WorldWideScience

Sample records for induced altered host

  1. Altered dopamine levels induced by the parasite Profilicollis antarcticus on its intermediate host, the crab Hemigrapsus crenulatus

    Directory of Open Access Journals (Sweden)

    JOSÉ MIGUEL ROJAS

    2005-01-01

    Full Text Available A serotonergic pathway is apparently involved in parasite-host interactions. Previous studies conducted in our laboratory showed increased rates in oxygen consumption and alterations in body posture in the crab Hemigrapsus crenulatus parasitized by the acanthocephalan, Profilicollis antarcticus. Such changes may be related to the functions described for biogenic amines in crustaceans. During the infective stage the acanthocephalans live freely in the hemocelomic cavity, suggesting that the possible alteration induced by biogenic amines may be related to their neurohormonal function in crustaceans. To test whether the presence of P. antarcticus produced neurohormonal changes in its intermediate host, H. crenulatus, we analyzed serotonin and dopamine levels in the host using HPLC with electrochemical detection. Two groups of 11 female crabs were studied; one group was artificially inoculated with two cystacanths while the other was used as the control. Our results show a dramatic increase in hemolymph dopamine, but not serotonin in H. crenulatus parasitized by the acanthocephalan P. antarcticus. Our results, along with those reported by Maynard (1996, suggest a parasite-specific strategy involved in the behavior alteration caused by the acanthocephalans on their intermediate host. The use of a biogenic amine as a mechanism of interaction by the parasites gives them an endless number of alternative potential actions on their intermediate hosts

  2. Altered dopamine levels induced by the parasite Profilicollis antarcticus on its intermediate host, the crab Hemigrapsus crenulatus.

    Science.gov (United States)

    Rojas, José Miguel; Ojeda, F Patricio

    2005-01-01

    A serotonergic pathway is apparently involved in parasite-host interactions. Previous studies conducted in our laboratory showed increased rates in oxygen consumption and alterations in body posture in the crab Hemigrapsus crenulatus parasitized by the acanthocephalan, Profilicollis antarcticus. Such changes may be related to the functions described for biogenic amines in crustaceans. During the infective stage the acanthocephalans live freely in the hemocelomic cavity, suggesting that the possible alteration induced by biogenic amines may be related to their neurohormonal function in crustaceans. To test whether the presence of P. antarcticus produced neurohormonal changes in its intermediate host, H. crenulatus, we analyzed serotonin and dopamine levels in the host using HPLC with electrochemical detection. Two groups of 11 female crabs were studied; one group was artificially inoculated with two cystacanths while the other was used as the control. Our results show a dramatic increase in hemolymph dopamine, but not serotonin in H. crenulatus parasitized by the acanthocephalan P. antarcticus. Our results, along with those reported by Maynard (1996), suggest a parasite-specific strategy involved in the behavior alteration caused by the acanthocephalans on their intermediate host. The use of a biogenic amine as a mechanism of interaction by the parasites gives them an endless number of alternative potential actions on their intermediate hosts.

  3. Data set of Aspergillus flavus induced alterations in tear proteome: Understanding the pathogen-induced host response to fungal infection

    Directory of Open Access Journals (Sweden)

    Jeyalakshmi Kandhavelu

    2016-12-01

    Full Text Available Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes activated in the human host in response to fungal infection and reflected in the tear. Extended analysis of this dataset presented here complements the research article entitled “Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection [1]” (Jeyalakhsmi Kandhavelu, Naveen Luke Demonte, Venkatesh Prajna Namperumalsamy, Lalitha Prajna, Chitra Thangavel, Jeya Maheshwari Jayapal, Dharmalingam Kuppamuthu, 2016. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE:PXD003825.

  4. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    Science.gov (United States)

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection.

    Science.gov (United States)

    Kandhavelu, Jeyalakshmi; Demonte, Naveen Luke; Namperumalsamy, Venkatesh Prajna; Prajna, Lalitha; Thangavel, Chitra; Jayapal, Jeya Maheshwari; Kuppamuthu, Dharmalingam

    2017-01-30

    Aspergillus flavus and Fusarium sp. are primary causative agents of keratitis that results in corneal tissue damage leading to vision loss particularly in individuals from the tropical parts of the world. Proteins in the tear film collected from control and keratitis patients was profiled and compared. A total of 1873 proteins from control and 1400 proteins from patient tear were identified by mass spectrometry. While 847 proteins were found to be glycosylated in the patient tear, only 726 were glycosylated in control tear. And, some of the tear proteins showed alterations in their glycosylation pattern after infection. Complement system proteins, proteins specific for neutrophil extracellular traps and proteins involved in would healing were found only in the patient tear. The presence of these innate immune system proteins in the tear film of patients supports the previous data indicating the involvement of neutrophil and complement pathways in antifungal defense. High levels of wound healing proteins in keratitis patient tear implied activation of tissue repair during infection. The early appearance of the host defense proteins and wound healing response indicates that tear proteins could be used as an early marker system for monitoring the progression of pathogenesis. Identification of negative regulators of the above defense pathways in keratitis tear indicates an intricate balance of pro and anti-defense mechanisms operating in fungal infection of the eye. Tear proteins from control and mycotic keratitis patients were separated into glycoproteins and non-glycosylated proteins and then identified by mass spectrometry. Tear proteins from keratitis patients showed alteration in the glycosylation pattern indicating the alteration of glycosylation machinery due to infection. Neutrophil extracellular traps specific proteins, complement pathway proteins, as well as wound healing proteins, were found only in patient tear showing the activation of antifungal defense

  6. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  7. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  8. Elevated CO{sub 2} levels and herbivore damage alter host plant preferences

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, J. [Lund Univ., Dept. of Animal Ecology, Lund (Sweden); Anderson, Peter, Swedish Univ. of Agricultural Sciences, Dept. of Crop Sciences, Alnarp (SE)); Oleszek, W.; Stochmal, Anna [Inst. of Soil Science and Plant Cultivation, Dept. of Biochemistry, Pulawy (Poland); Agrell, Cecilia [Lund Univ., Dept. of Chemical Ecology and Ecotoxicology, Lund (Sweden)

    2006-01-01

    Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO{sub 2} conditions. To determine strength and effects of herbivore-induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO{sub 2} and damage effects on larval host plant preferences were determined through dual-choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO{sub 2} enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO{sub 2} conditions), but CO{sub 2} enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO{sub 2} levels had no effect on the herbivore-induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO{sub 2} level, and lowest for larvae on damaged alfalfa from the high CO{sub 2} treatment. Development time increased on damaged cotton irrespectively of CO{sub 2} treatment, and on damaged alfalfa in the elevated CO{sub 2} treatment. (au) These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore-induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter

  9. Natal Host Plants Can Alter Herbivore Competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  10. Malaria-induced changes in host odors enhance mosquito attraction.

    Science.gov (United States)

    De Moraes, Consuelo M; Stanczyk, Nina M; Betz, Heike S; Pulido, Hannier; Sim, Derek G; Read, Andrew F; Mescher, Mark C

    2014-07-29

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.

  11. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    Science.gov (United States)

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  12. Gastrointestinal function in the parasitized host

    International Nuclear Information System (INIS)

    Castro, G.A.

    1981-01-01

    Emphasis in this review is on (1) digestive-absorptive, secretory and smooth muscle functions altered by gastrointestinal (GI) parasites, (2) mechanisms by which parasites induce changes, and (3) the influence of parasite-induced alterations on the health of the host. Examples involving laboratory and domestic animals indicate that inflammation is an important factor in pathological alterations in epithelial and smooth muscle tissues throughout the alimentary canal. Observations on GI secretory activity reveal an influence of parasites on the host GI endocrine system. It is argued that assessments of the significance of parasite-induced changes on the host must be balanced with the adaptive potential and 'reserve capacity' of the GI system. In this regard host immunity should be considered a specific adaptation. Some tracer studies are mentioned marginally, such as the use of 14 C polyethylene glycol to estimate the direction of not fluid movement in the small intestine, and the use of 51 Cr to demonstrate the significantly faster intestinal transit in Trichinella spiralis infected animals

  13. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    . Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.......Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested...

  14. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  15. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  16. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  17. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones.

    Science.gov (United States)

    Geiselhardt, Sven; Otte, Tobias; Hilker, Monika

    2012-09-01

    The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation. © 2012 Blackwell Publishing Ltd/CNRS.

  18. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  19. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  20. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  1. Staphylococcus aureus-induced G2/M phase transition delay in host epithelial cells increases bacterial infective efficiency.

    Directory of Open Access Journals (Sweden)

    Ludmila Alekseeva

    Full Text Available Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration.

  2. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  3. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  4. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  5. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice

    International Nuclear Information System (INIS)

    Nueesch, Juerg P.F.; Lachmann, Sylvie; Rommelaere, Jean

    2005-01-01

    During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of α/β tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production

  6. Radiation-induced alterations in murine lymphocyte homing patterns. I. Radiolabeling studies

    International Nuclear Information System (INIS)

    Crouse, D.A.; Feldbush, T.L.; Evans, T.C.

    1976-01-01

    In vitro x-irradiation of 51 Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to alter their subsequent in vivo distribution significantly in syngeneic BDF 1 mice. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes or Peyer's patches showed a significant exposure-dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed no preferential distribution to the same tissues. Sampling host tissues at various times after irradiation and injection did not demonstrate any return to normal patterns of distribution. The alterations in lymphocyte homing observed after in vitro irradiation appear to be due to the elimination of a selective population of lymphocytes or membrane alterations of viable cells, and the detection of these homing changes is in turn dependent upon the relative numbers of various lymphoid subpopulations which are obtained from different cell sources. Radiation-induced alterations in the normal homing patterns of lymphoid cells may thus be of considerable importance in the evaluation of subsequent functional assays in recipient animals

  7. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    Science.gov (United States)

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  9. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  10. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease.

    Science.gov (United States)

    Bloom, Seth M; Bijanki, Vinieth N; Nava, Gerardo M; Sun, Lulu; Malvin, Nicole P; Donermeyer, David L; Dunne, W Michael; Allen, Paul M; Stappenbeck, Thaddeus S

    2011-05-19

    The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here, we fulfilled Koch's postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively reisolated them in culture. The bacteria colonized IBD-susceptible and -nonsusceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease, but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease

    Science.gov (United States)

    Bloom, Seth M.; Bijanki, Vinieth N.; Nava, Gerardo M.; Sun, Lulu; Malvin, Nicole P.; Donermeyer, David L.; Dunne, W. Michael; Allen, Paul M.; Stappenbeck, Thaddeus S.

    2011-01-01

    SUMMARY The intestinal microbiota is important for induction of inflammatory bowel disease (IBD). IBD is associated with complex shifts in microbiota composition, but it is unclear whether specific bacterial subsets induce IBD and, if so, whether their proportions in the microbiota are altered during disease. Here we fulfilled Koch’s postulates in host-genotype-specific fashion using a mouse model of IBD with human-relevant disease-susceptibility mutations. From screening experiments we isolated common commensal Bacteroides species, introduced them into antibiotic-pretreated mice, and quantitatively re-isolated them in culture. The bacteria colonized IBD-susceptible and non-susceptible mice equivalently, but induced disease exclusively in susceptible animals. Conversely, commensal Enterobacteriaceae were >100-fold enriched during spontaneous disease but an Enterobacteriaceae isolate failed to induce disease in antibiotic-pretreated mice despite robust colonization. We thus demonstrate that IBD-associated microbiota alterations do not necessarily reflect underlying disease etiology. These findings establish important experimental criteria and a conceptual framework for understanding microbial contributions to IBD. PMID:21575910

  12. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

    Science.gov (United States)

    Pan, Xiaolei; Dong, Yuanyuan; Fan, Zheng; Liu, Chang; Xia, Bin; Shi, Jing; Bai, Fang; Jin, Yongxin; Cheng, Zhihui; Jin, Shouguang; Wu, Weihui

    2017-01-01

    During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin. PMID:28352614

  13. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  14. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  15. The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

    Science.gov (United States)

    Khan, Mike; Harms, Jerome S; Marim, Fernanda M; Armon, Leah; Hall, Cherisse L; Liu, Yi-Ping; Banai, Menachem; Oliveira, Sergio C; Splitter, Gary A; Smith, Judith A

    2016-12-01

    Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Toxoplasma gondii infection induces lipid metabolism alterations in the murine host

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2009-03-01

    Full Text Available Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2 at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1, or sacrificed at days zero, 14 and 42 (model 2 for the measurement of total cholesterol (Chl, high density lipoproteins (HDL, low density lipoproteins (LDL and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02 in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013. Conversely, LDL was unaltered until day 42, when it increased (p = 0.043. Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice, while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041 and cyst counts above 300 (p = 0.044. Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.

  17. Composition of Dietary Fat Source Shapes Gut Microbiota Architecture and Alters Host Inflammatory Mediators in Mouse Adipose Tissue

    Science.gov (United States)

    Huang, Edmond; Leone, Vanessa; Devkota, Suzanne; Wang, Yunwei; Brady, Matthew; Chang, Eugene

    2013-01-01

    Background Growing evidence shows that dietary factors can dramatically alter the gut microbiome in ways that contribute to metabolic disturbance and progression of obesity. In this regard, mesenteric adipose tissue has been implicated in mediating these processes through the elaboration of pro-inflammatory adipokines. In this study, we examined the relationship of these events by determining the effects of dietary fat content and source on gut microbiota, as well as the effects on adipokine profiles of mesenteric and peripheral adipocytes. Methods Adult male C57Bl/6 mice were fed milk fat-, lard-(SFA sources), or safflower oil (PUFA)- based high fat diets for four weeks. Body mass and food consumption were measured. Stool 16S rRNA was isolated and analyzed via T-RFLP as well as variable V3-4 sequence tags via next gen sequencing. Mesenteric and gonadal adipose samples were analyzed for both lipogenic and inflammatory mediators via qRT-PCR. Results High-fat feedings caused more weight gain with concomitant increases in caloric consumption relative to low-fat diets. Additionally, each of the high fat diets induced dramatic and specific 16S rRNA phylogenic profiles that were associated with different inflammatory and lipogenic mediator profile of mesenteric and gonadal fat depots. Conclusions Our findings support the notion that dietary fat composition can both reshape the gut microbiota as well as alter host adipose tissue inflammatory/lipogenic profiles. They also demonstrate the interdependency of dietary fat source, commensal gut microbiota, and inflammatory profile of mesenteric fat that can collectively impact the host metabolic state. PMID:23639897

  18. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  19. Cuscuta reflexa invasion induces Ca release in its host.

    Science.gov (United States)

    Albert, M; van der Krol, S; Kaldenhoff, R

    2010-05-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second messenger during signal transduction, and we therefore studied Ca(2+) spiking in tomato during infection with C. reflexa. Bioluminescence in aequorin-expressing tomato was monitored for 48 h after the onset of Cuscuta infestation. Signals at the attachment sites were observed from 30 to 48 h. Treatment of aequorin-expressing tomato leaf disks with Cuscuta plant extracts suggested that the substance that induced Ca(2+) release from the host was closely linked to parasite haustoria.

  20. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  1. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative

  2. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.; Kim, Young-Mo; Kronewitter, Scott R.; Jones, Marcus B.; Peterson, Christine; Peterson, Scott N.; Frank, Bryan C.; Purvine, Samuel O.; Brown, Joseph N.; Metz, Thomas O.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2013-06-26

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

  3. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  4. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    Directory of Open Access Journals (Sweden)

    Niklaus Zemp

    2015-10-01

    Full Text Available Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.

  5. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    Science.gov (United States)

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-10-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.

  6. Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Poyin Chen

    2017-12-01

    Full Text Available Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO pretreatment of colonic epithelial cells (Caco-2 led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses.

  7. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses.

    Science.gov (United States)

    McConnell, Kevin W; McDunn, Jonathan E; Clark, Andrew T; Dunne, W Michael; Dixon, David J; Turnbull, Isaiah R; Dipasco, Peter J; Osberghaus, William F; Sherman, Benjamin; Martin, James R; Walter, Michael J; Cobb, J Perren; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2010-01-01

    Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. Prospective, randomized controlled study. Animal laboratory in a university medical center. Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a

  8. Molecular systematics of pinniped hookworms (Nematoda: Uncinaria): species delimitation, host associations and host-induced morphometric variation.

    Science.gov (United States)

    Nadler, Steven A; Lyons, Eugene T; Pagan, Christopher; Hyman, Derek; Lewis, Edwin E; Beckmen, Kimberlee; Bell, Cameron M; Castinel, Aurelie; Delong, Robert L; Duignan, Padraig J; Farinpour, Cher; Huntington, Kathy Burek; Kuiken, Thijs; Morgades, Diana; Naem, Soraya; Norman, Richard; Parker, Corwin; Ramos, Paul; Spraker, Terry R; Berón-Vera, Bárbara

    2013-12-01

    host species representing the more recent host-parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds. Copyright © 2013 Australian Society for Parasitology Inc. All rights reserved.

  9. Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever.

    Science.gov (United States)

    Blohmke, Christoph J; Darton, Thomas C; Jones, Claire; Suarez, Nicolas M; Waddington, Claire S; Angus, Brian; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Kane, Leanne; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Duque-Correa, Maria A; Wright, James C; Roumeliotis, Theodoros I; Yu, Lu; Choudhary, Jyoti S; Mejias, Asuncion; Ramilo, Octavio; Shanyinde, Milensu; Sztein, Marcelo B; Kingsley, Robert A; Lockhart, Stephen; Levine, Myron M; Lynn, David J; Dougan, Gordon; Pollard, Andrew J

    2016-05-30

    Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. © 2016 Blohmke et al.

  10. Parasite infection alters nitrogen cycling at the ecosystem scale.

    Science.gov (United States)

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that

  11. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity.

    Directory of Open Access Journals (Sweden)

    Tiffany M Zarrella

    Full Text Available The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase.SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice.F. tularensis undergoes host-adaptation which

  12. Control strategies for a stochastic model of host-parasite interaction in a seasonal environment.

    Science.gov (United States)

    Gómez-Corral, A; López García, M

    2014-08-07

    We examine a nonlinear stochastic model for the parasite load of a single host over a predetermined time interval. We use nonhomogeneous Poisson processes to model the acquisition of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality, and the reproduction and death of parasites within the host. Algebraic results are first obtained on the age-dependent distribution of the number of parasites infesting the host at an arbitrary time t. The interest is in control strategies based on isolation of the host and the use of an anthelmintic at a certain intervention instant t0. This means that the host is free living in a seasonal environment, and it is transferred to a uninfected area at age t0. In the uninfected area, the host does not acquire new parasites, undergoes a treatment to decrease the parasite load, and its natural and parasite-induced mortality are altered. For a suitable selection of t0, we present two control criteria that appropriately balance effectiveness and cost of intervention. Our approach is based on simple probabilistic principles, and it allows us to examine seasonal fluctuations of gastrointestinal nematode burden in growing lambs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota

    DEFF Research Database (Denmark)

    Newbold, Lindsay K.; Burthe, Sarah J.; Oliver, Anna E.

    2017-01-01

    Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same...... to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth...... infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment...

  14. Membrane alterations induced by nonstructural proteins of human norovirus.

    Directory of Open Access Journals (Sweden)

    Sylvie Y Doerflinger

    2017-10-01

    Full Text Available Human noroviruses (huNoV are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4 variants. The viral nonstructural (NS proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV. Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER which included single membrane vesicles (SMVs, double membrane vesicles (DMVs and multi membrane vesicles (MMVs. In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and

  15. Cuscuta reflexa invasion induces Ca2+ release in its host

    NARCIS (Netherlands)

    Albert, M.; Krol, van der A.R.; Kaldenhoff, R.

    2010-01-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second

  16. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  17. Host nutrition alters the variance in parasite transmission potential.

    Science.gov (United States)

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  18. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  19. Genetic alterations during radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  20. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  1. Aging induced ER stress alters sleep and sleep homeostasis

    OpenAIRE

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2013-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical ...

  2. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.

    Science.gov (United States)

    Ortega-Domínguez, Bibiana; Aparicio-Trejo, Omar Emiliano; García-Arroyo, Fernando E; León-Contreras, Juan Carlos; Tapia, Edilia; Molina-Jijón, Eduardo; Hernández-Pando, Rogelio; Sánchez-Lozada, Laura Gabriela; Barrera-Oviedo, Diana; Pedraza-Chaverri, José

    2017-09-01

    Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD + -dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

    Science.gov (United States)

    Devchand, Pallavi R; Schmidt, Birgitta A; Primo, Valeria C; Zhang, Qing-yin; Arnaout, M Amin; Serhan, Charles N; Nikolic, Boris

    2005-02-01

    Lipoxin A(4) (LXA(4)) and aspirin-triggered 15-epi-LXA(4) are potent endogenous lipid mediators thought to define the inflammatory set-point. We used single prophylactic administrations of a synthetic aspirin-triggered lipoxin A(4) signal mimetic, ATLa, to probe dynamics of early host-donor interactions in a mouse model for the inflammation-associated multifactorial disease of allogeneic bone marrow transplant (BMT) -induced graft-vs.-host disease (GvHD). We first demonstrated that both host and donor are responsive to the ATLa signals. The simple and restricted regimen of a single prophylactic administration of ATLa [100 ng/mL to donor cells or 1 microg (approximately 50 microg/kg) i.v. to host] was sufficient to delay death. Clinical indicators of weight, skin lesions, diarrhea and eye inflammation were monitored. Histological analyses on day 45 post-BMT showed that the degree of cellular trafficking, particularly neutrophil infiltrate, and protection of end-organ target pathology are different, depending on whether the host or donor was treated with ATLa. Taken together, these results chart some ATLa protective effects on GvHD cellular dynamics over time and identify a previously unrecognized effect of host neutrophils in the early phase post-BMT as important determinants in the dynamics of GvHD onset and progression.-Devchand, P. R., Schmidt, B. A., Primo, V. C., Zhang, Q.-y., Arnaout, M. A., Serhan, C. N., Nikolic, B. A synthetic eicosanoid LX-mimetic unravels host-donor interactions in allogeneic BMT-induced GvHD to reveal an early protective role for host neutrophils.

  4. Geochemistry of Hydrothermal Alteration Associated with Cenozoic Intrusion-Hosted Cu-Pb-Zn Mineralization at Tavşanlı Area, Kütahya, NW Turkey

    Directory of Open Access Journals (Sweden)

    Mustafa Kumral

    2016-02-01

    Full Text Available The Miocene magmatic intrusion in the Tavşanlı zone of the Kütahya-Bolkardağ Belt (KBB in the northwestern region of Turkey is represented by the Eğrigöz granitoids. This paper studies the petrology and geochemistry of hydrothermal alterations associated with the vein-type Cu-Pb-Zn mineralization hosted by this pluton, focusing on the determination of the mass gains and losses of chemical components, which reflect the chemical exchanges between the host rocks and hydrothermal fluids. Vein-type Cu-Pb-Zn mineralization is closely associated with intense hydrothermal alterations within the brecciation, quartz stockwork veining, and brittle fracture zones that are controlled by NW-SE trending faults cutting through the Eğrigöz granitoids. Paragenetic relationships reveal three stages of mineralization: pre-ore, ore, and supergene. The ore mineralogy typically includes hypogene chalcopyrite, sphalerite, galena, and pyrite, with locally supergene covellite, malachite, and azurite. Wall-rock hypogene hydrothermal alterations include pervasive silicification, sulfidation, sericitization, and selective carbonatization and albitization. These are distributed in three main alteration zones (zone 1: silicified/iron carbonatized alterations ± albite, zone 2: argillic-silicic alterations, and zone 3: phyllic alterations. Based on the gains and losses of mass and volume (calculated by the GEOISO-Windows™ program, zone 1 has a higher mass and volume gain than zones 2 and 3. Non-systematic zonal distributions of alterations are observed in which the silicic-carbonate alterations +/− albitization appeared in zone 1 in the center and the phyllic-argillic alterations appeared in zones 2 and 3, with an increase in base metals (Cu-Pb-Zn in the zone from Cu, Cu-Pb, to Cu-Pb-Zn moving outwards.

  5. Experimental shifts in egg-nest contrasts do not alter egg rejection responses in an avian host-brood parasite system.

    Science.gov (United States)

    Hauber, Mark E; Aidala, Zachary; Igic, Branislav; Shawkey, Matthew D; Moskát, Csaba

    2015-09-01

    Obligate brood parasitic birds exploit their hosts to provide care for unrelated young in the nest. Potential hosts can reduce the cost of parasitism by rejecting foreign eggs from the nest. Observational, comparative, and experimental studies have concluded that most hosts use the coloration and patterning of eggshells to discriminate between own and foreign eggs in the nest. However, an alternative hypothesis is that birds use the colour contrasts between eggshells and the nest lining to identify parasitic eggs (egg-nest contrast hypothesis). In support of this hypothesis, we found that the avian perceivable chromatic contrasts between dyed eggs and unmanipulated nest linings significantly and negatively covaried with the rejection rates of different dyed eggs of the great reed warbler Acrocephalus arundinaceus, a frequently parasitized host of the common cuckoo Cuculus canorus. To experimentally test whether egg-nest contrasts influence rejection, we reciprocally dyed both eggs and the nest lining of this host species with one of two colours: orange and green. Contrary to the egg-nest contrast hypothesis, host rejection patterns in response to dyed eggs were not altered by dyeing nests, relative to unmanipulated control eggs and nests. In turn, experimental egg colour was the only significant predictor of egg rejection rate. Our results demonstrate that egg-nest contrast is a collateral, not a causal factor in egg rejection, and confirm the conclusions of previous studies that hosts can rely on the parasitic egg's appearance itself to recognize the foreign egg in the nest.

  6. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  7. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    Science.gov (United States)

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  8. Data set of Aspergillus flavus induced alterations in tear proteome: Understanding the pathogen-induced host response to fungal infection

    OpenAIRE

    Kandhavelu, Jeyalakshmi; Demonte, Naveen Luke; Namperumalsamy, Venkatesh Prajna; Prajna, Lalitha; Thangavel, Chitra; Jayapal, Jeya Maheshwari; Kuppamuthu, Dharmalingam

    2016-01-01

    Fungal keratitis is one of the leading causes of blindness in the tropical countries affecting individuals in their most productive age. The host immune response during this infection is poorly understood. We carried out comparative tear proteome analysis of Aspergillus flavus keratitis patients and uninfected controls. Proteome was separated into glycosylated and non-glycosylated fractions using lectin column chromatography before mass spectrometry. The data revealed the major processes acti...

  9. Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit.

    Science.gov (United States)

    Vilanova, Laura; Vall-Llaura, Núria; Torres, Rosario; Usall, Josep; Teixidó, Neus; Larrigaudière, Christian; Giné-Bordonaba, Jordi

    2017-11-01

    The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Orthodontic treatment-induced temporal alteration of jaw-opening reflex excitability.

    Science.gov (United States)

    Sasaki, Au; Hasegawa, Naoya; Adachi, Kazunori; Sakagami, Hiroshi; Suda, Naoto

    2017-10-01

    The impairment of orofacial motor function during orthodontic treatment needs to be addressed, because most orthodontic patients experience pain and motor excitability would be affected by pain. In the present study, the temporal alteration of the jaw-opening reflex excitability was investigated to determine if orthodontic treatment affects orofacial motor function. The excitability of jaw-opening reflex evoked by electrical stimulation on the gingiva and recorded bilaterally in the anterior digastric muscles was evaluated at 1 (D1), 3 (D3), and 7 days (D7) after orthodontic force application to the teeth of right side; morphological features (e.g., osteoclast genesis and tooth movement) were also evaluated. To clarify the underlying mechanism of orthodontic treatment-induced alteration of orofacial motor excitability, analgesics were administrated for 1 day. At D1 and D3, orthodontic treatment significantly decreased the threshold for inducing the jaw-opening reflex but significantly increased the threshold at D7. Other parameters of the jaw-opening reflex were also evaluated (e.g., latency, duration and area under the curve of anterior digastric muscles activity), and only the latency of the D1 group was significantly different from that of the other groups. Temporal alteration of the jaw-opening reflex excitability was significantly correlated with changes in morphological features. Aspirin (300 mg·kg -1 ·day -1 ) significantly increased the threshold for inducing the jaw-opening reflex, whereas a lower dose (75-150 mg·kg -1 ·day -1 ) of aspirin or acetaminophen (300 mg·kg -1 ·day -1 ) failed to alter the jaw-opening reflex excitability. These results suggest that an increase of the jaw-opening reflex excitability can be induced acutely by orthodontic treatment, possibly through the cyclooxygenase activation. NEW & NOTEWORTHY It is well known that motor function is affected by pain, but the effect of orthodontic treatment-related pain on the trigeminal

  11. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis.

    Science.gov (United States)

    Jain, Nitya; Walker, W Allan

    2015-01-01

    Neonates face unique challenges in the period following birth. The postnatal immune system is in the early stages of development and has a range of functional capabilities that are distinct from the mature adult immune system. Bidirectional immune-microbial interactions regulate the development of mucosal immunity and alter the composition of the microbiota, which contributes to overall host well-being. In the past few years, nutrition has been highlighted as a third element in this interaction that governs host health by modulating microbial composition and the function of the immune system. Dietary changes and imbalances can disturb the immune-microbiota homeostasis, which might alter susceptibility to several autoimmune and metabolic diseases. Major changes in cultural traditions, socioeconomic status and agriculture are affecting the nutritional status of humans worldwide, which is altering core intestinal microbial communities. This phenomenon is especially relevant to the neonatal and paediatric populations, in which the microbiota and immune system are extremely sensitive to dietary influences. In this Review, we discuss the current state of knowledge regarding early-life nutrition, its effects on the microbiota and the consequences of diet-induced perturbation of the structure of the microbial community on mucosal immunity and disease susceptibility.

  12. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.

  13. Tooth alterations in areas of bisphosphonate-induced osteonecrosis.

    Science.gov (United States)

    de Camargo Moraes, Paulo; Silva, Carolina Amália Barcellos; Soares, Andresa Borges; Passador-Santos, Fabrício; Corrêa, Maria Elvira Pizzigatti; de Araújo, Ney Soares; de Araújo, Vera Cavalcanti

    2015-03-01

    Osteonecrosis of the jaw is a potential side effect when using bisphosphonates. Most studies on the effects of bisphosphonates on teeth have been conducted in vitro or in animal models of tooth development. Therefore, the aim of this study was to describe alterations found in human teeth extracted from areas of bisphosphonate-induced osteonecrosis. Using a retrospective study design, 16 teeth from 13 patients were extracted from areas of bisphosphonate-induced osteonecrosis during surgical debridement. The specimens were decalcified and embedded in paraffin. A series of 5-μm sections were prepared, stained with hematoxylin and eosin (H&E) and observed under a light microscope. The majority of the patients were female (53.85 %), with a mean age of 60.23 ± 13.18 years. Zoledronate (IV) was the most common bisphosphonate used (92.3 %), over a mean period of 2 years. The commonest alteration observed was hypercementosis (87.5 %), followed by pulpar necrosis (81.25 %), pulp stones attached to the dentine and loose pulp stones in the pulp chamber and root canals in addition to linear calcifications (68.75 %), dentinoid/osteoid material formation (18.75 %), and dental ankylosis (6.25 %). Patients undergoing bisphosphonate therapy present diverse tooth alterations, which should be closely monitored by clinicians to prevent complications. It is paramount that the teeth involved in oral lesions are always examined. Attention should be drawn to the need to establish preventive measures, in terms of dental treatment, for patients prior to starting bisphosphonate therapy.

  14. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  15. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

    DEFF Research Database (Denmark)

    Yang, Jason H.; Bhargava, Prerna; McCloskey, Douglas

    2017-01-01

    Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect eithe...

  16. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    Science.gov (United States)

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  18. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  19. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Maroschik, Belinda; Gürtler, Anne; Krämer, Anne; Rößler, Ute; Gomolka, Maria; Hornhardt, Sabine; Mörtl, Simone; Friedl, Anna A

    2014-01-01

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  20. Infrequent alterations of the P53 gene in rat skin cancers induced by ionising-radiation

    International Nuclear Information System (INIS)

    Jin, Y.; Burns, F.J.; Garte, S.J.; Hosselet, S.; New York Univ., NY

    1996-01-01

    Radiation carcinogenesis almost certainly involves multiple genetic alterations. Identification of such genetic alterations would provide information to help understand better the molecular mechanism or radiation carcinogenesis. The energy released by ionizing radiation has the potential to produce DNA strand breaks, major gene deletions or rearrangements, and other base damages. Alterations of the p53 gene, a common tumour suppressor gene altered in human cancers, were examined in radiation-induced rat skin cancers. Genomic DNA from a total of 33rat skin cancers induced by ionizing radiation was examined by Southern blot hybridization for abnormal restriction fragment patterns in the p53 gene. A abnormal p53 restriction pattern was found in one of 16 cancers induced by electron radiation and in one of nine cancers induced by neon ions. The genomic DNA from representative cancers, including the two with an abnormal restriction pattern was further examined by polymerase chain reaction amplification and direct sequencing in exons 5-8 of the p53 gene. The results showed that one restriction fragment length polymorphism (RFLP)-positive cancer induced by electron radiation had a partial gene deletion which was defined approximately between exons 2-8, while none of the other cancers showed sequence changes. Our results indicate that the alterations in the critical binding region of the p53 gene are infrequent in rat skin cancers induced by either electron or neon ion radiation. (Author)

  1. Treeline proximity alters an alpine plant-herbivore interaction.

    Science.gov (United States)

    Illerbrun, Kurt; Roland, Jens

    2011-05-01

    Rising treeline threatens the size and contiguity of alpine meadows worldwide. As trees encroach into previously open habitat, the movement and population dynamics of above-treeline alpine species may be disrupted. This process is well documented in studies of the Rocky Mountain apollo butterfly (Parnassius smintheus). However, subtler consequences of treeline rise remain poorly understood. In this study, we examine whether treeline proximity affects feeding behaviour of P. smintheus larvae, due to altered habitat affecting the distribution and availability of their host plant, lance-leaved stonecrop (Sedum lanceolatum). Understanding differential larval exploitation of food resources in relation to the treeline is an important step in predicting the consequences of continued treeline rise. Parnassius smintheus larvae feed more intensively on S. lanceolatum away from the treeline despite the relative paucity of hosts in these areas, and despite higher fitness penalties associated with the plant's herbivory-induced chemical defenses. Sedum lanceolatum growing near the treeline is less attractive, and therefore represents a less significant resource for P. smintheus larvae than its abundance might imply. If treeline rise continues, we suggest that this pattern of altered resource exploitation may represent a mechanism by which larvae are adversely affected even while adult movement among and within meadows appears sufficient for maintaining population health, and total host availability seems ample.

  2. The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Moonil Son

    2016-08-01

    Full Text Available The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1 strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence of its fungal host. To characterize function(s of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s in FgV1 induced phenotype alteration such as delayed vegetative growth.

  3. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2018-04-01

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  4. The alteration of chromatin domains during damage repair induced by ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Olson, K.M.; Olson, G.B.

    1995-01-01

    Several groups previously have reported the ability of chromatin structure to influence the production of damage induced by ionizing radiation. The authors' interest has been to determine whether chromatin structural alterations exist after ionizing radiation during a repair interval. The earlier work investigated this question using biochemical techniques. The crosslinking of nuclear structural proteins to DNA after ionizing radiation was observed. In addition, they found that the chromatin structure in vitro as measured by sucrose density gradient sedimentation, was altered after ionizing radiation. These observations added to earlier studies in which digital imaging techniques showed an alteration in feulgen-positive DNA after irradiation prompted the present study. The object of this study was to detect whether the higher order structure of DNA into chromatin domains within interphase human cells was altered in interphase cells in response to a radiation induced damage. The present study takes advantage of the advances in the detection of chromatin domains in situ using DNA specific dyes and digital image processing of established human T and B cell lines

  5. Alterations in the proteome of the Euprymna scolopes light organ in response to symbiotic Vibrio fischeri.

    Science.gov (United States)

    Doino Lemus, J; McFall-Ngai, M J

    2000-09-01

    During the onset of the cooperative association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri, the anatomy and morphology of the host's symbiotic organ undergo dramatic changes that require interaction with the bacteria. This morphogenetic process involves an array of tissues, including those in direct contact with, as well as those remote from, the symbiotic bacteria. The bacteria induce the developmental program soon after colonization of the organ, although complete morphogenesis requires 96 h. In this study, to determine critical time points, we examined the biochemistry underlying bacterium-induced host development using two-dimensional polyacrylamide gel electrophoresis. Specifically, V. fischeri-induced changes in the soluble proteome of the symbiotic organ during the first 96 h of symbiosis were identified by comparing the protein profiles of symbiont-colonized and uncolonized organs. Both symbiosis-related changes and age-related changes were analyzed to determine what proportion of the differences in the proteomes was the result of specific responses to interaction with bacteria. Although no differences were detected over the first 24 h, numerous symbiosis-related changes became apparent at 48 and 96 h and were more abundant than age-related changes. In addition, many age-related protein changes occurred 48 h sooner in symbiotic animals, suggesting that the interaction of squid tissue with V. fischeri cells accelerates certain developmental processes of the symbiotic organ. These data suggest that V. fischeri-induced modifications in host tissues that occur in the first 24 h of the symbiosis are independent of marked alterations in the patterns of abundant proteins but that the full 4-day morphogenetic program requires significant alteration of the host soluble proteome.

  6. Toxoplasma gondii infection specifically increases the levels of key host microRNAs.

    Directory of Open Access Journals (Sweden)

    Gusti M Zeiner

    2010-01-01

    Full Text Available The apicomplexan parasite Toxoplasma gondii can infect and replicate in virtually any nucleated cell in many species of warm-blooded animals; thus, it has evolved the ability to exploit well-conserved biological processes common to its diverse hosts. Here we have investigated whether Toxoplasma modulates the levels of host microRNAs (miRNAs during infection.Using microarray profiling and a combination of conventional molecular approaches we report that Toxoplasma specifically modulates the expression of important host microRNAs during infection. We show that both the primary transcripts for miR-17 approximately 92 and miR-106b approximately 25 and the pivotal miRNAs that are derived from miR-17 approximately 92 display increased abundance in Toxoplasma-infected primary human cells; a Toxoplasma-dependent up-regulation of the miR-17 approximately 92 promoter is at least partly responsible for this increase. The abundance of mature miR-17 family members, which are derived from these two miRNA clusters, remains unchanged in host cells infected with the closely related apicomplexan Neospora caninum; thus, the Toxoplasma-induced increase in their abundance is a highly directed process rather than a general host response to infection.Altered levels of miR-17 approximately 92 and miR-106b approximately 25 are known to play crucial roles in mammalian cell regulation and have been implicated in numerous hyperproliferative diseases although the mechanisms driving their altered expression are unknown. Hence, in addition to the implications of these findings on the host-pathogen interaction, Toxoplasma may represent a powerful probe for understanding the normal mechanisms that regulate the levels of key host miRNAs.

  7. Microcirculation alterations in experimentally induced gingivitis in dogs.

    Science.gov (United States)

    Matsuo, Masato; Okudera, Toshimitsu; Takahashi, Shun-Suke; Wada-Takahashi, Satoko; Maeda, Shingo; Iimura, Akira

    2017-01-01

    The present study aimed to morphologically examine the gingival microvascular network using a microvascular resin cast (MRC) technique, and to investigate how inflammatory disease functionally affects gingival microcirculation using laser Doppler flowmetry (LDF). We used four beagle dogs with healthy periodontal tissue as experimental animals. To cause periodontal inflammation, dental floss was placed around the cervical neck portions of the right premolars. The unmanipulated left premolars served as controls, and received plaque control every 7 days. After 90 days, gingivitis was induced in the experimental side, while the control side maintained healthy gingiva. To perform morphological examinations, we used an MRC method involving the injection of low-viscosity synthetic resin into the blood vessels, leading to peripheral soft-tissue dissolution and permitting observation of the bone, teeth, and vascular cast. Gingival blood flow was estimated using an LDF meter. The control gingival vasculature showed hairpin-loop-like networks along the tooth surface. The blood vessels had diameters of 20-40 μm and were regularly arranged around the cervical portion. On the other hand, the vasculature in the experimental group was twisted and gathered into spiral forms, with blood vessels that had uneven surfaces and smaller diameters of 8-10 μm. LDF revealed reduced gingival blood flow in the group with experimentally induced gingivitis compared to controls. The actual measurements of gingival blood flow by LDF were in agreement with the alterations that would be expected based on the gingivitis-induced morphological alterations observed with the MRC technique.

  8. Effects Of Walker 256 Carcinoma On Metabolic Alterations During The Evolution Of Pregnancy.

    OpenAIRE

    Cintra-Gomes M.C.; Cury L.; Parreira M.R.; Elias C.F.; Areas M.A.

    1990-01-01

    The control of pregnant cancer patients is difficult because it involves both mother and fetus, and the metabolic alterations in the cancer host induce a massive mobilization of nutrients diverted to the neoplastic cells. The purpose of the present study was to determine the evolution of the Walker 256 carcinoma in pregnant rats and its consequences on fetal development. The results showed that the tumors displayed a very rapid rate of growth and induced a reduction in fetal weights in the pr...

  9. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis.

    Science.gov (United States)

    Fozo, E M; Rucks, E A

    2016-01-01

    In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora. © 2016 Elsevier Ltd All rights reserved.

  10. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  11. Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees

    NARCIS (Netherlands)

    Lauw, F. N.; Dekkers, P. E.; te Velde, A. A.; Speelman, P.; Levi, M. [=Marcel M.; Kurimoto, M.; Hack, C. E.; van Deventer, S. J.; van der Poll, T.

    1999-01-01

    To determine in vivo effects of interleukin (IL)-12 on host inflammatory mediator systems, 4 healthy chimpanzees received recombinant human IL-12 (1 microg/kg) by intravenous injection. IL-12 induced increases in plasma concentrations of IL-15, IL-18, and interferon-gamma (IFN-gamma), plus a marked

  12. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    Science.gov (United States)

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  13. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    Directory of Open Access Journals (Sweden)

    Gábor Vasas

    2013-09-01

    Full Text Available Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs, a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN, an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization.

  14. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  15. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    International Nuclear Information System (INIS)

    Luo, Hanwen; Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng; Ping, Jie; Xu, Dan; Ma, Lu; Chen, Liaobin; Wang, Hui

    2014-01-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine-induced

  16. Congenital heart malformations induced by hemodynamic altering surgical interventions

    Directory of Open Access Journals (Sweden)

    Madeline eMidgett

    2014-08-01

    Full Text Available Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.

  17. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Hypoxia‐induced alterations of G2 checkpoint regulators

    OpenAIRE

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G.

    2016-01-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage‐induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting o...

  19. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  20. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    Science.gov (United States)

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  1. Cold-induced alteration in the global structure of the male sex ...

    Indian Academy of Sciences (India)

    Cold-induced alteration in the global structure of the male sex ... dar et al. 1978). Chromosome preparated from a single pair of salivary glands show extremely puffy and diffuse ..... Akhtar A. 2003 Dosage compensation: an intertwined world of.

  2. Ecomorphology and disease: cryptic effects of parasitism on host habitat use, thermoregulation, and predator avoidance.

    Science.gov (United States)

    Goodman, Brett A; Johnson, Pieter T J

    2011-03-01

    Parasites can cause dramatic changes in the phenotypes of their hosts, sometimes leading to a higher probability of predation and parasite transmission. Because an organism's morphology directly affects its locomotion, even subtle changes in key morphological traits may affect survival and behavior. However, despite the ubiquity of parasites in natural communities, few studies have incorporated parasites into ecomorphological research. Here, we evaluated the effects of parasite-induced changes in host phenotype on the habitat use, thermal biology, and simulated predator-escape ability of Pacific chorus frogs (Pseudacris regilla) in natural environments. Frogs with parasite-induced limb malformations were more likely to use ground microhabitats relative to vertical refugia and selected less-angled perches closer to the ground in comparison with normal frogs. Although both groups had similar levels of infection, malformed frogs used warmer microhabitats, which resulted in higher body temperatures. Likely as a result of their morphological abnormalities, malformed frogs allowed a simulated predator to approach closer before escaping and escaped shorter distances relative to normal frogs. These data indicate that parasite-induced morphological changes can significantly alter host behavior and habitat use, highlighting the importance of incorporating the ubiquitous, albeit cryptic, role of parasites into ecomorphological research.

  3. Hyperthermia-induced alteration of yeast susceptibility to mutation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1985-01-01

    Diploid yeast (s. cerevisiae) were examined for alterations in susceptibility to induced mutation following hyperthermia treatment. In cells grown at 23 0 C, a non-lethal heat exposure (38 0 C, 30 min) markedly suppressed mutation induced by a subsequent non-killing dose of MNNG of MNU. Mutation by ENU, 8-MOP + UVA, or γ-rays was not affected. An intermediate level of mutation suppression was observed for mutation by 254nm UV or MMS. Mutation by MNNG was not suppressed by the same heat treatment delivered after the mutagen exposure. In a split dose experiment (two MNNG treatments separated by a heat exposure) no suppression of mutation was observed. Treatment with cycloheximide mimicked the effect of heat treatment. These data suggest that mutation induction by MNNG or MNU is protein synthesis dependent, i.e. an error-prone repair system is induced by exposure to MNNG or MNU but not by ENU, 8-MOP+UVA or γ-irradiation. We propose that hyperthermia treatment, by inducing stress protein synthesis at the expense of normal protein synthesis, precludes induction of this error-prone system. Therefore, in heat treated cells, DNA lesions produced by MNNG or MNU exposure must be resolved by an essentially constitutive system which is less error-prone than the inducible one

  4. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  5. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  6. Herpes simplex virus types 1 and 2 induce shutoff of host protein synthesis by different mechanisms in Friend erythroleukemia cells

    International Nuclear Information System (INIS)

    Hill, T.M.; Sinden, R.R.; Sadler, J.R.

    1983-01-01

    Herpes simplex virus type 1 (HSV-1) and HSV-2 disrupt host protein synthesis after viral infection. We have treated both viral types with agents which prevent transcription of the viral genome and used these treated viruses to infect induced Friend erythroleukemia cells. By measuring the changes in globin synthesis after infection, we have determined whether expression of the viral genome precedes the shutoff of host protein synthesis or whether the inhibitor molecule enters the cells as part of the virion. HSV-2-induced shutoff of host protein synthesis was insensitive to the effects of shortwave (254-nm) UV light and actinomycin D. Both of the treatments inhibited HSV-1-induced host protein shutoff. Likewise, treatment of HSV-1 with the cross-linking agent 4,5',8-trimethylpsoralen and longwave (360-nm) UV light prevented HSV-1 from inhibiting cellular protein synthesis. Treatment of HSV-2 with 4,5',8-trimethylpsoralen did not affect the ability of the virus to interfere with host protein synthesis, except at the highest doses of longwave UV light. It was determined that the highest longwave UV dosage damaged the HSV-2 virion as well as cross-linking the viral DNA. The results suggest that HSV-2 uses a virion-associated component to inhibit host protein synthesis and that HSV-1 requires the expression of the viral genome to cause cellular protein synthesis shutoff

  7. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis

    Science.gov (United States)

    Liu, Zhi; Liu, Wenshu; Ran, Chao; Hu, Jun; Zhou, Zhigang

    2016-01-01

    In this study, we investigated the risk associated with suspension of probiotics administration in tilapia, an animal model that may mimic immune-compromised conditions in humans. Tilapias were fed for 14 days using a probiotics-supplemented diet, followed by a three-day suspension of probiotics treatment and a subsequent challenge by Aeromonas hydrophila. Unexpectedly, the suspension of a probiotic strain Lactobacillus plantarum JCM1149 significantly triggered susceptibility of the host to A. hydrophila. We further observed that suspension of JCM1149 resulted in host gut microbiota dysbiosis and the subsequent disorder in the intestinal metabolites (bile acids, amino acids, and glucose) and damage in the intestinal epithelium, giving rise to a condition similar to antibiotics-induced gut dysbiosis, which collectively impaired tilapia’s gut health and resistance to pathogenic challenges. Additionally, we determined that JCM1149 adhered relatively poorly to tilapia intestinal mucosa and was rapidly released from the gastrointestinal tract (GIT) after suspension, with the rapid loss of probiotic strain probably being the direct cause of gut dysbiosis. Finally, three other probiotic Lactobacillus strains with low intestinal mucosa binding activity showed similar rapid loss phenotype following administration suspension, and induced higher host susceptibility to infection, indicating that the risk is a generic phenomenon in Lactobacillus. PMID:26983596

  8. Induced mutations for crop improvement- the generation next

    International Nuclear Information System (INIS)

    Bhatia, C.R.

    2000-01-01

    Experiments to use induced mutations for the improvement of crop plants were initiated in the country in mid nineteen fifties. After forty five years and reasonably good success stories, it is no longer an attractive subject for bright young graduate students. The areas of intellectually satisfying, contemporary, plant genetics based on induced mutations that can also bring social and commercial benefits are identified. These are: nodulation mutants in legumes, altering fatty acid composition in oil crops, modification of root characters, altering host-pathogen interactions, flowering time, day length insensitivity and some changes in modulation pattern involve mutations

  9. Bifidobacterium infantis Potentially Alleviates Shrimp Tropomyosin-Induced Allergy by Tolerogenic Dendritic Cell-Dependent Induction of Regulatory T Cells and Alterations in Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Linglin Fu

    2017-11-01

    Full Text Available Shellfish is one of the major allergen sources worldwide, and tropomyosin (Tm is the predominant allergic protein in shellfish. Probiotics has been appreciated for its beneficial effects on the host, including anti-allergic and anti-inflammatory effects, although the underlying mechanisms were not fully understood. In this study, oral administration of probiotic strain Bifidobacterium infantis 14.518 (Binf effectively suppressed Tm-induced allergic response in a mouse model by both preventive and therapeutic strategies. Further results showed that Binf stimulated dendritic cells (DCs maturation and CD103+ tolerogenic DCs accumulation in gut-associated lymphoid tissue, which subsequently induced regulatory T cells differentiation for suppressing Th2-biased response. We also found that Binf regulates the alterations of gut microbiota composition. Specifically, the increase of Dorea and decrease of Ralstonia is highly correlated with Th2/Treg ratio and may contribute to alleviating Tm-induced allergic responses. Our findings provide molecular insight into the application of Binf in alleviating food allergy and even gut immune homeostasis.

  10. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  11. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    Science.gov (United States)

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  12. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  13. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Masaaki Nakayama

    2017-11-01

    Full Text Available Porphyromonas gingivalis (P. gingivalis is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR, also called HGP15, has the function of induction of interleukin-8 (IL-8 expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

  14. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  15. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  16. Effects of Ascorbic Acid on Garlic-induced Alterations in Semen ...

    African Journals Online (AJOL)

    Effects of Ascorbic Acid on Garlic-induced Alterations in Semen Parameters Of Wistar Rats. GO Omotoso, IO Onanuga, AAG Jimoh. Abstract. No Abstract. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/tjhc.v18i2.69616 · AJOL African Journals ...

  17. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  18. Mistletoe infection alters the transpiration flow path and suppresses water regulation of host trees during extreme events

    Science.gov (United States)

    Griebel, A.; Maier, C.; Barton, C. V.; Metzen, D.; Renchon, A.; Boer, M. M.; Pendall, E.

    2017-12-01

    Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water stress and potentially accelerate mortality rates of infected trees during extreme events. This is an emerging problem in Australia, as mistletoe distribution is increasing and clear links between mistletoe infection and mortality have been established. However, direct observations about how mistletoes alter host physiological processes during extreme events are rare, which impedes our understanding of mechanisms underlying increased tree mortality rates. We addressed this gap by continuously monitoring stem and branch sap flow and a range of leaf traits of infected and uninfected trees of two co-occurring eucalypt species during a severe heatwave in south-eastern Australia. We demonstrate that mistletoes' leaf water potentials were maintained 30% lower than hosts' to redirect the trees' transpiration flow path towards mistletoe leaves. Eucalypt leaves reduced water loss through stomatal regulation when atmospheric dryness exceeded 2 kPa, but the magnitude of stomatal regulation in non-infected eucalypts differed by species (between 40-80%). Remarkably, when infected, sap flow rates of stems and branches of both eucalypt species remained unregulated even under extreme atmospheric dryness (>8 kPa). Our observations indicate that excessive water use of mistletoes likely increases xylem cavitation rates in hosts during prolonged droughts and supports that hydraulic failure contributes to increased mortality of infected trees. Hence, in order to accurately model the contribution of biotic disturbances to tree mortality under a changing climate, it will be crucial to increase our process-based understanding of the interaction

  19. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    Science.gov (United States)

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  20. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    Directory of Open Access Journals (Sweden)

    Philip Klepeisz

    Full Text Available Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs have concentrated on alterations induced in hepatocytes (HCs. A potential role of non-parenchymal liver cells (NPCs in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  1. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    International Nuclear Information System (INIS)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes

  2. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark [Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Stachler, Elyse N.; Bibby, Kyle J. [Department of Civil and Environmental Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 (United States); Stolz, Donna B. [Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 (United States); Shiva, Sruti [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh 15261 (United States); Vascular Medicine Institute, University of Pittsburgh, Pittsburgh 15261 (United States); Wang, Zeneng; Hazen, Stanley L. [Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 (United States); Barchowsky, Aaron, E-mail: aab20@pitt.edu [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh 15261 (United States); Vascular Medicine Institute, University of Pittsburgh, Pittsburgh 15261 (United States); Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219 (United States); Stolz, John F. [Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282 (United States)

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes

  3. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema.

    Directory of Open Access Journals (Sweden)

    Ulf Gehrmann

    Full Text Available BACKGROUND: Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE. Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. OBJECTIVE: To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. METHODS: Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. RESULTS: We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. CONCLUSIONS: Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for

  4. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  5. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  6. An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato.

    Science.gov (United States)

    Albert, Markus; Belastegui-Macadam, Xana; Kaldenhoff, Ralf

    2006-11-01

    Dodder or Cuscutaceae are holoparasitic plants subsisting on other dicotyledonous plants. The infection process is initiated by adherence of Cuscuta prehaustoria to the host surface, followed by penetration attempts by hyphae. In the case of a successful infection, these organs connect the parasite's vascular tissue to that of the host. Here we show that contact of Cuscuta reflexa prehaustoria to tomato induces the expression of a new arabinogalactan protein (AGP), attAGP, in the tomato precisely at the site of dodder attack. We show that attAGP is a plasma membrane-bound cell wall-localized protein. Using the RNAi technique and attAGP-targeted virus-induced gene silencing, we observed a correlation between attAGP expression level and force of attachment of the parasite to host tomatoes. If the expression level of attAGP was reduced, the C. reflexa attachment capability was significantly reduced, too. We conclude that C. reflexa infection induced a signal in the host leading to expression of tomato attAGP, which promotes the parasite's adherence.

  7. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  8. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  9. Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration.

    Science.gov (United States)

    Lee, Su Jin; Park, Jeen Woo; Kang, Beom Sik; Lee, Dong-Seok; Lee, Hyun-Shik; Choi, Sooyoung; Kwon, Oh-Shin

    2017-06-01

    Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and 14-3-3ζ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to 14-3-3ζ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling. [BMB Reports 2017; 50(6): 335-340].

  10. IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy.

    Directory of Open Access Journals (Sweden)

    Munir A Al-Zeer

    Full Text Available Chlamydial infection of the host cell induces Gamma interferon (IFNgamma, a central immunoprotector for humans and mice. The primary defense against Chlamydia infection in the mouse involves the IFNgamma-inducible family of IRG proteins; however, the precise mechanisms mediating the pathogen's elimination are unknown. In this study, we identify Irga6 as an important resistance factor against C. trachomatis, but not C. muridarum, infection in IFNgamma-stimulated mouse embryonic fibroblasts (MEFs. We show that Irga6, Irgd, Irgm2 and Irgm3 accumulate at bacterial inclusions in MEFs upon stimulation with IFNgamma, whereas Irgb6 colocalized in the presence or absence of the cytokine. This accumulation triggers a rerouting of bacterial inclusions to autophagosomes that subsequently fuse to lysosomes for elimination. Autophagy-deficient Atg5-/- MEFs and lysosomal acidification impaired cells surrender to infection. Irgm2, Irgm3 and Irgd still localize to inclusions in IFNgamma-induced Atg5-/- cells, but Irga6 localization is disrupted indicating its pivotal role in pathogen resistance. Irga6-deficient (Irga6-/- MEFs, in which chlamydial growth is enhanced, do not respond to IFNgamma even though Irgb6, Irgd, Irgm2 and Irgm3 still localize to inclusions. Taken together, we identify Irga6 as a necessary factor in conferring host resistance by remodelling a classically nonfusogenic intracellular pathogen to stimulate fusion with autophagosomes, thereby rerouting the intruder to the lysosomal compartment for destruction.

  11. Helminth parasites alter protection against Plasmodium infection.

    Science.gov (United States)

    Salazar-Castañon, Víctor H; Legorreta-Herrera, Martha; Rodriguez-Sosa, Miriam

    2014-01-01

    More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.

  12. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism.

    Science.gov (United States)

    Prodam, F; Gasco, V; Caputo, M; Zavattaro, M; Pagano, L; Marzullo, P; Belcastro, S; Busti, A; Perino, C; Grottoli, S; Ghigo, E; Aimaretti, G

    2013-08-01

    Hypopituitarism is associated with metabolic alterations but in TBI-induced hypopituitarism data are scanty. The aim of our study was to evaluate the prevalence of naïve hypertension, dyslipidemia, and altered glucose metabolism in TBI-induced hypopituitarism patients. Cross-sectional retrospective study in a tertiary care endocrinology center. 54 adult patients encountering a moderate or severe TBI were evaluated in the chronic phase (at least 12 months after injury) after-trauma. Presence of hypopituitarism, BMI, hypertension, fasting blood glucose and insulin levels, oral glucose tolerance test (if available) and a lipid profile were evaluated. The 27.8% of patients showed various degrees of hypopituitarism. In particular, 9.3% had total, 7.4% multiple and 11.1% isolated hypopituitarism. GHD was present in 22.2% of patients. BMI was similar between the two groups. Hypopituitaric patients presented a higher prevalence of dyslipidemia (phypopituitaric patients. In particular, triglycerides (phypopituitaric TBI patients. We showed that long-lasting TBI patients who develop hypopituitarism frequently present metabolic alterations, in particular altered glucose levels, insulin resistance and hypertriglyceridemia. In view of the risk of premature cardiovascular death in hypopituitaric patients, major attention has to been paid in those who encountered a TBI, because they suffer from the same comorbidities and may present other deterioration factors due to complex pharmacological treatments and restriction in participation in life activities and healthy lifestyle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Insect Gallers and Their Plant Hosts: From Omics Data to Systems Biology

    Directory of Open Access Journals (Sweden)

    Caryn N. Oates

    2016-11-01

    Full Text Available Gall-inducing insects are capable of exerting a high level of control over their hosts’ cellular machinery to the extent that the plant’s development, metabolism, chemistry, and physiology are all altered in favour of the insect. Many gallers are devastating pests in global agriculture and the limited understanding of their relationship with their hosts prevents the development of robust management strategies. Omics technologies are proving to be important tools in elucidating the mechanisms involved in the interaction as they facilitate analysis of plant hosts and insect effectors for which little or no prior knowledge exists. In this review, we examine the mechanisms behind insect gall development using evidence from omics-level approaches. The secretion of effector proteins and induced phytohormonal imbalances are highlighted as likely mechanisms involved in gall development. However, understanding how these components function within the system is far from complete and a number of questions need to be answered before this information can be used in the development of strategies to engineer or breed plants with enhanced resistance.

  14. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    International Nuclear Information System (INIS)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1983-01-01

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD

  15. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    Science.gov (United States)

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  16. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  17. Characteristics of a Low-Sulfidation Epithermal Deposit in the River Reef Zone and the Watuputih Hill, the Poboya Gold Prospect, Central Sulawesi, Indonesia: Host Rocks and Hydrothermal Alteration

    Directory of Open Access Journals (Sweden)

    Syafrizal

    2017-07-01

    Full Text Available Systematic exploration has delineated significant gold mineralization in the River Reef Zone and the presence of a siliceous body at Watuputih Hill, which is a Poboya gold prospect in Central Sulawesi, Indonesia. The mineralization is hosted within the Palu Metamorphic Complex. The host rocks consist of granite, biotite gneiss, and biotite schist, which is intercalated by feldspar porphyroblastic biotite schist and amphibolitic schist. The X-ray fluorescence (XRF analysis of the granite and biotite gneiss suggests that the granitic rocks can be characterized as magnesian arc calc-alkaline rocks, with a weakly peraluminous composition. Alteration minerals were analyzed by a combination of petrographic and X-ray diffraction (XRD. In the River Reef Zone, the hydrothermal alteration zones can be sorted by their proximity to the primary fluid conduit and divided into inner, high-T, and low-T propylitic zones. In Watuputih Hill, the hydrothermal alteration can be divided into advanced argillic and argillic zones. The hydrothermal alteration assemblages indicated that the fluid was at a near-neutral pH in the River Reef Zone, whereas the fluid was acidic within Watuputih Hill. Because the hill is relatively distant from the River Reef Zone, the presence of these zones at Watuputih Hill may be indicative of another mineralization system beneath the hill.

  18. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis.

    Science.gov (United States)

    Brown, Marishka K; Chan, May T; Zimmerman, John E; Pack, Allan I; Jackson, Nicholas E; Naidoo, Nirinjini

    2014-06-01

    Alterations in the quality, quantity, and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response. The effectiveness of the adaptive unfolded protein response is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of X-box binding protein 1 and upregulation of phosphorylated elongation initiation factor 2 α, in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged or sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep or sleep debt discharge. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.

  20. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents

    CSIR Research Space (South Africa)

    Mhlongo, MI

    2016-10-01

    Full Text Available tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid...

  1. Manipulation of the Host Cell Membrane during Plasmodium Liver Stage Egress

    Directory of Open Access Journals (Sweden)

    Paul-Christian Burda

    2017-04-01

    Full Text Available A crucial step in the life cycle of Plasmodium parasites is the transition from the liver stage to the blood stage. Hepatocyte-derived merozoites reach the blood vessels of the liver inside host cell-derived vesicles called merosomes. The molecular basis of merosome formation is only partially understood. Here we show that Plasmodium berghei liver stage merozoites, upon rupture of the parasitophorous vacuole membrane, destabilize the host cell membrane (HCM and induce separation of the host cell actin cytoskeleton from the HCM. At the same time, the phospholipid and protein composition of the HCM appears to be substantially altered. This includes the loss of a phosphatidylinositol 4,5-bisphosphate (PIP2 reporter and the PIP2-dependent actin-plasma membrane linker ezrin from the HCM. Furthermore, transmembrane domain-containing proteins and palmitoylated and myristoylated proteins, as well as glycosylphosphatidylinositol-anchored proteins, lose their HCM localization. Collectively, these findings provide an explanation of HCM destabilization during Plasmodium liver stage egress and thereby contribute to our understanding of the molecular mechanisms that lead to merosome formation.

  2. Prevention of shockwave induced functional and morphological alterations: an overview.

    Science.gov (United States)

    Sarica, Kemal; Yencilek, Faruk

    2008-03-01

    Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.

  3. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    Science.gov (United States)

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  5. Herbicide injury induces DNA methylome alterations in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gunjune Kim

    2017-07-01

    Full Text Available The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.

  6. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    Science.gov (United States)

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months

  7. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus via range expansion of Asclepias host plants.

    Directory of Open Access Journals (Sweden)

    Nathan P Lemoine

    Full Text Available Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp. host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in

  8. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  9. The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII.

    Science.gov (United States)

    Zheng, Shuangshuang; Eierhoff, Thorsten; Aigal, Sahaja; Brandel, Annette; Thuenauer, Roland; de Bentzmann, Sophie; Imberty, Anne; Römer, Winfried

    2017-07-01

    The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkII Y221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to Crk Y221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkII Y221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Alteration of host-pathogen interactions in the wake of climate change - Increasing risk for shellfish associated infections?

    Science.gov (United States)

    Hernroth, Bodil E; Baden, Susanne P

    2018-02-01

    The potential for climate-related spread of infectious diseases through marine systems has been highlighted in several reports. With this review we want to draw attention to less recognized mechanisms behind vector-borne transmission pathways to humans. We have focused on how the immune systems of edible marine shellfish, the blue mussels and Norway lobsters, are affected by climate related environmental stressors. Future ocean acidification (OA) and warming due to climate change constitute a gradually increasing persistent stress with negative trade-off for many organisms. In addition, the stress of recurrent hypoxia, inducing high levels of bioavailable manganese (Mn) is likely to increase in line with climate change. We summarized that OA, hypoxia and elevated levels of Mn did have an overall negative effect on immunity, in some cases also with synergistic effects. On the other hand, moderate increase in temperature seems to have a stimulating effect on antimicrobial activity and may in a future warming scenario counteract the negative effects. However, rising sea surface temperature and climate events causing high land run-off promote the abundance of naturally occurring pathogenic Vibrio and will in addition, bring enteric pathogens which are circulating in society into coastal waters. Moreover, the observed impairments of the immune defense enhance the persistence and occurrence of pathogens in shellfish. This may increase the risk for direct transmission of pathogens to consumers. It is thus essential that in the wake of climate change, sanitary control of coastal waters and seafood must recognize and adapt to the expected alteration of host-pathogen interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  12. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  13. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria.

    Science.gov (United States)

    Simonsen, Anna K; Han, Shery; Rekret, Phil; Rentschler, Christine S; Heath, Katy D; Stinchcombe, John R

    2015-01-01

    Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia), a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community, either directly

  14. Short-term fertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria

    Directory of Open Access Journals (Sweden)

    Anna K. Simonsen

    2015-10-01

    Full Text Available Fertilizer application is a common anthropogenic alteration to terrestrial systems. Increased nutrient input can impact soil microbial diversity or function directly through altered soil environments, or indirectly through plant-microbe feedbacks, with potentially important effects on ecologically-important plant-associated mutualists. We investigated the impacts of plant fertilizer, containing all common macro and micronutrients on symbiotic nitrogen-fixing bacteria (rhizobia, a group of bacteria that are important for plant productivity and ecosystem function. We collected rhizobia nodule isolates from natural field soil that was treated with slow-release plant fertilizer over a single growing season and compared phenotypic traits related to free-living growth and host partner quality in these isolates to those of rhizobia from unfertilized soils. Through a series of single inoculation assays in controlled glasshouse conditions, we found that isolates from fertilized field soil provided legume hosts with higher mutualistic benefits. Through growth assays on media containing variable plant fertilizer concentrations, we found that plant fertilizer was generally beneficial for rhizobia growth. Rhizobia isolated from fertilized field soil had higher growth rates in the presence of plant fertilizer compared to isolates from unfertilized field soil, indicating that plant fertilizer application favoured rhizobia isolates with higher abilities to utilize fertilizer for free-living growth. We found a positive correlation between growth responses to fertilizer and mutualism benefits among isolates from fertilized field soil, demonstrating that variable plant fertilizer induces context-dependent genetic correlations, potentially changing the evolutionary trajectory of either trait through increased trait dependencies. Our study shows that short-term application is sufficient to alter the composition of rhizobia isolates in the population or community

  15. Beneficial effects of cytokine induced hyperlipidemia.

    Science.gov (United States)

    Feingold, K R; Hardardóttir, I; Grunfeld, C

    1998-01-01

    Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and

  16. An Endoparasitoid Avoids Hyperparasitism by Manipulating Immobile Host Herbivore to Modify Host Plant Morphology

    Science.gov (United States)

    Fujii, Tomohisa; Matsuo, Kazunori; Abe, Yoshihisa; Yukawa, Junichi; Tokuda, Makoto

    2014-01-01

    Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant's development to avoid hyperparasitism by thickening galls. PMID:25033216

  17. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  18. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  19. Cryptosporidium parvum-induced ileo-caecal adenocarcinoma and Wnt signaling in a mouse model

    Directory of Open Access Journals (Sweden)

    Sadia Benamrouz

    2014-06-01

    Full Text Available Cryptosporidium species are apicomplexan protozoans that are found worldwide. These parasites constitute a large risk to human and animal health. They cause self-limited diarrhea in immunocompetent hosts and a life-threatening disease in immunocompromised hosts. Interestingly, Cryptosporidium parvum has been related to digestive carcinogenesis in humans. Consistent with a potential tumorigenic role of this parasite, in an original reproducible animal model of chronic cryptosporidiosis based on dexamethasone-treated or untreated adult SCID mice, we formerly reported that C. parvum (strains of animal and human origin is able to induce digestive adenocarcinoma even in infections induced with very low inoculum. The aim of this study was to further characterize this animal model and to explore metabolic pathways potentially involved in the development of C. parvum-induced ileo-caecal oncogenesis. We searched for alterations in genes or proteins commonly involved in cell cycle, differentiation or cell migration, such as β-catenin, Apc, E-cadherin, Kras and p53. After infection of animals with C. parvum we demonstrated immunohistochemical abnormal localization of Wnt signaling pathway components and p53. Mutations in the selected loci of studied genes were not found after high-throughput sequencing. Furthermore, alterations in the ultrastructure of adherens junctions of the ileo-caecal neoplastic epithelia of C. parvum-infected mice were recorded using transmission electron microscopy. In conclusion, we found for the first time that the Wnt signaling pathway, and particularly the cytoskeleton network, seems to be pivotal for the development of the C. parvum-induced neoplastic process and cell migration of transformed cells. Furthermore, this model is a valuable tool in understanding the host-pathogen interactions associated with the intricate infection process of this parasite, which is able to modulate host cytoskeleton activities and several host

  20. Histological and Physiological Alterations Induced by Thermal Neutron Fluxes in Male Swiss Albino Mice

    International Nuclear Information System (INIS)

    Alzergy, A.A.; Emara, N.M.; Abd El-Latif, A.A.; El-Saady, S.M.M.; Emara, N.M.; Abd El-Latif, A.A.

    2010-01-01

    This work was performed to investigate the biological effects of different thermal neutron fluxes (0.27x10 8 , 0.52X10 8 , 1.089X10 8 , 2.16X10 8 and 4.32X10 8 ) on liver and kidney of male mice using neutron irradiation cell with Ra-Be(α,n) 3 mCi neutron source Leybold (55930). Exposed to various fluxes of thermal neutron induced a dramatic alterations in hepatic and renal functions as indicated by biochemical estimation of several parameters (bilirubin, SGT, and alkaline phosphate .Urea , total protein, and albumin) and confirmed by histological examinations Thermal neutron exposure induces marked increase in the serum activities of total bilirubin, alanine amino transaminase (ALT or GPT), and alkaline phosphate, whereas, urea, total protein and albumin showed marked decline as compared to control group. The physiological changes induced in thermal neutron fluxes dependent manner. Histopathological results revealed mild to severe type of necrosis, and degenerative changes in liver and kidney of male mice exposed to thermal neutron fluxes. Also it was found that the histopathological alterations induced in thermal neutron fluxes dependent manner. It was found that exposed to thermal neutron fluxes irradiation plays prominent role in the development of the physiological alterations in male Swiss albino mice. The Former up normalities as a result of the sequence events followed interaction of radiation with the former biological mater (liver and kidney) of male Swiss albino mice, which are, physical, physicochemical, chemical, and biological stages.

  1. Host-Induced Silencing of Two Pharyngeal Gland Genes Conferred Transcriptional Alteration of Cell Wall-Modifying Enzymes of Meloidogyne incognita vis-à-vis Perturbed Nematode Infectivity in Eggplant.

    Science.gov (United States)

    Shivakumara, Tagginahalli N; Chaudhary, Sonam; Kamaraju, Divya; Dutta, Tushar K; Papolu, Pradeep K; Banakar, Prakash; Sreevathsa, Rohini; Singh, Bhupinder; Manjaiah, K M; Rao, Uma

    2017-01-01

    The complex parasitic strategy of Meloidogyne incognita appears to involve simultaneous expression of its pharyngeal gland-specific effector genes in order to colonize the host plants. Research reports related to effector crosstalk in phytonematodes for successful parasitism of the host tissue is yet underexplored. In view of this, we have used in planta effector screening approach to understand the possible interaction of pioneer genes ( msp-18 and msp-20 , putatively involved in late and early stage of M. incognita parasitism, respectively) with other unrelated effectors such as cell-wall modifying enzymes (CWMEs) in M. incognita . Host-induced gene silencing (HIGS) strategy was used to generate the transgenic eggplants expressing msp-18 and msp-20 , independently. Putative transformants were characterized via qRT-PCR and Southern hybridization assay. SiRNAs specific to msp-18 and msp - 20 were also detected in the transformants via Northern hybridization assay. Transgenic expression of the RNAi constructs of msp-18 and msp-20 genes resulted in 43.64-69.68% and 41.74-67.30% reduction in M. incognita multiplication encompassing 6 and 10 events, respectively. Additionally, transcriptional oscillation of CWMEs documented in the penetrating and developing nematodes suggested the possible interaction among CWMEs and pioneer genes. The rapid assimilation of plant-derived carbon by invading nematodes was also demonstrated using 14 C isotope probing approach. Our data suggests that HIGS of msp-18 and msp-20 , improves nematode resistance in eggplant by affecting the steady-state transcription level of CWME genes in invading nematodes, and safeguard the plant against nematode invasion at very early stage because nematodes may become the recipient of bioactive RNA species during the process of penetration into the plant root.

  2. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    International Nuclear Information System (INIS)

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-01-01

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV (∼ 5 log) and VSV (∼ 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells

  3. Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns

    Science.gov (United States)

    Ajarem, Jamaan S.; Al-Basher, Gadh; Allam, Ahmed A.

    2017-01-01

    Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns. PMID:28588748

  4. Parvovirus induced alterations in nuclear architecture and dynamics.

    Directory of Open Access Journals (Sweden)

    Teemu O Ihalainen

    2009-06-01

    Full Text Available The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analysis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications.

  5. Ursodeoxycholic acid alleviates cholestasis-induced histophysiological alterations in the male reproductive system of bile duct-ligated rats.

    Science.gov (United States)

    Saad, Ramadan A; Mahmoud, Yomna I

    2014-12-01

    Ursodeoxycholic acid is the most widely used drug for treating cholestatic liver diseases. However, its effect on the male reproductive system alterations associated with cholestasis has never been studied. Thus, this study aimed to investigate the effect of ursodeoxycholic acid on cholestasis-induced alterations in the male reproductive system. Cholestasis was induced by bile duct ligation. Bile duct-ligated rats had higher cholestasis biomarkers and lower levels of testosterone, LH and FSH than did the Sham rats. They also had lower reproductive organs weights, and lower sperm motility, density and normal morphology than those of Sham rats. Histologically, these animals suffered from testicular tubular atrophy, interstitial edema, thickening of basement membranes, vacuolation, and depletion of germ cells. After ursodeoxycholic acid administration, cholestasis-induced structural and functional alterations were significantly ameliorated. In conclusion, ursodeoxycholic acid can ameliorate the reproductive complications of chronic cholestasis in male patients, which represents an additional benefit to this drug. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis

    Science.gov (United States)

    Moya-Pérez, Angela; Luczynski, Pauline; Renes, Ingrid B.; Wang, Shugui; Borre, Yuliya; Anthony Ryan, C.; Knol, Jan; Stanton, Catherine; Dinan, Timothy G.

    2017-01-01

    Microbial colonization of the gastrointestinal tract is an essential process that modulates host physiology and immunity. Recently, researchers have begun to understand how and when these microorganisms colonize the gut and the early-life factors that impact their natural ecological establishment. The vertical transmission of maternal microbes to the offspring is a critical factor for host immune and metabolic development. Increasing evidence also points to a role in the wiring of the gut-brain axis. This process may be altered by various factors such as mode of delivery, gestational age at birth, the use of antibiotics in early life, infant feeding, and hygiene practices. In fact, these early exposures that impact the intestinal microbiota have been associated with the development of diseases such as obesity, type 1 diabetes, asthma, allergies, and even neurodevelopmental disorders. The present review summarizes the impact of cesarean birth on the gut microbiome and the health status of the developing infant and discusses possible preventative and restorative strategies to compensate for early-life microbial perturbations. PMID:28379454

  7. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  8. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp

    NARCIS (Netherlands)

    Rijk, de Marjolein; Yang, Daowei; Engel, Bastiaan; Dicke, Marcel; Poelman, Erik H.

    2016-01-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait-and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs)

  10. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    Science.gov (United States)

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-02-20

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  12. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  13. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome.

    Science.gov (United States)

    van der Meer-Janssen, Ynske P M; van Galen, Josse; Batenburg, Joseph J; Helms, J Bernd

    2010-01-01

    Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host-pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

  14. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  15. Localization of pellicle-induced open contacts using Charge-Induced Voltage Alteration

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.; Soden, J.M.

    1993-08-01

    The recently developed Charge-Induced Voltage Alteration (CIVA) technique for localizing open metal conductors was used successfully to identify transistors with electrically open metal-1 contacts to silicon. The transistors were in the I/O port circuitry of a failing microcontroller and were completely covered by a metal-2 power bus. The root cause of the open contacts was a subtle scratch in the pellicle over the contact reticle. The scratch prevented full exposure of the photoresist, resulting in incomplete removal of the interlevel oxide in several contact windows. In addition to this powerful new application of CIVA, a number of failure analysis techniques utilizing both the electrical and physical properties of the failing microcontrollers were employed to identify and confirm the open contacts. These techniques are reviewed and recommendations are given for improved pellicle/reticle inspection.

  16. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  17. Assessing Pseudomonas virulence with a nonmammalian host: Drosophila melanogaster.

    Science.gov (United States)

    Haller, Samantha; Limmer, Stefanie; Ferrandon, Dominique

    2014-01-01

    Drosophila melanogaster flies represent an interesting model to study host-pathogen interactions as: (1) they are cheap and easy to raise rapidly and do not bring up ethical issues, (2) available genetic tools are highly sophisticated, for instance allowing tissue-specific alteration of gene expression, e.g., of immune genes, (3) they have a relatively complex organization, with distinct digestive tract and body cavity in which local or systemic infections, respectively, take place, (4) a medium throughput can be achieved in genetic screens, for instance looking for Pseudomonas aeruginosa mutants with altered virulence. We present here the techniques used to investigate host-pathogen relationships, namely the two major models of infections as well as the relevant parameters used to monitor the infection (survival, bacterial titer, induction of host immune response).

  18. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  19. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  20. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    Science.gov (United States)

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae.

    Directory of Open Access Journals (Sweden)

    Johan Panek

    Full Text Available Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi and 8 days post-infection (dpi. A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras and reduction of the translation activity (EIF3 confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.

  2. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    Science.gov (United States)

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  3. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Directory of Open Access Journals (Sweden)

    José B Gama

    2014-08-01

    Full Text Available Buruli ulcer (BU is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1 and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1. In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  4. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen.

    Science.gov (United States)

    Gama, José B; Ohlmeier, Steffen; Martins, Teresa G; Fraga, Alexandra G; Sampaio-Marques, Belém; Carvalho, Maria A; Proença, Fernanda; Silva, Manuel T; Pedrosa, Jorge; Ludovico, Paula

    2014-08-01

    Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The tissue damage characteristic of BU lesions is known to be driven by the secretion of the potent lipidic exotoxin mycolactone. However, the molecular action of mycolactone on host cell biology mediating cytopathogenesis is not fully understood. Here we applied two-dimensional electrophoresis (2-DE) to identify the mechanisms of mycolactone's cellular action in the L929 mouse fibroblast proteome. This revealed 20 changed spots corresponding to 18 proteins which were clustered mainly into cytoskeleton-related proteins (Dync1i2, Cfl1, Crmp2, Actg1, Stmn1) and collagen biosynthesis enzymes (Plod1, Plod3, P4ha1). In line with cytoskeleton conformational disarrangements that are observed by immunofluorescence, we found several regulators and constituents of both actin- and tubulin-cytoskeleton affected upon exposure to the toxin, providing a novel molecular basis for the effect of mycolactone. Consistent with these cytoskeleton-related alterations, accumulation of autophagosomes as well as an increased protein ubiquitination were observed in mycolactone-treated cells. In vivo analyses in a BU mouse model revealed mycolactone-dependent structural changes in collagen upon infection with M. ulcerans, associated with the reduction of dermal collagen content, which is in line with our proteomic finding of mycolactone-induced down-regulation of several collagen biosynthesis enzymes. Our results unveil the mechanisms of mycolactone-induced molecular cytopathogenesis on exposed host cells, with the toxin compromising cell structure and homeostasis by inducing cytoskeleton alterations, as well as disrupting tissue structure, by impairing the extracellular matrix biosynthesis.

  5. Structural alterations in rat liver proteins due to streptozotocin-induced diabetes and the recovery effect of selenium: Fourier transform infrared microspectroscopy and neural network study

    Science.gov (United States)

    Bozkurt, Ozlem; Haman Bayari, Sevgi; Severcan, Mete; Krafft, Christoph; Popp, Jürgen; Severcan, Feride

    2012-07-01

    The relation between protein structural alterations and tissue dysfunction is a major concern as protein fibrillation and/or aggregation due to structural alterations has been reported in many disease states. In the current study, Fourier transform infrared microspectroscopic imaging has been used to investigate diabetes-induced changes on protein secondary structure and macromolecular content in streptozotocin-induced diabetic rat liver. Protein secondary structural alterations were predicted using neural network approach utilizing the amide I region. Moreover, the role of selenium in the recovery of diabetes-induced alterations on macromolecular content and protein secondary structure was also studied. The results revealed that diabetes induced a decrease in lipid to protein and glycogen to protein ratios in diabetic livers. Significant alterations in protein secondary structure were observed with a decrease in α-helical and an increase in β-sheet content. Both doses of selenium restored diabetes-induced changes in lipid to protein and glycogen to protein ratios. However, low-dose selenium supplementation was not sufficient to recover the effects of diabetes on protein secondary structure, while a higher dose of selenium fully restored diabetes-induced alterations in protein structure.

  6. Hydrothermal alteration styles in ancient and modern orogenic gold deposits, New Zealand

    International Nuclear Information System (INIS)

    Craw, D.; Upton, P.; MacKenzie, D.J.

    2009-01-01

    Orogenic hydrothermal systems in the South Island of New Zealand were active during Mesozoic and late Cenozoic collisional deformation and metamorphism of greywacke/schist terranes. Observations on the currently active mountain-building environment yield insights on processes occurring in the upper 5-15 km of the crust, and observations on an adjacent lithologically identical exhumed ancient mountain belt provide information on processes at 10-20 km in the crust. Hydrothermal fluids were mainly derived from metamorphic dehydration reactions and/or circulating topographically driven meteoric water in these mountain belts. Three geochemically and mineralogically different types of hydrothermal alteration and vein mineralisation occurred in these orogenic belts, and gold enrichment (locally economic) occurred in some examples of each of these three types. The first type of alteration involved fluids that were in or near chemical equilibrium with their greenschist facies host rocks. Fluid flow was controlled by discontinuous fractures, and by microshears and grain boundaries in host rocks, in zones from metres to hundreds of metres thick. Vein and alteration mineralogy was similar to that of the host rocks, and included calcite and chlorite. The second type of alteration occurred where the fluids were in distinct disequilibrium with the host rocks. Fracture permeability was important for fluid flow, but abundant host rock alteration occurred as well. The alteration zones were characterised by decomposition of chlorite and replacement by ankeritic carbonate in zones up to tens of metres thick. The mineralising fluid was deep-sourced and initially rock-equilibrated, with some meteoric input. The third type of mineralisation was controlled almost exclusively by fracture permeability, and host rock alteration was minor (centimetre scale). This mineralisation type commonly involved calcite and chlorite as vein and alteration minerals, and mineralisation fluids had a major

  7. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  8. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity

    International Nuclear Information System (INIS)

    Upchurch, R.G.; Walker, D.C.; Rollins, J.A.; Ehrenshaft, M.; Daub, M.E.

    1991-01-01

    The authors have obtained spontaneous and UV-induced stable mutants, altered in the synthesis of cercosporin, of the fungal soybean pathogen Cercospora kikuchii. The mutants were isolated on the basis of colony color on minimal medium. The UV-induced mutants accumulated, at most, 2% of wild-type cercosporin levels on all media tested. In contrast, cercosporin accumulation by the spontaneous mutants was strongly medium regulated, occurring only on potato dextrose medium but at concentrations comparable to those produced by the wild-type strain. UV-induced mutants unable to synthesize cercosporin on any medium were unable to incite lesions when inoculated onto the soybean host. Cercosporin was reproducibly isolated from all inoculated leaves showing lesions. Although cercosporin involvement in disease has been indirectly suggested by many previous studies, this is the first report in which mutants blocked in cercosporin synthesis have been used to demonstrate that cercosporin is a crucial pathogenicity factor for this fungal genus

  9. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)], e-mail: psouza@cnen.gov.br, e-mail: jodinilson@cnen.gov.br; Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  10. Analysis of unstable chromosome alterations frequency induced by neutron-gamma mixed field radiation

    International Nuclear Information System (INIS)

    Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Vale, Carlos H.F.P.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2009-01-01

    Nowadays monitoring chromosome alterations in peripheral blood lymphocytes have been used to access the radiation absorbed dose in individuals exposed accidental or occupationally to gamma radiation. However there are not many studies based on the effects of mixed field neutron-gamma. The radiobiology of neutrons has great importance because in nuclear factories worldwide there are several hundred thousand individuals monitored as potentially receiving doses of neutron. In this paper it was observed the frequencies of unstable chromosome alterations induced by a gamma-neutron mixed field. Blood was obtained from one healthy donor and exposed to mixed field neutron-gamma sources 241 AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphases were analyzed for the presence of chromosome alterations by two experienced scorers. The results suggest that there is the possibility of a directly proportional relationship between absorbed dose of neutron-gamma mixed field radiation and the frequency of unstable chromosome alterations analyzed in this paper. (author)

  11. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  12. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Directory of Open Access Journals (Sweden)

    Quynh T Phan

    2007-03-01

    Full Text Available Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  13. Induced defences alter the strength and direction of natural selection on reproductive traits in common milkweed.

    Science.gov (United States)

    Thompson, K A; Cory, K A; Johnson, M T J

    2017-06-01

    Evolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defences can alter natural selection on reproductive traits, but it is unclear whether induced defences will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca L., we induced plant defences using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), whereas control plants only experienced a trend towards selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defences can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defences may promote the evolution of plant reproductive diversity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA

    KAUST Repository

    Mangiavacchi, Arianna; Sorci, Melissa; Masciarelli, Silvia; Larivera, Simone; Legnini, Ivano; Iosue, Ilaria; Bozzoni, Irene; Fazi, Francesco; Fatica, Alessandro

    2016-01-01

    Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non

  15. Oilseed cultivars developed from induced mutations and mutations altering fatty acid composition

    International Nuclear Information System (INIS)

    Bhatia, C.R.; Nichterlein, K.; Maluszynski, M.

    1999-01-01

    One hundred and sixty-three cultivars of annual oilseed crops, developed using induced mutations, have been officially approved and released for cultivation in 26 countries. The maximum number of cultivars have been released in soybean (58), followed by groundnut (44), sesame (16), linseed (15), rapeseed (14), Indian mustard (8), castorbean (4), white mustard (3) and sunflower (1). The majority (118 of 163) of the cultivars have been developed as direct mutants and 45 of 163 by using the induced mutants in a crossing programme. While in soybean 53 out of 58 cultivars were selected as direct mutants, in groundnut 22 from 44 were developed after hybridization. Eighty-three cultivars were developed directly by exposing seeds to gamma or X-rays. Attempts have been made to infer the successful dose range, defined as the range which led to the development, registration and release of the maximum number of mutant cultivars for gamma and X-rays. The successful dose ranges in Gy for the main oilseed crops are: soybean 100-200, groundnut 150-250, rapeseed 600-800, Indian mustard 700 and sesame 100-200. The main characteristics of the new cultivars, besides higher yield, are altered plant type, early flowering and maturity and oil content. Mutants altering fatty acid composition have been isolated in soybean, rapeseed, sunflower, linseed and minor oil crops. New cultivars having altered fatty acid composition have been released in rapeseed, sunflower and linseed. The latter, previously grown for non-edible oil, has been converted to a new edible oil crop. (author)

  16. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  17. Renal alterations in feline immunodeficiency virus (FIV)-infected cats: a natural model of lentivirus-induced renal disease changes.

    Science.gov (United States)

    Poli, Alessandro; Tozon, Natasa; Guidi, Grazia; Pistello, Mauro

    2012-09-01

    Human immunodeficiency virus (HIV) is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV) share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.

  18. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2017-06-01

    Full Text Available Plant–parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida, Heterodera glycines, Heterodera avenae and Heterodera filipjevi, in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines. Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  19. The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant.

    Science.gov (United States)

    Zhang, Li; Lilley, Catherine J; Imren, Mustafa; Knox, J Paul; Urwin, Peter E

    2017-01-01

    Plant-parasitic cyst nematodes induce the formation of specialized feeding structures, syncytia, within their host roots. These unique plant organs serve as the sole nutrient resource for development and reproduction throughout the biotrophic interaction. The multinucleate syncytium, which arises through local dissolution of cell walls and protoplast fusion of multiple adjacent cells, has dense cytoplasm containing numerous organelles, surrounded by thickened outer cell walls that must withstand high turgor pressure. However, little is known about how the constituents of the syncytial cell wall and their conformation support its role during nematode parasitism. We used a set of monoclonal antibodies, targeted to a range of plant cell wall components, to reveal the microstructures of syncytial cell walls induced by four of the most economically important cyst nematode species, Globodera pallida , Heterodera glycines , Heterodera avenae and Heterodera filipjevi , in their respective potato, soybean, and spring wheat host roots. In situ fluorescence analysis revealed highly similar cell wall composition of syncytia induced by G. pallida and H. glycines . Both consisted of abundant xyloglucan, methyl-esterified homogalacturonan and pectic arabinan. In contrast, the walls of syncytia induced in wheat roots by H. avenae and H. filipjevi contain little xyloglucan but are rich in feruloylated xylan and arabinan residues, with variable levels of mixed-linkage glucan. The overall chemical composition of syncytial cell walls reflected the general features of root cell walls of the different host plants. We relate specific components of syncytial cell walls, such as abundant arabinan, methyl-esterification status of pectic homogalacturonan and feruloylation of xylan, to their potential roles in forming a network to support both the strength and flexibility required for syncytium function.

  20. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  1. Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae.

    Directory of Open Access Journals (Sweden)

    Hongsheng Pan

    Full Text Available In herbivorous insects, host plant switching is commonly observed and plays an important role in their annual life cycle. However, much remains to be learned about seasonal host switching of various pestiferous arthropods under natural conditions. From 2006 until 2012, we assessed Apolygus lucorum (Meyer-Dür host plant use in successive spring, summer and winter seasons at one single location (Langfang, China. Data were used to quantify changes in host plant breadth and host fidelity between seasons. Host fidelity of A. lucorum differed between seasons, with 87.9% of spring hosts also used in the summer and 36.1% of summer hosts used in winter. In contrast, as little as 25.6% host plant species were shared between winter and spring. Annual herbaceous plants are most often used for overwintering, while perennial woody plants are relatively important for initial population build-up in the spring. Our study contributes to an improved understanding of evolutionary interactions between A. lucorum and its host plants and lays the groundwork for the design of population management strategies for this important pest in myriad crops.

  2. Brucella abortus Induces a Warburg Shift in Host Metabolism That Is Linked to Enhanced Intracellular Survival of the Pathogen.

    Science.gov (United States)

    Czyż, Daniel M; Willett, Jonathan W; Crosson, Sean

    2017-08-01

    Intracellular bacterial pathogens exploit host cell resources to replicate and survive inside the host. Targeting these host systems is one promising approach to developing novel antimicrobials to treat intracellular infections. We show that human macrophage-like cells infected with Brucella abortus undergo a metabolic shift characterized by attenuated tricarboxylic acid cycle metabolism, reduced amino acid consumption, altered mitochondrial localization, and increased lactate production. This shift to an aerobic glycolytic state resembles the Warburg effect, a change in energy production that is well described in cancer cells and also occurs in activated inflammatory cells. B. abortus efficiently uses lactic acid as its sole carbon and energy source and requires the ability to metabolize lactate for normal survival in human macrophage-like cells. We demonstrate that chemical inhibitors of host glycolysis and lactate production do not affect in vitro growth of B. abortus in axenic culture but decrease its survival in the intracellular niche. Our data support a model in which infection shifts host metabolism to a Warburg-like state, and B. abortus uses this change in metabolism to promote intracellular survival. Pharmacological perturbation of these features of host cell metabolism may be a useful strategy to inhibit infection by intracellular pathogens. IMPORTANCE Brucella spp. are intracellular bacterial pathogens that cause disease in a range of mammals, including livestock. Transmission from livestock to humans is common and can lead to chronic human disease. Human macrophage-like cells infected with Brucella abortus undergo a Warburg-like metabolic shift to an aerobic glycolytic state where the host cells produce lactic acid and have reduced amino acid catabolism. We provide evidence that the pathogen can exploit this change in host metabolism to support growth and survival in the intracellular niche. Drugs that inhibit this shift in host cell metabolism

  3. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    Science.gov (United States)

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  6. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome

    Directory of Open Access Journals (Sweden)

    Imourana Alassane-Kpembi

    2018-05-01

    Full Text Available Type B trichothecene mycotoxin deoxynivalenol (DON is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae, have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE was observed after treatment by yeast only. By contrast, 3619 probes—corresponding to 2771 genes—were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes. Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  8. Saccharomyces cerevisiae Boulardii Reduces the Deoxynivalenol-Induced Alteration of the Intestinal Transcriptome.

    Science.gov (United States)

    Alassane-Kpembi, Imourana; Pinton, Philippe; Hupé, Jean-François; Neves, Manon; Lippi, Yannick; Combes, Sylvie; Castex, Mathieu; Oswald, Isabelle P

    2018-05-15

    Type B trichothecene mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. By inducing trans-activation of a number of pro-inflammatory cytokines and increasing the stability of their mRNA, trichothecene can impair intestinal health. Several yeast products, especially Saccharomyces cerevisiae , have the potential for improving the enteric health of piglets, but little is known about the mechanisms by which the administration of yeast counteracts the DON-induced intestinal alterations. Using a pig jejunum explant model, a whole-transcriptome analysis was performed to decipher the early response of the small intestine to the deleterious effects of DON after administration of S. cerevisiae boulardii strain CNCM I-1079. Compared to the control condition, no differentially expressed gene (DE) was observed after treatment by yeast only. By contrast, 3619 probes-corresponding to 2771 genes-were differentially expressed following exposure to DON, and 32 signaling pathways were identified from the IPA software functional analysis of the set of DE genes. When the intestinal explants were treated with S. cerevisiae boulardii prior to DON exposure, the number of DE genes decreased by half (1718 probes corresponding to 1384 genes). Prototypical inflammation signaling pathways triggered by DON, including NF-κB and p38 MAPK, were reversed, although the yeast demonstrated limited efficacy toward some other pathways. S. cerevisiae boulardii also restored the lipid metabolism signaling pathway, and reversed the down-regulation of the antioxidant action of vitamin C signaling pathway. The latter effect could reduce the burden of DON-induced oxidative stress. Altogether, the results show that S. cerevisiae boulardii reduces the DON-induced alteration of intestinal transcriptome, and point to new mechanisms for the healing of tissue injury by yeast.

  9. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  10. Microbial manipulation of host sex determination

    NARCIS (Netherlands)

    Beukeboom, Leo W.

    A recent study in the lepidopteran Ostrinia scapulalis shows that endosymbionts can actively manipulate the sex determination mechanism of their host. Wolbachia bacteria alter the sex-specific splicing of the doublesex master switch gene. In ZZ males of this female heterogametic system, the female

  11. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  12. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    Science.gov (United States)

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  13. Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Roggenbuck, Michael; Al-Shuweli, Suzan

    2017-01-01

    Background SP-D is an important host defense lectin in innate immunity and SP-D deficient mice show several abnormal immune effects and are susceptible to allergen-induced airway disease. At the same time, host microbiome interactions play an important role in the development of allergic airway...... disease, and alterations to gut microbiota have been linked to airway disease through the gut-lung axis. Currently, it is unknown if the genotype (Sftpd-/- or Sftpd+/+) of the standard SP-D mouse model can affect the host microbiota to such an degree that it would overcome the cohousing effect...... on microbiota and interfere with the interpretation of immunological data from the model. Generally, little is known about the effect of the SP-D protein in itself and in combination with airway disease on the microbiota. In this study, we tested the hypothesis that microbiome composition would change...

  14. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    Science.gov (United States)

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Transcriptional Alterations of Virulence-Associated Genes in Extended Spectrum Beta-Lactamase (ESBL-Producing Uropathogenic Escherichia coli during Morphologic Transitions Induced by Ineffective Antibiotics

    Directory of Open Access Journals (Sweden)

    Isak Demirel

    2017-06-01

    Full Text Available It is known that an ineffective antibiotic treatment can induce morphological shifts in uropathogenic Escherichia coli (UPEC but the virulence properties during these shifts remain to be studied. The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL-producing UPEC (ESBL019 during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. Microarray results showed that the different morphological states of ESBL019 had significant transcriptional alterations of a large number of genes (Transition; 7%, Filamentation; 32%, and Reverted 19% of the entities on the array. All three morphological states of ESBL019 were associated with a decreased energy metabolism, altered iron acquisition systems and altered adhesion expression. In addition, genes associated with LPS synthesis and bacterial motility was also altered in all the morphological states. Furthermore, the transition state induced a significantly higher release of TNF-α from bladder epithelial cells compared to all other morphologies, while the reverted state was unable to induce TNF-α release. Our findings show that the morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.

  16. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes.

    Directory of Open Access Journals (Sweden)

    Miguel A Saldaña

    2017-07-01

    Full Text Available Zika virus (ZIKV, a flavivirus transmitted primarily by Aedes aegypti, has recently spread globally in an unprecedented fashion, yet we have a poor understanding of host-microbe interactions in this system. To gain insights into the interplay between ZIKV and the mosquito, we sequenced the small RNA profiles in ZIKV-infected and non-infected Ae. aegypti mosquitoes at 2, 7 and 14 days post-infection. ZIKA induced an RNAi response in the mosquito with virus-derived short interfering RNAs and PIWI-interacting RNAs dramatically increased in abundance post-infection. Further, we found 17 host microRNAs (miRNAs that were modulated by ZIKV infection at all time points. Strikingly, many of these regulated miRNAs have been reported to have their expression altered by dengue and West Nile viruses, while the response was divergent from that induced by the alphavirus Chikungunya virus in mosquitoes. This suggests that conserved miRNA responses occur within mosquitoes in response to flavivirus infection. This study expands our understanding of ZIKV-vector interactions and provides potential avenues to be further investigated to target ZIKV in the mosquito host.

  17. Renal Alterations in Feline Immunodeficiency Virus (FIV-Infected Cats: A Natural Model of Lentivirus-Induced Renal Disease Changes

    Directory of Open Access Journals (Sweden)

    Mauro Pistello

    2012-08-01

    Full Text Available Human immunodeficiency virus (HIV is associated with several renal syndromes including acute and chronic renal failures, but the underlying pathogenic mechanisms are unclear. HIV and feline immunodeficiency virus (FIV share numerous biological and pathological features, including renal alterations. We investigated and compared the morphological changes of renal tissue of 51 experimentally and 21 naturally infected cats. Compared to the latter, the experimentally infected cats exhibited some mesangial widening and glomerulonephritis, milder proteinuria, and lower tubular and interstitial alterations. The numbers of giant protein tubular casts and tubular microcysts were also lower. In contrast, diffuse interstitial infiltrates and glomerular and interstitial amyloidosis were detected only in naturally infected cats. Similar alterations are found in HIV infected patients, thus supporting the idea of a causative role of FIV infection in renal disease, and underlining the relevance of the FIV and its natural host as an animal model for investigating lentivirus-associated nephropathy.

  18. Quantification of the host response proteome after mammalian reovirus T1L infection.

    Directory of Open Access Journals (Sweden)

    Alicia R Berard

    Full Text Available All viruses are dependent upon host cells for replication. Infection can induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays to measure the cellular "transcriptome." We used SILAC (stable isotope labeling by amino acids in cell culture, combined with high-throughput 2-D HPLC/mass spectrometry, to determine relative quantitative differences in host proteins at 6 and 24 hours after infecting HEK293 cells with reovirus serotype 1 Lang (T1L. 3,076 host proteins were detected at 6 hpi, of which 132 and 68 proteins were significantly up or down regulated, respectively. 2,992 cellular proteins, of which 104 and 49 were up or down regulated, respectively, were identified at 24 hpi. IPA and DAVID analyses indicated proteins involved in cell death, cell growth factors, oxygen transport, cell structure organization and inflammatory defense response to virus were up-regulated, whereas proteins involved in apoptosis, isomerase activity, and metabolism were down-regulated. These proteins and pathways may be suitable targets for intervention to either attenuate virus infection or enhance oncolytic potential.

  19. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  20. Exploitation of the host cell ubiquitin machinery by microbial effector proteins.

    Science.gov (United States)

    Lin, Yi-Han; Machner, Matthias P

    2017-06-15

    Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu ( J. Cell Sci. 130 , 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  1. Demodex canis targets TLRs to evade host immunity and induce canine demodicosis.

    Science.gov (United States)

    Kumari, P; Nigam, R; Choudhury, S; Singh, S K; Yadav, B; Kumar, D; Garg, S K

    2018-03-01

    Widespread incidence of Demodex mites throughout the mammalian class and occasional serious and fatal outcomes in dogs warrant an insight into the host-parasite interface especially. Therefore, this study was aimed to unravel the interplay between innate immune response and canine demodicosis. The dogs diagnosed to have natural clinical demodicosis were allocated into two groups; dogs with localized demodicosis (LD) and with generalized demodicosis (GD). The expression of toll-like receptors (TLRs) 2, 4 and 6 genes in peripheral blood mononuclear cells of these dogs was quantified by real-time PCR. Significantly increased TLR2 gene expression, while significantly diminished TLR4 and TLR6 gene expressions were observed in demodicosed dogs (LD and GD) as compared with the healthy ones. Even the expression of TLR2 gene was found to differ significantly between the dogs with LD and GD. Therefore, it can be inferred that clinical demodicosis in dogs is coupled with an up-regulation of TLR2 and down-regulation of TLR4 and TLR6 gene expressions. Overexpression of TLR2 gene might be responsible for Demodex-induced clinical manifestations, while TLR4 and TLR6 gene down-regulations could be the paramount strategy of Demodex mites to elude the host-immune interface. © 2017 John Wiley & Sons Ltd.

  2. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  3. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice

    International Nuclear Information System (INIS)

    Patterson, Rachel; Vega, Libia; Trouba, Kevin; Bortner, Carl; Germolec, Dori

    2004-01-01

    Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity

  4. Antivenom reversal of biochemical alterations induced by black scorpion Heterometrus fastigiousus Couzijn venom in mice

    Directory of Open Access Journals (Sweden)

    MK Chaubey

    2009-01-01

    Full Text Available In the present study, Heterometrus fastigiousus venom (HFV was employed as antigen to produce species-specific scorpion antivenom (SAV in albino mice (NIH strain. To determine SAV efficacy, it was pre-incubated with 10 LD50 of HFV and then injected subcutaneously into mice. Subsequently, mortality was observed after 24 hours. Minimum effective dose (MED was 12.5 LD50 of HFV/mL of SAV. SAV effectiveness to reverse HFV-induced biochemical alterations in mice was analyzed by challenge method. Simultaneously, mice received subcutaneously 40% of 24-hour-LD50 of HFV and intravenously SAV. After four hours, changes in serum glucose, free amino acids, uric acids, pyruvic acid, cholesterol, total protein, alkaline phosphatase, acid phosphatase, lactic dehydrogenase and glutamate-pyruvate transaminase enzyme level were determined. Treatment with species-specific SAV resulted in the reversal of HFV-induced biochemical alterations.

  5. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism.

    Science.gov (United States)

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-06-01

    Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.

  6. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  7. alpha-Phenyl-N-tert-butyl nitrone attenuates methamphetamine-induced depletion of striatal dopamine without altering hyperthermia.

    Science.gov (United States)

    Cappon, G D; Broening, H W; Pu, C; Morford, L; Vorhees, C V

    1996-10-01

    Methamphetamine (MA) administration to adult rats (4 x 10 mg/kg s.c.) induces neurotoxicity predominately characterized by a persistent reduction of neostriatal dopamine (DA) content. Hyperthermia following MA administration potentiates the resulting DA depletion. DA-derived free radicals are postulated to be a mechanism through which MA-induced neurotoxicity is produced. The spin trapping agent PBN reacts with free radicals to form nitroxyl adducts, thereby preventing damaging free radical reactions with cellular substrates. MA with saline pretreatment (Sal-MA) reduced neostriatal DA by 55% (P protection. PBN pretreatment did not alter MA-induced hyperthermia. Thus, PBN does not attenuate MA-induced neurotoxicity by reducing MA-induced hyperthermia. These results support a role for free radicals in the generation of MA-induced dopaminergic neurotoxicity.

  8. Probiotics protect mice from CoCrMo particles-induced osteolysis

    Directory of Open Access Journals (Sweden)

    Wang Z

    2017-07-01

    Full Text Available Zhenheng Wang,* Kaiwen Xue,* Maosheng Bai, Zhantao Deng, Jingjing Gan, Gang Zhou, Hongbo Qian,* Nirong Bao, Jianning Zhao Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China *These authors contributed equally to this work Abstract: Wear particle-induced inflammatory osteolysis is the primary cause of aseptic loosening, which is the most common reason for total hip arthroplasty (THA failure in the med- and long term. Recent studies have suggested an important role of gut microbiota (GM in modulating the host metabolism and immune system, leading to alterations in bone mass. Probiotic bacteria administered in adequate amounts can alter the composition of GM and confer health benefits to the host. Given the inflammatory osteolysis that occurs in wear debris-induced prosthesis loosening, we examined whether the probiotic Lactobacillus casei could reduce osteolysis in a mouse calvarial resorption model. In this study, L. casei markedly protected mice from CoCrMo particles (CoPs-induced osteolysis. Osteoclast gene markers and the number of osteoclasts were significantly decreased in L. casei-treated mice. Probiotic treatment decreased the M1-like macrophage phenotype indicated by downregulation of tumor necrosis factor α (TNF-α, interleukin (IL-6 and inducible nitric oxide synthase (iNOS and increased the M2-like macrophage phenotype indicated by upregulation of IL-4, IL-10 and arginase. Collectively, these results indicated that the L. casei treatment modulated the immune status and suppressed wear particle-induced osteolysis in vivo. Thus, probiotic treatment may represent a potential preventive and therapeutic approach to reduced wear debris-induced osteolysis. Keywords: wear particles, gut microbiota, nanotoxicity, macrophage polarization, inflammatory cytokines, aseptic loosening

  9. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    Science.gov (United States)

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  10. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    Science.gov (United States)

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  12. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  13. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  14. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  15. Worms at war: interspecific parasite competition and host resources alter trematode colony structure and fitness.

    Science.gov (United States)

    Mouritsen, Kim N; Andersen, Cecillie

    2017-09-01

    Parasites competing over limited host resources are faced with a tradeoff between reproductive success and host overexploitation jeopardizing survival. Surprisingly little is known about the outcome of such competitive scenarios, and we therefore aimed at elucidating interactions between the trematodes Himasthla elongata and Renicola roscovita coinfecting the periwinkle first intermediate host. The results show that the success of Himasthla colonies (rediae) in terms of cercarial emission is unaffected by Renicola competition (sporocysts), whereas deteriating host condition decreases fitness. Furthermore, double infection has no bearing on Himasthla's colony size but elevated the proportion of non-reproductive rediae that play a decisive role in colony defence. Opposite, the development of the Renicola colony (size/maturity), and in turn fitness, is markedly reduced in presence of Himasthla, whereas the nutritional state of the host appears less important. Hence, the intramolluscan competition between Himasthla and Renicola is asymmetrical, Himasthla being the superior competitor. Himasthla not only adjusts its virulence according to the hosts immediate nutritional state, it also nullifies the negative impact of a heterospecific competitor on own fitness. The latter is argued to follow in part from direct predation on the competitor, for which purpose more defensive non-reproductive rediae are strategically produced.

  16. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  17. Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

    Directory of Open Access Journals (Sweden)

    Carlos Guerrero-Bosagna

    Full Text Available Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell that influences the onset of a specific disease (male infertility. A gestating female rat (F0 generation was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell epigenome and transcriptome that correlates with adult onset disease (male infertility. The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.

  18. Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations.

    Science.gov (United States)

    Gorgulho, Rita; Jacinto, Raquel; Lopes, Susana S; Pereira, Sofia A; Tranfield, Erin M; Martins, Gabriel G; Gualda, Emilio J; Derks, Rico J E; Correia, Ana C; Steenvoorden, Evelyne; Pintado, Petra; Mayboroda, Oleg A; Monteiro, Emilia C; Morello, Judit

    2018-01-01

    Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes ("donuts", "pancakes" and "rods"), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.

  19. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).

    Science.gov (United States)

    Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-01-01

    Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.

  20. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  1. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    Directory of Open Access Journals (Sweden)

    Liliana M Cano

    Full Text Available Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments and terpenoid biosynthesis (major floral volatile compounds were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  2. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  3. Onion and garlic extracts as potential antidotes for cadmium-induced biochemical alterations in prostate glands of rats.

    Science.gov (United States)

    Ola-Mudathir, F K; Suru, S M

    2015-11-01

    Cadmium (Cd) has been implicated in increased prostate gland malignancy risk in both wildlife and humans. This study examines the chemoprotective roles of onion and garlic extracts on Cd-induced biochemical alterations in the prostate glands of rats. Adult male Wistar rats were randomly divided into nine groups: control group received double distilled water; Cd group received Cd alone (1.5 mg/100 g bwt per day); extract-treated groups were pre-treated with varied doses of onion and/or garlic extract (0.5 ml and 1.0 ml/100 g bwt per day) for 1 week and then co-treated with Cd (1.5 mg/100 g bwt per day) for additional 3 weeks. Oxidant/antioxidant status and acid phosphatase (ACPtotal and ACPprostatic ) activity were examined in prostate glands. Cd intoxication caused a marked (P garlic extract significantly minimised these alterations. The onion extract offered a dose-dependent protection. Our findings suggest a chemoprotective capability for onion and garlic extracts against Cd-induced biochemical alteration in the prostate glands. © 2014 Blackwell Verlag GmbH.

  4. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Derrick R Samuelson

    2017-06-01

    . Collectively, these results suggest that alterations in the intestinal immune response as a consequence of alcohol-induced dysbiosis contribute to increased host susceptibility to Klebsiella pneumonia.

  5. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    Science.gov (United States)

    Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P J; Liu, Daisy J X; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-06-16

    Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host metabolic changes in IBD dogs. Twenty-three dogs diagnosed with IBD and ten healthy control dogs were included. Dogs with IBD were given a clinical score using the canine chronic enteropathy clinical activity index (CCECAI). Faecal short-chain fatty acids (SCFA) and ammonia concentrations were measured and quantitative PCR was performed. The concentration of plasma amino acids, acylcarnitines, serum folate, cobalamin, and indoxyl sulfate was determined. No significant differences in the abundance of a selection of bacterial groups and fermentation metabolites were observed between the IBD and control groups. However, significant negative correlations were found between CCECAI and the faecal proportion of Lactobacillus as well as between CCECAI and total SCFA concentration. Serum folate and plasma citrulline were decreased and plasma valine was increased in IBD compared to control dogs. Increased plasma free carnitine and total acylcarnitines were observed in IBD compared with control dogs, whereas short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and, methylmalonylcarnitine) to free carnitine ratios decreased. Dogs with IBD had a higher 3-hydroxyisovalerylcarnitine + isovalerylcarnitine to leucine ratio compared to control dogs. Canine IBD induced a wide range of changes in metabolic profile, especially for the plasma concentrations of short-chain acylcarnitines and amino acids, which could have evolved from tissue damage and alteration in host metabolism. In

  6. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  7. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    Science.gov (United States)

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  8. Biofilms and host response - helpful or harmful

    DEFF Research Database (Denmark)

    Moser, Claus; Pedersen, Hannah Trøstrup; Lerche, Christian Johann

    2017-01-01

    infections can present in numerous ways, one common feature is involvement of the host response with significant impact on the course. A special characteristic is the synergy of the innate and the acquired immune responses for the induced pathology. Here, we review the impact of the host response...

  9. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Radiation-induced mouse chimeras: a cellular analysis of the major lymphoid compartments, factors affecting lethal graft versus host disease and host-tumor interactions

    International Nuclear Information System (INIS)

    Almaraz, R.

    1981-01-01

    The major lymphoid compartments of allogeneic bone marrow chimeras were evaluated for the extent of cell chimerism and distribution of Thy 1 and la bearing cells. These chimeras contained lymphoid cell primarily of donor origin. The bone marrow compartment was a mixture of host and donor origin cells. The distribution of Thy 1 and la bearing cells was similar as in normal mice. The effect of adult thymectomy alone or followed by whole-body irradiation and bone marrow reconstitution on the distribution of the Thy 1 positive cells was also investigated. Thymectomy with or without WBI and bone marrow reconstitution significantly lowered the number of Thy 1 bearing cells in the blood and spleen. The number of la bearing cells did not appear to be affected by thymectomy. The role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation induced fully allogeneic mouse chimeras was studied. Mice reconstituted with allogeneic bone marrow from bled donors had a statistically lower incidence of GVHD than those reconstituted with bone marrow from unbled donors. Addition of mature peripheral lymphocytes from blood to the reconstituting bone marrow cells from bled donors reduplicated the high incidence of lethal GVHD. It was demonstrated that the bone marrow of mice not exsanguinated prior to harvesting of bone marrow contained significant numbers of peripheral contaminating cells in the harvested bone marrow. The role of suppressor cell elimination in resisting tumor growth was investigated using radiation induced mouse chimeras. Local effects of irradiation alone at the site of tumor inoculation could account for this lack of growth

  11. Lytological characterization and hydrothermal alteration Infiernillo porphyry, provincia Mendoza, Argentina

    International Nuclear Information System (INIS)

    Gomez, A.; Rubinstein, N.; Kleiman, L.. E.mail: kleiman@cae.cnea.gov.ar

    2007-01-01

    El Infiernillo porphyry copper and Mo deposit, in southern Mendoza, Argentina is hosted by ignimbrites of the Cochico Group (lower Permian). The alteration zone consists of a small central quartz neck with appreciable hematite surrounded by an intense quartz-injected zone with local pervasive potassic alteration. Outwards, there is a well-developed phyllic halo with intense bleaching which consists of pervasive and vein-type silicification, sericitization and pyritization. In the outer part of the alteration zone, small polymetallic veins with pyrite, arsenopyrite, galena and minor, chalcopyrite, sphalerite and electrum in quartz gangue crop out. New field, petro-mineralogic and geochemical data confirmed that the host rocks are equivalent to the dacitic and rhyodacitic ignimbrites of the Toba Vieja Gorda Member (Yacimiento Los Reyunos Formation, Cochico Group)

  12. Retroviral Vectors: Post Entry Events and Genomic Alterations

    Directory of Open Access Journals (Sweden)

    Christof von Kalle

    2011-04-01

    Full Text Available The curative potential of retroviral vectors for somatic gene therapy has been demonstrated impressively in several clinical trials leading to sustained long-term correction of the underlying genetic defect. Preclinical studies and clinical monitoring of gene modified hematopoietic stem and progenitor cells in patients have shown that biologically relevant vector induced side effects, ranging from in vitro immortalization to clonal dominance and oncogenesis in vivo, accompany therapeutic efficiency of integrating retroviral gene transfer systems. Most importantly, it has been demonstrated that the genotoxic potential is not identical among all retroviral vector systems designed for clinical application. Large scale viral integration site determination has uncovered significant differences in the target site selection of retrovirus subfamilies influencing the propensity for inducing genetic alterations in the host genome. In this review we will summarize recent insights gained on the mechanisms of insertional mutagenesis based on intrinsic target site selection of different retrovirus families. We will also discuss examples of side effects occurring in ongoing human gene therapy trials and future prospectives in the field.

  13. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  14. Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons.

    Science.gov (United States)

    Pittman, Sherry K; Gracias, Neilia G; Fehrenbacher, Jill C

    2016-05-01

    Peripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  16. Sex-specific effects of a parasite evolving in a female-biased host population.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  17. Sex-specific effects of a parasite evolving in a female-biased host population

    Directory of Open Access Journals (Sweden)

    Duneau David

    2012-12-01

    Full Text Available Abstract Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration, which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  18. Sex-specific effects of a parasite evolving in a female-biased host population

    Science.gov (United States)

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  19. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  20. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  1. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    Science.gov (United States)

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation

  2. Field-induced detrapping in disordered organic semiconducting host-guest systems

    NARCIS (Netherlands)

    Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2010-01-01

    In a disordered organic semiconducting host-guest material, containing a relatively small concentration of guest molecules acting as traps, the charge transport may be viewed as resulting from carriers that are detrapped from the guest to the host. Commonly used theories include only detrapping due

  3. Alteration of human serum albumin binding properties induced by modifications: A review

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  4. Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict?

    Science.gov (United States)

    Poulin, Robert; Nichol, Katherine; Latham, A David M

    2003-04-01

    Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs. There was, in contrast, evidence of a positive interspecific association between the two most common helminth species: numbers of Profilicollis and Maritrema were positively correlated among crabs, independently of crab size, in M. hirtipes but not H. crenulatus. More importantly, we found that the total number of larval helminths per crab correlated significantly, and negatively, with concentrations of serotonin in crab brains, again only in M. hirtipes; numbers of each parasite species separately did not covary in either crab species with serotonin or dopamine, the

  5. Effects of Thy-1+ cell depletion on the capacity of donor lymphoid cells to induce tolerance across an entire MHC disparity in sublethally irradiated adult hosts

    International Nuclear Information System (INIS)

    Pierce, G.E.; Watts, L.M.

    1989-01-01

    Thy-1+ cell depletion with anti-Thy-1.2 mAb and complement markedly reduced the capacity of C57BL/6J, H-2b bone marrow to establish mixed lymphoid chimerism and induce tolerance to C57BL/6J skin grafts across an entire MHC disparity in BALB/c, H-2d hosts conditioned with sublethal, fractionated 7.5 Gy total-body irradiation. In this model tolerance can be transferred to secondary irradiated BALB/c hosts only by cells of C57BL/6J donor, not host, genotype isolated from the spleens of tolerant hosts. Thy-1+ cell depletion abolished the capacity of C57BL/6J donor cells from tolerant BALB/c host spleens to transfer tolerance. The capacity of semiallogeneic BALB/c x C57BL/6J F1, H-2d/b donor BM and spleen cells to induce chimerism and tolerance to C57BL/6J skin grafts in BALB/c parental hosts was also reduced by Thy-1+ cell depletion. Thus the requirement for donor Thy-1+ cells cannot be explained simply on the basis of alloaggression. It is unlikely that the requisite Thy-1+ cells are nonspecific suppressor cells: Thy-1+ cell depletion had no effect on the slight but significant prolongation of third-party C3H/HeJ, H-2k skin grafts in irradiated BALB/c hosts injected with allogeneic C57BL/6J or semiallogeneic BALB/c x C57BL/6J F1 BM compared to irradiated controls injected with medium only. Furthermore, injections of semiallogeneic F1 spleen cells had no significant effect on the survival of the third-party grafts, although these cells were fully capable of inducing tolerance, and their capacity to induce tolerance was significantly reduced by Thy-1+ cell depletion. The requirement for a specific population of lymphoid cells, i.e. Thy-1+, remains unexplained but suggests that donor cells might play a role in the induction or maintenance of tolerance in this model other than merely providing a circulating source of donor antigens

  6. Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi.

    Directory of Open Access Journals (Sweden)

    Chia-Fong Wei

    Full Text Available A new pathogen, Pseudomonas syringae pv. averrhoi (Pav, which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta, glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns contributed to induce the PAMP-triggered immunity (PTI. Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction.

  7. Plant Innate Immunity Induced by Flagellin Suppresses the Hypersensitive Response in Non-Host Plants Elicited by Pseudomonas syringae pv. averrhoi

    Science.gov (United States)

    Wei, Chia-Fong; Hsu, Shih-Tien; Deng, Wen-Ling; Wen, Yu-Der; Huang, Hsiou-Chen

    2012-01-01

    A new pathogen, Pseudomonas syringae pv. averrhoi (Pav), which causes bacterial spot disease on carambola was identified in Taiwan in 1997. Many strains of this pathovar have been isolated from different locations and several varieties of hosts. Some of these strains, such as HL1, are nonmotile and elicit a strong hypersensitive response (HR) in nonhost tobacco leaves, while other strains, such as PA5, are motile and elicit a weak HR. Based on the image from a transmission electron microscope, the results showed that HL1 is flagellum-deficient and PA5 has normal flagella. Here we cloned and analyzed the fliC gene and glycosylation island from Pav HL1 and PA5. The amino acid sequences of FliC from HL1 and PA5 are identical to P. s. pvs. tabaci (Pta), glycinea and phaseolicola and share very high similarity with other pathovars of P. syringae. In contrast to the flagellin mutant PtaΔfliC, PA5ΔfliC grows as well as wild type in the host plant, but it elicits stronger HR than wild type does in non-host plants. Furthermore, the purified Pav flagellin, but not the divergent flagellin from Agrobacterium tumefaciens, is able to impair the HR induced by PA5ΔfliC. PA5Δfgt1 possessing nonglycosylated flagella behaved as its wild type in both bacterial growth in host and HR elicitation. Flagellin was infiltrated into tobacco leaves either simultaneously with flagellum-deficient HL1 or prior to the inoculation of wild type HL1, and both treatments impaired the HR induced by HL1. Moreover, the HR elicited by PA5 and PA5ΔfliC was enhanced by the addition of cycloheximide, suggesting that the flagellin is one of the PAMPs (pathogen-associated molecular patterns) contributed to induce the PAMP-triggered immunity (PTI). Taken together, the results shown in this study reveal that flagellin in Pav is capable of suppressing HR via PTI induction during an incompatible interaction. PMID:22911741

  8. Multiple-stage diagenetic alteration and fluid history of Ordovician carbonate-hosted barite mineralization, Southern Quebec Appalachians

    Science.gov (United States)

    Paradis, Suzanne; Lavoie, Denis

    1996-12-01

    Lower Ordovician bioclastic limestone of the Upton Group, southern Quebec Appalachians, hosts stratabound Ba-Zn-Pb mineralization. The Upton Group, a mixed platform carbonate-siliciclastic-volcanic succession, is exposed as windows within the tectonically overlying Cambrian siliciclastics of the Granby Nappe. Mineralization consists mostly of barite and minor amounts of sulfides (sphalerite, pyrite, galena, and chalcopyrite), in addition to calcite, quartz and bitumen cements. It is hosted by a bioclastic limestone which is interbedded with and capped by a black calcareous shale, and underlain by a mudstone-siltstone-volcanic succession and a lower poorly fossiliferous limestone. The lower limestone recorded early extensive dolomitization followed by meteoric alteration (dedolomitization, sulphate dissolution, vadose cements, soil pisoids, etc.), and burial diagenesis (recrystallization, fracturation, and cementation). The vadose gravitational calcite cements yield δ 18O PDB values of -8.4 to -11.0‰ andδ 13C PDB values of +2.4 to +2.8‰. The thin soil profiles with pisoids have a δ 18O PDB value of -8.2‰ and a δ 13C PDB value of +2.0‰. These data suggest an evaporative 18O-enrichment of near-surface trapped soil moisture (vadose water) in a rock-dominated diagenetic system. The recrystallized limestone hasδ 18O PDB values of -11.4 to -15.5‰ and near Early Ordovician marine δ 13C PDB values of -0.2 to +2.5‰. These data suggest a final stabilization of the limestone from high temperature fluids in a rock-dominated diagenetic system. The mineralized bioclastic limestone shows rare evidence of early submarine cementation which is overprinted by significant post-depositional recrystallization and hydrothermal alteration. The latter resulted in the generation of secondary porosity and precipitation of a subhedral barite cement, a bladed barite cement, and fracture-filling barite. Fracture- and void-filling calcite, sulfides, quartz and bitumen

  9. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  10. Subtle effect of Xenos vesparum (Xenidae, Strepsiptera) on the reproductive apparatus of its male host: Parasite or parasitoid?

    Science.gov (United States)

    Beani, L; Marchini, D; Cappa, F; Petrocelli, I; Gottardo, M; Manfredini, F; Giusti, F; Dallai, R

    2017-08-01

    Parasitic castration is an adaptive strategy where parasites usurp the hosts' reproductive physiology to complete their life cycle. The alterations in the host traits vary in their magnitude, from subtle changes in the host morpho-physiology and behaviour to the production of complex aberrant phenotypes, which often depend on the host gender. The strepsipteran macroparasite Xenos vesparum induces dramatic behavioural and physiological changes in its female host, the paper wasp Polistes dominula, while its effect on the male phenotype is largely unknown. In this study we investigated how a single X. vesparum parasite influences the functional morphology of P. dominula male reproductive apparatus. We performed morphometry and ultrastructure characterization of corpora allata, testes, seminal vesicles and accessory glands in parasitized and unparasitized males, and also in young and old males to control for the effect of age on the natural deterioration of these organs. Our results show that age significantly affects the development of male reproductive apparatus. A low parasite load - one parasite per host is the common prevalence in the field - has only a marginal impact on the reproductive morphology of P. dominula males, affecting quantitatively but not qualitatively the protein content of male accessory glands. Thus, in male P. dominula wasps, X. vesparum appears to behave as a true "parasite", in clear opposition to the role of "parasitoid" that it takes in female hosts where castration causes the reproductive death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis

    Science.gov (United States)

    Johnston, Paul R.; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  12. Molecular mechanisms of induced mutagenesis. Replication in vivo of bacteriophage phiX174 single-stranded, ultraviolet light-irradiated DNA in intact and irradiated host cells

    Energy Technology Data Exchange (ETDEWEB)

    Caillet-Fauquet, P; Defais, M; Radman, M [Brussels Univ. (Belgium)

    1977-11-25

    Genetic analysis has revealed that radiation and many chemical mutagens induce in bacteria an error-prone DNA repair process which is responsible for their mutagenic effect. The biochemical mechanism of this inducible error-prone repair has been studied by analysis of the first round of DNA synthesis on ultraviolet light-irradiated phiX174 DNA in both intact and ultraviolet light-irradiated host cells. Intracellular phiX174 DNA was extracted, subjected to isopycnic CsCl density-gradient analysis, hydroxylapatite chromatography and digestion by single-strand-specific endonuclease S/sub 1/. Ultraviolet light-induced photolesions in viral DNA cause a permanent blockage of DNA synthesis in intact Escherichia coli cells. However, when host cells were irradiated and incubated to induce fully the error-prone repair system, a significant fraction of irradiated phiX174 DNA molecules can be fully replicated. Thus, inducible error-prone repair in E.coli is manifested by an increased capacity for DNA synthesis on damaged phiX174 DNA. Chloramphenicol (100 ..mu.. g/ml), which is an inhibitor of the inducible error-prone DNA repair, is also an inhibitor of this particular inducible DNA synthesis.

  13. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Brief rewarming blunts hypothermia-induced alterations in sensation, motor drive and cognition

    Directory of Open Access Journals (Sweden)

    Marius Brazaitis

    2016-12-01

    hypothermia-induced alterations in neural drive transmission (4.3±0.5 versus 3.4±0.8 mV H-reflex and 4.9±0.2 versus 4.4±0.4 mV V-wave, P<0.05, which increased central fatigue during a 2-min maximum load (P<0.05. Furthermore, only in brief warm water rewarming cerebral alterations were restored to the control level and it was indicated by shortened reaction times (P<0.05.Conclusions: Brief rewarming in warm water rather than the same duration rewarming in thermoneutral environment blunted the hypothermia-induced alterations for thermoregulation, sensation, motor drive and cognition, despite the fact that rectal and deep muscle temperature remained lowered.

  15. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    Science.gov (United States)

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Qian; Yang, Deyi; Zhang, Jingshu; Wang, Fengshan; Gu, Qing

    2013-09-01

    To estimate hearing loss, neurobehavioral function, and neurotransmitter alteration induced by ethylbenzene in petrochemical workers. From two petrochemical plants, 246 and 307 workers exposed to both ethylbenzene and noise were recruited-290 workers exposed to noise only from a power station plant and 327 office personnel as control group, respectively. Hearing and neurobehavioral functions were evaluated. Serum neurotransmitters were also determined. The prevalence of hearing loss was much higher in petrochemical groups than that in power station and control groups (P workers (P hearing loss, neurobehavioral function impairment, and imbalance of neurotransmitters.

  17. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion

  18. Viroids: how to infect a host and cause disease without encoding proteins.

    Science.gov (United States)

    Navarro, Beatriz; Gisel, Andreas; Rodio, Maria-Elena; Delgado, Sonia; Flores, Ricardo; Di Serio, Francesco

    2012-07-01

    Despite being composed by a single-stranded, circular, non-protein-coding RNA of just 246-401 nucleotides (nt), viroids can incite in their host plants symptoms similar to those caused by DNA and RNA viruses, which have genomes at least 20-fold bigger and encode proteins. On the other hand, certain non-protein-coding plant satellite RNAs display structural similarities with viroids but for replication and transmission they need to parasitize specific helper viruses (modifying concomitantly the symptoms they induce). While phenotypic alterations accompanying infection by viruses may partly result from expressing the proteins they code for, how the non-protein-coding viroids (and satellite RNAs) cause disease remains a conundrum. Initial ideas on viroid pathogenesis focused on a direct interaction of the genomic RNA with host proteins resulting in their malfunction. With the advent of RNA silencing, it was alternatively proposed that symptoms could be produced by viroid-derived small RNAs (vd-sRNAs) -generated by the host defensive machinery- targeting specific host mRNA or DNA sequences for post-transcriptional or transcriptional gene silencing, respectively, a hypothesis that could also explain pathogenesis of non-protein-coding satellite RNAs. Evidence sustaining this view has been circumstantial, but recent data provide support for it in two cases: i) the yellow symptoms associated with a specific satellite RNA result from a 22-nt small RNA (derived from the 24-nt fragment of the satellite genome harboring the pathogenic determinant), which is complementary to a segment of the mRNA of the chlorophyll biosynthetic gene CHLI and targets it for cleavage by the RNA silencing machinery, and ii) two 21-nt vd-sRNAS containing the pathogenic determinant of the albino phenotype induced by a chloroplast-replicating viroid target for cleavage the mRNA coding for the chloroplastic heat-shock protein 90 via RNA silencing too. This evidence, which is compelling for the

  19. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host.

    Science.gov (United States)

    Pila, Emmanuel A; Gordy, Michelle A; Phillips, Valerie K; Kabore, Alethe L; Rudko, Sydney P; Hanington, Patrick C

    2016-05-10

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection.

  20. Effects of Walker 256 carcinoma on metabolic alterations during the evolution of pregnancy.

    Science.gov (United States)

    Cintra-Gomes, M C; Cury, L; Parreira, M R; Elias, C F; Areas, M A

    1990-01-01

    The control of pregnant cancer patients is difficult because it involves both mother and fetus, and the metabolic alterations in the cancer host induce a massive mobilization of nutrients diverted to the neoplastic cells. The purpose of the present study was to determine the evolution of the Walker 256 carcinoma in pregnant rats and its consequences on fetal development. The results showed that the tumors displayed a very rapid rate of growth and induced a reduction in fetal weights in the pregnant tumor-bearing rats. The tumor-bearing and pregnant tumor-bearing groups showed a decrease in blood glucose and total serum protein, suggesting an increase in energy utilization of these substrates and synthetic activity by the tumoral cells. An imbalance between protein synthesis and catabolism may occur in the tumor-bearing rats which may be related to the degree of nutritional depletion.

  1. Host Selection Behavior and the Fecundity of Plutella xylostella (Lepidoptera: Plutellidae) on Multiple Host Plants

    Science.gov (United States)

    Huang, Bin; Shi, Zhanghong; Hou, Youming

    2014-01-01

    Abstract Insect herbivores often have higher densities on host plants grown in monocultures than those in diverse environments. The underlying mechanisms are thought to be that polyphagous insects have difficulty in selecting food or oviposition sites when multiple host plants exist. However, this hypothesis needs to be extensively investigated. Our field experiments revealed that the population of the diamondback moths, Plutella xylostella (L.) (Lepidoptera: Plutellidae), significantly decreased in a mixed cropping field compared with a monoculture. To determine the reasons for the reduction in population in the mixed cropping field, the takeoff behavior and fecundity of females in no-choice and free-choice laboratory environments were compared by video recordings of host selection by P. xylostella . Adults displayed a significantly higher takeoff frequency in free-choice environments than those in no-choice treatments and preferred landing on Brassica campestris (L.) or Brassica juncea (Coss) plants in contrast with Brassica oleracea (L.). Female adults in the free-choice environment also laid fewer eggs compared with the monoculture. Olfaction experiments demonstrated orientation by P. xylostella to host volatiles when presented with a choice between plant odors and clean air, but females showed no preference when odors from three Brassicaceae species were presented simultaneously. We conclude that mixed cropping alters the host-finding behavior of P. xylostella resulting in reduced oviposition. PMID:25527573

  2. Salicylic acid-induced germination, biochemical and developmental alterations in rye (Secale cereale L.)

    OpenAIRE

    Yanik, Fatma; Aytürk, Özlem; Çetinbaş-Genç, Aslihan; Vardar, Filiz

    2018-01-01

    Salicylic acid (SA) is one of the endogenous plant growth regulators that modulate various metabolic and physiological events. To evaluate the exogenous SA-induced germination, biochemical and developmental alterations, different concentrations (10, 100, 500 and 1000 μM) of SA were applied to rye (Secale cereale L.) seeds in hydroponic culture conditions for 15 days. The observations revealed that seed germination and root elongation were stimulated in 10 μM SA treatment, however they were in...

  3. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain.

    Directory of Open Access Journals (Sweden)

    Katrina Weston-Green

    Full Text Available BACKGROUND/AIM: Second generation antipsychotics (SGAs are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapine-induced obesity. METHODOLOGY/RESULTS: Levels of pro-opiomelanocortin (POMC, neuropeptide Y (NPY and glutamic acid decarboxylase (GAD(65, enzyme for GABA synthesis mRNA expression, and cannabinoid CB1 receptor (CB1R binding density (using [(3H]SR-141716A were examined in the arcuate nucleus (Arc and dorsal vagal complex (DVC of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (3×/day, 14-days. Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD(65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. CONCLUSIONS: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly by altering POMC transmission. Metabolic dysfunction can be modelled in the female rat using low, clinically-comparable olanzapine doses when administered in-line with the half-life of the drug.

  4. The Ecology of Parasite-Host Interactions at Montezuma Well National Monument, Arizona - Appreciating the Importance of Parasites

    Science.gov (United States)

    O'Brien, Chris; van Riper, Charles

    2009-01-01

    Although parasites play important ecological roles through the direct interactions they have with their hosts, historically that fact has been underappreciated. Today, scientists have a growing appreciation of the scope of such impacts. Parasites have been reported to dominate food webs, alter predator-prey relationships, act as ecosystem engineers, and alter community structure. In spite of this growing awareness in the scientific community, parasites are still often neglected in the consideration of the management and conservation of resources and ecosystems. Given that at least half of the organisms on earth are probably parasitic, it should be evident that the ecological functions of parasites warrant greater attention. In this report, we explore different aspects of parasite-host relationships found at a desert spring pond within Montezuma Well National Monument, Arizona. In three separate but related chapters, we explore interactions between a novel amphipod host and two parasites. First, we identify how host behavior responds to this association and how this association affects interactions with both invertebrate non-host predators and a vertebrate host predator. Second, we look at the human dimension, investigating how human recreation can indirectly affect patterns of disease by altering patterns of vertebrate host space use. Finally - because parasites and diseases are of increasing importance in the management of wildlife species, especially those that are imperiled or of management concern - the third chapter argues that research would benefit from increased attention to the statistical analysis of wildlife disease studies. This report also explores issues of statistical parasitology, providing information that may better inform those designing research projects and analyzing data from studies of wildlife disease. In investigating the nature of parasite-host interactions, the role that relationships play in ecological communities, and how human

  5. How host regulation of Helicobacter pylori-induced gastritis protects against peptic ulcer disease and gastric cancer.

    Science.gov (United States)

    Dhar, Poshmaal; Ng, Garrett Z; Sutton, Philip

    2016-09-01

    The bacterial pathogen Helicobacter pylori is the etiological agent of a range of gastrointestinal pathologies including peptic ulcer disease and the major killer, gastric adenocarcinoma. Infection with this bacterium induces a chronic inflammatory response in the gastric mucosa (gastritis). It is this gastritis that, over decades, eventually drives the development of H. pylori-associated disease in some individuals. The majority of studies investigating H. pylori pathogenesis have focused on factors that promote disease development in infected individuals. However, an estimated 85% of those infected with H. pylori remain completely asymptomatic, despite the presence of pathogenic bacteria that drive a chronic gastritis that lasts many decades. This indicates the presence of highly effective regulatory processes in the host that, in most cases, keeps a check on inflammation and protect against disease. In this minireview we discuss such known host factors and how they prevent the development of H. pylori-associated pathologies. Copyright © 2016 the American Physiological Society.

  6. Dengue virus-induced regulation of the host cell translational machinery

    Directory of Open Access Journals (Sweden)

    C.S.A. Villas-Bôas

    2009-11-01

    Full Text Available Dengue virus (DV-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0. Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors, eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.

  7. One stimulus-Two responses: Host and parasite life-history variation in response to environmental stress.

    Science.gov (United States)

    Gleichsner, Alyssa M; Cleveland, Jessica A; Minchella, Dennis J

    2016-11-01

    Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life-history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life-history parameters in unstressed and drought-stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought-stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought-stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124.

    Science.gov (United States)

    Chang, Zhangmei; Wang, Yan; Bian, Liang; Liu, Qingqing; Long, Jian-Er

    2017-12-01

    Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (p Y705 -STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.

  9. Methods for production of proteins in host cells

    Science.gov (United States)

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  10. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  11. The trans-generational impact of population density signals on host-parasite interactions.

    Science.gov (United States)

    Michel, Jessica; Ebert, Dieter; Hall, Matthew D

    2016-11-25

    The density of a host population is a key parameter underlying disease transmission, but it also has implications for the expression of disease through its effect on host physiology. In response to higher densities, individuals are predicted to either increase their immune investment in response to the elevated risk of parasitism, or conversely to decrease their immune capacity as a consequence of the stress of a crowded environment. However, an individual's health is shaped by many different factors, including their genetic background, current environmental conditions, and maternal effects. Indeed, population density is often sensed through the presence of info-chemicals in the environment, which may influence a host's interaction with parasites, and also those of its offspring. All of which may alter the expression of disease, and potentially uncouple the presumed link between changes in host density and disease outcomes. In this study, we used the water flea Daphnia magna and its obligate bacterial parasite Pasteuria ramosa, to investigate how signals of high host density impact on host-parasite interactions over two consecutive generations. We found that the chemical signals from crowded treatments induced phenotypic changes in both the parental and offspring generations. In the absence of a pathogen, life-history changes were genotype-specific, but consistent across generations, even when the signal of density was removed. In contrast, the influence of density on infected animals depended on the trait and generation of exposure. When directly exposed to signals of high-density, host genotypes responded differently in how they minimised the severity of disease. Yet, in the subsequent generation, the influence of density was rarely genotype-specific and instead related to ability of the host to minimise the onset of infection. Our findings reveal that population level correlations between host density and infection capture only part of the complex relationship

  12. Sex-related differences in cadmium-induced alteration of drug action in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Schnell, R.C.; Pence, D.H.; Prosser, T.D.; Miya, T.S.

    1976-01-01

    Three days after pretreatment of rats of both sexes with cadmium (2 mg/kg, i.p.), the duration of hypnosis induced by hexobarbital (75 mg/kg, i.p.) was potentiated in males but not females. Likewise, similar treatment with cadmium leads to significant inhibition of the metabolism of hexobarbital by hepatic microsomal enzymes obtained from male but not female animals. These data suggest that there is a sex-related difference in the ability of cadmium to alter drug action in rats.

  13. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Cifuentes, Gladys [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad del Rosario, Bogota (Colombia); Pirajan, Camilo; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Vanegas, Magnolia [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Universidad del Rosario, Bogota (Colombia)

    2010-04-09

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  14. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    International Nuclear Information System (INIS)

    Patarroyo, Manuel E.; Cifuentes, Gladys; Pirajan, Camilo; Moreno-Vranich, Armando; Vanegas, Magnolia

    2010-01-01

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  15. The ultrastructural alterations in rat corneas with experimentally-induced diabetes mellitus

    International Nuclear Information System (INIS)

    Take, G.; Karabay, G.; Erdogan, D.; Duyar, I.

    2006-01-01

    To examine the ultrastructural changes of rat corneas in streptozotocin (STZ) induced diabetes mellitus and the and the follow-up insulin treatment. Sprague-Dawley type rats were used for experimental procedures during the period from January to April 2003 at Baskent University, Ankara, Turkey. Rats were studied in four groups: group 1: controls, group 2 sham controls (single dose IV sodium citrate); group 3 STZ-induced diabetes mellitus (Single dose 45mg/kg STZ intravenously), group 4: diabetes mellitus + insulin treatment (8U/day). We observed degenerative changes in the epithelial layer, stromal keratocytes and endothelial cells in diabetic group. In contrast, the corneal layers have revealed positive alterations in the insulin-treated group. The statistical analysis, showed significant narrowing in the epithelial layer in the diabetic group (p0.02), whereas thickening was observed in the epithelial basement membrane and Descemet's membrane (p=0.002). It was determined that that diabetes mellitus causes degenerative changes in cornea, which are positively influenced by short-term insulin treatment. (author)

  16. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    Directory of Open Access Journals (Sweden)

    Lisa Jacquin

    Full Text Available Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host, and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction, we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish. During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus, such a

  17. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  18. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation.

    Directory of Open Access Journals (Sweden)

    Mei Liu

    Full Text Available BACKGROUND: Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. METHODOLOGY/PRINCIPAL FINDINGS: S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g, showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. CONCLUSION/SIGNIFICANCE: We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.

  19. The host immunological response to cancer therapy: An emerging concept in tumor biology

    International Nuclear Information System (INIS)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval

    2013-01-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome

  20. The host immunological response to cancer therapy: An emerging concept in tumor biology

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, Tali [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel); Voest, Emile E. [Department of Medical Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel)

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.

  1. Proteomic Alterations in Response to Hypoxia Inducible Factor 2α in Normoxic Neuroblastoma Cells.

    Science.gov (United States)

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Persano, Luca; Vitale, Monica; Sassi, Mauro; Bresolin, Silvia; Serafin, Valentina; Zambrano, Nicola; Scaloni, Andrea; Basso, Giuseppe; Iolascon, Achille; Capasso, Mario

    2016-10-07

    Hypoxia inducible factor (HIF)-2α protein expression in solid tumors promotes stem-like phenotype in cancer stem cells and increases tumorigenic potential in nonstem cancer cells. Recently, we have shown that HIF-1/2α gene expression is correlated to neuroblastoma (NB) poor survival and to undifferentiated tumor state; HIF-2α protein was demonstrated to enhance aggressive features of the disease. In this study, we used proteomic experiments on NB cells to investigate HIF-2α downstream-regulated proteins or pathways with the aim of providing novel therapeutic targets or bad prognosis markers. We verified that pathways mostly altered by HIF-2α perturbation are involved in tumor progression. In particular, HIF-2α induces alteration of central metabolism and splicing control pathways. Simultaneously, WNT, RAS/MAPK, and PI3K/AKT activity or expression are affected and may impact the sensitivity and the intensity of HIF-2α-regulated pathways. Furthermore, genes coding the identified HIF-2α-related markers built a signature able to stratify NB patients with unfavorable outcome. Taken together, our findings underline the relevance of dissecting the downstream effects of a poor survival marker in developing targeted therapy and improving patient stratification. Future prospective studies are needed to translate the use of these data into the clinical practice.

  2. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  3. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data

    Science.gov (United States)

    Yousefi, Seyyed Jabber; Ranjbar, Hojjatollah; Alirezaei, Saeed; Dargahi, Sara; Lentz, David R.

    2018-06-01

    The southern section of the Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran, known as Kerman Magmatic Arc (KMA) or Kerman copper belt, is a major host to porphyry Cu ± Mo ± Au deposits, collectively known as PCDs. In this study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and spectral angle mapper (SAM) method, combined with field data, mineralogical studies, and spectral analysis are used to determine hydrothermal alteration patterns related to PCDs in the KMA. Gossans developed over some of these porphyry type deposits were mapped using Landsat 8 data. In the NKMA gossans are more developed than in the SKMA due to comparatively lower rate of erosion. The hydrothermal alteration pattern mapped by ASTER data were evaluated using mineralogical and spectral data. ASTER data proved to be useful for mapping the hydrothermal alteration in this semi-arid type of climate. Also Landsat 8 was useful for mapping the iron oxide minerals in the gossans that are associated with the porphyry copper deposits. Our multidisciplinary approach indicates that unlike the PCDs in the northern KMA that are associated with distinct and widespread propylitic alteration, those in the granitoid country rocks lack propylitic alteration or the alteration is only weakly and irregularly developed. The porphyry systems in southern KMA are further distinguished by development of quartz-rich phyllic alteration zones in the outer parts of the PCDs that could be mapped using remote sensing data. Consideration of variations in alteration patterns and specific alteration assemblages are critical in regional exploration for PCDs.

  4. Role of Rosemary leaves extract against radiation-induced hematological and biochemical alterations in mice

    Directory of Open Access Journals (Sweden)

    Acharya Garima S.

    2008-01-01

    Full Text Available The present paper is a study of the modulatory effect of Rosmarinus officinalis leaves extract on radiation-induced hematological and biochemical changes in Swiss albino mice. The dose reduction factor for the Rosemary extract against gamma rays was calculated 1.53 from LD50/30 values. The Rosemary extract was administered orally for 5 consecutive days prior to radiation exposure. The hematological and biochemical parameters were assessed from day 1 to 30 post-irradiation intervals. The total erythrocyte count, total leucocytes count, hemoglobin, and hematocrit values in the experimental group were found to be elevated as compared to the control group of mice. Furthermore, the Rosemary extract treatment enhanced reduced glutathione content in the liver and blood against radiation-induced depletion. Treatment with the plant extract brought a significant fall in the lipid peroxidation level, suggesting rosemary's role in protection against radiation-induced membrane and cellular damage. The results from the present study suggest a radio-protective effect of the Rosemary extract against radiation-induced hematological and biochemical alterations in mice.

  5. Characterization of joining sites of a viral histone H4 on host insect chromosomes.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    Full Text Available A viral histone H4 (CpBV-H4 is encoded in a polydnavirus, Cotesia plutellae bracovirus (CpBV. It plays a crucial role in parasitism of an endoparasitoid wasp, C. plutellae, against diamondback moth, Plutella xylostella, by altering host gene expression in an epigenetic mode by its N-terminal tail after joining host nucleosomes. Comparative transcriptomic analysis between parasitized and nonparasitized P. xylostella by RNA-Seq indicated that 1,858 genes were altered at more than two folds in expression levels at late parasitic stage, including 877 up-regulated genes and 981 down-regulated genes. Among parasitic factors altering host gene expression, CpBV-H4 alone explained 16.3% of these expressional changes. To characterize the joining sites of CpBV-H4 on host chromosomes, ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing was applied to chromatins extracted from parasitized larvae. It identified specific 538 ChIP targets. Joining sites were rich (60.2% in AT sequence. Almost 40% of ChIP targets included short nucleotide repeat sequences presumably recognizable by transcriptional factors and chromatin remodeling factors. To further validate these CpBV-H4 targets, CpBV-H4 was transiently expressed in nonparasitized host at late larval stage and subjected to ChIP-Seq. Two kinds of ChIP-Seqs shared 51 core joining sites. Common targets were close (within 1 kb to genes regulated at expression levels by CpBV-H4. However, other host genes not close to CpBV-H4 joining sites were also regulated by CpBV-H4. These results indicate that CpBV-H4 joins specific chromatin regions of P. xylostella and controls about one sixth of the total host genes that were regulated by C. plutellae parasitism in an epigenetic mode.

  6. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1.

    Science.gov (United States)

    Rodrigues, Elizabeth M; Scudder, Samantha L; Goo, Marisa S; Patrick, Gentry N

    2016-02-03

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. Copyright © 2016 the authors 0270-6474/16/361590-06$15.00/0.

  7. Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Li, Yao; Pang, Jing; Dong, Stephanie; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2018-05-01

    Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  8. Gut Microbiota Co-microevolution with Selection for Host Humoral Immunity

    Directory of Open Access Journals (Sweden)

    Lingyu Yang

    2017-07-01

    Full Text Available To explore coevolution between the gut microbiota and the humoral immune system of the host, we used chickens as the model organism. The host populations were two lines (HAS and LAS developed from a common founder that had undergone 40 generations of divergent selection for antibody titers to sheep red blood cells (SRBC and two relaxed sublines (HAR and LAR. Analysis revealed that microevolution of host humoral immunity contributed to the composition of gut microbiota at the taxa level. Relaxing selection enriched some microorganisms whose functions were opposite to host immunity. Particularly, Ruminococcaceae and Oscillospira enriched in high antibody relaxed (HAR and contributed to reduction in antibody response, while Lactobacillus increased in low antibody relaxed (LAR and elevated the antibody response. Microbial functional analysis showed that alterations were involved in pathways relating to the immune system and infectious diseases. Our findings demonstrated co-microevolution relationships of host-microbiota and that gut microorganisms influenced host immunity.

  9. Within- and among-family variation in parasite load and parasite-induced mortality in the land snail Arianta arbustorum, a host of parasitic mites.

    Science.gov (United States)

    Schüpbach, Hans Ulrich; Baur, Bruno

    2010-08-01

    Variation in host susceptibility and parasite-induced mortality are preconditions for parasite-related selection on host populations. In terrestrial gastropods, variation in resistance against ectoparasite infection is poorly understood. We examined the within- and among-family variation in parasite load in full-siblings of the land snail Arianta arbustorum experimentally infected with Riccardoella limacum , a mite living in the mantle cavity of helicid land snails. We also quantified the influence of family origin and host size on parasite load and calculated its heritability (h(2)). Furthermore, we examined the influence of parasite load, snail size, and family origin on host winter mortality, an important life-history trait of A. arbustorum . Parasite load was heritable (h(2) = 0.63). In infected snails, parasite load was affected by family origin and increased with increasing shell size. Host mortality during hibernation increased with increasing parasite load and differed among families, but was not affected by snail size. Our results show high among-family variation both in resistance against ectoparasite infection and in host winter mortality. Furthermore, we show that parasite load is linked to snail size, which suggests that the proliferation of R. limacum is limited by resources provided by A. arbustorum .

  10. Virus evolution in the face of the host response

    International Nuclear Information System (INIS)

    Domingo, E.

    2005-01-01

    Microbial infections are highly dynamic. Viruses have evolved two main strategies against the host response: interaction or evasion. Interaction is typical of complex DNA viruses. Their genomes encode a number of proteins that exert modulatory functions that alter the immune response of the host. Evasion strategy is used mainly by RNA viruses, and is based on high mutation rates and quasispecies dynamics. The complexity of viral populations demands research on new antiviral strategies that take into consideration the adaptive potential of viruses, in particular RNA viruses. (author)

  11. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  12. Variation in the Early Host-Pathogen Interaction of Bovine Macrophages with Divergent Mycobacterium bovis Strains in the United Kingdom.

    Science.gov (United States)

    Jensen, Kirsty; Gallagher, Iain J; Johnston, Nicholas; Welsh, Michael; Skuce, Robin; Williams, John L; Glass, Elizabeth J

    2018-03-01

    Bovine tuberculosis has been an escalating animal health issue in the United Kingdom since the 1980s, even though control policies have been in place for over 60 years. The importance of the genetics of the etiological agent, Mycobacterium bovis , in the reemergence of the disease has been largely overlooked. We compared the interaction between bovine monocyte-derived macrophages (bMDM) and two M. bovis strains, AF2122/97 and G18, representing distinct genotypes currently circulating in the United Kingdom. These M. bovis strains exhibited differences in survival and growth in bMDM. Although uptake was similar, the number of viable intracellular AF2122/97 organisms increased rapidly, while G18 growth was constrained for the first 24 h. AF2122/97 infection induced a greater transcriptional response by bMDM than G18 infection with respect to the number of differentially expressed genes and the fold changes measured. AF2122/97 infection induced more bMDM cell death, with characteristics of necrosis and apoptosis, more inflammasome activation, and a greater type I interferon response than G18. In conclusion, the two investigated M. bovis strains interact in significantly different ways with the host macrophage. In contrast to the relatively silent infection by G18, AF2122/97 induces greater signaling to attract other immune cells and induces host cell death, which may promote secondary infections of naive macrophages. These differences may affect early events in the host-pathogen interaction, including granuloma development, which could in turn alter the progression of the disease. Therefore, the potential involvement of M. bovis genotypes in the reemergence of bovine tuberculosis in the United Kingdom warrants further investigation. Copyright © 2018 Jensen et al.

  13. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wu, Y.; Liu, F.; Liu, Y.S.; Shen, L.; Lei, Y.Y.; Liu, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Qin, J. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhang, C. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Chen, L.B. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, J. [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, H., E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  14. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    International Nuclear Information System (INIS)

    Xu, D.; Wu, Y.; Liu, F.; Liu, Y.S.; Shen, L.; Lei, Y.Y.; Liu, J.; Ping, J.; Qin, J.; Zhang, C.; Chen, L.B.; Magdalou, J.; Wang, H.

    2012-01-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  15. Acidic Conditions in the NHE2-/- Mouse Intestine Result in an Altered Mucosa-Associated Bacterial Population with Changes in Mucus Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Melinda A. Engevik

    2013-12-01

    Full Text Available Background: The mechanisms bacteria use to proliferate and alter the normal bacterial composition remain unknown. The ability to link changes in the intestinal micro-environment, such as ion composition and pH, to bacterial proliferation is clinically advantageous for diseases that involve an altered gut microbiota, such as Inflammatory Bowel Disease, obesity and diabetes. In human and mouse intestine, the apical Na+/H+ exchangers NHE2 and NHE3 affect luminal Na+, water, and pH. Loss of NHE2 results in acidic luminal pH. Since acid resistance systems in gram-positive bacteria are well documented, we hypothesize that gram-positive bacteria would increase in representation in the acidic NHE2-/- intestine. Methods: Intestinal ion composition was measured by fame photometry and chloridometry and pH measured electrochemically. DNA extracted from intestinal flushes or from mucosal scrapings was analyzed by qRT-PCR to examine luminal and mucosa-associated bacterial populations. Epithelial mucus oligosaccharide patterns were examined by histology with FIT-C labeled lectins. Results: Although total luminal and mucosa-associated bacteria were unchanged in NHE2-/- intestine, gram-positive bacterial phyla were increased in the mucosa-associated bacterial population in a region-specific manner. The genera Clostridium and Lactobacillus were increased in the cecum and colon which corresponded to changes in NHE2-/- mucus oligosaccharide composition of mannose, N-acetyglucosamine, N-acetygalactosamine and galactose. Conclusions: Together these data indicate that changes in ion transport induce region-specific bacterial changes, which alter host mucus oligosaccharide patterns. These host-bacterial interactions provide a possible mechanism of niche-development and shed insight on how certain groups proliferate in changing environments and maintain their proliferation by altering the host.

  16. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats

    International Nuclear Information System (INIS)

    Picard, C.

    2000-12-01

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT 3 receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate

  17. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D

    2016-06-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. Copyright © 2016 the American Physiological Society.

  18. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  19. Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed

    2012-01-01

    Full Text Available Abstract Background Nanoparticles (NPs can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of NPs differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the particle-size effect of gold nanoparticles (GNPs on the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use. Methods To investigate particle-size effect of GNPs on the hepatic tissue, a total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly summarized as hydropic degeneration, cloudy swelling, fatty degeneration, portal and lobular infiltrate by chronic inflammatory cells and congestive dilated central veins. Conclusions The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These alterations were size-dependent with smaller ones induced the most effects and related with time exposure of GNPs. The appearance of hepatocytes cytoplasmic degeneration and nuclear destruction may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS generation which in turn may induce stress in the hepatocytes to

  20. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  1. Pmr, a histone-like protein H1 (H-NS) family protein encoded by the IncP-7 plasmid pCAR1, is a key global regulator that alters host function.

    Science.gov (United States)

    Yun, Choong-Soo; Suzuki, Chiho; Naito, Kunihiko; Takeda, Toshiharu; Takahashi, Yurika; Sai, Fumiya; Terabayashi, Tsuguno; Miyakoshi, Masatoshi; Shintani, Masaki; Nishida, Hiromi; Yamane, Hisakazu; Nojiri, Hideaki

    2010-09-01

    Histone-like protein H1 (H-NS) family proteins are nucleoid-associated proteins (NAPs) conserved among many bacterial species. The IncP-7 plasmid pCAR1 is transmissible among various Pseudomonas strains and carries a gene encoding the H-NS family protein, Pmr. Pseudomonas putida KT2440 is a host of pCAR1, which harbors five genes encoding the H-NS family proteins PP_1366 (TurA), PP_3765 (TurB), PP_0017 (TurC), PP_3693 (TurD), and PP_2947 (TurE). Quantitative reverse transcription-PCR (qRT-PCR) demonstrated that the presence of pCAR1 does not affect the transcription of these five genes and that only pmr, turA, and turB were primarily transcribed in KT2440(pCAR1). In vitro pull-down assays revealed that Pmr strongly interacted with itself and with TurA, TurB, and TurE. Transcriptome comparisons of the pmr disruptant, KT2440, and KT2440(pCAR1) strains indicated that pmr disruption had greater effects on the host transcriptome than did pCAR1 carriage. The transcriptional levels of some genes that increased with pCAR1 carriage, such as the mexEF-oprN efflux pump genes and parI, reverted with pmr disruption to levels in pCAR1-free KT2440. Transcriptional levels of putative horizontally acquired host genes were not altered by pCAR1 carriage but were altered by pmr disruption. Identification of genome-wide Pmr binding sites by ChAP-chip (chromatin affinity purification coupled with high-density tiling chip) analysis demonstrated that Pmr preferentially binds to horizontally acquired DNA regions. The Pmr binding sites overlapped well with the location of the genes differentially transcribed following pmr disruption on both the plasmid and the chromosome. Our findings indicate that Pmr is a key factor in optimizing gene transcription on pCAR1 and the host chromosome.

  2. Altered T-cell entry and egress in the absence of Coronin 1A attenuates murine acute graft versus host disease.

    Science.gov (United States)

    Fulton, LeShara M; Taylor, Nicholas A; Coghill, James M; West, Michelle L; Föger, Niko; Bear, James E; Baldwin, Albert S; Panoskaltsis-Mortari, Angela; Serody, Jonathan S

    2014-06-01

    Acute graft-versus-host disease (aGvHD) is a major limitation to the use of allogeneic stem cell transplantation for the treatment of patients with relapsed malignant disease. Previous work using animals lacking secondary lymphoid tissue (SLT) suggested that activation of donor T cells in SLT is critically important for the pathogenesis of aGvHD. However, these studies did not determine if impaired migration into, and more importantly, out of SLT, would ameliorate aGvHD. Here, we show that T cells from mice lacking Coronin 1A (Coro 1A(-/-)), an actin-associated protein shown to be important for thymocyte egress, do not mediate acute GvHD. The attenuation of aGvHD was associated with decreased expression of the critical trafficking proteins C-C chemokines receptor type 7 (CCR7) and sphingosine 1 phosphate receptor on donor T cells. This was mediated in part by impaired activation of the canonical NF-κB pathway in the absence of Coro 1A. As a result of these alterations, donor T cells from Coro 1A(-/-) mice were not able to initially traffic to SLT or exit SLT after BM transplantation. However, this alteration did not abrogate the graft-versus-leukemia response. Our data suggest that blocking T-cell migration into and out of SLT is a valid approach to prevent aGvHD. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Genetic reprogramming of host cells by bacterial pathogens.

    Science.gov (United States)

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  4. Diabetes induces metabolic alterations in dental pulp.

    Science.gov (United States)

    Leite, Mariana Ferreira; Ganzerla, Emily; Marques, Márcia Martins; Nicolau, José

    2008-10-01

    Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.

  5. Changes in host-mycorrhiza relationships revealed by stable isotopes after naturally-induced thinning of the stand: case study on Tuber aestivum.

    Science.gov (United States)

    Gavrichkova, Olga; Lauteri, Marco; Ciolfi, Marco; Chiocchini, Francesca; Paris, Pierluigi; Pisanelli, Andrea; Portarena, Silvia; Brugnoli, Enrico

    2016-04-01

    Terrestrial plants overcome nutrients and water limitations by forming mutualistic associations with mycorrhizal fungi. Fungi, in return, take advantage from the carbohydrates supplied by the host. Some mycorrhizal fruit bodies, like that of Tuber spp., have a peculiar gastronomic value with many efforts being undertaken to predict and enhance their productivity. However, many issues of truffle-producing mycorrhizal ecology are still poorly understood, in particular optimal conditions favoring fruit formation, potential host plants and host-mycorrhiza relationships. In this study, we tested the applicability of stable isotope measurements under natural abundance to identify the plants which likely host the mycorrhiza of Tuber aestivum and to characterize host-mycorrhizal nutrient, water and carbohydrate exchange under plant natural growing conditions and with the change of the forest cover after naturally occurred thinning. For these purposes, sampling of the fruit bodies of T. aestivum was performed during the growing season 2011 in a mixed broadleaved-coniferous forest in central Italy (initially the site was a manmade pine plantation). Nine truffle-producing parcels were identified with five being composed of the original Pinus pinaster -dominated vegetation and four in which pine was replaced by broadleaf species after both wind-induced thinning and natural dieback of pine trees. Seasonal variation of δ13C, δ15N and δ18O were analyzed in the fungal material, in the surrounding soil and in the plant material of the potential host species (xylem water in the trunk, branches and leaves, recently assimilated carbohydrates in phloem and leaves). The results showed a possibility of the identification of the mycorrhizal host species applying isotope analyses, with mycorrhiza receiving most part of the carbohydrates from the pine in pine-dominated parcels. Interestingly, in thinned parcels, the truffle bodies maintained isotope composition similar to bodies gathered

  6. Protective effect of Psidium guajava leaf extract on altered carbohydrate metabolism in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Khan, Haseena Banu Hedayathullah; Shanmugavalli, R; Rajendran, Deepa; Bai, Mookambikai Ramya; Sorimuthu, Subramanian

    2013-12-01

    Psidium guajava is an important plant of high medicinal value and has been used in traditional systems of medicine against various ailments. The antidiabetic effect of the ethanolic extract of Psidium guajava leaves and also its protective effect on altered glucose metabolism was evaluated in streptozotocin (stz)-induced diabetic rat model. Diabetes was induced in rats by means of intraperitoneal injection of 50-mg/kg body weight (b.wt.) of stz. Diabetes-induced rats were randomly divided into two groups. One group of rats was treated with Psidium guajava leaf extract at a dosage of 300-mg/kg b.wt. and the other group of rats was treated with the standard drug glyclazide at a dosage of 5-mg/kg b.wt. for 30 days. The blood glucose levels, plasma insulin, Hb, HbA1c were measured. The effect on the drug on altered glucose metabolizing enzymes were also studied. Treatment with Psidium guajava extract showed a significant reduction in blood glucose and HbA1c levels and a significant increase in plasma insulin levels. The drug also significantly restored the activities of carbohydrate metabolizing enzymes. This suggests that the potential antidiabetic effect of the ethanolic extract of the Psidium guajava leaves may be due to the presence of flavonoids and other phenolic components present in the drug.

  7. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Darimont Christian

    2004-08-01

    Full Text Available Abstract Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114 could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG and diacylglycerol (DAG accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.

  8. Altered Stress-Induced Regulation of Genes in Monocytes in Adults with a History of Childhood Adversity.

    Science.gov (United States)

    Schwaiger, Marion; Grinberg, Marianna; Moser, Dirk; Zang, Johannes C S; Heinrichs, Markus; Hengstler, Jan G; Rahnenführer, Jörg; Cole, Steve; Kumsta, Robert

    2016-09-01

    Exposure to serious or traumatic events early in life can lead to persistent alterations in physiological stress response systems, including enhanced cross talk between the neuroendocrine and immune system. These programming effects may be mechanistically involved in mediating the effects of adverse childhood experience on disease risk in adulthood. We investigated hormonal and genome-wide mRNA expression responses in monocytes to acute stress exposure, in a sample of healthy adults (n=30) with a history of early childhood adversity, and a control group (n=30) without trauma experience. The early adversity group showed altered hypothalamus-pituitary-adrenal axis responses to stress, evidenced by lower ACTH and cortisol responses. Analyses of gene expression patterns showed that stress-responsive transcripts were enriched for genes involved in cytokine activity, cytokine-cytokine receptor interaction, chemokine activity, and G-protein coupled receptor binding. Differences between groups in stress-induced regulation of gene transcription were observed for genes involved in steroid binding, hormone activity, and G-protein coupled receptor binding. Transcription factor binding motif analysis showed an increased activity of pro-inflammatory upstream signaling in the early adversity group. We also identified transcripts that were differentially correlated with stress-induced cortisol increases between the groups, enriched for genes involved in cytokine-cytokine receptor interaction and glutamate receptor signaling. We suggest that childhood adversity leads to persistent alterations in transcriptional control of stress-responsive pathways, which-when chronically or repeatedly activated-might predispose individuals to stress-related psychopathology.

  9. Stress hormones predict a host superspreader phenotype in the West Nile virus system

    Science.gov (United States)

    Gervasi, Stephanie; Burgan, Sarah; Hofmeister, Erik K.; Unnasch, Thomas R.; Martin, Lynn B.

    2017-01-01

    Glucocorticoid stress hormones, such as corticosterone (CORT), have profound effects on the behaviour and physiology of organisms, and thus have the potential to alter host competence and the contributions of individuals to population- and community-level pathogen dynamics. For example, CORT could alter the rate of contacts among hosts, pathogens and vectors through its widespread effects on host metabolism and activity levels. CORT could also affect the intensity and duration of pathogen shedding and risk of host mortality during infection. We experimentally manipulated songbird CORT, asking how CORT affected behavioural and physiological responses to a standardized West Nile virus (WNV) challenge. Although all birds became infected after exposure to the virus, only birds with elevated CORT had viral loads at or above the infectious threshold. Moreover, though the rate of mortality was faster in birds with elevated CORT compared with controls, most hosts with elevated CORT survived past the day of peak infectiousness. CORT concentrations just prior to inoculation with WNV and anti-inflammatory cytokine concentrations following viral exposure were predictive of individual duration of infectiousness and the ability to maintain physical performance during infection (i.e. tolerance), revealing putative biomarkers of competence. Collectively, our results suggest that glucocorticoid stress hormones could directly and indirectly mediate the spread of pathogens.

  10. Camel Milk Beneficial Effects on Treating Gentamicin Induced Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Abdulrahman K. Al-Asmari

    2014-01-01

    Full Text Available The potential effect of camel milk (CM against gentamicin (GM induced biochemical changes in the rat serum was evaluated. Four groups of six albino rats were used for control, CM fed, injected with GM(i.p., and then fed and injected with GM. The results showed that the administration of GM significantly altered the levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP, and lactate dehydrogenase (LDH activity in rat serum. CM restored these parameters to almost their normal range in group IV. Additionally, the present study showed that injection of rats with gentamicin caused an increase in malondialdehyde (MDA and myeloperoxidase (MPO activity while the antioxidant enzymes like superoxide dismutase (SOD and glutathione s-transferase (GST activity decreased significantly (P≤0.05. Administration of CM significantly (P≤0.05 inhibited the formation of MDA and activity of MPO and upregulated the antioxidant enzymes (SOD and GST activity. The overall findings of this study demonstrated that pretreatment with CM gave protection against GM induced hepatic damage possibly by inhibiting oxidative stress and inflammation, and hence camel milk can be identified as a new therapeutic agent.

  11. Host induced changes in plasmid profile of Xanthomonas ...

    African Journals Online (AJOL)

    Based on known facts about genome rearrangement, we speculate this as an adaptation strategy for Xam to increase copy number of genes involved in pathogen aggressiveness which are otherwise present as single copy in bacterial chromosome and this possibly occurred by induction from host elicitors present in leaf ...

  12. Mixed infections reveal virulence differences between host-specific bee pathogens.

    Science.gov (United States)

    Klinger, Ellen G; Vojvodic, Svjetlana; DeGrandi-Hoffman, Gloria; Welker, Dennis L; James, Rosalind R

    2015-07-01

    Dynamics of host-pathogen interactions are complex, often influencing the ecology, evolution and behavior of both the host and pathogen. In the natural world, infections with multiple pathogens are common, yet due to their complexity, interactions can be difficult to predict and study. Mathematical models help facilitate our understanding of these evolutionary processes, but empirical data are needed to test model assumptions and predictions. We used two common theoretical models regarding mixed infections (superinfection and co-infection) to determine which model assumptions best described a group of fungal pathogens closely associated with bees. We tested three fungal species, Ascosphaera apis, Ascosphaera aggregata and Ascosphaera larvis, in two bee hosts (Apis mellifera and Megachile rotundata). Bee survival was not significantly different in mixed infections vs. solo infections with the most virulent pathogen for either host, but fungal growth within the host was significantly altered by mixed infections. In the host A. mellifera, only the most virulent pathogen was present in the host post-infection (indicating superinfective properties). In M. rotundata, the most virulent pathogen co-existed with the lesser-virulent one (indicating co-infective properties). We demonstrated that the competitive outcomes of mixed infections were host-specific, indicating strong host specificity among these fungal bee pathogens. Published by Elsevier Inc.

  13. Renal tissue alterations were size-dependent with smaller ones induced more effects and related with time exposure of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jarrar Bashir M

    2011-09-01

    Full Text Available Abstract Background Gold nanoparticles (GNPs have important application for cell labeling and imaging, drug delivery, diagnostic and therapeutic purposes mainly in cancer. Nanoparticles (NPs are being increasingly exploited for medical applications. The aim of the present study was to investigate the particle-size and period effects of administration of GNPs on the renal tissue in an attempt to address their potential toxicity. Methods A total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 μl of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days to investigate particle-size effect of GNPs on the renal tissue. Animals were randomly divided into groups, 6 GNPs-treated rats groups and one control group. Groups 1, 2 and 3 received infusion of 50 μl GNPs of size 10 nm (3 or 7 days, size 20 nm (3 or 7 days and 50 nm (3 or 7 days, respectively; while groups 4, 5 and 6 received infusion of 100 μl GNPs of size 10 nm, size 20 nm and 50 nm, respectively. Stained sections of control and treated rats kidneys were examined for renal tissue alterations induced by GNPs. Results In comparison with respective control rats, exposure to GNPs doses has produced the following renal tubular alterations: cloudy swelling, vacuolar degeneration, hyaline droplets and casts, anisokaryosis, karopyknosis, karyorrhexis and karyolysis. The glomeruli showed moderate congestion with no hypercelluraity, mesangial proliferation or basement membrane thickening. The histological alterations were mainly seen in the cortex and the proximal renal convoluted tubules were more affected than the distal ones. Conclusions The induced histological alterations might be an indication of injured renal tubules due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. The findings may suggest that GNPs interact with proteins and enzymes of the renal tissue

  14. Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts.

    Science.gov (United States)

    Zhang, Chi; Wang, Jiajia; Chou, Adriana; Gong, Ting; Devine, Erin E; Jiang, Jack J

    2018-04-18

    Photodynamic therapy (PDT) is a promising treatment modality for laryngeal dysplasia, early-stage carcinoma, and papilloma, and was reported to have the ability to preserve laryngeal function and voice quality without clinical fibrotic response. We aimed to investigate the mechanism behind the antifibrotic effects of PDT on primary human vocal fold fibroblasts (VFFs) in vitro. In vitro analysis from one human donor. Cell viability of VFFs in response to varying doses of PDT was investigated by the Cell Counting Kit-8 method. Sublethal-dose PDT (SL-PDT) was used for the following experiments. Expression of genes related to vocal fold extracellular matrix formation was analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. Effects of PDT on cell migration, collagen contraction, and transforming growth factor β-1 (TGF-β1)-induced myofibroblast differentiation were also analyzed. PDT affects the viability of VFFs in a dose-dependent manner. SL-PDT significantly changed the expression profile of VFFs with antifibrotic effects. It also inhibited cell migration, reduced collagen contraction, and reversed the fibroblast-myofibroblast differentiation induced by TGF-β1. SL-PDT induces antifibrotic alterations in VFFs. This could explain the low incidence of vocal fold scar associated with PDT. Moreover, PDT may be useful in treating existing vocal fold scars. Further studies should focus on the in vivo effect of PDT on vocal fold wound healing and scar remodeling. NA Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Picrotoxin-induced behavioral tolerance and altered susceptibility to seizures: effects of naloxone.

    Science.gov (United States)

    Thomas, J; Nores, W L; Pariser, R

    1993-07-01

    The role of opiate mechanisms in the development of tolerance and altered susceptibility to seizures after repeated injections of picrotoxin was investigated. Independent groups of rats were pretreated with naloxone (0.3, 1.0, 3.0, and 10.0 mg/kg) or the saline vehicle and then tested for seizures induced by picrotoxin. The procedure was performed on 3 days at 1-week intervals, for a total of 3 testing days. Latencies to different types of seizures, the duration of postseizure immobility, and the number of focal seizure episodes were scored. In the vehicle-treated group, repeated picrotoxin injections led to an increased susceptibility to myoclonic and focal seizures and to decreased duration of postseizure immobility. Naloxone pretreatment significantly decreased the duration of the postseizure akinetic periods in the 1.0- and 10.0-mg/kg groups across all days, suggesting that endogenous opiates are involved in postseizure immobility and that there are interactions between opiate and picrotoxin mechanisms in some seizure-related behaviors. Naloxone did not alter the development of tolerance or sensitivity, indicating that naloxone-insensitive opiate mechanisms or nonopiate mechanisms may be involved in these processes.

  16. Similarities between the Epstein-Barr Virus (EBV) Nuclear Protein EBNA1 and the Pioneer Transcription Factor FoxA: Is EBNA1 a “Bookmarking” Oncoprotein that Alters the Host Cell Epigenotype?

    Science.gov (United States)

    Niller, Hans Helmut; Minarovits, Janos

    2012-01-01

    EBNA1, a nuclear protein expressed in all EBV-associated neoplasms is indispensable for the maintenance of the viral episomes in latently infected cells. EBNA1 may induce genetic alterations by upregulating cellular recombinases, production of reactive oxygen species (ROS) and affecting p53 levels and function. All these changes may contribute to tumorigenesis. In this overview we focus, however, on the epigenetic alterations elicited by EBNA1 by drawing a parallel between EBNA1 and the FoxA family of pioneer transcription factors. Both EBNA1 and FoxA induce local DNA demethylation, nucleosome destabilization and bind to mitotic chromosomes. Local DNA demethylation and nucleosome rearrangement mark active promoters and enhancers. In addition, EBNA1 and FoxA, when associated with mitotic chromatin may “bookmark” active genes and ensure their reactivation in postmitotic cells (epigenetic memory). We speculate that DNA looping induced by EBNA1-EBNA1 interactions may reorganize the cellular genome. Such chromatin loops, sustained in mitotic chromatin similarly to the long-distance interactions mediated by the insulator protein CTCF, may also mediate the epigenetic inheritance of gene expression patterns. We suggest that EBNA1 has the potential to induce patho-epigenetic alterations contributing to tumorigenesis. PMID:25436603

  17. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    Science.gov (United States)

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  18. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  19. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  20. The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach.

    Science.gov (United States)

    Leisching, Gina; Pietersen, Ray-Dean; Mpongoshe, Vuyiseka; van Heerden, Carel; van Helden, Paul; Wiid, Ian; Baker, Bienyameen

    2016-01-01

    During Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in

  1. Cestodes change the isotopic signature of brine shrimp, Artemia, hosts: implications for aquatic food webs.

    Science.gov (United States)

    Sánchez, Marta I; Varo, Nico; Matesanz, Cristina; Ramo, Cristina; Amat, Juan A; Green, Andy J

    2013-01-01

    To reach the final host (greater flamingos), the cestode Flamingolepis liguloides alters the behaviour of its intermediate host, the brine shrimp, Artemia parthenogenetica, causing it to spend more time close to the water surface. During summer 2010, we showed that the prevalence of this cestode was consistently higher at the top of the water column in the Odiel salt pans in south-western Spain. We used stable nitrogen (N) and carbon (C) isotopic analysis to test the hypothesis that cestodes also alter resource use by Artemia. In early summer, we compared stable isotopes in infected hosts at the surface with those from uninfected hosts at the bottom of the water column. In late summer, we compared infected and uninfected Artemia from the bottom. δ(15)N was consistently enriched in infected individuals compared with uninfected hosts, especially in Artemia with multiple infections of F. liguloides (family Hymenolepididae) and those with mixed infections of F. liguloides and cestodes of the family Dilepididae. Infected individuals from the surface were enriched in δ(13)C compared with uninfected ones from the bottom, but the opposite was found when comparing uninfected and infected Artemia from the same depth. This may be caused by the increase in lipid concentration in infected Artemia. Isolated cysticercoids of F. liguloides were significantly enriched in δ(13)C compared with cysticercoids in infected hosts, but surprisingly were not enriched in N. Our findings illustrate the way cestodes can alter food webs and highlight the importance of considering the parasitic status of prey in studies of trophic ecology in saline wetlands. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  2. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    International Nuclear Information System (INIS)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F.; Calixto, Merilane S.; Santos, Neide

    2011-01-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources 241 AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to 137 Cs gamma rays at 137 Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after 137 Cs and 241 AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  3. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  4. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism.

    Science.gov (United States)

    Hang, Saiyu; Purdy, Alexandra E; Robins, William P; Wang, Zhipeng; Mandal, Manabendra; Chang, Sarah; Mekalanos, John J; Watnick, Paula I

    2014-11-12

    Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Simultaneous transcriptional profiling of bacteria and their host cells.

    Directory of Open Access Journals (Sweden)

    Michael S Humphrys

    Full Text Available We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness. Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.

  6. Broad host range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    Calero Valdayo, Patricia; Ingemann Jensen, Sheila; Nielsen, Alex Toftgaard

    2016-01-01

    Pseudomonas putida KT2440 has gained increasing interest as a host for the production of biochemicals. Because of the lack of a systematic characterization of inducible promoters in this strain, we generated ProUSER broad-host-expression plasmids that facilitate fast uracil-based cloning. A set...... of ProUSER-reporter vectors was further created to characterize different inducible promoters. The PrhaB and Pm promoters were orthogonal and showed titratable, high, and homogeneous expression. To optimize the production of p-coumaric acid, P. putida was engineered to prevent degradation of tyrosine...... and p-coumaric acid. Pm and PrhaB were used to control the expression of a tyrosine ammonia lyase or AroG* and TyrA* involved in tyrosine production, respectively. Pathway expression was optimized by modulating inductions, resulting in small-scale p-coumaric acid production of 1.2 mM, the highest...

  7. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis.

    Science.gov (United States)

    Nunberg, Moran; Werbner, Nir; Neuman, Hadar; Bersudsky, Marina; Braiman, Alex; Ben-Shoshan, Moshe; Ben Izhak, Meirav; Louzoun, Yoram; Apte, Ron N; Voronov, Elena; Koren, Omry

    2018-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1

  8. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Ou Xiufang [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Long Likun [Inspection and Quarantine Technology Centre of Zhongshan Entry-Exit Inspection and Quarantine Bureau, Zhongshan 528400, Guangdong Province (China); Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China); Liu Bao [Key Laboratory of Molecular Epigenetic of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024 (China)], E-mail: baoliu6677@yahoo.com.cn

    2009-03-09

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  9. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Ou Xiufang; Long Likun; Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun; Liu Bao

    2009-01-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  10. Kinetics of radiation-induced structural alterations in electron-irradiated polymer-based composites

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Potanin, A.S.; Koztaeva, U.P.

    2002-01-01

    Complete text of publication follows. In our previous studies measurements of internal friction temperature dependence were used for characterization of thermally activated and radiation-induced structural evolution in different types of polymer-based composites. This paper supplements these measurements with kinetic studies of internal friction (IF) parameters and EPR signals in a glass-cloth epoxy-filled laminate ST-ETF after electron irradiation up to doses of 1-10 MGy. Experiment have shown that the lifetime of free radicals in this composite considerably exceeds the characteristic time of molecular structural rearrangement due to scission and cross-linking after irradiation, as determined from IF measurements. This result is explained by slow proceeding of sterically hindered disproportionation reactions that stabilize the end groups of the macro-chain disrupt during irradiation and finally fix the act of scission. A mathematical model is formulated for description of structural evolution and alterations of IF parameters in polymer-based composites during and after electron irradiation. The description is based on the track model of radiation damage in polymers and phenomenological theory of radiation-induced structural transformations. General description does not give details of radiation-chemical conversion in different structural components of composites but indicates the direction of their structural evolution. In the model considered a composite material was divided into three parts (binder, filler, and a boundary layer). It was supposed that after primary distribution of radiation energy radiation-chemical conversion proceeds independently in each of these regions. It was also suggested that all the radical reactions were of the second order. On the example of glass-cloth laminate ST-ETF it is shown that this model allows to describe alterations in composite structural characteristics during irradiation and in the course of their self-organization after

  11. Long-Term Alterations in Neural and Endocrine Processes Induced by Motherhood

    Science.gov (United States)

    Bridges, Robert S.

    2015-01-01

    The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female’s biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages. PMID:26388065

  12. Host-Microbe Interactions in Microgravity: Assessment and Implications

    Directory of Open Access Journals (Sweden)

    Jamie S. Foster

    2014-05-01

    Full Text Available Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  13. Host-microbe interactions in microgravity: assessment and implications.

    Science.gov (United States)

    Foster, Jamie S; Wheeler, Raymond M; Pamphile, Regine

    2014-05-26

    Spaceflight imposes several unique stresses on biological life that together can have a profound impact on the homeostasis between eukaryotes and their associated microbes. One such stressor, microgravity, has been shown to alter host-microbe interactions at the genetic and physiological levels. Recent sequencing of the microbiomes associated with plants and animals have shown that these interactions are essential for maintaining host health through the regulation of several metabolic and immune responses. Disruptions to various environmental parameters or community characteristics may impact the resiliency of the microbiome, thus potentially driving host-microbe associations towards disease. In this review, we discuss our current understanding of host-microbe interactions in microgravity and assess the impact of this unique environmental stress on the normal physiological and genetic responses of both pathogenic and mutualistic associations. As humans move beyond our biosphere and undergo longer duration space flights, it will be essential to more fully understand microbial fitness in microgravity conditions in order to maintain a healthy homeostasis between humans, plants and their respective microbiomes.

  14. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  15. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  16. The host transcriptome remains unaltered during the establishment of coral-algal symbioses.

    Science.gov (United States)

    Voolstra, Christian R; Schwarz, Jodi A; Schnetzer, Julia; Sunagawa, Shinichi; Desalvo, Michael K; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2009-05-01

    Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.

  17. Determinants of HIV-induced brain changes in three different periods of the early clinical course: A data mining analysis

    Directory of Open Access Journals (Sweden)

    Bokai Cao

    2015-01-01

    Full Text Available To inform an understanding of brain status in HIV infection, quantitative imaging measurements were derived at structural, microstructural and macromolecular levels in three different periods of early infection and then analyzed simultaneously at each stage using data mining. Support vector machine recursive feature elimination was then used for simultaneous analysis of subject characteristics, clinical and behavioral variables, and immunologic measures in plasma and CSF to rank features associated with the most discriminating brain alterations in each period. The results indicate alterations beginning in initial infection and in all periods studied. The severity of immunosuppression in the initial virus host interaction was the most highly ranked determinant of earliest brain alterations. These results shed light on the initial brain changes induced by a neurotropic virus and their subsequent evolution. The pattern of ongoing alterations occurring during and beyond the period in which virus is suppressed in the systemic circulation supports the brain as a viral reservoir that may preclude eradication in the host. Data mining capabilities that can address high dimensionality and simultaneous analysis of disparate information sources have considerable utility for identifying mechanisms underlying onset of neurological injury and for informing new therapeutic targets.

  18. Herbicides in the environment alter infection dynamics in a microbial host-parasite system

    NARCIS (Netherlands)

    van den Wyngaert, Silke; Gsell, A.S.; Spaak, P.; Ibelings, B.W.

    2013-01-01

    Parasites play an important role in the regulation of host population growth. How these ubiquitous stressors interact with anthropogenic stressors is less often studied. In a full factorial experiment we explored the independent and combined effects of the widely used herbicide diuron and a chytrid

  19. Identification of the host determinant of two prolate-headed phages infecting lactococcus lactis

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Birgitte; Janzen, Thomas; Schnabl, Jannie; Johansen, Eric

    2003-01-01

    A gene responsible for host determination was identified in two prolate-headed bacteriophages of the c2 species infecting strains of Lactococcus lactis. The identification of the host determinant gene was based on low DNA sequence homology in a specific open reading frame (ORF) between prolate-headed phages with different host ranges. When a host carrying this ORF from one phage on a plasmid was infected with another phage, we obtained phages with an altered host range at a frequency of 10 -6 to 10 -7 . Sequencing of phage DNA originating from 10 independent single plaques confirmed that a genetic recombination had taken place at different positions between the ORF on the plasmid and the infecting phage. The adsorption of the recombinant phages to their bacterial hosts had also changed to match the phage origin of the ORF. Consequently, it is concluded that this ORF codes for the host range determinant

  20. A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment.

    Science.gov (United States)

    Garira, Winston; Mathebula, Dephney; Netshikweta, Rendani

    2014-10-01

    In this study we develop a mathematical modelling framework for linking the within-host and between-host dynamics of infections with free-living pathogens in the environment. The resulting linked models are sometimes called immuno-epidemiological models. However, there is still no generalised framework for linking the within-host and between-host dynamics of infectious diseases. Furthermore, for infections with free-living pathogens in the environment, there is an additional stumbling block in that there is a gap in knowledge on how environmental factors (through water, air, soil, food, fomites, etc.) alter many aspects of such infections including susceptibility to infective dose, persistence of infection, pathogen shedding and severity of the disease. In this work, we link the two subsystems (within-host and between-host models) by identifying the within-host and between-host variables and parameters associated with the environmental dynamics of the pathogen and then design a feedback of the variables and parameters across the within-host and between-host models using human schistosomiasis as a case study. We study the mathematical properties of the linked model and show that the model is epidemiologically well-posed. Using results from the analysis of the endemic equilibrium expression, the disease reproductive number R0, and numerical simulations of the full model, we adequately account for the reciprocal influence of the linked within-host and between-host models. In particular, we illustrate that for human schistosomiasis, the outcome of infection at the individual level determines if, when and how much the individual host will further transmit the infectious agent into the environment, eventually affecting the spread of the infection in the host population. We expect the conceptual modelling framework developed here to be applicable to many infectious disease with free-living pathogens in the environment beyond the specific disease system of human

  1. Idelalisib-induced colitis and skin eruption mimicking graft-versus-host disease.

    Science.gov (United States)

    Hammami, Muhammad Bader; Al-Taee, Ahmad; Meeks, Marshall; Fesler, Mark; Hurley, M Yadira; Cao, Dengfeng; Lai, Jin-Ping

    2017-04-01

    Idelalisib is a selective inhibitor of the delta isoform of phosphatidylinositol 3-kinase which was approved by the United States Federal Drug Administration in 2014 for the treatment of relapsed chronic lymphocytic leukemia and indolent non-Hodgkin lymphoma. Drug-induced injury of the gastrointestinal tract is a relatively frequent but usually under-recognized disease entity. We report the case of a 56-year-old male with a history of relapsed follicular lymphoma status post allogenic bone marrow transplant who developed severe diarrhea with a skin eruption mimicking graft-versus-host disease (GVHD) 6 months after starting idelalisib. He underwent a colonoscopy demonstrating a grossly normal-appearing colon and terminal ileum. Biopsies taken during the procedure revealed mild active ileitis, colitis, and proctitis with frequent epithelial apoptosis, and focal intra-epithelial lymphocytosis. Skin biopsies revealed sub-acute spongiotic dermatitis suggestive of either contact dermatitis or an eczematous drug reaction. Symptoms were attributed to idelalisib given their resolution with withdrawal of the drug in conjunction with the skin and colonic biopsies. High clinical suspicion and awareness of the histological features of idelalisib-associated colitis is important to distinguish it from potential mimickers such as GVHD and infectious colitis.

  2. Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: host plant specialization matters.

    Science.gov (United States)

    Boivin, T; Henri, H; Vavre, F; Gidoin, C; Veber, P; Candau, J-N; Magnoux, E; Roques, A; Auger-Rozenberg, M-A

    2014-05-01

    Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont-mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis-inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission. © 2014 John Wiley & Sons Ltd.

  3. Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages.

    Science.gov (United States)

    Yadav, Saveg; Pandey, Shrish Kumar; Goel, Yugal; Kujur, Praveen Kumar; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-03-01

    3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4 + & CD8 + ) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  5. Staphylococcal Superantigens Spark Host-Mediated Danger Signals

    Directory of Open Access Journals (Sweden)

    Terry eKrakauer

    2016-02-01

    Full Text Available Staphylococcal enterotoxin B (SEB of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific V regions of T-cell receptors (TCR and major histocompatibility complex (MHC class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes / macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1, IL-2, interferon γ (IFNγ, and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed towards TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR / MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase / mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an SEB-only model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA / RNA sensors, apoptosis / DNA damage-related molecules, immunoproteasome components, as well as anti-viral and IFN-stimulated genes. The host-wide induction of these, and other, anti-microbial defense genes provide evidence that SEB elicits danger signals resulting in multi

  6. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility.

    Science.gov (United States)

    Escalante, Nichole K; Lemire, Paul; Cruz Tleugabulova, Mayra; Prescott, David; Mortha, Arthur; Streutker, Catherine J; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry

    2016-12-12

    The mammalian gastrointestinal tract hosts a diverse community of microbes including bacteria, fungi, protozoa, helminths, and viruses. Through coevolution, mammals and these microbes have developed a symbiosis that is sustained through the host's continuous sensing of microbial factors and the generation of a tolerant or pro-inflammatory response. While analyzing T cell-driven colitis in nonlittermate mouse strains, we serendipitously identified that a nongenetic transmissible factor dramatically increased disease susceptibility. We identified the protozoan Tritrichomonas muris as the disease-exacerbating element. Furthermore, experimental colonization with T. muris induced an elevated Th1 response in the cecum of naive wild-type mice and accelerated colitis in Rag1 -/- mice after T cell transfer. Overall, we describe a novel cross-kingdom interaction within the murine gut that alters immune cell homeostasis and disease susceptibility. This example of unpredicted microbial priming of the immune response highlights the importance of studying trans-kingdom interactions and serves as a stark reminder of the importance of using littermate controls in all mouse research. © 2016 Escalante et al.

  7. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F

    2017-12-07

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host\\'s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host\\'s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  8. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Host immunity, nutrition and coinfection alter longitudinal infection patterns of schistosomes in a free ranging African buffalo population.

    Directory of Open Access Journals (Sweden)

    Brianna R Beechler

    2017-12-01

    Full Text Available Schistosomes are trematode parasites of global importance, causing infections in millions of people, livestock, and wildlife. Most studies on schistosomiasis, involve human subjects; as such, there is a paucity of longitudinal studies investigating parasite dynamics in the absence of intervention. As a consequence, despite decades of research on schistosomiasis, our understanding of its ecology in natural host populations is centered around how environmental exposure and acquired immunity influence acquisition of parasites, while very little is known about the influence of host physiology, coinfection and clearance in the absence of drug treatment. We used a 4-year study in free-ranging African buffalo to investigate natural schistosome dynamics. We asked (i what are the spatial and temporal patterns of schistosome infections; (ii how do parasite burdens vary over time within individual hosts; and (iii what host factors (immunological, physiological, co-infection and environmental factors (season, location explain patterns of schistosome acquisition and loss in buffalo? Schistosome infections were common among buffalo. Microgeographic structure explained some variation in parasite burdens among hosts, indicating transmission hotspots. Overall, parasite burdens ratcheted up over time; however, gains in schistosome abundance in the dry season were partially offset by losses in the wet season, with some hosts demonstrating complete clearance of infection. Variation among buffalo in schistosome loss was associated with immunologic and nutritional factors, as well as co-infection by the gastrointestinal helminth Cooperia fuelleborni. Our results demonstrate that schistosome infections are surprisingly dynamic in a free-living mammalian host population, and point to a role for host factors in driving variation in parasite clearance, but not parasite acquisition which is driven by seasonal changes and spatial habitat utilization. Our study illustrates

  10. Formation of albitite-hosted uranium within IOCG systems: the Southern Breccia, Great Bear magmatic zone, Northwest Territories, Canada

    Science.gov (United States)

    Montreuil, Jean-François; Corriveau, Louise; Potter, Eric G.

    2015-03-01

    Uranium and polymetallic U mineralization hosted within brecciated albitites occurs one kilometer south of the magnetite-rich Au-Co-Bi-Cu NICO deposit in the southern Great Bear magmatic zone (GBMZ), Canada. Concentrations up to 1 wt% U are distributed throughout a 3 by 0.5 km albitization corridor defined as the Southern Breccia zone. Two distinct U mineralization events are observed. Primary uraninite precipitated with or without pyrite-chalcopyrite ± molybdenite within magnetite-ilmenite-biotite-K-feldspar-altered breccias during high-temperature potassic-iron alteration. Subsequently, pitchblende precipitated in earthy hematite-specular hematite-chlorite veins associated with a low-temperature iron-magnesium alteration. The uraninite-bearing mineralization postdates sodic (albite) and more localized high-temperature potassic-iron (biotite-magnetite ± K-feldspar) alteration yet predates potassic (K-feldspar), boron (tourmaline) and potassic-iron-magnesium (hematite ± K-feldspar ± chlorite) alteration. The Southern Breccia zone shares attributes of the Valhalla (Australia) and Lagoa Real (Brazil) albitite-hosted U deposits but contains greater iron oxide contents and lower contents of riebeckite and carbonates. Potassium, Ni, and Th are also enriched whereas Zr and Sr are depleted with respect to the aforementioned albitite-hosted U deposits. Field relationships, geochemical signatures and available U-Pb dates on pre-, syn- and post-mineralization intrusions place the development of the Southern Breccia and the NICO deposit as part of a single iron oxide alkali-altered (IOAA) system. In addition, this case example illustrates that albitite-hosted U deposits can form in albitization zones that predate base and precious metal ore zones in a single IOAA system and become traps for U and multiple metals once the tectonic regime favors fluid mixing and oxidation-reduction reactions.

  11. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    Science.gov (United States)

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  12. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  13. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  14. Gene expression plasticity across hosts of an invasive scale insect species

    DEFF Research Database (Denmark)

    Christodoulides, Nicholas; Van Dam, Alex; Peterson, Daniel A.

    2017-01-01

    For plant-eating insects, we still have only a nascent understanding of the genetic basis of host-use promiscuity. Here, to improve that situation, we investigated host-induced gene expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata (Hemiptera: Keriidae). We...

  15. Phage Pl mutants with altered transducing abilities for Escherichia coli

    International Nuclear Information System (INIS)

    Wall, J.D.; Harriman, P.D.

    1974-01-01

    A search was made for mutants of the coliphage P1 with altered transducing frequencies. A method was developed for the rapid assay of transducing frequencies in single plaques using prophage lambda as the transduced bacterial marker. This procedure selects for mutants altered in their ability to package host DNA. Mutants with 5 to 10 times higher or 10 to 20 times lower frequencies than those of wild-type P1 were found. Not only are the markers used for the detection of the mutants affected, but all other markers are similarly affected (not always to the same extent). One of the high transducing frequency mutants is a suppressible amber, indicating that loss of a function increases P1's ability to package host DNA preferentially. (U.S.)

  16. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  17. Gene alterations in radiation-induced F344 rat lung tumors

    International Nuclear Information System (INIS)

    Kelly, G.; Hahn, F.F.

    1994-01-01

    The p53 tumor suppressor gene is frequently altered in all major histopathologic types of human lung tumors. Reported p53 mutations include base substitutions, allelic loss, rearrangements, and deletions. Point mutations resulting in base substitutions are clustered within a highly conserved region of the gene encoding exons 508, and mutations in this region substantially extend the half-life of the p53 protein. In addition to its prominent importance in lung carcinogenesis, the p53 gene plays a critical role in the cellular response to genetic damage caused by radiation. Specifically, the protein product of p53 induces a pause or block at the G 1 to S boundary of the cell cycle following radiation-caused DNA damage. This G 1 block may allow the cell time to repair the damaged DNA prior to replication. Cells lacking a functional p53 protein fail to pause for repair and consequently accumulate mutations in the genome at an accelerated rate. p53 has also been implicated as a controlling factor in apoptosis or in programmed cell death induced by DNA-damaging agents, such as ionizing radiation. The p53 gene is mutated in approximately 50% of squamous cell carcinomas from uranium miners who inhaled high doses of radon daughters. The purpose of the present study was to determine if a similar percentage of squamous cell carcinomas with p53 mutations developed in the lungs of rats exposed to aerosols of 239 PuO 2

  18. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  19. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  20. Ketamine differentially restores diverse alterations of neuroligins in brain regions in a rat model of neuropathic pain-induced depression.

    Science.gov (United States)

    Pan, Wei; Zhang, Guang-Fen; Li, Hui-Hui; Ji, Mu-Huo; Zhou, Zhi-Qiang; Li, Kuan-Yu; Yang, Jian-Jun

    2018-07-04

    Depression is present in a large proportion of patients suffering from chronic pain, and yet the underlying mechanisms remain to be elucidated. Neuroligins (NLs), as a family of cell-adhesion proteins, are involved in synaptic formation and have been linked to various neuropsychiatric disorders. Here, we studied the alterations in NL1 and NL2 in the medial prefrontal cortex (mPFC), the anterior cingulate cortex (ACC), and the hippocampus in a rat model of neuropathic pain-induced depression, and whether ketamine, a rapid and robust antidepressant, could restore these abnormalities. In the present study, we found that spared nerve injury induced significant mechanical allodynia and subsequent depressive-like symptoms, along with decreased NL1 and increased NL2 in the mPFC, decreased NL1 in the ACC, and decreased NL2 in the hippocampus. In addition, brain-derived neurotrophic factor (BDNF) was reduced in these brain regions. It is noteworthy that ketamine (10 mg/kg) relieved neuropathic pain-induced depressive behaviors and restored alterations of BDNF and NLs in the mPFC and the hippocampus at 24 h and 72 h after the administration of ketamine, but only restored BDNF in the ACC. In conclusion, NLs showed diverse changes in different brain regions in the rat model of neuropathic pain-induced depression, which could be reversed differentially by the administration of ketamine.

  1. How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery.

    Science.gov (United States)

    Bordignon, Valentina; Di Domenico, Enea Gino; Trento, Elisabetta; D'Agosto, Giovanna; Cavallo, Ilaria; Pontone, Martina; Pimpinelli, Fulvia; Mariani, Luciano; Ensoli, Fabrizio

    2017-12-19

    The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM- and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)-STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses.

  2. Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats.

    Science.gov (United States)

    Swann, Jonathan R; Tuohy, Kieran M; Lindfors, Peter; Brown, Duncan T; Gibson, Glenn R; Wilson, Ian D; Sidaway, James; Nicholson, Jeremy K; Holmes, Elaine

    2011-08-05

    The interaction between the gut microbiota and their mammalian host is known to have far-reaching consequences with respect to metabolism and health. We investigated the effects of eight days of oral antibiotic exposure (penicillin and streptomycin sulfate) on gut microbial composition and host metabolic phenotype in male Han-Wistar rats (n = 6) compared to matched controls. Early recolonization was assessed in a third group exposed to antibiotics for four days followed by four days recovery (n = 6). Fluorescence in situ hybridization analysis of the intestinal contents collected at eight days showed a significant reduction in all bacterial groups measured (control, 10(10.7) cells/g feces; antibiotic-treated, 10(8.4)). Bacterial suppression reduced the excretion of mammalian-microbial urinary cometabolites including hippurate, phenylpropionic acid, phenylacetylglycine and indoxyl-sulfate whereas taurine, glycine, citrate, 2-oxoglutarate, and fumarate excretion was elevated. While total bacterial counts remained notably lower in the recolonized animals (10(9.1) cells/g faeces) compared to the controls, two cage-dependent subgroups emerged with Lactobacillus/Enterococcus probe counts dominant in one subgroup. This dichotomous profile manifested in the metabolic phenotypes with subgroup differences in tricarboxylic acid cycle metabolites and indoxyl-sulfate excretion. Fecal short chain fatty acids were diminished in all treated animals. Antibiotic treatment induced a profound effect on the microbiome structure, which was reflected in the metabotype. Moreover, the recolonization process was sensitive to the microenvironment, which may impact on understanding downstream consequences of antibiotic consumption in human populations.

  3. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    OpenAIRE

    Xu, Jia; Verbrugghe, Adronie; Louren?o, Marta; Janssens, Geert P. J.; Liu, Daisy J. X.; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host me...

  4. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    International Nuclear Information System (INIS)

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  5. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Portereiko, J V; Harkema, J R

    1988-12-01

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  6. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Portereiko, J.V.; Harkema, J.R.

    1988-01-01

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  7. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Alison R Erickson

    Full Text Available Crohn's disease (CD is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD or colon (CCD. Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.

  8. Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease

    Science.gov (United States)

    Darzi, Youssef; Mongodin, Emmanuel F.; Pan, Chongle; Shah, Manesh; Halfvarson, Jonas; Tysk, Curt; Henrissat, Bernard; Raes, Jeroen; Verberkmoes, Nathan C.; Jansson, Janet K.

    2012-01-01

    Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers. PMID:23209564

  9. Ultraviolet light-induced suppression of antigen presentation

    International Nuclear Information System (INIS)

    Spellman, C.W.; Tomasi, T.B.

    1983-01-01

    Ultraviolet (UV) light irradiation of animals results in the development of specific T suppressor cells that inhibit antitumor immune responses. It is thought that suppression may arise as a consequence of altered antigen presentation by UV-irradiated epidermal cells. This hypothesis is based on evidence demonstrating that specific lymphoid tissues from UV-irradiated hosts exhibit impaired antigen-presenting function and that animals cannot be contact sensitized when antigens are applied to a UV-irradiated skin site. Langerhans cells of the skin are likely candidates as targets of UV-induced defects in antigen presentation as they bear Fc and C3b receptors, express Ia antigens, are of bone marrow origin, and are capable of presenting antigen in vitro. We speculate on the possible clinical usefulness of UV-induced tolerance to specific antigens such as those encountered in monoclonal antibody therapy and tissue transplantation

  10. Research in radiobiology: Final report of work in progress in immunobiology of experimental host-tumor relationships

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    Our work on the immunobiology of tumors induced in normal mice by non-ionizing radiation and chemical carcinogens has previously demonstrated a correlation between MHC molecule expression and the immunogenicity of tumors in a transplanted syngeneic host. Such that immunogenic or regressive tumors were found to demonstrate higher constitutive or inducible levels of MHC expression, while most virulent, aggressive tumors exhibited a low level of MHC Class I expression. We attributed much of the control of MHC molecule expression by antigen-bearing tumors and normal cells to the immunological status of the host since the host must provide the appropriate stimulus to enhance MHC antigen expression by the invading tumor. Our results with UVR-induced tumors suggested that a significant role is played by the T-cell lymphokine, {gamma}-interferon ({gamma}IFN), in the modulation of MHC molecule expression in vivo. Virulent tumors, induced by boneseeking radionuclides, may be refractory to {gamma}IFN stimulation of MHC molecule expression. It is also possible that certain tumors might be fully responsive to the Class I modulatory influences by {gamma}IFN, but exhibit a reduced capacity to stimulate the synthesis of this lymphokine by host T cells. We present experiments designed to : Describe the virulence, latency period, and transplantation characteristics of {sup 238}PU, {sup 24l}Am, and {sup 228}Th tumors arising as osteogenic sarcomas and hepatic carcinomas, to determine the relationship between inducible expression of MHC Class I molecules by {gamma}IFN and in vivo immunogenicity of these radioisotype-induced tumors, and to elucidate any molecular mechanisms responsible for a lack of responsiveness to a {gamma}IFN failure by the host to induce host {gamma}IFN production.

  11. Research in radiobiology: Final report of work in progress in immunobiology of experimental host-tumor relationships

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-15

    Our work on the immunobiology of tumors induced in normal mice by non-ionizing radiation and chemical carcinogens has previously demonstrated a correlation between MHC molecule expression and the immunogenicity of tumors in a transplanted syngeneic host. Such that immunogenic or regressive tumors were found to demonstrate higher constitutive or inducible levels of MHC expression, while most virulent, aggressive tumors exhibited a low level of MHC Class I expression. We attributed much of the control of MHC molecule expression by antigen-bearing tumors and normal cells to the immunological status of the host since the host must provide the appropriate stimulus to enhance MHC antigen expression by the invading tumor. Our results with UVR-induced tumors suggested that a significant role is played by the T-cell lymphokine, [gamma]-interferon ([gamma]IFN), in the modulation of MHC molecule expression in vivo. Virulent tumors, induced by boneseeking radionuclides, may be refractory to [gamma]IFN stimulation of MHC molecule expression. It is also possible that certain tumors might be fully responsive to the Class I modulatory influences by [gamma]IFN, but exhibit a reduced capacity to stimulate the synthesis of this lymphokine by host T cells. We present experiments designed to : Describe the virulence, latency period, and transplantation characteristics of [sup 238]PU, [sup 24l]Am, and [sup 228]Th tumors arising as osteogenic sarcomas and hepatic carcinomas, to determine the relationship between inducible expression of MHC Class I molecules by [gamma]IFN and in vivo immunogenicity of these radioisotype-induced tumors, and to elucidate any molecular mechanisms responsible for a lack of responsiveness to a [gamma]IFN failure by the host to induce host [gamma]IFN production.

  12. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas.

    Science.gov (United States)

    Anastasiadou, Eleni; Stroopinsky, Dina; Alimperti, Stella; Jiao, Alan L; Pyzer, Athalia R; Cippitelli, Claudia; Pepe, Giuseppina; Severa, Martina; Rosenblatt, Jacalyn; Etna, Marilena P; Rieger, Simone; Kempkes, Bettina; Coccia, Eliana M; Sui, Shannan J Ho; Chen, Christopher S; Uccini, Stefania; Avigan, David; Faggioni, Alberto; Trivedi, Pankaj; Slack, Frank J

    2018-06-26

    Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein-Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.

  13. Dose-dependent and gender-related radiation-induced transcription alterations of Gadd45a and Ier5 in human lymphocytes exposed to gamma ray emitted by 60Co

    International Nuclear Information System (INIS)

    Tavakoli, H.; Manoochehri, M.; Mosalla, S. M. M.; Ghafori, M.; Karimi, A. A.

    2013-01-01

    Growth arrest DNA damage-inducible 45a gene (Gadd45a) and immediate early response gene 5 (Ier5) have been emphasised as ideal radiation bio-markers in several reports. However, some aspects of radiation-induced transcriptional alterations of these genes are unknown. In this study, gender-dependency and dose-dependency as two factors that may affect radiation induced transcription of Gadd45a and Ier5 genes were investigated. Human lymphocyte cells from six healthy voluntary blood donors (three women and three men) were irradiated in vitro with doses of 0.5-4.0 Gy from a 60 Co source and RNA isolated 4 h later using the High Pure RNA Isolation Kit. Dose and gender dependency of radiation-induced transcriptional alterations of Gadd45a and Ier5 genes were studied by quantitative real-time polymerase chain reaction. The results showed that as a whole, Gadd45a and Ier5 gave responses to gamma rays, while the responses were independent of radiation doses. Therefore, regardless of radiation dose, Gadd45a and Ier5 can be considered potential radiation bio-markers. Besides, although radiation-induced transcriptional alterations of Gadd45a in female and male lymphocyte samples were insignificant at 0.5 Gy, at other doses, their quantities in female samples were at a significantly higher level than in male samples. Radiation induced transcription of Ier5 of females samples had a reduction in comparison with male samples at 1 and 2 Gy, but at doses of 0.5 and 4 Gy, females were significantly more susceptible to radiation-induced transcriptional alteration of Ier5. (authors)

  14. Role of IRAK-M in alcohol induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR signaling pathways and interleukin receptor-associated kinase-M (IRAK-M in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT, more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68(+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.

  15. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  16. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens.

    Science.gov (United States)

    Ferguson, Laura V; Kirk Hillier, N; Smith, Todd G

    2013-12-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites.

  17. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens☆

    Science.gov (United States)

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  18. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  19. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host

    Science.gov (United States)

    Xi, Zhiyong; Gavotte, Laurent; Xie, Yan; Dobson, Stephen L

    2008-01-01

    Background Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Results Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Conclusion Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of

  20. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host.

    Science.gov (United States)

    Xi, Zhiyong; Gavotte, Laurent; Xie, Yan; Dobson, Stephen L

    2008-01-02

    Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia infected cell cultures

  1. Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression

    DEFF Research Database (Denmark)

    Makarova, Olga; MacLean, Allyson M.; Nicolaisen, Mogens

    2015-01-01

    a role in host adaptation. 74 genes were up-regulated in insects and included genes involved in stress response, phospholipid synthesis, malate and pyruvate metabolism, hemolysin and transporter genes, multiple copies of thymidylate kinase, sigma factor and Zn-proteases genes. In plants, 34 genes...... encoding an immune dominant membrane protein, membrane-associated proteins, and multidrug resistance ABC-type transporters, were up-regulated. Differential regulation of gene expression thus appears to play an important role in host adaptation of phytoplasmas....

  2. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model

    Directory of Open Access Journals (Sweden)

    Grassian Vicki H

    2011-09-01

    Full Text Available Abstract Background Human exposure to nanoparticles (NPs and environmental bacteria can occur simultaneously. NPs induce inflammatory responses and oxidative stress but may also have immune-suppressive effects, impairing macrophage function and altering epithelial barrier functions. The purpose of this study was to assess the potential pulmonary effects of inhalation and instillation exposure to copper (Cu NPs using a model of lung inflammation and host defense. Methods We used Klebsiella pneumoniae (K.p. in a murine lung infection model to determine if pulmonary bacterial clearance is enhanced or impaired by Cu NP exposure. Two different exposure modes were tested: sub-acute inhalation (4 hr/day, 5 d/week for 2 weeks, 3.5 mg/m3 and intratracheal instillation (24 hr post-exposure, 3, 35, and 100 μg/mouse. Pulmonary responses were evaluated by lung histopathology plus measurement of differential cell counts, total protein, lactate dehydrogenase (LDH activity, and inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Cu NP exposure induced inflammatory responses with increased recruitment of total cells and neutrophils to the lungs as well as increased total protein and LDH activity in BAL fluid. Both inhalation and instillation exposure to Cu NPs significantly decreased the pulmonary clearance of K.p.-exposed mice measured 24 hr after bacterial infection following Cu NP exposure versus sham-exposed mice also challenged with K.p (1.4 × 105 bacteria/mouse. Conclusions Cu NP exposure impaired host defense against bacterial lung infections and induced a dose-dependent decrease in bacterial clearance in which even our lowest dose demonstrated significantly lower clearance than observed in sham-exposed mice. Thus, exposure to Cu NPs may increase the risk of pulmonary infection.

  3. The role of lipids in host microbe interactions.

    Science.gov (United States)

    Lang, Roland; Mattner, Jochen

    2017-06-01

    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  4. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  5. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Science.gov (United States)

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Fox, Amy C; McConnell, Kevin W; Yoseph, Benyam P; Breed, Elise; Liang, Zhe; Clark, Andrew T; O'Donnell, David; Zee-Cheng, Brendan; Jung, Enjae; Dominguez, Jessica A; Dunne, W Michael; Burd, Eileen M; Coopersmith, Craig M

    2012-11-01

    The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1β in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1 mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1 mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.

  7. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  8. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rodrigo eIturriaga

    2014-12-01

    Full Text Available The carotid body (CB plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure and obstructive sleep apnea (OSA. Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH, a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.

  9. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Science.gov (United States)

    Iturriaga, Rodrigo; Andrade, David C.; Del Rio, Rodrigo

    2014-01-01

    The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation. PMID:25520668

  10. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Rebecca E Haddock

    Full Text Available BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat. Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca/IK(Ca inhibition; with such activity being impaired in obesity. SK(Ca-IK(Ca activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine (CyPPA and 1-ethyl-2-benzimidazolinone (1-EBIO, respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca distribution and elevated expression. In contrast, the SK(Ca-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir and Na(+/K(+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K

  11. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  12. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  13. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  14. The path to host extinction can lead to loss of generalist parasites.

    Science.gov (United States)

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  15. Parvoviral nuclear import: bypassing the host nuclear-transport machinery.

    Science.gov (United States)

    Cohen, Sarah; Behzad, Ali R; Carroll, Jeffrey B; Panté, Nelly

    2006-11-01

    The parvovirus Minute virus of mice (MVM) is a small DNA virus that replicates in the nucleus of its host cells. However, very little is known about the mechanisms underlying parvovirus' nuclear import. Recently, it was found that microinjection of MVM into the cytoplasm of Xenopus oocytes causes damage to the nuclear envelope (NE), suggesting that the nuclear-import mechanism of MVM involves disruption of the NE and import through the resulting breaks. Here, fluorescence microscopy and electron microscopy were used to examine the effect of MVM on host-cell nuclear structure during infection of mouse fibroblast cells. It was found that MVM caused dramatic changes in nuclear shape and morphology, alterations of nuclear lamin immunostaining and breaks in the NE of infected cells. Thus, it seems that the unusual nuclear-import mechanism observed in Xenopus oocytes is in fact used by MVM during infection of host cells.

  16. A place for host-microbe symbiosis in the comparative physiologist's toolbox.

    Science.gov (United States)

    Kohl, Kevin D; Carey, Hannah V

    2016-11-15

    Although scientists have long appreciated that metazoans evolved in a microbial world, we are just beginning to appreciate the profound impact that host-associated microbes have on diverse aspects of animal biology. The enormous growth in our understanding of host-microbe symbioses is rapidly expanding the study of animal physiology, both technically and conceptually. Microbes associate functionally with various body surfaces of their hosts, although most reside in the gastrointestinal tract. Gut microbes convert dietary and host-derived substrates to metabolites such as short-chain fatty acids, thereby providing energy and nutrients to the host. Bacterial metabolites incorporated into the host metabolome can activate receptors on a variety of cell types and, in doing so, alter host physiology (including metabolism, organ function, biological rhythms, neural activity and behavior). Given that host-microbe interactions affect diverse aspects of host physiology, it is likely that they influence animal ecology and, if they confer fitness benefits, the evolutionary trajectory of a species. Multiple variables - including sampling regime, environmental parameters, host metadata and analytical methods - can influence experimental outcomes in host-microbiome studies, making careful experimental design and execution crucial to ensure reproducible and informative studies in the laboratory and field. Integration of microbiomes into comparative physiology and ecophysiological investigations can reveal the potential impacts of the microbiota on physiological responses to changing environments, and is likely to bring valuable insights to the study of host-microbiome interactions among a broad range of metazoans, including humans. © 2016. Published by The Company of Biologists Ltd.

  17. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Jeroen van Bergenhenegouwen

    Full Text Available Oral delivery of Gram positive bacteria, often derived from the genera Lactobacillus or Bifidobacterium, can modulate immune function. Although the exact mechanisms remain unclear, immunomodulatory effects may be elicited through the direct interaction of these bacteria with the intestinal epithelium or resident dendritic cell (DC populations. We analyzed the immune activation properties of Lactobacilli and Bifidobacterium species and made the surprising observation that cellular responses in vitro were differentially influenced by the presence of serum, specifically the extracellular vesicle (EV fraction. In contrast to the tested Lactobacilli species, tested Bifidobacterium species induce TLR2/6 activity which is inhibited by the presence of EVs. Using specific TLR ligands, EVs were found to enhance cellular TLR2/1 and TLR4 responses while TLR2/6 responses were suppressed. No effect could be observed on cellular TLR5 responses. We determined that EVs play a role in bacterial aggregation, suggesting that EVs interact with bacterial surfaces. EVs were found to slightly enhance DC phagocytosis of Bifidobacterium breve whereas phagocytosis of Lactobacillus rhamnosus was virtually absent upon serum EV depletion. DC uptake of a non-microbial substance (dextran was not affected by the different serum fractions suggesting that EVs do not interfere with DC phagocytic capacity but rather modify the DC-microbe interaction. Depending on the microbe, combined effects of EVs on TLR activity and phagocytosis result in a differential proinflammatory DC cytokine release. Overall, these data suggest that EVs play a yet unrecognized role in host-microbe responses, not by interfering in recipient cellular responses but via attachment to, or scavenging of, microbe-associated molecular patterns. EVs can be found in any tissue or bodily fluid, therefore insights into EV-microbe interactions are important in understanding the mechanism of action of potential

  18. Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Constanza Bondar

    2017-01-01

    Full Text Available Gaucher disease (GD is caused by mutations in the glucosylceramidase β (GBA 1 gene that confer a deficient level of activity of glucocerebrosidase (GCase. This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE, an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD.

  19. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  20. The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach.

    Directory of Open Access Journals (Sweden)

    Gina Leisching

    Full Text Available During Mycobacterium tuberculosis (M.tb infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T, or in detergent-free medium (R179NT. RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14 were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not

  1. The Bacterial Symbiont Phaeobacter inhibens Shapes the Life History of Its Algal Host Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    Anna R. Bramucci

    2018-05-01

    Full Text Available Marine microbes form host-associated biofilm communities that are shaped by complex interactions between bacteria and their host. The roseobacter Phaeobacter inhibens exploits both symbiotic and pathogenic niches while interacting with its microalgal host Emiliania huxleyi. During co-cultivation over extended periods with E. huxleyi, we show that P. inhibens selectively kills two host cell types, the diploid calcifying strain and the haploid flagellated strain. Meanwhile, various non-calcifying diploid strains are resistant to this pathogen or the pathogen is avirulent to this cell type. This differential pathogenesis has the potential of dramatically altering the composition of E. huxleyi blooms, which are typically dominated by the roseobacter-susceptible calcifying strain. This cell type makes calcite plates, which are an important sink in the marine carbon cycle and forms part of the marine paleobotanic record. P. inhibens kills the haploid cells, which have been proposed as critical to the survival of the algae, as they readily escape both eukaryotic predation and viral infection. Consequently, bacteria such as P. inhibens could influence E. huxleyi's life history by selective pathogenesis, thereby altering the composition of cell types within E. huxleyi populations and its bloom-bust lifestyle.

  2. Fooling the harlequin bug (Hemiptera: Pentatomidae) using synthetic volatiles to alter host plant choice

    Science.gov (United States)

    Harlequin bug, Murgantia histrionica (Hahn) (Hemiptera: Pentatomidae), is a widespread invasive pest that feeds on a variety of brassicaceous crops and other plants. To understand olfactory cues which mediate host-finding, and possible utility in pest management, we deployed aggregation pheromone (m...

  3. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    Science.gov (United States)

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  4. Molecular Mechanisms of Host Cytoskeletal Rearrangements by Shigella Invasins

    Directory of Open Access Journals (Sweden)

    Jun Hyuck Lee

    2014-10-01

    Full Text Available Pathogen-induced reorganization of the host cell cytoskeleton is a common strategy utilized in host cell invasion by many facultative intracellular bacteria, such as Shigella, Listeria, enteroinvasive E. coli and Salmonella. Shigella is an enteroinvasive intracellular pathogen that preferentially infects human epithelial cells and causes bacillary dysentery. Invasion of Shigella into intestinal epithelial cells requires extensive remodeling of the actin cytoskeleton with the aid of pathogenic effector proteins injected into the host cell by the activity of the type III secretion system. These so-called Shigella invasins, including IpaA, IpaC, IpgB1, IpgB2 and IpgD, modulate the actin-regulatory system in a concerted manner to guarantee efficient entry of the bacteria into host cells.

  5. Effects of interleukins 2 and 12 on TBT-induced alterations of MAP kinases p38 and p44/42 in human natural killer cells.

    Science.gov (United States)

    Aluoch, Aloice O; Whalen, Margaret M

    2006-01-01

    NK cells are lymphocytes in the non-adaptive immune system that protect the body against intracellular pathogens and eliminate tumor cells. Tributyltin (TBT) is a toxic chemical that has been detected in human foods as well as in human blood. The role of TBT in immunosuppression has been described, including inhibition of the human NK-cell cytotoxic function. Previous studies indicated that exposure of NK cells to TBT for 1 h induced progressive and irreversible inhibition of cytotoxic function. However, it was found that if NK cells were incubated in TBT-free media with either IL-2 or IL-12, loss of cytotoxic function was prevented/reversed within 24 h. Molecular studies established that loss of cytotoxic function is accompanied by alteration of MAP kinases (MAPKs) p38 and p44/42 phosphorylation. This study examined whether interleukin-mediated recovery of cytotoxicity involved reversal of tributyltin-altered p38 and p44/42 phosphorylation. The results indicated that there was no substantial IL-2 prevention/reversal of the TBT-induced alteration of phosphorylation of either p38 or p44/42 after either a 24 or 48 h recovery period. Additionally, IL-12 caused no substantial prevention/reversal of the TBT-induced alteration of phosphorylation of the MAPKs seen after either 24 or 48 h. These data suggest that IL-2 and/or IL-12-mediated recovery of NK cytotoxic function is not a result of prevention/reversal of TBT-induced phosphorylation of p38 and p44/42 MAPKs at the 24 or 48 h time points. Copyright 2005 John Wiley & Sons, Ltd.

  6. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18.

    Directory of Open Access Journals (Sweden)

    Lee R Haines

    Full Text Available BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27, a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS-induced

  7. Hijacking of the Host Ubiquitin Network by Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    2017-12-01

    Full Text Available Protein ubiquitination is critical for regulation of numerous eukaryotic cellular processes such as protein homeostasis, cell cycle progression, immune response, DNA repair, and vesicular trafficking. Ubiquitination often leads to the alteration of protein stability, subcellular localization, or interaction with other proteins. Given the importance of ubiquitination in the regulation of host immunity, it is not surprising that many infectious agents have evolved strategies to interfere with the ubiquitination network with sophisticated mechanisms such as functional mimicry. The facultative intracellular pathogen Legionella pneumophila is the causative agent of Legionnaires' disease. L. pneumophila is phagocytosed by macrophages and is able to replicate within a niche called Legionella-containing vacuole (LCV. The biogenesis of LCV is dependent upon the Dot/Icm type IV secretion system which delivers more than 330 effector proteins into host cytosol. The optimal intracellular replication of L. pneumophila requires the host ubiquitin-proteasome system. Furthermore, membranes of the bacterial phagosome are enriched with ubiquitinated proteins in a way that requires its Dot/Icm type IV secretion system, suggesting the involvement of effectors in the manipulation of the host ubiquitination machinery. Here we summarize recent advances in our understanding of mechanisms exploited by L. pneumophila effector proteins to hijack the host ubiquitination pathway.

  8. Host fishes and infection strategies of freshwater mussels in large Mobile Basin streams, USA

    Science.gov (United States)

    Wendell R. Haag; Melvin L. Warren

    2003-01-01

    We investigated host fishes, timing and modes of glochidial release, and host-attraction strategies for 7 species of freshwater mussels from the Buttahatchee and Sipsey rivers (Mobile Basin), Alabama and Mississippi, USA. We determined hosts as fish species that produced juvenile mussels from laboratory-induced glochidial infections. We established the following...

  9. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  10. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment.

    Directory of Open Access Journals (Sweden)

    Lara Bull-Otterson

    Full Text Available Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD. Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3-V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.

  11. Mind Control: How Parasites Manipulate Cognitive Functions in Their Insect Hosts

    Directory of Open Access Journals (Sweden)

    Frederic Libersat

    2018-05-01

    Full Text Available Neuro-parasitology is an emerging branch of science that deals with parasites that can control the nervous system of the host. It offers the possibility of discovering how one species (the parasite modifies a particular neural network, and thus particular behaviors, of another species (the host. Such parasite–host interactions, developed over millions of years of evolution, provide unique tools by which one can determine how neuromodulation up-or-down regulates specific behaviors. In some of the most fascinating manipulations, the parasite taps into the host brain neuronal circuities to manipulate hosts cognitive functions. To name just a few examples, some worms induce crickets and other terrestrial insects to commit suicide in water, enabling the exit of the parasite into an aquatic environment favorable to its reproduction. In another example of behavioral manipulation, ants that consumed the secretions of a caterpillar containing dopamine are less likely to move away from the caterpillar and more likely to be aggressive. This benefits the caterpillar for without its ant bodyguards, it is more likely to be predated upon or attacked by parasitic insects that would lay eggs inside its body. Another example is the parasitic wasp, which induces a guarding behavior in its ladybug host in collaboration with a viral mutualist. To exert long-term behavioral manipulation of the host, parasite must secrete compounds that act through secondary messengers and/or directly on genes often modifying gene expression to produce long-lasting effects.

  12. Arsenic induced clinico-hemato-pathological alterations in broilers and its attenuation by vitamin e and selenium

    International Nuclear Information System (INIS)

    Mashkoor, J.; Khan, A.; Khan, M.Z.; Saleemi, M.K.; Mahmood, F.

    2012-01-01

    Present study was carried out to know the arsenic (As) induced toxico-pathological alterations in broiler chicks and their attenuation with vitamin E (Vit E) and selenium (Se). A total of 90 day-old broiler chicks were equally distributed into 5 groups. Groups 1-4 were administered As at 50 mg/kg BW daily through feed for 30 days. In addition to A , groups 2 to 4 received Vitamin E at 150 mg/kg BW, selenium at 0.25 mg/kg BW and Vitamin E plus selenium, respectively. Group 5 (Control) received normal drinking water for 30 days. Dullness, depression, open mouth breathing, increased thirst; ruffled feathers, pale comb, skin irritation and watery diarrhea were the most striking clinical signs. The body weight and feed intake was significantly decreased in treated birds. The erythrocyte counts, hemoglobin concentration and packed cell volume decreased (P<0.05) in treated broilers with As or As with Se and Vit E. Grossly pale and hemorrhagic liver and swollen kidneys were observed in As treated birds. Arsenic treated groups showed significant decrease in serum. Histopathologically, liver exhibited congestion and cytoplasmic vacuolation. In kidneys, condensation of tubular epithelium nuclei, epithelial cell necrosis, increased urinary spaces, sloughing of tubules from basement membrane and cast deposition were observed. In conclusion As induced toxico-pathological alterations and vitamin E and selenium partially ameliorate the toxic effects in broilers chicks. (author)

  13. Endogenous and exogenously-induced immunomodulation of tumour-host responsiveness

    Directory of Open Access Journals (Sweden)

    Richard J. Ablin

    1987-01-01

    Full Text Available In spite of the availability of multiple effector mechanisms of the immune system to combat tumour growth and metastases, their impairment frequently accompanies the appearance of cancer. Factors contributing to this impairment may be related to properties of the host and/or the tumour itself and may be with respect to their origin -endogenous or exogenour. Based on the unique biological behavior of prostate cancer (PCa, and its apparent escape from immune surveillance in the presence of tumour immuno genicity, continuing investigation of endogenous and exogenous factors thought to be relevant to its pathogenesis have been made. For this purpose further studies of the suggested role of human seminal plasma (SePl and the synthetic oestrogen, diethylstiboestrol (DES, as representative endogenous and exogenous immunomodulatory factors (IMF of tumour-host responsiveness, together with evaluation of human prostatic tissue extracts and leuprolide (the luteinizing-hormone-releasing-hormone proposed as an alternate to DES therapy have been made by evaluating their effect on the lytic activity of natural killer (NK cells. SePl and prostate extracts significantly suppressed NK cell lysis. Physicochemical studies suggest SePl and prostate IMF to be associated with high and low molecular weight macromolecules; and implicate the participation of transglutaminase and prostaglandins. Comparative study of therapeutic levels of DES vs. leuprolide on NK cell lysis demonstrated significant suppression by DES vs. a negligible effect of leuprolide. Metastases are highly prevalent in PCa, and contribute significantly to its morbidity and mortality. Further knowledge of the range of effects of endogenous and exogenous IMF on effector mechanisms of tumour-host responsiveness, to include suppression of NK cells, and elucidation of their nature, may contribute toward our understanding of the unique biological behavior of tumours of the prostate, in addition to

  14. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  15. Replication and virus-induced transcriptome of HAdV-5 in normal host cells versus cancer cells--differences of relevance for adenoviral oncolysis.

    Directory of Open Access Journals (Sweden)

    Dominik E Dorer

    Full Text Available Adenoviruses (Ads, especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by

  16. New insights into uremia-induced alterations in metabolic pathways.

    Science.gov (United States)

    Rhee, Eugene P; Thadhani, Ravi

    2011-11-01

    This article summarizes recent studies on uremia-induced alterations in metabolism, with particular emphasis on the application of emerging metabolomics technologies. The plasma metabolome is estimated to include more than 4000 distinct metabolites. Because these metabolites can vary dramatically in size and polarity and are distributed across several orders of magnitude in relative abundance, no single analytical method is capable of comprehensive metabolomic profiling. Instead, a variety of analytical techniques, including targeted and nontargeted liquid chromatography-mass spectrometry, have been employed for metabolomic analysis of human plasma. Recent efforts to apply this technology to study uremia have reinforced the common view that end-stage renal disease is a state of generalized small molecule excess. However, the identification of precursor depletion and downstream metabolite excess - for example, with tryptophan and downstream kynurenine metabolites, with low molecular weight triglycerides and dicarboxylic acids, and with phosphatidylcholines, choline, and trimethylamine-N-oxide - suggest that uremia may directly modulate these metabolic pathways. Metabolomic studies have also begun to expand some of these findings to individuals with chronic kidney disease and in model systems. Uremia is associated with diverse, but incompletely understood metabolic disturbances. Metabolomic approaches permit higher resolution phenotyping of these disturbances, but significant efforts will be required to understand the functional significance of select findings.

  17. Site-specific programming of the host epithelial transcriptome by the gut microbiota

    DEFF Research Database (Denmark)

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina

    2015-01-01

    BACKGROUND: The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting....... The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum...

  18. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  19. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-09-01

    Full Text Available Hydroxycinnamic acids (HCAs are typical monocyclic phenylpropanoids, including cinnamic acid (Cin, coumaric acid (Cou, caffeic acid (Caf, ferulic acid (FA and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.

  20. Haemato-biochemical alterations induced by lead acetate toxicity in wistar rats

    Directory of Open Access Journals (Sweden)

    S. G. Suradkar

    Full Text Available An experiment was conducted to study the haemato-biochemical alterations induced by lead acetate toxicity in 48 Wistar rats of either sex, divided uniformly into four different groups. The rats of group I received only deionised water as control while, group II, III and IV were given lead acetate @ 1 PPM, 100 PPM and 1000 PPM, in drinking deionised water respectively for 28 days. In group III and IV dose dependant significant (P<0.05 reductions in TEC, Hb, PCV and TLC were observed. No significant change was observed in neutrophil, eosinophil, basophil and monocyte count in any treatment groups, whereas the lymphocyte count decreased significantly (P<0.05 in group III and IV. A dose dependant significant (P<0.05 increase in AST, ALP, AKP, GGT, BUN and creatinine was experiential while TP and albumin levels were decreased in group III and IV. [Vet World 2009; 2(11.000: 429-431

  1. Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks.

    Science.gov (United States)

    Dawson, Neil; Xiao, Xiaolin; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-02-01

    Compromised functional integration between cerebral subsystems and dysfunctional brain network organization may underlie the neurocognitive deficits seen in psychiatric disorders. Applying topological measures from network science to brain imaging data allows the quantification of complex brain network connectivity. While this approach has recently been used to further elucidate the nature of brain dysfunction in schizophrenia, the value of applying this approach in preclinical models of psychiatric disease has not been recognized. For the first time, we apply both established and recently derived algorithms from network science (graph theory) to functional brain imaging data from rats treated subchronically with the N-methyl-D-aspartic acid (NMDA) receptor antagonist phencyclidine (PCP). We show that subchronic PCP treatment induces alterations in the global properties of functional brain networks akin to those reported in schizophrenia. Furthermore, we show that subchronic PCP treatment induces compromised functional integration between distributed neural systems, including between the prefrontal cortex and hippocampus, that have established roles in cognition through, in part, the promotion of thalamic dysconnectivity. We also show that subchronic PCP treatment promotes the functional disintegration of discrete cerebral subsystems and also alters the connectivity of neurotransmitter systems strongly implicated in schizophrenia. Therefore, we propose that sustained NMDA receptor hypofunction contributes to the pathophysiology of dysfunctional brain network organization in schizophrenia.

  2. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs

    Directory of Open Access Journals (Sweden)

    Thirugnanam Sivasakthivel

    2013-02-01

    Full Text Available Abstract Background The obligate intracellular protozoan parasite Toxoplasma gondii infects humans and other warm-blooded animals and establishes a chronic infection in the central nervous system after invasion. Studies showing a positive correlation between anti-Toxoplasma antibodies and incidences of brain cancer have led to the notion that Toxoplasma infections increase the risk of brain cancer. However, molecular events involved in Toxoplasma induced brain cancers are not well understood. Presentation of the hypothesis Toxoplasma gains control of host cell functions including proliferation and apoptosis by channelizing parasite proteins into the cell cytoplasm and some of the proteins are targeted to the host nucleus. Recent studies have shown that Toxoplasma is capable of manipulating host micro RNAs (miRNAs, which play a central role in post-transcriptional regulation of gene expression. Therefore, we hypothesize that Toxoplasma promotes brain carcinogenesis by altering the host miRNAome using parasitic proteins and/or miRNAs. Testing the hypothesis The miRNA expression profiles of brain cancer specimens obtained from patients infected with Toxoplasma could be analyzed and compared with that of normal tissues as well as brain cancer tissues from Toxoplasma uninfected individuals to identify dysregulated miRNAs in Toxoplasma-driven brain cancer cells. Identified miRNAs will be further confirmed by studying cancer related miRNA profiles of the different types of brain cells before and after Toxoplasma infection using cell lines and experimental animals. Expected outcome The miRNAs specifically associated with brain cancers that are caused by Toxoplasma infection will be identified. Implications of the hypothesis Toxoplasma infection may promote initiation and progression of cancer by modifying the miRNAome in brain cells. If this hypothesis is true, the outcome of this research would lead to the development of novel biomarkers and

  3. Timing of host feeding drives rhythms in parasite replication

    KAUST Repository

    Prior, Kimberley F.

    2018-02-26

    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the host’s peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the host’s peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new

  4. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  5. Antibiotic-induced change of bacterial communities associated with the copepod Nitocra spinipes.

    Directory of Open Access Journals (Sweden)

    Anna Edlund

    Full Text Available Environmental pressures, such as physical factors, diet and contaminants may affect interactions between microbial symbionts and their multicellular hosts. Despite obvious relevance, effects of antimicrobial contaminants on host-symbiont relations in non-target aquatic organisms are largely unknown. We show that exposure to antibiotics had negative effects on survival and juvenile development of the copepod Nitocra spinipes and caused significant alterations in copepod-associated bacterial communities. The significant positive correlations between indices of copepod development and bacterial diversity indicate that disruption of the microflora was likely to be an important factor behind retarded juvenile development in the experimental animals. Moreover, as evidenced by ribotype distribution in the bacterial clone libraries, the exposure to antibiotics caused a shift in dominance from Betaproteobacteria to Cardinium bacteria; the latter have been shown to cause reproductive manipulations in various terrestrial arthropods. Thus, in addition to providing evidence that the antibiotic-induced perturbation of the microbial community associates with reductions in fitness-related traits of the host, this study is the first record of a copepod serving as a host for endosymbiotic Cardinium. Taken together, our results suggest that (1 antimicrobial substances and possibly other stressors can affect micobiome and symbiont-mediated interactions in copepods and other hosts, and (2 Cardinium endosymbionts may occur in other copepods and affect reproduction of their hosts.

  6. Introduced brown trout alter native acanthocephalan infections in native fish.

    Science.gov (United States)

    Paterson, Rachel A; Townsend, Colin R; Poulin, Robert; Tompkins, Daniel M

    2011-09-01

    1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  7. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  8. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  9. Diet dominates host genotype in shaping the murine gut microbiota

    Science.gov (United States)

    Carmody, Rachel N.; Gerber, Georg K.; Luevano, Jesus M.; Gatti, Daniel M.; Somes, Lisa; Svenson, Karen L.; Turnbaugh, Peter J.

    2014-01-01

    SUMMARY Mammals exhibit marked inter-individual variations in their gut microbiota, but it remains unclear if this is primarily driven by host genetics or by extrinsic factors like dietary intake. To address this, we examined the effect of dietary perturbations on the gut microbiota of five inbred mouse strains, mice deficient for genes relevant to host-microbial interactions (MyD88−/−, NOD2−/−, ob/ob, and Rag1−/−), and >200 outbred mice. In each experiment, consumption of a high-fat, high-sugar diet reproducibly altered the gut microbiota despite differences in host genotype. The gut microbiota exhibited a linear dose response to dietary perturbations, taking an average of 3.5 days for each diet-responsive bacterial groups to reach a new steady state. Repeated dietary shifts demonstrated that most changes to the gut microbiota are reversible, while also uncovering bacteria whose abundance depends on prior consumption. These results emphasize the dominant role that diet plays in shaping inter-individual variations in host-associated microbial communities. PMID:25532804

  10. Chronic zinc deficiency alters chick gut microbiota composition and function

    Science.gov (United States)

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  11. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes

    International Nuclear Information System (INIS)

    Robinson, Stacey A.; Forbes, Mark R.; Hebert, Craig E.

    2010-01-01

    Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values (δ 15 N) than their hosts, which is contradictory to prey-predator trophic enrichment studies, but is in agreement with other endoparasite-host relationships. However, Contracaecum spp. δ 13 C values were significantly greater than their hosts, which suggest that nematodes were consuming host tissues. Nematodes were accumulating and thus sequestering some of their cormorant hosts' body burden of methyl mercury; however, they were not dramatically reducing their hosts' accumulation of methyl mercury.

  12. Proteinaceous molecules mediating Bifidobacterium-host interactions

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz

    2016-08-01

    Full Text Available Bifidobacteria are commensal microoganisms found in the gastrointestinal tract.Several strains have been attributed beneficial traits at local and systemic levels, through pathogen exclusion or immune modulation, among other benefits. This has promoted a growing industrial and scientific interest in bifidobacteria as probiotic supplements. However, the molecular mechanisms mediating this cross-talk with the human host remain unknown. High-throughput technologies, from functional genomics to transcriptomics, proteomics and interactomics coupled to the development of both in vitro and in vivo models to study the dynamics of the intestinal microbiota and their effects on host cells, have eased the identification of key molecules in these interactions. Numerous secreted or surface-associated proteins or peptides have been identified as potential mediators of bifidobacteria-host interactions and molecular cross-talk, directly participating in sensing environmental factors, promoting intestinal colonization or mediating a dialogue with mucosa-associated immune cells. On the other hand, bifidobacteria induce the production of proteins in the intestine, by epithelial or immune cells, and other gut bacteria, which are key elements in orchestrating interactions among bifidobacteria, gut microbiota and host cells. This review aims to give a comprehensive overview on proteinaceous molecules described and characterized to date, as mediators of the dynamic interplay between bifidobacteria and the human host, providing a framework to identify knowledge gaps and future research needs.

  13. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  14. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  15. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism.

    Science.gov (United States)

    Afzal, Muhammad; Kazmi, Imran; Khan, Ruqaiyah; Rana, Poonam; Kumar, Vikas; Al-Abbasi, Fahad A; Zamzami, Mazin A; Anwar, Firoz

    2017-06-01

    Present study, was an effort to scrutinize the molecular and biochemical role of ibuprofen and thiamine combination in diethylnitrosamine (DEN)-induced HCC in Wistar rats. Single intraperitoneal injection of DEN (200 mg/kg) was used for induction of HCC in rats. The rats were divided into eight various groups. DEN induced rats were treated with pure ibuprofen (40 mg/kg) and thiamine in combination for the period of 12th weeks. The protocol was terminated after the 16th week. Exposure of DEN up-regulated the levels of different serum biochemical parameters, antioxidant enzyme level, Alfa-fetoprotein (AFP) and reduced the level of High density lipoprotein (HDL) in Wistar rats along with the alteration in pro-inflammatory cytokines viz., interlukin-6 (IL-6), Tumor necrosis factor (TNF-α) and Interleukin-1β (IL-1β) with decrease in body weight. Macroscopic evaluation, revealed DEN group rats confirmed the expansion of hepatic nodules, which were reduced by the individual treatment of ibuprofen and thiamine, but the synergistic treatment of ibuprofen and thiamine confirm the significant reduction of hepatic nodules. Further, this combination possesses the significant chemoprotective effect in DEN-induced HCC by restoring the hepatic enzymes and other biomarkers along with an alteration in pro-inflammatory cytokines. The above result concludes that ibuprofen and thiamine combination possess potent anti-cancerous activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Late effects of radiation: host factors

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1983-01-01

    The paper discusses the influence of host factors on radiation late effects and in particular cancer. Radiation induces cellular changes that result in initiated cells with a potential to become cancers. The expression of the initiated cells as tumors is influenced, if not determined, by both tissue and systemic factors that are sex-, age-, and species-dependent

  17. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus

    Science.gov (United States)

    Stucker, Karla M.; Pagan, Israel; Cifuente, Javier O.; Kaelber, Jason T.; Lillie, Tyler D.; Hafenstein, Susan; Holmes, Edward C.

    2012-01-01

    The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses. PMID:22114336

  19. Differential tolerances to ocean acidification by parasites that share the same host.

    Science.gov (United States)

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. Host partitioning by parasites in an intertidal crustacean community.

    Science.gov (United States)

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  1. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions.

    Science.gov (United States)

    Bleischwitz, Marc; Albert, Markus; Fuchsbauer, Hans-Lothar; Kaldenhoff, Ralf

    2010-10-22

    Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. The study provides new information about molecular events during the parasitic plant--host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  2. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  3. Induction of MAP Kinase Homologues during Growth and Morphogenetic Development of Karnal Bunt (Tilletia indica) under the Influence of Host Factor(s) from Wheat Spikes

    Science.gov (United States)

    Gupta, Atul K.; Seneviratne, J. M.; Joshi, G. K.; Kumar, Anil

    2012-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes in Tilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development under in vitro culture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development of T. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity. PMID:22547988

  4. Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization.

    Science.gov (United States)

    Mendes de Aguiar, Claudia B N; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio; Trentin, Andréa Gonçalves

    2002-11-01

    Proteoglycans are considered to be important molecule in cell-microenvironment interactions. They are overexpressed in neoplastic cells modifying their growth and migration in hosts. In this work we verified that undersulfation of proteoglycans and other sulfated molecules, induced by sodium chlorate treatment, inhibited C6 glioma cells proliferation in a dose-dependent way. This effect was restored by the addition of exogenous heparin. We could not detect significant cell mortality in our culture condition. The treatment also impaired in a dose-dependent manner, C6 cell adhesion to extracellular matrix (ECM) proteins (collagen IV, laminin and fibronectin). In addition, sodium chlorate treatment altered C6 glioma cell morphology, from the fibroblast-like to a more rounded one. This effect was accompanied by increased synthesis of fibronectin and alterations in its extracellular network organization. However, we could not observe modifications on laminin organization and synthesis. The results suggest an important connection between sulfation degree with important tumor functions, such as proliferation and adhesion. We suggest that proteoglycans may modulate the glioma microenvironment network during tumor cell progression and invasion.

  5. Clerodendron glandulosum Coleb., Verbenaceae, ameliorates high fat diet-induced alteration in lipid and cholesterol metabolism in rats

    Directory of Open Access Journals (Sweden)

    RN Jadeja

    Full Text Available The present study was undertaken to evaluate the efficacy of freeze dried extract of Clerodendron glandulosum Coleb., Verbenaceae, leaves (FECG on alteration in lipid and cholesterol metabolism in high fat diet fed hyperlipidemic rats. Plasma and hepatic lipid profiles, lipid and cholesterol metabolizing enzymes in target tissues and fecal total lipids and bile acid contents were evaluated in FECG treated normolipidemic and hyperlipidemic rats. These results were compared with synthetic hypolipidemic drug Lovastatin (LVS. Results indicate that FECG was able to positively regulate induced experimental hyperlipidemia by significant alteration in plasma and tissue lipid profiles. These results can be attributed to reduced absorption, effective elimination and augmented catabolism of lipids and cholesterol possibly due to high content of saponin and phytosterols in C. glandulosum. Use of C. glandulosum extract as a potential therapeutic agent against hypercholesterolemia and hypertriglyceridemia is indicated.

  6. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    Science.gov (United States)

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  7. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  8. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  9. Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats

    International Nuclear Information System (INIS)

    Pari, Leelavinothan; Murugavel, Ponnusamy

    2007-01-01

    Cadmium (Cd) is a neurotoxic metal, which induces oxidative stress and membrane disturbances in nerve system. The garlic compound diallyl tetrasulfide (DTS) has the cytoprotective and antioxidant activity against Cd induced toxicity. The present study was carried out to investigate the efficacy of DTS in protecting the Cd induced changes in the activity of acetylcholinesterase (AChE), membrane bound enzymes, lipid peroxidation (LPO) and antioxidant status in the brain of rats. In rats exposed to Cd (3 mg/kg/day subcutaneously) for 3 weeks, a significant (P + K + -ATPase, Mg 2+ -ATPase and Ca 2+ -ATPase) were observed in brain tissue. Oral administration of DTS (40 mg/kg/day) with Cd significantly (P < 0.05) diminished the levels of LPO and protein carbonyls and significantly (P < 0.05) increased the activities of ATPases, antioxidant enzymes, GSH and TSH in brain. These results indicate that DTS attenuate the LPO and alteration of antioxidant and membrane bound enzymes in Cd exposed rats, which suggest that DTS protects the brain function from toxic effects of Cd

  10. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  11. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  12. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  13. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ.

    Science.gov (United States)

    van der Linde, Karina; Timofejeva, Ljudmilla; Egger, Rachel L; Ilau, Birger; Hammond, Reza; Teng, Chong; Meyers, Blake C; Doehlemann, Gunther; Walbot, Virginia

    2018-03-01

    Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize ( Zea mays ), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis , to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zm mac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses. © 2018 American Society of Plant Biologists. All rights reserved.

  14. Host response in bovine mastitis experimentally induced with Staphylococcus chromogenes.

    Science.gov (United States)

    Simojoki, H; Orro, T; Taponen, S; Pyörälä, S

    2009-02-16

    An experimental infection model was developed to study host response to intramammary infection in cows caused by Staphylococcus chromogenes. CNS intramammary infections have become very common in modern dairy herds, and they can remain persistent in the mammary gland. More information would be needed about the pathophysiology of CNS mastitis, and an experimental mastitis model is a means for this research. Six primiparous Holstein-Friesian cows were challenged with S. chromogenes 4 weeks after calving. One udder quarter of each cow was inoculated with 2.1 x 10(6)cfu of S. chromogenes. All cows became infected and clinical signs were mild. Milk production of the challenged quarter decreased on average by 16.3% during 7 days post-challenge. Cows eliminated bacteria in a few days, except for one cow which developed persistent mastitis. Milk indicators of inflammation, SCC and N-acetyl-beta-D-glucosaminidase (NAGase) returned to normal within a week. Milk NAGase activity increased moderately, which reflects minor tissue damage in the udder. Concentrations of serum amyloid A (SAA) and milk amyloid A (MAA) were both elevated at 12h PC. MAA was affected by the milking times, and was at its highest before the morning milking. In our experimental model, systemic acute phase protein response with SAA occurred as an on-off type reaction. In conclusion, this experimental model could be used to study host response in CNS mastitis caused by the main CNS species and also for comparison of the host response in a mild intramammary infection and in more severe mastitis models.

  15. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction.

    Science.gov (United States)

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V; Will, Nathan E; Irmady, Krithi; Lee, Francis S; Hempstead, Barbara L; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism (SNP) in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This SNP is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism, we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75(NTR) and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand, which modulates neuronal morphology.

  16. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  17. Ozone impedes the ability of a herbivore to find its host

    Science.gov (United States)

    Fuentes, Jose D.; Roulston, T.'ai H.; Zenker, John

    2013-03-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals.

  18. Ozone impedes the ability of a herbivore to find its host

    International Nuclear Information System (INIS)

    Fuentes, Jose D; Zenker, John; Roulston, T’ai H

    2013-01-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals. (letter)

  19. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants.

    Science.gov (United States)

    MacLean, Allyson M; Sugio, Akiko; Makarova, Olga V; Findlay, Kim C; Grieve, Victoria M; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A

    2011-10-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.

  20. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  1. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    Directory of Open Access Journals (Sweden)

    Pauza Mary E

    2008-03-01

    Full Text Available Abstract A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN. The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ-induced and transgene-mediated murine models of type 1 diabetes (T1D, we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1 expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL. An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG, and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.

  2. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stacey A., E-mail: srobinsc@connect.carleton.ca [Department of Biology, Carleton University, 209 Nesbitt Bldg, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada); Forbes, Mark R., E-mail: mforbes6@gmail.com [Department of Biology, Carleton University, 209 Nesbitt Bldg, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada); Hebert, Craig E., E-mail: Craig.Hebert@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1A 0H3 (Canada)

    2010-10-15

    Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values ({delta}{sup 15}N) than their hosts, which is contradictory to prey-predator trophic enrichment studies, but is in agreement with other endoparasite-host relationships. However, Contracaecum spp. {delta}{sup 13}C values were significantly greater than their hosts, which suggest that nematodes were consuming host tissues. Nematodes were accumulating and thus sequestering some of their cormorant hosts' body burden of methyl mercury; however, they were not dramatically reducing their hosts' accumulation of methyl mercury.

  3. Baccaurea angulata fruit juice ameliorates altered hematological and biochemical biomarkers in diet-induced hypercholesterolemic rabbits.

    Science.gov (United States)

    Ahmed, Idris Adewale; Mikail, Maryam Abimbola; Ibrahim, Muhammad

    2017-06-01

    Hypercholesterolemia is an important risk factor linked to the alteration of blood hematology and clinical chemistry associated with the development and progression of atherosclerosis. Previous studies have demonstrated the safety and potential health benefits of Baccaurea angulata (BA) fruit. We hypothesized that the oral administration of BA fruit juice could ameliorate the alteration in the hematological and biochemical biomarkers of diet-induced hypercholesterolemic rabbits. The aim of this study was to investigate the effects of different doses of BA juice on the hematological and biochemical biomarkers in normo- and hypercholesterolemic rabbits. Thirty-five healthy adult New Zealand White rabbits were assigned to seven different groups for 90days of diet intervention. Four atherogenic groups were fed a 1% cholesterol diet and 0, 0.5, 1.0, and 1.5mL of BA juice per kg of rabbit daily. The other three normal groups were fed a commercial rabbit pellet diet and 0, 0.5, and 1.0mL of BA juice per kg of rabbit daily. Baseline and final blood samples after 90days of repeated administration BA juice were analyzed for hematological parameters while serum, aortic and hepatic lysates were analyzed for lipid profiles and other biochemical biomarkers. The alteration of the hemopoietic system, physiological changes in serum and tissues lipid profiles and other biochemicals resulting from the consumption of a high-cholesterol diet were significantly (Pjuice. Improvements of the biomarkers in rabbits were dose-dependent, markedly enhanced at the highest dose of juice (1.5mL/kg/day). The results suggest potential health benefits of the antioxidant-rich BA fruit juice against hypercholesterolemia-associated hematological and biochemical alterations in the rabbit. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Anti-tachycardia therapy can improve altered cardiac adrenergic function in tachycardia-induced cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ohkusu, Yasuo; Takahashi, Nobukazu; Ishikawa, Toshiyuki [Yokohama City Univ. (Japan). School of Medicine] [and others

    2002-11-01

    We investigated whether anti-tachycardia therapy might improve the altered cardiac adrenergic and systolic function in tachycardia-induced cardiomyopathy (TC) in contrast to dilated cardiomyopathy (DCM). The subjects were 23 patients with heart failure, consisting of 8 patients with TC (43.6{+-}10.0 yrs) and 15 with DCM (45.3{+-}8.2 yrs). TC was determined as impairment of left ventricular function secondary to chronic or very frequent arrhythmia during more than 10% of the day. All patients were receiving anti-tachycardia treatment. Cardiac {sup 123}I-MIBG uptake was assessed as the heart/mediastinum activity ratio (H/M) before and after treatment. Left ventricular ejection fraction (LVEF) was also assessed. In the baseline study, H/M and LVEF showed no difference between TC and DCM (2.21{+-}0.44 vs. 2.10{+-}0.42, 35.3{+-}13.1 vs. 36.0{+-}10.9%, respectively). After treatment, the degree of change in H/M and LVEF differed significantly (0.41{+-}0.34 vs. 0.08{+-}0.20, 20.5{+-}14.4 vs. -2.1{+-}9.6%, p<0.01). In TC, heart failure improved after a shorter duration of treatment (p<0.05). In conclusion, anti-tachycardia therapy can improve altered cardiac adrenergic function and systolic function in patients with TC over a shorter period than in those with DCM. (author)

  5. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Fuchsbauer Hans-Lothar

    2010-10-01

    Full Text Available Abstract Background Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. Results One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. Conclusions The study provides new information about molecular events during the parasitic plant - host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  6. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts

    NARCIS (Netherlands)

    Albert, M.; Kaiser, B.; Krol, van der A.R.; Kaldenhoff, R.

    2010-01-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which

  7. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  8. Bacteria modulate the CD8+ T cell epitope repertoire of host cytosol-exposed proteins to manipulate the host immune response.

    Directory of Open Access Journals (Sweden)

    Yaakov Maman

    2011-10-01

    Full Text Available The main adaptive immune response to bacteria is mediated by B cells and CD4+ T-cells. However, some bacterial proteins reach the cytosol of host cells and are exposed to the host CD8+ T-cells response. Both gram-negative and gram-positive bacteria can translocate proteins to the cytosol through type III and IV secretion and ESX-1 systems, respectively. The translocated proteins are often essential for the bacterium survival. Once injected, these proteins can be degraded and presented on MHC-I molecules to CD8+ T-cells. The CD8+ T-cells, in turn, can induce cell death and destroy the bacteria's habitat. In viruses, escape mutations arise to avoid this detection. The accumulation of escape mutations in bacteria has never been systematically studied. We show for the first time that such mutations are systematically present in most bacteria tested. We combine multiple bioinformatic algorithms to compute CD8+ T-cell epitope libraries of bacteria with secretion systems that translocate proteins to the host cytosol. In all bacteria tested, proteins not translocated to the cytosol show no escape mutations in their CD8+ T-cell epitopes. However, proteins translocated to the cytosol show clear escape mutations and have low epitope densities for most tested HLA alleles. The low epitope densities suggest that bacteria, like viruses, are evolutionarily selected to ensure their survival in the presence of CD8+ T-cells. In contrast with most other translocated proteins examined, Pseudomonas aeruginosa's ExoU, which ultimately induces host cell death, was found to have high epitope density. This finding suggests a novel mechanism for the manipulation of CD8+ T-cells by pathogens. The ExoU effector may have evolved to maintain high epitope density enabling it to efficiently induce CD8+ T-cell mediated cell death. These results were tested using multiple epitope prediction algorithms, and were found to be consistent for most proteins tested.

  9. Histological and histochemical alterations in the kidney induced by lead

    International Nuclear Information System (INIS)

    Jarrar, Bashir M.

    2003-01-01

    Although lead intoxication is one of the most common forms of metal intoxication,the histochemichal alterations in renal tissues due to chronic lead exposure is limited and has not yet been well identified. A total of 60 male Wistar albino rats were exposed to lead acetate trihydrate( 0.0, 0.25, 0.5, 1.0 and 2% for 1 to 12 months) in drinking water to investigate the histological and histochemical alterations in renal tissues due to lead. Chronic exposure to the subtoxic doses of lead produced distinct progressive tubular, glomerular and interstitial damages. Tubular changes occured earlier than the glomerular and interstitial ones,and included anisokaryosis, nuclear pyknosis,karyomeglay, development of intranuclear cytoplasmic inclusions together with tubular dilation, necrosis,vacuolization, tubular hyperplasia and solid tubular adenoma. The glomrular alterations were mainly mesangial hypercellularity, segmental glomerulosclerosis, glomerular hyalinization and glomerular tuft alterations. The findings indicate that lead produces significant histological and histochemical changes in the kidney that lead to severe complications. (author)

  10. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  11. Alterations of energy metabolism and glutathione levels of HL-60 cells induced by methacrylates present in composite resins.

    Science.gov (United States)

    Nocca, G; De Palma, F; Minucci, A; De Sole, P; Martorana, G E; Callà, C; Morlacchi, C; Gozzo, M L; Gambarini, G; Chimenti, C; Giardina, B; Lupi, A

    2007-03-01

    Methacrylic compounds such as 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and bisphenol A glycerolate (1 glycerol/phenol) dimethacrylate (Bis-GMA) are largely present in auto- or photopolymerizable composite resins. Since the polymerization reaction is never complete, these molecules are released into the oral cavity tissues and biological fluids where they could cause local adverse effects. The aim of this work was to verify the hypothesis that the biological effects of HEMA, TEGDMA and Bis-GMA - at a non-cytotoxic concentration - depend on the interaction with mitochondria and exert consequent alterations of energy metabolism, GSH levels and the related pathways in human promyelocytic cell line (HL-60). The biological effects of methacrylic monomers were determined by analyzing the following parameters: GSH concentration, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activity, oxygen and glucose consumption and lactate production along with cell differentiation and proliferation. All monomers induced both cellular differentiation and decrease in oxygen consumption. Cells treated with TEGDMA and Bis-GMA showed a significant enhancement of glucose consumption and lactate production. TEGDMA and HEMA induced GSH depletion stimulating G6PDH and GR activity. All the monomers under study affect the metabolism of HL-60 cells and show differentiating activity. Since alterations in cellular metabolism occurred at compound concentrations well below cytotoxic levels, the changes in energy metabolism and glutathione redox balance could be considered as potential mechanisms for inducing clinical and sub-clinical adverse effects and thus providing useful parameters when testing biocompatibility of dental materials.

  12. Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Directory of Open Access Journals (Sweden)

    Helen J. Esser

    2016-12-01

    Full Text Available Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

  13. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    International Nuclear Information System (INIS)

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-01-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver

  14. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  15. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    Directory of Open Access Journals (Sweden)

    Jessica Z. Kubicek-Sutherland

    2015-09-01

    Full Text Available Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  16. Molecular alterations underlying the spontaneous and γ-ray-induced point mutations at the white locus of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Aleksandrova, M.V.; Lapidus, I.L.; Aleksandrov, I.D.; Karpovskij, A.L.

    1996-01-01

    The white locus in D.Melanogaster was selected as a target gene for the study of the mutational spectra of spontaneously arising and radiation-induced gene mutations in a whole organism. Analysis of 6 spontaneous and 73 γ-ray-induced white mutations by a combination of cytological, genetic and molecular techniques revealed that on the chromosomal and genetic levels all spontaneous mutations showed themselves to be point mutants. The share of such mutants among all heritable radiation-induced gene mutations is about 40%, whereas the rest ones are due to exchange breaks (8%) as well as multilocus, single-locus or partial-locus (intragenic) deletions (52%). The DNAs from 4 spontaneous and 17 γ-ray-induced point mutants were analysed by Southern blot-hybridization. The three spontaneous and 7 radiation mutants showed an altered DNA sequence at the left (distal) half of the white gene due to insertion or DNA rearrangement. The rest (58%) of the radiation-induced point mutations did not indicate any alternations in this part of the gene as detected by this technique and probes employed. 15 refs., 3 figs., 1 tab

  17. Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations?

    Science.gov (United States)

    Lofgren, Lotus; Nguyen, Nhu H; Kennedy, Peter G

    2018-02-07

    Despite the importance of ectomycorrhizal (ECM) fungi in forest ecosystems, knowledge about the ecological and co-evolutionary mechanisms underlying ECM host associations remains limited. Using a widely distributed group of ECM fungi known to form tight associations with trees in the family Pinaceae, we characterized host specificity among three unique Suillus-host species pairs using a combination of field root tip sampling and experimental bioassays. We demonstrate that the ECM fungus S. subaureus can successfully colonize Quercus hosts in both field and glasshouse settings, making this species unique in an otherwise Pinaceae-specific clade. Importantly, however, we found that the colonization of Quercus by S. subaureus required co-planting with a Pinaceae host. While our experimental results indicate that gymnosperms are required for the establishment of new S. subaureus colonies, Pineaceae hosts are locally absent at both our field sites. Given the historical presence of Pineaceae hosts before human alteration, it appears the current S. subaureus-Quercus associations represent carryover from past host presence. Collectively, our results suggest that patterns of ECM specificity should be viewed not only in light of current forest community composition, but also as a legacy effect of host community change over time. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    OpenAIRE

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis and its toxins are widely used for insect control. Notwithstanding the remarkable importance of this insect pathogen, its killing mechanism has yet to be fully elucidated. Here we show that the microbiota resident in the host midgut triggers a lethal septicemia. The infection process is enhanced by reducing the host immune response and its control on replication of midgut bacteria invading the body cavity through toxin-induced epithelial lesions. The experimental approa...

  19. Host pathogen interactions in Helicobacter pylori related gastric cancer

    Science.gov (United States)

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  20. Probing Molecular Insights into Zika Virus–Host Interactions

    Directory of Open Access Journals (Sweden)

    Ina Lee

    2018-05-01

    Full Text Available The recent Zika virus (ZIKV outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1 what virologic factors are involved in the ZIKV-associated human diseases; (2 which ZIKV protein(s contributes to the enhanced viral pathogenicity; and (3 how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions.