WorldWideScience

Sample records for induced beta brain

  1. Ionizing radiation alters beta-endorphin-like immunoreactivity in brain but not blood

    International Nuclear Information System (INIS)

    Mickley, G.A.; Stevens, K.E.; Moore, G.H.; Deere, W.; White, G.A.; Gibbs, G.L.; Mueller, G.P.

    1983-01-01

    Previous behavioral and pharmacological studies have implicated endorphins in radiation-induced locomotor hyperactivity of the C57BL/6J mouse. However, the endogenous opiate(s) responsible for this behavioral change have not been identified. The present study measured beta-endorphin-like immunoreactivity (beta-END-LI) in brain, blood, and combined brain and pituitary samples from irradiated and sham-irradiated C57BL/6J mice. After radiation exposure, levels of beta-END-LI decreased significantly in the brain. A similar, but not statistically significant, decline was measured in combined brain and pituitary samples. Concentrations of blood beta-END-LI were not changed by irradiation. These radiogenic changes in beta-END-LI are in some ways similar to those observed after other stresses. However, radiation-induced locomotor hyperactivity may be mediated more by alterations of beta-END-LI in the brain than in the periphery. Other endogenous opiate systems may also contribute to this behavioral change in the C57BL/6J mouse

  2. Ionizing radiation alters beta-endorphin-like immunoreactivity in brain but not blood

    Energy Technology Data Exchange (ETDEWEB)

    Mickley, G.A.; Stevens, K.E.; Moore, G.H.; Deere, W.; White, G.A.; Gibbs, G.L.; Mueller, G.P.

    1983-12-01

    Previous behavioral and pharmacological studies have implicated endorphins in radiation-induced locomotor hyperactivity of the C57BL/6J mouse. However, the endogenous opiate(s) responsible for this behavioral change have not been identified. The present study measured beta-endorphin-like immunoreactivity (beta-END-LI) in brain, blood, and combined brain and pituitary samples from irradiated and sham-irradiated C57BL/6J mice. After radiation exposure, levels of beta-END-LI decreased significantly in the brain. A similar, but not statistically significant, decline was measured in combined brain and pituitary samples. Concentrations of blood beta-END-LI were not changed by irradiation. These radiogenic changes in beta-END-LI are in some ways similar to those observed after other stresses. However, radiation-induced locomotor hyperactivity may be mediated more by alterations of beta-END-LI in the brain than in the periphery. Other endogenous opiate systems may also contribute to this behavioral change in the C57BL/6J mouse.

  3. GSK-3beta is required for memory reconsolidation in adult brain.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kimura

    Full Text Available Activation of GSK-3beta is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD, which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3beta in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3beta knockout (GSK+/- mice to form memories. In the Morris water maze (MWM, learning and memory performance of GSK+/- mice was no different from that of wild-type (WT mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/- mice, suggesting that GSK+/- mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC, context memory was normally consolidated in GSK+/- mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/- mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3beta was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3beta in the adult brain.

  4. Effects Of Amitryptilin Administration on Rat Sera and Brain Beta-endorphins

    Directory of Open Access Journals (Sweden)

    Radivoj Jadrić

    2006-11-01

    Full Text Available The aim of our study was to establish the influence of antidepressive drugs on serum and brain beta-endorphins in experimental animals. Experiment was performed on albino Wistar rats. Antidepressant amitryptiline was used, and for quantification of sera and brain beta-endorphins RIA technique. Our results showed difference between sera and brain beta-endorphins concentration in amitryptiline pretreated animals, vs. those in serum and brain of control group treated with 0.95% NaCl. This study shows that use of psychoactive drugs have influence on sera and brain beta-endorphins concentration. Beta-endorphins could be of great importance, used as markers for evaluation of antidepressant drug effects.

  5. Signaling pathways of interleukin-1 actions in the brain: anatomical distribution of phospho-ERK1/2 in the brain of rat treated systemically with interleukin-1beta.

    Science.gov (United States)

    Nadjar, A; Combe, C; Busquet, P; Dantzer, R; Parnet, P

    2005-01-01

    Interleukin-1beta is released at the periphery during infection and acts on the nervous system to induce fever, neuroendocrine activation, and behavioral changes. These effects are mediated by brain type I IL-1 receptors. In vitro studies have shown the ability of interleukin-1beta to activate mitogen-activated protein kinase signaling pathways including p38, c-Jun N-terminal kinase and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). In contrast to other mitogen-activated protein kinases, little is known about ERK1/2 activation in the rat brain in response to interleukin-1beta. The aim of the present study was therefore to investigate spatial and temporal activation of ERK1/2 in the rat brain after peripheral administration of interleukin-1beta using immunohistochemistry to detect the phosphorylated form of the kinase. In non-stimulated conditions, phosphorylated ERK1/2 immunoreactivity was observed in neurons throughout the brain. Administration of interleukin-1beta (60 microg/kg, i.p.) induced the phosphorylation of ERK1/2 in areas at the interface between brain and blood or cerebrospinal fluid: meninges, circumventricular organs, endothelial like cells of the blood vessels, and in brain nuclei involved in behavioral depression, fever and neuroendocrine activation: paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala and arcuate nucleus. Double labeling of phosphorylated ERK1/2 and cell markers revealed the expression of phosphorylated ERK1/2 in neurons, astrocytes and microglia. Since phosphorylated ERK1/2 was found in structures in which type I IL-1 receptor has already been identified as well as in structures lacking this receptor, activation of ERK1/2 is likely to occur in response to both direct and indirect action of interleukin-1beta on its target cells.

  6. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  7. Effects of dietary alpha-tocopherol and beta-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1993-01-01

    -Tocopherol did not protect against CH3HgCl induced lipid peroxidation in the brain. Excess dietary beta-carotene further enhanced CH3HgCl induced lipid peroxidation in liver, kidney and brain. CH3HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione...

  8. Insulin inhibits amyloid beta-induced cell death in cultured human brain pericytes

    NARCIS (Netherlands)

    Rensink, Annemieke A M; Otte-Höller, Irene; de Boer, Roelie; Bosch, Remko R; ten Donkelaar, Hans J; de Waal, Robert M W; Verbeek, Marcel M; Kremer, Berry

    Amyloid-beta (Abeta) deposition in the cerebral arterial and capillary walls is one of the characteristics of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type. In vitro, Abeta1-40, carrying the "Dutch" mutation (DAbeta1-40), induced reproducible degeneration of

  9. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors.

    Science.gov (United States)

    Wang, Z; Liu, Q; Zhang, R; Liu, S; Xia, Z; Hu, Y

    2009-11-10

    The purpose of this work is to study the effect of catalpol, an iridoid from Rehmannia glutinosa on neurodegenerative changes induced by beta-amyloid peptide Abeta(25-35) or Abeta(25-35)+ibotenic acid and the underlying mechanism. Results showed that catalpol significantly improved the memory deficits in the neurodegenerative mouse model produced by injection of Abeta(25-35)+ibotenic acid to the nucleus magnocellularis basalis, yet it is neither a cholinesterase inhibitor nor a muscarinic (M) receptor agonist. Instead, the choline acetyl transferase (ChAT) activity and the M receptor density in brain were significantly decreased in the model mice and catalpol could significantly elevate their levels. Furthermore, the brain-derived neurotrophic factor (BDNF) content in brain was significantly decreased in the model mice and catalpol elevated it to normal level (83%+/-3% and 102%+/-2% of normal respectively). There is a significant positive correlation between BDNF content and memory. Primary culture of forebrain neurons revealed that aggregated Abeta(25-35) induced significant decrease of ChAT positive neuron number, neurite outgrowth length, and M receptor density, while catalpol added to the culture medium 2 h prior to Abeta addition showed significant dose dependent protective effect. Notably, 24 h and 48 h after the addition of Abeta to the cultured cells, the BDNF mRNA level in the neurons decreased to 76%+/-7% and 66%+/-3% of control without catalpol treatment, but became 128%+/-17% and 131%+/-23% of control with catalpol treatment. When the action of BDNF was inhibited by k252a in the cultured neurons, the protective effect of catalpol was completely (neurite outgrowth length) or partially (ChAT positive neuron number and the M receptor density) abolished. Taken together, catalpol improves memory and protects the forebrain neurons from neurodegeneration through increasing BDNF expression. Whether catalpol could reverse the neurodegenerative changes already

  10. Could the beta rebound in the EEG be suitable to realize a "brain switch"?

    Science.gov (United States)

    Pfurtscheller, G; Solis-Escalante, T

    2009-01-01

    Performing foot motor imagery is accompanied by a peri-imagery ERD and a post-imagery beta ERS (beta rebound). Our aim was to study whether the post-imagery beta rebound is a suitable feature for a simple "brain switch". Such a brain switch is a specifically designed brain-computer interface (BCI) with the aim to detect only one predefined brain state (e.g. EEG pattern) in ongoing brain activity. One EEG (Laplacian) recorded at the vertex during cue-based brisk foot motor imagery was analysed in 5 healthy subjects. The peri-imagery ERD and the post-imagery beta rebound (ERS) were analysed in detail between 6 and 40Hz and classified with two support vector machines. The ERD was detected in ongoing EEG (simulation of asynchronous BCI) with a true positive rate (TPR) of 28.4%+/-13.5 and the beta rebound with a TPR of 59.2%+/-20.3. In single runs with 30 cues each, the TPR for beta rebound detection was 78.6%+/-12.8. The false positive rate was always kept below 10%. The findings suggest that the beta rebound at Cz during foot motor imagery is a relatively stable and reproducible phenomenon detectable in single EEG trials. Our results indicate that the beta rebound is a suitable feature to realize a "brain switch" with one single EEG (Laplacian) channel only.

  11. The ontogeny of seizures induced by leucine-enkephalin and beta-endorphin.

    Science.gov (United States)

    Snead, O C; Stephens, H

    1984-06-01

    Rats ranging in postnatal age from 6 hours to 28 days were implanted with cortical and depth electrodes as well as an indwelling cannula in the lateral ventricle. We then administered varying amounts of the opiate peptides leucine-enkephalin and beta-endorphin intracerebroventricularly with continuous electroencephalographic monitoring. Leucine-enkephalin produced electrical seizure activity in rats as young as 2 days. beta-Endorphin administration was associated with seizures at the fifth postnatal day, with a high incidence of apnea resulting in death in animals as young as 6 hours. An adult seizure response to beta-endorphin and leucine-enkephalin was seen at 15 and 28 days of age, respectively. Naloxone blocked the seizure produced by these opiate peptides in all age groups. The data indicate that the opiate peptides are potent epileptogenic compounds in developing brain, that seizures induced by leucine-enkephalin differ from those caused by beta-endorphin, and that petit mal-like seizure activity can be an adult response in the rodent.

  12. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    Science.gov (United States)

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  13. [{sup 125}I]{beta}-CIT-FE and [{sup 125}I]{beta}-CIT-FP are superior to [{sup 125}I]{beta}-CIT for dopamine transporter visualization: Autoradiographic evaluation in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Ilonka; Hall, Haakan; Halldin, Christer; Swahn, Carl-Gunnar; Farde, Lars; Sedvall, Goeran

    1997-10-01

    The binding of the three dopamine transporter radioligands ([{sup 125}I]{beta}-CIT, [{sup 125}I]{beta}-CIT-FE, and [{sup 125}I]{beta}-CIT-FP) was studied using whole-hemisphere autoradiography on postmortem human brains. The autoradiograms revealed an intense and homogeneous labeling of the nucleus caudatus and putamen but also to varying extent to serotonergic and noradrenergic transporters of neocortex and thalamus. The order of specificity estimated (striatum over neocortex ratios) was {beta}-CIT-FP > {beta}-CIT-FE >> {beta}-CIT, suggesting that {beta}-CIT-FE and {beta}-CIT-FP should be preferred for in vivo studies of the dopamine transporter in the human brain.

  14. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  15. Effects of dietary [alpha]-tocopherol and [beta]-carotene on lipid peroxidation induced by methyl mercuric chloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Raun Andersen, H; Andersen, O [Department of Environmental Medicine, University of Odense, Odense (Denmark)

    1993-01-01

    Exposure of male CBA mice to methyl mercuric chloride, CH[sub 3]HgCl, (10-40 mg/l in drinking water) for 2 weeks resulted in dose-related Hg deposition and enhanced lipid peroxidation in liver, kidney and brain. Mice were fed well-defined semisynthetic diets containing different levels of [alpha]-tocopherol (10, 100 or 1000 mg/kg) or [beta]-carotene (1000, 10,000 or 100,000 IU/kg) for four weeks, two groups on each diet. The concentration of [alpha]-tocopherol and [beta]-carotene used corresponded to deficient, normal and high levels. During the last two weeks, one group on each diet was given 40 mg CH[sub 3]HgCl/l of drinking water. High dietary [alpha]-tocopherol protected against CH[sub 3]HgCl induced hepatic lipid peroxidation, whereas the [alpha]-tocopherol deficient diet further enhanced CH[sub 3]HgCl induced hepatic lipid peroxidation. Similar, though statistically non-significant effects occurred in the kidneys, [alpha]-tocopherol did not protect against CH[sub 3]HgCl induced lipid peroxidation in the brain. Excess dietary [beta]-carotene further enhanced CH[sub 3]HgCl induced lipid peroxidation in liver, kidney and brain. CH[sub 3]HgCl significantly decreased the activity of total glutathione peroxidase (T-GSH-Px) and Se-dependent glutathione peroxidase (Se-GSH-Px) in the kidneys in all dietary groups. High dietary [alpha]-tocopherol enhanced the activity of Se-GSH-Px in liver and kidney compared to the activity in mice fed the normal level of [alpha]-tocopherol. This occurred in mice exposed to CH[sub 3]-HgCl as well as in unexposed mice, and the difference between CH[sub 3]HgCl exposed and unexposed mice was not diminished. High dietary [alpha]-tocopherol increased the activity of both Se-GSH-Px and T-GSH-Px in the brain of CH[sub 3]HgCl-exposed mice. The dietary level of [beta]-carotene did not affect the activity of the two enzymes in the organs investigated. (au) (43 refs.).

  16. Method and apparatus for induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.

    1986-01-01

    This invention relates to a method and apparatus for inducing beta decay transition that are normally inhibited by angular momentum or parity considerations. According to one aspect of this invention a method of inducing nuclear beta decay transition comprises providing a medium which includes atomic nuclei that have forbidden beta decay transition in which the initial and final nuclear states do not have the same intrinsic parity or have total angular momenta which differ by more than one quantum unit of angular momentum, and applying to the medium an electromagnetic field which has an intensity sufficient to provide the angular momentum or intrinsic parity necessary to overcome the forbiddenness of the beta decay transition of the atomic nuclei, thereby to induce the beta decay transitions. According to another aspect of this invention an apparatus for inducing beta decay transition comprises a medium which includes atomic nuclei that have forbidden beta decay transitions in which the initial and final nuclear states do not have the same intrinsic parity or have total angular momenta which differ by more than one quantum unit of angular momentum, field producing means for producing an electromagnetic field in the medium and means for energising the field producing means to establish the field at an intensity sufficient to provide the angular momentum or intrinsic parity necessary to overcome the forbiddenness of the beta decay transitions of the atomic nuclei. The energy released in these induced nuclear transition is useful for the controlled production of power. The induced beta dacay transitions are also useful to reduce the halflives of long-lived fission product wastes from conventional nuclear fission power plants

  17. Validity of in vivo [123I]beta-CIT SPECT in detecting MDMA-induced neurotoxicity in rats

    NARCIS (Netherlands)

    de Win, Maartje M. L.; de Jeu, Rogier A. M.; de Bruin, Kora; Habraken, Jan B. A.; Reneman, Liesbeth; Booij, Jan; den Heeten, Gerard J.

    2004-01-01

    This study investigated the ability of a high-resolution pinhole single-photon emission computed tomography (SPECT) system, with [(123)I]beta-CIT as a radiotracer, to detect 3,4-methelenedioxymethamphetamine (MDMA, 'Ecstasy')-induced loss of serotonin transporters (SERTs) in the living rat brain. In

  18. [H-3]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain

    NARCIS (Netherlands)

    Zeinstra, E; Wilczak, N; De Keyser, J

    2000-01-01

    By using immunocytochemistry we previously reported the absence of beta(2) adrenergic receptors on astrocytes in multiple sclerosis (MS) white matter. Here, we measured beta(1) and beta(2) adrenergic receptor concentrations in postmortem brain sections of six MS patients and six controls by using

  19. The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo.

    Science.gov (United States)

    Xie, Zhongcong; Culley, Deborah J; Dong, Yuanlin; Zhang, Guohua; Zhang, Bin; Moir, Robert D; Frosch, Matthew P; Crosby, Gregory; Tanzi, Rudolph E

    2008-12-01

    An estimated 200 million patients worldwide have surgery each year. Anesthesia and surgery have been reported to facilitate emergence of Alzheimer's disease. The commonly used inhalation anesthetic isoflurane has previously been reported to induce apoptosis, and to increase levels and aggregation of Alzheimer's disease-associated amyloid beta-protein (Abeta) in cultured cells. However, the in vivo relevance has not been addressed. We therefore set out to determine effects of isoflurane on caspase activation and levels of beta-site amyloid precursor protein-cleaving enzyme (BACE) and Abeta in naive mice, using Western blot, immunohistochemistry, and reverse transcriptase polymerase chain reaction. Here we show for the first time that a clinically relevant isoflurane anesthesia (1.4% isoflurane for 2 hours) leads to caspase activation and modest increases in levels of BACE 6 hours after anesthesia in mouse brain. Isoflurane anesthesia induces caspase activation, and increases levels of BACE and Abeta up to 24 hours after anesthesia. Isoflurane may increase BACE levels by reducing BACE degradation. Moreover, the Abeta aggregation inhibitor, clioquinol, was able to attenuate isoflurane-induced caspase-3 activation in vivo. Given that transient insults to brain may lead to long-term brain damage, these findings suggest that isoflurane may promote Alzheimer's disease neuropathogenesis and, as such, have implications for use of isoflurane in humans, pending human study confirmation.

  20. Effects of thyroid status on presynaptic. cap alpha. 2-adrenoceptor and. beta. -adrenoceptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Atterwill, C.K.; Bunn, S.J.; Atkinson, D.J. (Development Neurobiology Unit, London (UK). Inst. of Neurology); Smith, S.L.; Heal, D.J. (Radcliffe Infirmary, Oxford (UK))

    1984-01-01

    The effect of thyroid status on noradrenergic synaptic function in the mature brain was examined by measuring presynaptic ..cap alpha..2- and postsynaptic ..beta..-adrenoceptors. Repeated triiodothyronine (T/sub 3/) administration to rats (100..mu..g/kg x 14 days hyperthyroid) caused an 18% increase in striatal ..beta..-adrenoceptors as shown by (/sup 3/H)-dihydroalprenolol binding with no change in membranes from cerebral cortex or hypothalamus. In contrast, hypothyroidism (propylthiouracil, PTU x 14 days) produced significant 12% and 30% reductions in striatal and hypothalamic ..beta..-adrenoceptors respectively with no change in the cerebral cortex. Presynaptic ..cap alpha..2-adrenoceptor function was measured in the two dysthyroid states using the clonidine-induced hypoactivity model. Experimental hyperthyroidism increased the degree of clonidine-induced hypoactivity, and suggests increased presynaptic ..cap alpha..2-adrenoceptor function compared with control rats, whereas hypothyroidism suppressed presynaptic ..cap alpha..2-adrenoceptor function. These results show firstly that changes of thyroid status in the mature rat may produce homeostatic alterations at central noradrenergic synapses as reflected by changes in pre- and postsynaptic adrenoceptor function. Secondly, there appear to be T/sub 3/-induced changes in ..beta..-adrenoceptors in the striatum where changes in dopaminergic neuronal activity have previously been demonstrated.

  1. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  2. Comparison of iodine-123 labelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane and 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)-N-(3-fluoropropyl)nortropane for imaging of the dopamine transporter in the living human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Bergstroem, K.A. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Ahonen, A. [Dept. of Clinical Chemistry, Oulu Univ. Central Hospital (Finland); Hiltunen, J. [MAP Medical Technologies Oy, Tikkakoski (Finland); Haukka, J. [MAP Medical Technologies Oy, Tikkakoski (Finland); Laensimies, E. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Wang Shaoyin [Research Biochemicals International (RBI), Natick, MA (United States); Neumeyer, J.L. [Research Biochemicals International (RBI), Natick, MA (United States)

    1995-04-01

    Several cocaine congeners are of potential for imaging the dopamine transporter (DAT). Previous studies have shown that iodine-123 labelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ([{sup 123}I]{beta}-CIT) is a promising radiotracer for imaging the serotonin (5-HT) and dopamine (DA) transporters in the living human brain with single-photon emission tomography (SPET). [{sup 123}I]{beta}-CIT was found to be not very practical for 1-day DAT imaging protocols since peak DAT uptake occurs later than 8 h. Here we report a pilot comparison of [{sup 123}I]{beta}-CIT and 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)-N-(3-fluoropropyl)nortropane ([{sup 123}I]{beta}-CIT-FP), using SPET imaging in four healthy male subjects. Peak uptake of [{sup 123}I]{beta}-CIT-FP into the basal ganglia occurred earlier (3-4 h after injection of tracer) than that of [{sup 123}I]{beta}-CIT (>8 h). However, the specific DAT binding of [{sup 123}I]{beta}-CIT-FP in the basal ganglia was somewhat less (0.813{+-}0.047) than that of [{sup 123}I]{beta}-CIT (0.922{+-}0.004). Imaging quality is excellent with both tracers and they are potentially of value for brain imaging in various neuropsychiatric disorders. (orig.)

  3. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  4. Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline.

    Science.gov (United States)

    Cole, James H; Annus, Tiina; Wilson, Liam R; Remtulla, Ridhaa; Hong, Young T; Fryer, Tim D; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Smith, Robert; Menon, David K; Zaman, Shahid H; Nestor, Peter J; Holland, Anthony J

    2017-08-01

    Individuals with Down syndrome (DS) are more likely to experience earlier onset of multiple facets of physiological aging. This includes brain atrophy, beta amyloid deposition, cognitive decline, and Alzheimer's disease-factors indicative of brain aging. Here, we employed a machine learning approach, using structural neuroimaging data to predict age (i.e., brain-predicted age) in people with DS (N = 46) and typically developing controls (N = 30). Chronological age was then subtracted from brain-predicted age to generate a brain-predicted age difference (brain-PAD) score. DS participants also underwent [ 11 C]-PiB positron emission tomography (PET) scans to index the levels of cerebral beta amyloid deposition, and cognitive assessment. Mean brain-PAD in DS participants' was +2.49 years, significantly greater than controls (p brain-PAD was associated with the presence and the magnitude of PiB-binding and levels of cognitive performance. Our study indicates that DS is associated with premature structural brain aging, and that age-related alterations in brain structure are associated with individual differences in the rate of beta amyloid deposition and cognitive impairment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Timing of neurodegeneration and beta-amyloid (Abeta) peptide deposition in the brain of aging kokanee salmon.

    Science.gov (United States)

    Maldonado, Tammy A; Jones, Richard E; Norris, David O

    2002-10-01

    Brains of kokanee salmon (Oncorhynchus nerka kennerlyi) in one of four reproductive stages (sexually immature, maturing, sexually mature, and spawning) were stained with cresyl violet and silver stain to visualize neurodegeneration. These reproductive stages correlate with increasing somatic aging of kokanee salmon, which die after spawning. Twenty-four regions of each brain were examined. Brains of sexually immature fish exhibited low levels of neurodegeneration, whereas neurodegeneration was more marked in maturing fish and greatest in spawning fish. Neurodegeneration was present in specific regions of the telencephalon, diencephalon, mesencephalon, and rhombencephalon. Pyknotic neurons were observed in all regions previously reported to be immunopositive for A beta. Regions that did not exhibit neurodegeneration during aging included the magnocellular vestibular nucleus, the nucleus lateralis tuberis of the hypothalamus, and Purkinje cells of the cerebellum, all of which also lack A beta; perhaps these regions are neuroprotected. In 14 of 16 brain areas for which data were available on both the increase in A beta deposition and pyknosis, neurodegeneration preceded or appeared more or less simultaneously with A beta production, whereas in only two regions did A beta deposition precede neurodegeneration. This information supports the hypothesis that A beta deposition is a downstream product of neurodegeneration in most brain regions. Other conclusions are that the degree of neurodegeneration varies among brain regions, neurodegeneration begins in maturing fish and peaks in spawning fish, the timing of neurodegeneration varies among brain regions, and some regions do not exhibit accelerated neurodegeneration during aging. Copyright 2002 Wiley Periodicals, Inc.

  6. [3H]-beta-endorphin binding in rat brain

    International Nuclear Information System (INIS)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-01-01

    The binding of [ 3 H]-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the 3 H-ligand is binding to more than one class of site. A portion of [ 3 H]-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of [ 3 H]-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers [ 3 H]-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of [ 3 H]-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo

  7. Beta-endorphin chimeric peptides: Transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain

    International Nuclear Information System (INIS)

    Pardridge, W.M.; Triguero, D.; Buciak, J.L.

    1990-01-01

    Water soluble peptides are normally not transported through the blood-brain barrier (BBB). Chimeric peptides may be transportable through the BBB and are formed by the covalent coupling of a nontransportable peptide to a transportable peptide vector, e.g. cationized albumin, using disulfide-based coupling reagents such as N-succinimidyl 3-[2-pyridyldithio(propionate)] (SPDP). The transcytosis of peptide into brain parenchyma, as opposed to vascular sequestration of blood-borne peptide, was quantified using an internal carotid artery perfusion/capillary depletion method. It is shown that [125I]beta-endorphin is not transported through the BBB, but is rapidly cleaved to free [125I] tyrosine via capillary peptidase. Therefore, chimeric peptide was prepared using [125I] [D-Ala2]beta-endorphin (DABE), owing to the resistance of this analogue to peptidase degradation. The [125I] DABE-cationized albumin chimeric peptide is shown to enter brain parenchyma at a rate comparable to that reported previously for unconjugated cationized albumin. When the [125I] DABE-cationized albumin chimeric peptide was incubated with rat brain homogenate at 37 C, the free [125I] DABE was liberated from the cationized albumin conjugate prior to its subsequent degradation into free [125I] tyrosine. Approximately 50% of the chimeric peptide was cleaved within 60 sec of incubation at 37 C. These studies demonstrate that (1) [125I]beta-endorphin is not transported through the BBB in its unconjugated form, (2) a [125I] DABE-cationized albumin chimeric peptide is transported through the BBB into brain parenchyma at a rate comparable to the unconjugated cationized albumin, and (3) brain contains the necessary disulfide reductases for rapid cleavage of the chimeric peptide into free beta-endorphin and this cleavage occurs before degradation of the [125I] DABE into [125I] tyrosine

  8. Beta-endorphin chimeric peptides: Transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain

    Energy Technology Data Exchange (ETDEWEB)

    Pardridge, W.M.; Triguero, D.; Buciak, J.L. (UCLA School of Medicine (USA))

    1990-02-01

    Water soluble peptides are normally not transported through the blood-brain barrier (BBB). Chimeric peptides may be transportable through the BBB and are formed by the covalent coupling of a nontransportable peptide to a transportable peptide vector, e.g. cationized albumin, using disulfide-based coupling reagents such as N-succinimidyl 3-(2-pyridyldithio(propionate)) (SPDP). The transcytosis of peptide into brain parenchyma, as opposed to vascular sequestration of blood-borne peptide, was quantified using an internal carotid artery perfusion/capillary depletion method. It is shown that (125I)beta-endorphin is not transported through the BBB, but is rapidly cleaved to free (125I) tyrosine via capillary peptidase. Therefore, chimeric peptide was prepared using (125I) (D-Ala2)beta-endorphin (DABE), owing to the resistance of this analogue to peptidase degradation. The (125I) DABE-cationized albumin chimeric peptide is shown to enter brain parenchyma at a rate comparable to that reported previously for unconjugated cationized albumin. When the (125I) DABE-cationized albumin chimeric peptide was incubated with rat brain homogenate at 37 C, the free (125I) DABE was liberated from the cationized albumin conjugate prior to its subsequent degradation into free (125I) tyrosine. Approximately 50% of the chimeric peptide was cleaved within 60 sec of incubation at 37 C. These studies demonstrate that (1) (125I)beta-endorphin is not transported through the BBB in its unconjugated form, (2) a (125I) DABE-cationized albumin chimeric peptide is transported through the BBB into brain parenchyma at a rate comparable to the unconjugated cationized albumin, and (3) brain contains the necessary disulfide reductases for rapid cleavage of the chimeric peptide into free beta-endorphin and this cleavage occurs before degradation of the (125I) DABE into (125I) tyrosine.

  9. Diurnal variation of. beta. -endorphin like immunoreactivity in rat brain, pituitary gland, and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, I.A.; Perry, M.L.S.; Carrasco, M.A.; Dias, R.D. (Rio Grande do Sul Univ., Porto Alegre (Brazil). Inst. de Biociencias); Orsingher, O.A. (Universidad Nacional de Cordoba (Argentina))

    1984-09-01

    ..beta..-endorphin like immunoreactivity was measured in the brain, pituitary gland and plasma of rats at 2 A.M, 8 A.M, 2 P.M and 8 P.M. Values were higher in the brain and pituitary gland at 8 P.M and in the plasma at 8 A.M and 2 P.M. The findings suggest a circadian rhythm in the production and release of ..beta..-endorphin immunoreactive material.

  10. Exercise- and cold-induced changes in plasma beta-endorphin and beta-lipotropin in men and women.

    Science.gov (United States)

    Viswanathan, M; Van Dijk, J P; Graham, T E; Bonen, A; George, J C

    1987-02-01

    The plasma beta-endorphin (beta-EP) and beta-lipotropin (beta-LPH) response of men, eumenorrheic women, and amenorrheic women (n = 6) to 1 h of rest or to a bicycle ergometer test [20 min at 30% maximum O2 uptake (VO2max), 20 min at 60% VO2max, and at 90% VO2max to exhaustion] was studied in both normal (22 degrees C) and cold (5 degrees C) environments. beta-EP and beta-LPH was measured by radioimmunoassay in venous samples collected every 20 min during rest or after each exercise bout. Exhaustive exercise at ambient temperature (Ta) 22 degrees C induced significant increases in plasma beta-EP and beta-LPH in all subjects as did work at 60% VO2max in amenorrheic and eumenorrheic women. During work at Ta 5 degrees C, the relative increase in beta-EP and beta-LPH was suppressed in eumenorrheic women and completely prevented in amenorrheic women. Although significant lowering of beta-EP and beta-LPH was observed in men and eumenorrheic women during rest at 5 degrees C, amenorrheic women maintained precold exposure levels. These findings suggest that plasma beta-EP and beta-LPH may reflect a thermoregulatory response to heat load. There appears to be a sexual dimorphism in exercise- and cold-induced release of beta-EP and beta-LPH and amenorrhea may be accompanied by alterations in these responses.

  11. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  12. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Anne Waschbisch

    Full Text Available Immunoglobulin-like transcript (ILT 3 and 4 are inhibitory receptors that modulate immune responses. Their expression has been reported to be affected by interferon, offering a possible mechanism by which this cytokine exerts its therapeutic effect in multiple sclerosis, a condition thought to involve excessive immune activity. To investigate this possibility, we measured expression of ILT3 and ILT4 on immune cells from multiple sclerosis patients, and in post-mortem brain tissue. We also studied the ability of interferon beta, alone or in combination with vitamin D, to induce upregulation of these receptors in vitro, and compared expression levels between interferon-treated and untreated multiple sclerosis patients. In vitro interferon beta treatment led to a robust upregulation of ILT3 and ILT4 on monocytes, and dihydroxyvitamin D3 increased expression of ILT3 but not ILT4. ILT3 was abundant in demyelinating lesions in postmortem brain, and expression on monocytes in the cerebrospinal fluid was higher than in peripheral blood, suggesting that the central nervous system milieu induces ILT3, or that ILT3 positive monocytes preferentially enter the brain. Our data are consistent with involvement of ILT3 and ILT4 in the modulation of immune responsiveness in multiple sclerosis by both interferon and vitamin D.

