetamine-induced USV behavior. Inhibition of cyclic-AMP/PKA signaling with H89 or inhibition of PLC signaling with U73122 significantly blocked both the acute and subchronic amphetamine-induced USV behavior. In contrast, pharmacologic inhibition of either pathway enhanced cocaine-induced USV behavior. Although cocaine and amphetamine similarly modulate neurotrophin expression and USV, the molecular mechanisms by which these psychostimulants differentially activate dopamine receptor subtypes or other monoaminergic systems may be responsible for the distinct aspects of behavioral responses.

  13. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    OpenAIRE

    Beynon, Amy L; Brown, M. Rowan; Wright, Rhiannon; Rees, Mark I.; Sheldon, I Martin; Davies, Jeffrey S.

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-in...

  14. N-Methyl-d-aspartate Modulation of Nucleus Accumbens Dopamine Release by Metabotropic Glutamate Receptors: Fast Cyclic Voltammetry Studies in Rat Brain Slices in Vitro.

    Science.gov (United States)

    Yavas, Ersin; Young, Andrew M J

    2017-02-15

    The N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine, induces behavioral changes in rodents mimicking symptoms of schizophrenia, possibly mediated through dysregulation of glutamatergic control of mesolimbic dopamine release. We tested the hypothesis that NMDA receptor activation modulates accumbens dopamine release, and that phencyclidine pretreatment altered this modulation. NMDA caused a receptor-specific, dose-dependent decrease in electrically stimulated dopamine release in nucleus accumbens brain slices. This decrease was unaffected by picrotoxin, making it unlikely to be mediated through GABAergic neurones, but was decreased by the metabotropic glutamate receptor antagonist, (RS)-α-methyl-4-sulfonophenylglycine, indicating that NMDA activates mechanisms controlled by these receptors to decrease stimulated dopamine release. The effect of NMDA was unchanged by in vivo pretreatment with phencyclidine (twice daily for 5 days), with a washout period of at least 7 days before experimentation, which supports the hypothesis that there is no enduring direct effect of PCP at NMDA receptors after this pretreatment procedure. We propose that NMDA depression of accumbal dopamine release is mediated by metabotropic glutamate receptors located pre- or perisynaptically, and suggest that NMDA evoked increased extrasynaptic spillover of glutamate is sufficient to activate these receptors that, in turn, inhibit dopamine release. Furthermore, we suggest that enduring functional changes brought about by subchronic phencyclidine pretreatment, modeling deficits in schizophrenia, are downstream effects consequent on chronic blockade of NMDA receptors, rather than direct effects on NMDA receptors themselves.

  15. Mediation of a glutamate antagonist, a NOS inhibitor and antioxidants with – SH groups on striatal dopamine release induced by clothianidin

    Directory of Open Access Journals (Sweden)

    M. Alfonso

    2015-01-01

    Full Text Available La clotianidina es un insecticida neonicotinoide con actividad selectiva sobre los receptores de acetilcolina. El ob jetivo de este estudio es comprobar si un inhibidor de los receptores glutamatérgicvos (APV, un inhibidor de la óxido nítrico sintet asa (L-NAME y dos antioxidantes como el glutatión y el dithiotreit ol previene la liberación de dopamina inducida por la clotianidina , usando la técnica de microdiálisis en ratas conscientes y en li bre movimiento. La administración intraestriatal de clothianidina ( 3.5 mM produce un aumento de 2462 ± 627%, de los niveles estriatal es de dopamina respecto a los nivele s basales. La coadministracion de 0.65 mM de APV y 3.5 mM d clothianidina genera un a aumento de 1089 ± 243.5% de los niveles estr iatales de dopamina, siendo es te incremento 55.7% más bajo que el generado por la clotianidina sola. La Coadministration de.0,1 mM de L-NAME y3.5 mM de clotianidina genera un aumento de 836.5 ± 150.6% de los niveles extracelulares de dopamina, siendo este aumento un 55.7% más ba jo que el generado por la clotianidi na sola. La coadministracion of 3.5 mM clothianidina en combinación con 0.4 mM de glutatión induce un aumento de 465.6 ± 126.8% de los niveles estriatales de dopamina, indicando que la administración de glutatión provoca una inhibición del 81% del efecto generado por la infusión de clotianidina sola. La administración de 3.5 mM de clothianidina junto con 0.005 mM de diithiothreitol induce un aumento de 693. 8 ± 117.8% en los niveles extracelulares de dopamina en el estria do, siendo este incremento 72% más bajo que el generado por la clotianidina sola. Nue stros resultados sugieren que el efecto d e la clotianidina sobre la liberación estriatal de dopamina pueden s er reducidos por la administración de un antagonista glutamatérgic o, un ihibibidor de la NOS o por antioxidantes con grupo –SH, lo cual supone un simple mecanismo de pr otección contra el daño causado

  16. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  17. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.

    Science.gov (United States)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco; Dimaki, Maria; Castillo-León, Jaime; Vergani, Marco; Landini, Ettore; Raiteri, Roberto; Ferrari, Giorgio; Carminati, Marco; Sampietro, Marco; Svendsen, Winnie E; Emnéus, Jenny

    2013-07-07

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter-ions in the monomer solution. Several counter-ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively. The optimal dopant for dopamine detection was found to be polystyrene sulfonate anion (PSS(-)). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS(-)-doped PPy film. The modified electrodes were used to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K(+) concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification, yielding 2.6-fold signal amplification. The results also illustrate how to use cell population based dopamine exocytosis measurements to obtain biologically significant information that can be relevant in, for instance, the study of neural stem cell differentiation into dopaminergic neurons.

  18. Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release

    Science.gov (United States)

    Chartoff, Elena H; Ebner, Shayla R; Sparrow, Angela; Potter, David; Baker, Phillip M; Ragozzino, Michael E; Roitman, Mitchell F

    2016-01-01

    Negative affective states can increase the rewarding value of drugs of abuse and promote drug taking. Chronic cocaine exposure increases levels of the neuropeptide dynorphin, an endogenous ligand at kappa opioid receptors (KOR) that suppresses dopamine release in the nucleus accumbens (NAc) and elicits negative affective states upon drug withdrawal. However, there is evidence that the effects of KOR activation on affective state are biphasic: immediate aversive effects are followed by delayed increases in reward. The impact of KOR-induced affective states on reward-related effects of cocaine over time is not known. We hypothesize that the initial aversive effects of KOR activation increase, whereas the delayed rewarding effects decrease, the net effects of cocaine on reward and dopamine release. We treated rats with cocaine at various times (15 min to 48 h) after administration of the selective KOR agonist salvinorin A (salvA). Using intracranial self-stimulation and fast scan cyclic voltammetry, we found that cocaine-induced increases in brain stimulation reward and evoked dopamine release in the NAc core were potentiated when cocaine was administered within 1 h of salvA, but attenuated when administered 24 h after salvA. Quantitative real-time PCR was used to show that KOR and prodynorphin mRNA levels were decreased in the NAc, whereas tyrosine hydroxylase and dopamine transporter mRNA levels and tissue dopamine content were increased in the ventral tegmental area 24 h post-salvA. These findings raise the possibility that KOR activation—as occurs upon withdrawal from chronic cocaine—modulates vulnerability to cocaine in a time-dependent manner. PMID:26239494

  19. Circadian-related heteromerization of adrenergic and dopamine D₄ receptors modulates melatonin synthesis and release in the pineal gland.

    Directory of Open Access Journals (Sweden)

    Sergio González

    Full Text Available The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D₄ receptors. Through α(₁B-D₄ and β₁-D₄ receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D₄ was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D₄ receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.

  20. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12).

    Science.gov (United States)

    Walker, J; Rohm, B; Lang, R; Pariza, M W; Hofmann, T; Somoza, V

    2012-02-01

    Coffee and caffeine are known to affect the limbic system, but data on the influence of coffee and coffee constituents on neurotransmitter release is limited. We investigated dopamine release and Ca(2+)-mobilization in pheochromocytoma cells (PC-12 cells) after stimulation with two lyophilized coffee beverages prepared from either Coffea arabica (AR) or Coffea canephora var. robusta (RB) beans and constituents thereof. Both coffee lyophilizates showed effects in dilutions between 1:100 and 1:10,000. To identify the active coffee compound, coffee constituents were tested in beverage and plasma representative concentrations. Caffeine, trigonelline, N-methylpyridinium, chlorogenic acid, catechol, pyrogallol and 5-hydroxytryptamides increased calcium signaling and dopamine release, although with different efficacies. While N-methylpyridinium stimulated the Ca(2+)-mobilization most potently (EC(200): 0.14±0.29μM), treatment of the cells with pyrogallol (EC(200): 48±14nM) or 5-hydroxytryptamides (EC(200): 10±3nM) lead to the most pronounced effect on dopamine release. In contrast, no effect was seen for the reconstituted biomimetic mixture. We therefore conclude that each of the coffee constituents tested stimulated the dopamine release in PC-12 cells. Since no effect was found for their biomimetic mixture, we hypothesize other coffee constituents being responsible for the dopamine release demonstrated for AR and RB coffee brews. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Presentation of smoking-associated cues does not elicit dopamine release after one-hour smoking abstinence: A [11C]-(+-PHNO PET study.

    Directory of Open Access Journals (Sweden)

    Lina Chiuccariello

    Full Text Available The presentation of drug-associated cues has been shown to elicit craving and dopamine release in the striatum of drug-dependent individuals. Similarly, exposure to tobacco-associated cues induces craving and increases the propensity to relapse in tobacco- dependent smokers. However, whether exposure to tobacco-associated cues elicits dopamine release in the striatum of smokers remains to be investigated. We hypothesized that presentation of smoking-related cues compared to neutral cues would induce craving and elevation of intrasynaptic dopamine levels in subregions of the striatum and that the magnitude of dopamine release would be correlated with subjective levels of craving in briefly abstinent tobacco smokers. Eighteen participants underwent two [(11C]-(+-PHNO positron emission tomography (PET scans after one-hour abstinence period: one during presentation of smoking-associated images and one during presentation of neutral images. Smoking cues significantly increased craving compared to neutral cues on one, but not all, craving measures; however, this increase in craving was not associated with overall significant differences in [(11C]-(+-PHNO binding potential (BPND (an indirect measure of dopamine release between the two experimental conditions in any of the brain regions of interest sampled. Our findings suggest that presentation of smoking cues does not elicit detectable (by PET overall increases in dopamine in humans after one-hour nicotine abstinence. Future research should consider studying smoking cue-induced dopamine release at a longer abstinence period, since recent findings suggest the ability of smoking-related cues to induce craving is associated with a longer duration of smoking abstinence.

  2. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    Science.gov (United States)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  3. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  4. Beer flavor provokes striatal dopamine release in male drinkers: mediation by family history of alcoholism.

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-08-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [(11)C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [(11)C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [(11)C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism.

  5. Beer Flavor Provokes Striatal Dopamine Release in Male Drinkers: Mediation by Family History of Alcoholism

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A

    2013-01-01

    Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [11C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [11C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [11C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism. PMID:23588036

  6. Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell

    NARCIS (Netherlands)

    Kleijn, J.; Folgering, J. H. A.; van der Hart, M. C. G.; Rollema, H.; Cremers, T. I. F. H.; Westerink, B. H. C.

    2011-01-01

    Nicotine stimulates dopamine (DA) cell firing via a local action at somatodendritic sites in the ventral tegmental area (VTA), increasing DA release in the nucleus accumbens (NAcc). Additionally, nicotine may also modulate DA release via a direct effect in the NAcc. This study examined the

  7. Increased dopamine tone during meditation-induced change of consciousness

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola

    2002-01-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a dep......This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized...... by a depressed level of desire for action, associated with decreased blood flow in prefrontal, cerebellar and subcortical regions, structures thought to be organized in open loops subserving executive control. In the striatum, dopamine modulates excitatory glutamatergic synapses of the projections from...... the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C...

  8. BOLD and its connection to dopamine release in human striatum: a cross-cohort comparison

    Science.gov (United States)

    Lohrenz, Terry; Kishida, Kenneth T.

    2016-01-01

    Activity in midbrain dopamine neurons modulates the release of dopamine in terminal structures including the striatum, and controls reward-dependent valuation and choice. This fluctuating release of dopamine is thought to encode reward prediction error (RPE) signals and other value-related information crucial to decision-making, and such models have been used to track prediction error signals in the striatum as encoded by BOLD signals. However, until recently there have been no comparisons of BOLD responses and dopamine responses except for one clear correlation of these two signals in rodents. No such comparisons have been made in humans. Here, we report on the connection between the RPE-related BOLD signal recorded in one group of subjects carrying out an investment task, and the corresponding dopamine signal recorded directly using fast-scan cyclic voltammetry in a separate group of Parkinson's disease patients undergoing DBS surgery while performing the same task. The data display some correspondence between the signal types; however, there is not a one-to-one relationship. Further work is necessary to quantify the relationship between dopamine release, the BOLD signal and the computational models that have guided our understanding of both at the level of the striatum. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574306

  9. Glutamate stimulation of (/sup 3/H)dopamine release from dissociated cell cultures of rat ventral mesencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Mount, H.; Welner, S.; Quirion, R.; Boksa, P.

    1989-04-01

    In dissociated cell cultures of fetal rat ventral mesencephalon preloaded with (3H)dopamine, glutamate (10(-5)-10(-3) M) stimulated the release of (3H)dopamine. Glutamate stimulation of (3H)dopamine release was Ca2+ dependent and was blocked by the glutamate antagonist, cis-2,3-piperidine dicarboxylic acid. Glutamate stimulation of (3H)dopamine release was not due to glutamate neurotoxicity because (1) glutamate did not cause release of a cytosolic marker, lactate dehydrogenase, and (2) preincubation of cultures with glutamate did not impair subsequent ability of the cells to take up or release (3H)dopamine. Thus, these dissociated cell cultures appear to provide a good model system to characterize glutamate stimulation of dopamine release. Release of (3H)dopamine from these cultures was stimulated by veratridine, an activator of voltage-sensitive Na+ channels, and this stimulation was blocked by tetrodotoxin. However, glutamate-stimulated (3H)dopamine release was not blocked by tetrodotoxin or Zn2+. Substitution of NaCl in the extracellular medium by sucrose, LiCl, or Na2SO4 had no effect on glutamate stimulation of (3H)dopamine release; however, release was inhibited when NaCl was replaced by choline chloride or N-methyl-D-glucamine HCl. Glutamate-stimulated (3H)-dopamine release was well maintained (60-82% of control) in the presence of Co2+, which blocks Ca2+ action potentials, and was unaffected by the local anesthetic, lidocaine. These results are discussed in terms of the receptor and ionic mechanisms involved in the stimulation of dopamine release by excitatory amino acids.

  10. Monitoring Dopamine Quinone-Induced Dopaminergic Neurotoxicity Using Dopamine Functionalized Quantum Dots.

    Science.gov (United States)

    Ma, Wei; Liu, Hui-Ting; Long, Yi-Tao

    2015-07-08

    Dopamine (DA) quinone-induced dopaminergic neurotoxicity is known to occur due to the interaction between DA quinone and cysteine (Cys) residue, and it may play an important a role in pathological processes associated with neurodegeneration. In this study, we monitored the interaction process of DA to form DA quinone and the subsequent Cys residue using dopamine functionalized quantum dots (QDs). The fluorescence (FL) of the QD bioconjugates changes as a function of the structure transformation during the interaction process, providing a potential FL tool for monitoring dopaminergic neurotoxicity.

  11. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    Science.gov (United States)

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.

  12. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers.

    Science.gov (United States)

    Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A

    2015-03-01

    Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.

  13. Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination.

    Science.gov (United States)

    Popescu, Andrei T; Zhou, Michael R; Poo, Mu-Ming

    2016-05-31

    Phasic dopamine (DA) release is believed to guide associative learning. Most studies have focused on projections from the ventral tegmental area (VTA) to the striatum, and the action of DA in other VTA target regions remains unclear. Using optogenetic activation of VTA projections, we examined DA function in the medial prefrontal cortex (mPFC). We found that mice perceived optogenetically induced DA release in mPFC as neither rewarding nor aversive, and did not change their previously learned behavior in response to DA transients. However, repetitive temporal pairing of an auditory conditioned stimulus (CS) with mPFC DA release resulted in faster learning of a subsequent task involving discrimination of the same CS against unpaired stimuli. Similar results were obtained using both appetitive and aversive unconditioned stimuli, supporting the notion that DA transients in mPFC do not represent valence. Using extracellular recordings, we found that CS-DA pairings increased firing of mPFC neurons in response to CSs, and administration of D1 or D2 DA-receptor antagonists in mPFC during learning impaired stimulus discrimination. We conclude that DA transients tune mPFC neurons for the recognition of behaviorally relevant events during learning.

  14. Conductor compounds of phenylpentane in Mycoleptodonoides aitchisonii mycelium enhance the release of dopamine from rat brain striatum slices.

    Science.gov (United States)

    Okuyama, Satoshi; Sawasaki, Emi; Yokogoshi, Hidehiko

    2004-04-01

    Monoterpene compound is a major component of essential oils in various aromatic species. Previous reports about the monoterpene compound linalool and its effect on the brain neurotransmitters glutamic acid, GABA and acetylcholine, but not catecholamines, have been reported. In this study, we investigated the effect of linalool or conductor compounds of phenylpentane, including 1-phenyl-3-pentanol and 1-phenyl-3-pentanone, on dopamine release using rat striatal slices. The edible mushroom Mycoleptodonoides aitchisonii belongs to the Climacodontaceae family, and its cultivate medium or mycelium contains derivatives of the fragrant conductor compound, phenylpentane. Compared to basal levels, 2.5 microg linalool increased dopamine from striatal slices 3-fold. A 4-fold increase in dopamine release resulted from 2.5 microg 1-phenyl-3-pentanol administration, while a half dose of this compound induced a 2.5-fold increase. A greater than 2-fold increase resulted with 2.5 microg 1-phenyl-3-pentanone. These data indicate that striatum has sensitivity for these fragrant compounds and different releasing effects result with differ structures. These actions may affect other neurotransmitters and influence brain function.

  15. The decrease in hypothalamic dopamine secretion induced by suckling: comparison of voltammetric and radioisotopic methods of measurement. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Plotsky, P.M.; Neill, J.D.

    1982-03-01

    Previous in situ voltammetric microelectrode measurements of median eminence dopamine release during mammary nerve stimulation of anesthetized lactating rats revealed a transient (1-3 min) 70% decline of dopamine concentrations. This dopamine was believed to be destined for secretion into the hypophysial portal circulation, but direct experimental support for this supposition was lacking. Thus, in the present study, (3H)dopamine release into brief sequential samples of hypophysial portal blood was compared with dopamine release in the median eminence measured by voltammetry. Lactating female rats were urethane anesthetized, and the median eminence pituitary region was exposed. (3H)Tyrosine was injected into a jugular cannula (100 microCi) followed by continuous infusion (5 microCi/min). In a preliminary experiment, this regimen produced a steady state level of (3H)dopamine in the portal blood within 45 min. In subsequent experiments, portal blood was collected as sequential 3-min samples, and electrochemical sampling from a microelectrode placed in the median eminence occurred at 1-min intervals. Electrochemical current resulting from the oxidation of dopamine in the medial median eminence was unvarying throughout the 75-min experiment in control rats (n . 4) and during the 30-min control period preceding mammary nerve stimulation in the other group (n . 4). These results were paralled by (3H) dopamine levels in portal blood during the same periods of time. All animals showed simultaneous decreases in oxidation current and (3H)dopamine levels within 1-4 min after initiation of mammary nerve stimulation. These and earlier results demonstrate that mammary nerve stimulation (and by extension, suckling) induces a momentary, but profound, decrease in hypothalamic dopamine secretion which precedes or accompanies the rise in PRL secretion evoked by the same stimulus.

  16. Effects of NMDA administration in the substantia nigra pars compacta on the striatal dopamine release before and after repetitive exposures to nitrogen narcosis in rats.

    Science.gov (United States)

    Lavoute, C; Weiss, M; Rostain, J C

    2006-01-01

    Hyperbaric nitrogen-oxygen exposure developed in rats a decrement of the striatal dopamine release, which was reversed by repetitive exposures. This dopamine decrease could be the result of the antagonistic effect of nitrogen on NMDA receptors. The increment of the dopamine release, following repetitive exposures to nitrogen, could be attributed to a desensitisation of NMDA receptors to the effects of nitrogen. To test these hypotheses, male Sprague-Dawley rats were implanted with electrodes in the striatum to measure dopamine release by voltammetry and cannula in the substantia nigra pars compacta for NMDA injection. Free-moving rats were exposed up to 3MPa of nitrogen-oxygen mixture before and after 5 exposures to 1MPa. At the first exposure to 3MPa, the dopamine level decreased (-15%) but is counteracted by NMDA administration. In contrast, after repetitive exposure, the second exposure to 3MPa, induces a 10% dopamine increase. NMDA administration significantly potentiated this increase. Our results neither support the hypothesis of an antagonist effect of nitrogen on NMDA receptors at the first exposure, nor that of a NMDA receptor desensitization following repetitive exposures to hyperbaric nitrogen.

  17. L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine.

    Science.gov (United States)

    Ohi, Y; Kodama, D; Haji, A

    2017-09-30

    The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Involvement of tissue plasminogen activator-plasmin system in depolarization-evoked dopamine release in the nucleus accumbens of mice.

    Science.gov (United States)

    Ito, Mina; Nagai, Taku; Kamei, Hiroyuki; Nakamichi, Noritaka; Nabeshima, Toshitaka; Takuma, Kazuhiro; Yamada, Kiyofumi

    2006-11-01

    Tissue plasminogen activator (tPA), a serine protease, catalyzes the conversion of plasminogen to plasmin. In the present study, we investigated the role of the tPA-plasmin system in depolarization-evoked dopamine (DA) and acetylcholine (ACh) release in the nucleus accumbens (NAc) and hippocampus, respectively, of mice, by using in vivo microdialysis. Microinjection of either tPA or plasmin significantly potentiated 40 mM KCl-induced DA release without affecting basal DA levels. In contrast, plasminogen activator inhibitor-1 dose-dependently reduced 60 mM KCl-induced DA release. The 60 mM KCl-evoked DA release in the NAc was markedly diminished in tPA-deficient (tPA-/-) mice compared with wild-type mice, although basal DA levels did not differ between the two groups. Microinjections of either exogenous tPA (100 ng) or plasmin (100 ng) into the NAc of tPA-/-mice restored 60 mM KCl-induced DA release, as observed in wild-type mice. In contrast, there was no difference in either basal or 60 mM KCl-induced ACh release in the hippocampus between wild-type and tPA-/-mice. Our findings suggest that the tPA-plasmin system is involved in the regulation of depolarization-evoked DA release in the NAc.

  19. Effects of morphine on hypothalamic corticotropin-releasing factor (CRF, norepinephrine and dopamine in non-stressed and stressed rats.

    Directory of Open Access Journals (Sweden)

    Suemaru,Shuso

    1985-12-01

    Full Text Available The effects of morphine on the hypothalamic corticotropin-releasing factor (CRF, norepinephrine (NE and dopamine (DA concentrations were investigated in non-stressed and stressed rats. Acutely administered morphine stimulated both the synthesis and release of CRF in the hypothalamus, thereby activating the pituitary-adrenocortical system in non-stressed rats, but inhibited the stress-induced CRF synthesis and ACTH-corticosterone secretion. Either a morphine or ether-laparotomy stress reduced NE and DA concentrations in the hypothalamus. A pretreatment with morphine inhibited the stress-induced reduction in the hypothalamic NE and DA concentrations, and induced a significant increase in the DA concentration. These observations suggest that hypothalamic NE and DA are involved in morphine-induced changes in hypothalamo-pituitary-adrenocortical (HPA activity and that endogenous opiates have a role in regulating CRF secretion by interacting with hypothalamic biogenic amines.

  20. Inhibition of the dopamine system in rat amygdala attenuates the picrotoxin-induced locomoter hyperactivity and hypertension.

    Science.gov (United States)

    Chang, C K; Wang, N L; Lin, M T

    2004-01-01

    The aim of the present study was to investigate whether picrotoxin-induced locomotor hyperactivity and hypertension can be inhibited by dopaminergic inhibition in rat amygdala. Locomotor activity was detected using a modularized infrared light matrix system in freely moving rats. In anaesthetized rats, blood pressure was measured while dopamine release was detected using in vivo voltammetry with carbon fibre electrodes. Systemic administration of picrotoxin (1-4 mg/kg) increased both locomotor activity (including horizontal motion, vertical motion and total distance travelled) and the number of turnings (both clockwise and anticlockwise), but inhibited postural freezing. The locomotor hyperactivity induced by systemic administration of picrotoxin was mimicked by direct injection of a small dose (1-3 micro g in 1.0 micro L) of picrotoxin into the amygdala. In vivo voltammetry data revealed that systemic administration of picrotoxin increased the release of dopamine in the amygdala of rat brain accompanied by hypertension. Local injection of kainic acid into the paramedian reticular nucleus (PRN) of the medulla oblongata decreased both the spontaneous release of dopamine in the amygdala and spontaneous levels of locomotor activity in rats. Furthermore, the picrotoxin-induced locomotor hyperactivity, hypertension and increased amygdaloid dopamine release were all suppressed following chemical stimulation of the PRN with kainic acid. Blockade of dopamine receptors with systemic or intra-amygdaloid injection of haloperidol (a dopamine receptor antagonist) significantly attenuated the picrotoxin-induced locomotor hyperactivity and hypertension. These results demonstrate that picrotoxin-induced hyperactivity and hypertension involve an increase in amygdaloid dopamine transmission that can be modulated by ascending projections from the PRN in the medulla oblongata.

  1. Three dopamine pathways induce aversive odor memories with different stability.

    Directory of Open Access Journals (Sweden)

    Yoshinori Aso

    Full Text Available Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.

  2. Phorbol esters potentiate rapid dopamine release from median eminence and striatal synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Shu, C.; Selmanoff, M.

    1988-06-01

    In the present study, we investigated the ability of phorbol esters to potentiate Ca2+-dependent depolarization-induced release of tritium-labeled dopamine ((3H)DA) from median eminence and striatal synaptosomes. Phorbol esters potentiated (3H)DA release in a concentration-dependent manner in both kinds of dopaminergic nerve terminals and with a potency series similar to that reported for stimulation of protein kinase-C (PKC) activity in other cell systems. Evoked (3H)DA release was increased by 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-7) M) after 1, 3, 5, and 10 sec of depolarization. The effect of TPA was suppressed by sphingosine, a PKC inhibitor. TPA enhanced (3H)DA release evoked by high K+, veratridine or the Ca2+ ionophore A23187. Phorbol ester potentiation was found to be depolarization dependent, as it was present from 30-75 mM, but not at 5-20 mM external K+. Potentiation was seen at all external Ca2+ concentrations studied between 0.01-3 mM. However, in the absence of external free Ca2+ (i.e. with 0.1 mM EGTA), the phorbol effect was not present. These data indicate that an increase in intrasynaptosomal Ca2+ concentration is necessary for the enhancement of (3H)DA release by phorbol esters to occur. The combination of TPA and the Ca2+ ionophore A23187 does not show the marked synergism observed in some other systems, that is maximal release was not reinstated. This suggests that in dopaminergic nerve terminals, activation of PKC has a modulatory, rather than a mediating, effect on release. Recently, we have shown that hyperprolactinemia stimulated (3H)DA release from median eminence synaptosomes by an external Ca2+-independent mechanism which might involve the PKC pathway. However, in the present work we found that the TPA and PRL effects on evoked (3H)DA release were additive, suggesting that two independent mechanisms are involved.

  3. SEMICIRCADIAN RHYTHM OF DOPAMINE RELEASE IN THE MEDIOBASAL HYPOTHALAMUS IN AWAKE RATS DURING PSEUDOPREGNANCY - EVIDENCE THAT A THYROTROPIN-RELEASING-HORMONE ANALOG STIMULATES DOPAMINE RELEASE AND THEREBY INHIBITS PROLACTIN SECRETION

    NARCIS (Netherlands)

    TIMMERMAN, W; POELMAN, RT; WESTERINK, BHC; SCHUILING, GA

    1995-01-01

    The release of dopamine (DA) from tuberoinfundibular (TIDA) neurons during prolactin (PRL) surge and nonsurge periods and the effects of the thyrotropin-releasing hormone (TRH) analogue CG 3703 on DA and PRL secretion were studied in awake pseudopregnant (PSP) rats by simultaneous measurement of ext

  4. Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea

    NARCIS (Netherlands)

    Halmos, Gyorgy; Lendvai, Balázs; Gáborján, Anita; Baranyi, Mária; Szabó, László Z; Csokonai Vitéz, Lajos

    2002-01-01

    Glutamate is proved to be a neurotransmitter in the mammalian cochlea, transmitting signals between the inner hair cells and the afferent cochlear nerve terminals. The transmission in this synapse is modulated by the lateral olivocochlear efferent fibers by releasing dopamine and other

  5. A new aspect of aminoglycoside ototoxicity : impairment of cochlear dopamine release

    NARCIS (Netherlands)

    Gáborján, A; Halmos, G; Répássy, G; Vizi, E S

    2001-01-01

    Aminoglycoside ototoxicity is a well-documented process via several pathophysiological pathways. The protective role of cochlear dopamine, released from the lateral olivocochlear efferents, was implicated previously in case of ischemia or acoustic trauma, as it postsynaptically inhibits the effect o

  6. Simultaneous measurement of glutamate and dopamine release from isolated guinea pig cochlea

    NARCIS (Netherlands)

    Halmos, Gyorgy; Lendvai, Balázs; Gáborján, Anita; Baranyi, Mária; Szabó, László Z; Csokonai Vitéz, Lajos

    2002-01-01

    Glutamate is proved to be a neurotransmitter in the mammalian cochlea, transmitting signals between the inner hair cells and the afferent cochlear nerve terminals. The transmission in this synapse is modulated by the lateral olivocochlear efferent fibers by releasing dopamine and other neurotransmit

  7. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning

    NARCIS (Netherlands)

    Klanker, Marianne; Fellinger, Lisanne; Feenstra, M.G.P.; Willuhn, Ingo; Denys, D.

    2017-01-01

    Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a pr

  8. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release.

    Directory of Open Access Journals (Sweden)

    Roy A Wise

    Full Text Available Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI--a cocaine analogue that does not cross the blood brain barrier--on glutamate (excitatory input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals.

  9. Sulpiride in combination with fluvoxamine increases in vivo dopamine release selectively in rat prefrontal cortex.

    Science.gov (United States)

    Ago, Yukio; Nakamura, Shigeo; Baba, Akemichi; Matsuda, Toshio

    2005-01-01

    Coadministration of atypical antipsychotics and selective serotonin reuptake inhibitors (SSRIs) enhances the release of monoamines such as dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the prefrontal cortex. To clarify the role of DA-D2/3 receptors in the combination effect, we examined the effects of coadministration of the selective DA-D2/3 antagonist sulpiride and the SSRI fluvoxamine on amine neurotransmitter release in rat prefrontal cortex. Sulpiride (10 mg/kg, i.p.) and fluvoxamine (10 mg/kg, i.p.) alone did not affect extracellular DA levels, while their coadministration caused a significant increase in DA levels. Sulpiride alone did not affect extracellular levels of 5-HT and NE in the prefrontal cortex, while fluvoxamine alone caused a marked increase in 5-HT levels and a slight increase in NE levels. Sulpiride did not affect the fluvoxamine-induced increases in extracellular levels of 5-HT and NE. The DA-D2/3 antagonist haloperidol (0.1 mg/kg) in combination with fluvoxamine also caused a selective increase in extracellular DA levels in the cortex. Coadministration of sulpiride and fluvoxamine did not affect extracellular DA levels in the striatum. Combination of systemic sulpiride and local fluvoxamine did not increase the DA levels, but that of systemic fluvoxamine with local sulpiride increased. The combination effect in increasing prefrontal DA levels was antagonized systemically, but not locally, by the 5-HT1A antagonist WAY100635 at a low dose. These findings suggest that the combination of prefrontal DA-D2/3 receptor blockade and 5-HT1A receptor activation in regions other than the cortex plays an important role in sulpiride and fluvoxamine-induced increase in prefrontal DA release.

  10. Enhanced dopamine release by dopamine transport inhibitors described by a restricted diffusion model and fast scan cyclic voltammetry

    Science.gov (United States)

    Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734

  11. Striatal dopamine release in a schizophrenia mouse model measured by electrochemical amperometry in vivo.

    Science.gov (United States)

    Xu, Huadong; Zuo, Panli; Wang, Shirong; Zhou, Li; Sun, Xiaoxuan; Hu, Meiqin; Liu, Bin; Wu, Qihui; Dou, Haiqiang; Liu, Bing; Zhu, Feipeng; Teng, Sasa; Zhang, Xiaoyu; Wang, Li; Li, Qing; Jin, Mu; Kang, Xinjiang; Xiong, Wei; Wang, Changhe; Zhou, Zhuan

    2015-06-01

    Schizophrenia is a severely devastating mental disorder, the pathological process of which is proposed to be associated with the dysfunction of dopaminergic transmission. Our previous results have demonstrated slower kinetics of transmitter release (glutamate release in hippocampus and norepinephrine release in adrenal slice) in a schizophrenia model, dysbindin null-sandy mice. However, whether dopaminergic transmission in the nigrostriatal pathway contributes to the pathology of dysbindin-/- mice remains unknown. Here, we have provided a step-by-step protocol to be applied in the in vivo amperometric recording of dopamine (DA) release from the mouse striatum evoked by an action potential (AP) pattern. With this protocol, AP pattern-dependent DA release was recorded from dysbindin-/- mice striatum in vivo. On combining amperometric recording in slices and electrophysiology, we found that in dysbindin-/- mice, (1) presynaptically, AP-pattern dependent dopamine overflow and uptake were intact in vivo; (2) the recycling of the dopamine vesicle pool remained unchanged. (3) Postsynaptically, the excitability of medium spiny neuron (MSN) was also normal, as revealed by patch-clamp recordings in striatal slices. Taken together, in contrast to reduced norepinephrine release in adrenal chromaffin cells, the dopaminergic transmission remains unchanged in the nigrostriatal pathway in dysbindin-/- mice, providing a new insight into the functions of the schizophrenia susceptibility gene dysbindin.

  12. Effect of angiotensin II, catecholamines and glucocorticoid on corticotropin releasing factor (CRF-induced ACTH release in pituitary cell cultures.

    Directory of Open Access Journals (Sweden)

    Murakami,Kazuharu

    1984-08-01

    Full Text Available The effects of angiotensin II, catecholamines and glucocorticoid on CRF-induced ACTH release were examined using rat anterior pituitary cells in monolayer culture. Synthetic ovine CRF induced a significant ACTH release in this system. Angiotensin II produced an additive effect on CRF-induced ACTH release. The ACTH releasing activity of CRF was potentiated by epinephrine and norepinephrine. Dopamine itself at 0.03-30 ng/ml did not show any significant effect on ACTH release, but it inhibited CRF-induced ACTH release. Corticosterone at 10(-7 and 10(-6M inhibited CRF-induced ACTH release. These results indicate that angiotensin II, catecholamines and glucocorticoid modulate ACTH release at the pituitary level.

  13. Reversal of Alcohol-Induced Dysregulation in Dopamine Network Dynamics May Rescue Maladaptive Decision-making.

    Science.gov (United States)

    Schindler, Abigail G; Soden, Marta E; Zweifel, Larry S; Clark, Jeremy J

    2016-03-30

    Alcohol is the most commonly abused substance among adolescents, promoting the development of substance use disorders and compromised decision-making in adulthood. We have previously demonstrated, with a preclinical model in rodents, that adolescent alcohol use results in adult risk-taking behavior that positively correlates with phasic dopamine transmission in response to risky options, but the underlying mechanisms remain unknown. Here, we show that adolescent alcohol use may produce maladaptive decision-making through a disruption in dopamine network dynamics via increased GABAergic transmission within the ventral tegmental area (VTA). Indeed, we find that increased phasic dopamine signaling after adolescent alcohol use is attributable to a midbrain circuit, including the input from the pedunculopontine tegmentum to the VTA. Moreover, we demonstrate that VTA dopamine neurons from adult rats exhibit enhanced IPSCs after adolescent alcohol exposure corresponding to decreased basal dopamine levels in adulthood that negatively correlate with risk-taking. Building on these findings, we develop a model where increased inhibitory tone on dopamine neurons leads to a persistent decrease in tonic dopamine levels and results in a potentiation of stimulus-evoked phasic dopamine release that may drive risky choice behavior. Based on this model, we take a pharmacological approach to the reversal of risk-taking behavior through normalization of this pattern in dopamine transmission. These results isolate the underlying circuitry involved in alcohol-induced maladaptive decision-making and identify a novel therapeutic target. One of the primary problems resulting from chronic alcohol use is persistent, maladaptive decision-making that is associated with ongoing addiction vulnerability and relapse. Indeed, studies with the Iowa Gambling Task, a standard measure of risk-based decision-making, have reliably shown that alcohol-dependent individuals make riskier, more maladaptive

  14. Role of glutamate receptors and nitric oxide on the effects of glufosinate ammonium, an organophosphate pesticide, on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    Faro, Lilian R F; Ferreira Nunes, Brenda V; Alfonso, Miguel; Ferreira, Vania M; Durán, Rafael

    2013-09-15

    The purpose of the present work was to assess the possible role of glutamatergic receptors and nitric oxide (NO) production on effects of glufosinate ammonium (GLA), an organophosphate pesticide structurally related to glutamate, on in vivo striatal dopamine release in awake and freely moving rats. For this, we used antagonists of NMDA (MK-801 and AP5) or AMPA/kainate (CNQX) receptors, or nitric oxide synthase (NOS) inhibitors (l-NAME and 7-NI), to study the effects of GLA on release of dopamine from rat striatum. So, intrastriatal infusion of 10mM GLA significantly increased dopamine levels (1035±140%, compared with basal levels) and administration of GLA to MK-801 (250μM) or AP5 (650μM) pretreated animals, produced increases in dopamine overflow that were ∼40% and ∼90% smaller than those observed in animals not pretreated with MK-801 or AP5. Administration of GLA to CNQX (500μM) pretreated animals produced an effect that was not significantly different from the one produced in animals not pretreated with CNQX. On the other hand, administration of GLA to l-NAME (100μM) or 7-NI (100μM) pretreated animals, produced increases in dopamine overflow that were ∼80% and ∼75% smaller than those observed in animals not pretreated with these inhibitors. In summary, GLA appears to act, at least in part, through an overstimulation of NMDA (and not AMPA/kainate) receptors with possible NO production to induce in vivo dopamine release. Administration of NMDA receptor antagonists and NOS inhibitors partially blocks the release of dopamine from rat striatum.

  15. pH-regulated release of dopamine from well-ordered self-assembled monolayers: electrochemical studies.

    Science.gov (United States)

    Kazemi, Sayed Habib; Alizadeh, Abdolhamid; Mohamadi, Rahim; Khodaei, Mohammad Mahdi; Kordestani, Davood

    2013-12-01

    In the present work, gold electrode modified with novel aldehyde-terminated self-assembled monolayers (SAMs) was used for controllable load and release of dopamine molecules by pH triggering. Electrochemical techniques including cyclic voltammetry (CV) and electrochemcial impedance spectroscopy (EIS) were employed to investigate the SAMs characteristic on the gold electrode surface. The electrochemical experiments indicated Faradaic behavior for the electrode surface after its modification with dopamine. Notably, it was observed that decreasing the conditioning pH, results in a decrease of peak currents, presumably due to the hydrolysis of the terminal imine bonds and releasing the dopamine moiety into the solution. Moreover, the preliminary kinetics studies were done for dopamine release from the SAMs surface as a model to design future drug delivery systems. Finally, the rate constant of dopamine release from the SAMs modified surface estimated to be 0.167 day(-1) at pH=3.

  16. Mode of action of dopamine in inducing hyperglycemia in the fresh water edible crab, Oziothelphusa senex senex.

    Science.gov (United States)

    Swetha, Ch; Sainath, S B; Reddy, P Sreenivasula

    2014-11-01

    The objective of this study was to investigate the mode of action of dopamine in regulating hemolymph sugar level in the fresh water edible crab, Oziothelphusa senex senex. Injection of dopamine produced hyperglycemia in a dose-dependent manner in intact crabs but not in eyestalkless crabs. Administration of dopamine resulted in a significant decrease in total carbohydrates and glycogen levels with a significant increase in glycogen phosphorylase activity levels in hepatopancreas and muscle of intact crabs, indicating dopamine-induced glycogenolysis resulting in hyperglycemia. Bilateral eyestalk ablation resulted in significant increase in the total carbohydrates and glycogen levels with a significant decrease in the activity levels of phosphorylase in the hepatopancreas and muscle of the crabs. Eyestalk ablation resulted in significant decrease in hemolymph hyperglycemic hormone levels. The levels of hyperglycemic hormone in the hemolymph of dopamine injected crabs were significantly higher than in control crabs. However, no significant changes in the levels of hemolymph hyperglycemic hormone and sugar and tissue carbohydrate and phosphorylase activity were observed in dopamine injected eyestalk ablated crabs when compared with eyestalk ablated crabs. These results support an earlier hypothesis in crustaceans that dopamine acts as a neurotransmitter and induces hyperglycemia by triggering the release of hyperglycemic hormone in the crab, O. senex senex. © 2014 Wiley Periodicals, Inc.

  17. Dopamine transporter inhibition is required for cocaine-induced stereotypy

    OpenAIRE

    Tilley, Michael R.; Gu, Howard H.

    2008-01-01

    The primary mechanism by which cocaine induces stereotypy has been difficult to discern because cocaine has three high affinity targets, the reuptake transporters for dopamine (DAT), norepinephrine, and serotonin. To dissect out the role of DAT in cocaine effects, we generated a knock-in mouse line with a cocaine insensitive DAT (DAT-CI mice). DAT-CI mice provide a powerful tool that can directly test whether DAT inhibition is important for cocaine-induced stereotypy. We found that acute coca...

  18. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    Science.gov (United States)

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that

  19. Comparison of the Effects of Acute and Chronic Administration of Tetrahydroisoquinoline Amines on the In Vivo Dopamine Release: A Microdialysis Study in the Rat Striatum.

    Science.gov (United States)

    Wąsik, Agnieszka; Romańska, Irena; Antkiewicz-Michaluk, Lucyna

    2016-11-01

    The etiology of Parkinson's disease (PD) may involve endogenous and exogenous factors. 1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), which was shown to be neurotoxic for dopaminergic neurons, is one of such factors, thus it can be used to construct an animal model of PD. In contrast, 1,2,3,4-tetrahydroisoquinoline (TIQ) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) produce neuroprotective effects acting as monoamino oxidase (MAO) inhibitors and free radical scavengers that reduce oxidative stress in the mammalian brain. In this study, we aimed to investigate the effects of neuroprotective compounds, TIQ and 1MeTIQ, on the dopamine release in vivo in an animal model of PD induced by chronic administration of 1BnTIQ (25 mg/kg i.p.). Using an in vivo microdialysis methodology, we measured the impact of both acute and chronic treatment with TIQ and 1MeTIQ (50 mg/kg i.p.) on 1BnTIQ-induced changes in dopamine release in the rat striatum. Additionally, the behavioral test was carried out to check the influence of repeated administrations of the investigated compounds on the locomotor activity of rats. The behavioral studies showed that the chronic administration of 1BnTIQ produced a significant elevation of exploratory locomotor activity, and both the investigated amines, TIQ and 1MeTIQ, administered together with 1BnTIQ completely prevented 1BnTIQ-produced hyperactivity. The in vivo microdialysis studies demonstrated that the chronic treatment with 1BnTIQ caused a significant and long-lasting increase in the dopamine release (approximately 300 %) to the extracellular space in the rat striatum, which was demonstrated in the basal samples 24 h after 1BnTIQ injection. The combined chronic administration of 1BnTIQ and the investigated compounds, TIQ or 1MeTIQ, completely antagonized the 1BnTIQ-induced essential disturbances of the dopamine releasing to the extracellular space in the striatum. In conclusion, we suggest that higher concentrations of 1BnTIQ in

  20. The prefrontal cortex regulates the basal release of dopamine in the limbic striatum : An effect mediated by ventral tegmental area

    NARCIS (Netherlands)

    Karreman, M; Moghaddam, B

    1996-01-01

    The present study examined whether the prefrontal cortex (PFC) exerts a tonic control over the basal release of dopamine in the limbic striatum and whether this control is mediated by glutamatergic afferents to the dopamine cell body or terminal regions. Using intracerebral microdialysis in freely m

  1. Pharmacological characterization of dopamine, norepinephrine and serotonin release in the rat prefrontal cortex by neuronal nicotinic acetylcholine receptor agonists.

    Science.gov (United States)

    Rao, Tadimeti S; Correa, Lucia D; Adams, Pamala; Santori, Emily M; Sacaan, Aida I

    2003-11-14

    Neuronal nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission by regulating neurotransmitter release, an action that involves multiple nAChRs. The effects of four nAChR agonists, nicotine (NIC), 1,1-dimethyl-4-phenylpiperzinium iodide (DMPP), cytisine (CYT) and epibatidine (EPI) were investigated on [3H]-norepinephrine (NE), [3H]-dopamine (DA) and [3H]-serotonin (5-HT) release from rat prefrontal cortical (PFC) slices. All four agonists evoked [3H]-DA release to a similar magnitude but with a differing rank order of potency of EPI>DMPP approximately NIC approximately CYT. Similarly, all four agonists also increased [3H]-NE release, but with a differing rank order of potency of EPI>CYT approximately DMPP>NIC. NIC-induced [3H]-NE and [3H]-DA release responses were both calcium-dependent and attenuated by the sodium channel antagonist, tetrodotoxin (TTX) and by the nAChR antagonists mecamylamine (MEC) and dihydro-beta-erythroidine (DHbetaE), but not by D-tubocurare (D-TC). The modulation of [3H]-5-HT release by nAChR agonists was distinct from that seen for catecholamines. DMPP produced robust increases with minimal release observed with other agonists. DMPP-induced [3H]-5-HT release was neither sensitive to known nAChR antagonists nor dependent on external calcium. The differences between nicotinic agonist induced catecholamine and serotonin release suggest involvement of distinct nAChRs.

  2. Antipsychotic Induced Dopamine Supersensitivity Psychosis: A Comprehensive Review.

    Science.gov (United States)

    Yin, John; Barr, Alasdair M; Ramos-Miguel, Alfredo; Procyshyn, Ric M

    2017-01-01

    Chronic prescription of antipsychotics seems to lose its therapeutic benefits in the prevention of recurring psychotic symptoms. In many instances, the occurrence of relapse from initial remission is followed by an increase in dose of the prescribed antipsychotic. The current understanding of why this occurs is still in its infancy, but a controversial idea that has regained attention recently is the notion of iatrogenic dopamine supersensitivity. Studies on cell cultures and animal models have shown that long-term antipsychotic use is linked to both an upregulation of dopamine D2-receptors in the striatum and the emergence of enhanced receptor affinity to endogenous dopamine. These findings have been hypothesized to contribute to the phenomenon known as dopamine supersensitivity psychosis (DSP), which has been clinically typified as the foundation of rebound psychosis, drug tolerance, and tardive dyskinesia. The focus of this review is the update of evidence behind the classification of antipsychotic induced DSP and an investigation of its relationship to treatment resistance. Since antipsychotics are the foundation of illness management, a greater understanding of DSP and its prevention may greatly affect patient outcomes.

  3. Nitric oxide donors enhance the frequency-dependence of dopamine release in nucleus accumbens

    OpenAIRE

    Hartung, Henrike; Threlfell, Sarah; Cragg, Stephanie J

    2011-01-01

    Abstract Dopamine (DA) neurotransmission in the nucleus accumbens (NAc) is critically involved in normal as well as maladaptive motivated behaviours including drug addiction. Whether the striatal neuromodulator nitric oxide (NO) influences DA release in NAc is unknown. We investigated whether exogenous NO modulates DA transmission in NAc core and how this interaction varies depending on frequency of presynaptic activation. We detected DA with cyclic voltammetry at carbon-fiber micr...

  4. Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum.

    OpenAIRE

    1998-01-01

    Several single components of mining waste (arsenic, manganese, lead, cadmium) to which humans are exposed at the mining area of Villa de la Paz, Mexico, are known to provoke alterations of striatal dopaminergic parameters. In this study we used an animal model to examine neurochemical changes resulting from exposure to a metal mixture. We used microdialysis to compare in vivo dopamine release from adult rats subchronically exposed to a mining waste by oral route with those from a control grou...

  5. Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance.

    Science.gov (United States)

    Gentry, Ronny N; Lee, Brian; Roesch, Matthew R

    2016-10-27

    Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance.

  6. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls.......Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls....

  7. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Science.gov (United States)

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-08-09

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [(3)H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  8. A planar microelectrode array for simultaneous detection of electrically evoked dopamine release from distinct locations of a single isolated neuron.

    Science.gov (United States)

    Patel, Bhavik Anil; Luk, Collin C; Leow, Pei Ling; Lee, Arthur J; Zaidi, Wali; Syed, Naweed I

    2013-05-21

    Neurotransmission is a key process of communication between neurons. Although much is known about this process and the influence it has on the function of the body, little is understood about the dynamics of signalling from structural regions of a single neuron. In this study we have fabricated and characterised a microelectrode array (MEA) which was utilised for simultaneous multi-site recordings of dopamine release from an isolated single neuron. The MEA consisted of gold electrodes that were created in plane with the insulation layer using a chemical mechanical planarization process. The detection limit for dopamine measurements was 11 ± 3 nM and all the gold electrodes performed in a consistent fashion during amperometric recordings of 100 nM dopamine. Fouling of the gold electrode was investigated, where no significant change in the current was observed over 4 hours when monitoring 100 nM dopamine. The MEA was accessed using freshly isolated dopaminergic somas from the pond snail, Lymnaea stagnalis, where electrically evoked dopamine release was clearly observed. Measurements were conducted at four structural locations of a single isolated neuron, where electrically evoked dopamine release was observed from the cell body, axonal regions and the terminal. Over time, the release of dopamine varied over the structural regions of the neuron. Such information can provide an insight into the signalling mechanism of neurons and how they potentially form synaptic connections.

  9. Bupropion, methylphenidate, and 3,4-methylenedioxypyrovalerone antagonize methamphetamine-induced efflux of dopamine according to their potencies as dopamine uptake inhibitors: implications for the treatment of methamphetamine dependence

    OpenAIRE

    Simmler, Linda D.; Wandeler, Rebecca; Liechti, Matthias E.

    2013-01-01

    Background Methamphetamine-abuse is a worldwide health problem for which no effective therapy is available. Inhibition of methamphetamine-induced transporter-mediated dopamine (DA) release could be a useful approach to treat methamphetamine-addiction. We assessed the potencies of bupropion, methylphenidate, and 3,4-methylenedioxypyrovalerone (MDPV) to block DA uptake or to inhibit methamphetamine-induced DA release in HEK-293 cells expressing the human DA transporter. Findings Bupropion, meth...

  10. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  11. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  12. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast-scan cyclic voltammetry.

    Science.gov (United States)

    Park, Jinwoo; Takmakov, Pavel; Wightman, R Mark

    2011-12-01

    Brain norepinephrine and dopamine regulate a variety of critical behaviors such as stress, learning, memory, and drug addiction. In this study, we demonstrate differences in the regulation of in vivo neurotransmission for dopamine in the anterior nucleus accumbens (NAc) and norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat. Release of the two catecholamines was measured simultaneously using fast-scan cyclic voltammetry at two different carbon-fiber microelectrodes, each implanted in the brain region of interest. Simultaneous dopamine and norepinephrine release was evoked by electrical stimulation of a region where the ventral noradrenergic bundle, the pathway of noradrenergic neurons, courses through the ventral tegmental area/substantia nigra, the origin of dopaminergic cell bodies. The release and uptake of norepinephrine in the vBNST were both significantly slower than for dopamine in the NAc. Pharmacological manipulations in the same animal demonstrated that the two catecholamines are differently regulated. The combination of a dopamine autoreceptor antagonist and amphetamine significantly increased basal extracellular dopamine whereas a norepinephrine autoreceptor antagonist and amphetamine did not change basal norepinephrine concentration. α-Methyl-p-tyrosine, a tyrosine hydroxylase inhibitor, decreased electrically evoked dopamine release faster than norepinephrine. The dual-microelectrode fast-scan cyclic voltammetry technique along with anatomical and pharmacological evidence confirms that dopamine in the NAc and norepinephrine in the vBNST can be monitored selectively and simultaneously in the same animal. The high temporal and spatial resolution of the technique enabled us to examine differences in the dynamics of extracellular norepinephrine and dopamine concurrently in two different limbic structures.

  13. Electrical release of dopamine and levodopa mediated by amphiphilic β-cyclodextrins immobilized on polycrystalline gold

    Science.gov (United States)

    Foschi, Giulia; Leonardi, Francesca; Scala, Angela; Biscarini, Fabio; Kovtun, Alessandro; Liscio, Andrea; Mazzaglia, Antonino; Casalini, Stefano

    2015-11-01

    Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution.Vesicles of cationic amphiphilic β-cyclodextrins have been immobilized on polycrystalline gold by exploiting the chemical affinity between their amino groups and Au atoms. The presence of cyclodextrins has been widely investigated by means of AFM, XPS, kelvin probe and electrochemical measurements. This multi-functional coating confers distinct electrochemical features such as pH-dependent behavior and partial/total blocking properties towards electro-active species. The host-guest properties of β-cyclodextrins have been successfully exploited in order to trap drugs, like dopamine and levodopa. The further release of these drugs was successfully achieved by providing specific electrical stimuli. This proof-of-concept led us to fabricate an electronic device (i.e. an organic transistor) capable of dispensing both dopamine and levodopa in aqueous solution. Electronic supplementary information (ESI) available: Kelvin probe, AFM and electrochemical data are reported. Furthermore, the chemical backbone of both types of cyclodextrins are shown. See DOI: 10.1039/c5nr05405b

  14. Dopamine-induced amylase secretion from rat parotid salivary gland in vitro: an effect mediated via noradrenergic and cholinergic nerves.

    OpenAIRE

    Hata, F.; Ishida, H.; Kondo, E

    1986-01-01

    The effect of dopamine on amylase secretion by rat parotid tissue was examined in vitro. Dopamine induced marked amylase secretion from the tissue in a dose-dependent manner. Its EC50 value was about 4 microM and the maximal response was obtained at a concentration of 100 microM. The dopamine-induced secretion was inhibited by the dopamine-antagonists haloperidol, (+)-butaclamol and spiroperidol. Atropine reduced the dopamine-induced secretion significantly, and physostigmine enhanced the sec...

  15. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter

    Science.gov (United States)

    Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel

    2017-01-01

    The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.

  16. Changes in the kinetics of ( sup 3 H)dopamine release from median eminence and striatal synaptosomes during aging

    Energy Technology Data Exchange (ETDEWEB)

    Gregerson, K.A.; Selmanoff, M. (Univ. of Maryland School of Medicine, Baltimore (USA))

    1990-01-01

    The release of preaccumulated tritium-labeled dopamine was examined in isolated nerve terminals prepared from the median eminence (ME) and corpus striatum (CS) of young, middle-aged, and old male rats. Fractional release of (3H)DA was measured over 1- to 10-sec time intervals under basal and depolarizing conditions in the presence of calcium. No differences in the rate of basal efflux between the age groups were observed in either ME or CS preparations. Fast-phase evoked (3H)DA release from CS synaptosomes was unchanged from young to middle-aged, but was decreased in old preparations. These data demonstrate that the nigrostriatal nerve terminal has a diminished ability to respond fully to depolarizing stimuli in advanced age. Mean serum PRL levels in old rats were 2.3-fold greater than those in both young and middle-aged rats, while serum LH levels were decreased 2.0-fold in middle-aged and old compared with those in young rats. The fact that LH levels were already decreased in middle-aged rats while PRL levels had not yet increased suggests that decreased gonadotropin titers in old rats do not result from the coincident hyperprolactinemia. In ME synaptosomes, depolarization-induced (3H)DA release was decreased at all time points in middle-aged preparations compared to that in young preparations. The reduced fractional release from the middle-aged ME synaptosomes was due to a depressed rate of release during the initial second of depolarization. Evoked release from ME terminals of old rats was comparable to that measured in the young group. Thus, there occurred an age-related biphasic change in the initial rate of evoked DA release from ME synaptosomes. Diminished response of ME dopaminergic terminals to depolarizing stimuli during middle age may be important in the later development of hyperprolactinemia in aging male rats.

  17. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward

    Science.gov (United States)

    Stouffer, Melissa A.; Woods, Catherine A.; Patel, Jyoti C.; Lee, Christian R.; Witkovsky, Paul; Bao, Li; Machold, Robert P.; Jones, Kymry T.; de Vaca, Soledad Cabeza; Reith, Maarten E. A.; Carr, Kenneth D.; Rice, Margaret E.

    2015-01-01

    Insulin activates insulin receptors (InsRs) in the hypothalamus to signal satiety after a meal. However, the rising incidence of obesity, which results in chronically elevated insulin levels, implies that insulin may also act in brain centres that regulate motivation and reward. We report here that insulin can amplify action potential-dependent dopamine (DA) release in the nucleus accumbens (NAc) and caudate–putamen through an indirect mechanism that involves striatal cholinergic interneurons that express InsRs. Furthermore, two different chronic diet manipulations in rats, food restriction (FR) and an obesogenic (OB) diet, oppositely alter the sensitivity of striatal DA release to insulin, with enhanced responsiveness in FR, but loss of responsiveness in OB. Behavioural studies show that intact insulin levels in the NAc shell are necessary for acquisition of preference for the flavour of a paired glucose solution. Together, these data imply that striatal insulin signalling enhances DA release to influence food choices. PMID:26503322

  18. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.

    Science.gov (United States)

    Shi, Bao-Xian; Wang, Yu; Zhang, Kai; Lam, Tin-Lun; Chan, Helen Lai-Wa

    2011-02-15

    The study of single cell dynamics has been greatly adapted in biological and medical research and applications. In this work a novel microfluidic electrochemical sensor with carbon nanotubes (CNTs) modified indium tin oxide (ITO) microelectrode was developed for single cells release monitoring. The sensitivity of the electrochemical sensor after CNTs surface modification was improved by 2.5-3 orders of magnitude. The developed CNTs modified ITO sensor was successfully employed to monitor the dopamine release from single living rat pheochromocytoma (PC 12) cells. Its ultrahigh sensitivity, transparency and need for fewer agents enable this smart electrochemical sensor to become a powerful tool in recording dynamic release from various living tissues and organs optically and electrically.

  19. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    Science.gov (United States)

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  20. Effects of oral exposure to mining waste on in vivo dopamine release from rat striatum.

    Science.gov (United States)

    Rodríguez, V M; Dufour, L; Carrizales, L; Díaz-Barriga, F; Jiménez-Capdeville, M E

    1998-01-01

    Several single components of mining waste (arsenic, manganese, lead, cadmium) to which humans are exposed at the mining area of Villa de la Paz, Mexico, are known to provoke alterations of striatal dopaminergic parameters. In this study we used an animal model to examine neurochemical changes resulting from exposure to a metal mixture. We used microdialysis to compare in vivo dopamine release from adult rats subchronically exposed to a mining waste by oral route with those from a control group and from a sodium arsenite group (25 mg/kg/day). We found that arsenic and manganese do accumulate in rat brain after 2 weeks of oral exposure. The mining waste group showed significantly decreased basal levels of dihydroxyphenylacetic acid (DOPAC; 66.7 +/- 7.53 pg/ microl) when compared to a control group (113.7 +/- 14.3 pg/ microl). Although basal dopamine release rates were comparable among groups, when the system was challenged with a long-standing depolarization through high-potassium perfusion, animals exposed to mining waste were not able to sustain an increased dopamine release in response to depolarization (mining waste group 5.5 +/- 0.5 pg/ microl versus control group 21.7 +/- 5.8 pg/ microl). Also, DOPAC and homovanillic acid levels were significantly lower in exposed animals than in controls during stimulation with high potassium. The arsenite group showed a similar tendency to that from the mining waste group. In vivo microdialysis provides relevant data about the effects of a chemical mixture. Our results indicate that this mining waste may represent a health risk for the exposed population. Images Figure 1 Figure 2 Figure 3 PMID:9681976

  1. Changes in striatal dopamine release associated with human motor-skill acquisition.

    Directory of Open Access Journals (Sweden)

    Shoji Kawashima

    Full Text Available The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1 compared with acquired conditions (Day 2 using (11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The (11C-raclopride binding potential (BP in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that (11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition.

  2. Presynaptic action of neurotensin on dopamine release through inhibition of D2 receptor function

    Directory of Open Access Journals (Sweden)

    Trudeau Louis-Eric

    2009-08-01

    Full Text Available Abstract Background Neurotensin (NT is known to act on dopamine (DA neurons at the somatodendritic level to regulate cell firing and secondarily enhance DA release. In addition, anatomical and indirect physiological data suggest the presence of NT receptors at the terminal level. However, a clear demonstration of the mechanism of action of NT on dopaminergic axon terminals is lacking. We hypothesize that NT acts to increase DA release by inhibiting the function of terminal D2 autoreceptors. To test this hypothesis, we used fast-scan cyclic voltammetry (FCV to monitor in real time the axonal release of DA in the nucleus accumbens (NAcc. Results DA release was evoked by single electrical pulses and pulse trains (10 Hz, 30 pulses. Under these two stimulation conditions, we evaluated the characteristics of DA D2 autoreceptors and the presynaptic action of NT in the NAcc shell and shell/core border region. The selective agonist of D2 autoreceptors, quinpirole (1 μM, inhibited DA overflow evoked by both single and train pulses. In sharp contrast, the selective D2 receptor antagonist, sulpiride (5 μM, strongly enhanced DA release triggered by pulse trains, without any effect on DA release elicited by single pulses, thus confirming previous observations. We then determined the effect of NT (8–13 (100 nM and found that although it failed to increase DA release evoked by single pulses, it strongly enhanced DA release evoked by pulse trains that lead to prolonged DA release and engage D2 autoreceptors. In addition, initial blockade of D2 autoreceptors by sulpiride considerably inhibited further facilitation of DA release generated by NT (8–13. Conclusion Taken together, these data suggest that NT enhances DA release principally by inhibiting the function of terminal D2 autoreceptors and not by more direct mechanisms such as facilitation of terminal calcium influx.

  3. Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data.

    Science.gov (United States)

    Stamford, J A; Kruk, Z L; Millar, J

    1990-05-07

    Peripheral administration of 5-hydroxytryptophan (5-HTP) to rats causes 'wet dog' shakes and a parallel elevation of brain serotonin (5-HT) levels. The increase in 5-HT concentration does not, however, correlate with the endogenous 5-HT innervation raising the possibility that some 5-HTP is decarboxylated in non-serotonergic cells. In the present study we used in vivo voltammetry to establish whether 5-HTP treatment led to formation of 5-HT as a 'false transmitter' in striatal dopamine (DA) neurons. Fast cyclic voltammetry at carbon fibre microelectrodes (CFMs) was used to monitor striatal monoamine release following electrical stimulation of the median forebrain bundle (MFB). In the absence of any pretreatment DA was the sole compound released by stimulation. However, when DA release was abolished with alpha-methyl-p-tyrosine (AMPT), 5-HTP administration (after peripheral decarboxylase inhibition) caused a dose-dependent release of 5-HT, confirmed by the voltammetric characteristics. Central decarboxylase inhibition prevented release indicating that 5-HTP itself was not released. By monitoring reduction peaks it was possible to record DA and 5-HT release simultaneously at a single CFM. While DA and 5-HT oxidised at the same potential their reduction peaks were separated by approximately 450 mV. It was shown, using this means, that 5-HT was still detectable even when DA release was not abolished by AMPT. DA and 5-HT release showed a significant positive correlation suggesting that they were released from the same nerves. We conclude that, after 5-HTP treatment, 5-HT can be released as a false transmitter from striatal DA neurones.

  4. Real-Time Chemical Measurements of Dopamine Release in the Brain

    Science.gov (United States)

    Roberts, James G.; Lugo-Morales, Leyda Z.; Loziuk, Philip L.; Sombers, Leslie A.

    2017-01-01

    Rapid changes in extracellular dopamine concentrations in freely moving or anesthetized rats can be detected using fast-scan cyclic voltammetry (FSCV). Background-subtracted FSCV is a real-time electrochemical technique that can monitor neurochemical transmission in the brain on a subsecond timescale, while providing chemical information on the analyte. Also, this voltammetric approach allows for the investigation of the kinetics of release and uptake of molecules in the brain. This chapter describes, completely, how to make these measurements and the properties of FSCV that make it uniquely suitable for performing chemical measurements of dopaminergic neurotransmission in vivo. PMID:23296789

  5. The protective effect of dopamine against OGD/R injury-induced cell death in HT22 mouse hippocampal cells.

    Science.gov (United States)

    Wang, Wenzhu; Zhao, Lixi; Bai, Fan; Zhang, Tong; Dong, Hao; Liu, Lixu

    2016-03-01

    Previous studies have shown that levo-dopamine (L-dopa) can improve the consciousness of certain patients with prolonged coma after cerebral ischemia-reperfusion injury, and promote cell growth in vivo. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate ischemia-reperfusion injury-induced cell death. The oxygen-glucose deprivation and re-oxygenation (OGD/R) model was used to mimic the ischemia-reperfusion pathological process in vitro. HT22 cells were treated with dopamine hydrochloride at different times (i.e., 2 h prior to OGD, during the period of OGD, during the period of R, and throughout the period of OGD/R) and at different concentrations (i.e., 25 μM, 50 μM, 100 μM). Lactate dehydrogenase (LDH) release, flow cytometry-annexin V, and propidium iodide staining with light microscopy showed that dopamine hydrochloride (added during re-oxygenation) promoted cell proliferation and facilitated maintenance of normal cell morphology. However, when present during oxygen-glucose deprivation for 18 h and present throughout OGD/R, dopamine hydrochloride increased cell damage as manifested by shrinkage, rounding up, and reduced viability. In conclusion, dopamine protected HT22 cells from OGD/R injury-induced cell death only at a particular point in time, suggesting that it may be useful for treating severe ischemia-reperfusion brain injury.

  6. Intrinsic vascular dopamine - a key modulator of hypoxia-induced vasodilatation in splanchnic vessels.

    Science.gov (United States)

    Pfeil, Uwe; Kuncova, Jitka; Brüggmann, Doerthe; Paddenberg, Renate; Rafiq, Amir; Henrich, Michael; Weigand, Markus A; Schlüter, Klaus-Dieter; Mewe, Marco; Middendorff, Ralf; Slavikova, Jana; Kummer, Wolfgang

    2014-04-15

    Dopamine not only is a precursor of the catecholamines noradrenaline and adrenaline but also serves as an independent neurotransmitter and paracrine hormone. It plays an important role in the pathogenesis of hypertension and is a potent vasodilator in many mammalian systemic arteries, strongly suggesting an endogenous source of dopamine in the vascular wall. Here we demonstrated dopamine, noradrenaline and adrenaline in rat aorta and superior mesenteric arteries (SMA) by radioimmunoassay. Chemical sympathectomy with 6-hydroxydopamine showed a significant reduction of noradrenaline and adrenaline, while dopamine levels remained unaffected. Isolated endothelial cells were able to synthesize and release dopamine upon cAMP stimulation. Consistent with these data, mRNAs coding for catecholamine synthesizing enzymes, i.e. tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase, and dopamine-β-hydroxylase were detected by RT-PCR in cultured endothelial cells from SMA. TH protein was detected by immunohistochemisty and Western blot. Exposure of endothelial cells to hypoxia (1% O2) increased TH mRNA. Vascular smooth muscle cells partially expressed catecholaminergic traits. A physiological role of endogenous vascular dopamine was shown in SMA, where D1 dopamine receptor blockade abrogated hypoxic vasodilatation. Experiments on SMA with endothelial denudation revealed a significant contribution of the endothelium, although subendothelial dopamine release dominated. From these results we conclude that endothelial cells and cells of the underlying vascular wall synthesize and release dopamine in an oxygen-regulated manner. In the splanchnic vasculature, this intrinsic non-neuronal dopamine is the dominating vasodilator released upon lowering of oxygen tension.

  7. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2.

    Science.gov (United States)

    Nickell, Justin R; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2010-02-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [(3)H]dihydrotetrabenazine binding, inhibition of [(3)H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (K(i) = 45 nM) inhibiting vesicular [(3)H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC(50) = 0.65 microM; I(max) = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC(50) = 0.42 microM, I(max) = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for

  8. Lobelane Inhibits Methamphetamine-Evoked Dopamine Release via Inhibition of the Vesicular Monoamine Transporter-2S⃞

    Science.gov (United States)

    Nickell, Justin R.; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B.; Zheng, Guangrong; Crooks, Peter A.

    2010-01-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [3H]dihydrotetrabenazine binding, inhibition of [3H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (Ki = 45 nM) inhibiting vesicular [3H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC50 = 0.65 μM; Imax = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC50 = 0.42 μM, Imax = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for the development of a

  9. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning.

    Science.gov (United States)

    Klanker, Marianne; Fellinger, Lisanne; Feenstra, Matthijs; Willuhn, Ingo; Denys, Damiaan

    2017-03-14

    Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely

  10. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Directory of Open Access Journals (Sweden)

    Diana Carolina Ferrari

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  11. PI3K signaling supports amphetamine-induced dopamine efflux.

    Science.gov (United States)

    Lute, Brandon J; Khoshbouei, Habibeh; Saunders, Christine; Sen, Namita; Lin, Richard Z; Javitch, Jonathan A; Galli, Aurelio

    2008-08-01

    The dopamine (DA) transporter (DAT) is a major molecular target of the psychostimulant amphetamine (AMPH). AMPH, as a result of its ability to reverse DAT-mediated inward transport of DA, induces DA efflux thereby increasing extracellular DA levels. This increase is thought to underlie the behavioral effects of AMPH. We have demonstrated previously that insulin, through phosphatidylinositol 3-kinase (PI3K) signaling, regulates DA clearance by fine-tuning DAT plasma membrane expression. PI3K signaling may represent a novel mechanism for regulating DA efflux evoked by AMPH, since only active DAT at the plasma membrane can efflux DA. Here, we show in both a heterologous expression system and DA neurons that inhibition of PI3K decreases DAT cell surface expression and, as a consequence, AMPH-induced DA efflux.

  12. Hyperbaric He but not N2 augments Ca2+-dependent dopamine release from rat striatum.

    Science.gov (United States)

    Paul, M L; Philp, R B

    1989-07-01

    Endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured by high performance liquid chromatography with electrochemical detection in perfusate from continuously superfused rat brain striatal slices, and the effects of various pressures of He and N2 were determined. He at 24 and 100 atmospheres absolute (ATA) significantly (P less than 0.01 and less than 0.05) increased the release of DA evoked by a 6-min exposure to 35 mM K+, whereas He at 48 ATA did not. Experiments conducted in a Ca2+-free medium showed that only the extracellular Ca2+-dependent component of release was affected by pressure. Similar increases in DA release were observed when DA reuptake and metabolism were blocked with cocaine and pargyline, although statistical significance was not achieved. N2 did not significantly affect DA release at 12, 24, 48, or 100 ATA. The results indicate that He (= hydrostatic pressure) augments Ca2+-dependent DA release and that substitution of N2 negates this effect. The relevance of these observations to the phenomena of high pressure neurologic syndrome in divers and the anesthetic reversal of pressure effects is discussed.

  13. Dopamine D3 receptor antagonism contributes to blonanserin-induced cortical dopamine and acetylcholine efflux and cognitive improvement.

    Science.gov (United States)

    Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-11-01

    Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS.

  14. Observation of reward delivery to a conspecific modulates dopamine release in ventral striatum.

    Science.gov (United States)

    Kashtelyan, Vadim; Lichtenberg, Nina T; Chen, Mindy L; Cheer, Joseph F; Roesch, Matthew R

    2014-11-03

    Dopamine (DA) neurons increase and decrease firing for rewards that are better and worse than expected, respectively. These correlates have been observed at the level of single-unit firing and in measurements of phasic DA release in ventral striatum (VS). Here, we ask whether DA release is modulated by delivery of reward, not to oneself, but to a conspecific. It is unknown what, if anything, DA release encodes during social situations in which one animal witnesses another animal receive reward. It might be predicted that DA release will increase, suggesting that watching a conspecific receive reward is a favorable outcome. Conversely, DA release may be entirely dependent on personal experience, or perhaps observation of receipt of reward might be experienced as a negative outcome because another individual, rather than oneself, receives the reward. Our data show that animals display a mixture of affective states during observation of conspecific reward, first exhibiting increases in appetitive calls (50 kHz), then exhibiting increases in aversive calls (22 kHz). Like ultrasonic vocalizations (USVs), DA signals were modulated by delivery of reward to the conspecific. We show stronger DA release during observation of the conspecific receiving reward relative to observation of reward delivered to an empty box, but only on the first trial. During the following trials, this relationship reversed: DA release was reduced during observation of the conspecific receiving reward. These findings suggest that positive and negative states associated with conspecific reward delivery modulate DA signals related to learning in social situations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Insulin induces long-term depression of VTA dopamine neurons via an endocannabinoid-mediated mechanism

    Science.gov (United States)

    Labouèbe, Gwenaël; Liu, Shuai; Dias, Carine; Zou, Haiyan; Wong, Jovi C.Y.; Karunakaran, Subashini; Clee, Susanne M.; Phillips, Anthony; Boutrel, Benjamin; Borgland, Stephanie L.

    2014-01-01

    The prevalence of obesity has drastically increased over the last few decades. Exploration into how hunger and satiety signals influence the reward system can help us to understand non-homeostatic mechanisms of feeding. Evidence suggests that insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce a long-term depression (LTD) of excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high fat meal, which elevates endogenous insulin levels, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior and conditioned place preference for food. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces salience of food-related cues. PMID:23354329

  16. Target-specific suppression of GABA release from parvalbumin interneurons in the basolateral amygdala by dopamine.

    Science.gov (United States)

    Chu, Hong-Yuan; Ito, Wataru; Li, Jiayang; Morozov, Alexei

    2012-10-17

    Dopamine (DA) in the basolateral amygdala (BLA) promotes fear learning by disinhibiting principal neurons (PNs) and enabling synaptic plasticity in their sensory inputs. While BLA interneurons (INs) are heterogeneous, it is unclear which interneuron subtypes decrease GABAergic input to PNs in the presence of DA. Here, using cell type-selective photostimulation by channelrhodopsin 2 in BLA slices from mouse brain, we examined the role of parvalbumin-positive INs (PV-INs), the major interneuronal subpopulation in BLA, in the disinhibitory effect of DA. We found that DA selectively suppressed GABAergic transmission from PV-INs to PNs by acting on presynaptic D(2) receptors, and this effect was mimicked by Rp-cAMP, an inhibitor of cAMP-dependent signaling. In contrast, DA did not alter GABA release from PV-INs to INs. Furthermore, neither suppressing cAMP-dependent signaling by Rp-cAMP nor enhancing it by forskolin altered GABA release from PV-INs to BLA INs. Overall, DA disinhibits BLA, at least in part, by suppressing GABA release from PV-INs in the target cell-specific manner that results from differential control of this release by cAMP-dependent signaling.

  17. Mesolimbic alpha-, but not beta-adrenoceptors control the accumbal release of dopamine that is derived from reserpine-sensitive storage vesicles.

    NARCIS (Netherlands)

    Verheij, M.M.M.; Cools, A.R.

    2009-01-01

    Mesolimbic beta-, but not alpha-adrenoceptors control the accumbal release of dopamine that is derived from alpha-methyl-para-tyrosine-sensitive pools of newly synthesized neurotransmitter. The aim of this study was to investigate which of these adrenoceptors control the accumbal release of dopamine

  18. Flow injection fluorescence determination of dopamine using a photo induced electron transfer (PET) boronic acid derivative

    Energy Technology Data Exchange (ETDEWEB)

    Ebru Seckin, Z. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Volkan, Muervet [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)]. E-mail: murvet@metu.edu.tr

    2005-08-15

    An automated flow injection analysis system was developed for the fluorometric determination of dopamine in pharmaceutical injections. The method is based on the quenching effect of dopamine on m-dansylaminophenyl boronic acid (DAPB) fluorescence due to the reverse photo induced electron transfer (PET) mechanism. Effects of pH and interfering species on the determination of dopamine were examined. Calibration for dopamine, based on quenching data, was linear in the concentration range of 1.0 x 10{sup -5} to 1.0 x 10{sup -4} M. Detection limit (3 s) of the method was found to be 3.7 x 10{sup -6} M. Relative standard deviation of 1.2% (n = 10) was obtained with 1.0 x 10{sup -5} M dopamine standard solution. The proposed method was applied successfully for the determination of dopamine in pharmaceutical injection sample. The sampling rate was determined as 24 samples per hour.

  19. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Aims Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Design Pathological Gamblers...... and Healthy Controlswere experimentally compared in a non-gambling (baseline) and gambling condition. Measurements We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition...... of the Iowa GamblingTask (IGT). After each condition participants rated their excitement level. Setting Laboratory experiment. Participants 18 Pathological Gamblers and 16 Healthy Controls. Findings Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels...

  20. Dopamine Induced Neurodegeneration in a PINK1 Model of Parkinson's Disease

    Science.gov (United States)

    Yao, Zhi; Duchen, Michael R.; Wood, Nicholas W.; Abramov, Andrey Y.

    2012-01-01

    Background Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood. Methodology We investigated the mechanism of dopamine induced cell death in transgenic PINK1 knockout mouse neurons. We show that dopamine results in mitochondrial depolarisation caused by mitochondrial permeability transition pore (mPTP) opening. Dopamine-induced mPTP opening is dependent on a complex of reactive oxygen species production and calcium signalling. Dopamine-induced mPTP opening, and dopamine-induced cell death, could be prevented by inhibition of reactive oxygen species production, by provision of respiratory chain substrates, and by alteration in calcium signalling. Conclusions These data demonstrate the mechanism of dopamine toxicity in PINK1 deficient neurons, and suggest potential therapeutic strategies for neuroprotection in Parkinson's disease. PMID:22662171

  1. THE EFFECTS OF ALPHA-ADRENOCEPTOR BLOCKADE ON DOPAMINE-INDUCED RENAL VASODILATION AND NATRIURESIS

    NARCIS (Netherlands)

    SMIT, AJ; MEIJER, S; WESSELING, H; DONKER, AJM; REITSMA, WD

    1991-01-01

    To establish the effects of alpha-adrenoceptor blockade on dopamine-induced changes in renal hemodynamics and sodium excretion, dopamine dose-response curves were performed without and with pre-treatment with the selective postsynaptic alpha-1-adrenoceptor antagonist prazosin in normal volunteers an

  2. Effects of monoamine releasers with varying selectivity for releasing dopamine/norepinephrine versus serotonin on choice between cocaine and food in rhesus monkeys.

    Science.gov (United States)

    Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2011-12-01

    Monoamine releasers constitute one class of candidate medications for the treatment of cocaine abuse, and concurrent cocaine-versus-food choice procedures are potentially valuable as experimental tools to evaluate the efficacy and safety of candidate medications. This study assessed the choice between cocaine and food by rhesus monkeys during treatment with five monoamine releasers that varied in selectivity to promote the release of dopamine and norepinephrine versus serotonin (5HT) [m-fluoroamphetamine, (+)-phenmetrazine, (+)-methamphetamine, napthylisopropylamine and (±)-fenfluramine]. Rhesus monkeys (n=8) responded under a concurrent-choice schedule of food delivery (1-g pellets, fixed ratio 100 schedule) and cocaine injections (0-0.1 mg/kg/injection, fixed ratio 10 schedule). Cocaine choice dose-effect curves were determined daily during continuous 7-day treatment with saline or with each test compound dose. During saline treatment, cocaine maintained a dose-dependent increase in cocaine choice, and the highest cocaine doses (0.032-0.1 mg/kg/injection) maintained almost exclusive cocaine choice. Efficacy of monoamine releasers to decrease cocaine choice corresponded to their pharmacological selectivity to release dopamine and norepinephrine versus 5HT. None of the releasers reduced cocaine choice or promoted reallocation of responding to food choice to the same extent as when saline was substituted for cocaine. These results extend the range of conditions across which dopamine and norepinephrine-selective releasers have been shown to reduce cocaine self-administration.

  3. Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors.

    Science.gov (United States)

    Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel

    2007-09-05

    The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.

  4. Regulation of /sup 3/H-dopamine release by presynaptic GABA and glutamate heteroreceptors in rat brain nucleus accumbens synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, G.I.; Hetey, L.

    1987-06-01

    The aim of this investigation was a neurochemical study of the effect of agonists of different types of GABA receptors - muscimol (type A receptor), baclofen (type B receptor), delta-aminolevulinic acid (DALA; GABA autoreceptor), and also of GABA itself - on tritium-labelled dopamine release, stimulated by potassium cations, from synaptosomes of the nuclei accumbenes of the rat brain.

  5. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro

    DEFF Research Database (Denmark)

    Rice, M E; Richards, C D; Nedergaard, S;

    1994-01-01

    Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro: rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous...... these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release....

  6. Dopamine and serotonin uptake inhibitors on the release of dopamine and serotonin in the nucleus accumbens of young and aged rats.

    Science.gov (United States)

    Yoshimoto, K; Kato, B; Ueda, S; Noritake, K; Sakai, K; Shibata, M; Hori, M; Kawano, H; Takeuchi, Y; Wakabayashi, Y; Yasuhara, M

    2001-10-01

    Nucleus accumbens (ACC) of young (4 months old) and aged (24 months old) Wistar rats were perfused with dopamine (DA) uptake blocker, cocaine, or the serotonin (5-HT) selective reuptake inhibitor, fluoxetine, through the microdialysis probe membrane, used to assess the dopamine transporter (DAT) or serotonin transporter (SERT) modulation. The basal extracellular DA release in the ACC was significantly lower in aged rats than young rats. Analysis of DA and 5-HT concentrations in the ACC with increased positive GFAP revealed that DA and DOPAC levels of aged rats were decreased to 55 and 60% of those in young rats, respectively. After co-perfusion with cocaine, both DA and 5-HT releases in the ACC were increased in the young and aged groups. However, the magnitude of the increased DA release was lower in aged rats than young rats. Co-perfusion with fluoxetine showed lower magnitude of the increased DA release in aged rats. It appears that the DAT and SERT system responds initially to ACC cell loss with age, and that especially ACC DAT in the aged rat is more degenerative compared with the young rats. These findings suggest that the serotonergic system with SERT in the remaining ACC neurons show an early adaptive response and resistance to the normal aging and maintain the multiple regulatory system in the ACC despite neural loss since the dopaminergic neurons in the aged animals are vulnerable to aging.

  7. Differential dopamine receptor occupancy underlies L-DOPA-induced dyskinesia in a rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Gurdal Sahin

    Full Text Available Dyskinesia is a major side effect of an otherwise effective L-DOPA treatment in Parkinson's patients. The prevailing view for the underlying presynaptic mechanism of L-DOPA-induced dyskinesia (LID suggests that surges in dopamine (DA via uncontrolled release from serotonergic terminals results in abnormally high level of extracellular striatal dopamine. Here we used high-sensitivity online microdialysis and PET imaging techniques to directly investigate DA release properties from serotonergic terminals both in the parkinsonian striatum and after neuronal transplantation in 6-OHDA lesioned rats. Although L-DOPA administration resulted in a drift in extracellular DA levels, we found no evidence for abnormally high striatal DA release from serotonin neurons. The extracellular concentration of DA remained at or below levels detected in the intact striatum. Instead, our results showed that an inefficient release pool of DA associated with low D2 receptor binding remained unchanged. Taken together, these findings suggest that differential DA receptor activation rather than excessive release could be the underlying mechanism explaining LID seen in this model. Our data have important implications for development of drugs targeting the serotonergic system to reduce DA release to manage dyskinesia in patients with Parkinson's disease.

  8. Effects of hypothalamic dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) secretion in male goats.

    Science.gov (United States)

    Jin, Jin; Hara, Sayaka; Sawai, Ken; Fülöp, Ferenc; Nagy, György Miklos; Hashizume, Tsutomu

    2014-04-01

    The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on salsolinol (SAL)-induced prolactin (PRL) release in goats. The PRL-releasing response to an intravenous (i.v.) injection of SAL was examined after treatment with augmentation of central DA using carbidopa (carbi) and L-dopa in male goats under 8-h (8 h light, 16 h dark) or 16-h (16 h light, 8 h dark) photoperiod conditions. The carbi and L-dopa treatments reduced basal PRL concentrations in the 16-h photoperiod group (P PRL concentration in the control group for the 8-h photoperiod was lower than that for the 16-h photoperiod (P PRL promptly after the injection in both the 8- and 16-h photoperiod groups (P PRL-releasing responses for the 16-h photoperiod were greater than those for the 8-h photoperiod (P PRL release in both the 8- and 16-h photoperiods (P PRL in male goats, regardless of the photoperiod, which suggests that both SAL and DA are involved in regulating the secretion of PRL in goats.

  9. Modafinil-Induced Increases in Brain Dopamine Levels

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-04-01

    Full Text Available The acute effects of modafinil on extracellular dopamine and on dopamine transporters in the male human brain were measured by PET study in 10 healthy subjects at Brookhaven National Laboratory and National Institute on Drug Abuse, Bethesda, MD.

  10. Dopamine transporters are involved in the onset of hypoxia-induced dopamine efflux in striatum as revealed by in vivo microdialysis.

    Science.gov (United States)

    Orset, Cyrille; Parrot, Sandrine; Sauvinet, Valérie; Cottet-Emard, Jean-Marie; Bérod, Anne; Pequignot, Jean-Marc; Denoroy, Luc

    2005-06-01

    Although many studies have revealed alterations in neurotransmission during ischaemia, few works have been devoted to the neurochemical effects of mild hypoxia, a situation encountered during life in altitude or in several pathologies. In that context, the present work was undertaken to determine the in vivo mechanisms underlying the striatal dopamine efflux induced by mild hypoxaemic hypoxia. For that purpose, the extracellular concentrations of dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid were simultaneously measured using brain microdialysis during acute hypoxic exposure (10% O(2), 1h) in awake rats. Hypoxia induced a +80% increase in dopamine. Application of the dopamine transporters inhibitor, nomifensine (10 microM), just before the hypoxia prevented the rise in dopamine during the early part of hypoxia; in contrast the application of nomifensine after the beginning of hypoxia, failed to alter the increase in dopamine. Application of the voltage-dependent Na(+) channel blocker tetrodotoxin abolished the increase in dopamine, whether administered just before or after the beginning of hypoxia. These data show that the neurochemical mechanisms of the dopamine efflux may change over the course of the hypoxic exposure, dopamine transporters being involved only at the beginning of hypoxia.

  11. Dopamine D-like receptors play only a minor role in the increase of striatal dopamine induced by striatally applied SKF38393.

    NARCIS (Netherlands)

    Sekino, R.; Saigusa, T.; Aono, Y.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2010-01-01

    We studied the effects of the intra-striatal infusion of Ca(2+)-free medium on the intra-striatal injection of 0.5 mug SKF38393-induced striatal dopamine efflux. It is discussed that the amount of extracellular, striatal dopamine seen after striatally applied SKF38393, is the overall result of the (

  12. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells

    Institute of Scientific and Technical Information of China (English)

    HE Qun; YUAN Lin-bo

    2007-01-01

    Background Dopamine exerts its effects mainly in nervous system through D1, D2 or D3 receptors. There are few reports dealing with the effects of dopamine on leukaemia cells. However, some dopamine agonists or antagonists do show biological effects on some types of leukaemia cells. Here, we report the effects of dopamine on the proliferation,differentiation and apoptosis of K562 leukaemia cells.Methods Proliferation was determined by MTT assay and cell counting both in liquid and semisolid cultures.Differentiation was verified by morphology, benzidine staining and flow cytometry. Apoptosis was checked by Hoechst 33258 staining and flow cytometry. The two groups were untreated group and treated group (dopamine 10-9 mol/L-10-4mol/L).Results In liquid culture, MTT assay and colony assay, dopamine inhibited proliferation of K562 cells. Inhibition rate was 29.28% at 10-6 mol/L and 36.10% at 10-5 mol/L after culture for 5 days in MTT assay. In benzidine staining and CD71 expression, dopamine induced K562 cells toward erythroid differentiation by increased 155% at 10-6 mol/L and by 171% at 10-5 mol/L after culture for 5 days in benzidine staining. In Hoechst 33258 staining and flow cytometry,dopamine induced K562 cells toward apoptosis. The sub G1 peak stained by PI was 14.23% at 10-4 mol/L dopamine after culture for 3 days compared with the control (0.81%) in flow cytometry.Conclusion Dopamine inhibites proliferation and induces both differentiation and apoptosis of K562 leukaemia cells.

  13. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Friend, Danielle M.; Keefe, Kristen A

    2013-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Import...

  14. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    DEFF Research Database (Denmark)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica

    2008-01-01

    of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated...

  15. Pyrolysed 3D-Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Real-Time Dopamine Detection

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Caviglia, Claudia

    2014-01-01

    Structurally patterned pyrolysed three-dimensional carbon scaffolds (p3Dcarbon) are fabricated and applied for differentiation of human neural stem cells (hNSCs) developed for cell replacement therapy and sensing of released dopamine. In the absence of differentiation factors (DF) the pyrolysed...... carbon material induces spontaneous hNSC differentiation into mature dopamine-producing neurons and the 3D-topography promotes neurite elongation. In the presence and absence of DF, ≈73–82% of the hNSCs obtain dopaminergic properties on pyrolysed carbon, a to-date unseen efficiency in both two......-dimensional (2D) and 3D environment. Due to conductive properties and 3D environment, the p3D-carbon serves as a neurotransmitter trap, enabling electrochemical detection of a signifi cantly larger dopamine fraction released by the hNSC derived neurons than on conventional 2D electrodes. This is the first study...

  16. Dopamine release in organotypic cultures of foetal mouse mesencephalon: effects of depolarizing agents, pargyline, nomifensine, tetrodotoxin and calcium

    DEFF Research Database (Denmark)

    Larsen, Trine R; Rossen, Sine; Gramsbergen, Jan B

    2008-01-01

    Organotypic mesencephalic cultures provide an attractive in vitro alternative to study development of the nigrostriatal system and pathophysiological mechanisms related to Parkinson's disease. However, dopamine (DA) release mechanisms have been poorly characterized in such cultures. We report here...... levels increased 1.6-fold and DA release expressed as a percentage of total DA (medium + tissue contents) increased from 20% to 34% during this growth period in vitro. Co-treatments with high K(+) or veratridine did not cause major changes in percentages of DA release. Tyrosine hydroxylase activity...

  17. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Science.gov (United States)

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior.

  18. Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release.

    Science.gov (United States)

    Cosi, Cristina; Carilla-Durand, Elisabeth; Assié, Marie Bernadette; Ormiere, Anne Marie; Maraval, Mireille; Leduc, Nathalie; Newman-Tancredi, Adrian

    2006-03-27

    Dopamine D2 receptor antagonists induce hyperprolactinemia depending on the extent of D2 receptor blockade. We compared the effects of the new antipsychotic agents SSR181507 ((3-exo)-8-benzoyl-N-[[(2 s)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl]methyl]-8-azabicyclo[3.2.1]octane-3-methanamine monohydrochloride), bifeprunox (DU127090: 1-(2-Oxo-benzoxazolin-7-yl)-4-(3-biphenyl)methylpiperazinemesylate) and SLV313 (1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluorophenyl)-pyridin-3-ylmethyl]-piperazine) with those of aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-butyloxy)-3,4-dihydro-2(1 H)-quinolinone), clozapine and haloperidol, on functional measures of dopamine D2 receptor activity in vitro and in vivo: [35S]-GTPgammaS binding to membranes from Sf9 insect cells expressing human dopamine D2 Long (hD2 L) receptors, and serum prolactin levels in the rat. All compounds antagonized apomorphine-induced G protein activation at dopamine hD2 L receptors. Antagonist potencies of aripiprazole, bifeprunox and SLV313 were similar to haloperidol (pK(b) = 9.12), whereas SSR181507 (8.16) and clozapine (7.35) were less potent. Haloperidol, SLV313 and clozapine were silent antagonists but SSR181507, bifeprunox and aripiprazole stimulated [35S]-GTPgammaS binding by 17.5%, 26.3% and 25.6%, respectively, relative to 100 microM apomorphine (Emax = 100%). pEC50s were: SSR181507, 8.08; bifeprunox, 8.97; aripiprazole, 8.56. These effects were antagonized by raclopride. Following oral administration in vivo, the drugs increased prolactin release to different extents. SLV313 and haloperidol potently (ED50 0.12 and 0.22 mg/kg p.o., respectively) stimulated prolactin release up to 86 and 83 ng/ml. Aripiprazole potently (ED50 0.66 mg/kg p.o.) but partially (32 ng/ml) induced prolactin release. SSR181507 (ED50 4.9 mg/kg p.o.) also partially (23 ng/ml) enhanced prolactin release. Bifeprunox only weakly increased prolactin at high doses (13 ng/ml at 40 mg/kg) and clozapine only

  19. Endogenous dopamine is involved in the herbicide paraquat-induced dopaminergic cell death.

    Science.gov (United States)

    Izumi, Yasuhiko; Ezumi, Masayuki; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2014-06-01

    The herbicide paraquat is an environmental factor that may be involved in the etiology of Parkinson's disease (PD). Systemic exposure of mice to paraquat causes a selective loss of dopaminergic neurons in the substantia nigra pars compacta, although paraquat is not selectively incorporated in dopaminergic neurons. Here, we report a contribution of endogenous dopamine to paraquat-induced dopaminergic cell death. Exposure of PC12 cells to paraquat (50μM) caused delayed toxicity from 36 h onward. A decline in intracellular dopamine content achieved by inhibiting tyrosine hydroxylase (TH), an enzyme for dopamine synthesis, conferred resistance to paraquat toxicity on dopaminergic cells. Paraquat increased the levels of cytosolic and vesicular dopamine, accompanied by transiently increased TH activity. Quinone derived from cytosolic dopamine conjugates with cysteine residues in functional proteins to form quinoproteins. Formation of quinoprotein was transiently increased early during exposure to paraquat. Furthermore, pretreatment with ascorbic acid, which suppressed the elevations of intracellular dopamine and quinoprotein, almost completely prevented paraquat toxicity. These results suggest that the elevation of cytosolic dopamine induced by paraquat participates in the vulnerability of dopaminergic cells to delayed toxicity through the formation of quinoproteins.

  20. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons.

    Science.gov (United States)

    Neely, M D; Schmidt, D E; Deutch, A Y

    2007-10-26

    The proximate cause of Parkinson's disease is striatal dopamine depletion. Although no overt toxicity to striatal neurons has been reported in Parkinson's disease, one of the consequences of striatal dopamine loss is a decrease in the number of dendritic spines on striatal medium spiny neurons (MSNs). Dendrites of these neurons receive cortical glutamatergic inputs onto the dendritic spine head and dopaminergic inputs from the substantia nigra onto the spine neck. This synaptic arrangement suggests that dopamine gates corticostriatal glutamatergic drive onto spines. Using triple organotypic slice cultures composed of ventral mesencephalon, striatum, and cortex of the neonatal rat, we examined the role of the cortex in dopamine depletion-induced dendritic spine loss in MSNs. The striatal dopamine innervation was lesioned by treatment of the cultures with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) or by removing the mesencephalon. Both MPP+ and mesencephalic ablation decreased MSN dendritic spine density. Analysis of spine morphology revealed that thin spines were preferentially lost after dopamine depletion. Removal of the cortex completely prevented dopamine depletion-induced spine loss. These data indicate that the dendritic remodeling of MSNs seen in parkinsonism occurs secondary to increases in corticostriatal glutamatergic drive, and suggest that modulation of cortical activity may be a useful therapeutic strategy in Parkinson's disease.

  1. On the release of catecholamines and dopamine-beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland.

    OpenAIRE

    Garcia, A. G.; Hernandez, M.; Horga, J. F.; Sanchez-Garcia, P.

    1980-01-01

    1 Secretion of catecholamines (CA) and dopamine-beta-hydroxylase (DBH) activity from the retrogradely perfused cat adrenal gland was studied following ouabain infusion. Perfusion with ouabain (10(-4) M) for 10 min caused a gradual release of CA in the effluent which reached its peak 30 min after the ouabain pulse, and was maintained constant for at least 1 h. The effect of ouabain seemed to be irreversible. 2 Mecamylamine, while blocking the CA secretory effects of acetylcholine (ACh) perfusi...

  2. Usefulness of the dopamine system-stabilizer aripiprazole for reducing morphine-induced emesis.

    Science.gov (United States)

    Shiokawa, Mitsuru; Narita, Minoru; Nakamura, Atsushi; Kurokawa, Kazuhiro; Inoue, Tadao; Suzuki, Tsutomu

    2007-09-10

    In the management of pain, nausea and vomiting are some of the most distressing adverse effects induced by opioids. In the present study, we investigated the effect of the dopamine system-stabilizer aripiprazole on morphine-induced emesis. Morphine induced retching and vomiting in a dose-dependent manner in ferrets. The emetic effect of morphine was significantly suppressed by pretreatment with either the dopamine receptor antagonist haloperidol or aripiprazole. These results suggest that the co-administration of aripiprazole may be useful for reducing the severity of morphine-induced emesis.

  3. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. I. Effect of the inhibition of the Na+,K+-adenosine triphosphatase pump by ouabain

    Energy Technology Data Exchange (ETDEWEB)

    Taglialatela, M.; Amoroso, S.; Kaparos, G.; Maurano, F.; Di Renzo, G.F.; Annunziato, L.

    1988-08-01

    In the present study we investigated the membrane events and the ionic processes which mediate the stimulatory effect of ouabain on the release of endogenous dopamine (DA) and previously taken-up (3H)DA release from rat hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons. Ouabain (0.1-1 mM) dose-dependently stimulated endogenous DA and newly taken-up (3H)DA release. This effect was counteracted partially by nomifensine (10 microM). Removal of Ca++ ions from the extracellular space in the presence of the Ca++-chelator ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid prevented completely ouabain-elicited (3H)DA release. Lanthanum (1 mM) and cobalt (2 mM), two inorganic Ca++-entry blockers, were able to inhibit this stimulatory effect, whereas verapamil (10 microM) and nitrendipine (50 microM), two organic antagonists of the voltage-operated channel for Ca++ ions, failed to affect ouabain-induced (3H)DA release. By contrast, adriamycin (100-300 microM), a putative inhibitor of cardiac Na+-Ca++ antiporter, dose-dependently prevented ouabain-induced (3H)DA release from TIDA neurons. Finally, tetrodotoxin reduced digitalis-stimulated (3H)DA release. In conclusion, these results seem to be compatible with the idea that the inhibition of Na+,K+-adenosine triphosphatase by ouabain stimulates the release of (3H)DA from a central neuronal system like the TIDA tract and that this effect is critically dependent on the entrance of Ca++ ions into the nerve terminals of these neurons. In addition the Na+-Ca++ exchange antiporter appears to be the membrane system which transports Ca++ ions into the neuronal cytoplasm during Na+,K+-adenosine triphosphatase inhibition. The enhanced intracellular Ca++ availability triggers DA release which could occur partially through a carrier-dependent process.

  4. Membrane events and ionic processes involved in dopamine release from tuberoinfundibular neurons. I. Effect of the inhibition of the Na+,K+-adenosine triphosphatase pump by ouabain.

    Science.gov (United States)

    Taglialatela, M; Amoroso, S; Kaparos, G; Maurano, F; Di Renzo, G F; Annunziato, L

    1988-08-01

    In the present study we investigated the membrane events and the ionic processes which mediate the stimulatory effect of ouabain on the release of endogenous dopamine (DA) and "previously taken-up" [3H]DA release from rat hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons. Ouabain (0.1-1 mM) dose-dependently stimulated endogenous DA and "newly taken-up" [3H]DA release. This effect was counteracted partially by nomifensine (10 microM). Removal of Ca++ ions from the extracellular space in the presence of the Ca++-chelator ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid prevented completely ouabain-elicited [3H]DA release. Lanthanum (1 mM) and cobalt (2 mM), two inorganic Ca++-entry blockers, were able to inhibit this stimulatory effect, whereas verapamil (10 microM) and nitrendipine (50 microM), two organic antagonists of the voltage-operated channel for Ca++ ions, failed to affect ouabain-induced [3H]DA release. By contrast, adriamycin (100-300 microM), a putative inhibitor of cardiac Na+-Ca++ antiporter, dose-dependently prevented ouabain-induced [3H]DA release from TIDA neurons. Finally, tetrodotoxin reduced digitalis-stimulated [3H]DA release. In conclusion, these results seem to be compatible with the idea that the inhibition of Na+,K+-adenosine triphosphatase by ouabain stimulates the release of [3H]DA from a central neuronal system like the TIDA tract and that this effect is critically dependent on the entrance of Ca++ ions into the nerve terminals of these neurons. In addition the Na+-Ca++ exchange antiporter appears to be the membrane system which transports Ca++ ions into the neuronal cytoplasm during Na+,K+-adenosine triphosphatase inhibition. The enhanced intracellular Ca++ availability triggers DA release which could occur partially through a carrier-dependent process.

  5. Salsolinol modulation of dopamine neurons

    OpenAIRE

    Guiqin eXie; Kresimir eKrnjevic; Jiang Hong Ye

    2013-01-01

    Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. ...

  6. Salsolinol modulation of dopamine neurons

    OpenAIRE

    Xie, Guiqin; Krnjević, Krešimir; Ye, Jiang-Hong

    2013-01-01

    Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumb...

  7. Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system.

    Science.gov (United States)

    Hatcher, Jaime M; Richardson, Jason R; Guillot, Thomas S; McCormack, Alison L; Di Monte, Donato A; Jones, Dean P; Pennell, Kurt D; Miller, Gary W

    2007-04-01

    Numerous epidemiological studies have shown an association between pesticide exposure and an increased risk of developing Parkinson's disease (PD). Here, we provide evidence that the insecticide dieldrin causes specific oxidative damage in the nigrostriatal dopamine (DA) system. We report that exposure of mice to low levels of dieldrin for 30 days resulted in alterations in dopamine-handling as evidenced by a decrease in dopamine metabolites, DOPAC (31.7% decrease) and HVA (29.2% decrease) and significantly increased cysteinyl-catechol levels in the striatum. Furthermore, dieldrin resulted in a 53% decrease in total glutathione, an increase in the redox potential of glutathione, and a 90% increase in protein carbonyls. Alpha-synuclein protein expression was also significantly increased in the striatum (25% increase). Finally, dieldrin caused a significant decrease in striatal expression of the dopamine transporter as measured by (3)H-WIN 35,428 binding and (3)H-dopamine uptake. These alterations occurred in the absence of dopamine neuron loss in the substantia nigra pars compacta. These effects represent the ability of low doses of dieldrin to increase the vulnerability of nigrostriatal dopamine neurons by inducing oxidative stress and suggest that pesticide exposure may act as a promoter of PD.

  8. How can an inert gas counterbalance a NMDA-induced glutamate release?

    Science.gov (United States)

    Vallee, Nicolas; Rostain, Jean-Claude; Risso, Jean-Jacques

    2009-12-01

    Previous neurochemical studies performed in rats have revealed a decrease of striatal dopamine and glutamate induced by inert gas narcosis. We sought to establish the hypothetical role of glutamate and its main receptor, the N-methyl-d-aspartate (NMDA) receptor, in this syndrome. We aimed to counteract the nitrogen narcosis-induced glutamate and dopamine decreases by stimulating the NMDA receptor in the striatum. We used bilateral retrodialysis on awake rats, submitted to nitrogen under pressure (3 MPa). Continuous infusion of 2 mM of NMDA under normobaric conditions (0.01 MPa) (n = 8) significantly increased extracellular average levels of glutamate, aspartate, glutamine, and asparagine by 241.8%, 292.5%, 108.3%, and 195.3%, respectively. The same infusion conducted under nitrogen at 3 MPa (n = 6) revealed significant lower levels of these amino acids (n = 8/6, P > 0.001). In opposition, the NMDA-induced effects on dopamine, dihydrophenylacetic acid (DOPAC), and homovanillic acid (HVA) levels were statistically not affected by the nitrogen at 3 MPa exposure (n = 8/6, P > 0.05). Dopamine was increased by >240% on average. HVA was decreased (down to 40%), and there was no change in DOPAC levels, in both conditions. Results highlight that the NMDA receptor is not directly affected by nitrogen under pressure as indicated by the elevation in NMDA-induced dopamine release under hyperbaric nitrogen. On the other hand, the NMDA-evoked glutamate increase is counteracted by nitrogen narcosis. No improvement in motor and locomotor disturbances was observed with high striatal concentration in dopamine. Further experiments have to be done to specify why the striatal glutamate pathways, in association with the inhibition of its metabolism, only are affected by nitrogen narcosis in this study.

  9. Histamine H3 receptor activation prevents dopamine D1 receptor-mediated inhibition of dopamine release in the rat striatum: a microdialysis study.

    Science.gov (United States)

    Alfaro-Rodriguez, Alfonso; Alonso-Spilsbury, María; Arch-Tirado, Emilio; Gonzalez-Pina, Rigoberto; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2013-09-27

    Histamine H3 receptors (H3Rs) co-localize with dopamine (DA) D1 receptors (D1Rs) on striatal medium spiny neurons and functionally antagonize D1R-mediated responses. The intra-striatal administration of D1R agonists reduces DA release whereas D1R antagonists have the opposite effect. In this work, a microdialysis method was used to study the effect of co-activating D1 and H3 receptors on the release of DA from the rat dorsal striatum. Infusion of the D1R agonist SKF-38393 (0.5 and 1 μM) significantly reduced DA release (26-58%), and this effect was prevented by co-administration of the H3R agonist immepip (10 μM). In turn, the effect of immepip was blocked by the H3R antagonist thioperamide (10 μM). Our results indicate that co-stimulation of post-synaptic D1 and H3 receptors may indirectly regulate basal DA release in the rat striatum and provide in vivo evidence for a functional interaction between D1 and H3 receptors in the basal ganglia.

  10. Inhibition of GSK3 attenuates dopamine D1 receptor agonist-induced hyperactivity in mice.

    Science.gov (United States)

    Miller, Jonathan S; Tallarida, Ronald J; Unterwald, Ellen M

    2010-05-31

    Recent evidence suggests a critical role for the intracellular signaling protein glycogen synthase kinase-3 (GSK3) in hyperactivity associated with dopaminergic transmission. Here, we investigated whether activation of GSK3 is necessary for the expression of behaviors specifically produced by dopamine D1 receptor activation. To assess the role of GSK3 in dopamine D1 receptor-induced hyperactivity, mice were pretreated with the selective GSK3 inhibitor SB 216763 (0.25-7.5mg/kg, i.p.) or its vehicle prior to administration of the dopamine D1 receptor full-agonist SKF-82958 (1.0mg/kg, i.p.) or saline control. Inhibition of GSK3 via SB 216763 dose-dependently reduced ambulatory and stereotypic activity produced by SKF-82958. These data implicate a role for GSK3 in the behavioral manifestations associated with dopamine D1 receptor activation.

  11. Endomorphins 1 and 2 induce amnesia via selective modulation of dopamine receptors in mice.

    Science.gov (United States)

    Ukai, Makoto; Lin, Hui Ping

    2002-06-20

    The involvement of dopamine receptors in the amnesic effects of the endogenous micro-opioid receptor agonists endomorphins 1 and 2 was investigated by observing step-down type passive avoidance learning in mice. Although the dopamine D1 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (R(+)-SKF38393) (0.05 and 0.1 mg/kg), the dopamine D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (R(+)-SCH23390) (2.5 and 5 microg/kg) or the dopamine D2 receptor agonist N-n-phenethyl-N-propylethyl-p-(3-hydroxyphenyl)-ethylamine (RU24213) (0.3 and 1 mg/kg) had no significant effects on the endomorphin-1 (10 microg)- or endomorphin-2 (10 microg)-induced decrease in step-down latency of passive avoidance learning, (-)-sulpiride (10 mg/kg), a dopamine D2 receptor antagonist, significantly reversed the decrease in step-down latency evoked by endomorphin-2 (10 microg), but not by endomorphin-1 (10 microg). Taken together, it is likely that stimulation of dopamine D2 receptors results in the endomorphin-2-but not endomorphin-1-induced impairment of passive avoidance learning.

  12. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru

    2017-01-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709

  13. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours.

  14. Dopamine-induced silica-polydopamine hybrids with controllable morphology.

    Science.gov (United States)

    Ho, Chia-Che; Ding, Shinn-Jyh

    2014-04-01

    Novel silica-polydopamine hybrids, with controllable morphology, are facilely fabricated in an emulsion system consisting of tetraethyl orthosilicate, dopamine, water, and NaOH under weakly basic conditions (pH 8.5-10). An increase in initial pH favors the formation of nano-structured spherical silica-PDA hybrids from a flocculated structure.

  15. Oral Administration of Methylphenidate (Ritalin) Affects Dopamine Release Differentially Between the Prefrontal Cortex and Striatum: A Microdialysis Study in the Monkey.

    Science.gov (United States)

    Kodama, Tohru; Kojima, Takashi; Honda, Yoshiko; Hosokawa, Takayuki; Tsutsui, Ken-Ichiro; Watanabe, Masataka

    2017-03-01

    Methylphenidate (MPH; trade name Ritalin) is a widely used drug for the treatment of attention deficit hyperactivity disorder (ADHD) and is often used as a cognitive enhancer. Because MPH increases dopamine (DA) release by blocking the DA transporter in the human striatum, MPH is supposed to work on attention and cognition through a DA increase in the striatum. However, ADHD patients show impaired prefrontal cortex (PFC) function and MPH administration is associated with increased neural activity in the PFC. Although MPH is indicated to increase DA release in the rat PFC, there has been no study to examine MPH-induced DA changes in the human PFC because of technical difficulties associated with the low level of PFC DA receptors. Using the microdialysis technique, we examined the effects of oral administration of MPH on DA release in both the PFC and striatum in the monkey. We also tested the effect of MPH on cognitive task performance. As in human studies, in the striatum, both high and low doses of MPH induced consistent increases in DA release ∼30 min after their administrations. In the PFC, a consistent increase in DA release was observed 1 h after a high dose, but not low doses, of MPH. Low doses of MPH improved cognitive task performance, but a high dose of MPH made the monkey drowsy. Therefore, low-dose MPH-induced cognitive enhancement is supported by striatum DA increase.SIGNIFICANCE STATEMENT Methylphenidate (MPH) is a widely used drug for the treatment of attention deficit hyperactivity disorder and is often used as a cognitive enhancer. Although human positron emission tomography studies suggest that MPH works on attention and cognition through dopamine (DA) changes in the striatum, there has been no study to examine MPH-induced DA changes in the human prefrontal cortex (PFC). Using the microdialysis technique in monkeys, we found, for the first time, that low doses of MPH consistently increased DA release in the striatum but did not in the PFC

  16. Dopamine regulation of gonadotropin-releasing hormone neuron excitability in male and female mice.

    Science.gov (United States)

    Liu, Xinhuai; Herbison, Allan E

    2013-01-01

    Numerous in vivo studies have shown that dopamine is involved in the regulation of LH secretion in mammals. However, the mechanisms through which this occurs are not known. In this study, we used green fluorescent protein-tagged GnRH neurons to examine whether and how dopamine may modulate the activity of adult GnRH neurons in the mouse. Bath-applied dopamine (10-80 μm) potently inhibited the firing of approximately 50% of GnRH neurons. This resulted from direct postsynaptic inhibitory actions through D1-like, D2-like, or both receptors. Further, one third of GnRH neurons exhibited an increase in their basal firing rate after administration of SCH23390 (D1-like antagonist) and/or raclopride (D2-like antagonist) indicating tonic inhibition by endogenous dopamine in the brain slice. The role of dopamine in presynaptic modulation of the anteroventral periventricular nucleus (AVPV) γ-aminobutyric acid/glutamate input to GnRH neurons was examined. Exogenous dopamine was found to presynaptically inhibit AVPV-evoked γ-aminobutyric acid /glutamate postsynaptic currents in about 50% of GnRH neurons. These effects were, again, mediated by both D1- and D2-like receptors. Neither postsynaptic nor presynaptic actions of dopamine were found to be different between diestrous, proestrous, and estrous females, or males. Approximately 20% of GnRH neurons were shown to receive a dopaminergic input from AVPV neurons in male and female mice. Together, these observations show that dopamine is one of the most potent inhibitors of GnRH neuron excitability and that this is achieved through complex pre- and postsynaptic actions that each involve D1- and D2-like receptor activation.

  17. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    Science.gov (United States)

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  19. Agonist signalling properties of radiotracers used for imaging of dopamine D-2/3 receptors

    NARCIS (Netherlands)

    van Wieringen, Jan-Peter; Michel, Martin C.; Janssen, Henk M.; Janssen, Anton G.; Elsinga, Philip H.; Booij, Jan

    2014-01-01

    Background: Dopamine D-2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists ar

  20. Pathological gambling induced by dopamine antagonists: a case report.

    Science.gov (United States)

    Grötsch, Philipp; Lange, Claudia; Wiesbeck, Gerhard A; Lang, Undine

    2015-03-01

    Pathological gambling is defined as inappropriate, persistent, and maladaptive gambling behaviour. It is a non-pharmacological addiction classified as an impulse control disorder. However, pathological gambling has been associated with dopamine agonist use. Here we report of a 28-year-old man with a first major depressive episode and a post-traumatic stress disorder who has been treated with a combination of the serotonine/noradrenaline reuptake inhibitor duloxetine and the tricyclic antidepressant maprotiline. The administration of antipsychotic flupentixole (up to 7 mg) turned this slight online poker gambler into an excessive gambler. Only after the discontinuation of the antidopaminergic agents and the switch to bupropion did this gambling behaviour stop which suggests a causal relationship between dopamine antagonists and pathological gambling.

  1. High-Fat-Diet-Induced Deficits in Dopamine Terminal Function Are Reversed by Restoring Insulin Signaling.

    Science.gov (United States)

    Fordahl, Steve C; Jones, Sara R

    2017-02-15

    Systemically released insulin crosses the blood-brain barrier and binds to insulin receptors on several neural cell types, including dopaminergic neurons. Insulin has been shown to decrease dopamine neuron firing in the ventral tegmental area (VTA), but potentiate release and reuptake at dopamine terminals in the nucleus accumbens (NAc). Here we show that prolonged consumption of a high fat diet blocks insulin's effects in the NAc, but insulin's effects are restored by inhibiting protein tyrosine phosphatase 1B, which supports insulin receptor signaling. Mice fed a high fat diet (60% kcals from fat) displayed significantly higher fasting blood glucose 160 mg/dL, compared to 101 mg/dL for control-diet-fed mice, and high-fat-diet-fed mice showed reduced blood glucose clearance after an intraperitoneal glucose tolerance test. Using fast scan cyclic voltammetry to measure electrically evoked dopamine in brain slices containing the NAc core, high-fat-diet-fed mice exhibited slower dopamine reuptake compared to control-diet-fed mice (2.2 ± 0.1 and 2.67 ± 0.15 μM/s, respectively). Moreover, glucose clearance rate was negatively correlated with Vmax. Insulin (10 nM to 1 μM) dose dependently increased reuptake rates in control-diet-fed mice compared with in the high-fat-diet group; however, the small molecule insulin receptor sensitizing agent, TCS 401 (300 nM), restored reuptake in high-fat-diet-fed mice to control-diet levels, and a small molecule inhibitor of the insulin receptor, BMS 536924 (300 nM), attenuated reuptake, similar to high-fat-diet-fed mice. These data show that a high-fat diet impairs dopamine reuptake by attenuating insulin signaling at dopamine terminals.

  2. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  3. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Sugino, Yuta; Tozawa, Azusa; Yamamuro, Akiko; Kasai, Atsushi; Ishimaru, Yuki; Maeda, Sadaaki

    2016-02-01

    Dopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (-)-(6aR,12bR)-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208-243) and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ), accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  4. Dopamine-Induced Nonmotor Symptoms of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Ariane Park

    2011-01-01

    Full Text Available Nonmotor symptoms of Parkinson's disease (PD may emerge secondary to the underlying pathogenesis of the disease, while others are recognized side effects of treatment. Inevitably, there is an overlap as the disease advances and patients require higher dosages and more complex medical regimens. The non-motor symptoms that emerge secondary to dopaminergic therapy encompass several domains, including neuropsychiatric, autonomic, and sleep. These are detailed in the paper. Neuropsychiatric complications include hallucinations and psychosis. In addition, compulsive behaviors, such as pathological gambling, hypersexuality, shopping, binge eating, and punding, have been shown to have a clear association with dopaminergic medications. Dopamine dysregulation syndrome (DDS is a compulsive behavior that is typically viewed through the lens of addiction, with patients needing escalating dosages of dopamine replacement therapy. Treatment side effects on the autonomic system include nausea, orthostatic hypotension, and constipation. Sleep disturbances include fragmented sleep, nighttime sleep problems, daytime sleepiness, and sleep attacks. Recognizing the non-motor symptoms that can arise specifically from dopamine therapy is useful to help optimize treatment regimens for this complex disease.

  5. Salsolinol modulation of dopamine neurons

    Directory of Open Access Journals (Sweden)

    Guiqin eXie

    2013-05-01

    Full Text Available Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that dopaminergic neurons in the posterior ventral tegmental area (pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (a depolarizing the membrane potential of dopamine neurons; (b activating mu opioid receptors on the GABAergic inputs to dopamine neurons, which decreases GABAergic activity and dopamine neurons are disinhibited; and (c enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.

  6. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  7. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia.

    Science.gov (United States)

    Weiss, Linda C; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-10-07

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. © 2015 The Author(s).

  8. Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity.

    Science.gov (United States)

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2008-10-01

    Methamphetamine (METH) is well known for its ability to cause damage to dopamine (DA) nerve endings of the striatum. The mechanisms by which METH causes neurotoxicity are not fully understood, but likely candidates are increased oxidative and nitrosative stress and mitochondrial dysfunction. Microglial activation is also emerging as an important element of the METH neurotoxic cascade, and it appears that extensive cross-talk between these cells and DA nerve endings is an early event in this process. It may seem paradoxical, but DA itself is also thought to be an essential factor in the neuronal damaging effects of METH, but issues relating to its precise role in this regard remain unanswered. We present in this overview a summary of studies that tested how alterations in the disposition of presynaptic DA (injections of reserpine, L-DOPA, or clorgyline) modulate METH neurotoxicity. In all cases, these drugs significantly increased the magnitude of microglial activation as well as the severity of damage to striatal DA nerve endings caused by METH. The enhancement of METH effects in striatum by reserpine, L-DOPA, and clorgyline persisted for 14 days and showed no evidence of recovery. These data establish that subtle shifts in the newly synthesized pool of DA can cause substantial changes in the severity of METH-induced neurotoxicity. DA released into the synapse by METH is very likely the source of downstream reactants that provoke microglial activation and the ensuing damage to DA nerve endings.

  9. Differential dopamine release dynamics in the nucleus accumbens core and shell track distinct aspects of goal-directed behavior for sucrose.

    Science.gov (United States)

    Cacciapaglia, Fabio; Saddoris, Michael P; Wightman, R Mark; Carelli, Regina M

    2012-04-01

    Mesolimbic dopamine projections to the nucleus accumbens (NAc) have been implicated in goal-directed behaviors for natural rewards and in learning processes involving cue-reward associations. The NAc has been traditionally subdivided into two anatomically distinct sub-regions with different functional properties: the shell and the core. The aim of the present study was to characterize rapid dopamine transmission across the two NAc sub-regions during cue-signaled operant behavior for a natural (sucrose) reward in rats. Using fast-scan cyclic voltammetry (FSCV) we observed differences in the magnitude and dynamics of dopamine release events between the shell and core. Specifically, although cue-evoked dopamine release was observed in both sub-regions, it was larger and longer lasting in the shell compared with the core. Further, secondary dopamine release events were observed following the lever press response for sucrose in the NAc shell, but not the core. These findings demonstrate that the NAc displays regional specificity in dopamine transmission patterns during cued operant behavior for natural reward.

  10. Blood-brain barrier permeability during dopamine-induced hypertension in fetal sheep.

    Science.gov (United States)

    Harris, A P; Robinson, R; Koehler, R C; Traystman, R J; Gleason, C A

    2001-07-01

    Dopamine is often used as a pressor agent in sick newborn infants, but an increase in arterial blood pressure could disrupt the blood-brain barrier (BBB), especially in the preterm newborn. Using time-dated pregnant sheep, we tested the hypothesis that dopamine-induced hypertension increases fetal BBB permeability and cerebral water content. Barrier permeability was assessed in nine brain regions, including cerebral cortex, caudate, thalamus, brain stem, cerebellum, and spinal cord, by intravenous injection of the small tracer molecule [(14)C]aminoisobutyric acid at 10 min after the start of dopamine or saline infusion. We studied 23 chronically catheterized fetal sheep at 0.6 (93 days, n = 10) and 0.9 (132 days, n = 13) gestation. Intravenous infusion of dopamine increased mean arterial pressure from 38 +/- 3 to 53 +/- 5 mmHg in 93-day fetuses and from 55 +/- 5 to 77 +/- 8 mmHg in 132-day fetuses without a decrease in arterial O(2) content. These 40% increases in arterial pressure are close to the maximum hypertension reported for physiological stresses at these ages in fetal sheep. No significant increases in the brain transfer coefficient of aminoisobutyric acid were detected in any brain region in dopamine-treated fetuses compared with saline controls at 0.6 or 0.9 gestation. There was also no significant increase in cortical water content with dopamine infusion at either age. We conclude that a 40% increase in mean arterial pressure during dopamine infusion in normoxic fetal sheep does not produce substantial BBB disruption or cerebral edema even as early as 0.6 gestation.

  11. THE REGULATION OF DOPAMINE RELEASE FROM NIGROSTRIATAL NEURONS IN CONSCIOUS RATS - THE ROLE OF SOMATODENDRITIC AUTORECEPTORS

    NARCIS (Netherlands)

    SANTIAGO, M; WESTERINK, BHC

    1991-01-01

    Drugs were infused into the substantia nigra of the rat brain via a microdialysis probe, and the extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid was recorded from a second dialysis probe implanted in the ipsilateral striatum. This approach allowed the evaluation of th

  12. The pharmacological effect of positive KCNQ (Kv7) modulators on dopamine release from striatal slices

    DEFF Research Database (Denmark)

    Jensen, Majbrit M; Lange, Sofie Cecilie; Thomsen, Morten Skøtt;

    2011-01-01

    Retigabine is an anti-epileptic drug that inhibits neuronal firing by stabilizing the membrane potential through positive modulation of voltage-dependent KCNQ potassium channels in cortical neurons and in mesencephalic dopamine (DA) neurons. The purpose of this study was to compare the effect of ...

  13. Effect of pressure on the release of endogenous dopamine from rat striatum and the role of sodium-calcium exchange.

    Science.gov (United States)

    Paul, M L; Philp, R B

    1992-01-01

    Exposure to environmental pressures in excess of 20 atm abs can precipitate a hyperexcitability state known as high pressure neurologic syndrome (HPNS). Little is known about the underlying neurochemical basis of this syndrome. An in vitro model of the synthesis and release of endogenous dopamine (DA) from rat striatal slices has been used to examine the mechanism underlying the effects of high pressures of He. He at 100 atm abs produced changes in DA release which were strikingly similar to those of the cardiac glycoside, ouabain. Neither pressure nor ouabain (1-10 microM) had any significant effects on the spontaneous (nonevoked) release of DA or its metabolite 3,4-dihydroxyphenylacetic acid, but both pressure and ouabain significantly enhanced the stimulated release of DA which was evoked by a 6-min exposure to 35 mM KCl (P less than 0.05 and P less than 0.001). In both cases, this effect was dependent on the presence of extracellular Ca2+. Augmentation of evoked DA release by both ouabain and He pressure was reversed (P less than 0.05) by 3,4-dichlorobenzamil, a selective antagonist of the membrane Na+/Ca2+ exchange mechanism. The results suggest that pressure exerts its effects on DA release by increasing intracellular-free Ca2+ exchange after pressure-inhibition of the activity of the membrane Na,K-ATPase.

  14. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens.

    Science.gov (United States)

    Danjo, Teruko; Yoshimi, Kenji; Funabiki, Kazuo; Yawata, Satoshi; Nakanishi, Shigetada

    2014-04-29

    Dopamine (DA) transmission from the ventral tegmental area (VTA) is critical for controlling both rewarding and aversive behaviors. The transient silencing of DA neurons is one of the responses to aversive stimuli, but its consequences and neural mechanisms regarding aversive responses and learning have largely remained elusive. Here, we report that optogenetic inactivation of VTA DA neurons promptly down-regulated DA levels and induced up-regulation of the neural activity in the nucleus accumbens (NAc) as evaluated by Fos expression. This optogenetic suppression of DA neuron firing immediately evoked aversive responses to the previously preferred dark room and led to aversive learning toward the optogenetically conditioned place. Importantly, this place aversion was abolished by knockdown of dopamine D2 receptors but not by that of D1 receptors in the NAc. Silencing of DA neurons in the VTA was thus indispensable for inducing aversive responses and learning through dopamine D2 receptors in the NAc.

  16. Dextroamphetamine (but Not Atomoxetine Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence.

    Directory of Open Access Journals (Sweden)

    Jonathan D Kenny

    Full Text Available Methylphenidate induces reanimation (active emergence from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each. When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6. After a single dose of propofol (8 mg/kg i.v., the mean emergence times for rats that received normal saline (vehicle and dextroamphetamine (1 mg/kg i.v. were 641 sec and 404 sec, respectively (n = 8 each. The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8, this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1-4 Hz to θ (4-8 Hz during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation

  17. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Directory of Open Access Journals (Sweden)

    Daniela Betiana Radl

    Full Text Available Dopamine, through D2 receptor (D2R, is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L and short (D2S, are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850. SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  18. Histamine H{sub 3} receptor activation selectively inhibits dopamine D{sub 1} receptor-dependent [{sup 3}H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, J. [Departmento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado postal 14-740, 07000 Mexico (Mexico); Young, J.M. [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge (United Kingdom); Arias-Montano, J.A.; Floran, B.; Garcia, M. [Departmento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado postal 14-740, 07000 Mexico (Mexico)

    1997-06-25

    The release of [{sup 3}H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K{sup +} from 6 to 15 mM in the presence of 10 {mu}M sulpiride was inhibited by 73{+-}3% by 1 {mu}M SCH 23390, consistent with a large component of release dependent upon D{sub 1} receptor activation. The histamine H{sub 3} receptor-selective agonist immepip (1 {mu}M) and the non-selective agonist histamine (100 {mu}M) inhibited [{sup 3}H]GABA release by 78{+-}2 and 80{+-}2%, respectively. The inhibition by both agonists was reversed by the H{sub 3} receptor antagonist thioperamide (1 {mu}M). However, in the presence of 1 {mu}M SCH 23390 depolarization-induced release of [{sup 3}H]GABA was not significantly decreased by 1 {mu}M immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [{sup 3}H]GABA, but in the presence of 1 {mu}M SKF 38393, which produced a 7{+-}1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 {mu}M) also inhibited the depolarization-induced release of [{sup 3}H]dopamine from substantia nigra pars reticulata slices, by 38{+-}3%.The evidence is consistent with the proposition that activation of histamine H{sub 3} receptors leads to the selective inhibition of the component of depolarization-induced [{sup 3}H]GABA release in substantia nigra pars reticulata slices which is dependent upon D{sub 1} receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [{sup 3}H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Neuropharmacology of theophylline induced stuttering: the role of dopamine, adenosine and GABA.

    Science.gov (United States)

    Movsessian, Patrick

    2005-01-01

    Developmental stuttering is a poorly understood speech disorder that starts out in childhood and some individuals continue to stutter throughout their lives. Stuttering is a disruption in smooth and fluent speech. Some stuttering primarily involves vocal blocks, which are spasms of the laryngeal musculature while prolongations, and repetitions of sound occur in other cases. Acquired stuttering, on the other hand, can occur at all ages and can be caused by brain injury and by pharmacological agents. Theophylline-induced stuttering is form of acquired stuttering. It is a rare side effect of theophylline therapy, but it provides interesting clues to the pharmacological mechanisms involved in stuttering. Theophylline-induced stuttering may involve the disrupt the optimal balance between excitatory and inhibitory neurotransmission throughout the brain by inhibiting GABA receptors. The disruption of the optimal balance between excitatory and inhibitory neurotransmission can also cause dysfunction in white matter fiber tracts such as those that connect the Broca's area to the motor cortex. This leads to a hyperexitation of the motor cortex which may mimic the motor cortex hyperexitability that exists in developmental stuttering. Theophylline also enhances dopaminergic neurotransmission through the inhibition of adenosine receptors and this may mimic the hyperdopaminergic state that exists in the brain of developmental stutterers. Theophylline causes the greatest release of dopamine in the basal ganglia through the inhibition of adenosine and GABA receptors. This may also cause dysfunction in the basal ganglia similar in some ways to the dysfunction that exits in developmental stuttering. Pharmacological enhancement of dopaminergic neurotransmission by other drugs been reported to cause stuttering in fluent individuals and to aggrevate dysfluency in stutterers.

  20. Novel bis-, tris-, and tetrakis-tertiary amino analogs as antagonists at neuronal nicotinic receptors that mediate nicotine-evoked dopamine release.

    Science.gov (United States)

    Zhang, Zhenfa; Zheng, Guangrong; Pivavarchyk, Marharyta; Deaciuc, A Gabriela; Dwoskin, Linda P; Crooks, Peter A

    2011-01-01

    A series of tertiary amine analogs derived from lead azaaromatic quaternary ammonium salts has been designed and synthesized. The preliminary structure-activity relationships of these new analogs suggest that such tertiary amine analogs, which potently inhibit nicotine-evoked dopamine release from rat striatum, represent drug-like inhibitors of α6-containing nicotinic acetylcholine receptors. The bis-tertiary amine analog 7 exhibited an IC(50) of 0.95 nM, while the tris-tertiary amine analog 19 had an IC(50) of 0.35 nM at nAChRs mediating nicotine-evoked dopamine release.

  1. Striatal dopamine release in reading and writing measured with [123I]iodobenzamide and single photon emission computed tomography in right handed human subjects.

    Science.gov (United States)

    Schommartz, B; Larisch, R; Vosberg, H; Müller-Gärtner, H M

    2000-09-29

    Competition between endogenous dopamine and a radioligand for postsynaptic dopamine D(2) receptor binding was examined in two groups of eight subjects each who had to read or write off a text, respectively, and in a control group. Single photon emission computed tomography (SPECT) and the ligand [(123)I]iodobenzamide (IBZM) were used for in vivo imaging. Subjects commenced reading or writing immediately before IBZM injection and continued for 30min thereafter. SPECT images were acquired 60min later. Striatum-to-parietal-cortex IBZM uptake ratios were lower in subjects who wrote off the text than in controls indicating competition of IBZM and dopamine. There was no difference between subjects who read the text and controls. Thus, dopamine release occurs as a consequence of the motoric activity involved in writing rather than of cognitive functions necessary for reading the text.

  2. Pathological gamma oscillations, impaired dopamine release, synapse loss and reduced dynamic range of unitary glutamatergic synaptic transmission in the striatum of hypokinetic Q175 Huntington mice.

    Science.gov (United States)

    Rothe, T; Deliano, M; Wójtowicz, A M; Dvorzhak, A; Harnack, D; Paul, S; Vagner, T; Melnick, I; Stark, H; Grantyn, R

    2015-12-17

    Huntington's disease (HD) is a severe genetically inherited neurodegenerative disorder. Patients present with three principal phenotypes of motor symptoms: choreatic, hypokinetic-rigid and mixed. The Q175 mouse model of disease offers an opportunity to investigate the cellular basis of the hypokinetic-rigid form of HD. At the age of 1 year homozygote Q175 mice exhibited the following signs of hypokinesia: Reduced frequency of spontaneous movements on a precision balance at daytime (-55%), increased total time spent without movement in an open field (+42%), failures in the execution of unconditioned avoidance reactions (+32%), reduced ability for conditioned avoidance (-96%) and increased reaction times (+65%) in a shuttle box. Local field potential recordings revealed low-frequency gamma oscillations in the striatum as a characteristic feature of HD mice at rest. There was no significant loss of DARPP-32 immunolabeled striatal projection neurons (SPNs) although the level of DARPP-32 immunoreactivity was lower in HD. As a potential cause of hypokinesia, HD mice revealed a strong reduction in striatal KCl-induced dopamine release, accompanied by a decrease in the number of tyrosine hydroxylase-(TH)- and VMAT2-positive synaptic varicosities. The presynaptic TH fluorescence level was also reduced. Patch-clamp experiments were performed in slices from 1-year-old mice to record unitary EPSCs (uEPSCs) of presumed cortical origin in the absence of G-protein-mediated modulation. In HD mice, the maximal amplitudes of uEPSCs amounted to 69% of the WT level which matches the loss of VGluT1+/SYP+ synaptic terminals in immunostained sections. These results identify impairment of cortico-striatal synaptic transmission and dopamine release as a potential basis of hypokinesia in HD.

  3. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter

    Science.gov (United States)

    Anneken, John H.; Angoa-Pérez, Mariana; Kuhn, Donald M.

    2016-01-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. PMID:25626880

  4. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum.

    Science.gov (United States)

    Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M

    2010-11-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum.

  5. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  6. The Novel Pyrrolidine Nor-Lobelane Analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] Inhibits VMAT2 Function, Methamphetamine-Evoked Dopamine Release, and Methamphetamine Self-Administration in RatsS⃞

    Science.gov (United States)

    Beckmann, Joshua S.; Siripurapu, Kiran B.; Nickell, Justin R.; Horton, David B.; Denehy, Emily D.; Vartak, Ashish; Crooks, Peter A.; Bardo, Michael T.

    2010-01-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [3H]dihydrotetrabenazine binding and [3H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [3H]nicotine and [3H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [3H]dihydrotetrabenazine binding (Ki = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [3H]dopamine uptake (Ki = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC50 = 1.8 ± 0.2 μM; Imax = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel pharmacotherapies for

  7. The novel pyrrolidine nor-lobelane analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] inhibits VMAT2 function, methamphetamine-evoked dopamine release, and methamphetamine self-administration in rats.

    Science.gov (United States)

    Beckmann, Joshua S; Siripurapu, Kiran B; Nickell, Justin R; Horton, David B; Denehy, Emily D; Vartak, Ashish; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2010-12-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [(3)H]dihydrotetrabenazine binding (K(i) = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [(3)H]dopamine uptake (K(i) = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC(50) = 1.8 ± 0.2 μM; I(max) = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel

  8. N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA

    Energy Technology Data Exchange (ETDEWEB)

    Glowinski, J.; Perez, S.; Desban, M.; Gauchy, C.; Kemel, M.L.; Blanchet, F. [Chaire de Neuropharmacologie, INSERM U114, College de France, 11 place Marcelin Berthelot, 75231 Paris (France)

    1997-08-26

    The N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine previously formed from [{sup 3}H]choline was estimated in striosome- (identified by [{sup 3}H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-d-aspartate (50 {mu}M) stimulated the release of [{sup 3}H]acetylcholine in both striatal compartments. These responses were blocked by either magnesium, dizocilpine maleate, 7-chlorokynurenate or tetrodotoxin. N-Methyl-d-aspartate responses were concentration-dependent, but the 1 mM N-methyl-d-aspartate response was higher in striosomes than in the matrix. The co-application of d-serine (10 {mu}M) enhanced the 10 {mu}M N-methyl-d-aspartate response in both compartments, but reduced those induced by 1 mM N-methyl-d-aspartate, this reduction being higher in striosomes. The blockade of dopaminergic transmission with the D{sub 2} and D{sub 1} dopaminergic receptor antagonists, (-)-sulpiride (1 {mu}M) and SCH23390 (1 {mu}M), was without effect on the 50 {mu}M N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine, but markedly enhanced the 1 mM N-methyl-d-aspartate + d-serine-evoked response in striosomes and to a lesser extent in the matrix. Disinhibitory responses of similar amplitude were observed not only in striosomes but also in the matrix when (-)-sulpiride was used alone, while SCH23390 alone enhanced the 1 mM N-methyl-d-aspartate + d-serine response only in striosomes and to a lower extent than (-)-sulpiride. These results indicate that D{sub 2} receptors are mainly involved in the inhibitory effect of dopamine on the 1 mM N-methyl-d-aspartate + d-serine-evoked release of [{sup 3}H]acetylcholine. They also show that the stimulation of D{sub 1

  9. Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist

    Directory of Open Access Journals (Sweden)

    Wignall Jacqui

    2010-04-01

    Full Text Available Abstract Background It is well known that many anurans do not reproduce easily in captivity. Some methods are based on administration of mammalian hormones such as human chorionic gonadotropin, which are not effective in many frogs. There is a need for simple, cost-effective alternative techniques to induce spawning. Methods Our new method is based on the injection of a combination of a gonadotropin-releasing hormone (GnRH agonist and a dopamine antagonist. We have named this formulation AMPHIPLEX, which is derived from the combination of the words amphibian and amplexus. This name refers to the specific reproductive behavior of frogs when the male mounts and clasps the female to induce ovulation and to fertilize the eggs as they are laid. Results We describe the use of the method and demonstrate its applicability for captive breeding in 3 different anuran families. We tested several combinations of GnRH agonists with dopamine antagonists using Lithobates pipiens. The combination of des-Gly10, D-Ala6, Pro-LHRH (0.4 microrams/g body weight and metoclopramide (10 micrograms/g BWt. MET was most effective. It was used in-season, after short-term captivity and in frogs artificially hibernated under laboratory conditions. The AMPHIPLEX method was also effective in 3 Argentinian frogs, Ceratophrys ornata, Ceratophrys cranwelli and Odontophrynus americanus. Conclusion Our approach offers some advantages over other hormonally-based techniques. Both sexes are injected only once and at the same time, reducing handling stress. AMPHIPLEX is a new reproductive management tool for captive breeding in Anura.

  10. Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist

    Science.gov (United States)

    2010-01-01

    Background It is well known that many anurans do not reproduce easily in captivity. Some methods are based on administration of mammalian hormones such as human chorionic gonadotropin, which are not effective in many frogs. There is a need for simple, cost-effective alternative techniques to induce spawning. Methods Our new method is based on the injection of a combination of a gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. We have named this formulation AMPHIPLEX, which is derived from the combination of the words amphibian and amplexus. This name refers to the specific reproductive behavior of frogs when the male mounts and clasps the female to induce ovulation and to fertilize the eggs as they are laid. Results We describe the use of the method and demonstrate its applicability for captive breeding in 3 different anuran families. We tested several combinations of GnRH agonists with dopamine antagonists using Lithobates pipiens. The combination of des-Gly10, D-Ala6, Pro-LHRH (0.4 microrams/g body weight) and metoclopramide (10 micrograms/g BWt. MET) was most effective. It was used in-season, after short-term captivity and in frogs artificially hibernated under laboratory conditions. The AMPHIPLEX method was also effective in 3 Argentinian frogs, Ceratophrys ornata, Ceratophrys cranwelli and Odontophrynus americanus. Conclusion Our approach offers some advantages over other hormonally-based techniques. Both sexes are injected only once and at the same time, reducing handling stress. AMPHIPLEX is a new reproductive management tool for captive breeding in Anura. PMID:20398399

  11. Effects of unilateral 6-OHDA lesions on [3H]-N-propylnorapomorphine binding in striatum ex vivo and vulnerability to amphetamine-evoked dopamine release in rat

    DEFF Research Database (Denmark)

    Palner, Mikael; Kjaerby, Celia; Knudsen, Gitte M

    2011-01-01

    It has been argued that agonist ligands for dopamine D(2/3) receptors recognize a privileged subset of the receptors in living striatum, those which are functionally coupled to intracellular G-proteins. In support of this claim, the D(2/3) agonist [(3)H]-N-propylnorapomorphine ([(3)H]NPA) proved ...... from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism....

  12. The protective effect of dopamine on ventilator-induced lung injury via the inhibition of NLRP3 inflammasome.

    Science.gov (United States)

    Yang, Xiaomei; Sun, Xiaotong; Chen, Hongli; Xi, Guangmin; Hou, Yonghao; Wu, Jianbo; Liu, Dejie; Wang, Huanliang; Hou, Yuedong; Yu, Jingui

    2017-04-01

    Dopamine (DA), a neurotransmitter, was previously shown to have anti-inflammatory effects. However, its role in ventilator-induced lung injury (VILI) has not been explicitly demonstrated. This study aimed to investigate the therapeutic efficacy and molecular mechanisms of dopamine in VILI. Rats were treated with dopamine during mechanical ventilation. Afterwards, the influence of dopamine on histological changes, pulmonary edema, the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, polymorphonuclear(PMN)counts, inflammatory cytokine levels, and NLRP3 inflammasome protein expression were examined. Our results showed that dopamine significantly attenuated lung tissue injury, the lung W/D ratio, MPO activity and neutrophil infiltration. Moreover, it inhibited inflammatory cytokine levels in the Bronchoalveolar lavage fluid (BAL). In addition, dopamine significantly inhibited ventilation-induced NLRP3 activation. Our experimental findings demonstrate that dopamine exerted protective effects in VILI by alleviating the inflammatory response through inhibition of NLRP3 signaling pathways. The present study indicated that dopamine could be a potential effective therapeutic strategy for the treatment of VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats

    Institute of Scientific and Technical Information of China (English)

    Jing SHI; Wei XUE; Wen-jie ZHAO; Ke-xin LI

    2013-01-01

    Aim: To investigate the pharmacokinetics and dopamine/acetylcholine-releasing effects of ginsenoside Re (Re) in brain regions related to learning and memory,and to clarify the neurochemical mechanisms underlying its anti-dementia activity.Methods: Microdialysis was conducted on awake,freely moving adult male SD rats with dialysis probes implanted into the hippocampus,medial prefrontal cortex (mPFC) or the third ventricle.The concentrations of Re,dopamine (DA) and acetylcholine (ACh) in dialysates were determined using LC-MS/MS.Results: Subcutaneous administration of a single dose of Re (12.5,25 or 50 mg/kg) rapidly distributed to the cerebrospinal fluid and exhibited linear pharmacokinetics.The peak concentration (Cmax) occurred at 60 min for all doses.Re was not detectable after 240 min in the dialysates for the low dose of 12.5 mg/kg.At the same time,Re dose-dependently increased extracellular levels of DA and ACh in the hippocampus and mPFC,and more prominent effects were observed in the hippocampus.Conclusion: The combined study of the pharmacokinetics and pharmacodynamics of Re demonstrate that increase of extracellular levels of DA and ACh,particularly in the hippocampus,may contribute,at least in part,to the anti-dementia activity of Re.

  14. Locomotor activity induced by MK-801 is enhanced in dopamine D3 receptor knockout mice but suppression by dopamine D3/D2 antagonists does not occur through the dopamine D3 receptor.

    Science.gov (United States)

    Yarkov, Alex V; Der, Terry C; Joyce, Jeffrey N

    2010-02-10

    There are contradictory data regarding the role of the dopamine D(3) receptor in regulating N-methyl-d-aspartate (NMDA) receptor antagonist (e.g., dizocilpine) induced hyperactivity. The purpose of the present study was to examine the interaction of dopamine D(3) receptor preferring antagonists U99194A (5,6-dimethoxy-2(dipropylamino)indan) and S33804 ((3aR,9bS)-N[4-(8-cyano-1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl] (4-phenyl)benzamide)) with dizocilpine (MK-801)-induced hyperactivity in wild type (WT) and dopamine D(3) receptor mutant (D(3)R KO) mice. D(3)R KO and WT mice were administered vehicle (saline, 1 ml/100g body weight, i.p.), or S33084 (1.0mg/kg.) and U99194A (0.1mg/kg or 0.01 mg/kg), and horizontal and vertical activity counts were recorded for 30 min. Mice were then treated with vehicle or MK-801 (0.12 mg/kg i.p.) and returned to the open field for an additional 55 min. D(3)R KO mice showed a significantly higher level of locomotor and rearing activity during the 1st 30 min after vehicle treatment compared to WT mice. MK-801-hyperactivity was significantly higher in D(3)R KO mice than WT mice. Dopamine D(3) receptor preferring antagonists suppressed the locomotor activity response to MK-801 to an equal extent in D(3)R KO and WT mice. The results confirm that MK-801-induced hyperactivity and novelty-induced behavioral activity and rearing are enhanced in D(3)R KO mice, but suppression by dopamine D(3) receptor preferring antagonists is not through dopamine D(3) receptor antagonism.

  15. Dopamine dysregulation syndrome in Parkinson's disease patients with unsatisfactory switching from immediate to extended release pramipexole: a further clue to incentive sensitization mechanisms?

    Science.gov (United States)

    Solla, Paolo; Cannas, Antonino; Corona, Marta; Marrosu, Maria Giovanna; Marrosu, Francesco

    2013-01-01

    A small proportion of patients with Parkinson's disease (PD), chronically under dopamine replacement therapy, may undergo an addiction-like behavioral disturbance, named dopamine dysregulation syndrome (DDS). This behavioral disorder is characterized by the increase of doses beyond those required for motor control, and its management remains difficult; thus, early recognition and careful monitoring of at-risk individuals are crucial. We report the cases of two PD patients with a previous unsatisfactory switching from an immediate release (IR) to an extended release (ER) pramipexole formulation who developed DDS. PD patients unsatisfactorily switched from an IR to an ER formulation of dopamine agonists should be considered as at-risk individuals for DDS development.

  16. DOPAMINE AND TRH-INDUCED PROLACTIN SECRETION IN PSEUDOPREGNANT RATS

    NARCIS (Netherlands)

    SCHUILING, GA; VALKHOF, N; MOES, H; KOITER, TR

    1993-01-01

    The stimulatory effect of TRH on prolactin (Prl) secretion by the anterior pituitary gland (APG) of the pseudopregnant (PSP) rat was studied in vivo and in vitro. TRH, 500 mug, did not increase Prl release during the Prl peaks which are generated daily between 01.00 and 12.00 for about 10 days (mean

  17. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    Science.gov (United States)

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.

    NARCIS (Netherlands)

    Hirose, N.; Murakawa, K.; Takada, K.; Oi, Y.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2005-01-01

    The effect of interactions among mu- and delta-opioid receptors, especially the putative delta(1)- and delta(2)-opioid receptors, in the nucleus accumbens on accumbal dopamine release was investigated in awake rats by in vivo brain microdialysis. In agreement with previous studies, perfusion of the

  19. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens.

    NARCIS (Netherlands)

    Hirose, N.; Murakawa, K.; Takada, K.; Oi, Y.; Suzuki, T.; Nagase, H.; Cools, A.R.; Koshikawa, N.

    2005-01-01

    The effect of interactions among mu- and delta-opioid receptors, especially the putative delta(1)- and delta(2)-opioid receptors, in the nucleus accumbens on accumbal dopamine release was investigated in awake rats by in vivo brain microdialysis. In agreement with previous studies, perfusion of the

  20. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    DEFF Research Database (Denmark)

    Decressac, M; Mattsson, Bente; Lundblad, M

    2012-01-01

    Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far...... have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α......-synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine...

  1. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    Science.gov (United States)

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  2. Effect of dopamine and serotonin receptor antagonists on fencamfamine-induced abolition of latent inhibition.

    Science.gov (United States)

    de Aguiar, Cilene Rejane Ramos Alves; de Aguiar, Marlison José Lima; DeLucia, Roberto; Silva, Maria Teresa Araujo

    2013-01-05

    The purpose of this investigation was to verify the role of dopamine and serotonin receptors in the effect of fencamfamine (FCF) on latent inhibition. FCF is a psychomotor stimulant with an indirect dopaminergic action. Latent inhibition is a model of attention. Latent inhibition is blocked by dopaminergic agents and facilitated by dopamine receptor agonists. FCF has been shown to abolish latent inhibition. The serotonergic system may also participate in the neurochemical mediation of latent inhibition. The selective dopamine D(1) receptor antagonist SCH 23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), D(2) receptor antagonists pimozide (PIM) and methoclopramide (METH), and serotonin 5-HT(2A/C) receptor antagonist ritanserin (RIT) were used in the present study. Latent inhibition was evaluated using a conditioned emotional response procedure. Male Wistar rats that were water-restricted were subjected to a three-phase procedure: preexposure to a tone, tone-shock conditioning, and a test of the effect of the tone on licking frequency. All of the drugs were administered before the preexposure and conditioning phases. The results showed that FCF abolished latent inhibition, and this effect was clearly antagonized by PIM and METH and moderately attenuated by SCH 23390. At the doses used in the present study, RIT pretreatment did not affect latent inhibition and did not eliminate the effect of FCF, suggesting that the FCF-induced abolition of latent inhibition is not mediated by serotonin 5-HT(2A/C) receptors. These results suggest that the effect of FCF on latent inhibition is predominantly related to dopamine D(2) receptors and that dopamine D(2) receptors participate in attention processes.

  3. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat

    DEFF Research Database (Denmark)

    Kiehn, O; Kjaerulff, O

    1996-01-01

    of muscular activity was similar for hip flexors and hip adductors, for semimembranosus (hip extensor), and for muscles controlling the ankle and the foot. 4. In contrast, notable differences in the phase in the pattern induced by 5-HT compared with that induced by dopamine were found in the biceps femoris......, semitendinosus, and quadriceps muscles. Biceps femoris and semitendinosus (functional hip extensors and knee flexors) were always extensor-like during 5-HT-induced activity, whereas in dopamine, these muscles displayed flexor-like bursts and double bursts as well as extensor-like bursts. Lack of EMG activity...... in biceps femoris and semitendinosus was encountered also in dopamine. In rectus femoris, vastus lateralis, and vastus medialis (main function: knee extension), the activity was dominated by flexor-like bursts in 5-HT, whereas in dopamine the activity was shifted to a predominantly extensor-like pattern. 5...

  4. Indolizidine (-)-235B' and related structural analogs: discovery of nicotinic receptor antagonists that inhibit nicotine-evoked [3H]dopamine release.

    Science.gov (United States)

    Pivavarchyk, Marharyta; Smith, Andrew M; Zhang, Zhenfa; Zhou, Dejun; Wang, Xu; Toyooka, Naoki; Tsuneki, Hiroshi; Sasaoka, Toshiyasu; McIntosh, J Michael; Crooks, Peter A; Dwoskin, Linda P

    2011-05-11

    Although several therapeutic agents are available to aid in tobacco smoking cessation, relapse rates continue to be high, warranting the development of alternative pharmacotherapies. Nicotine-evoked dopamine release from its presynaptic terminals in the central nervous system leads to reward which maintains continued tobacco use. The ability of indolizidine (-)-235B' and a sub-library of structurally related analogs to inhibit nicotine-evoked [(3)H]dopamine release from rat striatal slices was determined in the current study. Indolizidine (-)-235B' inhibited nicotine-evoked [(3)H]dopamine release in a concentration-dependent manner (IC(50)=42 nM, I(max)=55%). Compound (-)-237D, the double bond-reduced analog, afforded the greatest inhibitory potency (IC(50)=0.18 nM, I(max)=76%), and was 233-fold more potent than indolizidine (-)-235B'. The des-8-methyl aza-analog of indolizidine (-)-235B', ZZ-272, also inhibited nicotine-evoked [(3)H]dopamine release (IC(50)=413 nM, I(max)=59%). Concomitant exposure to maximally effective concentrations of indolizidine (-)-235B', ZZ-272 or (-)-237D with a maximally effective concentration of α-conotoxin MII, a selective antagonist for α6β2-containing nicotinic receptors, resulted in inhibition of nicotine-evoked [(3)H]dopamine release no greater than that produced by each compound alone. The latter results suggest that indolizidine (-)-235B', (-)-237D, ZZ-272 and α-conotoxin MII inhibit the same α-conotoxin MII-sensitive nicotinic receptor subtypes. Thus, indolizidine (-)-235B' and its analogs act as antagonists of α6β2-nicotinic receptors and constitute a novel structural scaffold for the discovery of pharmacotherapies for smoking cessation.

  5. 3,4-Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine-induced damage to dopamine nerve endings: β-ketoamphetamine modulation of neurotoxicity by the dopamine transporter.

    Science.gov (United States)

    Anneken, John H; Angoa-Pérez, Mariana; Kuhn, Donald M

    2015-04-01

    Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of 'bath salts' and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. METH (a) enters DA nerve endings via the DAT, causes leakage of DA into the cytoplasm and then into the synapse via DAT-mediated reverse transport. Methylone (METHY) and mephedrone (MEPH; b), like METH, are substrates for the DAT but release

  6. Calmodulin Kinase II Interacts with the Dopamine Transporter C Terminus to Regulate Amphetamine-Induced Reverse Transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...... in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux....

  7. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport

    DEFF Research Database (Denmark)

    Fog, Jacob U; Khoshbouei, Habibeh; Holy, Marion

    2006-01-01

    Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the d...... in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux....

  8. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia.

    Science.gov (United States)

    Nickla, Debora L; Totonelly, Kristen

    2011-11-01

    In eyes wearing negative lenses, the D2 dopamine antagonist spiperone was only partly effective in preventing the ameliorative effects of brief periods of vision (Nickla et al., 2010), in contrast to reports from studies using form-deprivation. The present study was done to directly compare the effects of spiperone, and the D1 antagonist SCH-23390, on the two different myopiagenic paradigms. 12-day old chickens wore monocular diffusers (form-deprivation) or -10 D lenses attached to the feathers with matching rings of Velcro. Each day for 4 days, 10 μl intravitreal injections of the dopamine D2/D4 antagonist spiperone (5 nmoles) or the D1 antagonist SCH-23390, were given under isoflurane anesthesia, and the diffusers (n = 16; n = 5, respectively) or lenses (n = 20; n = 6) were removed for 2 h immediately after. Saline injections prior to vision were done as controls (form-deprivation: n = 11; lenses: n = 10). Two other saline-injected groups wore the lenses (n = 12) or diffusers (n = 4) continuously. Axial dimensions were measured by high frequency A-scan ultrasonography at the start, and on the last day immediately prior to, and 3 h after the injection. Refractive errors were measured at the end of the experiment using a Hartinger's refractometer. In form-deprived eyes, spiperone, but not SCH-23390, prevented the ocular growth inhibition normally effected by the brief periods of vision (change in vitreous chamber depth, spiperone vs saline: 322 vs 211 μm; p = 0.01). By contrast, neither had any effect on negative lens-wearing eyes given similar unrestricted vision (210 and 234 μm respectively, vs 264 μm). The increased elongation in the spiperone-injected form-deprived eyes did not, however, result in a myopic shift, probably due to the inhibitory effect of the drug on anterior chamber growth (drug vs saline: 96 vs 160 μm; p < 0.01). Finally, spiperone inhibited the vision-induced transient choroidal thickening in form-deprived eyes, while SCH-23390 did not

  9. Patterns of renal dopamine release to regulate diuresis and natriuresis during volume expansion. Role of renal monoamine-oxidase.

    Science.gov (United States)

    de Luca Sarobe, Verónica; Di Ciano, Luis; Carranza, Andrea M; Levin, Gloria; Arrizurieta, Elvira E; Ibarra, Fernando R

    2010-01-01

    Diuretic and natriuretic effects of renal dopamine (DA) are well established. However, in volume expansion the pattern of renal DA release into urine (UDAV) and the role of enzymes involved in DA synthesis/degradation have not yet been defined. The objective was to determine the pattern of UDAV during volume expansion and to characterize the involvement of monoamine-oxidase (MAO) and aromatic amino-acid decarboxylase (AADC) in this response. In this study male Wistar rats were expanded with NaCl 0.9% at a rate of 5% BWt per hour. At the beginning of expansion three groups received a single drug injection as follows: C (vehicle, Control), IMAO (MAO inhibitor Pargyline, 20 mg/kg BWt, i.v.) and BNZ (AADC inhibitor Benserazide, 25 mg/kg BWt, i.v.). Results revealed that in C rats UDAV (ng/30 min/100g BWt) increased in the first 30 min expansion from 11.5 +/- 1.20 to 21.8 +/- 3.10 (p diuresis and natriuresis over controls. BNZ abolished the early UDAV peak to 3.2+/-0.72 (p diuresis were diminished by BNZ treatment. Results indicate that an increment in renal DA release into urine occurs early in expansion and in a peak-shaped way. In this response MAO plays a predominant role.

  10. Dimerization of the D1 dopamine receptors is related with agonist and inverse agonist-induced receptor internalization

    Institute of Scientific and Technical Information of China (English)

    Yi-minTAO; Xue-junXU; Min-huaHONG; JieCHEN; Zhi-qiangCHI; Jing-genLIU

    2004-01-01

    AIM: To examine the relationship between D1 dopamine receptor dimer formation and ligand-induced receptor internalization. METHODS: FLAG-tagged D 1 dopamine receptor was transiently expressed in Sf9 cells. The cells were treated with SKF38393 or (+)butaclamol 1 μmol/L for different periods timeor at different doses for 30 min respectively. Western blot assaywas performed to assess dimer formation and flow evtomv.tv.r

  11. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    Directory of Open Access Journals (Sweden)

    Saba Pierluigi

    2005-05-01

    Full Text Available Abstract Background Previous studies by our group suggest that extracellular dopamine (DA and noradrenaline (NA may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC. This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC, occipital cortex (Occ, and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT blocker desipramine (DMI, 100 μM, multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant

  12. Dopamine release via the vacuolar ATPase V0 sector c-subunit, confirmed in N18 neuroblastoma cells, results in behavioral recovery in hemiparkinsonian mice.

    Science.gov (United States)

    Jin, Duo; Muramatsu, Shin-Ichi; Shimizu, Nobuaki; Yokoyama, Shigeru; Hirai, Hirokazu; Yamada, Kiyofumi; Liu, Hong-Xiang; Higashida, Chiharu; Hashii, Minako; Higashida, Akihiko; Asano, Masahide; Ohkuma, Shoji; Higashida, Haruhiro

    2012-11-01

    A 16-kDa proteolipid, mediatophore, in Torpedo electric organs mediates Ca(2+)-dependent acetylcholine release. Mediatophore is identical to the pore-forming stalk c-subunit of the V0 sector of vacuolar proton ATPase (ATP6V0C). The function of ATP6V0C in the mammalian central nervous system is not clear. Here, we report transfection of adeno-associated viral vectors harboring rat ATP6V0C into the mouse substantia nigra, in which high potassium stimulation increased overflow of endogenous dopamine (DA) measured in the striatum by in vivo microdialysis. Next, in the striatum of 6-hydroxydopamine-lesioned mice, a model of Parkinson's disease (PD), human tyrosine hydroxylase, aromatic l-amino-acid decarboxylase and guanosine triphosphate cyclohydrolase 1, together with or without ATP6V0C, were expressed in the caudoputamen for rescue. Motor performance on the accelerating rotarod test and amphetamine-induced ipsilateral rotation were improved in the rescued mice coexpressing ATP6V0C. [(3)H]DA, taken up into cultured N18 neuronal tumor cells transformed to express ATP6V0C, was released by potassium stimulation. These results indicated that ATP6V0C mediates DA release from nerve terminals in the striatum of DA neurons of normal mice and from gene-transferred striatal cells of parkinsonian mice. The results suggested that ATP6V0C may be useful as a rescue molecule in addition to DA-synthetic enzymes in the gene therapy of PD.

  13. Intracellular dopamine oxidation mediates rotenone-induced apoptosis in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    Hua-qing LIU; Xing-zu ZHU; En-qi WENG

    2005-01-01

    Aim: To study the role of dopamine (DA) in rotenone-induced neurotoxicity in PC12 cells. Methods: Cell viability was assessed by detecting the leakage of lactate dehydrogenase (LDH) into the medium. Apoptosis rate was measured by flow cytometry. Caspase-3-1ike activity was measured by fluorescence assay using the probe Ac-DEVD-AMC. The level of intracellular hydrogen peroxide and other peroxides in PC12 cells were quantified by loading cells with 2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) in fluorescence assay. Lactic acid was measured spectrophotometrically. The DA levels in PC12 cells were determined by HPLC-ECD. Results: A 48-h incubation of PC12 cells with rotenone caused an apoptotic cell death and elevated intracellular reactive oxygen species (ROS) and lactic acid accumulation. Intracellular DA depletion with reserpine significantly attenuated rotenone-induced ROS accumulation and apoptotic cell death. No change was found in rotenone-induced ROS accumulation when cells were co-treated with deprenyl. Brief treatment with reserpine at the end of rotenone treatment had no effect on rotenone-induced neurotoxicity. However,when cells were first incubated with deprenyl, a monoamine oxidase-B inhibitor for 30 min then co-incubated with rotenone plus deprenyl, a brief treatment with reserpine enhanced cell injury. Conclusion: Rotenone-induced apoptosis in PC 12 cells was mediated by intracellular dopamine oxidation.

  14. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.

    Science.gov (United States)

    Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina

    2017-03-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  15. Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

    Directory of Open Access Journals (Sweden)

    Andrew C. Hiday

    2017-01-01

    Full Text Available Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1, are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD.

  16. Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

    Science.gov (United States)

    Hiday, Andrew C.; Edler, Michael C.; Salek, Asma B.; Morris, Cameron W.; Thang, Morrent; Rentz, Tyler J.; Rose, Kristie L.; Jones, Lisa M.

    2017-01-01

    Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD) are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1), are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M) in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD. PMID:28634551

  17. Insulin resistance impairs nigrostriatal dopamine function.

    Science.gov (United States)

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Argel Aguilar-Valles

    Full Text Available Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  19. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia.

    Science.gov (United States)

    Aguilar-Valles, Argel; Flores, Cecilia; Luheshi, Giamal N

    2010-06-04

    Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.

  20. The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii.

    Science.gov (United States)

    Siangcham, Tanapan; Tinikul, Yotsawan; Poljaroen, Jaruwan; Sroyraya, Morakot; Changklungmoa, Narin; Phoungpetchara, Ittipon; Kankuan, Wilairat; Sumpownon, Chanudporn; Wanichanon, Chaitip; Hanna, Peter J; Sobhon, Prasert

    2013-11-01

    Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (Prosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.

  1. Effects of unilateral 6-OHDA lesions on [3H]-N-propylnorapomorphine binding in striatum ex vivo and vulnerability to amphetamine-evoked dopamine release in rat

    DEFF Research Database (Denmark)

    Palner, Mikael; Kjaerby, Celia; Knudsen, Gitte M;

    2011-01-01

    ligands should likewise be fitter than antagonists for detecting responses to denervation in positron emission tomography studies of idiopathic Parkinson's disease. Agonist binding increases in vivo are likely to reflect the composite of a sensitization-like phenomenon, and relatively less competition...... from endogenous dopamine, as seen in the lesioned side of 6-OHDA induced hemi-parkinsonism....

  2. Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices

    OpenAIRE

    John, Carrie E.; Jones, Sara R

    2007-01-01

    Fast scan cyclic voltammetry is an electrochemical technique used to measure dynamics of transporter-mediated monoamine uptake in real time and provides a tool to evaluate the detailed effects of monoamine uptake inhibitors and releasers on dopamine and serotonin transporter function. We measured the effects of cocaine, methylphenidate, 2β-propanoyl–3β-(4tolyl) tropane (PTT), fluoxetine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), phentermine and fenfluramine on do...

  3. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.

    Science.gov (United States)

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M

    2014-04-01

    α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.

  4. Stimulated serotonin release from hyperinnervated terminals subsequent to neonatal dopamine depletion regulates striatal tachykinin, but not enkephalin gene expression.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-09-30

    Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.

  5. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry.

    Science.gov (United States)

    Nakazato, Taizo

    2005-09-01

    Substantia nigra dopamine neuronal activity in the primate is thought to be related to the error in predicting reward delivery. Dopamine release in rat nucleus accumbens has been shown to increase in relation to drug/food-seeking behaviour. It is not known how the release of dopamine in the striatum corresponds to the many distinct steps of a rewarded, cued task (e.g. recognizing the cue, executing the behaviour, anticipating the reward, receiving the reward) and how dopamine release then changes over time as task performance improves. To investigate dopamine release during a rewarded, cued task and the development of changes in dopamine release over time, changes in extracellular striatal dopamine concentration during a rewarded, cued lever-press task were measured a few days every week for 5 months using high-speed in vivo voltammetry. Rats were trained to press a lever after a tone to obtain a food reward. The reaction time for the lever press decreased gradually as training continued. Changes in dopamine concentration were measured in the anterior striatum (ventral portion) during the task performance after an initial 6-day familiarization period, in which the animals learned that a lever press yielded food, and a 5-week period for surgery, recovery, and electrode preparation. During the task performance, dopamine concentration started to increase just after the cue, peaked near the time of the lever press, and returned to basal levels 1-2 s after the lever press. This pattern of changes in dopamine concentration was observed over the 5 months of testing, the peak dopamine concentration increasing steadily until peaking at week 7, at which time the task performance had not yet improved significantly from week 2. By week 13, task performance had significantly improved and peak dopamine concentration had begun to subside. Thus, the increase in dopamine concentration after the cue was highest while the task was not yet perfected and subsided toward the end of the

  6. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum

    NARCIS (Netherlands)

    Westerink, B.H.C.; Kawahara, Y; de Boer, P; Geels, C; de Vries, J.B; Wikström, H.V; van Kalkeren, A; van Vliet, B; Kruse, C.H; Long, S.K

    2001-01-01

    Dose-effect curves were established for the effects of the antipsychotic drugs haloperidol, clozapine, olanzapine, risperidone and ziprasidone on extracellular levels of dopamine and noradrenaline in the medial prefrontal cortex, and of dopamine in the striatum. Haloperidol was more effective in sti

  7. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    Directory of Open Access Journals (Sweden)

    Jayasankar Kosaraju

    2014-01-01

    Full Text Available Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA lesion rat model of Parkinson′s disease (PD. Materials and Methods: T. cordifolia ethanol extract (TCEE was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg. Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg and two experimental groups (n = 6/group. Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18 and 400 mg/kg (1.11 ± 0.15 when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation.

  8. Single versus multiple impulse control disorders in Parkinson's disease: an ¹¹C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release.

    Science.gov (United States)

    Wu, Kit; Politis, Marios; O'Sullivan, Sean S; Lawrence, Andrew D; Warsi, Sarah; Bose, Subrata; Lees, Andrew J; Piccini, Paola

    2015-06-01

    Impulse control disorders (ICDs) are reported in Parkinson's disease (PD) in association with dopaminergic treatment. Approximately 25 % of patients with ICDs have multiple co-occurring ICDs (i.e. more than one diagnosed ICD). The extent to which dopaminergic neurotransmission in PD patients with multiple ICDs differs from those with only one diagnosed ICD is unknown. The aims of this study are: (1) to investigate dopamine neurotransmission in PD patients diagnosed with multiple ICDs, single ICDs and non-ICD controls in response to reward-related visual cues using positron emission tomography with (11)C-raclopride. (2) to compare clinical features of the above three groups. PD individuals with mulitple ICDs (n = 10), single ICD (n = 7) and no ICDs (n = 9) were recruited and underwent two positron emission tomography (PET) scans with (11)C-raclopride: one where they viewed neutral visual cues and the other where they viewed a range of visual cues related to different rewards. Individuals with both multiple ICDs and single ICDs showed significantly greater ventral striatal dopamine release compared to non-ICD PD individuals in response to reward cues, but the two ICD groups did not differ from each other in the extent of dopamine release. Subjects with multiple ICDs were, however, significantly more depressed, and had higher levels of impulsive sensation-seeking compared to subjects with single ICDs and without ICDs. This is the first study to compare dopamine neurotransmission using PET neuroimaging in PD subjects with multiple vs. single ICDs. Our results suggest that striatal dopamine neurotransmission is not directly related to the co-occurrence of ICDs in PD, potentially implicating non-dopaminergic mechanisms linked to depression; and suggest that physicians should be vigilant in managing depression in PD patients with ICDs.

  9. Carrier-mediated release of monoamines induced by the nicotinic acetylcholine receptor agonist DMPP.

    Science.gov (United States)

    Szász, Bernadett K; Mayer, Aliz; Zsilla, Gabriella; Lendvai, Balázs; Vizi, E Sylvester; Kiss, János P

    2005-09-01

    We have previously shown that dimethylphenylpiperazinium (DMPP) increases the release of noradrenaline (NA) from rat hippocampal slices via two distinct mechanisms: a nicotinic acetylcholine receptor (nAChR)-mediated exocytosis and a carrier-mediated release induced by the reversal of NA transporters. Our aim was to investigate whether other monoaminergic systems are also affected by the multiple actions of DMPP. In our experiments DMPP dose-dependently increased the release of dopamine (DA) and serotonin (5-HT) from rat striatal and hippocampal slices, respectively. The dual effect was observed, however, only in case of DA at a lower DMPP concentration (30 microM), where the response was partly inhibited by mecamylamine, TTX and Ca2+-free medium (nAChR-mediated exocytosis) while the other part of the response was blocked only by the DA uptake inhibitor nomifensine (carrier-mediated release). In contrast, the DMPP-evoked 5-HT release and the DA release induced by high concentration DMPP was not inhibited by nicotinic antagonists, TTX and Ca2+-free medium but only by selective uptake inhibitors. In addition, DMPP dose-dependently inhibited the [3H]DA and [3H]5-HT uptake in striatal and hippocampal synaptosome preparation with an IC50 of 3.18 and 0.49 microM, respectively. Our data show that DMPP interacts with monoamine transporters and induces a substantial carrier-mediated release of DA and 5-HT, therefore caution is needed for the interpretation of data, when this drug is used as a nAChR agonist.

  10. Dopamine Burden Triggers Neurodegeneration via Production and Release of TNF-α from Astrocytes in Minimal Hepatic Encephalopathy.

    Science.gov (United States)

    Ding, Saidan; Wang, Weikan; Wang, Xuebao; Liang, Yong; Liu, Leping; Ye, Yiru; Yang, Jianjing; Gao, Hongchang; Zhuge, Qichuan

    2016-10-01

    Dopamine (DA)-induced learning and memory impairment is well documented in minimal hepatic encephalopathy (MHE), but the contribution of DA to neurodegeneration and the involved underlying mechanisms are not fully understood. In this study, the effect of DA on neuronal apoptosis was initially detected. The results showed that MHE/DA (10 μg)-treated rats displayed neuronal apoptosis. However, we found that DA (10 μM) treatment did not induce evident apoptosis in primary cultured neurons (PCNs) but did produce TNF-α in primary cultured astrocytes (PCAs). Furthermore, co-cultures between PCAs and PCNs exposed to DA exhibited increased astrocytic TNF-α levels and neuronal apoptosis compared with co-cultures exposed to the vehicle, indicating the attribution of the neuronal apoptosis to astrocytic TNF-α. We also demonstrated that DA enhanced TNF-α production from astrocytes by activation of the TLR4/MyD88/NF-κB pathway, and secreted astrocytic TNF-α-potentiated neuronal apoptosis through inactivation of the PI3K/Akt/mTOR pathway. Overall, the findings from this study suggest that DA stimulates substantial production and secretion of astrocytic TNF-α, consequently and indirectly triggering progressive neurodegeneration, resulting in cognitive decline and memory loss in MHE.

  11. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  12. Exposure to repeated immobilization stress inhibits cocaine-induced increase in dopamine extracellular levels in the rat ventral tegmental area.

    Science.gov (United States)

    Sotomayor-Zárate, Ramón; Abarca, Jorge; Araya, Katherine A; Renard, Georgina M; Andrés, María E; Gysling, Katia

    2015-11-01

    A higher vulnerability to drug abuse has been observed in human studies of individuals exposed to chronic or persistent stress, as well as in animal models of drug abuse. Here, we explored the effect of repeated immobilization stress on cocaine-induced increase in dopamine extracellular levels in VTA and its regulation by corticotropin-releasing factor (CRF) and GABA systems. Cocaine (10mg/Kg i.p.) induced an increase of VTA DA extracellular levels in control rats. However, this effect was not observed in repeated stress rats. Considering the evidence relating stress with CRF, we decided to perfuse CRF and CP-154526 (selective antagonist of CRF1 receptor) in the VTA of control and repeated stress rats, respectively. We observed that perfusion of 20μM CRF inhibited the increase of VTA DA extracellular levels induced by cocaine in control rats. Interestingly, we observed that in the presence of 10μM CP-154526, cocaine induced a significant increase of VTA DA extracellular levels in repeated stress rats. Regarding the role of VTA GABA neurotransmission, cocaine administration induced a significant increase in VTA GABA extracellular levels only in repeated stress rats. Consistently, cocaine was able to increase VTA DA extracellular levels in repeated stress rats when 100μM bicuculline, an antagonist of GABAA receptor, was perfused intra VTA. Thus, both CRF and GABA systems are involved in the lack of response to cocaine in the VTA of repeated stress rats. It is tempting to suggest that the loss of response in VTA dopaminergic neurons to cocaine, after repeated stress, is due to an interaction between CRF and GABA systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements.

    Science.gov (United States)

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-12-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.

  14. Changes in transmitter release patterns in vitro induced by tremorgenic mycotoxins.

    Science.gov (United States)

    Bradford, H F; Norris, P J; Smith, C C

    1990-01-01

    The neurochemical effects of the tremorgenic mycotoxins Verruculogen and Penitrem A, which produce a neurotoxic syndrome characterized by sustained tremors, were studied using sheep and rat synaptosomes. The toxins were administered in vivo, either by chronic feeding (sheep) or ip injection 45 min prior to sacrifice (rat). Synaptosomes were subsequently prepared from cerebrocortical and spinal cord/medullary regions of rat, and corpus striatum of sheep. Penitrem A (400 mg mycelium/kg) increased the spontaneous release of endogenous glutamate, GABA, and aspartate by 213%, 455%, and 227%, respectively, from cerebrocortical synaptosomes. Verruculogen (400 mg mycelium/kg) increased the spontaneous release of glutamate and aspartate by 1,300% and 1,200% respectively, but not that of GABA, from cerebrocortical synaptosomes. The spontaneous release of the transmitter amino acids or other amino acids was not increased by the tremorgens in spinal cord/medullary synaptosomes. Penitrem A pretreatment reduced the Veratrine (75 microM) stimulated release of glutamate, aspartate and GABA from cerebrocortical synaptosomes by 33%, 46%, and 11% respectively, and the stimulated release of glycine and GABA from spinal cord/medulla synaptosomes by 67% and 32%, respectively. Verruculogen pretreatment did not alter the Veratrine-induced release of transmitter amino acids from cerebrocortex and spinal cord/medulla synaptosomes. Penitrem A pretreatment increased the spontaneous release of aspartate, glutamate and GABA by 68%, 62%, and 100%, respectively, from sheep corpus striatum synaptosomes but did not alter the synthesis and release of dopamine in this tissue. Verruculogen was shown to cause a substantial increase (300-400%) in the miniature-end-plate potential frequency at the locust neuromuscular junction. The response was detectable within 1 min, rose to a maximum within 5-7 min, and declined to the control rate over a similar period. No change in the amplitude of the m.e.p.p.s was

  15. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  16. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  17. Regulation of dopamine release by CASK-β modulates locomotor initiation in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Justin eSlawson

    2014-11-01

    Full Text Available CASK is an evolutionarily conserved scaffolding protein that has roles in many cell types. In Drosophila, loss of the entire CASK gene or just the CASK-β transcript causes a complex set of adult locomotor defects. In this study, we show that the motor initiation component of this phenotype is due to loss of CASK-β in dopaminergic neurons and can be specifically rescued by expression of CASK-β within this subset of neurons. Functional imaging demonstrates that mutation of CASK-β disrupts coupling of neuronal activity to vesicle fusion. Consistent with this, locomotor initiation can be rescued by artificially driving activity in dopaminergic neurons. The molecular mechanism underlying this role of CASK-β in dopaminergic neurons involves interaction with Hsc70-4, a molecular chaperone previously shown to regulate calcium-dependent vesicle fusion. These data suggest that there is a novel CASK-β-dependent regulatory complex in dopaminergic neurons that serves to link activity and neurotransmitter release.

  18. Dopamine-induced cyclic AMP increase in canine myocardium, kidney and superior mesenteric artery.

    Directory of Open Access Journals (Sweden)

    Kazuno,Hiroshi

    1982-04-01

    Full Text Available The effect of dopamine on cyclic AMP levels in tissue slices of canine myocardium and kidney, and in chopped superior mesenteric arterial wall was investigated to identify dopamine receptors. Tissues were incubated in modified Krebs-Henseleit Ringer bicarbonate solution at 37 degrees C for 20 min with test drugs, after 20-min preincubation. In the presence of 3-isobutyl-1-methylxanthine (IBMX, dopamine and apomorphine caused dose-dependent increases in cyclic AMP levels in the myocardium, kidney and superior mesenteric artery. Phentolamine significantly intensified the cyclic AMP-increasing effect of dopamine in the superior mesenteric artery, but it did not influence the cyclic AMP increase caused by dopamine or apomorphine in the myocardium and kidney. Propranolol markedly blocked the effect of dopamine on cyclic AMP levels in all tissues studied. Haloperidol slightly inhibited the effect of dopamine and completely blocked the effect of apomorphine in the myocardium and kidney. These data suggest that dopamine increases cyclic AMP levels by activating predominantly beta-adrenergic receptors and partly dopamine receptors in the canine myocardium, kidney and superior mesenteric artery. The present results also suggest that dopamine acts not only on beta-adrenergic and dopamine receptors but also on alpha-adrenergic receptors in the superior mesenteric artery. Contrary to the activation of beta-adrenergic and dopamine receptors, the activation of alpha-adrenergic receptors resulted in a decrease in cyclic AMP levels in this tissue.

  19. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    Science.gov (United States)

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, pexercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain.

  20. Gene × Environment interaction and resilience: effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2012-05-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multicomponent index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes (serotonin transporter linked polymorphic region, corticotropin releasing hormone receptor 1, dopamine receptor D4-521C/T, and oxytocin receptor) were investigated. In a series of analyses of covariance, child maltreatment demonstrated a strong negative main effect on children's resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences.

  1. 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism

    NARCIS (Netherlands)

    Doleviczenyi, Zoltan; Vizi, E. Sylvester; Gacsalyi, Istvan; Pallagi, Katalin; Volk, Balazs; Harsing, Laszlo G.; Halmos, Gyorgy; Lendvai, Balazs; Zelles, Tibor

    2008-01-01

    In humans, serotonin (5-HT) has been implicated in numerous physiological and pathological processes in the peripheral auditory system. Dopamine (DA), another transmitter of the lateral olivocochlear (LOC) efferents making synapses on cochlear nerve dendrites, controls auditory nerve activation and

  2. Effects of disulfiram and dopamine beta-hydroxylase knockout on cocaine-induced seizures

    Science.gov (United States)

    Gaval-Cruz, Meriem; Schroeder, Jason P.; Liles, L. Cameron; Javors, Martin A.; Weinshenker, David

    2008-01-01

    The antialcoholism drug disulfiram has shown recent promise as a pharmacotherapy for treating cocaine dependence, probably via inhibition of dopamine β-hydroxylase (DBH), the enzyme that catalyzes the conversion of dopamine (DA) to norepinephrine (NE). We previously showed that DBH knockout (Dbh -/-) mice, which lack NE, are susceptible to seizures and are hypersensitive to the psychomotor, rewarding, and aversive effects of cocaine, suggesting that disulfiram might exacerbate cocaine-induced seizures (CIS) by inhibiting DBH. To test this, we examined CIS in wild-type and Dbh -/- mice following administration of disulfiram or the selective DBH inhibitor nepicastat. We found that Dbh genotype had no effect on CIS probability or frequency, whereas disulfiram, but not nepicastat, increased the probability of having CIS in both wild-type and Dbh -/- mice. Both disulfiram and nepicastat increased CIS frequency in wild-type but not Dbh -/- mice. There were no genotype or treatment effects on serum cocaine levels, except for an increase in disulfiram-treated Dbh -/- mice at the highest dose of cocaine. These results suggest that disulfiram enhances CIS via two distinct mechanisms: it both increases CIS frequency by inhibiting DBH and increases CIS frequency in a DBH-independent manner. PMID:18329701

  3. Epigenetic dysregulation of the dopamine system in diet-induced obesity.

    Science.gov (United States)

    Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M

    2012-03-01

    Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  4. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  5. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  6. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    Science.gov (United States)

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  7. Effects of dopamine on leptin release and leptin gene (OB expression in adipocytes from obese and hypertensive patients

    Directory of Open Access Journals (Sweden)

    Alvarez-Aguilar C

    2013-11-01

    gene messenger ribonucleic acid expression under different doses of DA was observed in adipocytes from obese hypertensive patients. Whereas prolactin treatment elicited a significant increase of both leptin release and OB gene expression, NE reduced these parameters. Although similar effects of DA and NE were observed in adipocytes from controls, baseline values in controls were reduced to 20% of the value in adipocytes from obese hypertensive patients. Conclusion: These results suggest that DAergic deficiency contributes to metabolic disorders linked to hyperleptinemia in obese and hypertensive patients. Keywords: dopamine, leptin, cultured adipocytes, obesity, hypertension

  8. Effects of metoclopramide and metoclopramide/dopamine on blood pressure and insulin release in normotensive, hypertensive, and type 2 diabetic subjects.

    Science.gov (United States)

    Contreras, Freddy; Fouillioux, Christian; Lares, Mary; Bolívar, Hector; Hernández, Rafael Hernández; Velasco, Manuel; Cano, Raquel; Chacin, Maricarmen; Bermúdez, Valmore

    2010-01-01

    The objective is to determine cardiovascular and insulin release effects under metoclopramide (MTC) and dopamine (DA) infusion by using an acute comparative design with the intravenous infusion of both drugs. We evaluated 15 normal (normotensive and normoglycemic) subjects, 13 hypertensive, and 15 type 2 diabetic subjects. Subjects were submitted to an experimental design in which we first gave them a 0.9% saline solution for 30 minutes, and then administered MTC at 7.5 microg kg min through an intravenous infusion during a period of 30 minutes. Although subjects were receiving MTC, we added an intravenous infusion of DA at 1-3 microg kg min during 30 minutes. Blood pressure, heart rate, serum lipid profile, and insulin levels were measured. Sympathetic reactivity by the cold pressor test was also measured. In normotensive subjects, there was a systolic blood pressure and heart rate increase during MTC plus DA infusion. In subjects with diabetes mellitus there was a heart rate increase without changes in blood pressure during the MTC plus DA infusion period. In hypertensive subjects, MTC induced a significant decrease of systolic and diastolic blood pressure. During MTC plus DA period there was an increase of heart rate but no significant changes in blood pressure. During cold pressor test in both diabetic and hypertensive subjects, there were significant increases of both blood pressure and heart rate. Insulin serum levels increased in normotensive and hypertensive subjects but were attenuated in subjects with diabetes mellitus. We conclude that there is a pharmacologic interaction between MTC and DA, that the pressor effects of DA are due to activation to beta and alpha adrenergic receptors, and that the cardiovascular effects of DA in type 2 diabetic subjects are attenuated by a probable defect in sympathetic system and to endothelial dysfunction.

  9. Berberine is a dopamine D1- and D2-like receptor antagonist and ameliorates experimentally induced colitis by suppressing innate and adaptive immune responses.

    Science.gov (United States)

    Kawano, Masaaki; Takagi, Rie; Kaneko, Atsushi; Matsushita, Sho

    2015-12-15

    Berberine is an herbal alkaloid with various biological activities, including anti-inflammatory and antidepressant effects. Here, we examined the effects of berberine on dopamine receptors and the ensuing anti-inflammatory responses. Berberine was found to be an antagonist at both dopamine D1- and D2-like receptors and ameliorates the development of experimentally induced colitis in mice. In lipopolysaccharide-stimulated immune cells, berberine treatment modified cytokine levels, consistent with the effects of the dopamine receptor specific antagonists SCH23390 and L750667. Our findings indicate that dopamine receptor antagonists suppress innate and adaptive immune responses, providing a foundation for their use in combatting inflammatory diseases.

  10. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  11. THE EFFECT OF INTRASTRIATAL APPLICATION OF DIRECTLY AND INDIRECTLY ACTING DOPAMINE AGONISTS AND ANTAGONISTS ON THE INVIVO RELEASE OF ACETYLCHOLINE MEASURED BY BRAIN MICRODIALYSIS - THE IMPORTANCE OF THE POSTSURGERY INTERVAL

    NARCIS (Netherlands)

    DEBOER, P; DAMSMA, G; SCHRAM, Q; STOOF, JC; ZAAGSMA, J; WESTERINK, BHC

    1992-01-01

    The effect of intrastriatal application of D-1, D-2 and indirect dopaminergic drugs on the release of striatal acetylcholine as a function of the post-implantation intervals was studied using in vivo microdialysis. The dopamine D-2 agonists LY 171555 and (-)N0437 inhibited the release of striatal ac

  12. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases.

    Science.gov (United States)

    Levite, M

    2016-01-01

    Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs

  13. CHARACTERIZATION AND PHARMACOLOGICAL RESPONSIVENESS OF DOPAMINE RELEASE RECORDED BY MICRODIALYSIS IN THE SUBSTANTIA-NIGRA OF CONSCIOUS RATS

    NARCIS (Netherlands)

    SANTIAGO, M; WESTERINK, BHC

    1991-01-01

    The extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid in the substantia nigra (SN) and striatum was estimated by microdialysis. The dialysate content of DA from the SN was recorded during infusion of a DA uptake blocker (nomifensine; 5-mu-mol/L) dissolved in the perfusi

  14. Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum.

    Directory of Open Access Journals (Sweden)

    Subramaniam Jayanthi

    Full Text Available Methamphetamine (METH is an illicit toxic psychostimulant which is widely abused. Its toxic effects depend on the release of excessive levels of dopamine (DA that activates striatal DA receptors. Inhibition of DA-mediated neurotransmission by the DA D1 receptor antagonist, SCH23390, protects against METH-induced neuronal apoptosis. The initial purpose of the present study was to investigate, using microarray analyses, the influence of SCH23390 on transcriptional responses in the rat striatum caused by a single METH injection at 2 and 4 hours after drug administration. We identified 545 out of a total of 22,227 genes as METH-responsive. These include genes which are involved in apoptotic pathways, endoplasmic reticulum (ER stress, and in transcription regulation, among others. Of these, a total of 172 genes showed SCH23390-induced inhibition of METH-mediated changes. Among these SCH23390-responsive genes were several genes that are regulated during ER stress, namely ATF3, HSP27, Hmox1, HSP40, and CHOP/Gadd153. The secondary goal of the study was to investigate the role of DA D1 receptor stimulation on the expression of genes that participate in ER stress-mediated molecular events. We thus used quantitative PCR to confirm changes in the METH-responsive ER genes identified by the microarray analyses. We also measured the expression of these genes and of ATF4, ATF6, BiP/GRP78, and of GADD34 over a more extended time course. SCH23390 attenuated or blocked METH-induced increases in the expression of the majority of these genes. Western blot analysis revealed METH-induced increases in the expression of the antioxidant protein, Hmox1, which lasted for about 24 hours after the METH injection. Additionally, METH caused DA D1 receptor-dependent transit of the Hmox1 regulator protein, Nrf2, from cytosolic into nuclear fractions where the protein exerts its regulatory functions. When taken together, these findings indicate that SCH23390 can provide

  15. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats.

    Science.gov (United States)

    Bocarsly, Miriam E; Hoebel, Bartley G; Paredes, Daniel; von Loga, Isabell; Murray, Susan M; Wang, Miaoyuan; Arolfo, Maria P; Yao, Lina; Diamond, Ivan; Avena, Nicole M

    2014-04-01

    Binge eating palatable foods has been shown to have behavioral and neurochemical similarities to drug addiction. GS 455534 is a highly selective reversible aldehyde dehydrogenase 2 inhibitor that has been shown to reduce alcohol and cocaine intake in rats. Given the overlaps between binge eating and drug abuse, we examined the effects of GS 455534 on binge eating and subsequent dopamine release. Sprague-Dawley rats were maintained on a sugar (experiment 1) or fat (experiment 2) binge eating diet. After 25 days, GS 455534 was administered at 7.5 and 15 mg/kg by an intraperitoneal injection, and food intake was monitored. In experiment 3, rats with cannulae aimed at the nucleus accumbens shell were maintained on the binge sugar diet for 25 days. Microdialysis was performed, during which GS 455534 15 mg/kg was administered, and sugar was available. Dialysate samples were analyzed to determine extracellular levels of dopamine. In experiment 1, GS 455534 selectively decreased sugar intake food was made available in the Binge Sugar group but not the Ad libitum Sugar group, with no effect on chow intake. In experiment 2, GS 455534 decreased fat intake in the Binge Fat group, but not the Ad libitum Fat group, however, it also reduced chow intake. In experiment 3, GS 455534 attenuated accumbens dopamine release by almost 50% in binge eating rats compared with the vehicle injection. The findings suggest that selective reversible aldehyde dehydrogenase 2 inhibitors may have the therapeutic potential to reduce binge eating of palatable foods in clinical populations.

  16. External Dentin Stimulation Induces ATP Release in Human Teeth.

    Science.gov (United States)

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain.

  17. Modulatory effects of sesamin on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Zhang, Min; Lee, Hak Ju; Park, Keun Hong; Park, Hyun Jin; Choi, Hyun Sook; Lim, Sung Cil; Lee, Myung Koo

    2012-06-01

    The effects of sesamin on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. Sesamin at concentration ranges of 20-75 μM exhibited a significant increase in intracellular dopamine levels at 24 h: 50 μM sesamin increased dopamine levels to 133% and tyrosine hydroxylase (TH) activity to 128.2% of control levels. Sesamin at 20-100 μM rapidly increased the intracellular levels of cyclic AMP (cAMP) to 158.3%-270.3% of control levels at 30 min. At 50 μM, sesamin combined with L-DOPA (50, 100 and 200 μM) further increased the intracellular dopamine levels for 24 h compared to L-DOPA alone. In the absence or presence of L-DOPA (100 and 200 μM), sesamin (50 μM) increased the phosphorylation of TH, cAMP-dependent protein kinase (PKA), and cAMP-response element-binding protein (CREB), as well as the mRNA levels of TH and CREB for 24 h, an effect which was reduced by L-DOPA (100 and 200 μM). In addition, 50 μM sesamin exhibited a protective effect against L-DOPA (100 and 200 μM)-induced cytotoxicity via the inhibition of reactive oxygen species (ROS) production and superoxide dismutase reduction, induction of extracellular signal-regulated kinase (ERK)1/2 and BadSer112 phosphorylation and Bcl-2 expression, and inhibition of cleaved-caspase-3 formation. These results suggested that sesamin enhanced dopamine biosynthesis and L-DOPA-induced increase in dopamine levels by inducing TH activity and TH gene expression, which was mediated by cAMP-PKA-CREB systems. Sesamin also protected against L-DOPA (100-200 μM)-induced cytotoxicity through the suppression of ROS activity via the modulation of ERK1/2, BadSer112, Bcl-2, and caspase-3 pathways in PC12 cells. Therefore, sesamin might serve as an adjuvant phytonutrient for neurodegenerative diseases.

  18. Dopamine is a safe antiangiogenic drug which can also prevent 5-fluorouracil induced neutropenia.

    Science.gov (United States)

    Sarkar, Chandrani; Chakroborty, Debanjan; Dasgupta, Partha Sarathi; Basu, Sujit

    2015-08-01

    The role of vascular endothelial growth factor A (VEGFA) in tumor angiogenesis is well established and accordingly, molecules targeting VEGFA or its receptors are being presently used in the clinics for treatment of several types of cancer. However, these antiangiogenic agents are expensive and have serious side effects. Thus identification of newer drugs with manageable systemic side effects or toxicities is of immense clinical importance. Since we have reported earlier that dopamine (DA) inhibits VEGFA induced angiogenesis in experimental tumor models, we therefore sought to investigate whether DA treatment results in similar toxicities like other antiangiogenic agents. Our results indicated that unlike sunitinib, another commonly used antiangiogenic agent in the clinics which targets VEGF receptors, DA [50 mg/kg/days × 7days intraperitoneally (i.p.)] not only could inhibit tumor angiogenesis and growth of HT29 human colon cancer and LLC (Lewis lung carcinoma) in mice, it also did not cause hypertension, hematological, renal and hepatic toxicities in normal, HT29 and LLC tumor bearing animals. Furthermore and interestingly, in contrast to the currently used antiangiogenic agents, DA also prevented 5-fluorouracil (5FU) induced neutropenia in HT29 colon cancer bearing mice. This action of DA was through inhibition of 5FU mediated suppression of colony forming unit-granulocyte macrophage colony forming units in the bone marrow. Thus our results indicate that DA may be safely used as an antiangiogenic drug for the treatment of malignant tumors.

  19. QSAR study on maximal inhibition (Imax) of quaternary ammonium antagonists for S-(-)-nicotine-evoked dopamine release from dopaminergic nerve terminals in rat striatum.

    Science.gov (United States)

    Zheng, Fang; McConnell, Matthew J; Zhan, Chang-Guo; Dwoskin, Linda P; Crooks, Peter A

    2009-07-01

    Maximal inhibition (I(max)) of the agonist effect is an important pharmacological property of inhibitors that interact with multiple receptor subtypes that are activated by the same agonist and which elicit the same functional response. This report represents the first QSAR study on a set of 66 mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating nicotine-evoked dopamine release, conducted using multi-linear regression (MLR) and neural network (NN) analysis with the maximal inhibition (I(max)) values of the antagonists as target values. The statistical results for the generated MLR model were: r(2)=0.89, rmsd=9.01, q(2)=0.83 and loormsd=11.1; the statistical results for the generated NN model were: r(2)=0.89, rmsd=8.98, q(2)=0.83 and loormsd=11.2. The maximal inhibition values of the compounds exhibited a good correlation with the predictions made by the QSAR models developed, which provide a basis for rationalizing selection of compounds for synthesis in the discovery of effective and selective second generation inhibitors of nAChRs mediating nicotine-evoked dopamine release.

  20. Dopamine Induces Rhythmic Activity and Enhances Postinhibitory Rebound in a Leech Motor Neuron Involved in Swimming and Crawling Behaviors

    Directory of Open Access Journals (Sweden)

    James D. Angstadt

    2007-01-01

    Full Text Available Amine neurotransmitters play an important role in controlling motor behavior in many animals, including the medicinal leech (Hirudo medicinalis. Previous studies have established serotonin as an important modulator of swimming behavior. Serotonin levels are elevated in the blood of frequently swimming leeches and bath application of serotonin to isolated nerve cord preparations evokes fictive swimming. Serotonin alters the intrinsic electrical properties of interneurons and motor neurons involved in generating swimming behavior. In particular, serotonin increases the amplitude, but shortens the duration, of postinhibitory rebound (PIR responses in cell DE-3, a motor neuron that innervates the dorsal longitudinal muscle cells of the body wall. More recent studies have implicated dopamine in the suppression of swimming behavior and the initiation of crawling. Here we show that bath application of dopamine to isolated leech ganglia induces rhythmic oscillatory activity in cell DE-3. The long cycle period of these oscillations is consistent with crawling, but not swimming behavior. Dopamine increases the amplitude of PIR responses in cell DE-3, but unlike serotonin does not decrease its duration. These effects provide further support for the hypothesis that dopamine promotes crawling behavior in the leech.

  1. Dopamine D₂-receptor antagonists ameliorate indomethacin-induced small intestinal ulceration in mice by activating α7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Yasuda, Masashi; Kawahara, Ryoji; Hashimura, Hiroshi; Yamanaka, Naoki; Iimori, Maho; Amagase, Kikuko; Kato, Shinichi; Takeuchi, Koji

    2011-01-01

    We have reported that nicotine and the specific α7AChR agonist ameliorate indomethacin-induced intestinal lesions in mice by activating α7 nicotinic acetylcholine receptors (α7nAChR). Dopamine D₂-receptor antagonists, such as domperidone and metoclopramide, enhance the release of ACh from vagal efferent nerves. The present study examined the effects of domperidone and metoclopramide on indomethacin-induced small intestinal ulceration in mice, focusing on the α7AChR. Male C57BL/6 mice were administered indomethacin (10 mg/kg, s.c.) and sacrificed 24 h later. Domperidone (0.1-10 mg/kg) and metoclopramide (0.03-0.3 mg/kg) were administered i.p. twice, at 0.5 h before and 8 h after indomethacin treatment, while methyllycaconitine (a selective antagonist of α7nAChR, 30 mg/kg) was administered twice, at 0.5 h before each domperidone treatment. Indomethacin caused severe hemorrhagic lesions in the small intestine, mostly to the jejunum and ileum, with a concomitant increase in myeloperoxidase (MPO) activity. Domperidone suppressed the severity of lesions and the increase in MPO activity at low doses (0.1-3 mg/kg), but not at a high dose (10 mg/kg). Similar effects were also observed by metoclopramide. The protective effects of domperidone and metoclopramide were totally abolished by prior administration of methyllycaconitine. Indomethacin treatment markedly enhanced inducible nitric oxide synthase and chemokine mRNA expression in the small intestine, but these responses were all significantly attenuated by either domperidone or metoclopramide. These findings suggest that dopamine D₂-receptor antagonists ameliorate indomethacin-induced small intestinal ulceration through the activation of endogenous anti-inflammatory pathways mediated by α7nAChR.

  2. Terminal effects of optogenetic stimulation on dopamine dynamics in rat striatum.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Kulikova, Alexandra D; Bonin, Keith D; Budygin, Evgeny A

    2013-04-15

    In this study, the first in-depth analysis of optically induced dopamine release using fast-scan cyclic voltammetry on striatal slices from rat brain was performed. An adeno-associated virus that expresses Channelrhodopsin-2 was injected in the substantia nigra. Tissue was collected and sectioned into 400μm-thick coronal slices 4 weeks later. Blue laser light (473nm) was delivered through a fiber optic inserted into slice tissue. Experiments revealed some difference between maximal amplitudes measured from optically and electrically evoked dopamine effluxes. Specifically, there was an increase in the amplitude of dopamine release induced by electrical stimulation in comparison with light stimulations. However, we found that dopamine release is more sensitive to changes in the pulse width in the case of optical stimulation. Light-stimulated dopamine was increased as the stimulation pulse widened. There was no difference with repeated stimulations at five minute intervals between stimulation sources and dopamine signal was stable during recording sessions, while one minute intervals resulted in a decline in the amplitude from both sources. Optical stimulation can also produce an artifact that is distinguishable from dopamine by the cyclic voltammogram. These results confirm that optical stimulation of dopamine is a sound approach for future pharmacological studies in slices.

  3. Differential behavioral reinforcement effects of dopamine receptor agonists in the rat with bilateral lesion of the posterior ventral tegmental area.

    Science.gov (United States)

    Ouachikh, Omar; Dieb, Wisam; Durif, Franck; Hafidi, Aziz

    2013-09-01

    Dopamine dysregulation syndrome in Parkinson's disease has been attributed to dopamine replacement therapies and/or a lesion of the dopaminergic system. The dopaminergic neuronal loss targets the substantia nigra and the ventral tegmental area (VTA). We hypothesize that dopamine replacement therapy is responsible for the potential reinforcement effect in Parkinson's disease by acting on the neuronal reward circuitry. Therefore this study was designed to explore the potential motivational effect of dopamine replacement therapy in bilateral VTA-lesioned animals. The posterior (p)VTA, which project to the nucleus accumbens (NAc) constitutes the major dopamine neuronal circuitry implicated in addictive disorders. Using the conditioned place preference (CPP) behavioral paradigm, we investigated the motivational effects of dopamine receptor agonists, and cocaine in rat with a 6-OHDA bilateral lesion of the pVTA. Amongst the dopamine receptor agonists used in this study only the D2R and D3R agonists (bromocriptine, PD128907 and pramipexole), induced a significant CPP in pVTA-lesioned animals. Dopamine receptor agonists did not induce behavioral sensitization in sham animals. Moreover, confocal D2R immunostaining analysis showed a significant increase in the number of D2R per cell body in the NAc shell of pVTA lesioned rats compared to sham. This result correlated, for the first time, the dopamine receptor agonists effect with DR2 overexpression in the NAc shell of pVTA-lesioned rats. In addition, cocaine, which is known to increase dopamine release, induced behavioral sensitization in sham group but not in dopamine deprived group. Thus, the later result highlighted the importance of pVTA-NAc dopaminergic pathway in positive reinforcements. Altogether these data suggested that the implication of the dopamine replacement therapy in the appearance of dopamine dysregulation syndrome in Parkinson's disease is probably due to both neuronal degeneration in the posterior VTA and

  4. Ionizing Radiation Induces HMGB1 Cytoplasmic Translocation and Extracellular Release

    Institute of Scientific and Technical Information of China (English)

    Lili Wang; Li He; Guoqiang Bao; Xin He; Saijun Fan; Haichao Wang

    2016-01-01

    Objective A nucleosomal protein,HMGBI,can be secreted by activated immune cells or passively released by dying cells,thereby amplifying rigorous inflammatory responses.In this study we aimed to test the possibility that radiation similarly induces cytoplasmic HMGB1 translocation and release.Methods Human skin fibroblast (GM0639) and bronchial epithelial (16HBE) cells and rats were exposed to X-ray radiation,and HMGB1 translocation and release were then assessed by immunocytochemistry and immunoassay,respectively.Results At a wide dose range(4.0-12.0 Gy),X-ray radiation induced a dramatic cytoplasmic HMGB1 translocation,and triggered a time-and dose-dependent HMGB1 release both in vitro and in vivo.The radiation-mediated HMGB1 release was also associated with noticeable chromosomal DNA damage and loss of cell viability.Conclusions Radiation induces HMGB1 cytoplasmic translocation and extracellular release through active secretion and passive leakage processes.

  5. Effects of dopamine receptor agonist and antagonists on cholestasis-induced anxiolytic-like behaviors in rats.

    Science.gov (United States)

    Reza Zarrindast, Mohammad; Eslimi Esfahani, Delaram; Oryan, Shahrbano; Nasehi, Mohammad; Torabi Nami, Mohammad

    2013-02-28

    Dysfunctions in the dopamine transmission system have been suggested to contribute to the pathogenesis of hepatic encephalopathy. In an experimental animal model, cholestasis induction through bile duct ligation may present several main pathological features of hepatic encephalopathy. Dopaminergic systems are shown to play pivotal roles in regulation of anxiety-like behaviors. The main bile duct in male Wistar rats, weighing 220-240 g, was ligated using two ligatures plus duct transection in between. Anxiety-like behaviors were measured using the elevated plus maze task. Cholestasis increased the open arm time percentage (%OAT), 13 but not 10 days after bile duct ligation, indicating an anxiolytic-like effect. Sole intraperitoneal injection of apomorphine (dopamine D1/D2 receptor agonist, 0.25 mg/kg), SCH23390 (dopamine D1 receptor antagonist, 0.005, 0.01 and 0.02 mg/kg) or sulpiride (dopamine D2 receptor antagonist, 0.125, 0.25 and 0.5 mg/kg) did not alter %OAT, open arm entries percentage (%OAE) and locomotor activity in the sham-operated rats. Meanwhile, the higher dose apomorphine (0.5 mg/kg) induced anxiolytic-like behaviors in this group. The subthreshold dose injection of SCH23390 or sulpiride, partially reversed the anxiolytic-like behaviors induced by cholestasis (13 days after bile duct ligation). On the other hand, subthreshold dose of apomorphine in cholestatic rats (10 days post bile duct ligation) induced anxiolytic-like effects which could be blocked by SCH23390 or sulpiride. The effective doses of above drugs did not alter locomotor activity, number of rearings, groomings and defections. These findings suggested that the dopaminergic system may potentially be involved in the modulation of cholestasis-induced anxiolytic-like behaviors in rats.

  6. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.

    Science.gov (United States)

    Pooryasin, Atefeh; Fiala, André

    2015-09-16

    Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect

  7. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion.

    Science.gov (United States)

    Hussain, Saber M; Javorina, Amanda K; Schrand, Amanda M; Duhart, Helen M; Ali, Syed F; Schlager, John J

    2006-08-01

    This investigation was designed to determine whether nano-sized manganese oxide (Mn-40 nm) particles would induce dopamine (DA) depletion in a cultured neuronal phenotype, PC-12 cells, similar to free ionic manganese (Mn(2+)). Cells were exposed to Mn-40 nm, Mn(2+) (acetate), or known cytotoxic silver nanoparticles (Ag-15 nm) for 24 h. Phase-contrast microscopy studies show that Mn-40 nm or Mn(2+) exposure did not greatly change morphology of PC-12 cells. However, Ag-15 nm and AgNO(3) produce cell shrinkage and irregular membrane borders compared to control cells. Further microscopic studies at higher resolution demonstrated that Mn-40 nm nanoparticles and agglomerates were effectively internalized by PC-12 cells. Mitochondrial reduction activity, a sensitive measure of particle and metal cytotoxicity, showed only moderate toxicity for Mn-40 nm compared to similar Ag-15 nm and Mn(2+) doses. Mn-40 nm and Mn(2+) dose dependently depleted DA and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), while Ag-15 nm only significantly reduced DA and DOPAC at concentrations of 50 mug/ml. Therefore, the DA depletion of Mn-40 nm was most similar to Mn(2+), which is known to induce concentration-dependent DA depletion. There was a significant increase (> 10-fold) in reactive oxygen species (ROS) with Mn-40 nm exposure, suggesting that increased ROS levels may participate in DA depletion. These results clearly demonstrate that nanoscale manganese can deplete DA, DOPAC, and HVA in a dose-dependent manner. Further study is required to evaluate the specific intracellular distribution of Mn-40 nm nanoparticles, metal dissolution rates in cells and cellular matrices, if DA depletion is induced in vivo, and the propensity of Mn nanoparticles to cross the blood-brain barrier or be selectively uptaken by nasal epithelium.

  8. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term

    Science.gov (United States)

    Blum, Kenneth; Badgaiyan, Rajendra D.; Braverman, Eric R.; Dushaj, Kristina; Li, Mona; Thanos, Peter K.; Demetrovics, Zsolt; Febo, Marcelo

    2017-01-01

    Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing

  9. Hypothesizing that, A Pro-Dopamine Regulator (KB220Z) Should Optimize, but Not Hyper-Activate the Activity of Trace Amine-Associated Receptor 1 (TAAR-1) and Induce Anti-Craving of Psychostimulants in the Long-Term.

    Science.gov (United States)

    Blum, Kenneth; Badgaiyan, Rajendra D; Braverman, Eric R; Dushaj, Kristina; Li, Mona; Thanos, Peter K; Demetrovics, Zsolt; Febo, Marcelo

    2016-01-01

    Unlike other drugs of abuse such as alcohol, nicotine, opiates/opioids, the FDA has not approved any agent to treat psychostimulant dependence. Certainly, it is widely acceptable that dopaminergic signaling is a key factor in both the initiation and continued motivation to abuse this class of stimulant substances. It is also well accepted that psychostimulants such as cocaine affect not only the release of neuronal dopamine at the nucleus accumbens (NAc), but also has powerful inhibitory actions on the dopamine transporter system. Understandably, certain individuals are at high risk and very vulnerable to abuse this class of substances. Trace-amine-associated receptor 1 (TAAR1) is a G -protein coupled receptor activated by trace amines. The encoded protein responds little or not at all to dopamine, serotonin, epinephrine, or histamine, but responds well to beta-phenylethylamine, p-tyramine, octopamine, and tryptamine. This gene is thought to be intronless. TAAR1 agonists reduce the neurochemical effects of cocaine and amphetamines as well as attenuate addiction and abuse associated with these two psychostimulants. The mechanism involves blocking the firing rate of dopamine in the limbic system thereby decreasing a hyperdopaminergic trait/state, whereby the opposite is true for TAAR1 antagonists. Based on many studies, it is accepted that in Reward Deficiency Syndrome (RDS), there is weakened tonic and improved phasic dopamine discharge leading to a hypodopaminergic/glutamatergic trait. The dopamine pro-complex mixture KB220, following many clinical trials including neuroimaging studies, has been shown to enhance resting state functional connectivity in humans (abstinent heroin addicts), naïve rodent models, and regulates extensive theta action in the cingulate gyrus of abstinent psychostimulant abusers. In this article, we are hypothesizing that KB220 may induce its action on resting state functional connectivity, for example, by actually balancing (optimizing

  10. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17..beta..-estradiol (E/sub 2/) at both low (0.1 ..mu..g/kg) and high (20 ..mu..g/kg) doses confirmed its ability to increase the number of striatal /sup 3/H-Spiperone (/sup 3/H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E/sub 2/, to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity.

  11. Modulation of bleomycin-induced lung fibrosis by pegylated hyaluronidase and dopamine receptor antagonist in mice.

    Directory of Open Access Journals (Sweden)

    Evgenii Germanovich Skurikhin

    Full Text Available Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA. To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL. Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF-β, interleukin (IL-1β, tumor necrosis factor (TNF-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒ CD34‒ CD45‒ CD44+ CD73+ CD90+ CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan

  12. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice.

    Directory of Open Access Journals (Sweden)

    Shankar Sadasivan

    Full Text Available BACKGROUND: Methylphenidate (MPH is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT and the norepinephrine transporter (NET, resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a "cognitive enhancer" and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. METHODOLOGY/PRINCIPAL FINDINGS: Through the use of stereological counting methods, we observed a significant reduction (∼20% in dopamine neuron numbers in the substantia nigra pars compacta (SNpc following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing. CONCLUSION: Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at

  13. Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry.

    Science.gov (United States)

    Kim, Hyo Won; McCloskey, Bryan D; Choi, Tae Hwan; Lee, Changho; Kim, Min-Joung; Freeman, Benny D; Park, Ho Bum

    2013-01-23

    Material surface engineering has attracted great interest in important applications, including electronics, biomedicine, and membranes. More recently, dopamine has been widely exploited in solution-based chemistry to direct facile surface modification. However, unsolved questions remain about the chemical identity of the final products, their deposition kinetics and their binding mechanism. In particular, the dopamine oxidation reaction kinetics is a key to improving surface modification efficiency. Here, we demonstrate that high O(2) concentrations in the dopamine solution lead to highly homogeneous, thin layer deposition on any material surfaces via accelerated reaction kinetics, elucidated by Le Chatelier's principle toward dopamine oxidation steps in a Michael-addition reaction. As a result, highly uniform, ultra-smooth modified surfaces are achieved in much shorter deposition times. This finding provides new insights into the effect of reaction kinetics and molecular geometry on the uniformity of modifications for surface engineering techniques.

  14. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Directory of Open Access Journals (Sweden)

    Ainhoa eBilbao

    2014-06-01

    Full Text Available IIt is suggested that striatal cAMP responsive element binding protein (CREB regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. Drug-naïve mutants showed moderate alterations in gene expression, most prominently a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2, when compared to wild-type controls. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB.

  15. Human brain dopamine metabolism in levodopa-induced dyskinesia and wearing-off.

    Science.gov (United States)

    Rajput, Ali H; Fenton, Mark E; Di Paolo, Thérèse; Sitte, Harold; Pifl, Christian; Hornykiewicz, Oleh

    2004-06-01

    The objective of this study was to identify dopamine (DA) metabolism pattern in Lewy body Parkinson's disease (PD) patients with dyskinesia (Dysk) only, with wearing-off (WO) only, or no motor complications (NMC) induced by levodopa (LD). DA, homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 3-methoxytyramine (3-MT) were measured individual basal ganglia nuclei of nine PD patients who received LD for 6-18 years. Three patients had only Dysk, three only WO, and three had neither Dysk nor WO. Biochemical measurements in PD brains were compared with four non-neurological control brains from individuals matched for age and post-mortem retrieval time. DA levels in the PD were reduced in the caudate by 87% and putamen by 99%. In the caudates, the HVA/DA molar ratio as an index of DA metabolism was similar in the WO and the Dysk patients. However, in the putamen, the ratio of HVA/DA was significantly higher in the WO compared with the Dysk (p = 0.03)and the NMC (p = 0.04) groups of patients. In the putamen, the DOPAC levels were higher in the WO cases while in the Dysk cases, 3-MT levels were higher. The results suggest that in the WO only cases, the putaminal DA was in large measure metabolized intraneuronally while the DA metabolism in our Dysk only patients was mainly extraneuronal. We conclude that the magnitude and the site (intra vs. extraneuronal) of the synaptic DA metabolism in the putamen plays a significant role in LD-induced Dysk and WO.

  16. Medial prefrontal cortex inversely regulates toluene-induced changes in markers of synaptic plasticity of mesolimbic dopamine neurons

    Science.gov (United States)

    Beckley, Jacob T.; Evins, Caitlin E.; Fedarovich, Hleb; Gilstrap, Meghin J.; Woodward, John J.

    2013-01-01

    Toluene is a volatile solvent that is intentionally inhaled by children, adolescents and adults for its intoxicating effects. While voluntary use of toluene suggests that it possesses rewarding properties and abuse potential, it is unknown whether toluene alters excitatory synaptic transmission in reward sensitive dopamine neurons like other drugs of abuse. Here, using a combination of retrograde labeling and slice electrophysiology, we show that a brief in vivo exposure of rats to a behaviorally relevant concentration of toluene vapor enhances glutamatergic synaptic strength of dopamine (DA) neurons projecting to nucleus accumbens core and medial shell neurons. This effect persisted for up to 3 days in mesoaccumbens core DA neurons and for at least 21 days in those projecting to the medial shell. In contrast, toluene vapor exposure had no effect on synaptic strength of DA neurons that project to the medial prefrontal cortex (mPFC). Furthermore, infusion of GABAergic modulators into the mPFC prior to vapor exposure to pharmacologically manipulate output, inhibited or potentiated toluene's action on mesoaccumbens DA neurons. Taken together, the results of these studies indicate that toluene induces a target-selective increase in mesolimbic DA neuron synaptic transmission and strongly implicates the mPFC as an important regulator of drug-induced plasticity of mesolimbic dopamine neurons. PMID:23303956

  17. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    Science.gov (United States)

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  18. Melatonin-induced neuropeptide release from isolated locust corpora cardiaca.

    Science.gov (United States)

    Huybrechts, J; De Loof, A; Schoofs, L

    2005-01-01

    A method, based on a combination of mass spectrometry and liquid chromatography, was developed to investigate the release of neuropeptides from isolated locust corpora cardiaca. Melatonin, octopamine, trehalose and forskolin were administered to the perifused glands. The neuropeptides present in the releasates (spontaneous versus induced) were visualized by either conventional or capillary HPLC. Identification was achieved by means of MALDI-TOF MS and/or nanoflow-LC-Q-TOF MS. The observed effects of these chemicals regarding AKH release were in line with previous studies and validate the method. The most important finding of this study was that administration of melatonin stimulated the release of adipokinetic hormone precursor related peptides (APRP 1 and APRP 2), neuroparsins (NP A1, NP A2 and NP B) and diuretic peptide.

  19. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats

    Directory of Open Access Journals (Sweden)

    Toshikatsu Okumura

    2016-02-01

    Subcutaneously (80 mg/rat or intracisternally (2.5 μg/rat administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain.

  20. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Jensen, Majbrit M; Overgaard, Agnete

    2013-01-01

    Tesofensine is a triple monoamine reuptake inhibitor which inhibits noradrenaline, 5-HT and dopamine reuptake. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong and sustained effects in obesity management is not clarif......, tesofensine produces weight loss together with reversal of lowered forebrain dopamine levels in DIO rats, suggesting that tesofensine's anti-obesity effects, at least in part, are associated with positive modulation of central dopaminergic activity....... is not clarified. Tesofensine effectively induces appetite suppression in the diet-induced obese (DIO) rat partially being ascribed to an indirect stimulation of central dopamine receptor function subsequent to blocked dopamine transporter activity. This is interesting, as obese patients have reduced central...... dopaminergic activity thought to provide a drive for compensatory overeating, but whether treatment with an uptake inhibitor counteracts these changes or not has not been investigated. Tesofensine treatment (2.0mg/kg/day for 14days) caused a pronounced anorexigenic and weight-reducing response in DIO rats...

  1. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation.

    Science.gov (United States)

    You, Zhi-Bing; Wang, Bin; Zitzman, Dawnya; Wise, Roy A

    2008-09-03

    Microdialysis was used to assess the contribution to cocaine seeking of cholinergic input to the mesocorticolimbic dopamine system in ventral tegmental area (VTA). VTA acetylcholine (ACh) was elevated in animals lever pressing for intravenous cocaine and in cocaine-experienced and cocaine-naive animals passively receiving similar "yoked" injections. In cocaine-trained animals, the elevations comprised an initial (first hour) peak to approximately 160% of baseline and a subsequent plateau of 140% of baseline for the rest of the cocaine intake period. In cocaine-naive animals, yoked cocaine injections raised ACh levels to the 140% plateau but did not cause the initial 160% peak. In cocaine-trained animals that received unexpected saline (extinction conditions) rather than the expected cocaine, the initial peak was seen but the subsequent plateau was absent. VTA ACh levels played a causal role and were not just a correlate of cocaine seeking. Blocking muscarinic input to the VTA increased cocaine intake; the increase in intake offset the decrease in cholinergic input, resulting in the same VTA dopamine levels as were seen in the absence of the ACh antagonists. Increased VTA ACh levels (resulting from 10 microM VTA neostigmine infusion) increased VTA dopamine levels and reinstated cocaine seeking in cocaine-trained animals that had undergone extinction; these effects were strongly attenuated by local infusion of a muscarinic antagonist and weakly attenuated by a nicotinic antagonist. These findings identify two cholinergic responses to cocaine self-administration, an unconditioned response to cocaine itself and a conditioned response triggered by cocaine-predictive cues, and confirm that these cholinergic responses contribute to the control of cocaine seeking.

  2. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    Science.gov (United States)

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection.

  3. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Science.gov (United States)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  4. INCREASE IN DOPAMINE RELEASE FROM THE NUCLEUS-ACCUMBENS IN RESPONSE TO FEEDING - A MODEL TO STUDY INTERACTIONS BETWEEN DRUGS AND NATURALLY ACTIVATED DOPAMINERGIC-NEURONS IN THE RAT-BRAIN

    NARCIS (Netherlands)

    WESTERINK, BHC; TEISMAN, A; DEVRIES, JB

    1994-01-01

    The aim of the present study was to investigate the interactions between the in vivo release of dopamine and certain drugs, during conditions of increased dopaminergic activity. Dopaminergic neurons in the nucleus accumbens were activated by feeding hungry rats. 48-96 h after implantation of a micro

  5. Cyanide intoxication induced exocytotic epinephrine release in rabbit myocardium.

    Science.gov (United States)

    Kawada, T; Yamazaki, T; Akiyama, T; Sato, T; Shishido, T; Inagaki, M; Tatewaki, T; Yanagiya, Y; Sugimachi, M; Sunagawa, K

    2000-05-12

    Cyanide intoxication, which has been used as a model of energy depletion at cardiac sympathetic nerve terminals, causes non-exocytotic release of norepinephrine (NE). However, the effect of cyanide intoxication on cardiac epinephrine (Epi) release remains unknown. Using cardiac microdialysis in the rabbit, we measured dialysate Epi and NE concentrations as indices of myocardial interstitial Epi and NE levels, respectively. Local administration of sodium cyanide (30 mM) through the dialysis probe increased both Epi and NE levels (from 11.3+/-2.3 to 32.3+/-4.4 pg/ml and from 33.6+/-6.1 to 389.0+/-71.8 pg/ml, respectively, mean+/-S.E., P<0.01). Local desipramine (100 microM) administration suppressed the cyanide induced NE response without affecting the Epi response. In contrast, local omega-conotoxin GVIA (10 microM) administration partially suppressed the cyanide induced NE response and totally abolished the Epi response. In conclusion, cyanide intoxication causes N-type Ca(2+) channel dependent exocytotic Epi release as well as inducing N-type Ca(2+) channel independent non-exocytotic NE release.

  6. MAM (E17) rodent developmental model of neuropsychiatric disease: disruptions in learning and dysregulation of nucleus accumbens dopamine release, but spared executive function.

    Science.gov (United States)

    Howe, William M; Tierney, Patrick L; Young, Damon A; Oomen, Charlotte; Kozak, Rouba

    2015-11-01

    Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.

  7. STUDIES ON BEHAVIORAL, BIOCHEMICAL, IMMUNOHISTOCHEMICAL AND QUANTIFICATION OF DOPAMINE AND ITS METABOLITES IN THE STRIATUM OF 6-HYDROXY DOPAMINE INDUCED PARKINSONISM IN RATS - ATTENUATION BY BACOSIDEA, A MAJOR PHYTOCONSTITUENT OF BACOPA MONNIERA

    Directory of Open Access Journals (Sweden)

    Chandrasekar Shobana

    2013-12-01

    Full Text Available Bacoside-A, a major constituent isolated from Bacopa monniera is held in high repute as a potent nerve tonic. Rats were pretreated with Bacoside - A (10mg/kg and 20mg/kg body weight for 21 days. A Parkinsonian model in rats was developed by giving 6-hydroxy dopamine (12μg/2μl in 0.1% ascorbic acid- saline in the right striatum on 22nd day. A significant protection on lipid peroxidation, glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase was observed in the striatum of lesioned group animals pretreated with 10 mg/kg body weight of Bacoside-A for 21 days as compared to lesion group animals. We tested the behavioral response at different time points after injection of 6-hydroxy dopamine to evaluate the onset and progression of behavioral abnormalities. Also quantification of dopamine and its metabolites, DOPAC and HVA was done using HPLC coupled with electrochemical detector. The results showed a reduction in the levels of dopamine and its metabolites, increase in the locomotor activity, increase in "depression"-like behavior and a marked change in the social behavior in the 6 - hydroxy dopamine induced group whereas learning and memory abilities were not affected. Finally, all of these results were exhibited by an increase in the density of TH-IR fibers in the ipsilateral substantia nigra of the lesioned group following treatment with Bacoside- A. This study indicates that Bacoside-A, an active compound from Bacopa monniera, is helpful in attenuating the changes caused by 6-hydroxy dopamine induced lesions and has therapeutic potential in fighting against Parkinson's disease

  8. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis.

    Science.gov (United States)

    Chen, Yue; Asico, Laureano D; Zheng, Shuo; Villar, Van Anthony M; He, Duofen; Zhou, Lin; Zeng, Chunyu; Jose, Pedro A

    2013-11-01

    Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension.

  9. 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux.

    Science.gov (United States)

    Huang, Mei; Horiguchi, Masakuni; Felix, Anna R; Meltzer, Herbert Y

    2012-05-09

    Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.

  10. The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration.

    Science.gov (United States)

    VanDuyn, Natalia; Settivari, Raja; LeVora, Jennifer; Zhou, Shaoyu; Unrine, Jason; Nass, Richard

    2013-01-01

    Aluminum (Al(3+)) is the most prevalent metal in the earth's crust and is a known human neurotoxicant. Al(3+) has been shown to accumulate in the substantia nigra of patients with Parkinson's disease (PD), and epidemiological studies suggest correlations between Al(3+) exposure and the propensity to develop both PD and the amyloid plaque-associated disorder Alzheimer's disease (AD). Although Al(3+) exposures have been associated with the development of the most common neurodegenerative disorders, the molecular mechanism involved in Al(3+) transport in neurons and subsequent cellular death has remained elusive. In this study, we show that a brief exposure to Al(3+) decreases mitochondrial membrane potential and cellular ATP levels, and confers dopamine (DA) neuron degeneration in the genetically tractable nematode Caenorhabditis elegans (C. elegans). Al(3+) exposure also exacerbates DA neuronal death conferred by the human PD-associated protein α-synuclein. DA neurodegeneration is dependent on SMF-3, a homologue to the human divalent metal transporter (DMT-1), as a functional null mutation partially inhibits the cell death. We also show that SMF-3 is expressed in DA neurons, Al(3+) exposure results in a significant decrease in protein levels, and the neurodegeneration is partially dependent on the PD-associated transcription factor Nrf2/SKN-1 and caspase Apaf1/CED-4. Furthermore, we provide evidence that the deletion of SMF-3 confers Al(3+) resistance due to sequestration of Al(3+) into an intracellular compartment. This study describes a novel model for Al(3+)-induced DA neurodegeneration and provides the first molecular evidence of an animal Al(3+) transporter.

  11. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses.

    Science.gov (United States)

    Liu, Qi; Jia, Jilei; Yang, Tingyuan; Fan, Qingze; Wang, Lianyan; Ma, Guanghui

    2016-04-06

    Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(D,L-lactic-glycolic-acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel-inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine-guanine (CpG) motif with the pD surface. The as-constructed NPs possess pathogen-mimicking manners owing to their size, shape, and surface molecular immune-activating properties given by CpG. The biocompatibility and biosafety of these pathogen-mimicking NPs are confirmed using bone marrow-derived dendritic cells. Pathogen-mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dopamine Signaling in the Nucleus Accumbens of Animals Self-Administering Drugs of Abuse

    Science.gov (United States)

    Willuhn, Ingo; Wanat, Matthew J.; Clark, Jeremy J.; Phillips, Paul E. M.

    2013-01-01

    Abuse of psychoactive substances can lead to drug addiction. In animals, addiction is best modeled by drug self-administration paradigms. It has been proposed that the crucial common denominator for the development of drug addiction is the ability of drugs of abuse to increase extracellular concentrations of dopamine in the nucleus accumbens (NAcc). Studies using in vivo microdialysis and chronoamperometry in the behaving animal have demonstrated that drugs of abuse increase tonic dopamine concentrations in the NAcc. However, it is known that dopamine neurons respond to reward-related stimuli on a subsecond timescale. Thus, it is necessary to collect neurochemical information with this level of temporal resolution, as achieved with in vivo fast-scan cyclic voltammetry (FSCV), to fully understand the role of phasic dopamine release in normal behavior and drug addiction. We review studies that investigated the effects of drugs of abuse on NAcc dopamine levels in freely-moving animals using in vivo microdialysis, chronoamperometry and FSCV. After a brief introduction of dopamine anatomy and signal transduction, and a section on current theories of dopamine in natural goal-directed behavior, a discussion of techniques for the in vivo assessment of extracellular dopamine behaving animals is presented. Then, we review studies using these techniques to investigate changes in phasic and tonic dopamine signaling in the NAcc during 1) response-dependent and –independent administration of abused drugs, 2) drug-conditioned stimuli and operant behavior in self-administration paradigms, 3) drug withdrawal, and 4) cue-induced reinstatement of drug seeking. These results are then integrated with current ideas on the role of dopamine in addiction with an emphasis on a model illustrating phasic and tonic NAcc dopamine signaling during different stages of drug addiction. This model predicts that phasic dopamine release in response to drug-related stimuli will be enhanced over

  13. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats

    Directory of Open Access Journals (Sweden)

    Sara ePalm

    2014-07-01

    Full Text Available Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction.

  14. EFFECTS OF SULPIRIDE-INDUCED D2 DOPAMINE RECEPTOR BLOCKADE ON IMMUNE RESPONSIVENESS OF RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2006-08-01

    Full Text Available The involvement of catecholamine receptors (D2 dopamine was investigated in restraint stress, influence immune system, with concomitant changes in immune response. Adults rats pretreated once with LPS (a bacterial product (25μg/250μl, i.p., produce an immune response, were subjected to i.p. injection with sulpiride (4 mg/kg b.w., i.p., a selective antagonist for D2 dopamine receptors, after 3 days postimmunization. After 18 days later, we assessed the total protein number, antibody titer, lymphocyte number and albumin/globulin ratio. In summary, we provide that D2 dopamine receptor blockade impaired immune responsiveness in restraint stress.

  15. Pyrolysed 3D-Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Real-Time Dopamine Detection

    NARCIS (Netherlands)

    Amato, Letizia; Heiskanen, Arto; Caviglia, Claudia; Shah, Fozia; Zor, Kinga; Skolimowski, Maciej; Madou, Marc; Gammelgaard, Lauge; Hansen, Rasmus; Seiz, Emma G.; Ramos, Milagros; Ramos Moreno, Tania; Martinez-Serrano, Alberto; Keller, Stephan S.; Emneus, Jenny

    2014-01-01

    Structurally patterned pyrolysed three-dimensional carbon scaffolds (p3D-carbon) are fabricated and applied for differentiation of human neural stem cells (hNSCs) developed for cell replacement therapy and sensing of released dopamine. In the absence of differentiation factors (DF) the pyrolysed car

  16. Endogenous versus exogenous lithium clearance for evaluation of dopamine-induced changes in renal tubular function

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Fogh-Andersen, N; Strandgaard, S

    1996-01-01

    1. The present randomized, double-blind cross-over study compared endogenous and exogenous lithium clearance (CLi) for estimation of the effect of dopamine on tubular sodium reabsorption. Twelve normal, salt-repleted male subjects were investigated on three different occasions with either placebo.......3-31.0)% (P sodium clearance (CNa), but glomerular filtration rate and urine flow rate remained unchanged. 3. Dopamine increased CNa to similar values on the three study days. CLi increased to 40.9 (35.5-46.5) ml/min (endogenous lithium, P

  17. Osteodifferentiation of Human Preadipocytes Induced by Strontium Released from Hydrogels

    Directory of Open Access Journals (Sweden)

    Valeria Nardone

    2012-01-01

    Full Text Available In recent years, there has been an increasing interest in interactive application principles of biology and engineering for the development of valid biological systems for tissue regeneration, such as for the treatment of bone fractures or skeletal defects. The application of stem cells together with biomaterials releasing bioactive factors promotes the formation of bone tissue by inducing proliferation and/or cell differentiation. In this study, we used a clonal cell line from human adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes, named PA2-E12, to evaluate the effects of strontium (Sr2+ released in the culture medium from an amidated carboxymethylcellulose (CMCA hydrogel enriched with different Sr2+ concentrations on osteodifferentiation. The osteoinductive effect was evaluated through both the expression of alkaline phophatase (ALP activity and the hydroxyapatite (HA production during 42 days of induction. Present data have shown that Sr2+ released from CMCA promotes the osteodifferentiation induced by an osteogenic medium as shown by the increase of ALP activity at 7 and 14 days and of HA production at 14 days. In conclusion, the use of biomaterials able to release in situ osteoinductive agents, like Sr2+, could represent a new strategy for future applications in bone tissue engineering.

  18. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    Science.gov (United States)

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2.

  19. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways.

    Directory of Open Access Journals (Sweden)

    Genevieve Beauvais

    Full Text Available Single large doses of methamphetamine (METH cause endoplasmic reticulum (ER stress and mitochondrial dysfunctions in rodent striata. The dopamine D(1 receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D(1 and D(2 receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D(1 or D(2 receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58(IPK, in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D(2-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors.

  20. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways.

    Science.gov (United States)

    Beauvais, Genevieve; Atwell, Kenisha; Jayanthi, Subramaniam; Ladenheim, Bruce; Cadet, Jean Lud

    2011-01-01

    Single large doses of methamphetamine (METH) cause endoplasmic reticulum (ER) stress and mitochondrial dysfunctions in rodent striata. The dopamine D(1) receptor appears to be involved in these METH-mediated stresses. The purpose of this study was to investigate if dopamine D(1) and D(2) receptors are involved in ER and mitochondrial stresses caused by single-day METH binges in the rat striatum. Male Sprague-Dawley rats received 4 injections of 10 mg/kg of METH alone or in combination with a putative D(1) or D(2) receptor antagonist, SCH23390 or raclopride, respectively, given 30 min prior to each METH injection. Rats were euthanized at various timepoints afterwards. Striatal tissues were used in quantitative RT-PCR and western blot analyses. We found that binge METH injections caused increased expression of the pro-survival genes, BiP/GRP-78 and P58(IPK), in a SCH23390-sensitive manner. METH also caused up-regulation of ER-stress genes, Atf2, Atf3, Atf4, CHOP/Gadd153 and Gadd34. The expression of heat shock proteins (HSPs) was increased after METH injections. SCH23390 completely blocked induction in all analyzed ER stress-related proteins that included ATF3, ATF4, CHOP/Gadd153, HSPs and caspase-12. The dopamine D(2)-like antagonist, raclopride, exerted small to moderate inhibitory influence on some METH-induced changes in ER stress proteins. Importantly, METH caused decreases in the mitochondrial anti-apoptotic protein, Bcl-2, but increases in the pro-apoptotic proteins, Bax, Bad and cytochrome c, in a SCH23390-sensitive fashion. In contrast, raclopride provided only small inhibition of METH-induced changes in mitochondrial proteins. These findings indicate that METH-induced activation of striatal ER and mitochondrial stress pathways might be more related to activation of SCH23390-sensitive receptors.

  1. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    Science.gov (United States)

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  2. Dopamine, Working Memory, and Training Induced Plasticity: Implications for Developmental Research

    Science.gov (United States)

    Soderqvist, Stina; Bergman Nutley, Sissela; Peyrard-Janvid, Myriam; Matsson, Hans; Humphreys, Keith; Kere, Juha; Klingberg, Torkel

    2012-01-01

    Cognitive deficits and particularly deficits in working memory (WM) capacity are common features in neuropsychiatric disorders. Understanding the underlying mechanisms through which WM capacity can be improved is therefore of great importance. Several lines of research indicate that dopamine plays an important role not only in WM function but also…

  3. Dopamine, Working Memory, and Training Induced Plasticity: Implications for Developmental Research

    Science.gov (United States)

    Soderqvist, Stina; Bergman Nutley, Sissela; Peyrard-Janvid, Myriam; Matsson, Hans; Humphreys, Keith; Kere, Juha; Klingberg, Torkel

    2012-01-01

    Cognitive deficits and particularly deficits in working memory (WM) capacity are common features in neuropsychiatric disorders. Understanding the underlying mechanisms through which WM capacity can be improved is therefore of great importance. Several lines of research indicate that dopamine plays an important role not only in WM function but also…

  4. No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder

    NARCIS (Netherlands)

    Hernaus, D; Collip, D; Kasanova, Z; Winz, O; Heinzel, A; van Amelsvoort, T; Shali, S M; Booij, J; Rong, Y; Piel, M; Pruessner, J; Mottaghy, F M; Myin-Germeys, I

    2015-01-01

    Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of psychotic disorder, stress-related

  5. Mercury induces inflammatory mediator release from human mast cells

    Directory of Open Access Journals (Sweden)

    Peterson Erika

    2010-03-01

    Full Text Available Abstract Background Mercury is known to be neurotoxic, but its effects on the immune system are less well known. Mast cells are involved in allergic reactions, but also in innate and acquired immunity, as well as in inflammation. Many patients with Autism Spectrum Disorders (ASD have "allergic" symptoms; moreover, the prevalence of ASD in patients with mastocytosis, characterized by numerous hyperactive mast cells in most tissues, is 10-fold higher than the general population suggesting mast cell involvement. We, therefore, investigated the effect of mercuric chloride (HgCl2 on human mast cell activation. Methods Human leukemic cultured LAD2 mast cells and normal human umbilical cord blood-derived cultured mast cells (hCBMCs were stimulated by HgCl2 (0.1-10 μM for either 10 min for beta-hexosaminidase release or 24 hr for measuring vascular endothelial growth factor (VEGF and IL-6 release by ELISA. Results HgCl2 induced a 2-fold increase in β-hexosaminidase release, and also significant VEGF release at 0.1 and 1 μM (311 ± 32 pg/106 cells and 443 ± 143 pg/106 cells, respectively from LAD2 mast cells compared to control cells (227 ± 17 pg/106 cells, n = 5, p 2 (0.1 μM to the proinflammatory neuropeptide substance P (SP, 0.1 μM had synergestic action in inducing VEGF from LAD2 mast cells. HgCl2 also stimulated significant VEGF release (360 ± 100 pg/106 cells at 1 μM, n = 5, p 6 cells, and IL-6 release (466 ± 57 pg/106 cells at 0.1 μM compared to untreated cells (13 ± 25 pg/106 cells, n = 5, p 2 (0.1 μM to SP (5 μM further increased IL-6 release. Conclusions HgCl2 stimulates VEGF and IL-6 release from human mast cells. This phenomenon could disrupt the blood-brain-barrier and permit brain inflammation. As a result, the findings of the present study provide a biological mechanism for how low levels of mercury may contribute to ASD pathogenesis.

  6. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  7. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Science.gov (United States)

    Holahan, Matthew R; Madularu, Dan; McConnell, Erin M; Walsh, Ryan; DeRosa, Maria C

    2011-01-01

    Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  8. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

  9. The role of 5-HT(2A) receptor antagonism in amphetamine-induced inhibition of A10 dopamine neurons in vitro

    NARCIS (Netherlands)

    Olijslagers, J.E.; Perlstein, B.; Werkman, T.R.; Mc.Creary, A.C.; Siarey, R.; Kruse, C.G.; Wadman, W.J.

    2005-01-01

    The role of the 5-HT(2A) receptor in modulating amphetamine-induced inhibition of dopamine neuronal firing in A9 and A10 was investigated in rat midbrain slices. The antipsychotic drugs olanzapine and clozapine more potently reversed the amphetamine-induced inhibition in A10 neurons compared to A9 n

  10. A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats.

    Science.gov (United States)

    Taneja, Amit; Vermeulen, An; Huntjens, Dymphy R H; Danhof, Meindert; De Lange, Elizabeth C M; Proost, Johannes H

    2016-10-15

    We compared the model performance of two semi-mechanistic pharmacokinetic-pharmacodynamic models, the precursor pool model and the agonist-antagonist interaction model, to describe prolactin response following the administration of the dopamine D2 receptor antagonists risperidone, paliperidone or remoxipride in rats. The time course of pituitary dopamine D2 receptor occupancy was also predicted. Male Wistar rats received a single dose (risperidone, paliperidone, remoxipride) or two consecutive doses (remoxipride). Population modeling was applied to fit the pool and interaction models to the prolactin data. The pool model was modified to predict the time course of pituitary D2 receptor occupancy. Unbound plasma concentrations of the D2 receptor antagonists were considered the drivers of the prolactin response. Both models were used to predict prolactin release following multiple doses of paliperidone. Both models described the data well and model performance was comparable. Estimated unbound EC50 for risperidone and paliperidone was 35.1nM (relative standard error 51%) and for remoxipride it was 94.8nM (31%). KI values for these compounds were 11.1nM (21%) and 113nM (27%), respectively. Estimated pituitary D2 receptor occupancies for risperidone and remoxipride were comparable to literature findings. The interaction model better predicted prolactin profiles following multiple paliperidone doses, while the pool model predicted tolerance better. The performance of both models in describing the prolactin profiles was comparable. The pool model could additionally describe the time course of pituitary D2 receptor occupancy. Prolactin response following multiple paliperidone doses was better predicted by the interaction model.

  11. Unilateral Lesion of Dopamine Neurons Induces Grooming Asymmetry in the Mouse.

    Science.gov (United States)

    Pelosi, Assunta; Girault, Jean-Antoine; Hervé, Denis

    2015-01-01

    Grooming behaviour is the most common innate behaviour in animals. In rodents, it consists of sequences of movements organized in four phases, executed symmetrically on both sides of the animal and creating a syntactic chain of behavioural events. The grooming syntax can be altered by stress and novelty, as well as by several mutations and brain lesions. Grooming behaviour is known to be affected by alterations of the dopamine system, including dopamine receptor modulation, dopamine alteration in genetically modified animals, and after brain lesion. While a lot is known about the initiation and syntactic modifications of this refined sequence of movements, effects of unilateral lesion of dopamine neurons are unclear particularly regarding the symmetry of syntactic chains. In the present work we studied grooming in mice unilaterally lesioned in the medial forebrain bundle by 6-hydroxydopamine. We found a reduction in completion of grooming bouts, associated with reduction in number of transitions between grooming phases. The data also revealed the development of asymmetry in grooming behaviour, with reduced tendency to groom the contralateral side to the lesion. Symmetry was recovered following treatment with L-DOPA. Thus, the present work shows that unilateral lesion of dopamine neurons reduces self-grooming behaviour by affecting duration and numbers of events. It produces premature discontinuation of grooming chains but the sequence syntax remains correct. This deficient grooming could be considered as an intrinsic symptom of Parkinson's disease in animal models and could present some similarities with abnormalities of motor movement sequencing seen in patients. Our study also suggests grooming analysis as an additional method to screen parkinsonism in animal models.

  12. Sex Differences in Midbrain Dopamine D2-Type Receptor Availability and Association with Nicotine Dependence.

    Science.gov (United States)

    Okita, Kyoji; Petersen, Nicole; Robertson, Chelsea L; Dean, Andy C; Mandelkern, Mark A; London, Edythe D

    2016-11-01

    Women differ from men in smoking-related behaviors, among them a greater difficulty in quitting smoking. Unlike female smokers, male smokers have lower striatal dopamine D2-type receptor availability (binding potential, BPND) than nonsmokers and exhibit greater smoking-induced striatal dopamine release. Because dopamine D2-type autoreceptors in the midbrain influence striatal dopamine release, a function that has been linked to addiction, we tested for sex differences in midbrain dopamine D2-type receptor BPND and in relationships between midbrain BPND, nicotine dependence and striatal dopamine D2-type receptor BPND. Positron emission tomography was used with [(18)F]fallypride to measure BPND in a midbrain region, encompassing the substantia nigra and ventral tegmental area, in 18 daily smokers (7 women, 11 men) and 19 nonsmokers (10 women, 9 men). A significant sex-by-group interaction reflected greater midbrain BPND in female but not male smokers than in corresponding nonsmokers (F1, 32=5.089, p=0.03). Midbrain BPND was positively correlated with BPND in the caudate nucleus and putamen in nonsmokers and female smokers but not in male smokers and with nicotine dependence in female but not in male smokers. Striatal BPND was correlated negatively with nicotine dependence and smoking exposure. These findings extend observations on dopamine D2-type receptors in smokers and suggest a sex difference in how midbrain dopamine D2-type autoreceptors influence nicotine dependence.

  13. Relationship between dopamine transporter occupancy and methylphenidate induced high in humans

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. [Brookhaven National Lab., Upton, NY (United States)]|[SUNY-Stony Brook, NY (United States)] [and others

    1996-05-01

    The inhibition of the dopamine transporter (DAT) by cocaine has been shown to be indispensable for its reinforcing properties. The development of drugs that inibit the DAT has become a major target to prevent cocaine`s effects. However prevention of the {open_quotes}high{close_quotes} by DAT inhibitors has never been demonstrated. This study evaluates the ability to block methylphenidate (MP), a DAT inhibitor drug with similar reinforcing properties to cocaine, induced {open_quotes}high{close_quotes} by prior DAT inhibition. It uses PET and [{sup 11}C]d-threo-methylphenidate to measure the relationship between DAT occupancy prior to administration of MP and the intensity of the subjective perception of the {open_quotes}high{close_quotes} in 8 controls. MP (0.375 mg/kg iv) which was administered as a single injection and also as two sequential doses given 60 minutes apart significantly reduced the ratio of the distribution volume for [{sup 11}C]d-threo-methylphenidate in striatum to that in cerebellum from a baseline of 2.83 {plus_minus} 0.2 to 1.29 {plus_minus} 0.1 at 7 minutes and to 1.37 {plus_minus} 0.2 at 60 minutes after a single injection of MP and to 1.14 {plus_minus} 0.1 at 7 minutes after the second of two sequential MP doses. This corresponds to a DAT occupancy by MP of 84% {plus_minus} 7 at 7 minutes and of 77% {plus_minus} 6 at 60 minutes after a single injection of MP and of 93% {plus_minus} 7 at 7 after the second of two sequential MP doses. The subjective perception of {open_quotes}high{close_quotes} experienced after the second injection of MP was of a similar magnitude to that experienced after the first injection of MP was of a similar magnitude to that experienced after the first injection, in spite of the very different starting DAT occupancies (0 and 77%, respectively). DAT occupancy was not correlated with the {open_quotes}high{close_quotes}; and one subject with 100% DAT occupancy did not perceive the {open_quotes}high{close_quotes}.

  14. Maladaptive plasticity in levodopa-induced dyskinesias and tardive dyskinesias: old and new insights on the effects of dopamine receptor pharmacology.

    Science.gov (United States)

    Cerasa, Antonio; Fasano, Alfonso; Morgante, Francesca; Koch, Giacomo; Quattrone, Aldo

    2014-01-01

    Maladaptive plasticity can be defined as behavioral loss or even development of disease symptoms resulting from aberrant plasticity changes in the human brain. Hyperkinetic movement disorders, in the neurological or psychiatric realms, have been associated with maladaptive neural plasticity that can be expressed by functional changes such as an increase in transmitter release, receptor regulation, and synaptic plasticity or anatomical modifications such as axonal regeneration, sprouting, synaptogenesis, and neurogenesis. Recent evidence from human and animal models provided support to the hypothesis that these phenomena likely depend on altered dopamine turnover induced by long-term drug treatment. However, it is still unclear how and where these altered mechanisms of cortical plasticity may be localized. This study provides an up-to-date overview of these issues together with some reflections on future studies in the field, particularly focusing on two specific disorders (levodopa-induced dyskinesias in Parkinson's disease patients and tardive dyskinesias in schizophrenic patients) where the modern neuroimaging approaches have recently provided new fundamental insights.

  15. MALADAPTIVE PLASTICITY IN LEVODOPA-INDUCED DYSKINESIAS AND TARDIVE DYSKINESIAS: OLD AND NEW INSIGHTS ON THE EFFECTS OF DOPAMINE RECEPTOR PHARMACOLOGY

    Directory of Open Access Journals (Sweden)

    Antonio eCerasa

    2014-04-01

    Full Text Available Maladaptive plasticity can be defined as behavioral loss or even development of disease symptoms resulting from aberrant plasticity changes in the human brain. Hyperkinetic movement disorders, either in the neurological or psychiatric realms, have been associated with maladaptive neural plasticity that can be expressed by functional changes such as an increase in transmitter release, receptor regulation and synaptic plasticity or anatomical modifications such as axonal regeneration, sprouting, synaptogenesis and neurogenesis. Recent evidence from human and animal models provided support to the hypothesis that these phenomena likely depend upon altered dopamine turnover induced by long-term drug treatment. However, it is still unclear how and where these altered mechanisms of cortical plasticity may be localized. The current article will provide an up-to-date overview of these issues together with some reflections on future studies in the field, particularly focusing on two specific disorders (levodopa-induced dyskinesias in Parkinson’s disease patients and tardive dyskinesias in schizophrenic patients where the modern neuroimaging approaches have recently provided new fundamental insights.

  16. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, D.J.; Guan, X.M.; Shulgin, A.T. (Department of Neurology Neurological Sciences, Stanford University Medical Center, CA (USA))

    1991-03-01

    The effect of various analogues of the neurotoxic amphetamine derivative, MDA (3,4-methylenedioxyamphetamine) on carrier-mediated, calcium-independent release of 3H-5-HT and 3H-DA from rat brain synaptosomes was investigated. Both enantiomers of the neurotoxic analogues MDA and MDMA (3,4-methylenedioxymethamphetamine) induce synaptosomal release of 3H-5-HT and 3H-DA in vitro. The release of 3H-5-HT induced by MDMA is partially blocked by 10(-6) M fluoxetine. The (+) enantiomers of both MDA and MDMA are more potent than the (-) enantiomers as releasers of both 3H-5-HT and 3H-DA. Eleven analogues, differing from MDA with respect to the nature and number of ring and/or side chain substituents, also show some activity in the release experiments, and are more potent as releasers of 3H-5-HT than of 3H-DA. The amphetamine derivatives {plus minus}fenfluramine, {plus minus}norfenfluramine, {plus minus}MDE, {plus minus}PCA, and d-methamphetamine are all potent releasers of 3H-5-HT and show varying degrees of activity as 3H-DA releasers. The hallucinogen DOM does not cause significant release of either 3H-monoamine. Possible long-term serotonergic neurotoxicity was assessed by quantifying the density of 5-HT uptake sites in rats treated with multiple doses of selected analogues using 3H-paroxetine to label 5-HT uptake sites. In the neurotoxicity study of the compounds investigated, only (+)MDA caused a significant loss of 5-HT uptake sites in comparison to saline-treated controls. These results are discussed in terms of the apparent structure-activity properties affecting 3H-monoamine release and their possible relevance to neurotoxicity in this series of MDA congeners.

  17. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sang Soo Cho

    Full Text Available BACKGROUND: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC (areas 9/46 stimulation on prefrontal dopamine (DA. METHODOLOGY/PRINCIPAL FINDINGS: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [(11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [(11C]FLB 457 binding potential (BP in the ipsilateral subgenual anterior cingulate cortex (ACC (BA 25/12, pregenual ACC (BA 32 and medial orbitofrontal cortex (BA 11. There were no significant changes in [(11C]FLB 457 BP following right DLPFC rTMS. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [(11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.

  18. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin

    Science.gov (United States)

    2017-01-01

    Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a

  19. Opioid/naloxone prolonged release combinations for opioid induced constipation

    Institute of Scientific and Technical Information of China (English)

    Shailendra Kapoor

    2012-01-01

    I read with great interest the recent article by Chen et a/in a recent issue of your esteemed journal.The article is highly thought provoking.One emerging therapeutic alternative for opioid induced constipation is the emergence of opioid/naloxone prolonged release combinations.For instance,naloxone when administered in a 1∶2 ratio with oxycodone reverses the inhibitory effect of oxycodone on the gastrointestinal tract.The advantage of oxycodone/naloxone prolonged release (OXN) is that while its anti-nociceptive efficacy is equivalent to that of oxycodone prolonged release (OXC),it significantly decreases the "Bowel Function Index" thereby ameliorating symptoms of opioid induced constipation to a large extent.Schutter et al in a recent study have reported a decrease in the bowel function index from 38.2 to 15.1.Similarly,L(o)wenstein et al in another recent study have reported that following a month of therapy,complete spontaneous bowel movements per week is increased from one in OXC therapy to three in OXN therapy.

  20. Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-02-01

    The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.

  1. Temporal changes of striatal dopamine release during and after a video game with a monetary reward: a PET study with [{sup 11}C]raclopride continuous infusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. E. [Sungkyunkwon University School of Medicine, Suwon (Korea, Republic of); Cho, S. S.; Choe, Y. S.; Lee, S. Y.; Kang, E.; Kim, B. T. [Seoul National University hospital, Seoul (Korea, Republic of)

    2002-07-01

    In an attempt to understand the neurochemical changes associated with rewarded motor learning in human brain, we investigated the temporal changes of striatal dopamine (DA) release during and after a goal-directed psychomotor task (a video game) with a monetary incentive using [{sup 11}C]raclopride PET. Seven healthy, right-handed, nonsmokers were studied with PET for 120 min (50 min resting followed by 40 min video game and another 30 min resting) while receiving a bolus plus constant infusion of the DA D2 receptor radioligand [{sup 11}C]raclopride. During the video game (from 50 to 90 min postinjection), subjects played Tetris, which involved learning of joystick movement to fit falling jigsaw blocks, and periodically rewarded with unpredictable amount monetary incentives for improved performance. Striatal V3', calculated as striatal-cerebellar/cerebellar activity ratio, was measured under equilibrium condition, at baseline and during and after the video game. Striatal V3' was significantly reduced during the video game compared with baseline levels, indicating increased DA release in this region (caudate, -15{+-}6%; putamen, -30{+-}10%). During the 30 min after the game ended, striatal [{sup 11}C]raclopride binding was gradually increased and the V3' approached baseline levels. There was a significant correlation between the reduction in striatal V3' and the task performance during the video game. These results demonstrate DA release in the human striatum during a psychomotor task with a monetary reward and to our knowledge for the first time a gradual DA restoration to baseline levels following the offset of stimulation. They also illustrate that acute fluctuations of synaptic DA can be measured in vivo using [{sup 11}C]raclopride PET.

  2. Mechanisms of Dopamine Release From Rat Striatum and Nucleus Accumbens Slices:The Role of Transporters, Receptors and Membrane Depolarization

    Science.gov (United States)

    1992-07-21

    The release of 5-HT is controlled by autoreceptors of the 5-HT’a and 5- HT’b type , inhibitory heteroreceptors of the GABAB, muscarinic, Ŗ , and D...type , and stimulatory heteroreceptors for somatostatin. Regulation is also afforded by receptors that are acted upon by co-localized

  3. Mescaline: its effects on learning rate and dopamine metabolism in goldfish (Carassius auratus).

    Science.gov (United States)

    Zeller, E A; Couper, G S; Huprikar, S V; Mellow, A M; Moody, R R

    1976-11-15

    The pharmacological action of mescaline on goldfish was studied with the Bitterman-Agranoff shock-avoidance test. In short term experiments with high mescaline doses an increase in learning rates was observed. Similar results were obtained with apomorphine and L-dopa. However, when the fish were exposed to smaller mescaline doses (or to fluphenazine) for 3 days, their ability to avoid electric shock was reduced. Apparently, mescaline induced a release of dopamine which stimulated central dopaminergic systems. Subsequently, MAO destroys the liberated dopamine. Thus, the ensuing dopamine deficit appears to be responsible for the marked changes in behavior in the chronic experiment.

  4. Cocaine and amphetamine elicit differential effects in rats with a unilateral injection of dopamine transporter antisense oligodeoxynucleotides.

    Science.gov (United States)

    Silvia, C P; Jaber, M; King, G R; Ellinwood, E H; Caron, M G

    1997-02-01

    We have developed an antisense oligodeoxynucleotide to the dopamine transporter and used it to discriminate the behavioral properties of amphetamine and cocaine. In SK-N-MC cells permanently transfected with the dopamine transporter complementary DNA, treatment with 5 mM antisense oligodeoxynucleotide reduced dopamine uptake by 25% when compared to sense control. Unilateral intranigral administration of dopamine transporter antisense (50 microM) twice daily in freely moving rats for 2.5 days was sufficient to reduce dopamine transporter messenger RNA by 70% as measured by in situ hybridization, but not protein levels as measured by [3H]mazindol binding. However, intranigral treatment via implanted osmotic minipump over a period of seven days produced reductions in both dopamine transporter messenger RNA and protein levels (32%) at a dose of 500 pmol/day. These results indicate a longer half-life for the dopamine transporter than expected. Potassium chloride depolarization of ipsilateral striatal slices showed a greater than 200% increase in dopamine overflow on the antisense-treated side compared to the control side. Since imbalance of dopamine tone is known to induce rotational activity, we tested this behavioral paradigm in rats treated with various oligodeoxynucleotides at different doses and time-points. We have found that antisense-treated animals did not rotate spontaneously under any experimental conditions. Using various psychostimulants that target the dopamine transporter and increase dopamine levels, we found that the antisense-treated animals consistently rotated contralaterally in response to amphetamine (2 mg/kg), but not to cocaine (10 mg/kg) or nomifensine (10 mg/kg). These results bring in vivo evidence for a different mode of action of amphetamine and cocaine on the dopamine transporter and lend direct support to the view that amphetamine acts as a dopamine releaser, whereas cocaine acts by blocking dopamine transport.

  5. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.

    Science.gov (United States)

    Zheng, Fang; Bayram, Ersin; Sumithran, Sangeetha P; Ayers, Joshua T; Zhan, Chang-Guo; Schmitt, Jeffrey D; Dwoskin, Linda P; Crooks, Peter A

    2006-05-01

    Back-propagation artificial neural networks (ANNs) were trained on a dataset of 42 molecules with quantitative IC50 values to model structure-activity relationships of mono- and bis-quaternary ammonium salts as antagonists at neuronal nicotinic acetylcholine receptors (nAChR) mediating nicotine-evoked dopamine release. The ANN QSAR models produced a reasonable level of correlation between experimental and calculated log(1/IC50) (r2=0.76, r(cv)2=0.64). An external test for the models was performed on a dataset of 18 molecules with IC50 values >1 microM. Fourteen of these were correctly classified. Classification ability of various models, including self-organizing maps (SOM), for all 60 molecules was also evaluated. A detailed analysis of the modeling results revealed the following relative contributions of the used descriptors to the trained ANN QSAR model: approximately 44.0% from the length of the N-alkyl chain attached to the quaternary ammonium head group, approximately 20.0% from Moriguchi octanol-water partition coefficient of the molecule, approximately 13.0% from molecular surface area, approximately 12.6% from the first component shape directional WHIM index/unweighted, approximately 7.8% from Ghose-Crippen molar refractivity, and 2.6% from the lowest unoccupied molecular orbital energy. The ANN QSAR models were also evaluated using a set of 13 newly synthesized compounds (11 biologically active antagonists and two biologically inactive compounds) whose structures had not been previously utilized in the training set. Twelve among 13 compounds were predicted to be active which further supports the robustness of the trained models. Other insights from modeling include a structural modification in the bis-quinolinium series that involved replacing the 5 and/or 8 as well as the 5' and/or 8' carbon atoms with nitrogen atoms, predicting inactive compounds. Such data can be effectively used to reduce synthetic and in vitro screening activities by eliminating

  6. ÉTUDE NEUROCHIMIQUE ET COMPORTEMENTALE DES MODULATIONS INDUITES PAR LES RÉCEPTEURS OPIOÏDES DE TYPE δ SUR LES LIBÉRATIONS STRIATALES DE GLUTAMATE ET DE DOPAMINE CHEZ LE RAT

    OpenAIRE

    Billet, Fabrice

    2007-01-01

    Enkephalins, endogenous ligands of δ-opioid receptors, are the most abundant neuropeptides in the striatum, structure in which they stimulate dopamine release. However, the effect of δ-opioid receptors on striatal glutamate, which is mainly released by cortico-striatal neurons, is unknown. Nevertheless, some data suggest its involvement in the dopamine release induced by DPDPE, a δ-opioid selective agonist. This hypothesis was tested in the rat. For this purpose, we studied the effect of DPDP...

  7. Elevated dopamine in the medial prefrontal cortex suppresses cocaine seeking via D1 receptor overstimulation.

    Science.gov (United States)

    Devoto, Paola; Fattore, Liana; Antinori, Silvia; Saba, Pierluigi; Frau, Roberto; Fratta, Walter; Gessa, Gian Luigi

    2016-01-01

    Previous investigations indicate that the dopamine-β-hydroxylase (DBH) inhibitors disulfiram and nepicastat suppress cocaine-primed reinstatement of cocaine self-administration behaviour. Moreover, both inhibitors increase dopamine release in the rat medial prefrontal cortex (mPFC) and markedly potentiate cocaine-induced dopamine release in this region. This study was aimed to clarify if the suppressant effect of DBH inhibitors on cocaine reinstatement was mediated by the high extracellular dopamine in the rat mPFC leading to a supra-maximal stimulation of D1 receptors in the dorsal division of mPFC, an area critical for reinstatement of cocaine-seeking behaviour. In line with previous microdialysis studies in drug-naïve animals, both DBH inhibitors potentiated cocaine-induced dopamine release in the mPFC, in the same animals in which they also suppressed reinstatement of cocaine seeking. Similar to the DBH inhibitors, L-DOPA potentiated cocaine-induced dopamine release in the mPFC and suppressed cocaine-induced reinstatement of cocaine-seeking behaviour. The bilateral microinfusion of the D1 receptor antagonist SCH 23390 into the dorsal mPFC not only prevented cocaine-induced reinstatement of cocaine seeking but also reverted both disulfiram- and L-DOPA-induced suppression of reinstatement. Moreover, the bilateral microinfusion of the D1 receptor agonist chloro-APB (SKF 82958) into the dorsal mPFC markedly attenuated cocaine-induced reinstatement of cocaine seeking. These results suggest that stimulation of D1 receptors in the dorsal mPFC plays a crucial role in cocaine-induced reinstatement of cocaine seeking, whereas the suppressant effect of DBH inhibitors and L-DOPA on drug-induced reinstatement is mediated by a supra-maximal stimulation of D1 receptors leading to their inactivation.

  8. Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia

    National Research Council Canada - National Science Library

    Aguilar-Valles, Argel; Flores, Cecilia; Luheshi, Giamal N

    2010-01-01

    .... Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function...

  9. Hypothermia-induced loss of endothelial barrier function is restored after dopamine pretreatment : Role of p42/p44 activation

    NARCIS (Netherlands)

    Brinkkoetter, Paul-Thomas; Beck, Grietje C.; Gottmann, Uwe; Loesel, Ralf; Schnetzke, Ulf; Rudic, Boris; Hanusch, Christine; Rafat, Neysan; Liu, Zhenzi; Weiss, Christel; Leuvinik, Henri G. D.; Ploeg, Rutger; Braun, Claude; Schnuelle, Peter; van der Woude, Fokko J.; Yard, Benito A.

    2006-01-01

    Background. Donor dopamine usage is associated with improved immediate graft function after renal transplantation. Although prolonged cold preservation results in an increased vascular permeability, the present study was conducted to examine in vitro and in vivo if dopamine Pretreatment influences

  10. Effect of morphine and lacosamide on levels of dopamine and 5-HIAA in brain regions of rats with induced hypoglycemia.

    Science.gov (United States)

    Guzman, D Calderon; Garcia, E Hernandez; Mejia, G Barragan; Olguin, H Juarez; Gonzalez, J A Saldivar; Labra Ruiz, N A

    2014-01-15

    The study aimed to determine the effect of morphine and lacosamide on levels of dopamine and 5-HIAA in a hypoglycemic model. Female Wistar rats (n = 30), mean weight of 180 g were treated as follow: Group 1 (control) received 0.9% NaCl, Group II; morphine (10 mg kg(-1)), Group III; lacosamide (10 mg kg(-1)), Group IV; insulin (10 U.I. per rat), Group V; morphine (10 mg kg(-1))+insulin, Group VI; lacosamide (10 mg kg(-1))+ insulin. All administrations were made intraperitoneally every 24 h, for 5 days. Animals were sacrificed after the last dose to measure the levels of glucose in blood; dopamine and 5-HIAA in cortex, hemispheres and cerebellum/medulla oblongata regions. Levels of glucose decreased significantly in animals treated with morphine, lacosamide and all groups that received insulin alone or combined with respect to control group. Levels of Dopamine diminished significantly in cortex and increased significantly in hemispheres of animals that received morphine. In cortex, 5-HIAA increase significantly in the groups treated with morphine, morphine+insulin and lacosamide+insulin, however a significant decrease of the same substance was witnessed in cerebellum and medulla oblongata of animals that received morphine or lacosamide plus insulin. GSH increased significantly in cortex and cerebellum/medulla oblongata of animals treated with morphine and lacosamide alone or combined with insulin. Lipid peroxidation decreased significantly in cortex and cerebellum/medulla oblongata of groups that received lacosamide alone or combined with insulin. These results indicate that hypoglycemia induced changes in cellular regulation while morphine and lacosamide are accompanied by biochemical responses.

  11. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement

    Science.gov (United States)

    Beckmann, Joshua S.; Meyer, Andrew C.; Pivavarchyk, M.; Horton, David B.; Zheng, Guangrong; Smith, Andrew M.; Wooters, Thomas E.; McIntosh, J. Michael; Crooks, Peter A.; Bardo, Michael T.

    2015-01-01

    α6β2* nicotinic acetylcholine receptors (nACh Rs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [3H]nicotine and [3H]methyllyca-conitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [3H]nicotine or [3H]methylly-caconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule

  12. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain.

    Science.gov (United States)

    Xin, Yanmei; Li, Zhenzhen; Wu, Wenlong; Fu, Baihe; Wu, Hongjun; Zhang, Zhonghai

    2017-01-15

    For implementing sensitive and selective detection of biological molecules, the biosensors are been designed more and more complicated. The exploration of detection platform in a simple way without loss their sensitivity and selectivity is always a big challenge. Herein, a prototype of recognition biomolecule unit-free photoelectrochemical (PEC) sensing platform with self-cleaning activity is proposed with TiO2 nanotube photonic crystal (TiO2 NTPCs) materials as photoelectrode, and dopamine (DA) molecule as both sensitizer and target analyte. The unique adsorption between DA and TiO2 NTPCs induces the formation of charge transfer complex, which not only expends the optical absorption of TiO2 into visible light region, thus significantly boosts the PEC performance under illumination of visible light, but also implements the selective detection of DA on TiO2 photoelectrode. This simple but efficient PEC analysis platform presents a low detection limit of 0.15nm for detection of DA, which allows to realize the sensitive and selective determination of DA release from the mouse brain for its practical application after coupled with a microdialysis probe. The DA functionalized TiO2 NTPCs PEC sensing platform opens up a new PEC detection model, without using extra-biomolecule auxiliary, just with target molecule naturally adsorbed on the electrode for sensitive and selective detection, and paves a new avenue for biosensors design with minimalism idea.

  13. Intrarenal Dopamine Attenuates DOCA/HS-Induced Blood Pressure Elevation in Part through Activation of a Medullary COX-2 Pathway

    OpenAIRE

    Yao, Bing; Raymond C. Harris; Zhang, Ming-Zhi

    2009-01-01

    Locally produced dopamine in the renal proximal tubule inhibits salt and fluid reabsorption, and a dysfunctional intrarenal dopaminergic system has been reported in essential hypertension and experimental hypertension models. Using catechol-O-methyl-transferase knockout (COMT−/−) mice, which have increased renal dopamine due to deletion of the major renal dopamine metabolizing enzyme, we investigated the effect of intrarenal dopamine on the development of hypertension in the deoxycorticostero...

  14. Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF.

    Science.gov (United States)

    Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle

    2017-02-08

    Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum.SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are

  15. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α-synuclein.

    Science.gov (United States)

    Lam, Hoa A; Wu, Nanping; Cely, Ingrid; Kelly, Rachel L; Hean, Sindalana; Richter, Franziska; Magen, Iddo; Cepeda, Carlos; Ackerson, Larry C; Walwyn, Wendy; Masliah, Eliezer; Chesselet, Marie-Françoise; Levine, Michael S; Maidment, Nigel T

    2011-07-01

    Overexpression or mutation of α-synuclein (α-Syn), a protein associated with presynaptic vesicles, causes familial forms of Parkinson's disease in humans and is also associated with sporadic forms of the disease. We used in vivo microdialysis, tissue content analysis, behavioral assessment, and whole-cell patch clamp recordings from striatal medium-sized spiny neurons (MSSNs) in slices to examine dopamine transmission and dopaminergic modulation of corticostriatal synaptic function in mice overexpressing human wild-type α-Syn under the Thy1 promoter (α-Syn mice). Tonic striatal extracellular dopamine and 3-methoxytyramine levels were elevated in α-Syn mice at 6 months of age, prior to any reduction in total striatal tissue content, and were accompanied by an increase in open-field activity. Dopamine clearance and amphetamine-induced dopamine efflux were unchanged. The frequency of MSSN spontaneous excitatory postsynaptic currents (sEPSCs) was lower in α-Syn mice. Amphetamine reduced sEPSC frequency in wild types (WTs) but produced no effect in α-Syn mice. Furthermore, whereas quinpirole reduced and sulpiride increased sEPSC frequency in WT mice, they produced the opposite effects in α-Syn mice. These observations indicate that overexpression of α-Syn alters dopamine efflux and D2 receptor modulation of corticostriatal glutamate release at a young age. At 14 months of age, the α-Syn mice presented with significantly lower striatal tissue dopamine and tyrosine hydroxylase content relative to WT littermates, accompanied by an L-DOPA-reversible sensory motor deficit. Together, these data further validate this transgenic mouse line as a slowly progressing model of Parkinson's disease and provide evidence for early dopamine synaptic dysfunction prior to loss of striatal dopamine. Copyright © 2011 Wiley-Liss, Inc.

  16. In Vivo Microdialysis in Awake, Freely Moving Rats Demonstrates HIV-1 Tat-Induced Alterations in Dopamine Transmission

    Science.gov (United States)

    Ferris, Mark J.; Frederick-Duus, Danielle; Fadel, Jim; Mactutus, Charles F.; Booze, Rosemarie M.

    2013-01-01

    Individuals infected with human immunodeficiency virus (HIV) may develop neuropsychological impairment, and a modest percentage may progress to HIV-associated dementia (HAD). Research using human and nonhuman, in vitro and in vivo models, demonstrates that subcortical dopamine (DA) systems may be particularly vulnerable to HIV-induced neurodegeneration. The goal of the current investigation is to provide an understanding of the extent to which the HIV-1 protein Tat induces alterations in striatal DA transmission using in vivo brain microdialysis in awake, freely moving rats. The current study was designed to investigate Tat-induced neuronal dysfunction between 24-h and 48-h post-Tat administration, and demonstrates a reduction in evoked DA for the Tat-treated group relative to vehicle-treated group at 24 and 48 h. The Tat-induced reduction of DA overflow by 24 h suggests dysfunction of nerve terminals, and a compromised DA system in Tat-treated animals. Furthermore, the current study provides direct support for HIV-associated decline of DA function at a systemic level, helping to characterize the functional outcome of the relatively large amount of research on the molecular and behavioral levels of HIV-induced neurotoxicity. This initial study may provide additional characteristics of Tat-induced neuronal dysfunction to inform research on therapeutic intervention, and it provides a springboard for future in vivo research currently needed in the field. PMID:19086089

  17. 5-hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: a comparative study using in vivo microdialysis.

    Science.gov (United States)

    Matsumoto, T; Maeno, Y; Kato, H; Seko-Nakamura, Y; Monma-Ohtaki, J; Ishiba, A; Nagao, M; Aoki, Y

    2014-08-01

    Using in vivo microdialysis, a comparative study was conducted to examine the effects of amphetamine-related compounds (methamphetamine, MAP; 3,4-methylenedioxymethamphetamine, MDMA; p-methoxyamphetamine, PMA; p-methoxymethamphetamine, PMMA; 4-methylthioamphetamine, 4-MTA; 3,4,5-trimethoxyamphetamine, TMA; 2,5-dimethoxy-4-iodoamphetamine, DOI) on extracellular levels of serotonin (5-HT) and dopamine (DA). Dialysates were assayed using HPLC equipped with electrochemical detector following i.p. administration with each drug at a dose of 5 mg/kg. MAP was found to drastically and rapidly increase 5-HT and DA levels (870% and 1460%, respectively). PMA, PMMA, and 4-MTA slightly increased DA levels (150-290%) but remarkably increased 5-HT levels (540-900%). In contrast, TMA and DOI caused no detectable changes in levels of both monoamines. We observed that the potent DA-releasing action of MAP was remarkably decreased by introduction of methoxy or methylthio group at the para position (MAP vs. PMMA or 4-MTA), but introduction of two additional adjacent methoxy groups into PMA totally abolished its 5-HT-/DA-releasing action (PMA vs. TMA). In addition, para-mono-substituted compounds inhibited both monoamine oxidase (MAO) enzymes more strongly than other compounds; PMA and 4-MTA exhibited submicromolar IC50 values for MAO-A. On the other hand, TMA scarcely affected the activity of both MAO enzymes as well as extracellular levels of 5-HT and DA. In this comparative study, MDMA, PMA, and 4-MTA functioned similar to PMMA, a typical empathogen; these findings therefore could be helpful in clarifying the psychopharmacological properties of amphetamine-related, empathogenic designer drugs.

  18. Mediating effect of dopamine D3 receptors on Jak2 and GABAAα1 expression in mouse brains induced by cocaine

    Institute of Scientific and Technical Information of China (English)

    LIU Nu-yun; ZHANG Lu; ZHANG Lin; WANG Xiao-ning

    2007-01-01

    Background Cocaine addiction may involve complex neuroadaptations, including many changes of genes expression.Dopamine D3 receptors play an important role in cocaine addiction; however, its role in cocaine induced gene expression change is poorly understood. To identify the changes in gene expression induced by repeated cocaine exposure through D3 dopamine receptors, we compared the expression of four molecules: Janus kinase 2 (Jak2), g-aminobutanoic acid receptor subunit alpha 1 (GABAAα1), glutamate receptor AMPA3 alpha 3 (GluR 3) and stromal cell derived factor 1 (SDF1). These four have been implicated in mediating the actions of cocaine in the nucleus accumbens (NAc) and caudoputamen (CPu) in mice after acute and repeated cocaine exposure.Methods For the acute and repeated injections, the mice were divided into four groups: 30 mg/kg cocaine, nafadotride 0.5 mg/kg + cocaine 30 mg/kg, nafadotride 0.5 mg/kg, and saline as the basal group. The expression of Jak2, GABAAα1,GluR 3 and SDF1 were assayed by Western blot, quantitative real-time RT-PCR and immunohistochemistry.Results Twenty-four hours after seven consecutive days of repeated cocaine exposure, the expression of GABAAα1 decreased in cocaine group compared with basal line and further decreased in the cocaine + nafadotride group and remained at basal level in the nafadotride group. Similarly, the Jak2 expression decreased in cocaine group compared with base line. However, the levels of Jak2 increased in cocaine + nafadotride group compared with cocaine group, while remained at basal level in nafadotride group.Conclusions GABAAα1 and Jak2 may be involved in chronic cocaine induced neuroadaptations. D3 dopaminereceptors play an important role in the expression of these genes.

  19. Repeated administration of D-amphetamine induces loss of [I-123]FP-CIT binding to striatal dopamine transporters in rat brain: a validation study

    NARCIS (Netherlands)

    J. Booij; K. de Bruin; W.B. Gunning

    2006-01-01

    In recent years, several PET and SPECT studies have shown loss of striatal dopamine transporter (DAT) binding in arnphetamine (AMPH) users. However, the use of DAT SPECT tracers to detect AMPH-induced changes in DAT binding has not been validated. We therefore examined if repeated administration of

  20. N-Octanoyl Dopamine Treatment of Endothelial Cells Induces the Unfolded Protein Response and Results in Hypometabolism and Tolerance to Hypothermia

    NARCIS (Netherlands)

    Stamellou, Eleni; Fontana, Johann; Wedel, Johannes; Ntasis, Emmanouil; Sticht, Carsten; Becker, Anja; Pallavi, Prama; Wolf, Kerstin; Kraemer, Bernhard K.; Hafner, Mathias; van Son, Willem J.; Yard, Benito A.

    2014-01-01

    Aim: N-acyl dopamines (NADD) are gaining attention in the field of inflammatory and neurological disorders. Due to their hydrophobicity, NADD may have access to the endoplasmic reticulum (ER). We therefore investigated if NADD induce the unfolded protein response (UPR) and if this in turn influences

  1. Failure of growth hormone-suppressing agents to affect TSH-releasing hormone- and LH-releasing hormone-induced growth hormone release in acromegaly.

    Science.gov (United States)

    Nakagawa, K; Obara, T

    1977-01-01

    In patients with acromegaly whose basal plasma GH levels were suppressed with 9 mg/day of dexamethasone for 2 days, TRH-(6 cases) and LHRH-(1 case) induced GH release were unaffected when the responses were compared to the basal levels. Phentolamine infusion, 70 mg in 150 min, or hyperglycemia induced by iv infusion of 700 ml of 50% glucose solution also did not suppress TRH-induced GH release in 2 acromegalic patients whose basal GH levels were lowered with these agents alone. These results seem to indicate that dexamethasone does not affect TRH- or LHRH-induced GH release per se, but affects the basal state which determines the absolute level of response. They also support the concept that TRH and LHRH act directly on pituitary tumor cells to release GH in acromegaly.

  2. Optogenetics reveals a role for accumbal medium spiny neurons expressing dopamine D2 receptors in cocaine-induced behavioral sensitization.

    Science.gov (United States)

    Song, Shelly Sooyun; Kang, Byeong Jun; Wen, Lei; Lee, Hyo Jin; Sim, Hye-Ri; Kim, Tae Hyong; Yoon, Sehyoun; Yoon, Bong-June; Augustine, George J; Baik, Ja-Hyun

    2014-01-01

    Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc) have been proposed to contribute to drug-mediated addictive behaviors. Here we have used an optogenetic approach to examine the role of NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2Rs) in cocaine-induced behavioral sensitization. Adeno-associated viral vectors encoding channelrhodopsin-2 (ChR2) were delivered into the NAc of D2R-Cre transgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2R-MSNs form local inhibitory circuits, because photostimulation of D2R-MSN evoked inhibitory postsynaptic currents (IPSCs) in neighboring MSNs. Photostimulation of NAc D2R-MSN in vivo affected neither the initiation nor the expression of cocaine-induced behavioral sensitization. However, photostimulation during the drug withdrawal period attenuated expression of cocaine-induced behavioral sensitization. These results show that D2R-MSNs of NAc play a key role in withdrawal-induced plasticity and may contribute to relapse after cessation of drug abuse.

  3. Effects of the triple monoamine uptake inhibitor amitifadine on pain-related depression of behavior and mesolimbic dopamine release in rats.

    Science.gov (United States)

    Miller, Laurence L; Leitl, Michael D; Banks, Matthew L; Blough, Bruce E; Negus, S Stevens

    2015-01-01

    Pain-related depression of behavior and mood is a key therapeutic target in the treatment of pain. Clinical evidence suggests a role for decreased dopamine (DA) signaling in pain-related depression of behavior and mood. Similarly, in rats, intraperitoneal injection of dilute lactic acid (IP acid) serves as a chemical noxious stimulus to produce analgesic-reversible decreases in both (1) extracellular DA levels in nucleus accumbens (NAc) and (2) intracranial self-stimulation (ICSS), an operant behavior reliant on NAc DA. Intraperitonial acid-induced depression of ICSS is blocked by DA transporter (DAT) inhibitors, but clinical viability of selective DAT inhibitors as analgesics is limited by abuse potential. Drugs that produce combined inhibition of both DA and serotonin transporters may retain efficacy to block pain-related behavioral depression with reduced abuse liability. Amitifadine is a "triple uptake inhibitor" that inhibits DAT with approximately 5- to 10-fold weaker potency than it inhibits serotonin and norepinephrine transporters. This study compared amitifadine effects on IP acid-induced depression of NAc DA and ICSS and IP acid-stimulated stretching in male Sprague-Dawley rats. Amitifadine blocked IP acid-induced depression of both NAc DA and ICSS and IP acid-stimulated stretching. In the absence of the noxious stimulus, amitifadine increased NAc levels of both DA and serotonin, and behaviorally, amitifadine produced significant but weak abuse-related ICSS facilitation. Moreover, amitifadine was more potent to block IP acid-induced depression of ICSS than to facilitate control ICSS. These results support consideration of amitifadine and related monoamine uptake inhibitors as candidate analgesics for treatment of pain-related behavioral depression.

  4. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson......'s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1......, Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation...

  5. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine.

    Science.gov (United States)

    Pérez-Rodríguez, Maribel; García-Mendoza, Esperanza; Farfán-García, Eunice D; Das, Bhaskar C; Ciprés-Flores, Fabiola J; Trujillo-Ferrara, José G; Tamay-Cach, Feliciano; Soriano-Ursúa, Marvin A

    2017-06-06

    Several striatal toxins can be used to induce motor disruption. One example is MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), whose toxicity is accepted as a murine model of parkinsonism. Recently, 3-Thienylboronic acid (3TB) was found to produce motor disruption and biased neuronal damage to basal ganglia in mice. The aim of this study was to examine the toxic effects of four boronic acids with a close structural relationship to 3TB (all having a five-membered cycle), as well as boric acid and 3TB. These boron-containing compounds were compared to MPTP regarding brain access, morphological disruption of the CNS, and behavioral manifestations of such disruption. Data was collected through acute toxicity evaluations, motor behavior tests, necropsies, determination of neuronal survival by immunohistochemistry, Raman spectroscopic analysis of brain tissue, and HPLC measurement of dopamine in substantia nigra and striatum tissue. Each compound showed a distinct profile for motor disruption. For example, motor activity was not disrupted by boric acid, but was decreased by two boronic acids (caused by a sedative effect). 3TB, 2-Thienyl and 2-furanyl boronic acid gave rise to shaking behavior. The various manifestations generated by these compounds can be linked, in part, to different levels of dopamine (measured by HPLC) and degrees of neuronal damage in the basal ganglia and cerebellum. Clearly, motor disruption is not induced by all boronic acids with a five-membered cycle as substituent. Possible explanations are given for the diverse chemico-morphological changes and degrees of disruption of the motor system, considering the role of boron and the structure-toxicity relationship. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cysteine analogues potentiate glucose-induced insulin release in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, H.P.; Hehl, K.H.; Enz, G.; Setiadi-Ranti, A.; Verspohl, E.J.

    1986-12-01

    In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhance insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.

  7. Amisulpride-induced acute akathisia in OCD: an example of dysfunctional dopamine-serotonin interactions?

    Science.gov (United States)

    Ersche, Karen D; Cumming, Paul; Craig, Kevin J; Müller, Ulrich; Fineberg, Naomi A; Bullmore, Edward T; Robbins, Trevor W

    2012-06-01

    We report about a clinical observation in a well-characterized group of patients with obsessive-compulsive disorder (OCD) during an experimental medicine study in which a single dose of amisulpride (a selective D₂/₃ antagonist) was administered. Almost half of the OCD patients, in particular those with less severe obsessive-compulsive symptoms, experienced acute akathisia in response to the amisulpride challenge. This unexpectedly high incidence of akathisia in the selective serotonin reuptake inhibitor (SSRI)-treated patients with OCD suggests that individual differences in dopamine-serotonin interactions underlie the clinical heterogeneity of OCD, and may thus explain the insufficiency of SSRI monotherapy in those patients not experiencing a satisfactory outcome in symptom reduction. We further speculate about the neuropathology possibly underlying this clinical observation and outline a testable hypothesis for future molecular imaging studies.

  8. Unaltered striatal dopamine release levels in young Parkin knockout, Pink1 knockout, DJ-1 knockout and LRRK2 R1441G transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gonzalo Sanchez

    Full Text Available Parkinson's disease (PD is one of the most prevalent neurodegenerative brain diseases; it is accompanied by extensive loss of dopamine (DA neurons of the substantia nigra that project to the putamen, leading to impaired motor functions. Several genes have been associated with hereditary forms of the disease and transgenic mice have been developed by a number of groups to produce animal models of PD and to explore the basic functions of these genes. Surprisingly, most of the various mouse lines generated such as Parkin KO, Pink1 KO, DJ-1 KO and LRRK2 transgenic have been reported to lack degeneration of nigral DA neuron, one of the hallmarks of PD. However, modest impairments of motor behavior have been reported, suggesting the possibility that the models recapitulate at least some of the early stages of PD, including early dysfunction of DA axon terminals. To further evaluate this possibility, here we provide for the first time a systematic comparison of DA release in four different mouse lines, examined at a young age range, prior to potential age-dependent compensations. Using fast scan cyclic voltammetry in striatal sections prepared from young, 6-8 weeks old mice, we examined sub-second DA overflow evoked by single pulses and action potential trains. Unexpectedly, none of the models displayed any dysfunction of DA overflow or reuptake. These results, compatible with the lack of DA neuron loss in these models, suggest that molecular dysfunctions caused by the absence or mutation of these individual genes are not sufficient to perturb the function and survival of mouse DA neurons.

  9. Dopamine D3 Receptor Mediates Preadolescent Stress-Induced Adult Psychiatric Disorders.

    Directory of Open Access Journals (Sweden)

    Joon H Seo

    Full Text Available Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39, followed by social isolation. When these mice reached adulthood (post-natal day > 90, we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood.

  10. Dopamine D3 Receptor Mediates Preadolescent Stress-Induced Adult Psychiatric Disorders.

    Science.gov (United States)

    Seo, Joon H; Kuzhikandathil, Eldo V

    2015-01-01

    Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood.

  11. Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release.

    Science.gov (United States)

    Heijink, Irene H; Pouwels, Simon D; Leijendekker, Carin; de Bruin, Harold G; Zijlstra, G Jan; van der Vaart, Hester; ten Hacken, Nick H T; van Oosterhout, Antoon J M; Nawijn, Martijn C; van der Toorn, Marco

    2015-05-01

    Cigarette smoking, the major causative factor for the development of chronic obstructive pulmonary disease, is associated with neutrophilic airway inflammation. Cigarette smoke (CS) exposure can induce a switch from apoptotic to necrotic cell death in airway epithelium. Therefore, we hypothesized that CS promotes neutrophil necrosis with subsequent release of damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), alarming the innate immune system. We studied the effect of smoking two cigarettes on sputum neutrophils in healthy individuals and of 5-day CS or air exposure on neutrophil counts, myeloperoxidase, and HMGB1 levels in bronchoalveolar lavage fluid of BALB/c mice. In human peripheral blood neutrophils, mitochondrial membrane potential, apoptosis/necrosis markers, caspase activity, and DAMP release were studied after CS exposure. Finally, we assessed the effect of neutrophil-derived supernatants on the release of chemoattractant CXCL8 in normal human bronchial epithelial cells. Cigarette smoking caused a significant decrease in sputum neutrophil numbers after 3 hours. In mice, neutrophil counts were significantly increased 16 hours after repeated CS exposure but reduced 2 hours after an additional exposure. In vitro, CS induced necrotic neutrophil cell death, as indicated by mitochondrial dysfunction, inhibition of apoptosis, and DAMP release. Supernatants from CS-treated neutrophils significantly increased the release of CXCL8 in normal human bronchial epithelial cells. Together, these observations show, for the first time, that CS exposure induces neutrophil necrosis, leading to DAMP release, which may amplify CS-induced airway inflammation by promoting airway epithelial proinflammatory responses.

  12. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  13. Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken.

    Science.gov (United States)

    Zendehdel, Morteza; Hasani, Keyvan; Babapour, Vahab; Mortezaei, Sepideh Seyedali; Khoshbakht, Yalda; Hassanpour, Shahin

    2014-03-01

    The present study was designed to examine the effects of intracerebroventricular (ICV) injection of Dopamine (10, 20 and 40 nmol), L-DOPA (dopamine precursor; 62.5, 125 and 250 nmol), 6-OHDA (dopamine inhibitor; 75, 150 and 300 nmol), SCH 23390 (D1 antagonist; 2.5, 5 and 10 nmol), AMI-193 (D2 antagonist; 2.5, 5 and 10 nmol), NGB2904 (D3 antagonist; 3.2, 6.4 and 12.8 nmol), L-741 T742 (D4 antagonist;1.5, 3 and 6 nmol) on food intake in FD3 chickens. At following, birds were ICV injected using 8-OH-DPAT (5-HT1A agonist; 15.25 nmol) and SB242084 (5-HT2C antagonist;1.5 μg) prior dopamine (40 nmol) injection. Cumulative food intake was determined until 3 h post-injection. According to the results, dopamine significantly decreased food intake in chickens (p dopamine on food intake was decreased by SCH 23390 pretreatment (P dopamine. In addition, hypophagic effect of dopamine was attenuated by SB242084 (P dopamine decrease food intake via D1 receptor and there is an interaction between dopaminergic and serotonergic systems via 5-HT2C receptor in chickens.

  14. Comparison of the MK-801-induced increase in non-rewarded appetitive responding with dopamine agonists and locomotor activity in rats.

    Science.gov (United States)

    Davis-MacNevin, Parnell L; Dekraker, Jordan; LaDouceur, Liane; Holahan, Matthew R

    2013-09-01

    Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA)- receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. Evidence has shown that MK-801 increases the probability of operant responding during extinction, possibly modeling perseveration, as would be seen in patients with schizophrenia. This MK-801-induced behavioral perseveration is reversed by dopamine receptor antagonism. To further explore the role of dopamine in this behavioral change, the current study sought to determine if the MK-801-induced increase in non-rewarded operant responding could be mimicked by dopamine agonism and determine how it was related to locomotor activity. Male Long Evans rats were treated systemically with MK-801, cocaine, GBR12909 or apomorphine (APO) and given a single trial operant extinction session, followed by a separate assessment of locomotor activity. Both MK-801 (0.05 mg/kg) and cocaine (10 mg/kg) significantly increased responding during the extinction session and both increased horizontal locomotor activity. No dose of GBR-12909 (5, 10 or 20 mg/kg) was found to effect non-rewarded operant responding or locomotor activity. APO (0.05, 0.5, 2 or 5 mg/kg) treatment produced a dose-dependent decrease in both operant responding and locomotor activity. These results suggest the possibility that, rather than a primary influence of increased dopamine concentration on elevating bar-pressing responses during extinction, other neurotransmitter systems may be involved.

  15. Summary data of potency and parameter information from semi-mechanistic PKPD modeling of prolactin release following administration of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride in rats

    Directory of Open Access Journals (Sweden)

    Amit Taneja

    2016-09-01

    Full Text Available We provide the reader with relevant data related to our recently published paper, comparing two mathematical models to describe prolactin turnover in rats following one or two doses of the dopamine D2 receptor antagonists risperidone, paliperidone and remoxipride, “A comparison of two semi-mechanistic models for prolactin release and prediction of receptor occupancy following administration of dopamine D2 receptor antagonists in rats” (Taneja et al., 2016 [1]. All information is tabulated. Summary level data on the in vitro potencies and the physicochemical properties is presented in Table 1. Model parameters required to explore the precursor pool model are presented in Table 2. In Table 3, estimated parameter comparisons for both models are presented, when separate potencies are estimated for risperidone and paliperidone, as compared to a common potency for both drugs. In Table 4, parameter estimates are compared when the drug effect is parameterized in terms of drug concentration or receptor occupancy.

  16. Dopamine-induced Tyrosine Phosphorylation of NR2B (Tyr1472 is Essential for ERK1/2 Activation and Processing of Novel Taste Information

    Directory of Open Access Journals (Sweden)

    Orit eDavid

    2014-07-01

    Full Text Available Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and is known to converge on ERK-MAPK signaling in neurons. Previous studies suggest that dopamine induces NMDA receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia, but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.

  17. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.

  18. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.

    Science.gov (United States)

    Leyton, V; Goles, N I; Fuenzalida-Uribe, N; Campusano, J M

    2014-02-07

    In Drosophila associative olfactory learning, an odor, the conditioned stimulus (CS), is paired to an unconditioned stimulus (US). The CS and US information arrive at the Mushroom Bodies (MB), a Drosophila brain region that processes the information to generate new memories. It has been shown that olfactory information is conveyed through cholinergic inputs that activate nicotinic acetylcholine receptors (nAChRs) in the MB, while the US is coded by biogenic amine (BA) systems that innervate the MB. In this regard, the MB acts as a coincidence detector. A better understanding of the properties of the responses gated by nicotinic and BA receptors is required to get insights on the cellular and molecular mechanisms responsible for memory formation. In recent years, information has become available on the properties of the responses induced by nAChR activation in Kenyon Cells (KCs), the main neuronal MB population. However, very little information exists on the responses induced by aminergic systems in fly MB. Here we have evaluated some of the properties of the calcium responses gated by Dopamine (DA) and Octopamine (Oct) in identified KCs in culture. We report that exposure to BAs induces a fast but rather modest increase in intracellular calcium levels in cultured KCs. The responses to Oct and DA are fully blocked by a VGCC blocker, while they are differentially modulated by cAMP. Moreover, co-application of BAs and nicotine has different effects on intracellular calcium levels: while DA and ni