  13. Beta induced Bremsstrahlung dose rate in concrete shielding

    International Nuclear Information System (INIS)

    Manjunatha, H.C.

    2013-01-01

    Dosimetric study of beta-induced Bremsstrahlung in concrete is importance in the field of radiation protection. The efficiency, intensity and dose rate of beta induced Bremsstrahlung by 113 pure beta nuclides in concrete shielding is computed. The Bremsstrahlung dosimetric parameters such as the efficiency (yield), Intensity and dose rate of Bremsstrahlung are low for 199 Au and high for 104 Tc in concrete. The efficiency, Intensity and dose rate of Bremsstrahlung increases with maximum energy of beta nuclide (Emax) and modified atomic number (Zmod) of the target. The estimated Bremsstrahlung efficiency, Intensity and dose rate are useful in the calculations photon track-length distributions. These parameters are useful to determine the quality and quantity of the radiation (known as the source term). Precise estimation of this source term is very important in planning of radiation shielding. (author)

  14. Cationization increases brain distribution of an amyloid-beta protofibril selective F(ab')2 fragment

    OpenAIRE

    Syvänen, Stina; Edén, Desireé; Sehlin, Dag

    2017-01-01

    Antibodies and fragments thereof are, because of high selectivity for their targets, considered as potential therapeutics and biomarkers for several neurological disorders. However, due to their large molecular size, antibodies/fragments do not easily penetrate into the brain. The aim of the present study was to improve the brain distribution via adsorptive-mediated transcytosis of an amyloid-beta (A beta) protofibril selective F(ab')2 fragment (F(ab')2-h158). F(ab')2-h158 was cationized to d...

  15. (/sup 3/H)-beta-endorphin binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Houghten, R.A.; Johnson, N.; Pasternak, G.W.

    1984-10-01

    The binding of (/sup 3/H)-beta-endorphin to rat brain homogenates is complex. Although Scatchard analysis of saturation studies yields a straight line, detailed competition studies are multiphasic, suggesting that even at low concentrations of the compound, the /sup 3/H-ligand is binding to more than one class of site. A portion of (/sup 3/H)-beta-endorphin binding is sensitive to low concentrations of morphine or D-Ala2-Leu5-enkephalin (less than 5 nM). The inhibition observed with each compound alone (5 nM) is the same as that seen with both together (each at 5 nM). Thus, the binding remaining in the presence of both morphine and the enkephalin does not correspond to either mu or delta sites. The portion of (/sup 3/H)-beta-endorphin binding that is inhibited under these conditions appears to be equally sensitive to both morphine and the enkephalin and may correspond to mu1 sites. Treating membrane homogenates with naloxonazine, a mu1 selective antagonist, lowers (/sup 3/H)-beta-endorphin binding to the same degree as morphine and D-Ala2-Leu5-enkephalin alone or together. This possible binding of (/sup 3/H)-beta-endorphin to mu1 sites is consistent with the role of mu1 sites in beta-endorphin analgesia and catalepsy in vivo.

  16. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ying [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China); Sun, Gui-yuan, E-mail: sungy2004@sohu.com [Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang 110001 (China); Liu, Rui-tian, E-mail: rtliu@tsinghua.edu.cn [Tsinghua University School of Medicine, Haidian District, Beijing 100084 (China)

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  17. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  18. Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation.

    Science.gov (United States)

    Quinn, Emma J; Blumenfeld, Zack; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren A; Trager, Megan H; Hill, Bruce C; Kilbane, Camilla; Henderson, Jaimie M; Brontë-Stewart, Helen

    2015-11-01

    Investigations into the effect of deep brain stimulation (DBS) on subthalamic (STN) beta (13-30 Hz) oscillations have been performed in the perioperative period with the subject tethered to equipment. Using an embedded sensing neurostimulator, this study investigated whether beta power was similar in different resting postures and during forward walking in freely moving subjects with Parkinson's disease (PD) and whether STN DBS attenuated beta power in a voltage-dependent manner. Subthalamic local field potentials were recorded from the DBS lead, using a sensing neurostimulator (Activa(®) PC+S, Medtronic, Inc., Food and Drug Administration- Investigational Device Exemption (IDE)-, institutional review board-approved) from 15 PD subjects (30 STNs) off medication during lying, sitting, and standing, during forward walking, and during randomized periods of 140 Hz DBS at 0 V, 1 V, and 2.5/3 V. Continuous video, limb angular velocity, and forearm electromyography recordings were synchronized with neural recordings. Data were parsed to avoid any movement or electrical artifact during resting states. Beta power was similar during lying, sitting, and standing (P = 0.077, n = 28) and during forward walking compared with the averaged resting state (P = 0.466, n = 24), although akinetic rigid PD subjects tended to exhibit decreased beta power when walking. Deep brain stimulation at 3 V and at 1 V attenuated beta power compared with 0 V (P closed-loop DBS. © 2015 International Parkinson and Movement Disorder Society.

  19. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  20. GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines.

    Science.gov (United States)

    Panka, David J; Cho, Daniel C; Atkins, Michael B; Mier, James W

    2008-01-11

    Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.

  1. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  2. Initial experience with single-photon emission tomography using iodine-123-labelled 2[beta]-carbomethoxy-3[beta](4-iodophnyl)tropane in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J T [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology; Bergstroem, K A [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology; Vanninen, E [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology; Laulumaa, V [Kuopio Univ. Hospital (Finland). Dept. of Neurology; Hartikainen, P [Kuopio Univ. Hospital (Finland). Dept. of Neurology; Laensimies, E [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology

    1993-09-01

    The iodinated cocaine analogue 2[beta]-carbomethoxy-3[beta]-(4-iodophenyl)tropane ([sup 123]I[beta]-CIT), a new dopamine transporter, was preliminarily tested in human brain. Two normal volunteers and two patients with Parkinson's disease were imaged with a high-resolution single-photon emission tomography scanner. The specific binding of [sup 123]I[beta]-CIT in the basal ganglia and thalamus was high in normal volunteers. In addition, there was relatively intense uptake in the medial prefrontal area. Patients with Parkinson's disease who were older than controls showed significantly lower specific binding in the basal ganglia and thalamus and no uptake in the medial prefrontal cortex. This decrease in the dopamine transporter may be age related. (orig.)

  3. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    A. Gulberti

    2015-01-01

    Full Text Available Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD patients, rhythmic auditory stimulation (RAS induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  4. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus.

    Science.gov (United States)

    Gulberti, A; Moll, C K E; Hamel, W; Buhmann, C; Koeppen, J A; Boelmans, K; Zittel, S; Gerloff, C; Westphal, M; Schneider, T R; Engel, A K

    2015-01-01

    Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory-motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  5. In vitro and in vivo characterisation of nor-{beta}-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, K.A. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden)]|[Kuopio University Hospital, Clinical Physiology, FIN-70210 Kuopio (Finland); Halldin, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Hall, H. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Lundkvist, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Ginovart, N. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Swahn, C.G. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Farde, L. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden)

    1997-06-10

    Radiolabelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) has been used in clinical studies for the imaging of dopamine and serotonin transporters with single-photon emission tomography (SPET). 2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)nortropane (nor-{beta}-CIT) is a des-methyl analogue of {beta}-CIT, which in vitro has tenfold higher affinity (IC{sub 50}=0.36 nM) to the serotonin transporter than {beta}-CIT (IC{sub 50}=4.2 nM). Nor-{beta}-CIT may thus be a useful radioligand for imaging of the serotonin transporter. In the present study iodine-125 and carbon-11 labelled nor-{beta}-CIT were prepared for in vitro autoradiographic studies on post-mortem human brain cryosections and for in vivo positron emission tomography (PET) studies in Cynomolgus monkeys. Whole hemisphere autoradiography with [{sup 125}I]nor-{beta}-CIT demonstrated high binding in the striatum, the thalamus and cortical regions of the human brain. Addition of a high concentration (1 {mu}M) of citalopram inhibited binding in the thalamus and the neocortex, but not in the striatum. In PET studies with [{sup 11}C]nor-{beta}-CIT there was rapid uptake of radioactivity in the monkey brain (6% of injected dose at 15 min) and high accumulation of radioactivity in the striatum, thalamus and neocortex. Thalamus to cerebellum and cortex to cerebellum ratios were 2.5 and 1.8 at 60 min, respectively. The ratios obtained with [{sup 11}C]nor-{beta}-CIT were 20%-40% higher than those previously obtained with [{sup 11}C]{beta}-CIT. Radioactivity in the thalamus and the neocortex but not in the striatum was displaceable with citalopram (5 mg/kg). In conclusion, nor-{beta}-CIT binds to the serotonin transporter in the primate brain in vitro and in vivo and has potential for PET and SPET imaging of the serotonin transporter in human brain. (orig.). With 4 figs.

  6. Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons

    Directory of Open Access Journals (Sweden)

    Bianca Seifert

    2016-01-01

    Full Text Available The neurotrophin brain derived neurotrophic factor (BDNF is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer’s disease (AD. To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42 treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.

  7. The potential role of SOCS-3 in the interleukin-1beta-induced desensitization of insulin signaling in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Glondu, Murielle; Filloux, Chantal

    2004-01-01

    insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS...

  8. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells.

    Science.gov (United States)

    Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F

    2013-12-01

    Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.

  9. Inhibition of. beta. -bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis(. beta. -aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.R.; Betz, H.; Rehm, H.

    1988-02-09

    The presynaptically active snake venom neurotoxin ..beta..-bungarotoxin (..beta..-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K/sup +/ channels. Here the authors show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of /sup 125/I-labeled ..beta..-Butx to chick and rat brain membranes with apparent K/sub i/ values of 180 nM and 1100 nM, respectively. The mechanisms of inhibition of MCD peptide is noncompetitive, as is inhibition of /sup 125/I-..beta..-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. ..beta..-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca/sup 2 +/ by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of /sup 125/I-..beta..-Butx by lowering its affinity to brain membranes.

  10. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    Science.gov (United States)

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  11. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    International Nuclear Information System (INIS)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-01-01

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized [ 3 H]albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized [ 3 H]albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling [ 3 H]beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The [ 3 H]beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier

  12. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, A.K.; Eisenberg, J.B.; Pardridge, W.M.

    1987-11-05

    Cationized albumin (pI greater than 8), unlike native albumin (pI approximately 4), enters cerebrospinal fluid (CSF) rapidly from blood. This suggests that a specific uptake mechanism for cationized albumin may exist at the brain capillary wall, i.e. the blood-brain barrier. Isolated bovine brain capillaries rapidly bound cationized (/sup 3/H)albumin and approximately 70% of the bound radioactivity was resistant to mild acid wash, which is assumed to represent internalized peptide. Binding was saturable and a Scatchard plot gave a maximal binding capacity (Ro) = 5.5 +/- 0.7 micrograms/mgp (79 +/- 10 pmol/mgp), and a half-saturation constant (KD) = 55 +/- 8 micrograms/ml (0.8 +/- 0.1 microM). The binding of cationized (/sup 3/H)albumin (pI = 8.5-9) was inhibited by protamine, protamine sulfate, and polylysine (molecular weight = 70,000) with a Ki of approximately 3 micrograms/ml for all three proteins. The use of cationized albumin in directed delivery of peptides through the blood-brain barrier was examined by coupling (/sup 3/H)beta-endorphin to unlabeled cationized albumin (pI = 8.5-9) using the bifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)proprionate. The (/sup 3/H)beta-endorphin-cationized albumin chimeric peptide was rapidly bound and endocytosed by isolated bovine brain capillaries, and this was inhibited by unlabeled cationized albumin but not by unconjugated beta-endorphin or native bovine albumin. Cationized albumin provides a new tool for studying absorptive-mediated endocytosis at the brain capillary and may also provide a vehicle for directed drug delivery through the blood-brain barrier.

  13. INDUCTION OF INTERLEUKIN-1-BETA MESSENGER-RNA AFTER FOCAL CEREBRAL-ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    BUTTINI, M; SAUTER, A; BODDEKE, HWGM

    The expression of interleukin-1beta (IL-1beta) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery

  14. Correlation between cortical beta power and gait speed is suppressed in a parkinsonian model, but restored by therapeutic deep brain stimulation.

    Science.gov (United States)

    Polar, Christian A; Gupta, Rahul; Lehmkuhle, Mark J; Dorval, Alan D

    2018-05-30

    The motor cortex and subthalamic nucleus (STN) of patients with Parkinson's disease (PD) exhibit abnormally high levels of electrophysiological oscillations in the ~12-35 Hz beta-frequency range. Recent studies have shown that beta is partly carried forward to regulate future motor states in the healthy condition, suggesting that steady state beta power is lower when a sequence of movements occurs in a short period of time, such as during fast gait. However, whether this relationship between beta power and motor states persists upon parkinsonian onset or in response to effective therapy is unclear. Using a 6-hydroxy dopamine (6-OHDA) rat model of PD and a custom-built behavioral and neurophysiological recording system, we aimed to elucidate a better understanding of the mechanisms underlying cortical beta power and PD symptoms. In addition to elevated levels of beta oscillations, we show that parkinsonian onset was accompanied by a decoupling of movement intensity - quantified as gait speed - from cortical beta power. Although subthalamic deep brain stimulation (DBS) reduced general levels of beta oscillations in the cortex of all PD animals, the brain's capacity to regulate steady state levels of beta power as a function of movement intensity was only restored in animals with therapeutic DBS. We propose that, in addition to lowering general levels of cortical beta power, restoring the brain's ability to maintain this inverse relationship is critical for effective symptom suppression. Copyright © 2017. Published by Elsevier Inc.

  15. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test.

    Science.gov (United States)

    Strekalova, Tatyana; Markova, Nataliia; Shevtsova, Elena; Zubareva, Olga; Bakhmet, Anastassia; Steinbusch, Harry M; Bachurin, Sergey; Lesch, Klaus-Peter

    2016-01-01

    While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.

  16. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  17. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    International Nuclear Information System (INIS)

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-01-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with [ 3 H]-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with [ 3 H]-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension

  18. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    Science.gov (United States)

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  19. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum.

    Science.gov (United States)

    Trompette, Aurélien; Claustre, Jean; Caillon, Fabienne; Jourdan, Gérard; Chayvialle, Jean Alain; Plaisancié, Pascale

    2003-11-01

    Intestinal mucus is critically involved in the protection of the mucosa. An enzymatic casein hydrolysate and beta-casomorphin-7, a mu-opioid peptide generated in the intestine during bovine casein digestion, markedly induce mucus discharge. Because shorter mu-opioid peptides have been described, the effects of the opioid peptides in casein, beta-casomorphin-7, -6, -4, -4NH2 and -3, and of opioid neuropeptides met-enkephalin, dynorphin A and (D-Ala2,N-Me-Phe4,glycinol5)enkephalin (DAMGO) on intestinal mucus secretion were investigated. The experiments were conducted with isolated perfused rat jejunum. Mucus secretion under the influence of beta-casomorphins and opioid neuropeptides administered intraluminally or intra-arterially was evaluated using an ELISA for rat intestinal mucus. Luminal administration of beta-casomorphin-7 (1.2 x 10(-4) mol/L) provoked a mucus discharge (500% of controls) that was inhibited by naloxone, a specific opiate receptor antagonist. Luminal beta-casomorphin-6, -4 and -4NH2 did not modify basal mucus secretion, whereas intra-arterial administration of beta-casomorphin-4 (1.2 x 10(-6) mol/L) induced a mucus discharge. In contrast, intra-arterial administration of the nonopioid peptide beta-casomorphin-3 did not release mucus. Among the opioid neuropeptides, intra-arterial infusion of Met-enkephalin or dynorphin-A did not provoke mucus secretion. In contrast, beta-endorphin (1.2 x 10(-8) to 1.2 x 10(-6) mol/L) induced a dose-dependent release of mucus (maximal response at 500% of controls). DAMGO (1.2 x 10(-6) mol/L), a mu-receptor agonist, also evoked a potent mucus discharge. Our findings suggest that mu-opioid neuropeptides, as well as beta-casomorphins after absorption, modulate intestinal mucus discharge. Milk opioid-derived peptides may thus be involved in defense against noxious agents and could have dietary and health applications.

  20. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test

    Directory of Open Access Journals (Sweden)

    Tatyana Strekalova

    2016-01-01

    Full Text Available While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.

  1. Beta-induced fluorescence detection in liquid chromatography

    International Nuclear Information System (INIS)

    Malcolme-Lawes, D.J.; Massey, S.; Warwick, P.

    1981-01-01

    A theoretical analysis of beta-induced fluorescence is used to determine the factors which influence the sensitivity of the technique as applied to liquid chromatography. Equations are presented for detector response and for signal-to-noise ratios and the theoretical response for a typical detector is compared with experimentally determined values. (author)

  2. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; O' Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  3. Brain Metastases from Lung Cancer Show Increased Expression of DVL1, DVL3 and Beta-Catenin and Down-Regulation of E-Cadherin

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2014-06-01

    Full Text Available The susceptibility of brain to secondary formation from lung cancer primaries is a well-known phenomenon. In contrast, the molecular basis for invasion and metastasis to the brain is largely unknown. In the present study, 31 brain metastases that originated from primary lung carcinomas were analyzed regarding over expression of Dishevelled-1 (DVL1, Dishevelled-3 (DVL3, E-cadherin (CDH1 and beta-catenin (CTNNB1. Protein expressions and localizations were analyzed by immunohistochemistry. Genetic alterations of E-cadherin were tested by polymerase chain reaction (PCR/loss of heterozygosity (LOH. Heteroduplex was used to investigate mutations in beta-catenin. DVL1 and DVL3 showed over expression in brain metastasis in 87.1% and 90.3% of samples respectively. Nuclear staining was observed in 54.8% of cases for DVL1 and 53.3% for DVL3. The main effector of the Wnt signaling, beta-catenin, was up-regulated in 56%, and transferred to the nucleus in 36% of metastases. When DVL1 and DVL3 were up-regulated the number of cases with nuclear beta-catenin significantly increased (p = 0.0001. Down-regulation of E-cadherin was observed in 80% of samples. Genetic analysis showed 36% of samples with LOH of the CDH1. In comparison to other lung cancer pathologies, the diagnoses adenocarcinoma and small cell lung cancer (SCLC were significantly associated to CDH1 LOH (p = 0.001. Microsatellite instability was detected in one metastasis from adenocarcinoma. Exon 3 of beta-catenin was not targeted. Altered expression of Dishevelled-1, Dishevelled-3, E-cadherin and beta-catenin were present in brain metastases which indicates that Wnt signaling is important and may contribute to better understanding of genetic profile conditioning lung cancer metastasis to the brain.

  4. Epoetin beta for the treatment of chemotherapy-induced anemia: an update

    Directory of Open Access Journals (Sweden)

    Galli L

    2015-03-01

    Full Text Available Luca Galli,1 Clara Ricci,2 Colin Gerard Egan2 1Oncology Unit 2, University Hospital of Pisa, Pisa, Italy; 2Primula Multimedia SRL, Pisa, Italy Abstract: Epoetin beta belongs to the class of erythropoiesis-stimulating agents (ESAs that are currently available to treat anemic patients receiving chemotherapy. Chemotherapy-induced anemia affects a high percentage of cancer patients and, due to its negative effects on disease outcome and the patient’s quality of life, should be treated when first diagnosed. Initial trials with ESAs have shown efficacy in improving quality of life and reducing the need for blood transfusions in patients with chemotherapy-induced anemia. However, recent meta-analyses have provided conflicting data on the impact of ESAs on survival and tumor progression. Here we provide an overview of these recent data and review the role of epoetin beta in the treatment of chemotherapy-induced anemia over the past 20 years. Keywords: epoetin beta, erythropoietin, chemotherapy, cancer, anemia, treatment

  5. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  6. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  7. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  8. Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels.

    Science.gov (United States)

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Aleksandrova, Irina; Nesterova, Inna

    2008-09-26

    Alterations in electroencephalogram (EEG) asymmetry and deficits in interhemispheric integration of information have been shown in patients with Alzheimer's disease (AD). However, no direct evidence of an association between EEG asymmetry, morphological markers in the brain, and cognition was found either in AD patients or in AD models. In this study we used rats with bilateral olfactory bulbectomy (OBX) as one of the AD models and measured their learning/memory abilities, brain beta-amyloid levels and EEG spectra in symmetrical frontal and occipital cortices. One year after OBX or sham-surgery, the rats were tested with the Morris water paradigm and assigned to three groups: sham-operated rats, SO, and OBX rats with virtually normal, OBX(+), or abnormal, OBX(-), learning (memory) abilities. In OBX vs. SO, the theta EEG activity was enhanced to a higher extent in the right frontal cortex and in the left occipital cortex. This produced significant interhemispheric differences in the frontal cortex of the OBX(-) rats and in the occipital cortex of both OBX groups. The beta1 EEG asymmetry in SO was attenuated in OBX(+) and completely eliminated in OBX(-). OBX produced highly significant beta2 EEG decline in the right frontal cortex, with OBX(-)>OBX(+) rank order of strength. The beta-amyloid level, examined by post-mortem immunological DOT-analysis in the cortex-hippocampus samples, was about six-fold higher in OBX(-) than in SO, but significantly less (enhanced by 82% vs. SO) in OBX(+) than in OBX(-). The involvement of the brain mediatory systems in the observed EEG asymmetry differences is discussed.

  9. Rapid and sensitive determination of beta-phenylethylamine in animal brains by high performance liquid chromatography with fluorometric detection.

    Science.gov (United States)

    Taga, C; Tsuji, M; Nakajima, T

    1989-05-01

    A reversed phase HPLC method with fluorometric detection for the analysis of beta-phenylethylamine has been developed using p-methoxyphenylethylamine as an internal standard. Two columns, containing 200 microL of Dowex 50-X8 and Amberlite CG-50 respectively, were used to prepare a fraction containing beta-phenylethylamine. The recoveries of beta-phenylethylamine and p-methoxyphenylethylamine were 53.9 +/- 9.4% and 68.1 +/- 12.4%, respectively, and elution profile of p-methoxyphenylethylamine was sufficiently well correlated with that of beta-phenylethylamine. Regional distributions of beta-phenylethylamine in rat and mouse brains were determined. The highest concentrations were found in hypothalamus and hippocampus in both animals.

  10. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier.

    Science.gov (United States)

    Banks, William A; Niehoff, Michael L; Drago, Denise; Zatta, Paolo

    2006-10-20

    A significant co-morbidity of Alzheimer's disease and cerebrovascular impairment suggests that cerebrovascular dysregulation is an important feature of dementia. Amyloid beta protein (Abeta), a relevant risk factor in Alzheimer's disease, has neurotoxic properties and is thought to play a critical role in the cognitive impairments. Previously, we demonstrated that the 42mer of Abeta (Abeta42) complexed with aluminum (Al-Abeta42) is much more cytotoxic than non-complexed Abeta42. The level of Abeta in the brain is a balance between synthesis, degradation, and fluxes across the blood-brain barrier (BBB). In the present paper, we determined whether complexing with aluminum affected the ability of radioactively iodinated Abeta to cross the in vivo BBB. We found that the rates of uptake of Al-Abeta42 and Abeta42 were similar, but that Al-Abeta42 was sequestered by brain endothelial cells much less than Abeta42 and so more readily entered the parenchymal space of the brain. Al-Abeta42 also had a longer half-life in blood and had increased permeation at the striatum and thalamus. Brain-to-blood transport was similar for Al-Abeta42 and Abeta42. In conclusion, complexing with aluminum affects some aspects of blood-to-brain permeability so that Al-Abeta42 would have more ready access to brain cells than Abeta42.

  11. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    Science.gov (United States)

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  12. The tremorolytic action of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is mediated by beta-adrenoceptors located in a deep peripheral compartment.

    Science.gov (United States)

    Abila, B; Wilson, J F; Marshall, R W; Richens, A

    1985-10-01

    The effects of intravenous propranolol 100 micrograms kg-1, sotalol 500 micrograms kg-1, timolol 7.8 micrograms kg-1, atenolol 125 micrograms kg-1 and placebo on essential, physiological and isoprenaline-induced tremor were studied. These beta-adrenoceptor blocker doses produced equal reduction of standing-induced tachycardia in essential tremor patients. Atenolol produced significantly less reduction of essential and isoprenaline-induced tremor than the non-selective drugs, confirming the importance of beta 2-adrenoceptor blockade in these effects. Propranolol and sotalol produced equal maximal inhibition of isoprenaline-induced tremor but propranolol was significantly more effective in reducing essential tremor. The rate of development of the tremorolytic effect was similar in essential, physiological and isoprenaline-induced tremors but all tremor responses developed significantly more slowly than the heart rate responses. It is proposed that these results indicate that the tremorolytic activity of beta-adrenoceptor blockers in essential, physiological and isoprenaline-induced tremor is exerted via the same beta 2-adrenoceptors located in a deep peripheral compartment which is thought to be in the muscle spindles.

  13. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease

    NARCIS (Netherlands)

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling; Brown, Peter

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been

  14. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    Science.gov (United States)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  15. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  16. The relative importance of relativistic induced interactions in the beta decay of 170Tm

    International Nuclear Information System (INIS)

    Bogdan, D.; Cristu, M.I.; Holan, S.; Faessler, A.

    1982-09-01

    The log ft-values, the spectrum shape functions, and the beta-gamma angular correlation coefficients of the 170 Tm beta decay are computed in the framework of relativistic formfactor formalism using asymmetric rotor model wavefunctions. Main vector and axial vector hadron currents being strongly hindered, the relative importance of induced interaction matrix elements is accurately estimated. Good agreement with experiment is obtained for the beta decay observables when the main induced interaction terms were taken into account. The contribution of the pseudoscalar term was found insignificant. (authors)

  17. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  18. Subacute brain atrophy induced by radiation therapy to the malignant brain tumors

    International Nuclear Information System (INIS)

    Asai, Akio; Matsutani, Masao; Takakura, Kintomo.

    1987-01-01

    In order to analyze brain atrophy after radiation therapy to the brain tumors, we calculated a CSF-cranial volume ratio on CT scan as an index of brain atrophy, and estimated dementia-score by Hasegawa's method in 91 post-irradiated patients with malignant brain tumors. Radiation-induced brain atrophy was observed in 51 out of 91 patients (56 %) and dementia in 23 out of 47 patients (49 %). These two conditions were closely related, and observed significantly more often in aged and whole-brain-irradiated patients. As radiation-induced brain atrophy accompanied by dementia appeared 2 - 3 months after the completion of radiation therapy, it should be regarded as a subacute brain injury caused by radiation therapy. (author)

  19. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  20. THE EFFECT OF BETA GLUCAN OF SACCHAROMYCES CEREVISAE ON THE INCREASE OF THE NUMBER OF BRAIN CELLS IN SUBSTANTIA NIGRA BRAIN OF PARKINSON’S WISTAR STRAIN RAT (RATTUS NORVEGICUS MODEL INDUCED WITH ROTENONE

    Directory of Open Access Journals (Sweden)

    Masruroh Rahayu

    2015-01-01

    Full Text Available ackground and aims. One of many neurodegenerative diseases afflicting the elderly is Parkinson. Beta glucan from Saccharomyces cerevisae is very potential to be used as a regenerative therapy of Parkinson's disease. Beta glucan can increase the mobilization of hematopoietic stem cells (HSCs from the bone marrow into the damaged tissues. Hematopoietic stem cells (HSCs which have been mobilized can regenerate and differentiate into brain cells so that the symptoms of Parkinson would be reduced. This research aims to find out the effects of the addition of Saccharomyces cerevisae toward the number of brain cells in substantia nigra Parkinson’s rat model. Method. The research was experimental in vivo using the draft of randomized post test only controlled group design. There were five groups that become the sample in this research with 5 rats for each group, i.e. negative control group, positive control group, Treatment Group 1, 2 and 3 (Rotenone + Saccharomyces cerevisae 18 mg/kgBB, 36 mg/kgBB, 72 mg/kgBBfor 4 weeks. Variable measured in this study was the number of brain cells in substantia nigra. The results of this study showed that Treatment Group 3 (72 mg/kgBB was a group with the largest number of brain cells than the other treatment groups. Statistical data obtained showed that the average number of brain cells in negative control group was 192.00 cells; positive control amounted to 116.80 cells; Treatment 1 amounted to 135.40 cells; Treatment 2 amounted to 140.80 cells; and Treatment 3 amounted to 161.80 cells. Result. The result of ANOVA test showed a significant difference between groups (p< 0.05, while the correlation test result indicated a strong correlation between the dose of Saccharomyces cerevisae and the number of substantia nigra of rat’s brain cells (r = 0,818. Conclusion. From this research, it can be concluded that the addition of Saccharomyces cerevisae with a dose of 18mg/kgBB, 36mg/kgBBdan 72 mg/kgBB is able to increase

  1. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    Science.gov (United States)

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  2. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety.

    Science.gov (United States)

    Schank, Jesse R; Liles, L Cameron; Weinshenker, David

    2008-06-01

    Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine's rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. In this study, we evaluated the performance of dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/-) mice, as measured by a decrease in open arm exploration. The Dbh -/- mice had normal baseline performance in the EPM but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/- mice following administration of disulfiram, a dopamine beta-hydroxylase (DBH) inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the beta-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/- and wild-type C57BL6/J mice, while the alpha(1) antagonist prazosin and the alpha(2) antagonist yohimbine had no effect. These results indicate that noradrenergic signaling via beta-adrenergic receptors is required for cocaine-induced anxiety in mice.

  3. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  4. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  5. Glucose-induced lipogenesis in pancreatic beta-cells is dependent on SREBP-1

    DEFF Research Database (Denmark)

    Sandberg, Maria B; Fridriksson, Jakob; Madsen, Lise

    2005-01-01

    High concentrations of glucose induce de novo fatty acid synthesis in pancreatic beta-cells and chronic exposure of elevated glucose and fatty acids synergize to induce accumulation of triglycerides, a phenomenon termed glucolipotoxicity. Here we investigate the role of sterol-regulatory element......, de novo fatty acid synthesis and lipid accumulation are induced primarily through sterol-regulatory elements (SREs) and not E-Boxes. Adenoviral expression of a dominant negative SREBP compromises glucose induction of some lipogenic genes and significantly reduces glucose-induction of de novo fatty...... acid synthesis. Thus, we demonstrate for the first time that SREBP activity is necessary for full glucose induction of de novo fatty acid synthesis in pancreatic beta-cells....

  6. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  7. Modulation of 17{beta}-estradiol-induced responses in fish by cytochrome P4501A1 inducing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.J.; Hinton, D.E. [Univ. of California, Davis, CA (United States)

    1995-12-31

    Some compounds which induce cytochrome P4501A1 (CYP1A1) are antiestrogenic in mammalian bioassay, and this effect is linked to aryl hydrocarbon (Ah) receptor. Liver of fish synthesizes estrogen-inducible egg yolk precursor protein vitellogenin (Vg) which is critical for oocyte maturation and ovarian development. To determine if Ah receptor-linked endocrine modulation could occur in fish liver, primary cultures of juvenile rainbow trout (Oncorhynchus mykiss) liver cells were co-administered 17{beta}-estradiol and CYP1A1 inducing compounds. Vitellogenin and albumin, estimated by ELISA measurement of concentration in the media 48 hrs after treatment, formed the basis for the test. Cellular CYP1A1 protein content and catalytic activity was estimated by ELISA and ethoxyresorufin-O-deethylase (EROD) activity assays respectively. Equivalent viability (mitochondrial dehydrogenase activity) and secretary functional capacity (albumin synthesis) were estimated and correlated with other results. In descending order, 2,3,4,7,8 pentachlorodibenzofuran (10{sup {minus}12} to 10{sup {minus}8} M) > 2,3,7,8 tetrachlorodibenzo-p-dioxin {approx_equal} 2,3,7,8 tetrachlorodibenzofuran (10{sup {minus}11} to 10{sup {minus}8} M) > {beta}-naphthoflavone (10{sup {minus}7} to 10{sup {minus}6} M) inhibited Vg synthesis in 17{beta}-estradiol treated liver cells. Potency of inhibition directly related to strength as an inducer of CYP1A1 protein. At 10-8 M, PCB congeners 77, 126, and 156 did not inhibit Vg synthesis and induced no or only moderate CYP1A1 protein. At 10-8 M, PCB congener 114, a weak CYP1A1 inducer, potentiated Vg synthesis relative to cells treated with 17{beta}-estradiol alone. This study increases their understanding of the consequences of hepatic CYP1A1 induction, forewarns of reproductive impairment of sexually maturing fishes exposed to CYP1A1 inducing compounds and argues for further, more detailed in vivo investigation.

  8. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  9. Blood supply to the brain and. beta. -endorphin and acth levels under the influence of thyrotrophin releasing hormone

    Energy Technology Data Exchange (ETDEWEB)

    Mirzoyan, R.S.; Ganshina, T.S.; Mirzoyan, R.A.; Ragimov, K.S.

    1985-08-01

    The authors studied beta-endorphin because of its possible mediator role in terms of the cerebrovascular effects of thyrotrophin releasing hormone (TRH), and also because of data in the literature on antagonistic relations between TRH and the endogenous opioid system of the brain. Beta-endorphin was determined by radioimmunoassay; its level was determined after its separation from the beta-lipotrophin fraction. The investigation showed that TRH has a marked depressant effect on cerebrovascular vasoconstrictor refleces. Elevation of the blood ACTH level causes an increase in BP and in the tone of the cerebral vessels. An absence of correlation between the beta-endorphin and ACTH levels in the blood and CSF under the influence of TRH is shown.

  10. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    Science.gov (United States)

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  12. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    Science.gov (United States)

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  13. SPECT imaging of dopamine and serotonin transporters with [[sup 123]I][beta]-CIT. Binding kinetics in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Bruecke, T; Asenbaum, S; Frassine, H; Podreka, I [Vienna Univ. (Austria). Neurologische Klinik; Kornhuber, J [Wuerzburg Univ. (Germany); Angelberger, P [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1993-01-01

    Single photon emission computerized tomography (SPECT) studies in non-human primates have previously shown that the cocaine derivative [[sup 123]I]-2-[beta]-carbomethoxy-3-[beta]-(4-iodophenyl)-tropane ([[sup 123]I][beta]-CIT) labels dopamine transporters in the striatum and serotonin transporters in the hypothalamus-midbrain area. Here, we report on the regional kinetic uptake of [[sup 123]I][beta]-CIT in the brain of 4 normal volunteers and 2 patients with Parkinson's disease. In healthy subjects striatal activity increased slowly to reach peak values at about 20 hours post injection. In the hypothalamus-midbrain area peak activities were observed at about 4 hours with a slow decrease thereafter. Low activity was observed in cortical and cerebellar areas. The striatal to cerebellar ratio was about 4 after 5 hours and 9 after 20 hours. In 2 patients with idiopathic Parkinson's disease striatal activity was markedly decreased while the activity in hypothalamus-midbrain areas was only diminished. Uptake into cortical and cerebellar areas appeared to be unchanged in Parkinson's disease. Consequently, in Parkinson's disease the striatal to cerebellar ratio was decreased to values around 2.5 after 20 hours. These preliminary methodological studies suggest that [[sup 123]I][beta]-CIT is a useful SPECT ligand for studying dopamine and possibly also serotonin transporters in the living human brain.

  14. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  15. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  16. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta

  17. Beta-endorphin in genetically hypoprolactinemic rat: IPL nude rat

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, H.; Sabbagh, I.; Abou-Samra, A.B.; Bertrand, J.

    1986-01-20

    Beta-endorphin has been reported to regulate not only stress- and suckling-induced but also basal prolactin secretion. In the aim to better evaluate the endogenous beta-endorphin-prolactin interrelation, the authors measured beta-endorphin levels in a new rat strain, genetically hypoprolactinemic and characterized by a total lack of lactation: IPL nude rat. Beta-endorphin was measured using a specific anti-h-..beta.. endorphin in plasma and extracts of anterior and neurointermediate lobes of the pituitary, hypothalamus and brain. Pituitary extracts were also chromatographed on Sephadex G50 column. Results obtained showed that in IPL nude females on diestrus and males, the beta-endorphin contents of the neurointermediate lobe was significantly lower than in normal rats, while the values found in the other organs and plasma were similar. However, elution pattern of the anterior pituitary extracts from male rats showed greater immunoactivity eluting as I/sup 125/ h-beta-endorphin than in normal rat; this was not the case for the female rat. These results are consistent with a differential regulation of beta-endorphin levels of anterior and neurointermediate lobe by catecholamines. Moreover they suggest that PRL secretion was more related to neurointermediate beta-endorphin. 40 references, 2 figures, 4 tables.

  18. Arachidonic Acid-Induced Expression of the Organic Solute and Steroid Transporter-beta (Ost-beta) in a Cartilaginous Fish Cell Line

    Science.gov (United States)

    Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David

    2008-01-01

    The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E2 across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 was identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eiconsanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules. PMID:18407792

  19. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  20. A carrier for non-covalent delivery of functional beta-galactosidase and antibodies against amyloid plaques and IgM to the brain.

    Directory of Open Access Journals (Sweden)

    Gobinda Sarkar

    Full Text Available BACKGROUND: Therapeutic intervention of numerous brain-associated disorders currently remains unrealized due to serious limitations imposed by the blood-brain-barrier (BBB. The BBB generally allows transport of small molecules, typically <600 daltons with high octanol/water partition coefficients, but denies passage to most larger molecules. However, some receptors present on the BBB allow passage of cognate proteins to the brain. Utilizing such receptor-ligand systems, several investigators have developed methods for delivering proteins to the brain, a critical requirement of which involves covalent linking of the target protein to a carrier entity. Such covalent modifications involve extensive preparative and post-preparative chemistry that poses daunting limitations in the context of delivery to any organ. Here, we report creation of a 36-amino acid peptide transporter, which can transport a protein to the brain after routine intravenous injection of the transporter-protein mixture. No covalent linkage of the protein with the transporter is necessary. APPROACH: A peptide transporter comprising sixteen lysine residues and 20 amino acids corresponding to the LDLR-binding domain of apolipoprotein E (ApoE was synthesized. Transport of beta-galactosidase, IgG, IgM, and antibodies against amyloid plques to the brain upon iv injection of the protein-transporter mixture was evaluated through staining for enzyme activity or micro single photon emission tomography (micro-SPECT or immunostaining. Effect of the transporter on the integrity of the BBB was also investigated. PRINCIPAL FINDINGS: The transporter enabled delivery to the mouse brain of functional beta-galactosidase, human IgG and IgM, and two antibodies that labeled brain-associated amyloid beta plaques in a mouse model of Alzheimer's disease. SIGNIFICANCE: The results suggest the transporter is able to transport most or all proteins to the brain without the need for chemically linking the

  1. Substrate-induced inactivation of the OXA2 beta-lactamase.

    Science.gov (United States)

    Ledent, P; Frère, J M

    1993-01-01

    The hydrolysis time courses of 22 beta-lactam antibiotics by the class D OXA2 beta-lactamase were studied. Among these, only three appeared to correspond to the integrated Henri-Michaelis equation. 'Burst' kinetics, implying branched pathways, were observed with most penicillins, cephalosporins and with flomoxef and imipenem. Kinetic parameters characteristic of the different phases of the hydrolysis were determined for some substrates. Mechanisms generally accepted to explain such reversible partial inactivations involving branches at either the free enzyme or the acyl-enzyme were inadequate to explain the enzyme behaviour. The hydrolysis of imipenem was characterized by the occurrence of two 'bursts', and that of nitrocefin by a partial substrate-induced inactivation complicated by a competitive inhibition by the hydrolysis product. PMID:8240304

  2. Complement activation by the amyloid proteins A beta peptide and beta 2-microglobulin

    DEFF Research Database (Denmark)

    Nybo, Mads; Nielsen, E H; Svehag, S E

    1999-01-01

    component nor heparan sulfate did significantly alter the A beta-induced CA. The results indicate that not only fibrillar A beta but also oligomers of, in particular, beta 2M from patients with dialysis-associated amyloidosis are capable of inducing CA at supra-physiological concentrations....

  3. The effect of altered 5-hydroxytryptamine levels on beta-endorphin

    Science.gov (United States)

    Soliman, Karam F. A.; Mash, Deborah C.; Walker, Charles A.

    1986-01-01

    The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin 5-prime, 7-prime-dihydroxytryptamine with desmethylimipramine pretreatment significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.

  4. Measurement of Radon-Induced Backgrounds in the NEXT Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Novella, P.; et al.

    2018-04-02

    The measurement of the internal 222Rn activity in the NEXT-White detector during the so-called Run-II period with 136Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by 222Rn and its alpha-emitting progeny. The specific activity is measured to be $(37.5\\pm 2.3~\\mathrm{(stat.)}\\pm 5.9~\\mathrm{(syst.)})$~mBq/m$^3$. Radon-induced electrons have also been characterized from the decay of the 214Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.2~counts/yr in the neutrinoless double beta decay sample.

  5. Beta-endorphin in genetically hypoprolactinemic rat: IPL nude rat

    International Nuclear Information System (INIS)

    Cohen, H.; Sabbagh, I.; Abou-Samra, A.B.; Bertrand, J.

    1986-01-01

    Beta-endorphin has been reported to regulate not only stress- and suckling-induced but also basal prolactin secretion. In the aim to better evaluate the endogenous beta-endorphin-prolactin interrelation, the authors measured beta-endorphin levels in a new rat strain, genetically hypoprolactinemic and characterized by a total lack of lactation: IPL nude rat. Beta-endorphin was measured using a specific anti-h-β endorphin in plasma and extracts of anterior and neurointermediate lobes of the pituitary, hypothalamus and brain. Pituitary extracts were also chromatographed on Sephadex G50 column. Results obtained showed that in IPL nude females on diestrus and males, the beta-endorphin contents of the neurointermediate lobe was significantly lower than in normal rats, while the values found in the other organs and plasma were similar. However, elution pattern of the anterior pituitary extracts from male rats showed greater immunoactivity eluting as I 125 h-beta-endorphin than in normal rat; this was not the case for the female rat. These results are consistent with a differential regulation of beta-endorphin levels of anterior and neurointermediate lobe by catecholamines. Moreover they suggest that PRL secretion was more related to neurointermediate beta-endorphin. 40 references, 2 figures, 4 tables

  6. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL-induced

  7. Beta-glucan ameliorates gamma-rays induced oxidative injury in male Swiss albino rats

    International Nuclear Information System (INIS)

    Salama, S.F.

    2011-01-01

    1,3-beta-D-Glucan is a natural polysaccharide derived from the cell walls of bakers yeast Saccharomyces cerevsiae with immunoenhancing and potent antioxidant effects. This study investigated the pathways through which beta-glucan gavage treatment (50mg/kg) exerts its effect on radiation-induced oxidative damage in male rats. Beta-glucan was given orally to male rats; 3 hours post gamma-irradiation at dose 5Gy, for 10 and 20 days post-irradiation level were assayed, being remarkable indicators in cell oxidative stress. Results pointed out that irradiation at 5Gy significantly depressed all blood parameters, such as erythrocytes count (RBCs), hemoglobin content (Hb), hematocrit value (Hct), total leucocytes count and absolute lymphocytes and neutrophils counts, blood glutathione (GSH) level and conversely elevated level of serum ascorbyl radical (AsR), product of lipid peroxidation (MDA melanodialdehyde), triglycerides and cholesterol. Total leucocytes count and absolute lymphocytes and neutrophils counts, RBCs, Hb, Hct, blood GSH and serum MDA of irradiated animals receiving beta-glucan administration were exhibited significant differences compared to the irradiated group. Marrow count and the percentage of viability and spleenocytes viability were also significantly decreased. Beta-glucan treatment accelerates recovery of cell damage induced by ionizing irradiation through its potential immune-enhancing activity and free radical scavenging ability that is partially mediated through stimulation of immunohaematological system thus could play a role in regulating irradiation complications

  8. Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.

    Science.gov (United States)

    Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E

    2009-10-01

    The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.

  9. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Bernardino, Liliana; Xapelli, Sara; Silva, Ana P

    2005-01-01

    The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects...... of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol....... By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed...

  10. Effects of beta-blockers and nicardipine on oxotremorine-induced tremor in common marmosets.

    Science.gov (United States)

    Mitsuda, M; Nomoto, M; Iwata, S

    1999-10-01

    Effects of beta-blockers (propranolol, arotinolol and nipradilol) and a Ca2+ channel blocker (nicardipine) on oxotremorine-induced tremor were studied in common marmosets. Generalized tremor was elicited by an intraperitoneal administration of 0.25 mg/kg oxotremorine. Intensity of the tremor was classified into 7 degrees, and it was evaluated every 10 min. The total intensity of oxotremorine-induced tremor for each drug was expressed as "points", which were the sum of tremor intensity scores evaluated every 10 min up to 190 min following the administration of oxotremorine. Beta-blockers significantly suppressed the tremor. On the other hand, the Ca2+ channel blocker exacerbated the tremor.

  11. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  12. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M L B; Rønn, S G; Bruun, C

    2008-01-01

    AIMS/HYPOTHESIS: Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate...... the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine......-induced Fas and chemokine expression in beta cells. METHODS: Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  13. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor.

    Science.gov (United States)

    Khallaf, Waleed A I; Messiha, Basim A S; Abo-Youssef, Amira M H; El-Sayed, Nesrine S

    2017-07-01

    Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.

  14. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  15. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  16. Evaluation of induced radioactivity in 10 MeV-Electron irradiated spices, (2); [beta]-ray counting

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tadashi; Furuta, Masakazu; Shibata, Setsuko; Matsunami, Tadao; Ito, Norio; Mizohata, Akira; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1994-02-01

    In order to check radioactivity of beta-emmitters produced by ([gamma], n) reactions which could occur at energies up to 10 MeV, black pepper, white pepper, red pepper, ginger and turmeric were irradiated with 10 MeV electron from a linear accelerator to a dose of 100 kGy. Beta-rays were counted using a 2[pi] gas flow counter and a liquid scintillation counter. Any induced radioactivity could not be detected in irradiated samples. When inorganic compounds containing the nuclides in the list were artificially added in the samples and were irradiated, the [beta]-activities were detected. From the amount of observed radioactivities of [beta]-emmitters produced in the compounds as photonuclear products, it is concluded that the induced radioactivity in natural samples by 10 MeV-electron irradiation were far smaller than natural radioactivity from [sup 40]K contained in the samples and, hence, its biological effects should be negligible. (author).

  17. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  18. Phase I study of transforming growth factor-beta 3 mouthwashes for prevention of chemotherapy-induced mucositis

    NARCIS (Netherlands)

    Wymenga, ANM; van der Graaf, WTA; Hofstra, LS; Spijkervet, FKL; Timens, W; Timmer-Bosscha, H; Sluiter, WJ; van Buuren, AHJAW; Mulder, NH; de Vries, EGE

    The purpose of this study was to establish the safety and tolerability of recombinant transforming growth factor-beta 3 (TGF-beta 3; CGP 46614) mouthwashes intended for prevention of chemotherapy-induced mucositis. Local effects were especially analyzed by objective and subjective measurements of

  19. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    Science.gov (United States)

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  20. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-01-01

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  1. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  2. A new model for separation between brain dopamine and serotonin transporters in {sup 123}I-{beta}-CIT SPECT measurements: normal values and sex and age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, Erik; Rosen, Ingmar [Department of Clinical Neurophysiology, University Hospital, Lund (Sweden); Lindstroem, Mats; Bosson, Peter; Traeskman-Bendz, Lil [Department of Psychiatry, University Hospital, Lund (Sweden); Braadvik, Bjoern; Grabowski, Martin [Department of Neurology, University Hospital, Lund (Sweden)

    2004-08-01

    {sup 123}I-{beta}-CIT is a radioactive ligand for single-photon emission computed tomography (SPECT) imaging of the pre-synaptic (transporter) re-uptake sites for dopamine (DAT) and serotonin (5HTT), and it is widely used to visualize monoamine turnover. Since {sup 123}I-{beta}-CIT uptake occurs at 5HTT and DAT sites in conjunction with the presence of freely soluble {sup 123}I-{beta}-CIT in brain tissue, adequate separation of these three components is necessary. However, only partial separation is possible with current methods. Two main strategies have previously been used for {sup 123}I-{beta}-CIT component separation, based on the following considerations: (1) the faster uptake rate for 5HTT compared with DAT enables temporal separation by performing 5HTT imaging at 1-2 h and DAT imaging at 20-24 h; (2) blocking the 5HTT re-uptake with citalopram renders {sup 123}I-{beta}-CIT imaging DAT (non-5HTT) specific. In a new analytical model, we combined these two approaches with methods to isolate the passively dissolved {sup 123}I-{beta}-CIT in brain tissue from the monoamine transporter uptake, and to correct the 5HTT and DAT values for concomitant uptake. The new analytical model was used to study brain 5HTT and DAT in 23 normal subjects, with the aim of clarifying the effect of age and sex. A significant correlation between 5HTT and DAT values was found only in the thalamus, indicating successful component separation. Negative correlations between age and DAT were found for basal ganglia, thalami, brain stem and temporal lobes, but not for the frontal, parietal or occipital regions. No correlation with age was found for 5HTT. We found no sex difference for 5HTT or DAT. (orig.)

  3. Motor System Interactions in the Beta Band Decrease during Loss of Consciousness.

    Science.gov (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Maher, Ryan B; Stapleton, Catherine A; Meng, Lingzhong; Gelb, Adrian W; Starr, Philip A

    2016-01-01

    Communication between brain areas and how they are influenced by changes in consciousness are not fully understood. One hypothesis is that brain areas communicate via oscillatory processes, utilizing network-specific frequency bands, that can be measured with metrics that reflect between-region interactions, such as coherence and phase amplitude coupling (PAC). To evaluate this hypothesis and understand how these interactions are modulated by state changes, we analyzed electrophysiological recordings in humans at different nodes of one well-studied brain network: the basal ganglia-thalamocortical loops of the motor system during loss of consciousness induced by anesthesia. We recorded simultaneous electrocorticography over primary motor cortex (M1) with local field potentials from subcortical motor regions (either basal ganglia or thalamus) in 15 movement disorder patients during anesthesia (propofol) induction as a part of their surgery for deep brain stimulation. We observed reduced coherence and PAC between M1 and the subcortical nuclei, which was specific to the beta band (∼18-24 Hz). The fact that this pattern occurs selectively in beta underscores the importance of this frequency band in the motor system and supports the idea that oscillatory interactions at specific frequencies are related to the capacity for normal brain function and behavior.

  4. Effects of stress and. beta. -funal trexamine pretreatment on morphine analgesia and opioid binding in rats

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.U.; Andrews, J.S.; Hiller, J.M.; Simon, E.J.; Holtzman, S.G.

    1987-12-28

    This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opiods which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 yr or unstressed were injected ICV with either saline or 2.5 ..mu..g of ..beta..-funaltrexamine (..beta..-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia or were sacrificed and opioid binding in brain was determined. (/sup 3/H)D-Ala/sup 2/NMePhe/sup 4/-Gly/sup 5/(ol)enkephalin (DAGO) served as a specific ligand for mu-opioid receptors, and (/sup 3/H)-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. ..beta..-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with ..beta..-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received ..beta..-FNA while unstressed. ..beta..-FNA caused small and similar decreases in (/sup 3/H)-DAGO binding in brain of both stressed and unstressed animals. 35 references, 2 figures, 2 tables.

  5. [{sup 18}F]{beta}-CIT-FP is superior to [{sup 11}C]{beta}-CIT-FP for quantitation of the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Lundkvist, Camilla; Halldin, Christer; Ginovart, Nathalie; Swahn, Carl-Gunnar; Farde, Lars

    1997-10-01

    {beta}-CIT-FP [N-(3-fluoropropyl)-2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)nortropane] is a cocaine analogue with high affinity for the dopamine transporter. Positron emission tomography (PET) studies with [O-methyl-{sup 11}C]{beta}-CIT-FP ([{sup 11}C]{beta}-CIT-FP) has shown that equilibrium conditions were approached but, however, not reached at the end of measurement. Moreover, metabolite studies of [{sup 11}C]{beta}-CIT-FP in monkey plasma demonstrated a lipophilic-labelled metabolite that may enter the brain. We therefore labelled {beta}-CIT-FP with fluorine-18 in a position that may avoid the formation of labelled lipophilic metabolites. The more long-lived radionuclide ({sup 18}F) was used to allow for measurements over longer time. [N-fluoropropyl-{sup 18}F]{beta}-CIT-FP ([{sup 18}F]{beta}-CIT-FP) was prepared by N-alkylation of nor-{beta}-CIT with [{sup 18}F]fluoropropyl bromide. PET studies were performed in cynomolgus monkeys. [{sup 18}F]{beta}-CIT-FP entered the brain rapidly. There was a high concentration of radioactivity in the striatum and much lower in the thalamus, neocortex, and cerebellum. The striatum-to-cerebellum ratio was about 5 at time of transient equilibrium, which occurred after 60 to 100 min. After pretreatment with GBR 12909, radioactivity in the striatum was markedly reduced, thus indicating specific [{sup 18}F]{beta}-CIT-FP binding to the dopamine transporter. The fraction of unchanged [{sup 18}F]{beta}-CIT-FP determined by HPLC was 10-15% after 140 min. No lipophilic labelled metabolites were detected. The absence of measurable lipophilic labelled metabolites and the occurrence of transient equilibrium within the time of the PET measurement indicate that [{sup 18}F]{beta}-CIT-FP is superior to [{sup 11}C]{beta}-CIT-FP as a PET radioligand for quantification of the dopamine transporter in the human brain.

  6. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells.

    Science.gov (United States)

    Belhadj, Sahla; Hentati, Olfa; Hamdaoui, Ghaith; Fakhreddine, Khaskhoussi; Maillard, Elisa; Dal, Stéphanie; Sigrist, Séverine

    2018-03-20

    Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS) levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (-48%, p jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.

  7. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol.

    Science.gov (United States)

    Sabo-Attwood, Tara; Kroll, Kevin J; Denslow, Nancy D

    2004-04-15

    The expression levels of three estrogen receptor (ER) isotypes alpha, beta, and gamma were quantified in female largemouth bass (Micropterus salmoides) (LMB) liver, ovary, brain, and pituitary tissues. ER alpha and beta expression predominated in the liver, while ERs beta and gamma predominated in the other tissues. Temporally in females, ER alpha was highly up-regulated, ER gamma was slightly up-regulated, and ER beta levels remained unchanged in the liver when plasma 17-beta estradiol (E2) and vitellogenin (Vtg) levels were elevated in the spring. In ovarian tissue from these same fish, all three ERs were maximally expressed in the fall, during early oocyte development and prior to peak plasma E2 levels. When males were injected with E2, ER alpha was highly inducible, ER gamma was moderately up-regulated, and ER beta levels were not affected. None of the ER isotypes were induced by E2 in gonadal tissues. These results combined suggest that the ERs themselves are not regulated in the same manner by E2, and furthermore, do not contribute equally to the transcriptional regulation of genes involved in fish reproduction such as Vtg.

  8. PERIPHERAL LIPOPOLYSACCHARIDE STIMULATION INDUCES INTERLEUKIN-1-BETA MESSENGER-RNA IN RAT-BRAIN MICROGLIAL CELLS

    NARCIS (Netherlands)

    BUTTINI, M; BODDEKE, H

    The inflammatory cytokine interleukin-1 acts as an endogenous pyrogen in organisms affected by infectious diseases and has been shown to influence the activity of the central nervous system. Using in situ hybridization histochemistry, we have examined the cellular source of interleukin-1 beta in rat

  9. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha” martensite transformation occurs.

  10. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  12. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    Science.gov (United States)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  13. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  14. Calcium has a permissive role in interleukin-1beta-induced c-jun N-terminal kinase activation in insulin-secreting cells

    DEFF Research Database (Denmark)

    Størling, Joachim; Zaitsev, Sergei V; Kapelioukh, Iouri L

    2005-01-01

    The c-jun N-terminal kinase (JNK) signaling pathway mediates IL-1beta-induced apoptosis in insulin-secreting cells, a mechanism relevant to the destruction of pancreatic beta-cells in type 1 and 2 diabetes. However, the mechanisms that contribute to IL-1beta activation of JNK in beta-cells are la...

  15. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G

    2009-01-01

    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...

  16. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  17. Individualized quantification of brain {beta}-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Eggers, Birk [Arzneimittelforschung Leipzig GmbH, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Psychiatry, Zurich (Switzerland); Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia [Bayer Healthcare, Berlin (Germany)

    2011-09-15

    Complementing clinical findings with those generated by biomarkers - such as {beta}-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([{sup 18}F]BAY 94-9172) is a novel {beta}-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched ({>=} 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 {mu}g. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain {beta}-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be {beta}-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa {>=} 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain

  18. Gender differences in alcohol-induced neurotoxicity and brain damage.

    Science.gov (United States)

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Early inflammatory response in rat brain after peripheral thermal injury.

    Science.gov (United States)

    Reyes, Raul; Wu, Yimin; Lai, Qin; Mrizek, Michael; Berger, Jamie; Jimenez, David F; Barone, Constance M; Ding, Yuchuan

    2006-10-16

    Previous studies have shown that the cerebral complications associated with skin burn victims are correlated with brain damage. The aim of this study was to determine whether systemic thermal injury induces inflammatory responses in the brain. Sprague Dawley rats (n=28) were studied in thermal injury and control groups. Animals from the thermal injury (n=14) and control (n=14) group were anesthetized and submerged to the neck vertically in 85 degrees C water for 6 s producing a third degree burn affecting 60-70% of the animal body surface area. The controls were submerged in 37 degrees C water for 6 s. Early expression of tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and intracellular cell adhesion molecules (ICAM-1) protein levels in serum were determined at 3 (n=7) and 7 h (n=7) by enzyme-linked immunoabsorbent assay (ELISA). mRNA of TNF-alpha, IL-1beta, and ICAM-1 in the brain was measured at the same time points with a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). An equal animal number was used for controls. Systemic inflammatory responses were demonstrated by dramatic up-regulations (5-50 fold) of TNF-alpha, IL-1beta, and ICAM-1 protein level in serum at 7 h after the thermal injury. However, as early as 3 h after peripheral thermal injury, a significant increase (3-15 fold) in mRNA expression of TNF-alpha, IL-1beta and ICAM-1 was observed in brain homogenates, with increased levels remaining at 7 h after injury. This study demonstrated an early inflammatory response in the brain after severe peripheral thermal injury. The cerebral inflammatory reaction was associated with expression of systemic cytokines and an adhesion molecule.

  20. Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulus-dependent

    DEFF Research Database (Denmark)

    Hartlage-Rübsamen, Maike; Zeitschel, Ulrike; Apelt, Jenny

    2003-01-01

    The beta-site APP-cleaving enzyme (BACE1) is a prerequisite for the generation of beta-amyloid peptides, which give rise to cerebrovascular and parenchymal beta-amyloid deposits in the brain of Alzheimer's disease patients. BACE1 is neuronally expressed in the brains of humans and experimental...... paradigms studied. In contrast, BACE1 expression by reactive astrocytes was evident in chronic but not in acute models of gliosis. Additionally, we observed BACE1-immunoreactive astrocytes in proximity to beta-amyloid plaques in the brains of aged Tg2576 mice and Alzheimer's disease patients....

  1. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    International Nuclear Information System (INIS)

    András, Ibolya E.; Toborek, Michal

    2014-01-01

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ

  2. HIV-1 stimulates nuclear entry of amyloid beta via dynamin dependent EEA1 and TGF-β/Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    András, Ibolya E., E-mail: iandras@med.miami; Toborek, Michal, E-mail: mtoborek@med.miami.edu

    2014-04-15

    Clinical evidence indicates increased amyloid deposition in HIV-1-infected brains, which contributes to neurocognitive dysfunction in infected patients. Here we show that HIV-1 exposure stimulates amyloid beta (Aβ) nuclear entry in human brain endothelial cells (HBMEC), the main component of the blood–brain barrier (BBB). Treatment with HIV-1 and/or Aβ resulted in concurrent increase in early endosomal antigen-1 (EEA1), Smad, and phosphorylated Smad (pSmad) in nuclear fraction of HBMEC. A series of inhibition and silencing studies indicated that Smad and EEA1 closely interact by influencing their own nuclear entry; the effect that was attenuated by dynasore, a blocker of GTP-ase activity of dynamin. Importantly, inhibition of dynamin, EEA1, or TGF-β/Smad effectively attenuated HIV-1-induced Aβ accumulation in the nuclei of HBMEC. The present study indicates that nuclear uptake of Aβ involves the dynamin-dependent EEA1 and TGF-β/Smad signaling pathways. These results identify potential novel targets to protect against HIV-1-associated dysregulation of amyloid processes at the BBB level. - Highlights: • HIV-1 induces nuclear accumulation of amyloid beta (Aβ) in brain endothelial cells. • EEA-1 and TGF-Β/Smad act in concert to regulate nuclear entry of Aβ. • Dynamin appropriates the EEA-1 and TGF-Β/Smad signaling. • Dynamin serves as a master regulator of HIV-1-induced nuclear accumulation of Aβ.

  3. Rapid stress-induced transcriptomic changes in the brain depend on beta-adrenergic signaling.

    Science.gov (United States)

    Roszkowski, Martin; Manuella, Francesca; von Ziegler, Lukas; Durán-Pacheco, Gonzalo; Moreau, Jean-Luc; Mansuy, Isabelle M; Bohacek, Johannes

    2016-08-01

    Acute exposure to stressful experiences can rapidly increase anxiety and cause neuropsychiatric disorders. The effects of stress result in part from the release of neurotransmitters and hormones, which regulate gene expression in different brain regions. The fast neuroendocrine response to stress is largely mediated by norepinephrine (NE) and corticotropin releasing hormone (CRH), followed by a slower and more sustained release of corticosterone. While corticosterone is an important regulator of gene expression, it is not clear which stress-signals contribute to the rapid regulation of gene expression observed immediately after stress exposure. Here, we demonstrate in mice that 45 min after an acute swim stress challenge, large changes in gene expression occur across the transcriptome in the hippocampus, a region sensitive to the effects of stress. We identify multiple candidate genes that are rapidly and transiently altered in both males and females. Using a pharmacological approach, we show that most of these rapidly induced genes are regulated by NE through β-adrenergic receptor signaling. We find that CRH and corticosterone can also contribute to rapid changes in gene expression, although these effects appear to be restricted to fewer genes. These results newly reveal a widespread impact of NE on the transcriptome and identify novel genes associated with stress and adrenergic signaling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. New Insights in the Amyloid-Beta Interaction with Mitochondria

    Directory of Open Access Journals (Sweden)

    Carlos Spuch

    2012-01-01

    Full Text Available Biochemical and morphological alterations of mitochondria may play an important role in the pathogenesis of Alzheimer’s disease (AD. Particularly, mitochondrial dysfunction is a hallmark of amyloid-beta-induced neuronal toxicity in Alzheimer’s disease. The recent emphasis on the intracellular biology of amyloid-beta and its precursor protein (APP has led researchers to consider the possibility that mitochondria-associated and mitochondrial amyloid-beta may directly cause neurotoxicity. Both proteins are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species production, cause mitochondrial damage, and prevent neurons from functioning normally. In this paper, we will outline current knowledge of the intracellular localization of amyloid-beta. Moreover, we summarize evidence from AD postmortem brain as well as animal AD models showing that amyloid-beta triggers mitochondrial dysfunction through a number of pathways such as impairment of oxidative phosphorylation, elevation of reactive oxygen species production, alteration of mitochondrial dynamics, and interaction with mitochondrial proteins. Thus, this paper supports the Alzheimer cascade mitochondrial hypothesis such as the most important early events in this disease, and probably one of the future strategies on the therapy of this neurodegenerative disease.

  5. Cardiac arrhythmia with premature ventricular contractures induced by interferon beta in a patient with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Igor Sobol

    2015-03-01

    Full Text Available Multiple sclerosis (MS is an immune-mediated inflammatory and neurodegenerative disease of the central nervous system. Interferon (IFN beta is an active ingredient of five out of twelve disease modifying treatments approved for MS. We report a case of IFN-beta-induced cardiac arrhythmia with premature ventricular contractures in a patient recently diagnosed with MS.

  6. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  7. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    Science.gov (United States)

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into

  8. Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain.

    Science.gov (United States)

    Prakash, Dharmalingam; Sudhandiran, Ganapasam

    2015-12-01

    Dietary flavonoids have been suggested to promote brain health by protecting brain parenchymal cells. Recently, understanding the possible mechanism underlying neuroprotective efficacy of flavonoids is of great interest. Given that fisetin exerts neuroprotection, we have examined the mechanisms underlying fisetin in regulating Aβ aggregation and neuronal apoptosis induced by aluminium chloride (AlCl3) administration in vivo. Male Swiss albino mice were induced orally with AlCl3 (200 mg/kg. b.wt./day/8 weeks). Fisetin (15 mg/Kg. b.wt. orally) was administered for 4 weeks before AlCl3-induction and administered simultaneously for 8 weeks during AlCl3-induction. We found aggregation of Amyloid beta (Aβ 40-42), elevated expressions of Apoptosis stimulating kinase (ASK-1), p-JNK (c-Jun N-terminal Kinase), p53, cytochrome c, caspases-9 and 3, with altered Bax/Bcl-2 ratio in favour of apoptosis in cortex and hippocampus of AlCl3-administered mice. Furthermore, TUNEL and fluoro-jade C staining demonstrate neurodegeneration in cortex and hippocampus. Notably, treatment with fisetin significantly (Pfisetin treatment. We have identified the involvement of fisetin in regulating ASK-1 and p-JNK as possible mediator of Aβ aggregation and subsequent neuronal apoptosis during AlCl3-induced neurodegeneration. These findings define the possibility that fisetin may slow or prevent neurodegneration and can be utilised as neuroprotective agent against Alzheimer's and Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Induction by mercury compounds of brain metallothionein in rats: Hg{sup 0} exposure induces long-lived brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira; Nakano, Atsuhiro [Biochemistry Section, National Institute for Minamata Disease, Kumamoto (Japan); Hirayama, Kimiko [Kumamoto University, College of Medical Science (Japan)

    1998-03-01

    Metallothionein (MT) is one of the stress proteins which can easily be induced by various kind of heavy metals. However, MT in the brain is difficult to induce because of blood-brain barrier impermeability to most heavy metals. In this paper, we have attempted to induce brain MT in rats by exposure to methylmercury (MeHg) or metallic mercury vapor, both of which are known to penetrate the blood-brain barrier and cause neurological damage. Rats treated with MeHg (40 {mu}mol/kg per day x 5 days, p.o.) showed brain Hg levels as high as 18 {mu}g/g with slight neurological signs 10 days after final administration, but brain MT levels remained unchanged. However, rats exposed to Hg vapor for 7 days showed 7-8 {mu}g Hg/g brain tissue 24 h after cessation of exposure. At that time brain MT levels were about twice the control levels. Although brain Hg levels fell gradually with a half-life of 26 days, MT levels induced by Hg exposure remained unchanged for >2 weeks. Gel fractionation revealed that most Hg was in the brain cytosol fraction and thus bound to MT. Hybridization analysis showed that, despite a significant increase in MT-I and -II mRNA in brain, MT-III mRNA was less affected. Although significant Hg accumulation and MT induction were observed also in kidney and liver of Hg vapor-exposed rats, these decreased more quickly than in brain. The long-lived MT in brain might at least partly be accounted for by longer half-life of Hg accumulated there. The present results showed that exposure to Hg vapor might be a suitable procedure to provide an in vivo model with enhanced brain MT. (orig.) With 4 figs., 1 tab., 27 refs.

  10. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ya [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Wang, Guang [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Han, Sha-Sha; He, Mei-Yao [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Cheng, Xin; Ma, Zheng-Lai [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Wu, Xia [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632 (China); Liu, Guo-Sheng, E-mail: tlgs@jnu.edu.cn [Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China (China)

    2016-09-10

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel{sup +} apoptosis but did not dramatically affect PCNA{sup +} cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  11. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model

    International Nuclear Information System (INIS)

    Jin, Ya; Wang, Guang; Han, Sha-Sha; He, Mei-Yao; Cheng, Xin; Ma, Zheng-Lai; Wu, Xia; Yang, Xuesong; Liu, Guo-Sheng

    2016-01-01

    Pregestational diabetes mellitus (PGDM) enhances the risk of fetal neurodevelopmental defects. However, the mechanism of hyperglycaemia-induced neurodevelopmental defects is not fully understood. In this study, several typical neurodevelopmental defects were identified in the streptozotocin-induced diabetes mouse model. The neuron-specific class III beta-tubulin/forkhead box P1-labelled neuronal differentiation was suppressed and glial fibrillary acidic protein-labelled glial cell lineage differentiation was slightly promoted in pregestational diabetes mellitus (PGDM) mice. Various concentrations of glucose did not change the U87 cell viability, but glial cell line-derived neurotrophic factor expression was altered with varying glucose concentrations. Mouse maternal hyperglycaemia significantly increased Tunel"+ apoptosis but did not dramatically affect PCNA"+ cell proliferation in the process. To determine the cause of increased apoptosis, we determined the SOD activity, the expression of Nrf2 as well as its downstream anti-oxidative factors NQO1 and HO1, and found that all of them significantly increased in PGDM fetal brains compared with controls. However, Nrf2 expression in U87 cells was not significantly changed by different glucose concentrations. In mouse telencephalon, we observed the co-localization of Tuj-1 and Nrf2 expression in neurons, and down-regulating of Nrf2 in SH-SY5Y cells altered the viability of SH-SY5Y cells exposed to high glucose concentrations. Taken together, the data suggest that Nrf2-modulated antioxidant stress plays a crucial role in maternal hyperglycaemia-induced neurodevelopmental defects. - Highlights: • Typical neurodevelopmental defects could be observed in STZ-treated mouse fetuses. • Nrf2 played a crucial role in hyperglycaemia-induced brain malformations. • The effects of hyperglycaemia on neurons and glia cells were not same.

  12. Estrogen receptor beta is involved in skeletal muscle hypertrophy induced by the phytoecdysteroid ecdysterone.

    Science.gov (United States)

    Parr, Maria Kristina; Zhao, Piwen; Haupt, Oliver; Ngueu, Sandrine Tchoukouegno; Hengevoss, Jonas; Fritzemeier, Karl Heinrich; Piechotta, Marion; Schlörer, Nils; Muhn, Peter; Zheng, Wen-Ya; Xie, Ming-Yong; Diel, Patrick

    2014-09-01

    The phytoectysteroid ecdysterone (Ecdy) was reported to stimulate protein synthesis and enhance physical performance. The aim of this study was to investigate underlying molecular mechanisms particularly the role of ER beta (ERβ). In male rats, Ecdy treatment increased muscle fiber size, serum IGF-1 increased, and corticosteron and 17β-estradiol (E2) decreased. In differentiated C2C12 myoblastoma cells, treatment with Ecdy, dihydrotestosterone, IGF-1 but also E2 results in hypertrophy. Hypertrophy induced by E2 and Ecdy could be antagonized with an antiestrogen but not by an antiandrogen. In HEK293 cells transfected with ER alpha (ERα) or ERβ, Ecdy treatment transactivated a reporter gene. To elucidate the role of ERβ in Ecdy-mediated muscle hypertrophy, C2C12 myotubes were treated with ERα (ALPHA) and ERβ (BETA) selective ligands. Ecdy and BETA treatment but not ALPHA induced hypertrophy. The effect of Ecdy, E2, and BETA could be antagonized by an ERβ-selective antagonist (ANTIBETA). In summary, our results indicate that ERβ is involved in the mediation of the anabolic activity of the Ecdy. These findings provide new therapeutic perspectives for the treatment of muscle injuries, sarcopenia, and cachectic disease, but also imply that such a substance could be abused for doping purposes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  14. Synthetic peptides corresponding to human follicle-stimulating hormone (hFSH)-beta-(1-15) and hFSH-beta-(51-65) induce uptake of 45Ca++ by liposomes: evidence for calcium-conducting transmembrane channel formation

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, P.; Santa-Coloma, T.A.; Reichert, L.E. Jr. (Department of Biochemistry, Albany Medical College, New York, NY (USA))

    1991-06-01

    We have previously described FSH receptor-mediated influx of 45Ca++ in cultured Sertoli cells from immature rats and receptor-enriched proteoliposomes via activation of voltage-sensitive and voltage-independent calcium channels. We have further shown that this effect of FSH does not require cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding protein or activation of adenylate cyclase. In the present study, we have identified regions of human FSH-beta-subunit which appear to be involved in mediating calcium influx. We screened 11 overlapping peptide amides representing the entire primary structure of hFSH-beta-subunit for their effects on 45Ca++ flux in FSH receptor-enriched proteoliposomes. hFSH-beta-(1-15) and hFSH-beta-(51-65) induced uptake of 45Ca++ in a concentration-related manner. This effect of hFSH-beta-(1-15) and hFSH-beta-(51-65) was also observed in liposomes lacking incorporated FSH receptor. Reducing membrane fluidity by incubating liposomes (containing no receptor) with hFSH-beta-(1-15) or hFSH-beta-(51-65) at temperatures lower than the transition temperatures of their constituent phospholipids resulted in no significant (P greater than 0.05) difference in 45Ca++ uptake. The effectiveness of the calcium ionophore A23187, however, was abolished. Ruthenium red, a voltage-independent calcium channel antagonist, was able to completely block uptake of 45Ca++ induced by hFSH-beta-(1-15) and hFSH-beta-(51-65) whereas nifedipine, a calcium channel blocker specific for L-type voltage-sensitive calcium channels, was without effect. These results suggest that in addition to its effect on voltage-sensitive calcium channel activity, interaction of FSH with its receptor may induce formation of transmembrane aqueous channels which also facilitate influx of extracellular calcium.

  15. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  16. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates

    Science.gov (United States)

    Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark

    2017-01-01

    vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/ microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman’s test), with effects most prominent within cerebral white matter. PMID:28398880

  17. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    Science.gov (United States)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  18. Increased expression of beta 2-microglobulin and histocompatibility antigens on human lymphoid cells induced by interferon

    DEFF Research Database (Denmark)

    Hokland, M; Heron, I; Berg, K

    1982-01-01

    Normal human peripheral blood lymphocytes were incubated in the presence of different concentrations of interferon for various incubation periods. Subsequently, the amount of beta 2-Microglobulin and HLA-A, B and C surface antigens was estimated by means of quantitative immunofluorescence (flow...... cytofluorometry) and by a radioimmunoassay for beta 2-Microglobulin. It was found that the amounts of these MHC antigens increased in a dose and time-dependent way after interferon treatment. Furthermore, the influence of different temperatures on this IFN-induced increase in beta 2-Microglobulin was gradually...

  19. A human beta cell line with drug inducible excision of immortalizing transgenes

    Science.gov (United States)

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  20. The I kappa B kinase inhibitor ACHP strongly attenuates TGF beta 1-induced myofibroblast formation and collagen synthesis

    NARCIS (Netherlands)

    Mia, Masum M.; Bank, Ruud A.

    2015-01-01

    Excessive accumulation of a collagen-rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGF beta 1) is a strong inducer of myofibroblast formation and subsequent

  1. Investigations of primary blast-induced traumatic brain injury

    Science.gov (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  2. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  3. Formation of thermally induced aggregates of the soya globulin beta-conglycinin.

    Science.gov (United States)

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J

    2001-06-11

    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  4. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  5. Strain-dependent differences in sensitivity of rat beta-cells to interleukin 1 beta in vitro and in vivo

    DEFF Research Database (Denmark)

    Reimers, J I; Andersen, H U; Mauricio, D

    1996-01-01

    /kg) or vehicle for 5 days. All the strains investigated were susceptible to IL-1 beta-induced changes in body weight, food intake, temperature, and plasma glucagon and corticosterone. However, IL-1 beta induced hyperglycemia and impairment of beta-cell glucose responsiveness in WK/Mol and LS/Mol rats...

  6. Chicken type II collagen induced immune tolerance of mesenteric lymph node lymphocytes by enhancing beta2-adrenergic receptor desensitization in rats with collagen-induced arthritis.

    Science.gov (United States)

    Zhao, Wei; Tong, Tong; Wang, Ling; Li, Pei-Pei; Chang, Yan; Zhang, Ling-Ling; Wei, Wei

    2011-01-01

    Chicken type II collagen (CCII) is a protein extracted from the cartilage of chicken breast and exhibits intriguing possibilities for the treatment of autoimmune diseases by inducing oral tolerance. In this study, we investigated the effects of CCII on inflammatory and immune responses to the mesenteric lymph node lymphocytes (MLNLs) and the mechanisms by which CCII regulates beta2-adrenergic receptor (beta2-AR) signal transduction in collagen-induced arthritis (CIA) rats. The onset of secondary arthritis in rats appeared around day 14 after injection of CCII emulsion. Remarkable secondary inflammatory response and lymphocytes proliferation were observed in CIA rats. The administration of CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) could significantly reduce synovial hyperplasia, lymphatic follicle hyperplasia, inflammatory cells infiltration of MLNLs in CIA rats. CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) restored the previously decreased level of cAMP of MLNLs of CIA rats. Meanwhile, CCII increased total protein expressions of beta2-AR, GRK2 and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats but had an slight effect on GRK3. CCII further increased plasmatic protein expressions of GRK2, G(α)s and decreased that of beta-arrestin1, 2, beta2-AR, and increased membrane protein expressions of beta2-AR, GRK2, G(α)s and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats. These results demonstrate that the mechanisms of CCII on beta2-AR desensitization and beta2-AR-AC-cAMP transmembrane signal transduction of MLNLs play crucial roles in pathogenesis of this disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  8. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Effects of sertraline on brain current source of the high beta frequency band: analysis of electroencephalography during audiovisual erotic stimulation in males with premature ejaculation.

    Science.gov (United States)

    Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S

    2011-01-01

    To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.

  10. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation.

    Science.gov (United States)

    Gilio, Karen; Munnix, Imke C A; Mangin, Pierre; Cosemans, Judith M E M; Feijge, Marion A H; van der Meijden, Paola E J; Olieslagers, Servé; Chrzanowska-Wodnicka, Magdalena B; Lillian, Rivka; Schoenwaelder, Simone; Koyasu, Shigeo; Sage, Stewart O; Jackson, Shaun P; Heemskerk, Johan W M

    2009-12-04

    Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.

  11. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model.

    Science.gov (United States)

    Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young

    2010-05-01

    Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  13. Can earth's magnetic micropulsations induce brain activities modifications?

    International Nuclear Information System (INIS)

    Assis, Altair Souza de

    2008-01-01

    Full text: We present in this paper preliminary study on which level earth's magnetic micro pulsations might interact with human brain activities. Magnetic micro pulsations are magnetospheric plasma wave Eigenmodes that are generated at the earth's magnetosphere and, via magnetospheric-ionospheric coupling induce ionospheric currents, and this ionospheric current pattern creates surface geomagnetic perturbations, which induce earth's surface electrical currents, and they are easily detected by earth's based magnetometers. These Eigenmodes are basically of Alfven type, and can be generated, for instance, by magnetic storms, situation where they are more intense and, in principle, might be felt by a more sensible human brain. Here, we also show how the modes are generated and present theirs basic physical properties. Finally, we compare the magnetic field level at the brain with the micro pulsation magnetic intensity. (author)

  14. Effect of nipradilol, a beta-adrenergic blocker with vasodilating activity, on oxotremorine-induced tremor in mice.

    Science.gov (United States)

    Iwata, S; Nomoto, M; Fukuda, T

    1996-10-01

    The effect of nipradilol, a nonselective beta-adrenergic receptor blocker with nitroglycerin-like vasodilating activity, on oxotremorine-induced tremor was studied in mice. General tremor in mice was elicited by 0.5 mg/kg oxotremorine. The tremor was quantified using a capacitance transducer, then analyzed by a signal processor. The strength of the tremor was expressed in "points". The point values of the tremor (mean +/- SE) in control mice for 5 mg/kg (+/-)-propranolol, 2.5 mg/kg arotinolol, 0.5 mg/kg nipradilol, 1.0 mg/kg nipradilol and 2.5 mg/kg nipradilol were 87 +/- 16, 42 +/- 6, 38 +/- 6, 99 +/- 28, 28 +/- 6 and 31 +/- 7, respectively. The strength of the tremor was reduced by all beta-blockers. Although 1.0 mg/kg nipradilol significantly reduced the tremor, further inhibition of the tremor was not obtained with dosages up to 2.5 mg/kg of the drug. In conclusion, nipradilol was effective for suppressing oxotremorine-induced tremor, as were other beta-blockers.

  15. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  16. Suppressed Gastric Mucosal TGF-beta1 Increases Susceptibility to H. pylori-Induced Gastric Inflammation and Ulceration: A Stupid Host Defense Response.

    Science.gov (United States)

    Jo, Yunjeong; Han, Sang Uk; Kim, Yoon Jae; Kim, Ju Hyeon; Kim, Shin Tae; Kim, Seong-Jin; Hahm, Ki-Baik

    2010-03-01

    Loss of transforming growth factor beta1 (TGF-beta1) exhibits a similar pathology to that seen in a subset of individuals infected with Helicobacter pylori, including propagated gastric inflammation, oxidative stress, and autoimmune features. We thus hypothesized that gastric mucosal TGF-beta1 levels could be used to determine the outcome after H. pylori infection. Northern blot for the TGF-beta1 transcript, staining of TGF-beta1 expression, luciferase reporter assay, and enzyme-linked immunosorbent assay for TGF-beta1 levels were performed at different times after H. pylori infection. The TGF-beta1 level was markedly lower in patients with H. pylori-induced gastritis than in patients with a similar degree of gastritis induced by nonsteroidal anti-inflammatory drugs. There was a significant negative correlation between the severity of inflammation and gastric mucosal TGF-beta1 levels. SNU-16 cells showing intact TGF-beta signaling exhibited a marked decrease in TGF-beta1 expression, whereas SNU-638 cells defective in TGF-beta signaling exhibited no such decrease after H. pylori infection. The decreased expressions of TGF-beta1 in SNU-16 cells recovered to normal after 24 hr of H. pylori infection, but lasted very spatial times, suggesting that attenuated expression of TGF-beta1 is a host defense mechanism to avoid attachment of H. pylori. H. pylori infection was associated with depressed gastric mucosal TGF-beta1 for up to 24 hr, but this apparent strategy for rescuing cells from H. pylori attachment exacerbated the gastric inflammation.

  17. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases

    International Nuclear Information System (INIS)

    Ohguri, Takayuki; Imada, Hajime; Kohshi, Kiyotaka; Kakeda, Shingo; Ohnari, Norihiro; Morioka, Tomoaki; Nakano, Keita; Konda, Nobuhide; Korogi, Yukunori

    2007-01-01

    Purpose: The purpose of the present study was to evaluate the prophylactic effect of hyperbaric oxygen (HBO) therapy for radiation-induced brain injury in patients with brain metastasis treated with stereotactic radiosurgery (SRS). Methods and Materials: The data of 78 patients presenting with 101 brain metastases treated with SRS between October 1994 and September 2003 were retrospectively analyzed. A total of 32 patients with 47 brain metastases were treated with prophylactic HBO (HBO group), which included all 21 patients who underwent subsequent or prior radiotherapy and 11 patients with common predictors of longer survival, such as inactive extracranial tumors and younger age. The other 46 patients with 54 brain metastases did not undergo HBO (non-HBO group). Radiation-induced brain injuries were divided into two categories, white matter injury (WMI) and radiation necrosis (RN), on the basis of imaging findings. Results: Radiation-induced brain injury occurred in 5 lesions (11%) in the HBO group (2 WMIs and 3 RNs) and in 11 (20%) in the non-HBO group (9 WMIs and 2 RNs). The WMI was less frequent for the HBO group than for the non-HBO group (p = 0.05), although multivariate analysis by logistic regression showed that WMI was not significantly correlated with HBO (p = 0.07). The 1-year actuarial probability of WMI was significantly better for the HBO group (2%) than for the non-HBO group (36%) (p < 0.05). Conclusions: The present study showed a potential value of prophylactic HBO for Radiation-induced WMIs, which justifies further evaluation to confirm its definite benefit

  18. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  19. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  20. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    Energy Technology Data Exchange (ETDEWEB)

    Okle, Oliver, E-mail: oliver.okle@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany); Rath, Lisa; Galizia, C. Giovanni [Zoology and Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz (Germany); Dietrich, Daniel R., E-mail: daniel.dietrich@uni-konstanz.de [Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz (Germany)

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  1. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    International Nuclear Information System (INIS)

    Okle, Oliver; Rath, Lisa; Galizia, C. Giovanni; Dietrich, Daniel R.

    2013-01-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using 14 C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca 2+ homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca 2+ , learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis

  2. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death.

    Science.gov (United States)

    Chen, Junqin; Fontes, Ghislaine; Saxena, Geetu; Poitout, Vincent; Shalev, Anath

    2010-02-01

    We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.

  3. Induced Double-Beta Processes in Electron Fluxes as Resonance Reactions in Weak Interaction

    International Nuclear Information System (INIS)

    Gaponov, Yu.V.

    2004-01-01

    A theory of induced double-beta processes in electron beams is developed. It is shown that a resonance mechanism of the excitation of the ground state of an intermediate nucleus is realized in them, this mechanism being described in the single-state-dominance approximation, where the process in question is broken down into two stages, the excitation of a dominant state and its decay. This approximation is valid irrespective of the features of this state, both for allowed (for a 1 + state of the intermediate nucleus) and for forbidden transitions. An analysis of the resonance mechanism reveals that its inclusion in double-beta-decay processes requires introducing additional diagrams that describe the gamma decay of virtual intermediate states. The inclusion of such corrections may lead to a decrease in the expected half-life and to a change in the beta spectrum. Effects associated with the interference between the two stages of a double-beta process are estimated, and it is shown that their influence can be significant if the time interval between these stages is less than or on the order of the lifetime of the dominant state

  4. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  5. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  6. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  7. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  8. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields

    Science.gov (United States)

    Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  9. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields.

    Science.gov (United States)

    Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard

    2018-01-01

    Recent neurophysiological studies indicate that exposure to electromagnetic fields (EMFs) generated by mobile phone radiation can exert effects on brain activity. One technical solution to reduce effects of EMFs in mobile phone use is provided in mobile phone chips that are applied to mobile phones or attached to their surfaces. To date, there are no systematical studies on the effects of mobile phone chip application on brain activity and the underlying neural mechanisms. The present study investigated whether mobile phone chips that are applied to mobile phones reduce effects of EMFs emitted by mobile phone radiation on electroencephalographic (EEG) brain activity in a laboratory study. Thirty participants volunteered in the present study. Experimental conditions (mobile phone chip, placebo chip, no chip) were set up in a randomized within-subjects design. Spontaneous EEG was recorded before and after mobile phone exposure for two 2-min sequences at resting conditions. During mobile phone exposure, spontaneous EEG was recorded for 30 min during resting conditions, and 5 min during performance of an attention test (d2-R). Results showed increased activity in the theta, alpha, beta and gamma bands during EMF exposure in the placebo and no chip conditions. Application of the mobile phone chip reduced effects of EMFs on EEG brain activity and attentional performance significantly. Attentional performance level was maintained regarding number of edited characters. Further, a dipole analysis revealed different underlying activation patterns in the chip condition compared to the placebo chip and no chip conditions. Finally, a correlational analysis for the EEG frequency bands and electromagnetic high-frequency (HF) emission showed significant correlations in the placebo chip and no chip condition for the theta, alpha, beta, and gamma bands. In the chip condition, a significant correlation of HF with the theta and alpha bands, but not with the beta and gamma bands was

  10. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  11. Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Bache, Morten

    2015-01-01

    We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited...

  12. IGF-binding proteins mediate TGF-beta 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells.

    Science.gov (United States)

    Gajewska, Małgorzata; Motyl, Tomasz

    2004-10-01

    TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.

  13. Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells.

    Science.gov (United States)

    Haas, Michael J; Kurban, William; Shah, Harshit; Onstead-Haas, Luisa; Mooradian, Arshag D

    Beta blockers are known to have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. To determine whether beta blockers can also prevent dextrose-induced endoplasmic reticulum (ER) stress in addition to their antioxidative effects, human coronary artery endothelial cells and hepatocyte-derived HepG2 cells were treated with 27.5 mM dextrose for 24 hours in the presence of carvedilol (a lipophilic beta blockers with alpha blocking activity), propranolol (a lipophilic nonselective beta blockers), and atenolol (a water-soluble selective beta blockers), and ER stress, oxidative, stress and cell death were measured. ER stress was measured using the placental alkaline phosphatase assay and Western blot analysis of glucose regulated protein 78, c-Jun-N-terminal kinase (JNK), phospho-JNK, eukaryotic initiating factor 2α (eIF2α), and phospho-eIF2α and measurement of X-box binding protein 1 (XBP1) mRNA splicing using reverse transcriptase-polymerase chain reaction. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. Cell viability was measured by propidium iodide staining method. The ER stress, SO production, and cell death induced by 27.5 mM dextrose were inhibited by all 3 beta blockers tested. The antioxidative and ER stress reducing effects of beta blockers were also observed in HepG2 cells. The salutary effects of beta blockers on endothelial cells in reducing both ER stress and oxidative stress may contribute to the cardioprotective effects of these agents.

  14. Brain alpha- and beta-globin expression after intracerebral hemorrhage

    OpenAIRE

    He, Yangdong; Hua, Ya; Lee, Jin-Yul; Liu, Wenquan; Keep, Richard F; Wang, Michael M.; Xi, Guohua

    2010-01-01

    Our recent study has demonstrated that hemoglobin (Hb) is present in cerebral neurons and neuronal Hb is inducible after cerebral ischemia. In the present study, we examined the effects of intracerebral hemorrhage (ICH) on the mRNA levels of the α-globin (HbA) and the β-globin (HbB) components of Hb and Hb protein in the brain in vivo and in vitro. In vivo, male Sprague-Dawley rats received either a needle insertion (sham) or an infusion of autologous whole blood into the basal ganglia and we...

  15. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2015-04-01

    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  16. Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice.

    Science.gov (United States)

    Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long

    2008-06-24

    Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an

  17. Albumin extravasation in bicuculline-induced blood-brain barrier dysfunction

    International Nuclear Information System (INIS)

    Persson, L.I.; Rosengren, L.E.; Johansson, B.B.

    1980-01-01

    The extravasation of endogeneous rat albumin and exogeneous 125 I-labeled human serum albumin was compared in rats subjected to bicuculline-induced blood-brain barrier dysfunction. The correlation between rocket immunoelectrophoretic assays of endogeneous rat albumin and 125 I-labeled human serum albumin, assayed by gamma scintillation counting, was good irrespective of whether 125 I-labeled albumin was studied in whole brain tissue or in brain homogenates. The ratio of brain to serum albumin was similar with the two assay methods. (author)

  18. Design of a tritium gas cell for beta-ray induced X-ray spectrometry using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Masanori, E-mail: masahara@ctg.u-toyama.ac.jp [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555 (Japan); Abe, Shinsuke; Matsuyama, Masao [Hydrogen Isotope Research Center, Organization for Promotion of Research, University of Toyama, 3190 Gofuku, Toyama City, Toyama 930-8555 (Japan); Aso, Tsukasa [Electronics and Computer Engineering, National Institute of Technology, Toyama College, 1-2 Ebie-neriya, Imizu City, Toyama 933-0293 (Japan); Tatenuma, Katsuyoshi; Kawakami, Tomohiko; Ito, Takeshi [KAKEN Company Limited, 1044 Horimachi, Mito City, Ibaraki 310-0903 (Japan)

    2017-06-15

    Highlights: • Beta-ray induced X-ray spectrometry (BIXS) is a method for tritium gas analysis. • Gas cell for BIXS was designed by Monte Carlo simulations. • The optimum thickness of the gold layer on a beryllium window was around 150 nm. • This simulation model considered the self-absorption with increasing the cell length. - Abstract: One of the methods used for tritium gas analysis is beta-ray induced X-ray spectrometry (BIXS). Gas cell design is important in this method. The structure of the gas cell for BIXS was optimized by Monte Carlo simulation of beta-ray induced X-ray spectra in various window geometries using the Geant4 tool kit (version 10.01.p02). The simulated spectrum from tritium decay fitted the observed one, and the simulation model was used to obtain the cell parameters for BIXS. The optimum thickness of the gold layer on a beryllium window was around 150 nm. This simulation model also considered the relationship between self-absorption by hydrogen gas and the cell length. Self-absorption increased with increasing cell length and the relationship between the sample pressure and cell length was formulated.

  19. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  20. The effects of Beta-Endorphin: state change modification

    NARCIS (Netherlands)

    Veening, J.G.; Barendregt, H.P.

    2015-01-01

    Beta-endorphin (beta-END) is an opioid neuropeptide which has an important role in the development of hypotheses concerning the non-synaptic or paracrine communication of brain messages. This kind of communication between neurons has been designated volume transmission (VT) to differentiate it

  1. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  2. Beta-thalassemia intermedia associated with moyamoya syndrome.

    Science.gov (United States)

    Göksel, Basak Karakurum; Ozdogu, Hakan; Yildirim, Tulin; Oğuzkurt, Levent; Asma, Suheyl

    2010-07-01

    Moyamoya syndrome (MMS) is a progressive disorder. We report a 19-year-old boy with beta-thalassemia who presented with a left hemiparesis. Brain MRI showed old middle cerebral artery and left frontal subcortical white matter infarcts. Brain magnetic resonance angiography and digital subtraction angiography revealed occlusion of the bilateral internal carotid arteries with a rich network of basal collateral vessels. To our knowledge this is the third report of beta-thalassemia intermedia and MMS, and the first report of a patient in Turkey. It emphasizes the potential for cerebral infarct due to anemia, protein S and thrombocytosis.

  3. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  5. Effect of dietary fiber on the activity of intestinal and fecal beta-glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis.

    Science.gov (United States)

    Manoj, G; Thampi, B S; Leelamma, S; Menon, P V

    2001-01-01

    The effects of fiber isolated from black gram (Phaseolus mungo) and coconut (Cocos nucifera) kernel on the metabolic activity of intestinal and fecal beta glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis were studied. The results indicated that the inclusion of fiber from black gram and coconut kernel generally supported lower specific activities and less fecal output of beta-glucuronidase than did the fiber free diet. This study suggests that the fibers isolated from coconut or black gram may potentially play a role in preventing the formation of colon tumors induced by the carcinogen 1,2-dimethylhydrazine by reducing the activity of the intestinal as well as fecal beta-glucuronidase.

  6. Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database

    DEFF Research Database (Denmark)

    Andersen, H U; Fey, S J; Larsen, Peter Mose

    1997-01-01

    as well as the intracellular mechanisms of action of interleukin 1-mediated beta-cell cytotoxicity are unknown. However, previous studies have found an association of beta-cell destruction with alterations in protein synthesis. Thus, two-dimensional (2-D) gel electrophoresis of pancreatic islet proteins...... may be an important tool facilitating studies of the molecular pathogenesis of insulin-dependent diabetes mellitus. 2-D gel electrophoresis of islet proteins may lead to (i) the determination of qualitative and quantitative changes in specific islet proteins induced by cytokines, (ii......) the determination of the effects of agents modulating cytokine action, and (iii) the identification of primary islet protein antigen(s) initiating the immune destruction of the beta-cells. Therefore, the aim of this study was to create databases (DB) of all reproducibly detectable protein spots on 10% and 15...

  7. First demonstration of cerebrospinal fluid and plasma A beta lowering with oral administration of a beta-site amyloid precursor protein-cleaving enzyme 1 inhibitor in nonhuman primates.

    Science.gov (United States)

    Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J

    2009-01-01

    beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.

  8. The role of mutated amyloid beta 1-42 stimulating dendritic cells in a PDAPP transgenic mouse

    Directory of Open Access Journals (Sweden)

    LI Jia-lin

    2012-06-01

    Full Text Available Background Amyloid plaque is one of the pathological hallmarks of Alzheimer's disease (AD. Anti-beta-amyloid (Aβ immunotherapy is effective in removing brain Aβ, but has shown to be associated with detrimental effects. To avoid severe adverse effects such as meningoencephalitis induced by amyloid beta vaccine with adjuvant, and take advantage of amyloid beta antibody's therapeutic effect on Alzheimer's disease sufficiently, our group has developed a new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating dendritic cells (DC. Our previous work has confirmed that DC vaccine can induce adequate anti-amyloid beta antibody in PDAPP Tg mice safely and efficiently. The DC vaccine can improve impaired learning and memory in the Alzheimer's animal model, and did not cause microvasculitis, microhemorrhage or meningoencephalitis in the animal model. However, the exact mechanism of immunotherapy which reduces Aβ deposition remains unknown. In this report, we studied the mechanism of the vaccine, thinking that this may have implications for better understanding of the pathogenesis of Alzheimer's disease. Methods A new Alzheimer vaccine with mutated amyloid beta 1-42 peptide stimulating DC which were obtained from C57/B6 mouse bone marrow was developed. Amyloid beta with Freund's adjuvant was inoculated at the same time to act as positive control. After the treatment was done, the samples of brains were collected, fixed, cut. Immunohistochemical staining was performed to observe the expression of the nuclear hormone liver X receptor (LXR, membrane-bound protein tyrosine phosphatase (CD45, the ATP-binding cassette family of active transporters (ABCA1, receptor for advanced glycation end products (RAGE, β-site APP-cleaving enzyme (BACE and Aβ in mouse brain tissue. Semi-quantitative analysis was used to defect CA1, CA2, CA3, DG, Rad in hippocampus region and positive neuron in cortex region. Results Aβ was significantly reduced in the

  9. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy

    2010-01-01

    by the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha + IFN-gamma in primary rat beta-cells. RESEARCH DESIGN AND METHODS: Fluorescence-activated cell sorter-purified rat beta-cells were exposed to IL-1beta + IFN-gamma or TNF-alpha + IFN-gamma for 6 or 24 h......-cells, with temporal differences in the number of genes modulated by IL-1beta + IFNgamma or TNF-alpha + IFN-gamma. These cytokine combinations induced differential expression of inflammatory response genes, which is related to differential induction of IFN regulatory factor-7. Both treatments decreased the expression...... of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine...

  10. Changes of brain response induced by simulated weightlessness

    Science.gov (United States)

    Wei, Jinhe; Yan, Gongdong; Guan, Zhiqiang

    The characteristics change of brain response was studied during 15° head-down tilt (HDT) comparing with 45° head-up tilt (HUT). The brain responses evaluated included the EEG power spectra change at rest and during mental arithmetic, and the event-related potentials (ERPs) of somatosensory, selective attention and mental arithmetic activities. The prominent feature of brain response change during HDT revealed that the brain function was inhibited to some extent. Such inhibition included that the significant increment of "40Hz" activity during HUT arithmetic almost disappeared during HDT arithmetic, and that the positive-potential effect induced by HDT presented in all kinds of ERPs measured, but the slow negative wave reflecting mental arithmetic and memory process was elongated. These data suggest that the brain function be affected profoundly by the simulated weightlessness, therefore, the brain function change during space flight should be studied systematically.

  11. Stress and Withdrawal from Chronic Ethanol Induce Selective Changes in Neuroimmune mRNAs in Differing Brain Sites

    Directory of Open Access Journals (Sweden)

    Darin J. Knapp

    2016-07-01

    Full Text Available Stress is a strong risk factor in alcoholic relapse and may exert effects that mimic aspects of chronic alcohol exposure on neurobiological systems. With the neuroimmune system becoming a prominent focus in the study of the neurobiological consequences of stress, as well as chronic alcohol exposure proving to be a valuable focus in this regard, the present study sought to compare the effects of stress and chronic ethanol exposure on induction of components of the neuroimmune system. Rats were exposed to either 1 h exposure to a mild stressor (restraint or exposure to withdrawal from 15 days of chronic alcohol exposure (i.e., withdrawal from chronic ethanol, WCE and assessed for neuroimmune mRNAs in brain. Restraint stress alone elevated chemokine (C–C motif ligand 2 (CCL2, interleukin-1-beta (IL-1β, tumor necrosis factor alpha (TNFα and toll-like receptor 4 (TLR4 mRNAs in the cerebral cortex within 4 h with a return to a control level by 24 h. These increases were not accompanied by an increase in corresponding proteins. Withdrawal from WCE also elevated cytokines, but did so to varying degrees across different cytokines and brain regions. In the cortex, stress and WCE induced CCL2, TNFα, IL-1β, and TLR4 mRNAs. In the hypothalamus, only WCE induced cytokines (CCL2 and IL-1β while in the hippocampus, WCE strongly induced CCL2 while stress and WCE induced IL-1β. In the amygdala, only WCE induced CCL2. Finally—based on the previously demonstrated role of corticotropin-releasing factor 1 (CRF1 receptor inhibition in blocking WCE-induced cytokine mRNAs—the CRF1 receptor antagonist CP154,526 was administered to a subgroup of stressed rats and found to be inactive against induction of CCL2, TNFα, or IL-1β mRNAs. These differential results suggest that stress and WCE manifest broad neuroimmune effects in brain depending on the cytokine and brain region, and that CRF inhibition may not be a relevant mechanism in non-alcohol exposed animals

  12. RNase L mediated protection from virus induced demyelination.

    Directory of Open Access Journals (Sweden)

    Derek D C Ireland

    2009-10-01

    Full Text Available IFN-alpha/beta plays a critical role in limiting viral spread, restricting viral tropism and protecting mice from neurotropic coronavirus infection. However, the IFN-alpha/beta dependent mechanisms underlying innate anti-viral functions within the CNS are poorly understood. The role of RNase L in viral encephalomyelitis was explored based on its functions in inhibiting translation, inducing apoptosis, and propagating the IFN-alpha/beta pathway through RNA degradation intermediates. Infection of RNase L deficient (RL(-/- mice with a sub-lethal, demyelinating mouse hepatitis virus variant revealed that the majority of mice succumbed to infection by day 12 p.i. However, RNase L deficiency did not affect overall control of infectious virus, or diminish IFN-alpha/beta expression in the CNS. Furthermore, increased morbidity and mortality could not be attributed to altered proinflammatory signals or composition of cells infiltrating the CNS. The unique phenotype of infected RL(-/- mice was rather manifested in earlier onset and increased severity of demyelination and axonal damage in brain stem and spinal cord without evidence for enhanced neuronal infection. Increased tissue damage coincided with sustained brain stem infection, foci of microglia infection in grey matter, and increased apoptotic cells. These data demonstrate a novel protective role for RNase L in viral induced CNS encephalomyelitis, which is not reflected in overall viral control or propagation of IFN-alpha/beta mediated signals. Protective function is rather associated with cell type specific and regional restriction of viral replication in grey matter and ameliorated neurodegeneration and demyelination.

  13. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man.

    Science.gov (United States)

    van Someren, Ken A; Edwards, Adam J; Howatson, Glyn

    2005-08-01

    This study examined the effects of beta-hydroxyl-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g alpha-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P HMB//IC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.

  14. Brain glucose and lactate levels during ventilator-induced hypo- and hypercapnia

    NARCIS (Netherlands)

    van Hulst, R. A.; Lameris, T. W.; Haitsma, J. J.; Klein, J.; Lachmann, B.

    2004-01-01

    OBJECTIVE: Levels of glucose and lactate were measured in the brain by means of microdialysis in order to evaluate the effects of ventilator-induced hypocapnia and hypercapnia on brain metabolism in healthy non-brain-traumatized animals. DESIGN AND SETTING: Prospective animal study in a university

  15. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga

    2004-01-01

    beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques...

  16. Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity.

    Science.gov (United States)

    Su, Le; Zhao, BaoXiang; Lv, Xin; Wang, Nan; Zhao, Jing; Zhang, ShangLi; Miao, JunYing

    2007-02-20

    Neuronal apoptosis is a very important event in the development of the central nervous system (CNS), but the underlying mechanisms remain to be elucidated. We have previously shown that safrole oxide, a small molecule, induces integrin beta4 expression and promotes apoptosis in vascular endothelial cells. In this study, the effects of safrole oxide on cell growth and apoptosis have been examined in primary cultures of mouse neurons. Safrole oxide was found to significantly inhibit neuronal cell growth and to induce apoptosis. The inhibitory and apoptotic activities of safrole oxide followed a dose- and time-dependent manner. Interestingly, the expression of integrin beta4 was significantly inhibited with safrole oxide treatment. Furthermore, safrole oxide dramatically increases the level of intracellular reactive oxygen species (ROS) and the activity of NADPH oxidase. Moreover, manganese-dependent superoxide dismutase (MnSOD) activity was decreased significantly with safrole oxide treatment. Our study thus demonstrates that safrole oxide induces neuronal apoptosis through integrin beta4, ROS, NADPH, and MnSOD.

  17. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  18. Ceramide formation is involved in Lactobacillus acidophilus-induced IFN-beta response in dendritic cells

    DEFF Research Database (Denmark)

    Fuglsang, Eva; Henningsen, Louise; Frøkiær, Hanne

    of sphingomyelin to ceramide by acid sphingomyelinase (ASMase) at the outer leaflet of the PM is a key event in endocytosis of gram-positive Lactobacillus acidophilus (L. acidophilus) and the subsequent induction of IFN-beta in DCs and, as the gram-negative Escherichia coli (E. coli) does not induce appreciable...

  19. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.

    Science.gov (United States)

    Pei, Ming; Chen, Demeng; Li, Jingting; Wei, Lei

    2009-12-01

    The transforming growth factor-beta (TGF-beta) superfamily members play diverse roles in cartilage development and maintenance. TGF-beta up-regulates chondrogenic gene expression by enhancing transcription factor SRY (sex determining region Y)-box 9 (Sox9) and inhibits osteoblast differentiation by repressing runt-related transcription factor 2 (Runx2). Recently, histone deacetylases (HDACs) were reported to act as negative regulators of chondrocyte hypertrophy. It was speculated that HDAC4 may promote TGF-beta1-induced MSC chondrogenesis. In this study, the adenovirus-mediated HDAC4 gene (Ad.HDAC4) was utilized to infect synovium-derived stem cells (SDSCs). Adenovirus-mediated LacZ (Ad.LacZ) served as a control. The infected cells were centrifuged to form SDSC pellets followed by incubation in a serum-free chondrogenic medium for 15 days with or without 10ng/mL TGF-beta1. Transfection efficiency was determined in SDSCs using Ad.LacZ. Cytotoxicity was measured using lactate dehydrogenase assay. Histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction were performed to assess chondrogenesis at protein and mRNA levels in infected SDSCs. Our data demonstrated that supplementation with TGF-beta1 could initiate and promote SDSC chondrogenesis; however, TGF-beta1 alone was insufficient to fully differentiate SDSCs into chondrocytes. Ad.HDAC4 could be efficiently transfected into SDSCs. Without TGF-beta1 treatment, HDAC4 had no effect on SDSC chondrogenesis; however, in the presence of TGF-beta1, HDAC4 could speed up and maintain a high level of chondrogenesis while down-regulating the hypertrophic marker - type X collagen expression. This study is the first report showing that HDAC4 overexpression promotes TGF-beta1-induced SDSC chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. The mechanism underlying this process needs further investigation.

  20. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  1. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana

    1994-01-01

    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody...... 1 cephalosporinase. We found a wide range of chromosomal beta-lactamase activity in the sputum samples, with no correlation with basal or induced activity of beta-lactamase expression. The presence of anti-beta-lactamase antibodies in endobronchial sputum could be an important factor in the defense...

  2. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China); Li, Jianguo, E-mail: 2010lijianguo@sina.cn [Department of Anesthesia, Critical Care Medicine and Emergency Medicine Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, People' s Republic of China (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  3. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  4. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    Directory of Open Access Journals (Sweden)

    Gábor Lovas

    2012-07-01

    Full Text Available Transforming growth factor beta (TGF-β proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.

  5. Zinc movement in the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Tamano, Haruna; Oku, Naoto

    2003-05-01

    On the basis of the evidence that elimination of 65Zn from the brain of epilepsy (EL) mice is facilitated by induction of seizures, zinc movement in the brain was studied in mice injected with kainate (12 mg/kg x 3), which exhibited status epilepticus within 120 min after the last injection of kainate. Zinc concentrations in the brain were determined 24 h after the last injection of kainate. Zinc concentrations in the hippocampus, amygdala and cerebral cortex, in which zinc-containing glutamatergic neuron terminals exist, were significantly decreased by the treatment with kainate, while that in the cerebellum was not decreased. Timm's stain in the brain was extensively attenuated 24 h after the last injection of kainate. These results indicate that zinc homeostasis in the brain is affected by kainate-induced seizures. In the hippocampus of rats injected with kainate (10 mg/kg), furthermore, the release of zinc and glutamate into the extracellular fluid was studied using in vivo microdialysis. The levels of zinc and glutamate in the perfusate were increased along with seizure severity after injection of kainate. It is likely that zinc concentration in the synaptic vesicles is decreased by the excess excitation of glutamatergic neurons. The present study suggests that the excessive release of zinc and glutamate from the neuron terminals under kainate-induced seizures is associated with the loss of zinc from the brain.

  6. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. (Univ. of Utrecht (Netherlands))

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  7. Effect of atorvastatin on hyperglycemia-induced brain oxidative stress and neuropathy induced by diabetes

    Directory of Open Access Journals (Sweden)

    Nastaran Faghihi

    2015-04-01

    Conclusion: The findings of the present study reveal that atorvastatin is able to prevent hyperglycemia-induced diabetic neuropathy and inhibit brain oxidative stress during diabetes. It is probable that reduction of urea is one of the reasons for atorvastatin prevention of hyperglycemia-induced neuropathy.

  8. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene.

    Science.gov (United States)

    Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M

    1990-01-01

    The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158

  9. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration.

    Science.gov (United States)

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar

    2017-01-01

    Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can

  10. The prion protein as a receptor for amyloid-beta

    NARCIS (Netherlands)

    Kessels, Helmut W.; Nguyen, Louis N.; Nabavi, Sadegh; Malinow, Roberto

    2010-01-01

    Increased levels of brain amyloid-beta, a secreted peptide cleavage product of amyloid precursor protein (APP), is believed to be critical in the aetiology of Alzheimer's disease. Increased amyloid-beta can cause synaptic depression, reduce the number of spine protrusions (that is, sites of synaptic

  11. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents A beta(25-35)-induced reduction in BPRP in PC12 cells

    NARCIS (Netherlands)

    Lin, Yan-Hua; Liu, Ai-Hua; Wu, Hong-Li; Westenbroek, Christel; Song, Qian-Liu; Yu, He-Ming; Ter Horst, Gert J.; Li, Xue-Jun; Li, Xiang-yi

    2006-01-01

    Several lines of evidence support that beta-amyloid (A beta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza. protects diverse

  12. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    OpenAIRE

    Wang Lin; Wang Yangwei; Xu Xin; Liu Chengze

    2015-01-01

    Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy...

  13. Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain.

    Science.gov (United States)

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2015-01-01

    Acrolein, as a by-product of lipid peroxidation, is implicated in brain aging and in the pathogenesis of oxidative stressmediated neurodegenerative disorders such as Alzheimer's disease (AD). Widespread human exposure to the toxic environmental pollutant that is acrolein renders it necessary to evaluate the effects of exogenous acrolein on the brain. This study investigated the toxic effects of oral administration of 3 mg/kg/day acrolein on the rat cerebral cortex. Moreover, the neuroprotective effects of crocin, the main constituent of saffron, against acrolein toxicity were evaluated. We showed that acrolein decreased concentration of glutathione (GSH) and increased levels of malondialdehyde (MDA), Amyloid-beta (Abeta) and phospho-tau in the brain. Simultaneously, acrolein activated Mitogen-Activated Protein Kinases (MAPKs) signalling pathways. Co-administration of crocin significantly attenuated MDA, Abeta and p-tau levels by modulating MAPKs signalling pathways. Our data demonstrated that environmental exposure to acrolein triggers some molecular events which contribute to brain aging and neurodisorders. Additionally, crocin as an antioxidant is a promising candidate for treatment of neurodegenerative disorders, such as brain aging and AD.

  14. Music mnemonics aid Verbal Memory and Induce Learning - Related Brain Plasticity in Multiple Sclerosis.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey's auditory verbal learning test. We defined the "learning-related synchronization" (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances "deep encoding" during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS.

  15. Nuclear beta decay induced by intense electromagnetic fields: Forbidden transition examples

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A formalism developed earlier for the effect on nuclear beta decay of an intense plane-wave electromagnetic field is applied to three examples of forbidden beta transitions. The examples represent cases where the nuclear ''fragment'' contains one, two, and three nucleons; where the nuclear fragment is defined to be that smallest sub-unit of the nucleus containing the nucleon which undergoes beta decay plus any other nucleons directly angular-momentum coupled to it in initial or final states. The single-nucleon-fragment example is 113 Cd, which has a fourth-forbidden transition. The two-nucleon-fragment example is 90 Sr, which is first-forbidden. The three-nucleon-fragment example is 87 Rb, which is third-forbidden. An algebraic closed-form transition probability is found in each case. At low external-field intensity, the transition probability is proportional to z/sup L/, where z is the field intensity parameter and L is the degree of forbiddenness. At intermediate intensities, the transition probability behaves as z/sup L/-(1/2). At higher intensities, the transition probability contains the z/sup L/-(1/2) factor, a declining exponential factor, and an alternating polynomial in z. This high-intensity transition probability possesses a maximum value, which is found for each of the examples. A general rule, z = q 2 (2L-1), where q is the number of particles in the fragment, is found for giving an upper limit on the intensity at which the maximum transition probability occurs. Field-induced beta decay half-lives for all the examples are dramatically reduced from natural half-lives when evaluated at the optimum field intensity. Relative half-life reduction is greater the higher the degree of forbiddenness

  16. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  17. Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells.

    Directory of Open Access Journals (Sweden)

    Natália F Haddad

    Full Text Available Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27(kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2 and increased expression of p27(kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27(kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing's disease.

  18. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  19. Utility of the ceftazidime-imipenem antagonism test (CIAT to detect and confirm the presence of inducible AmpC beta-lactamases among enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Vlademir Vicente Cantarelli

    Full Text Available Detection of AmpC beta-lactamase production by enterobacteria has been problematic. Contrary to ESBLs, no specific guidelines are available for detection and confirmation of AmpC production by clinical relevant microorganisms. Moreover, some bacterial species may produce inducible AmpC beta-lactamases that can be easily overlooked by routine susceptibility tests. We reported here a new test based on the strong inducible effect of imipenem on AmpC genes and the consequent antagonism with ceftazidime. This test is very simple and proved to be helpful in detecting AmpC-inducible enzymes among several species of clinical isolates.

  20. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm

    DEFF Research Database (Denmark)

    Giwercman, B; Jensen, E T; Høiby, N

    1991-01-01

    Imipenem induced high levels of beta-lactamase production in Pseudomonas aeruginosa biofilms. Piperacillin also induced beta-lactamase production in these biofilms but to a lesser degree. The combination of beta-lactamase production with other protective properties of the biofilm mode of growth c...... could be a major reason for the persistence of this sessile bacterium in chronic infections....

  2. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  3. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Science.gov (United States)

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  4. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Fangyun Tian

    2018-02-01

    Full Text Available Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG and electroencephalogram (EEG signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  5. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  6. Delayed radiation-induced necrosis of the brain stem

    International Nuclear Information System (INIS)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  7. MRI-induced heating of deep brain stimulation leads

    International Nuclear Information System (INIS)

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-01-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  8. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    Science.gov (United States)

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ 1-42 mouse model of AD. Single intracerebroventricular injections of Aβ 1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ 1-42 injection significantly decreased the Aβ 1-42 -induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ 1-42 -induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ 1-42 -treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ 1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ 1-42 -treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ 1-42 -induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  9. Brain-computer interface signal processing at the Wadsworth Center: mu and sensorimotor beta rhythms.

    Science.gov (United States)

    McFarland, Dennis J; Krusienski, Dean J; Wolpaw, Jonathan R

    2006-01-01

    The Wadsworth brain-computer interface (BCI), based on mu and beta sensorimotor rhythms, uses one- and two-dimensional cursor movement tasks and relies on user training. This is a real-time closed-loop system. Signal processing consists of channel selection, spatial filtering, and spectral analysis. Feature translation uses a regression approach and normalization. Adaptation occurs at several points in this process on the basis of different criteria and methods. It can use either feedforward (e.g., estimating the signal mean for normalization) or feedback control (e.g., estimating feature weights for the prediction equation). We view this process as the interaction between a dynamic user and a dynamic system that coadapt over time. Understanding the dynamics of this interaction and optimizing its performance represent a major challenge for BCI research.

  10. Hypoxic preconditioning induces neuroprotective stanniocalcin-1 in brain via IL-6 signaling

    DEFF Research Database (Denmark)

    Westberg, Johan A; Serlachius, Martina; Lankila, Petri

    2007-01-01

    BACKGROUND AND PURPOSE: Exposure of animals for a few hours to moderate hypoxia confers relative protection against subsequent ischemic brain damage. This phenomenon, known as hypoxic preconditioning, depends on new RNA and protein synthesis, but its molecular mechanisms are poorly understood...... originally reported expression of mammalian STC-1 in brain neurons and showed that STC-1 guards neurons against hypercalcemic and hypoxic damage. METHODS: We treated neural Paju cells with IL-6 and measured the induction of STC-1 mRNA. In addition, we quantified the effect of hypoxic preconditioning on Stc-1...... mRNA levels in brains of wild-type and IL-6 deficient mice. Furthermore, we monitored the Stc-1 response in brains of wild-type and transgenic mice, overexpressing IL-6 in the astroglia, before and after induced brain injury. RESULTS: Hypoxic preconditioning induced an upregulated expression of Stc...

  11. Blood-brain barrier dysfunction and amyloid precursor protein accumulation in microvascular compartment following ischemia-reperfusion brain injury with 1-year survival.

    Science.gov (United States)

    Pluta, R

    2003-01-01

    This study examined the late microvascular consequences of brain ischemia due to cardiac arrest in rats. In reacted vibratome sections scattered foci of extravasated horseradish peroxidase were noted throughout the brain and did not appear to be restricted to any specific area of brain. Ultrastructural investigation of leaky sites frequently presented platelets adhering to the endothelium of venules and capillaries. Endothelial cells demonstrated pathological changes with evidence of perivascular astrocytic swelling. At the same time, we noted C-terminal of amyloid precursor protein/beta-amyloid peptide (CAPP/betaA) deposits in cerebral blood vessels, with a halo of CAPP/betaA immunoreactivity in the surrounding parenchyma suggested diffusion of CAPP/betaA out of the vascular compartment. Changes predominated in the hippocampus, cerebral and entorhinal cortex, corpus callosum, thalamus, basal ganglia and around the lateral ventricles. These data implicate delayed abnormal endothelial function of vessels following ischemia-reperfusion brain injury as a primary event in the pathogenesis of the recurrent cerebral infarction.

  12. IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents.

    Science.gov (United States)

    Ivovic, Aleksandar; Oprescu, Andrei I; Koulajian, Khajag; Mori, Yusaku; Eversley, Judith A; Zhang, Liling; Nino-Fong, Rodolfo; Lewis, Gary F; Donath, Marc Y; Karin, Michael; Wheeler, Michael B; Ehses, Jan; Volchuk, Allen; Chan, Catherine B; Giacca, Adria

    2017-10-01

    We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase β (IKKβ), which is activated by oxidative stress, is also implicated. Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKβ inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKβ) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet -1  h -1 ) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet -1  h -1 ] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic

  13. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  14. Interleukin-1 beta induced transient diabetes mellitus in rats. A model of the initial events in the pathogenesis of insulin-dependent diabetes mellitus?

    DEFF Research Database (Denmark)

    Reimers, J I

    1998-01-01

    When aiming at preventing IDDM in man, knowledge of the molecular mechanisms leading to beta cell destruction may facilitate identification of new possible intervention modalities. A model of IDDM pathogenesis in man suggests that cytokines, and IL-1 in particular, are of major importance...... of preventing IDDM in man, the aim af this review was to investigate the effects of rhIL-1 beta on beta-cell function and viability in normal rats. This review discussed 1) the pharmacokinetics of IL-1 beta in rats as the basis for choice of route of administration and dose of rhIL-1 beta, 2) the effects...... and molecular mechanisms of IL-1 beta on temperature and food intake used as control parameters for successful injection of rhIL-1 beta in rats, 3) the effects of one or more injection of IL-1 beta on rat beta cell function, 4) the molecular mechanisms leading to IL-1 beta induced beta cell inhibition in vivo...

  15. Gene expression analysis of interferon-beta treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F.; Datta, P.; Larsen, J.

    2008-01-01

    by treatment with IFN-beta. We use DNA microarrays to study gene expression in 10 multiple sclerosis (MS) patients who began de novo treatment with IFN-beta. After the first injection of IFN-beta, the expression of 74 out of 3428 genes changed at least two-fold and statistically significantly (after Bonferroni......Treatment with interferon-beta (IFN-beta) induces the expression of hundreds of genes in blood mononuclear cells, and the expression of several genes has been proposed as a marker of the effect of treatment with IFN-beta. However, to date no molecules have been identified that are stably induced...

  16. Coronin-1A links cytoskeleton dynamics to TCR alpha beta-induced cell signaling.

    Directory of Open Access Journals (Sweden)

    Bénédicte Mugnier

    Full Text Available Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR-induced immunological synapse (IS formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of alpha beta T cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-kappaB (I kappa B. Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts alpha beta T cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages.

  17. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPECT study using 123I-beta-CIT and 123I-IBZM.

    Science.gov (United States)

    Donnemiller, E; Brenneis, C; Wissel, J; Scherfler, C; Poewe, W; Riccabona, G; Wenning, G K

    2000-09-01

    Structural imaging suggests that traumatic brain injury (TBI) may be associated with disruption of neuronal networks, including the nigrostriatal dopaminergic pathway. However, to date deficits in pre- and/or postsynaptic dopaminergic neurotransmission have not been demonstrated in TBI using functional imaging. We therefore assessed dopaminergic function in ten TBI patients using [123I]2-beta-carbomethoxy-3-beta-(4-iodophenyl)tropane (beta-CIT) and [123I]iodobenzamide (IBZM) single-photon emission tomography (SPET). Average Glasgow Coma Scale score (+/-SD) at the time of head trauma was 5.8+/-4.2. SPET was performed on average 141 days (SD +/-92) after TBI. The SPET images were compared with structural images using cranial computerised tomography (CCT) and magnetic resonance imaging (MRI). SPET was performed with an ADAC Vertex dual-head camera. The activity ratios of striatal to cerebellar uptake were used as a semiquantitative parameter of striatal dopamine transporter (DAT) and D2 receptor (D2R) binding. Compared with age-matched controls, patients with TBI had significantly lower striatal/cerebellar beta-CIT and IBZM binding ratios (PTBI despite relative structural preservation of the striatum. Further investigations of possible clinical correlates and efficacy of dopaminergic therapy in patients with TBI seem justified.

  18. Influence of radiation-induced apoptosis on development brain in molecular regulation

    International Nuclear Information System (INIS)

    Gu Guixiong

    2000-01-01

    An outline of current status on the influence of radiation on the development brain was given. Some genes as immediate early gene, Bcl-2 family, p53, heat shock protein and AT gene play an important regulation role in ionizing radiation-induced development brain cells apoptosis. And such biological factor as nerve growth factor, interleukin-1, tumor necrosis factor, basic fibroblast growth factor, transforming growth factor and so on have a vital protection function against ionizing radiation-induced cells apoptosis

  19. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  20. Music mnemonics aid Verbal Memory and Induce Learning – Related Brain Plasticity in Multiple Sclerosis

    Science.gov (United States)

    Thaut, Michael H.; Peterson, David A.; McIntosh, Gerald C.; Hoemberg, Volker

    2014-01-01

    Recent research on music and brain function has suggested that the temporal pattern structure in music and rhythm can enhance cognitive functions. To further elucidate this question specifically for memory, we investigated if a musical template can enhance verbal learning in patients with multiple sclerosis (MS) and if music-assisted learning will also influence short-term, system-level brain plasticity. We measured systems-level brain activity with oscillatory network synchronization during music-assisted learning. Specifically, we measured the spectral power of 128-channel electroencephalogram (EEG) in alpha and beta frequency bands in 54 patients with MS. The study sample was randomly divided into two groups, either hearing a spoken or a musical (sung) presentation of Rey’s auditory verbal learning test. We defined the “learning-related synchronization” (LRS) as the percent change in EEG spectral power from the first time the word was presented to the average of the subsequent word encoding trials. LRS differed significantly between the music and the spoken conditions in low alpha and upper beta bands. Patients in the music condition showed overall better word memory and better word order memory and stronger bilateral frontal alpha LRS than patients in the spoken condition. The evidence suggests that a musical mnemonic recruits stronger oscillatory network synchronization in prefrontal areas in MS patients during word learning. It is suggested that the temporal structure implicit in musical stimuli enhances “deep encoding” during verbal learning and sharpens the timing of neural dynamics in brain networks degraded by demyelination in MS. PMID:24982626

  1. Cortical Reorganization after Hand Immobilization: The beta qEEG Spectral Coherence Evidences

    Science.gov (United States)

    Fortuna, Marina; Teixeira, Silmar; Machado, Sérgio; Velasques, Bruna; Bittencourt, Juliana; Peressutti, Caroline; Budde, Henning; Cagy, Mauricio; Nardi, Antonio E.; Piedade, Roberto; Ribeiro, Pedro; Arias-Carrión, Oscar

    2013-01-01

    There is increasing evidence that hand immobilization is associated with various changes in the brain. Indeed, beta band coherence is strongly related to motor act and sensitive stimuli. In this study we investigate the electrophysiological and cortical changes that occur when subjects are submitted to hand immobilization. We hypothesized that beta coherence oscillations act as a mechanism underlying inter- and intra-hemispheric changes. As a methodology for our study fifteen healthy individuals between the ages of 20 and 30 years were subjected to a right index finger task before and after hand immobilization while their brain activity pattern was recorded using quantitative electroencephalography. This analysis revealed that hand immobilization caused changes in frontal, central and parietal areas of the brain. The main findings showed a lower beta-2 band in frontal regions and greater cortical activity in central and parietal areas. In summary, the coherence increased in the frontal, central and parietal cortex, due to hand immobilization and it adjusted the brains functioning, which had been disrupted by the procedure. Moreover, the brain adaptation upon hand immobilization of the subjects involved inter- and intra-hemispheric changes. PMID:24278213

  2. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced parkinson's disease rats.

    Science.gov (United States)

    Yin, Wei-Lan; Yin, Wei-Guo; Huang, Bai-Sheng; Wu, Li-Xiang

    2017-09-14

    Parkinson's disease (PD) is age-related neurodegenerative disorder by a progressive loss of dopaminergic(DA) neurons in the substantia nigra (SN) and striatum, which is at least partly associated with α-synuclein protein accumulation in these neurons. Hydrogen sulfide (H 2 S) plays an important role in the nervous system. Studies have shown that H 2 S has a protective effect on PD. However, as a kind of gas molecules, H 2 S is lively, volatile, and not conducive to scientific research and clinical application. Cystathionine-beta-synthase(CBS) is the main enzymes of synthesis of H 2 S in the brain. In order to examine the neuroprotective effects of CBS on PD, we detected the effects of CBS overexpression on 6-Hydroxydopamine (6-OHDA)-lesioned PD rats using lentivirus-mediated gene transfection techniques. In the injured SN of 6-OHDA-induced PD rats, the CBS expression and the endogenous H 2 S level markedly decreased, while administration of lentivirus-mediated CBS overexpression increased the CBS expression and the endogenous H 2 S production.CBS overexpression dramatically reversed apomorphine-induced rotation of the 6-OHDA model rats, decreased the number of TUNEL-positive neurons and the loss of the nigral DA neurons,specifically inhibited 6-OHDA-induced oxidase stress injury, and down-regulated the expression of α-synuclein(α-SYN) in the injured SN. NaHS (an H 2 S donor) had similar effects to CBS overexpression, while Amino-oxyacetate(AOAA, a CBS inhibitor) had opposite effects on PD rats. In summary, we demonstrated that CBS overexpression was able to provide neuroprotective on PD rats and improving the expression of CBS may be a potential therapeutic method for PD. Copyright © 2017. Published by Elsevier B.V.

  3. Hypoparathyroidism and intracerebral calcification in patients with beta-thalassemia major

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, M. [Iran-Shiraz-Namazee Hospital, Namazee Square, Hematology Research Center, Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: karimim@sums.ac.ir; Rasekhi, A.R. [Iran-Shiraz-Namazee Hospital, Namazee Square, Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: rasekhia@sums.ac.ir; Rasekh, M. [Iran-Shiraz-Namazee Hospital, Namazee Square, Department of Endocrinology and Metabolism, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: Rasekhm@sums.ac.ir; Nabavizadeh, S.A. [Iran-Shiraz-Namazee Hospital, Namazee Square, Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: nabavia@gmail.com; Assadsangabi, R. [Iran-Shiraz-Namazee Hospital, Namazee Square, Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: assadsangabi@yahoo.com; Amirhakimi, G.H. [Iran-Shiraz-Namazee Hospital, Namazee Square, Department of Endocrinology and Metabolism, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)], E-mail: amirhakimig@sums.ac.ir

    2009-06-15

    Background: Hypoparathyroidism is one of the most important endocrine complications of thalassemia major. This study was conducted to evaluate the prevalence of intracerebral calcifications in patients with thalassemia with and without hypoparathyroidism. Methods: 47 beta-thalassemia patients with hypoparathyroidism underwent a brain CT scan to investigate the presence and extent of intracerebral calcification. 30 age- and sex-matched beta-thalassemic patients with normal parathyroid function who had undergone brain CT for headache, or some other minor neurologic problems were also enrolled in the study serving as controls. The amount of intracerebral calcification, hematologic parameters, and some clinical findings were compared between both groups. Results: Intracerebral calcification was present in 54.2% of beta-thalassemia patients with hypoparathyroidism. The most frequent sites of calcification were basal ganglia, and frontoparietal areas of the brain. Thalami, internal capsule, cerebellum and posterior fossa were other less frequently calcified regions of the brain. In contrast, there was no evidence of intracerebral calcifications in the 30 thalassemic patients with normal parathyroid function. There was not a statistically significant difference between serum ferritin concentrations in thalassemia patient with hypoparathyroidism and those with normal parathyroid function (2781 vs. 2178, P > 0.05). Conclusion: Intracranial calcification is a common finding in thalassemia patients with hypoparathyroidism, it can be extensive and involves most regions of the brain.

  4. Hypoparathyroidism and intracerebral calcification in patients with beta-thalassemia major

    International Nuclear Information System (INIS)

    Karimi, M.; Rasekhi, A.R.; Rasekh, M.; Nabavizadeh, S.A.; Assadsangabi, R.; Amirhakimi, G.H.

    2009-01-01

    Background: Hypoparathyroidism is one of the most important endocrine complications of thalassemia major. This study was conducted to evaluate the prevalence of intracerebral calcifications in patients with thalassemia with and without hypoparathyroidism. Methods: 47 beta-thalassemia patients with hypoparathyroidism underwent a brain CT scan to investigate the presence and extent of intracerebral calcification. 30 age- and sex-matched beta-thalassemic patients with normal parathyroid function who had undergone brain CT for headache, or some other minor neurologic problems were also enrolled in the study serving as controls. The amount of intracerebral calcification, hematologic parameters, and some clinical findings were compared between both groups. Results: Intracerebral calcification was present in 54.2% of beta-thalassemia patients with hypoparathyroidism. The most frequent sites of calcification were basal ganglia, and frontoparietal areas of the brain. Thalami, internal capsule, cerebellum and posterior fossa were other less frequently calcified regions of the brain. In contrast, there was no evidence of intracerebral calcifications in the 30 thalassemic patients with normal parathyroid function. There was not a statistically significant difference between serum ferritin concentrations in thalassemia patient with hypoparathyroidism and those with normal parathyroid function (2781 vs. 2178, P > 0.05). Conclusion: Intracranial calcification is a common finding in thalassemia patients with hypoparathyroidism, it can be extensive and involves most regions of the brain.

  5. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  6. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    Directory of Open Access Journals (Sweden)

    Francesca Fiory

    Full Text Available The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15. In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  7. Peroxisome proliferator-activated receptor alpha (PPARalpha) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism

    DEFF Research Database (Denmark)

    Frigerio, F; Brun, T; Bartley, C

    2009-01-01

    and investigated key metabolic pathways and genes responsible for metabolism-secretion coupling during a culture period of 3 days in the presence of 0.4 mmol/l oleate. RESULTS: In INS-1E cells, the secretory dysfunction primarily induced by oleate was aggravated by silencing of PPARalpha. Conversely, PPARalpha...... enzyme pyruvate carboxylase. PPARalpha overproduction increased both beta-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. CONCLUSIONS....../INTERPRETATION: PPARalpha protected INS-1E beta cells from oleate-induced dysfunction, promoting both preservation of glucose metabolic pathways and fatty acid turnover....

  8. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    Science.gov (United States)

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  9. GMP-compliant automated synthesis of [{sup 18}F]AV-45 (Florbetapir F 18) for imaging {beta}-amyloid plaques in human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yao, C.-H. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Lin, K.-J. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Weng, C.-C. [Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Hsiao, I.-T. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Ting, Y.-S. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Yen, T.-C. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China); Jan, T.-R. [Department and Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Skovronsky, Daniel [Avid Radiopharmaceuticals, Inc., Philadelphia, PA 19104 (United States); Kung, M.-P. [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Wey, S.-P., E-mail: spwey@mail.cgu.edu.t [Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kweishan, Taoyuan 333, Taiwan (China)

    2010-12-15

    We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of {sup 18}F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of {beta}-amyloid (A{beta}) plaques in the brain of Alzheimer's disease patients. [{sup 18}F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4{+-}7.7% with a final radiochemical purity of 95.3{+-}2.2% (n=19). The specific activity of [{sup 18}F]AV-45 reached as high as 470{+-}135 TBq/mmol (n=19). The present studies show that [{sup 18}F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use.

  10. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    Science.gov (United States)

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  11. Evaluation of partial beta-adrenoceptor agonist activity.

    Science.gov (United States)

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether

  12. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    Science.gov (United States)

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  13. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  14. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  15. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide.

    Science.gov (United States)

    Gao, Xin; Zheng, Chun Yan; Yang, Ling; Tang, Xi Can; Zhang, Hai Yan

    2009-06-01

    Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA.

  16. Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)

    2007-12-15

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.

  17. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  18. Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm

    2017-01-01

    The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.

  19. The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins.

    Science.gov (United States)

    Tsutsui, Hidekazu; Shimizu, Hideaki; Mizuno, Hideaki; Nukina, Nobuyuki; Furuta, Toshiaki; Miyawaki, Atsushi

    2009-11-25

    KikGR is a fluorescent protein engineered to display green-to-red photoconvertibility that is induced by irradiation with ultraviolet or violet light. Similar to Kaede and EosFP, two naturally occurring photoconvertible proteins, KikGR contains a His(62)-Tyr(63)-Gly(64) tripeptide sequence, which forms a green chromophore that can be photoconverted to a red one via formal beta-elimination and subsequent extension of a pi-conjugated system. Using a crystallizable variant of KikGR, we determined the structures of both the green and red state at 1.55 A resolution. The double bond between His(62)-C(alpha) and His(62)-C(beta) in the red chromophore is in a cis configuration, indicating that rotation along the His(62) C(alpha)-C(beta) bond occurs following cleavage of the His(62) N(alpha)-C(alpha) bond. This structural rearrangement provides evidence that the beta-elimination reaction governing the green-to-red photoconversion of KikGR follows an E1 (elimination, unimolecular) mechanism.

  20. Increased central immunoreactive beta-endorphin content in patients with Wernicke-Korsakoff syndrome and in alcoholics.

    Science.gov (United States)

    Summers, J A; Pullan, P T; Kril, J J; Harper, C G

    1991-01-01

    beta-endorphin, adrenocorticotrophin, and alpha-melanocyte stimulating hormone were measured by radioimmunoassay in three areas of human brain at necropsy in seven subjects with Wernicke-Korsakoff syndrome and in 52 controls. Thiamin concentration in six brain areas was also measured. Mamillary body beta-endorphin concentrations were significantly increased in those with the syndrome compared with controls, and those controls with high alcohol intake showed increased mamillary body beta-endorphin compared with controls with low alcohol intake. Brain thiamin concentration was similar in both groups, with the exception of the brainstem, where it was reduced in subjects with Wernicke-Korsakoff syndrome. Thalamic beta-endorphin in controls was inversely correlated with thiamin in frontal white matter, frontal cortex, parietal white matter and parietal cortex, while beta-endorphin in the hypothalamus of patients was inversely correlated with thiamin in frontal cortex, parietal white matter, thalamus and brainstem. These results suggest that there is a disturbance of the endorphinergic system in Wernicke-Korsakoff syndrome which may be related to alcohol intake. PMID:1650797

  1. Multiscale neural connectivity during human sensory processing in the brain

    Science.gov (United States)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  2. Utilization of D-beta-hydroxybutyrate and oleate as alternate energy fuels in brain cell cultures of newborn mice after hypoxia at different glucose concentrations.

    Science.gov (United States)

    Bossi, E; Kohler, E; Herschkowitz, N

    1989-11-01

    In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.

  3. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Science.gov (United States)

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  4. Dopaminergic and beta-adrenergic effects on gastric antral motility

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Gottrup, F

    1984-01-01

    of bethanechol or pentagastrin inducing motor activity patterns as in the phase III of the MMC and the digestive state respectively. The stimulated antral motility was dose-dependently inhibited by dopamine. The effect was significantly blocked by specifically acting dopaminergic blockers, while alpha- and beta......-adrenergic blockers were without any significant effects. Dose-response experiments with bethanechol and dopamine showed inhibition of a non-competitive type. Isoprenaline was used alone and in conjunction with selective blockade of beta 1- and beta 2-receptors during infusion of bethanechol which induces a pattern...... similar to phase III in the migrating myoelectric complex. The stimulated antral motility was dose-dependently inhibited by isoprenaline. The effect could be significantly blocked by propranolol (beta 1 + beta 2-adrenoceptor blocker) and by using in conjunction the beta 1-adrenoceptor blocker practolol...

  5. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.

    Science.gov (United States)

    Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana

    2009-01-01

    Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.

  6. Iodine-123 labelled N-(2-fluoroethyl)-2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)nortropane for dopamine transporter imaging in the living human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); AAkerman, K. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Bergstroem, K.A. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Karhu, J. [Dept. of Clinical Neurophysiology, Kuopio Univ. Hospital (Finland); Hiltunen, J. [MAP Medical Technologies Oy, Tikkakoski (Finland); Haukka, J. [MAP Medical Technologies Oy, Tikkakoski (Finland); Heikkinen, J. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Tiihonen, J. [Dept. of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio (Finland); Wang, S. [Research Biochemical International (RBI), Natick, MA (United States); Neumeyer, J.L. [Research Biochemical International (RBI), Natick, MA (United States)

    1995-07-01

    Here we report a pilot comparison of [{sup 123}I]{beta}-CIT and [{sup 123}I]{beta}-CIT-FP with a new tropane derivative, [{sup 123}I]N-(2-fluoroethyl)-2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)nortropane ([{sup 123}I]{beta}-CIT-FE), using SPET imaging in four healthy male subjects. Peak uptake of [{sup 123}I]{beta}-CIT-FE into the basal ganglia occurred very rapidly (0.5 h after injection of tracer), after which the striatal washout obeyed a bi-exponential form. The specific DAT binding of [{sup 123}I]{beta}-CIT-FE into the basal ganglia was somewhat less (0.785{+-}0.117) than that of [{sup 123}I]{beta}-CIT (0.922{+-}0.004) or [{sup 123}I]{beta}-CIT-FP (0.813{+-}0.047). All these tracers have excellent imaging quality in healthy control subjects. However, the relatively fast washout of [{sup 123}I]{beta}-CIT-FE and low temporal resolution of older SPET cameras may limit the use of this tracer to the measurement of the DAT density. (orig./UG)

  7. Predictions and observations of low-shear beta-induced shear Alfven-acoustic eigenmodes in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)

    2007-10-08

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  8. Effect of beta-endorphin imprinting during late pregnancy on the brain serotonin and plasma nocistatin levels of adult male rats.

    Science.gov (United States)

    Tekes, K; Gyenge, M; Hantos, M; Csaba, G

    2007-07-01

    Female rats were treated with 10 microg of beta-endorphin on the 19th day of pregnancy. Offspring were studied when five months old. Serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in four brain regions were determined by HPLC-EC and the nocistatin levels of blood plasma using RIA methods. In each brain region studied, the 5-HT levels were highly significantly reduced and that of 5-HIAA in three regions was highly significantly increased. When 5HIAA/5HT ratios, as a measure of serotonin turnover, were calculated, imprinted animals showed extremely high values. Plasma nocistatin level was also significantly elevated. The results call attention to the effect of perinatal endorphin imprinting and its long-term consequences (e.g., setting of aggressiveness, pain tolerance).

  9. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    Science.gov (United States)

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  10. Anti-amyloid beta protein antibody passage across the blood-brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment.

    Science.gov (United States)

    Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael

    2007-08-01

    Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.

  11. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  12. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  13. High doses of L-naloxone but neither D-naloxone nor beta-funaltrexamine prevent hyperthermia-induced seizures in rat pups.

    Science.gov (United States)

    Laorden, M L; Miralles, F S; Puig, M M

    1988-03-01

    The effects of the non-specific opiate antagonist L-naloxone and the inactive isomer D-naloxone, as well as the specific mu receptor antagonist beta-funaltrexamine, have been examined on hyperthermia-induced seizures in unrestrained 15 days old rats. Saline-injected animals exposed to an ambient temperature of 40 degrees C showed a gradual increase in body temperature reaching a maximum of 42 +/- 0.1 degrees C at 50 min exposure. At this time all the pups had seizures and died. Similar results were obtained when the animals were pretreated with different doses of D-naloxone and beta-funaltrexamine. Rats pretreated with L-naloxone also showed an increase in rectal temperature; but the temperature was lower than in saline-injected animals. Only high doses of L-naloxone prevented seizures and deaths. These data indicate that endogenous opioid peptides may play a role in seizures induced by hyperthermia and that receptors other than mu receptors could be involved in hyperthermia-induced seizures.

  14. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell

    Science.gov (United States)

    Crofton, Elizabeth J.; Nenov, Miroslav N.; Zhang, Yafang; Scala, Federico; Page, Sean A.; McCue, David L.; Li, Dingge; Hommel, Jonathan D.; Laezza, Fernanda; Green, Thomas A.

    2017-01-01

    Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types. PMID:28126496

  15. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    Science.gov (United States)

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Silencing p110{beta} prevents rapid depletion of nuclear pAkt

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhi-wei; Ghalali, Aram; Hoegberg, Johan [Institute of Environmental Medicine, Karolinska Institutet, S-17177 Stockholm (Sweden); Stenius, Ulla, E-mail: ulla.stenius@ki.se [Institute of Environmental Medicine, Karolinska Institutet, S-17177 Stockholm (Sweden)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer p110{beta} was essential for the statin- and ATP-induced depletion of nuclear pAkt and an associated inhibition of growth. Black-Right-Pointing-Pointer p110{beta} knock-out inhibited statin-induced changes in binding between FKBP51, pAkt and PTEN. Black-Right-Pointing-Pointer Data supports the hypothesis that nuclear pAkt is important for anti-cancer effects of statins. -- Abstract: The p110{beta} subunit in the class IA PI3K family may act as an oncogene and is critical for prostate tumor development in PTEN knockout mice. We tested the possible involvement of p110{beta} in a recently described rapid depletion of phosphorylated Akt (pAkt) in the nucleus. Previous work showed that this down-regulation is induced by extracellular ATP or by statins and is mediated by the purinergic receptor P2X7. Here, we used p110{beta} knock out mouse embryonic fibroblasts (MEFs) and siRNA-treated cancer cells. We found that p110{beta} is essential for ATP- or statin-induced nuclear pAkt depletion in MEFs and in several cancer cell lines including prostate cancer cells. ATP, statin or the selective P2X7 agonist BzATP also inhibited cell growth, and this inhibition was not seen in p110{beta} knock out cells. We also found that p110{beta} was necessary for statin-induced changes in binding between FKBP51, pAkt and PTEN. Our data show that p110{beta} is essential for the ATP- and statin-induced effects and support a role of nuclear pAkt in cancer development. They also provide support for a chemopreventive effect of statins mediated by depletion of nuclear pAkt.

  17. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    Science.gov (United States)

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  18. Radiation-induced apoptosis and developmental disturbance of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine

    1995-03-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs.

  19. Radiation-induced apoptosis and developmental disturbance of the brain

    International Nuclear Information System (INIS)

    Inouye, Minoru

    1995-01-01

    The developing mammalian brain is highly susceptible to ionizing radiation. A significant increase in small head size and mental retardation has been noted in prenatally exposed survivors of the atomic bombing, with the highest risk in those exposed during 8-15 weeks after fertilization. This stage corresponds to day 13 of pregnancy for mice and day 15 for rats in terms of brain development. The initial damage produced by radiation at this stage is cell death in the ventricular zone (VZ) of the brain mantle, the radiosensitive germinal cell population. During histogenesis of the cerebellum the external granular layer (EGL) is also radiosensitive. Although extensive cell death results in microcephaly and histological abnormlity, both VZ and EGL have an ability to recover from a considerable cell loss and form the normal structure of the central nervous system. The number of cell deaths to induce tissue abnormalities in adult brain rises in the range of 15-25% of the germinal cell population; and the threshold doses are about 0.3 Gy for cerebral defects and 1 Gy for cerebellar anomalies in both mice and rats. A similar threshold level is suggested in human cases in induction of mental retardation. Radiation-induced cell death in the VZ and EGL has been revealed as apoptosis, by the nuclear and cytoplasmic condensation, transglutaminase activation, required macromolecular synthesis, and internucleosomal DNA cleavage. Apoptosis of the germinal cell is assumed to eliminate acquired genetic damage. Once an abnormality in DNA has been induced and fixed in a germinal cell, it would be greatly amplified during future proliferation. These cells would commit suicide when injured for replacement by healthy cells, rather than undertake DNA repair. In fact they show very slow repair of cellular damage. Thus the high sensitivity of undifferentiated neural cells to the lethal effect of radiation may constitute a biological defense mechanism. (author) 69 refs

  20. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  1. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    Science.gov (United States)

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  2. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling.

    Science.gov (United States)

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M; Xu, Ying

    2016-04-05

    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling.

  3. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  4. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  5. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  6. Reduced amyloidogenic processing of the amyloid beta-protein precursor by the small-molecule Differentiation Inducing Factor-1.

    Science.gov (United States)

    Myre, Michael A; Washicosky, Kevin; Moir, Robert D; Tesco, Giuseppina; Tanzi, Rudolph E; Wasco, Wilma

    2009-04-01

    The detection of cell cycle proteins in Alzheimer's disease (AD) brains may represent an early event leading to neurodegeneration. To identify cell cycle modifiers with anti-Abeta properties, we assessed the effect of Differentiation-Inducing Factor-1 (DIF-1), a unique, small-molecule from Dictyostelium discoideum, on the proteolysis of the amyloid beta-protein precursor (APP) in a variety of different cell types. We show that DIF-1 slows cell cycle progression through G0/G1 that correlates with a reduction in cyclin D1 protein levels. Western blot analysis of DIF-treated cells and conditioned medium revealed decreases in the levels of secreted APP, mature APP, and C-terminal fragments. Assessment of conditioned media by sandwich ELISA showed reduced levels of Abeta40 and Abeta42, also demonstrating that treatment with DIF-1 effectively decreases the ratio of Abeta42 to Abeta40. In addition, DIF-1 significantly diminished APP phosphorylation at residue T668. Interestingly, site-directed mutagenesis of APP residue Thr668 to alanine or glutamic acid abolished the effect of DIF-1 on APP proteolysis and restored secreted levels of Abeta. Finally, DIF-1 prevented the accumulation of APP C-terminal fragments induced by the proteasome inhibitor lactacystin, and calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN). Our findings suggest that DIF-1 affects G0/G1-associated amyloidogenic processing of APP by a gamma-secretase-, proteasome- and calpain-insensitive pathway, and that this effect requires the presence of residue Thr668.

  7. Inhibition of polymerases-alpha and -beta completely blocks DNA repair induced by UV irradiation in cultured mouse neuronal cells

    International Nuclear Information System (INIS)

    Licastro, F.; Sarafian, T.; Verity, A.M.; Walford, R.L.

    1985-01-01

    The effects of hydroxyurea, aphidicolin and dideoxythymidine on UV-induced DNA repair of mouse neuronal granular cells were studied. Aphidicolin, which is considered a specific inhibitor of polymerase-alpha, decreased spontaneous DNA synthesis by 93% and totally suppressed DNA repair. Dideoxythymidine, an inhibitor of polymerase-beta, was more potent in decreasing scheduled DNA synthesis than aphidicolin, and also completely blocked the UV-induced DNA repair. Hydroxyurea, a specific inhibitor of ribonucleotide reductase, inhibited scheduled DNA synthesis, but unscheduled DNA synthesis after UV irradiation was always well detectable. Our data suggest that in neuronal cells from 5 to 10 days old mice both polymerases-alpha and -beta are required for both DNA synthesis and repair. These two enzymes may act jointly in filling up the gaps along the DNA molecule and elongating the DNA chain

  8. International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)

    OpenAIRE

    Wilson, Jacob M; Fitschen, Peter J; Campbell, Bill; Wilson, Gabriel J; Zanchi, Nelo; Taylor, Lem; Wilborn, Colin; Kalman, Douglas S; Stout, Jeffrey R; Hoffman, Jay R; Ziegenfuss, Tim N; Lopez, Hector L; Kreider, Richard B; Smith-Ryan, Abbie E; Antonio, Jose

    2013-01-01

    Abstract Position Statement: The International Society of Sports Nutrition (ISSN) bases the following position stand on a critical analysis of the literature on the use of beta-hydroxy-beta-methylbutyrate (HMB) as a nutritional supplement. The ISSN has concluded the following. 1. HMB can be used to enhance recovery by attenuating exercise induced skeletal muscle damage in trained and untrained populations. 2. If consuming HMB, an athlete will benefit from consuming the supplement in close pro...

  9. Beta-cryptoxanthin protection against cigarette smoke-induced inflammatory responses in the lung is due to the action of its own molecule

    Science.gov (United States)

    Higher intake of the dietary xanthophyll, beta-cryptoxanthin (BCX), has been associated with a lower risk of lung cancer death in smokers. We have previously shown that BCX feeding was effective in reducing both cigarette smoke (CS)-induced lung inflammation in ferrets and carcinogen-induced lung tu...

  10. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    Science.gov (United States)

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  11. Once-weekly 22microg subcutaneous IFN-beta-1a in secondary progressive MS: a 3-year follow-up study on brain MRI measurements and serum MMP-9 levels

    DEFF Research Database (Denmark)

    Wu, X; Kuusisto, H; Dastidar, P

    2007-01-01

    : There was no obvious effect on the number of contrast medium-enhancing lesions, the volume of T1 or T2 lesions or level of serum MMP-9, nor was any effect detected on the relapse rate and the Expanded Disability Status Scale (EDSS). Brain atrophy progression was not affected by the treatment. CONCLUSION: The lack......OBJECTIVE: To study the effect of weekly injected subcutaneous interferon (IFN)-beta-1a 22 microg on the extent of brain lesions on magnetic resonance imaging (MRI) and the level of serum matrix metalloproteinase (MMP)-9 in patients with secondary progressive multiple sclerosis (SPMS). SUBJECTS...... of effect on MRI, clinical outcomes or the levels of MMP-9 indicates that subcutaneous administration of low-dose low-frequency IFN-beta-1a is insufficient in controlling either the inflammatory constitutes or the neurodegenerative changes of advanced SPMS. Udgivelsesdato: 2007-Jul...

  12. PET imaging of brain with the {beta}-amyloid probe, [{sup 11}C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi [Fujita Health University, Department of Radiology, Aichi (Japan); National Institutes of Health, Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (United States); Ye, Daniel; Cohen, Robert M. [National Institutes of Health, Geriatric Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland (United States); Ichise, Masanori; Liow, Jeih-San; Cai, Lisheng; Musachio, John L.; Hong, Jinsoo; Crescenzo, Mathew; Tipre, Dnyanesh; Lu, Jian-Qiang; Zoghbi, Sami; Vines, Douglass C.; Pike, Victor W.; Innis, Robert B. [National Institutes of Health, Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (United States); Jacobowitz, David [USUHS, Department of Anatomy, Physiology, and Genetics, Bethesda, Maryland (United States); Seidel, Jurgen; Green, Michael V. [National Institutes of Health, Department of Nuclear Medicine, Warren Grant Magnuson Clinical Center, Bethesda, Maryland (United States); Katada, Kazuhiro [Fujita Health University, Department of Radiology, Aichi (Japan)

    2005-04-01

    The purpose of this study was to evaluate the capacity of [{sup 11}C]6-OH-BTA-1 and positron emission tomography (PET) to quantify {beta}-amyloid (A{beta}) plaques in the Tg2576 mouse model of Alzheimer's disease (AD). PET imaging was performed with the NIH ATLAS small animal scanner in six elderly transgenic mice (Tg2576; age 22.0{+-}1.8 months; 23.6{+-}2.6 g) overexpressing a mutated form of human {beta}-amyloid precursor protein (APP) known to result in the production of A{beta} plaques, and in six elderly wild-type litter mates (age 21.8{+-}1.6 months; 29.5{+-}4.7 g). Dynamic PET scans were performed for 30 min in each mouse under 1% isoflurane inhalation anesthesia after a bolus injection of 13-46 MBq of [{sup 11}C]6-OH-BTA-1. PET data were reconstructed with 3D OSEM. On the coronal PET image, irregular regions of interest (ROIs) were placed on frontal cortex (FR), parietal cortex (PA), striatum (ST), thalamus (TH), pons (PO), and cerebellum (CE), guided by a mouse stereotaxic atlas. Time-activity curves (TACs) (expressed as percent injected dose per gram normalized to body weight: % ID-kg/g) were obtained for FR, PA, ST, TH, PO, and CE. ROI-to-CE radioactivity ratios were also calculated. Following PET scans, sections of mouse brain prepared from anesthetized and fixative-perfused mice were stained with thioflavin-S. TACs for [{sup 11}C]6-OH-BTA-1 in all ROIs peaked early (at 30-55 s), with radioactivity washing out quickly thereafter in both transgenic and wild-type mice. Peak uptake in all regions was significantly lower in transgenic mice than in wild-type mice. During the later part of the washout phase (12-30 min), the mean FR/CE and PA/CE ratios were higher in transgenic than in wild-type mice (1.06{+-}0.04 vs 0.98{+-}0.07, p=0.04; 1.06{+-}0.09 vs 0.93{+-}0.08 p=0.02) while ST/CE, TH/CE, and PO/CE ratios were not. Ex vivo staining revealed widespread A{beta} plaques in cortex, but not in cerebellum of transgenic mice or in any brain regions of wild

  13. Stromal cells and osteoclasts are responsible for exacerbated collagen-induced arthritis in interferon-beta-deficient mice

    DEFF Research Database (Denmark)

    Treschow, Alexandra P; Teige, Ingrid; Nandakumar, Kutty S

    2005-01-01

    OBJECTIVE: Clinical trials using interferon-beta (IFNbeta) in the treatment of rheumatoid arthritis have shown conflicting results. We undertook this study to understand the mechanisms of IFNbeta in arthritis at a physiologic level. METHODS: Collagen-induced arthritis (CIA) was induced in IFNbeta....... Differences in osteoclast maturation were determined in situ by histology of arthritic and naive paws and by in vitro maturation studies of naive bone marrow cells. The importance of IFNbeta-producing fibroblasts was determined by transferring fibroblasts into mice at the time of CIA immunization. RESULTS...

  14. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    Science.gov (United States)

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  16. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  17. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    El-Akabawy, Gehan; El-Kholy, Wael

    2014-05-01

    Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  19. Insulin like growth factor-1 prevents 1-mentyl-4-phenylphyridinium-induced apoptosis in PC12 cells through activation of glycogen synthase kinase-3beta

    International Nuclear Information System (INIS)

    Sun, Xin; Huang, Luqi; Zhang, Min; Sun, Shenggang; Wu, Yan

    2010-01-01

    Dopaminergic neurons are lost mainly through apoptosis in Parkinson's disease. Insulin like growth factor-1 (IGF-1) inhibits apoptosis in a wide variety of tissues. Here we have shown that IGF-1 protects PC12 cells from toxic effects of 1-methyl-4-phenylpyridiniumion (MPP + ). Treatment of PC12 cells with recombinant human IGF-1 significantly decreased apoptosis caused by MPP + as measured by acridine orange/ethidium bromide staining. IGF-1 treatment induced sustained phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) as shown by western blot analysis. The anti-apoptotic effect of IGF-1 was abrogated by LY294002, which indirectly inhibits phosphorylation of GSK-3beta. Lithium chloride (LiCl), a known inhibitor of GSK-3beta, also blocked MPP + -induced apoptosis. Finally, although IGF-1 enhanced phosphorylation of extracellular signal-regulated kinases ERK1 and 2 (ERK1/2), PD98059, a specific inhibitor of ERK1/2, did not alter the survival effect of IGF-1. Thus, our findings indicate that IGF-1 protects PC12 cells exposed to MPP + from apoptosis via the GSK-3beta signaling pathway.

  20. Towards Alzheimer's beta-amyloid vaccination.

    Science.gov (United States)

    Frenkel, D; Solomon, B

    2001-01-01

    Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human beta-amyloid peptide bind to preformed beta-amyloid fibrils (Abeta), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid beta-protein (AbetaP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AbetaP. Such antibodies are able to sequester peripheral AbetaP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed beta-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases. Copyright 2001 The International Association for Biologicals.

  1. Inhibitory effect of magnesium sulfate on reaction of lipid hyperoxidation after radiation-induced acute brain injuries

    International Nuclear Information System (INIS)

    Wang Lili; Zhou Juying; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: 60 maturity Sprague-Dawley (SD) rats were randomly divided into 3 groups: blank control group, experimental control group and experimental-therapeutic group. The whole brain of SD rats of experimental control group and experimental-therapeutic group was irradiated to a dose of 20 Gy using 6 MeV electron. MgSO 4 was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. At different time points ranging from the 1 d, 7 d, 14 d, 30 d after irradiation, the brain tissue were taken. The xanthine oxidase and colorimetric examination were used to measure the superoxide dismutase (SOD) and malonyldialdehyde (MDA) respectively in the rat brain respectively. Results: Compared with blank control group, the SOD in brain of experimental control group decreased significantly (P 4 used in early stage can inhibit the lipid peroxidation after radiation-induced acute brain injuries and alleviate the damage induced by free radicals to brain tissue. (authors)

  2. Predictions and Observations of Low-shear Beta-induced Alfvén-acoustic Eigenmodes in Toroidal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N. N.; Berk, H. L.; Fredrickson, E.; Sharapov, S. E.

    2007-07-02

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfvén -acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfvén-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfvén-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta < 2% as well as in NSTX plasmas at relatively high beta > 20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfvén coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  3. The synthesis of (R)- and (S)-[N-methyl-{sup 11}C]{beta}, {beta}-difluoromethamphetamine for the investigation of the binding mechanism of biogenic amines in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Gillings, N.M.; Gee, A.D. [PET Centre, Aarhus University Hospital, Aarhus C (Denmark); Inoue, O. [School of Allied Health Sciences, Osaka University Medical School, Osaka (Japan)

    1999-04-01

    In an attempt to elucidate the contribution of the extent of nitrogen protonation on the in vivo binding of methamphetamine in the brain, the enantiomers of [N-methyl-{sup 11}C]{beta},{beta}-difluoroamphetamine (4) were prepared for use in positron emission tomography (PET) studies. Thus, the enantiomers of {beta},{beta}-difluoroamphetamine were prepared from trans-{beta}-methylstyrene, via bromination, conversion into the azirine, fluorination and resolution as the tartrate salts. (R)- and (S)-{beta},{beta}-difluoroamphetamine (3) were then each labelled with carbon-11 (t{sub 1/2}=20.4 min) by N-methylation of the corresponding homochiral {beta},{beta}-difluoroamphetamine with [{sup 11}C]methyl iodide. The labelled products were each synthesised, purified and formulated in 35 min, starting from [{sup 11}C]carbon dioxide in 15-16% decay-corrected radiochemical yield, with a radiochemical purity of >99% and specific radioactivity of 50-150 GBq {mu}mol{sup -1} at end of synthesis.

  4. Theory and simulation of discrete kinetic beta induced Alfven eigenmode in tokamak plasmas

    International Nuclear Information System (INIS)

    Wang, X; Zonca, F; Chen, L

    2010-01-01

    It is shown, both analytically and by numerical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfven eigenmode (BAE)-shear Alfven wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic BAE (KBAE). While thermal ion compressibility gives rise to finite BAE accumulation point frequency, the discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the finite radial gradients of energetic particles.

  5. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    Science.gov (United States)

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  6. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia.

    Science.gov (United States)

    Meconi, Federica; Anderl-Straub, Sarah; Raum, Heidelore; Landgrebe, Michael; Langguth, Berthold; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ). Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof) during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  7. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia

    Directory of Open Access Journals (Sweden)

    Federica Meconi

    2016-01-01

    Full Text Available Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ. Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  8. Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.

    Science.gov (United States)

    Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter

    2017-11-01

    Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and

  9. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    Science.gov (United States)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  10. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  11. Silent ischemia and beta-blockade

    DEFF Research Database (Denmark)

    Egstrup, K

    1991-01-01

    and should also be directed at the other coronary artery risk factors of the patients. The effects of beta-blockers, which reduce the duration and frequency of silent ischemic episodes, is well described. The effect is most pronounced in the morning, when the frequency of ischemia is highest......, and the mechanism of action seems mainly mediated through a reduction in myocardial oxygen demand. beta-Blockers have shown effectiveness in both effort-induced angina and mixed angina, and increased anti-ischemic potency may be achieved by combination therapy with a calcium antagonist. Abrupt withdrawal of beta-blockers...

  12. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    Science.gov (United States)

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  13. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  14. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.

    Science.gov (United States)

    Rakhunde, Purushottam B; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.

  15. Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats.

    Science.gov (United States)

    Rudoy, C A; Van Bockstaele, E J

    2007-06-30

    Anxiety has been indicated as one of the main symptoms of the cocaine withdrawal syndrome in human addicts and severe anxiety during withdrawal may potentially contribute to relapse. As alterations in noradrenergic transmission in limbic areas underlie withdrawal symptomatology for many drugs of abuse, the present study sought to determine the effect of cocaine withdrawal on beta-adrenergic receptor (beta(1) and beta(2)) expression in the amygdala. Male Sprague Dawley rats were administered intraperitoneal (i.p.) injections of cocaine (20 mg/kg) once daily for 14 days. Two days following the last cocaine injection, amygdala brain regions were micro-dissected and processed for Western blot analysis. Results showed that beta(1)-adrenergic receptor, but not beta(2)-adrenergic receptor expression was significantly increased in amygdala extracts of cocaine-withdrawn animals as compared to controls. This finding motivated further studies aimed at determining whether treatment with betaxolol, a highly selective beta(1)-adrenergic receptor antagonist, could ameliorate cocaine withdrawal-induced anxiety. In these studies, betaxolol (5 mg/kg via i.p. injection) was administered at 24 and then 44 h following the final chronic cocaine administration. Anxiety-like behavior was evaluated using the elevated plus maze test approximately 2 h following the last betaxolol injection. Following behavioral testing, betaxolol effects on beta(1)-adrenergic receptor protein expression were examined by Western blotting in amygdala extracts from rats undergoing cocaine withdrawal. Animals treated with betaxolol during cocaine withdrawal exhibited a significant attenuation of anxiety-like behavior characterized by increased time spent in the open arms and increased entries into the open arms compared to animals treated with only saline during cocaine withdrawal. In contrast, betaxolol did not produce anxiolytic-like effects in control animals treated chronically with saline. Furthermore

  16. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Minoru [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Abe, Yasuhisa; Sasaki, Hirotomo; Shimizu, Mami; Arai, Takashi; Okumachi, Yasuyo; Moriyama, Hiroaki; Hara, Kenta; Yokono, Koichi; Nagata, Masao [Department of Internal and Geriatric Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2010-03-26

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cells induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.

  17. Beneficial Effect of Jojoba Seed Extracts on Hyperglycemia-Induced Oxidative Stress in RINm5f Beta Cells

    Directory of Open Access Journals (Sweden)

    Sahla Belhadj

    2018-03-01

    Full Text Available Hyperglycemia occurs during diabetes and insulin resistance. It causes oxidative stress by increasing reactive oxygen species (ROS levels, leading to cellular damage. Polyphenols play a central role in defense against oxidative stress. In our study, we investigated the antioxidant properties of simmondsin, a pure molecule present in jojoba seeds, and of the aqueous extract of jojoba seeds on fructose-induced oxidative stress in RINm5f beta cells. The exposure of RINm5f beta cells to fructose triggered the loss of cell viability (−48%, p < 0.001 and disruption of insulin secretion (p < 0.001 associated with of reactive oxygen species (ROS production and a modulation of pro-oxidant and antioxidant signaling pathway. Cell pre-treatments with extracts considerably increased cell viability (+86% p < 0.001 for simmondsin and +74% (p < 0.001 for aqueous extract and insulin secretion. The extracts also markedly decreased ROS (−69% (p < 0.001 for simmondsin and −59% (p < 0.001 for aqueous extract and caspase-3 activation and improved antioxidant defense, inhibiting p22phox and increasing nuclear factor (erythroid-derived 2-like 2 (Nrf2 levels (+70%, p < 0.001 for aqueous extract. Simmondsin had no impact on Nrf2 levels. The richness and diversity of molecules present in jojoba seed extract makes jojoba a powerful agent to prevent the destruction of RINm5f beta cells induced by hyperglycemia.

  18. Acetaminophen modulates the transcriptional response to recombinant interferon-beta.

    Directory of Open Access Journals (Sweden)

    Aaron Farnsworth

    Full Text Available BACKGROUND: Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. METHODOLOGY/PRINCIPAL FINDINGS: We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-beta treatment. CD-1 mice were administered acetaminophen (APAP, interferon-beta (IFN-beta or a combination of IFN-beta+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-beta. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IkappaBK/NF-kappaB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. CONCLUSIONS/SIGNIFICANCE: A significant change in the transcriptional response was observed following co-administration of IFN-beta+APAP relative to IFN-beta treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-beta treatment.

  19. Lysosomal trafficking of {beta}-catenin induced by the tea polyphenol epigallocatechin-3-gallate

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, Wan-Mohaiza [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Carter, Orianna [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Al-Fageeh, Mohamed [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Li, Qingjie [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States); Dashwood, Roderick H. [Linus Pauling Institute, 571 Weniger Hall, Oregon State University, Corvallis, OR 97331-6512 (United States)]. E-mail: Rod.Dashwood@oregonstate.edu

    2005-12-11

    {beta}-Catenin is a cadherin-binding protein involved in cell-cell adhesion, which also functions as a transcriptional activator when complexed in the nucleus with members of the T-cell factor (TCF)/lymphoid enhancer factor (LEF) family of proteins. There is considerable interest in mechanisms that down-regulate {beta}-catenin, since this provides an avenue for the prevention of colorectal and other cancers in which {beta}-catenin is frequently over-expressed. We show here that physiologically relevant concentrations of the tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited {beta}-catenin/TCF-dependent reporter activity in human embryonic kidney 293 cells transfected with wild type or mutant {beta}-catenins, and there was a corresponding decrease in {beta}-catenin protein levels in the nuclear, cytosolic and membrane-associated fractions. However, {beta}-catenin accumulated as punctate aggregates in response to EGCG treatment, including in human colon cancer cells over-expressing {beta}-catenin endogenously. Confocal microscopy studies revealed that the aggregated {beta}-catenin in HEK293 cells was extra-nuclear and co-localized with lysosomes, suggesting that EGCG activated a pathway involving lysosomal trafficking of {beta}-catenin. Lysosomal inhibitors leupeptin and transepoxysuccinyl-L-leucylamido(4-guanido)butane produced an increase in {beta}-catenin protein in total cell lysates, without a concomitant increase in {beta}-catenin transcriptional activity. These data provide the first evidence that EGCG facilitates the trafficking of {beta}-catenin into lysosomes, presumably as a mechanism for sequestering {beta}-catenin and circumventing further nuclear transport and activation of {beta}-catenin/TCF/LEF signaling.

  20. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    Science.gov (United States)

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  1. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  2. Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation.

    Science.gov (United States)

    Onishi, Hideaki; Otsuru, Naofumi; Kojima, Sho; Miyaguchi, Shota; Saito, Kei; Inukai, Yasuto; Yamashiro, Koya; Sato, Daisuke; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2018-05-08

    Paired-pulse depression (PPD) has been widely used to investigate the functional profiles of somatosensory cortical inhibition. However, PPD induced by somatosensory stimulation is variable, and the reasons for between- and within-subject PPD variability remains unclear. Therefore, the purpose of this study was to clarify the factors influencing PPD variability induced by somatosensory stimulation. The study participants were 19 healthy volunteers. First, we investigated the relationship between the PPD ratio of each component (N20m, P35m, and P60m) of the somatosensory magnetic field, and the alpha, beta, and gamma band changes in power [event-related desynchronization (ERD) and event-related synchronization (ERS)] induced by median nerve stimulation. Second, because brain-derived neurotrophic factor (BDNF) gene polymorphisms reportedly influence the PPD ratio, we assessed whether BDNF genotype influences PPD ratio variability. Finally, we evaluated the test-retest reliability of PPD and the alpha, beta, and gamma ERD/ERS induced by somatosensory stimulation. Significant positive correlations were observed between the P60m_PPD ratio and beta power change, and the P60m_PPD ratio was significantly smaller for the beta ERD group than for the beta ERS group. P35m_PPD was found to be robust and highly reproducible; however, P60m_PPD reproducibility was poor. In addition, the ICC values for alpha, beta, and gamma ERD/ERS were 0.680, 0.760, and 0.552 respectively. These results suggest that the variability of PPD for the P60m deflection may be influenced by the ERD/ERS magnitude, which is induced by median nerve stimulation.

  3. Increased calcineurin expression after pilocarpine-induced status epilepticus is associated with brain focal edema and astrogliosis.

    Science.gov (United States)

    Liu, Jinzhi; Li, Xiaolin; Chen, Liguang; Xue, Ping; Yang, Qianqian; Wang, Aihua

    2015-07-28

    Calcineurin plays an important role in the development of neuronal excitability, modulation of receptor's function and induction of apoptosis in neurons. It has been established in kindling models that status epilepticus induces brain focal edema and astrocyte activation. However, the role of calcineurin in brain focal edema and astrocyte activation in status epilepticus has not been fully understood. In this study, we employed a model of lithium-pilocarpine-induced status epilepticus and detected calcineurin expression in hippocampus by immunoblotting, brain focal edema by non-invasive magnetic resonance imaging (MRI-7T) and astrocyte expression by immunohistochemistry. We found that the brain focal edema was seen at 24 h after status epilepticus, and astrocyte expression was obviously seen at 7 d after status epilepticus. Meanwhile, calcineurin expression was seen at24 h and retained to 7 d after status epilepticus. A FK506, a calcineurin inhibitor, remarkably suppressed the status epilepticus-induced brain focal edema and astrocyte expression. Our data suggested that calcineurin overexpression plays a very important role in brain focal edema and astrocyte expression. Therefore, calcineurin may be a novel candidate for brain focal edema occurring and intracellular trigger of astrogliosis in status epilepticus.

  4. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up......)] from a resting value of 6 to exercise, cerebral activation associated with mental activity, or exposure to a stressful situation. The CMR decrease is prevented with combined beta(1)- and beta(2)-adrenergic receptor...

  5. Glycogen synthase kinase 3-{beta} phosphorylates novel S/T-P-S/T domains in Notch1 intracellular domain and induces its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiangzi [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Preventive Medicine, Yanbian University College of Medicine, Yanji (China); Ju, Ji-hyun [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Novel S/T-P-S/T domains were identified in NICD. Black-Right-Pointing-Pointer Phosphorylation of NICD on the S/T-P-S/T domains induced nuclear localization. Black-Right-Pointing-Pointer GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. -- Abstract: We identified two S/T-P-S/T domains (2122-2124, 2126-2128) inducing Notch intracellular domain (NICD) nuclear localization. The GFP-NICD (1963-2145) fusion protein deletion mutant without classical NLS was localized in the nucleus like the full length GFP-NICD. However, quadruple substitution mutant (T2122A T2124A S2126A T2128A) showed increased cytoplasmic localization. GSK-3{beta} enhanced nuclear localization and transcriptional activity of WT NICD but not of quadruple substitution mutant. In vitro kinase assays revealed that GSK-3{beta} phosphorylated S and T residues in NICD S/T-P-S/T domains. These results suggest that the novel S/T-P-S/T domain, phosphorylated by GSK-3{beta} is also involved in the nuclear localization of NICD as well as classical NLS.

  6. Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Li

    Full Text Available The aim of the present study was to investigate the effect of Tributyltin (TBT on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase, Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters. The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  7. Chronic Exposure to Tributyltin Induces Brain Functional Damage in Juvenile Common Carp (Cyprinus carpio)

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity. PMID:25879203

  8. Chronic exposure to Tributyltin induces brain functional damage in juvenile common carp (Cyprinus carpio).

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2015-01-01

    The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.

  9. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  10. Beta-endorphin and the immune system--possible role in autoimmune diseases

    DEFF Research Database (Denmark)

    Mørch, H; Pedersen, B K

    1995-01-01

    The immune system and the neuroendocrine system are closely interconnected having such means of bidirectional communication and regulation. In this review, a hypothesis is put forward regarding the possible role of beta-endorphins in the pathogenesis of autoimmune diseases: It is suggested...... that the increased cytokine production in immunoinflammatory disorders induces production of beta-endorphins from the pituitary and the lymphocytes; the enhanced level of beta-endorphin causes inhibition of human T helper cell function, which potentially down-regulate the antibody production. Also the beta......-endorphin-induced enhancement of the natural killer cell activity may suppress the B cell function. In addition, beta-endorphin also exerts a direct inhibitory effect on the antibody production. Thus, in autoimmune disorders the enhanced cytokine level may via stimulation of the production of beta-endorphins exert a negative...

  11. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation

    Science.gov (United States)

    Knoblich, Günther; Dunne, Laura; Keller, Peter E.

    2017-01-01

    Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510

  12. El factor de crecimiento transformante beta como blanco terapéutico Transforming growth factor-beta as a therapeutic target

    Directory of Open Access Journals (Sweden)

    Francisco Javier Gálvez-Gastélum

    2004-08-01

    Full Text Available El factor de crecimiento transformante beta (TGF-beta es una familia de proteínas que incluye al TGF-beta, activinas y a la proteína morfogénica de hueso (BMP, por sus siglas en inglés, citocinas que son secretadas y se relacionan estructuralmente en diferentes especies de metazoarios. Los miembros de la familia del TGF-beta regulan diferentes funciones celulares como proliferación, apoptosis, diferenciación, migración, y tienen un papel clave en el desarrollo del organismo. El TGF-beta está implicado en varias patologías humanas, incluyendo desórdenes autoinmunes y vasculares, así como enfermedades fibróticas y cáncer. La activación del receptor del TGF-beta propicia su fosforilación en residuos de serina/treonina y dispara la fosforilación de proteínas efectoras intracelulares (smad, que una vez activas se translocan al núcleo para inducir la transcripción de genes blanco, y así regular procesos y funciones celulares. Se están desarrollando novedosas estrategias terapéuticas encaminadas a corregir las alteraciones presentes en patologías que involucran al TGF-beta como actor principal.Transforming growth factor-beta (TGF-beta family members include TGF-beta, activins, and bone morphogenetic proteins (BMP. These proteins are structurally related cytokines secreted in diverse Metazoans. TGF-beta family members regulate cellular functions such as proliferation, apoptosis, differentiation, and migration, and play an important role in organism development. Deregulated TGF-beta family signaling participates in various human pathologies including auto-immune diseases, vascular disorders, fibrotic disease, and cancer. Ligand-induced activation of TGF-beta family receptors with intrinsic serine/threonine kinase activity, triggers phosphorylation of the intracellular effectors of TGF-beta signaling, the Smads proteins. Once these proteins are activated they translocate into the nucleus, where they induce transcription of target

  13. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kover, Karen, E-mail: kkover@cmh.edu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States); Tasch, James; Hager, Melissa [Kansas City University Medical Biosciences, Kansas City, MO (United States); Clements, Mark; Moore, Wayne V. [Division of Endocrine/Diabetes, Children' s Mercy Hospital & Clinics, Kansas City, MO 64108 (United States); University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108 (United States)

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced

  14. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    International Nuclear Information System (INIS)

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-01-01

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H 2 O 2 assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H 2 O 2 levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP

  15. PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat.

    Science.gov (United States)

    Alea, O A; Czapla, M A; Lasky, J A; Simakajornboon, N; Gozal, E; Gozal, D

    2000-11-01

    Activation of platelet-derived growth factor-beta (PDGF-beta) receptors in the nucleus of the solitary tract (nTS) modulates the late phase of the acute hypoxic ventilatory response (HVR) in the rat. We hypothesized that temporal changes in PDGF-beta receptor expression could underlie the ventilatory acclimatization to hypoxia (VAH). Normoxic ventilation was examined in adult Sprague-Dawley rats chronically exposed to 10% O(2), and at 0, 1, 2, 7, and 14 days, Northern and Western blots of the dorsocaudal brain stem were performed for assessment of PDGF-beta receptor expression. Although no significant changes in PDGF-beta receptor mRNA occurred over time, marked attenuation of PDGF-beta receptor protein became apparent after day 7 of hypoxic exposure. Such changes were significantly correlated with concomitant increases in normoxic ventilation, i.e., with VAH (r: -0.56, P < 0.005). In addition, long-term administration of PDGF-BB in the nTS via osmotic pumps loaded with either PDGF-BB (n = 8) or vehicle (Veh; n = 8) showed that although no significant changes in the magnitude of acute HVR occurred in Veh over time, the typical attenuation of HVR by PDGF-BB decreased over time. Furthermore, PDGF-BB microinjections did not attenuate HVR in acclimatized rats at 7 and 14 days of hypoxia (n = 10). We conclude that decreased expression of PDGF-beta receptors in the dorsocaudal brain stem correlates with the magnitude of VAH. We speculate that the decreased expression of PDGF-beta receptors is mediated via internalization and degradation of the receptor rather than by transcriptional regulation.

  16. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  17. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells.

    Science.gov (United States)

    Chen, Wanjun; Konkel, Joanne E

    2010-02-01

    In naïve T cells transforming growth factor-beta (TGF-beta) induces Foxp3, a transcription factor essential for programming and developing T regulatory cells (Treg cells). This finding reveals a physiological factor which can turn on the Foxp3 gene and establishes an experimental approach to induce antigen-specific Treg cells as a potential therapy for human diseases. While this role for TGF-beta is well confirmed, several critical questions remain largely unanswered and await further investigation. In this regard, it is imperative to understand the molecular pathways by which TGF-beta signaling initiates and regulates Foxp3 expression. It is also important to elucidate which factors and/or cytokines influence the TGF-beta-mediated conversion of naïve T cells and how to create an immunologically regulatory milieu to facilitate Treg cell generation in vivo. In this short article, we will highlight the key findings and recent progress in the field, discuss the molecular mechanisms underlying the TGF-beta-mediated induction of Foxp3, and attempt to outline the challenges ahead.

  18. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    Science.gov (United States)

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  19. [Effect of ginseng polysaccharide-induced wnt/beta-catenin signal transduction pathway on apoptosis of human nasopharyngeal cancer cells CNE-2].

    Science.gov (United States)

    Fan, Jia-Ming; Liu, Ze-Hong; Li, Jing; Wang, Ya-Ping; Yang, Lv-Yuan; Huang, Jiang-Ju

    2013-10-01

    To observe the effect of ginseng polysaccharide (GPS) on the proliferation and apoptosis of human nasopharyngeal cancer cells CNE-2, and discuss the possible mechanism. The effect of GPS on the growth of CNE-2 cells was observed by CCK8 assay. CNE-2 cells in the logarithmic phase were collected and processed respectively with different concentrations (0, 0. 1, 0. 2, 0. 3. 0. 4 g L-1) of GPS for 48 h. The flow cytometry was used to detect its induction effect on CNE-2 cell apoptosis. Hoechst-33258 cell staining and electron microscope were used to observe the morphological changes of cells. The beta-catenin mRNA expression was detected by Real-time PCR. The protein localizations and expressions of beta-catenin and TCF4 were tested by the immunofluorescence staining. The expressions of beta-catenin, Bcl-2 and Bax proteins were detected by Western blot. CCK8 assay results showed that GPS could remarkably inhibit the proliferation of CNE-2 cells, with dose-time dependence. IC50 of cells induced with GPS for 48 h was 0. 39 g L-1. After being processed with GPS with concentrations of 0.1, 0. 2, 0. 3, 0. 4 g L-1 for 48 h, the cell apoptosis rates of human nasopharyngeal cancer cells CNE-2 were (5. 69 +/- 0. 29)% , (10. 3 +/- 0. 63)% , (15. 4 +/- 0. 74 ) % and (35. 7 +/- 1. 86)% , respectively. Significant difference was observed compared with the control group (2. 08 +/- 0. 11) % (P GPS with the concentration of 0. 4 g L -1 for 48 h. The results of Real-time PCR showed a significant reduction in beta-catenin mRNA expression. The results of laser confocal microscopy revealed notable decrease of beta-catenin and TCF4 expression in nucleus and transfer from nucleus to cell membranes in beta-catenin expression areas after being processed with GPS for 48 h. Western blot showed significant decrease in the expressions of beta-catenin and anti-apoptosis protein Bcl-2, with an increasing expression in apoptosis-promoting protein Bax (P GPS could significantly inhibit the

  20. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  1. Neuroprotective Effect of Dexmedetomidine on Hyperoxia-Induced Toxicity in the Neonatal Rat Brain

    Directory of Open Access Journals (Sweden)

    Marco Sifringer

    2015-01-01

    Full Text Available Dexmedetomidine is a highly selective agonist of α2-receptors with sedative, anxiolytic, analgesic, and anesthetic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on neurodegeneration, oxidative stress markers, and inflammation following the induction of hyperoxia in neonatal rats. Six-day-old Wistar rats received different concentrations of dexmedetomidine (1, 5, or 10 µg/kg bodyweight and were exposed to 80% oxygen for 24 h. Sex-matched littermates kept in room air and injected with normal saline or dexmedetomidine served as controls. Dexmedetomidine pretreatment significantly reduced hyperoxia-induced neurodegeneration in different brain regions of the neonatal rat. In addition, dexmedetomidine restored the reduced/oxidized glutathione ratio and attenuated the levels of malondialdehyde, a marker of lipid peroxidation, after exposure to high oxygen concentration. Moreover, administration of dexmedetomidine induced downregulation of IL-1β on mRNA and protein level in the developing rat brain. Dexmedetomidine provides protections against toxic oxygen induced neonatal brain injury which is likely associated with oxidative stress signaling and inflammatory cytokines. Our results suggest that dexmedetomidine may have a therapeutic potential since oxygen administration to neonates is sometimes inevitable.

  2. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jun [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Liu, Xu, E-mail: xkliuxu@yahoo.cn [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Wang, Quan-xing, E-mail: shmywqx@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Tan, Hong-wei [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Guo, Meng [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China)

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  4. Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly

    DEFF Research Database (Denmark)

    Lambert, J-C; Ferreira, S; Gussekloo, J

    2007-01-01

    independent populations. Moreover, we detected a significant association of this SNP with increased risk of developing dementia or Alzheimer's disease (AD) in six independent populations, especially in women and in the oldest. Furthermore, we characterised a new primate-specific exon within intron 2 (the...... corresponding mRNA isoform was called S100beta2). S100beta2 expression was increased in AD brain compared with controls, and the rs2300403 SNP was associated with elevated levels of S100beta2 mRNA in AD brains, especially in women. Therefore, this genetic variant in S100beta increases the risk of low cognitive...

  5. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations.

    Science.gov (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J

    2007-09-01

    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  6. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.

    Science.gov (United States)

    Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M

    2017-04-15

    Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.

  7. Phorbol ester and hydrogen peroxide synergistically induce the interaction of diacylglycerol kinase gamma with the Src homology 2 and C1 domains of beta2-chimaerin.

    Science.gov (United States)

    Yasuda, Satoshi; Kai, Masahiro; Imai, Shin-ichi; Kanoh, Hideo; Sakane, Fumio

    2008-01-01

    DGKgamma (diacylglycerol kinase gamma) was reported to interact with beta2-chimaerin, a GAP (GTPase-activating protein) for Rac, in response to epidermal growth factor. Here we found that PMA and H2O2 also induced the interaction of DGKgamma with beta2-chimaerin. It is noteworthy that simultaneous addition of PMA and H2O2 synergistically enhanced the interaction. In this case, PMA was replaceable by DAG (diacylglycerol). The beta2-chimaerin translocation from the cytoplasm to the plasma membrane caused by PMA plus H2O2 was further enhanced by the expression of DGKgamma. Moreover, DGKgamma apparently enhanced the beta2-chimaerin GAP activity upon cell stimulation with PMA. PMA was found to be mainly required for a conversion of beta2-chimaerin into an active form. On the other hand, H2O2 was suggested to induce a release of Zn2+ from the C1 domain of beta2-chimaerin. By stepwise deletion analysis, we demonstrated that the SH2 (Src homology 2) and C1 domains of beta2-chimaerin interacted with the N-terminal half of catalytic region of DGKgamma. Unexpectedly, the SH2 domain of beta2-chimaerin contributes to the interaction independently of phosphotyrosine. Taken together, these results suggest that the functional link between DGKgamma and beta2-chimaerin has a broad significance in response to a wide range of cell stimuli. Our work offers a novel mechanism of protein-protein interaction, that is, the phosphotyrosine-independent interaction of the SH2 domain acting in co-operation with the C1 domain.

  8. Oxidative stress induces the decline of brain EPO expression in aging rats.

    Science.gov (United States)

    Li, Xu; Chen, Yubao; Shao, Siying; Tang, Qing; Chen, Weihai; Chen, Yi; Xu, Xiaoyu

    2016-10-01

    Brain Erythropoietin (EPO), an important neurotrophic factor and neuroprotective factor, was found to be associated with aging. Studies found EPO expression was significantly decreased in the hippocampus of aging rat compared with that of the youth. But mechanisms of the decline of the brain EPO during aging remain unclear. The present study utilized a d-galactose (d-gal)-induced aging model in which the inducement of aging was mainly oxidative injury, to explore underlying mechanisms for the decline of brain EPO in aging rats. d-gal-induced aging rats (2months) were simulated by subcutaneously injecting with d-gal at doses of 50mg·kg(-1), 150mg·kg(-1) and 250mg·kg(-1) daily for 8weeks while the control group received vehicle only. These groups were all compared with the aging rats (24months) which had received no other treatment. The cognitive impairment was assessed using Morris water maze (MWM) in the prepared models, and the amount of β-galactosidase, the lipid peroxidation product malondialdehyde (MDA) level and the superoxide dismutase (SOD) activity in the hippocampus was examined by assay kits. The levels of EPO, EPOR, p-JAK2 and hypoxia-inducible factor-2α (HIF-2α) in the hippocampus were detected by western blot. Additionally, the correlation coefficient between EPO/EPOR expression and MDA level was analyzed. The MWM test showed that compared to control group, the escape latency was significantly extended and the times of crossing the platform was decreased at the doses of 150mg·kg(-1) and 250mg·kg(-1) (paging rats, the expressions of EPO, EPOR, p-JAK2, and HIF-2αin the brain of d-gal-treated rats were significantly decreased (paging could result in the decline of EPO in the hippocampus and oxidative stress might be the main reason for the decline of brain EPO in aging rats, involved with the decrease of HIF-2α stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    Science.gov (United States)

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  10. Elimination of zinc-65 from the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Oku, Naoto

    2004-04-01

    On the basis of the previous evidence that 65Zn concentrations in the brain of EL (epilepsy) mice was affected by induction of seizures, 65Zn movement in the brain was quantitatively evaluated in ddY mice treated with kainate. Six days after intravenous injection of 65ZnCl2, mice were intraperitoneally injected with kainate (10 mg/kg x 6 times in 2 weeks). Myoclonic jerks were observed during treatment with kainate. Twenty days after 65Zn injection, 65Zn distribution in the brain was compared between the kainite-treated and control mice. 65Zn distribution in the brain of the kainate-treated mice was overall lower than in the control mice. 65Zn concentration was significantly decreased in the frontal cortex, hippocampal CA1, thalamus and hypothalamus by treatment with kainate. These results demonstrate that kainate-induced seizures are linked to decreased zinc concentrations in the brain.

  11. Brain MR finding of {beta}-fluoroethyl acetate rodenticide intoxication: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Jung, Cheol Kyu; Lee, Seung Ro; Park, Dong Woo [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2008-05-15

    {beta}-fluoroethyl acetate rodenticide intoxication can manifest as several different clinical abnormalities such as respiratory, neurologic, cardiologic and fluid-electrolyte problems. We report here on the MR findings of a case that showed symmetric cytotoxic edema in the while matter of the cerebral hemispheres after the ingestion of {beta} - fluoroethyl acetate rodenticide by a woman who was attempting suicide.

  12. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers

    Directory of Open Access Journals (Sweden)

    Pizzichini Daniele

    2007-03-01

    Full Text Available Abstract Background Beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein (in the beta-epsilon branch and violaxanthin (in the beta-beta branch. None of these carotenoids have provitamin A activity. We have previously shown that tuber-specific silencing of the first step in the epsilon-beta branch, LCY-e, redirects metabolic flux towards beta-beta carotenoids, increases total carotenoids up to 2.5-fold and beta-carotene up to 14-fold. Results In this work, we silenced the non-heme beta-carotene hydroxylases CHY1 and CHY2 in the tuber. Real Time RT-PCR measurements confirmed the tuber-specific silencing of both genes . CHY silenced tubers showed more dramatic changes in carotenoid content than LCY-e silenced tubers, with beta-carotene increasing up to 38-fold and total carotenoids up to 4.5-fold. These changes were accompanied by a decrease in the immediate product of beta-carotene hydroxylation, zeaxanthin, but not of the downstream xanthophylls, viola- and neoxanthin. Changes in endogenous gene expression were extensive and partially overlapping with those of LCY-e silenced tubers: CrtISO, LCY-b and ZEP were induced in both cases, indicating that they may respond to the balance between individual carotenoid species. Conclusion Together with epsilon-cyclization of lycopene, beta-carotene hydroxylation is another regulatory step in potato tuber carotenogenesis. The data are consistent with a prevalent role of CHY2, which is highly expressed in tubers, in the control of this step. Combination of different engineering strategies holds good promise for the manipulation of tuber carotenoid content.

  13. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity.

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene L; Cameron, Andrew N; Das, Shinjita; Sena-Esteves, Miguel; Hiltunen, Mikko; Yang, Shao-Hua; Zhong, Zhenyu; Shen, Yong; Simpkins, James W; Tanzi, Rudolph E

    2007-06-07

    Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.

  14. Modulation of Brain Dead Induced Inflammation by Vagus Nerve Stimulation

    NARCIS (Netherlands)

    Hoeger, S.; Bergstraesser, C.; Selhorst, J.; Fontana, J.; Birck, R.; Waldherr, R.; Beck, G.; Sticht, C.; Seelen, M. A.; van Son, W. J.; Leuvenink, H.; Ploeg, R.; Schnuelle, P.; Yard, B. A.

    Because the vagus nerve is implicated in control of inflammation, we investigated if brain death (BD) causes impairment of the parasympathetic nervous system, thereby contributing to inflammation. BD was induced in rats. Anaesthetised ventilated rats (NBD) served as control. Heart rate variability

  15. Thymosin {beta}4 promotes the migration of endothelial cells without intracellular Ca{sup 2+} elevation

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Anna [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Malinowski, Mariusz [Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland); Brutkowski, Wojciech [Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw (Poland); Bednarek, Radoslaw [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Cierniewski, Czeslaw S., E-mail: czeslaw.cierniewski@umed.lodz.pl [Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz (Poland); Institute of Medical Biology, Polish Academy of Sciences, Lodz (Poland)

    2012-08-15

    Numerous studies have demonstrated the effects of T{beta}4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which T{beta}4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with T{beta}4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that T{beta}4 interacts with Ku80, which may operate as a novel receptor for T{beta}4 and mediates its intracellular activity. In this paper, we provide evidence that T{beta}4 induces cellular processes without changes in the intracellular Ca{sup 2+} concentration. External treatment of HUVECs with T{beta}4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (T{beta}4{sub AcSDKPT/4A}) or the actin-binding sequence KLKKTET (T{beta}4{sub KLKKTET/7A}) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by T{beta}4 was not associated with the intracellular Ca{sup 2+} elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added T{beta}4 induces HUVEC migration via the surface membrane receptors known to generate Ca{sup 2+} influx. Our data confirm the concept that externally added T{beta}4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.

  16. Effects of Capsule Yi -Zhi on learning and memory disorder and beta-amyloid peptide induced neurotoxicity in rats

    Institute of Scientific and Technical Information of China (English)

    XUJiang-Ping; WUHang-Yu; LILin

    2004-01-01

    AIM To investigate the effects of Capsule Yi-Zhi (CYZ) on learning and memory disorder and beta-amyloid protein induced neurotoxieity in rats. Methods Various doses of CYZ were administered to Sprague-Dawley (SD) rats for 8 days, twice a day. Then scopolamine hydrobromide (Sco) intraperitoneal injection was performed on each rat and the

  17. A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumor cell death and chemokine production

    NARCIS (Netherlands)

    Pasero, Christine; Barbarat, Bernadette; Just-Landi, Sylvaine; Bernard, Alain; Aurran-Schleinitz, Thérèse; Rey, Jérome; Eldering, Eric; Truneh, Alemsedeg; Costello, Régis T.; Olive, Daniel

    2009-01-01

    The TNF member LIGHT also known as TL4 or TNFSF14) can play a major role in cancer control via its two receptors; it induces tumor cell death through lymphotoxin-P receptor (LT-beta R) and ligation to the herpes virus entry mediator (HVEM) amplifies the immune response. By studying the effect of

  18. Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.

    2008-01-01

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta 20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks

  19. Brain prolactin is involved in stress-induced REM sleep rebound.

    Science.gov (United States)

    Machado, Ricardo Borges; Rocha, Murilo Ramos; Suchecki, Deborah

    2017-03-01

    REM sleep rebound is a common behavioural response to some stressors and represents an adaptive coping strategy. Animals submitted to multiple, intermittent, footshock stress (FS) sessions during 96h of REM sleep deprivation (REMSD) display increased REM sleep rebound (when compared to the only REMSD ones, without FS), which is correlated to high plasma prolactin levels. To investigate whether brain prolactin plays a role in stress-induced REM sleep rebound two experiments were carried out. In experiment 1, rats were either not sleep-deprived (NSD) or submitted to 96h of REMSD associated or not to FS and brains were evaluated for PRL immunoreactivity (PRL-ir) and determination of PRL concentrations in the lateral hypothalamus and dorsal raphe nucleus. In experiment 2, rats were implanted with cannulas in the dorsal raphe nucleus for prolactin infusion and were sleep-recorded. REMSD associated with FS increased PRL-ir and content in the lateral hypothalamus and all manipulations increased prolactin content in the dorsal raphe nucleus compared to the NSD group. Prolactin infusion in the dorsal raphe nucleus increased the time and length of REM sleep episodes 3h after the infusion until the end of the light phase of the day cycle. Based on these results we concluded that brain prolactin is a major mediator of stress-induced REMS. The effect of PRL infusion in the dorsal raphe nucleus is discussed in light of the existence of a bidirectional relationship between this hormone and serotonin as regulators of stress-induced REM sleep rebound. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dual aminergic regulation of central beta adrenoceptors. Effect of atypical antidepressants and 5-hydroxytryptophan

    International Nuclear Information System (INIS)

    Manier, D.H.; Gillespie, D.D.; Sulser, F.

    1989-01-01

    Nonlinear regression analysis of agonist competition binding curves reveals that the [ 3 H]-dihydroalprenolol-labeled receptor population with low affinity for isoproterenol is increased by p-chlorophenylalanine (PCPA) and this increase is abolished by 5-hydroxytryptophan (5-HTP) in vivo. Desipramine (DMI) decreased the beta adrenoceptor population with high agonist affinity to the same degree in PCPA-treated animals as in control animals, thus explaining the reported discrepancy between beta adrenoceptor number and responsiveness of the beta adrenoceptor-coupled adenylate cyclase system. Mianserin also selectively reduced the beta adrenoceptor population with high agonist affinity in membrane preparations of normal animals, whereas fluoxetine selectively abolished the upregulation of the low affinity sites in reserpinized animals and had no effect on either receptor population from brain of normal animals. The results emphasize the importance of nonlinear regression analysis of agonist competition binding for the interpretation of drug action and encourage the pursuit of the molecular neurobiology of the serotonin (5-HT)/norepinephrine (NE) link in brain

  1. Dual aminergic regulation of central beta adrenoceptors. Effect of atypical antidepressants and 5-hydroxytryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Manier, D.H.; Gillespie, D.D.; Sulser, F.

    1989-06-01

    Nonlinear regression analysis of agonist competition binding curves reveals that the (/sup 3/H)-dihydroalprenolol-labeled receptor population with low affinity for isoproterenol is increased by p-chlorophenylalanine (PCPA) and this increase is abolished by 5-hydroxytryptophan (5-HTP) in vivo. Desipramine (DMI) decreased the beta adrenoceptor population with high agonist affinity to the same degree in PCPA-treated animals as in control animals, thus explaining the reported discrepancy between beta adrenoceptor number and responsiveness of the beta adrenoceptor-coupled adenylate cyclase system. Mianserin also selectively reduced the beta adrenoceptor population with high agonist affinity in membrane preparations of normal animals, whereas fluoxetine selectively abolished the upregulation of the low affinity sites in reserpinized animals and had no effect on either receptor population from brain of normal animals. The results emphasize the importance of nonlinear regression analysis of agonist competition binding for the interpretation of drug action and encourage the pursuit of the molecular neurobiology of the serotonin (5-HT)/norepinephrine (NE) link in brain.

  2. Analysis of beta-catenin, Ki-ras, and microsatellite stability in azoxymethane-induced colon tumors of BDIX/Orl Ico rats

    DEFF Research Database (Denmark)

    Sørensen, Nanna Møller; Kobaek-Larsen, Morten; Bonne, Anita

    2003-01-01

    The aim of the study reported here was to investigate whether the azoxymethane (AOM)-induced colon cancer rat model mimics the human situation with regard to microsatellite stability, changes in expression of beta-catenin, and/or changes in the sequence of the proto-oncogene Ki-ras. Colon cancer ...

  3. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  4. The effect of training on responses of beta-endorphin and other pituitary hormones to insulin-induced hypoglycemia

    DEFF Research Database (Denmark)

    Mikines, K J; Kjær, Michael; Hagen, C

    1985-01-01

    in untrained (25 +/- 6 mU X l-1) subjects (P less than 0.05). Levels of thyrotropin (TSH) changed in neither of the groups. It is concluded that, in contrast to what has been formerly proposed, training does not result in a general increase in secretory capacity of the anterior pituitary gland. TSH responds......We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X...

  5. Myeloperoxidase-derived oxidants induce blood-brain barrier dysfunction in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Andreas Üllen

    Full Text Available Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl formed via the myeloperoxidase (MPO-H2O2-Cl(- system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl(- system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl(- system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuroinflammatory conditions.

  6. Regularity increases middle latency evoked and late induced beta brain response following proprioceptive stimulation

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Hansen, Lars Kai; Parnas, Josef

    2008-01-01

    as an indication of increased readiness. This is achieved through detailed analysis of both evoked and induced responses in the time-frequency domain. Electroencephalography in a 64 channels montage was recorded in four-teen healthy subjects. Two paradigms were explored: A Regular alternation between hand......). After initial exploration of the AvVVT and Induced collapsed files of all subjects using two-way factor analyses (Non-Negative Matrix Factorization), further data decomposition was performed in restricted windows of interest (WOI). Main effects of side of stimulation, onset or offset, regularity...

  7. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Schmidt Pedersen, Kristina; Pallesen, H.; Kristensen, H. K.

    2016-01-01

    An estimated 125-137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30-40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of h...

  8. Intracellular Wnt/Beta-Catenin Signaling Underlying 17beta-Estradiol-Induced Matrix Metalloproteinase 9 Expression in Human Endometriosis.

    Science.gov (United States)

    Zhang, Ling; Xiong, Wenqian; Xiong, Yao; Liu, Hengwei; Li, Na; Du, Yu; Liu, Yi

    2016-03-01

    Extracellular matrix remodeling is necessary for ectopic endometrium implantation. Many studies have shown an increased expression of matrix metalloproteinase 9 (MMP9) in the ectopic endometrium of endometriosis. However, the signaling pathways and cellular effects related to this process remain incompletely elucidated. The objective of our study was to investigate the association between MMP9 and the Wnt signaling pathway under the regulation of 17beta-estradiol (E2) in endometrial stromal cells. We found that MMP9 was elevated in tissues from women with endometriosis compared with normal women. Furthermore, MMP9 and beta-catenin increased concurrently in a time- and dose-dependent manner after E2 treatment. To clarify the relationship between MMP9 and beta-catenin, we performed luciferase promoter reporter and chromatin immunoprecipitation assays. A beta-catenin/TCF3/LEF1 complex bound to a specific site on the MMP9 promoter that promoted MMP9 gene and protein expression. The promotion of MMP9 by the Wnt signaling pathway under the regulation of E2 may contribute to the pathophysiology of this disease. © 2016 by the Society for the Study of Reproduction, Inc.

  9. Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nano-{beta}-TCP synthesized via microwave treatment

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Wafa I; Elkhooly, Tarek A, E-mail: nrcfifi@yahoo.co [Department of Biomaterials, National Research Center, Cairo (Egypt)

    2010-06-01

    The degradation and/or apatite layer precipitation ability of porous {beta}-tricalcium phosphate ({beta}-TCP) samples treated and untreated with microwave radiation during synthesis is investigated. Microwave heating was used to accelerate the formation of CDHA with the Ca/P ratio 1.5 in a shorter processing time which later forms {beta}-TCP at around 650 {sup 0}C. Soaking in simulated body fluid (SBF) for several periods (4, 8, 12, 24, 36, 48, 60 and 72 h) is performed in a cumulative manner. The deposition of an apatite layer is followed through diffuse reflected FT-IR, SEM and EDS. A microwave-treated sample having a smaller particle size than its parent induces the formation of a homogeneous carbonated apatite layer on its surface. On the other hand, the parent {beta}-TCP sample exhibited less ability to induce Ca-P formation after being soaked in SBF. The formation of an apatite layer is attributed to the increase in surface area consequent to reduced particle and grain sizes besides the presence of a minor amount of hydroxyapatite phase in the microwave-treated {beta}-TCP sample. The results prove that it is possible to control the biodegradation and apatite layer formation on sintered {beta}-TCP porous disks through controlling the particle size.

  10. Erotic and disgust-inducing pictures--differences in the hemodynamic responses of the brain.

    Science.gov (United States)

    Stark, Rudolf; Schienle, Anne; Girod, Cornelia; Walter, Bertram; Kirsch, Peter; Blecker, Carlo; Ott, Ulrich; Schäfer, Axel; Sammer, Gebhard; Zimmermann, Mark; Vaitl, Dieter

    2005-09-01

    The aim of this fMRI study was to explore brain structures that are involved in the processing of erotic and disgust-inducing pictures. The stimuli were chosen to trigger approach and withdrawal tendencies, respectively. By adding sadomasochistic (SM) scenes to the design and examining 12 subjects with and 12 subjects without sadomasochistic preferences, we introduced a picture category that induced erotic pleasure in one sample and disgust in the other sample. Since we also presented neutral pictures, all subjects viewed pictures of four different categories: neutral, disgust-inducing, erotic, and SM erotic pictures. The analysis indicated that several brain structures are commonly involved in the processing of disgust-inducing and erotic pictures (occipital cortex, hippocampus, thalamus, and the amygdala). The ventral striatum was specifically activated when subjects saw highly sexually arousing pictures. This indicates the involvement of the human reward system during the processing of visual erotica.

  11. Restraint stress-induced morphological changes at the blood-brain barrier in adult rats

    Directory of Open Access Journals (Sweden)

    Petra eSántha

    2016-01-01

    Full Text Available Stress is well known to contribute to the development of both neurological and psychiatric diseases. While the role of the blood-brain barrier is increasingly recognised in the development of neurodegenerative disorders, such as Alzheimer’s disease, dysfunction of the blood-brain barrier has been linked to stress-related psychiatric diseases only recently. In the present study the effects of restraint stress with different duration (1, 3 and 21 days were investigated on the morphology of the blood-brain barrier in male adult Wistar rats. Frontal cortex and hippocampus sections were immunostained for markers of brain endothelial cells (claudin-5, occludin and glucose transporter-1 and astroglia (GFAP. Staining pattern and intensity were visualized by confocal microscopy and evaluated by several types of image analysis. The ultrastructure of brain capillaries was investigated by electron microscopy. Morphological changes and intensity alterations in brain endothelial tight junction proteins claudin-5 and occludin were induced by stress. Following restraint stress significant increases in the fluorescence intensity of glucose transporter-1 were detected in brain endothelial cells in the frontal cortex and hippocampus. Significant reductions in GFAP fluorescence intensity were observed in the frontal cortex in all stress groups. As observed by electron microscopy, one-day acute stress induced morphological changes indicating damage in capillary endothelial cells in both brain regions. After 21 days of stress thicker and irregular capillary basal membranes in the hippocampus and edema in astrocytes in both regions were seen. These findings indicate that stress exerts time-dependent changes in the staining pattern of tight junction proteins occludin, claudin-5 and glucose transporter-1 at the level of brain capillaries and in the ultrastructure of brain endothelial cells and astroglial endfeet, which may contribute to neurodegenerative processes

  12. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3β Inhibition-Induced Reduction of VEGF Release

    Directory of Open Access Journals (Sweden)

    Ahmed Alhusban

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i were treated with 50 μg/mL advanced glycation end (AGE products in the presence or absence of silymarin (50, 100 μM. The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p=0.0001. Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p=0.001. This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.

  13. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    International Nuclear Information System (INIS)

    Cianfoni, A.; Caulo, M.; Cerase, A.; Della Marca, G.; Falcone, C.; Di Lella, G.M.; Gaudino, S.; Edwards, J.; Colosimo, C.

    2013-01-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention

  14. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  15. Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress.

    Science.gov (United States)

    Ozel Turkcu, Ummuhani; Bilgihan, Ayşe; Biberoglu, Gursel; Mertoglu Caglar, Oznur

    2010-06-01

    Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.

  16. Apc1 is required for maintenance of local brain organizers and dorsal midbrain survival.

    Science.gov (United States)

    Paridaen, Judith T M L; Danesin, Catherine; Elas, Abu Tufayal; van de Water, Sandra; Houart, Corinne; Zivkovic, Danica

    2009-07-15

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of beta-catenin and subsequent hyperactivation of Wnt/beta-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/beta-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/beta-catenin signalling is required for maintenance of local organizers and tectal integrity.

  17. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Directory of Open Access Journals (Sweden)

    Caroline eClouard

    2014-08-01

    Full Text Available The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow (CBF changes in brain regions known to be involved in memory, reward processes and hedonic (i.e. pleasure evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation.

  18. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    Science.gov (United States)

    Clouard, Caroline; Meunier-Salaün, Marie-Christine; Meurice, Paul; Malbert, Charles-Henri; Val-Laillet, David

    2014-01-01

    The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO) further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow changes in brain regions known to be involved in memory, reward processes and hedonic (i.e., pleasure) evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus, and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation. PMID:25147536

  19. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity.

    Science.gov (United States)

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Hu, Zhen; Zhao, Ming; Che, Chun-Tao; Ip, Siu-Po

    2012-01-01

    Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer's disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer's disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer's disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation.

  20. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms.

    Science.gov (United States)

    Collins, Michael A; Neafsey, Edward J; Wang, Kewei; Achille, Nicholas J; Mitchell, Robert M; Sivaswamy, Sreevidya

    2010-06-01

    There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning

  1. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven

    2003-01-01

    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...

  2. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats

    International Nuclear Information System (INIS)

    Maeepea, O.; Karlsson, C.; Alm, A.

    1984-01-01

    Edetic acid labeled with chromium 51 was injected intravenously in normal rats and in rats with streptozocin-induced diabetes. One hour after the injection the animals were killed and the concentrations of edetic acid 51Cr in vitreous body, retina, and brain were determined. No significant difference was observed between the two groups for either tissue. In a second series, a mixture of tritiated 1-glucose and aminohippuric acid tagged with carbon 14 was injected instead of edetic acid. A substantial accumulation of aminohippuric acid 14C compared with tritiated 1-glucose was observed in the vitreous body and the brain of diabetic rats in comparison with the control group. It is concluded that untreated streptozocin-induced diabetes in rats for one to two weeks will not cause a generalized increase in the permeability of the blood-ocular or the blood-brain barriers, but organic acids may accumulate in the vitreous body as well as in the brain as a consequence of reduced outward transport through these barriers

  3. Chronic stress-induced effects of corticosterone on brain: direct and indirect

    NARCIS (Netherlands)

    Dallman, M. F.; Akana, S. F.; Strack, A. M.; Scribner, K. S.; Pecoraro, N.; La Fleur, S. E.; Houshyar, H.; Gomez, F.

    2004-01-01

    Acutely, glucocorticoids act to inhibit stress-induced corticotrophin-releasing factor (CRF) and adrenocorticotrophic hormone (ACTH) secretion through their actions in brain and anterior pituitary (canonical feedback). With chronic stress, glucocorticoid feedback inhibition of ACTH secretion changes

  4. Lithium ameliorates open-field and elevated plus maze behaviors, and brain phospho-glycogen synthase kinase 3-beta expression in fragile X syndrome model mice.

    Science.gov (United States)

    Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang

    2013-10-01

    To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (popen-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (popen-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.

  5. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ya-Ru Wen

    2018-01-01

    Full Text Available Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain. First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3, significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.

  6. Role of TGF-beta1-independent changes in protein neosynthesis, p38alphaMAPK, and cdc42 in hydrogen peroxide-induced senescence-like morphogenesis

    DEFF Research Database (Denmark)

    Chrétien, Aline; Dierick, Jean-François; Delaive, Edouard

    2008-01-01

    for p38(MAPK) activation, in turn triggering phosphorylation of L-caldesmon and HSP27. Cdc42 was also shown to be mainly responsible for the increase in TGF-beta1 mRNA level observed at 24 h after treatment with H(2)O(2) and onward. This study further clarified the mechanisms of senescence......The role of TGF-beta1 in hydrogen peroxide-induced senescence-like morphogenesis has been described. The aim of this work was to investigate whether TGF-beta1-independent changes in protein synthesis are involved in this morphogenesis and to study possible mechanisms occurring earlier than TGF-beta......1 overexpression. Among the multiple TGF-beta1-independent changes in protein neosynthesis, followed or not by posttranslational modifications, identified by proteomic analysis herein, those of ezrin, L-caldesmon, and HSP27 were particularly studied. Rho-GTPase cdc42 was shown to be responsible...

  7. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions.

    Science.gov (United States)

    Noé, Francesco M; Bellistri, Elisa; Colciaghi, Francesca; Cipelletti, Barbara; Battaglia, Giorgio; de Curtis, Marco; Librizzi, Laura

    2016-06-01

    Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  8. Delayed radiation-induced necrosis of the brain stem; A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi (National Kure Hospital, Hiroshima (Japan)); Uozumi, Toru

    1993-03-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author).

  9. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    Science.gov (United States)

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  10. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  11. Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus.

    Directory of Open Access Journals (Sweden)

    Hiroki Kuroda

    2004-05-01

    Full Text Available The origin of the signals that induce the differentiation of the central nervous system (CNS is a long-standing question in vertebrate embryology. Here we show that Xenopus neural induction starts earlier than previously thought, at the blastula stage, and requires the combined activity of two distinct signaling centers. One is the well-known Nieuwkoop center, located in dorsal-vegetal cells, which expresses Nodal-related endomesodermal inducers. The other is a blastula Chordin- and Noggin-expressing (BCNE center located in dorsal animal cells that contains both prospective neuroectoderm and Spemann organizer precursor cells. Both centers are downstream of the early beta-Catenin signal. Molecular analyses demonstrated that the BCNE center was distinct from the Nieuwkoop center, and that the Nieuwkoop center expressed the secreted protein Cerberus (Cer. We found that explanted blastula dorsal animal cap cells that have not yet contacted a mesodermal substratum can, when cultured in saline solution, express definitive neural markers and differentiate histologically into CNS tissue. Transplantation experiments showed that the BCNE region was required for brain formation, even though it lacked CNS-inducing activity when transplanted ventrally. Cell-lineage studies demonstrated that BCNE cells give rise to a large part of the brain and retina and, in more posterior regions of the embryo, to floor plate and notochord. Loss-of-function experiments with antisense morpholino oligos (MO showed that the CNS that forms in mesoderm-less Xenopus embryos (generated by injection with Cerberus-Short [CerS] mRNA required Chordin (Chd, Noggin (Nog, and their upstream regulator beta-Catenin. When mesoderm involution was prevented in dorsal marginal-zone explants, the anterior neural tissue formed in ectoderm was derived from BCNE cells and had a complete requirement for Chd. By injecting Chd morpholino oligos (Chd-MO into prospective neuroectoderm and Cerberus

  12. Prolactin prevents acute stress-induced hypocalcemia and ulcerogenesis by acting in the brain of rat.

    Science.gov (United States)

    Fujikawa, Takahiko; Soya, Hideaki; Tamashiro, Kellie L K; Sakai, Randall R; McEwen, Bruce S; Nakai, Naoya; Ogata, Masato; Suzuki, Ikukatsu; Nakashima, Kunio

    2004-04-01

    Stress causes hypocalcemia and ulcerogenesis in rats. In rats under stressful conditions, a rapid and transient increase in circulating prolactin (PRL) is observed, and this enhanced PRL induces PRL receptors (PRLR) in the choroid plexus of rat brain. In this study we used restraint stress in water to elucidate the mechanism by which PRLR in the rat brain mediate the protective effect of PRL against stress-induced hypocalcemia and ulcerogenesis. We show that rat PRL acts through the long form of PRLR in the hypothalamus. This is followed by an increase in the long form of PRLR mRNA expression in the choroid plexus of the brain, which provides protection against restraint stress in water-induced hypocalcemia and gastric erosions. We also show that PRL induces the expression of PRLR protein and corticotropin-releasing factor mRNA in the paraventricular nucleus. These results suggest that the PRL levels increase in response to stress, and it moves from the circulation to the cerebrospinal fluid to act on the central nervous system and thereby plays an important role in helping to protect against acute stress-induced hypocalcemia and gastric erosions.

  13. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  14. Brain-computer interface for alertness estimation and improving

    Science.gov (United States)

    Hramov, Alexander; Maksimenko, Vladimir; Hramova, Marina

    2018-02-01

    Using wavelet analysis of the signals of electrical brain activity (EEG), we study the processes of neural activity, associated with perception of visual stimuli. We demonstrate that the brain can process visual stimuli in two scenarios: (i) perception is characterized by destruction of the alpha-waves and increase in the high-frequency (beta) activity, (ii) the beta-rhythm is not well pronounced, while the alpha-wave energy remains unchanged. The special experiments show that the motivation factor initiates the first scenario, explained by the increasing alertness. Based on the obtained results we build the brain-computer interface and demonstrate how the degree of the alertness can be estimated and controlled in real experiment.

  15. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  16. Constraint-induced movement therapy promotes brain functional reorganization in stroke patients with hemiplegia

    Science.gov (United States)

    Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang

    2012-01-01

    Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108

  17. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  18. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Parra Edwin R

    2010-01-01

    Full Text Available Abstract Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12 were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM. After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day (IM-TOL daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p p p = 0.026. The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002 and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009 collagen, in addition to decreased TGF-beta expression (p Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

  19. Specific radioimmunoassay of human. beta. -endorphin in unextracted plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, E. (Univ. of California, Berkeley); Saito, T.; Linfoot, J.A.; Li, C.H.

    1979-09-01

    With an antiserum against human ..beta..-endorphin (..beta..-EP) crossreacting <2% with human ..beta..-lipotropin (..beta..-LPH) by weight we have developed a radioimmunoassay that can detect 1 pg ..beta..-EP in diluted raw plasma. In a.m. fasting plasma of 14 normal subjects ..beta..-EP ranged from <5 to 45 pg/ml. ..beta..-EP was elevated in untreated, but normal in successfully treated Cushing's disease; undetectable in a patient with adrenal adenoma; extremely high in Nelson's syndrome; and elevated in a patient with bronchogenic carcinoma before, but undetectable after tumor resection. In subjects with intact hypothalamic-pituitary-adrenal axis, ..beta..-EP was undectectable after dexamethasone and increased after metyrapone administration and insulin-induced hypoglycemia. ..beta..-EP concentration was considerably lower in serum than in simultaneously collected plasma, but increased in serum left unfrozen for several hours after clot removal. Thus, ..beta..-EP behaves like a hormone responding to the same stimuli as ACTH and ..beta..-LPH and blood appears to contain enzymes both generating and destroying immunoreactive ..beta..-EP.

  20. Regulation of glycogen synthase kinase-3{beta} (GSK-3{beta}) after ionizing radiation; Regulation der Glykogen Synthase Kinase-3{beta} (GSK-3{beta}) nach ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, K.A.

    2006-12-15

    Glycogen Synthase Kinase-3{beta} (GSK-3{beta}) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3{beta} by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3{beta} at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3{beta} serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKB{beta}, is required for phosphorylation of GSK- 3{beta} at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3{beta} at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3{beta} in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer

  1. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  2. Beta-endorphin and alpha-n-acetyl beta-endorphin; synthesis, conformation and binding parameter

    Energy Technology Data Exchange (ETDEWEB)

    Lovegren, E.S.

    1986-01-01

    Beta-endorphin (EP) is a 31-residue opioid peptide found in many tissues, including the pituitary, brain and reproductive tract. Alpha-amino-acetyl beta-endorphin (AcEP) was characterized spectroscopically by proton nuclear magnetic resonance (NMR) and circular dichroism in deuterated water and trifluoroethanol (TFE). Both EP and AcEP bind to neuroblastoma N2a cells. This binding was not mediated through opiate receptors, and both peptides seemed to bind at common sites. Ovarian immunoreactive-EP levels were determined for immature and mature rates. These levels were found to be responsive to exogenous gonadotropin treatment in immature animals. A large percentage of the immunoreactive-EP is present in follicular fluid, and most of the endorphin-like peptides were acetylated, as measured by radioimmunoassay. Chromatogaphic analysis suggested at least three EP-like species: EP, a carboxy-terminally cleaved and an amino-terminally acetylated EP.

  3. The radiomodifying efficacy of beta carotene rich plant extracts on neuroethology of Swiss albino mice: perception, perspectives and risk assessment

    International Nuclear Information System (INIS)

    Bhatia, A.L.

    2003-01-01

    Full text: High utilization of O2 and rather poorly developed antioxidative defence mechanism makes the brain highly susceptible to oxidative damage. High enrichment with PUFA also renders it susceptible to radiation damage by free radicals. The pure form of beta carotene has proved quite effective against radiation but only at optimum dose level when tested for survivability and lipid peroxidation, protein, cholesterol, DNA content of brain. This induced us to extend our investigation on plants, Amaranthus and Spinach enriched with beta carotene, which could be recommended in the nutritional dietary course without causing psychological stress of availability and affordability unlike of tablets of medicines. Both Amaranthus paniculatus and Spinacea oleracea, commonly occurring weeds have good nutritive values due to their carotenoid, vitamin C, folate, folic acid contents; additionally Amaranthus with high level of lysine and methionine. Swiss albino male mice of 6-8 week(22±3 gm)selected from an inbred colony were administered with alcoholic extract at a dose of 600-mg/kg-body weight/day dissolved in distilled water with and without prior to irradiation (5 Gy of gamma radiation). The animals were studied on 1, 3, 7, 15, and 30 days after radiation exposure. On the basis of LD50/30 values the DRFs were computed as 1.43(AE) and 1.39(S.E). The plant extracts improved learning performance in mice in with and without rradiation. Male mice showed better learning performance as compared to females in all the groups. The brain showed that the radiation induced depletion of protein, glutathione and cholesterol and histopathology was significantly compensated/defied and was brought to near-normal level by the 15 days oral administration of crude extract of the plants. Radiation induced augmentation in glycogen, cholesterol and lipid peroxidation products were significantly checked. The protection appears to be afforded by combined or synergistic effects of plants leaves

  4. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    Science.gov (United States)

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  5. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    Science.gov (United States)

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe