WorldWideScience

Sample records for induced activity profile

  1. Distribution of induced activity in tungsten targets

    International Nuclear Information System (INIS)

    Donahue, R.J.; Nelson, W.R.

    1988-09-01

    Estimates are made of the induced activity created during high-energy electron showers in tungsten, using the EGS4 code. Photon track lengths, neutron yields and spatial profiles of the induced activity are presented. 8 refs., 9 figs., 1 tab

  2. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin

    Directory of Open Access Journals (Sweden)

    Danielle Ayr Tavares de Almeida

    2012-08-01

    Full Text Available The present study investigated the effect of supplementation of vitamin E on streptozotocin (STZ-induced diabetic rats by measuring blood glucose, changes in body weight, food and water intake, lipid profile, serum urea and creatinine level, and antioxidant enzyme activity. Male Wistar rats were divided into four groups: control rats (GI; rats receiving vitamin E (GII; STZ-induced diabetic rats (GIII and STZ-induced diabetic rats treated with vitamin E (GIV. Vitamin E reduced (p<0.05 blood glucose and urea, improved the lipid profile (decreased the serum levels of total cholesterol, LDL cholesterol, VLDL cholesterol and triacylglycerols, and increased HDL cholesterol and increased total protein in STZ-induced diabetic rats (GIV. Vitamin prevented changes in the activity of SOD and GSH-Px and in the concentration of lipid hydroperoxide. These results suggested that vitamin E improved hyperglycaemia and dyslipidaemia while inhibiting the progression of oxidative stress in STZ-induced diabetic rats.

  3. Secondary metabolites profiles and antioxidant activities of germinated brown and red rice

    Science.gov (United States)

    Nurnaistia, Y.; Aisyah, S.; Munawaroh, H. S. H.; Zackiyah

    2018-05-01

    The research aims to investigate the effect of germination on the secondary metabolite profiles and antioxidant activity of brown and red rice. The germination was performed by using a simple laboratory-scale machine that was designed and optimized to provide conditions that support the germination process. The germination was carried out for 2 days in dark conditions at 26°C and 99% humidity. Analysis of the secondary metabolite profile of ungerminated and germinated rice was performed using LC-MS. The antioxidant activities of ungerminated and germinated rice were done by using DPPH method. The results showed that the profiles of secondary metabolites of brown and red rice changed after germination. Some peaks were found to be induced in the germinated rice. However, some peaks were also loss during germination. The antioxidant activity of brown rice was slightly increased due to the germination, from 11.2% to 22.5%. Meanwhile the antioxidant activity of red rice was decreased after germination, from 73.8% to 60.0%.

  4. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    Science.gov (United States)

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to

  5. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  6. Lifestyle profile assessment in active and non-active hypertensive women

    Directory of Open Access Journals (Sweden)

    N. R. Cavichia

    2016-05-01

    Full Text Available The present study aimed to evaluate the lifestyle´s profile of 30 hypertensive women practitioners and nonpractitioners of physical activity in the city of Sinop/MT. We used the questionnaire Profile of Single Lifestyle (PSL consists of three issues of the components of Nutrition (N, Physical Activity (PA, Preventive Behavior (PB, Social Networking (SN and Stress Management (SM with scores ranging from 0 to 3 points and score calculated by the sum of questions divided by the number of questions. The data were analyzed statistically with a significance of 5%. The average of the active components of PSL (N = 2,07, PA = 2,04, PB = 2,18, SN = 2,38 and SM = 2,42 and average overall score of 2,16 inactive (N = 1,73, AF = 1,33, PB = 2,40, RS = 2,02 and SN = 2,09 and average score 1,86. In the comparison between groups all components were significant different. It was concluded that the profile of the active lifestyle of hypertensive women have significantly higher values than non-active women

  7. Effect of Tomato Industrial Processing on Phenolic Profile and Antiplatelet Activity

    Directory of Open Access Journals (Sweden)

    Iván Palomo

    2013-09-01

    Full Text Available Background: Regular consumption of fruits and vegetables (e.g., tomatoes has been shown to be beneficial in terms of reducing the incidence of cardiovascular diseases. The industrial processing of tomatoes into tomato-based products includes several thermal treatments. Very little is known on the effect of tomato industrial processing on antiaggregatory activity and phenolic profile. Methods: It was assessed the effect of tomato and by-products extracts on platelet aggregation induced by ADP, collagen, TRAP-6 and arachidonic acid. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. A set of antiplatelet compounds has been selected for HPLC analysis in the different extracts. Results: Some natural compounds such as chlorogenic, caffeic, ferulic and p-coumaric acids were identified by HPLC in tomatoes and its products may inhibit platelet activation. Red tomatoes, tomato products (sauce, ketchup and juice and by-products extracts inhibited platelet aggregation induced adenosine 5'-diphosphate, collagen, thrombin receptor activator peptide-6 and arachidonic acid, but to a different extent. Also, pomace extract presents antithrombotic activity. Conclusions: Processed tomatoes may have a higher content of health-benefiting compounds than fresh ones. Pomace even presents the best antiplatelet activity. Finally, tomato products may be used as a functional ingredient adding antiplatelet activities to processed foods.

  8. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands-nonstimulated and stimulated salivary flow, α -amylase, total protein-and salivary exoglycosidase activities-N-acetyl- β -hexosaminidase (HEX, HEX A, and HEX B), β -glucuronidase, α -fucosidase, β -galactosidase, and α -mannosidase-was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α -amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  9. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    Science.gov (United States)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  10. Radiation-induced malignant tumours: a specific cytogenetic profile?

    International Nuclear Information System (INIS)

    Chauveinc, L.; Gaboriaux, G.; Dutrillaux, A. M.; Dutrillaux, B.; Chauveinc, L.; Ricoul, M.; Sabatier, L.; Dutrillaux, B.

    1997-01-01

    To date, there is no criterion enabling to determine the spontaneous or radio-induced origin of malignant tumour occurring in a previously irradiated patient. Biological studies are rare. The cytogenetic data which could be found in the literature for eleven radio-induced tumours suggest that aneuploidies and polyclonality are frequent events. We studied, by R-Banding cytogenetic technique, five patients with short-term cultures (3 cases), short and long-term cultures (1 case) and xeno-grafting on nude pattern a high rate of balanced translocations, numerous random break points and a polyclonal evolution (10 clones). All other tumours, including the xeno-grafting sarcoma, had a monoclonal profile with complex karyotypes, hypo-diploid formulas and many deletions. These results show that the mechanism of radiation-induced tumours frequently involves chromosomes losses and deletions. The most likely explanation is that these alterations unmask radiation induced recessive mutations of tumour suppressor genes. (authors)

  11. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer Thapsigargin based on comparative gene expression profiling in Jurkat T cells

    NARCIS (Netherlands)

    Schmeits, P.C.J.; Katika, M.R.; Peijnenburg, A.A.C.M.; Loveren, van H.; Hendriksen, P.J.M.

    2014-01-01

    Previously, we studied the effects of deoxynivalenol (DON) and tributyltin oxide (TBTO) on whole genome mRNA expression profiles of human T lymphocyte Jurkat cells. These studies indicated that DON induces ribotoxic stress and both DON and TBTO induced ER stress which resulted into T-cell activation

  12. Anti obese potential of Cucurbita maxima seeds oil: effect on lipid profile and histoarchitecture in high fat diet induced obese rats.

    Science.gov (United States)

    Kalaivani, A; Sathibabu Uddandrao, V V; Brahmanaidu, P; Saravanan, Ganapathy; Nivedha, P R; Tamilmani, P; Swapna, K; Vadivukkarasi, Sasikumar

    2017-10-19

    In this study, we made an attempt to evaluate the potential of Cucurbita maxima seeds oil (CSO) against high-fat diet (HFD)-induced obesity in rats. We investigated the effect of CSO (100 mg/kg body weight) supplementation over 30 days on the changes of HFD-induced obese rats in body weight, biochemical parameters and lipid profile as well as investigated the effects of CSO on the histopathological changes. Oral administration with CSO revealed significant diminution in body weight gain, glucose and insulin levels, which altered the activity of lipid profile and restored the pathological alterations. It demonstrated that CSO had considerably altered these parameters when evaluated with HFD control rats. In conclusion, this study established that CSO prevents the HFD-induced obesity by altering the markers important to lipid metabolism.

  13. Injection profiles with radiation induced copolymers

    International Nuclear Information System (INIS)

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    The injectivity profile of a heterogeneous formation and/or vertical conformance is improved by injecting an aqueous solution into the formation, the solution containing a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in a 10 to 60 percent aqueous solution with gamma radiation; the aqueous monomer solution preferably contains 25 to 99 percent acrylamide and 1 to 75 percent sodium acrylate. Immiscible, miscible, or miscible-like displacing processes can be used in conjunction with this invention. 20 claims

  14. On active current selection for Lagrangian profilers

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Zhou, Qiuyang; Zielinski, Oliver

    2013-01-01

    simple and computationally-efficient control strategies to actively select and use ocean currents so that a profiler can autonomously reach a desired destination. After briefly presenting a typical profiler and possible mechanical modifications for a coastal environment, we introduce simple mathematical...... models for the profiler and the currents it will use. We then present simple feedback controllers that, using the direction of the currents and taking into account the configuration of the environment (coastal or deep-sea), is able to steer the profiler to any desired horizontal location. To illustrate...

  15. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes.

    Directory of Open Access Journals (Sweden)

    Jonathan G Boucher

    Full Text Available Bisphenol S (BPS is increasingly used as a replacement plasticizer for bisphenol A (BPA but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs. Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR/retinoid X receptor (RXR activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes.

  16. Lung vagal afferent activity in rats with bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Schelegle, E S; Walby, W F; Mansoor, J K; Chen, A T

    2001-05-01

    Bleomycin treatment in rats results in pulmonary fibrosis that is characterized by a rapid shallow breathing pattern, a decrease in quasi-static lung compliance and a blunting of the Hering-Breuer Inflation Reflex. We examined the impulse activity of pulmonary vagal afferents in anesthetized, mechanically ventilated rats with bleomycin-induced lung fibrosis during the ventilator cycle and static lung inflations/deflations and following the injection of capsaicin into the right atrium. Bleomycin enhanced volume sensitivity of slowly adapting stretch receptors (SARs), while it blunted the sensitivity of these receptors to increasing transpulmonary pressure. Bleomycin treatment increased the inspiratory activity, while it decreased the expiratory activity of rapidly adapting stretch receptors (RARs). Pulmonary C-fiber impulse activity did not appear to be affected by bleomycin treatment. We conclude that the fibrosis-related shift in discharge profile and enhanced volume sensitivity of SARs combined with the increased inspiratory activity of RARs contributes to the observed rapid shallow breathing of bleomycin-induced lung fibrosis.

  17. Prospects of hydrocarbon deposits exploration using the method of induced polarization during geomagnetic-variation profiling

    Directory of Open Access Journals (Sweden)

    К. М. Ермохин

    2017-10-01

    Full Text Available Traditionally it is believed that the effect of induced polarization is an interfering factor for the measurement of electromagnetic fields and their interpretation during conducting works using magnetotelluric sounding and geomag-netic-variation profiling methods. A new method is proposed for isolating the effects of induced polarization during geomagnetic-variation profiling aimed at searching for hydrocarbon deposits on the basis of phase measurements during the conduct of geomagnetic-variation profiling. The phenomenon of induced polarization is proposed to be used as a special exploration mark for deep-lying hydrocarbon deposits. The traditional method of induced polarization uses artificial field sources, the powers of which are principally insufficient to reach depths of 3-5 km, which leads to the need to search for alternative - natural sources in the form of telluric and magnetotelluric fields. The proposed method makes it possible to detect and interpret the effects of induced polarization from deep-seated oil and gas reservoirs directly, without relying on indirect signs.

  18. Platelet activating factor-induced ceramide micro-domains drive endothelial NOS activation and contribute to barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Sanda Predescu

    Full Text Available The spatial and functional relationship between platelet activating factor-receptor (PAF-R and nitric oxide synthase (eNOS in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles.

  19. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-01-01

    Full Text Available Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ- induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4 and diabetic groups (STZ2, STZ4. The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N-acetyl-β-hexosaminidase (HEX, HEX A, and HEX B, β-glucuronidase, α-fucosidase, β-galactosidase, and α-mannosidase—was estimated both in the parotid and submandibular glands of STZ-diabetic and control rats. The study has demonstrated that the activity of most salivary exoglycosidases is significantly higher in the parotid and submandibular glands of STZ-diabetic rats as compared to the healthy controls and that it increases as the disease progresses. Reduced secretory function of diabetic salivary glands was also observed. A significant inverse correlation between HEX B, α-amylase activity, and stimulated salivary flow in diabetic parotid gland has also been shown. Summarizing, STZ-induced diabetes leads to a change in the lysosomal exoglycosidase profile and reduced function of the salivary glands.

  20. HPLC based activity profiling for 5-lipoxygenase inhibitory activity in Isatis tinctoria leaf extracts.

    Science.gov (United States)

    Oberthür, C; Jäggi, R; Hamburger, M

    2005-06-01

    In the pursuit of the anti-inflammatory constituents in lipophilic woad extracts, the 5-lipoxygenase (5-LOX) inhibitory activity was investigated by HPLC-based activity profiling. In a low-resolution profiling, two time windows with peaks of activity were found. The first coincided with tryptanthrin, a known dual inhibitor of cyclooxygenase-2 (COX-2) and 5-LOX, whereas the major inhibitory fraction was towards the end of the HPLC run. The active fractions were profiled in a peak-resolved manner, and the compounds analyzed by LC-MS, GC and TLC. The activity in the lipophilic fractions of the Isatis extract could be linked to an unsaturated fatty acid, alpha-linolenic acid.

  1. Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling.

    Directory of Open Access Journals (Sweden)

    Miguel Pinilla-Vera

    Full Text Available Despite recent advances in understanding macrophage activation, little is known regarding how human alveolar macrophages in health calibrate its transcriptional response to canonical TLR4 activation. In this study, we examined the full spectrum of LPS activation and determined whether the transcriptomic profile of human alveolar macrophages is distinguished by a TIR-domain-containing adapter-inducing interferon-β (TRIF-dominant type I interferon signature. Bronchoalveolar lavage macrophages were obtained from healthy volunteers, stimulated in the presence or absence of ultrapure LPS in vitro, and whole transcriptomic profiling was performed by RNA sequencing (RNA-Seq. LPS induced a robust type I interferon transcriptional response and Ingenuity Pathway Analysis predicted interferon regulatory factor (IRF7 as the top upstream regulator of 89 known gene targets. Ubiquitin-specific peptidase (USP-18, a negative regulator of interferon α/β responses, was among the top up-regulated genes in addition to IL10 and USP41, a novel gene with no known biological function but with high sequence homology to USP18. We determined whether IRF-7 and USP-18 can influence downstream macrophage effector cytokine production such as IL-10. We show that IRF-7 siRNA knockdown enhanced LPS-induced IL-10 production in human monocyte-derived macrophages, and USP-18 overexpression attenuated LPS-induced production of IL-10 in RAW264.7 cells. Quantitative PCR confirmed upregulation of USP18, USP41, IL10, and IRF7. An independent cohort confirmed LPS induction of USP41 and IL10 genes. These results suggest that IRF-7 and predicted downstream target USP18, both elements of a type I interferon gene signature identified by RNA-Seq, may serve to fine-tune early cytokine response by calibrating IL-10 production in human alveolar macrophages.

  2. Microbiological profile and calprotectin expression in naturally occurring and experimentally induced gingivitis.

    Science.gov (United States)

    Farina, Roberto; Guarnelli, Maria Elena; Figuero, Elena; Herrera, David; Sanz, Mariano; Trombelli, Leonardo

    2012-10-01

    This study was performed to evaluate the microbiological profile and the calprotectin expression in gingival crevicular fluid (GCF) in spontaneous and experimentally induced gingival inflammation. Thirty-seven periodontally healthy subjects were evaluated in real life conditions (N-O gingivitis) as well as after 21 days of experimental gingivitis trial (E-I gingivitis). During the experimental gingivitis trial, in one maxillary quadrant (test quadrant), gingival inflammation was induced by oral hygiene abstention, while in the contralateral (control) quadrant, oral hygiene was routinely continued. The results of the study showed that (1) the microbiological profile of quadrants where gingival inflammation was experimentally induced (i.e., E-I test quadrants) differed significantly from that of either quadrants where gingival inflammation was controlled by proper plaque control (i.e., E-I control quadrants) or quadrants with N-O gingivitis, and (2) GCF calprotectin was significantly higher at E-I test quadrants compared to either E-I control quadrants or quadrants with N-O gingivitis. A positive intrasubject correlation was found between GCF concentration of calprotectin at sites presenting N-O and E-I gingivitis. N-O and E-I gingivitis showed a different microbiological profile of the subgingival environment. GCF calprotectin is a reliable marker of gingival inflammation, and its concentration in N-O gingivitis is correlated with its expression in E-I gingivitis. The modality of plaque accumulation seems to affect the subgingival microbiological profile associated with a gingivitis condition. Calprotectin levels in GCF may be regarded as a promising marker of the individual susceptibility to develop gingival inflammation in response to experimentally induced plaque accumulation.

  3. Synthesis and Antidepressant Activity Profile of Some Novel Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Ümide Demir Özkay

    2017-09-01

    Full Text Available Within the scope of our new antidepressant drug development efforts, in this study, we synthesized eight novel benzothiazole derivatives 3a–3h. The chemical structures of the synthesized compounds were elucidated by spectroscopic methods. Test compounds were administered orally at a dose of 40 mg/kg to mice 24, 5 and 1 h before performing tail suspension, modified forced swimming, and activity cage tests. The obtained results showed that compounds 3c, 3d, 3f–3h reduced the immobility time of mice as assessed in the tail suspension test. Moreover, in the modified forced swimming tests, the same compounds significantly decreased the immobility, but increased the swimming frequencies of mice, without any alteration in the climbing frequencies. These results, similar to the results induced by the reference drug fluoxetine (20 mg/kg, po, indicated the antidepressant-like activities of the compounds 3c, 3d, 3f–3h. Owing to the fact that test compounds did not induce any significant alteration in the total number of spontaneous locomotor activities, the antidepressant-like effects of these derivatives seemed to be specific. In order to predict ADME parameters of the synthesized compounds 3a–3h, some physicochemical parameters were calculated. The ADME prediction study revealed that all synthesized compounds may possess good pharmacokinetic profiles.

  4. The association between the activity profile and cardiovascular risk.

    Science.gov (United States)

    Maddison, Ralph; Jiang, Yannan; Foley, Louise; Scragg, Robert; Direito, Artur; Olds, Timothy

    2016-08-01

    This study sought to better understand the interrelationships between physical activity and sedentary behaviour and the relationship to risk of cardiovascular disease (CVDR) in adults aged 30-75 years. Cross-sectional. Data from two-year waves (2003-2004 and 2005-2006) of the National Health and Nutritional Examination survey were analysed in 2014. Accelerometer-derived time and proportion of time spent sedentary and on moderate-to-vigorous physical activity (MVPA) were calculated to generate four activity profiles based on cut-points to define low and high levels for the respective behaviours. Using health outcome data, CVDR was calculated for each person. Weighted multiple linear regression models were used to evaluate the predicted effects of sedentary and physical activity behaviours on the CVDR score, adjusting for participants' sex, age group, race, annual household income, and accelerometer wear time. The lowest CVDR was observed among Busy Exercisers (high MVPA and low sedentary; 8.5%), whereas Couch Potatoes (low MVPA and high sedentary) had the highest (18.6%). Compared with the reference group (Busy Exercisers), the activity profile associated with the highest CVDR was Couch Potatoes (adjusted mean difference 3.6, SE 0.38, prisk landscape" was developed to better visualise the conjoint associations of MVPA and sedentary behaviour on CVDR for each activity profile. The association between MVPA was greater than that of sedentary behaviour; however, for people with low MVPA, shifts in sedentary behaviour may have the greatest impact on CVDR. Activity profiles that consider the interrelationships between physical activity and sedentary behaviour differ in terms of CVDR. Future interventions may need to be tailored to specific profiles and be dynamic enough to reflect change in the profile over time. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Weiss, Gudrun Margarethe; Rasmussen, Simon; Fink, Lisbeth Nielsen

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing...... cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium...

  6. Profiling gene expression induced by protease-activated receptor 2 (PAR2 activation in human kidney cells.

    Directory of Open Access Journals (Sweden)

    Jacky Y Suen

    Full Text Available Protease-Activated Receptor-2 (PAR2 has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD and key events in tumor progression (angiogenesis, metastasis, but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293, a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2 and a PAR2 activating hexapeptide (2f-LIGRLO-NH(2. Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes, the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2 and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15. Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4 known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents.

  7. Hidden Markov models for the activity profile of terrorist groups

    OpenAIRE

    Raghavan, Vasanthan; Galstyan, Aram; Tartakovsky, Alexander G.

    2012-01-01

    The main focus of this work is on developing models for the activity profile of a terrorist group, detecting sudden spurts and downfalls in this profile, and, in general, tracking it over a period of time. Toward this goal, a $d$-state hidden Markov model (HMM) that captures the latent states underlying the dynamics of the group and thus its activity profile is developed. The simplest setting of $d=2$ corresponds to the case where the dynamics are coarsely quantized as Active and Inactive, re...

  8. Student profiling on university co-curricular activities using cluster analysis

    Science.gov (United States)

    Rajenthran, Hemabegai A./P.; Shaharanee, Izwan Nizal Mohd; Jamil, Jastini Mohd.

    2017-11-01

    In higher learning institutions, the co-curricular programs are needed for the graduation besides the standard academic programs. By actively participating in co-curricular, students can attain many of soft skills and proficiencies besides learning and adopting campus environment, community and traditions. Co-curricular activities are implemented by universities mainly for the refinement of the academic achievement along with the social development. This studies aimed to analyse the academic profile of the co-curricular students among uniform units. The main objective of study is to develop a profile of student co-curricular activities in uniform units. Additionally, several variables has been selected to serve as the characteristics for student co-curricular profile. The findings of this study demonstrate the practicality of clustering technique to investigate student's profiles and allow for a better understanding of student's behavior and co-curriculum activities.

  9. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  10. Influence of laser beam profile on electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Cuk, S. M.; Radonjic, M.; Krmpot, A. J.; Nikolic, S. N.; Grujic, Z. D.; Jelenkovic, B. M.

    2010-01-01

    We compared, experimentally and theoretically, Hanle electromagnetically induced absorption (EIA) obtained using Gaussian and Π-shaped laser beams 3 mm in diameter. The study was done by measuring the transmission of a laser locked to the F g =2→F e =3 transition at the D 2 line of 87 Rb in a vacuum cell. EIA linewidths obtained for the two laser profiles were significantly different in the range of laser intensities 1-4 mW/cm 2 . EIA with the Π-shaped laser beam has a broad intensity maximum and linewidths larger than those obtained with the Gaussian beam profile. We also studied Hanle EIA by measuring the transmission of selected segments of the entire laser beam by placing a small movable aperture in front of the detector. Waveforms so obtained in Hanle EIA resonances were strongly influenced both by the radial distance of the transmitted segment from the beam center and by the radial profile of the laser beam. We show that outer regions of Gaussian beam, and central regions of the Π-shaped beam generate the narrowest lines. The different behaviors of EIA owing to different beam profiles revealed by both theory and experiment indicate the importance of the radial profile of the laser beam for proper modeling of coherent effects in alkali metal vapors.

  11. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  12. Spatial profile of contours inducing long-range color assimilation.

    Science.gov (United States)

    Devinck, Frédéric; Spillmann, Lothar; Werner, John S

    2006-01-01

    Color induction was measured using a matching method for two spatial patterns, each composed of double contours. In one pattern (the standard), the contours had sharp edges to induce the Watercolor Effect (WCE); in the other, the two contours had a spatial taper so that the overall profile produced a sawtooth edge, or ramped stimulus. These patterns were chosen based on our previous study demonstrating that the strength of the chromatic WCE depends on a luminance difference between the two contours. Low-pass chromatic mechanisms, unlike bandpass luminance mechanisms, may be expected to be insensitive to the difference between the two spatial profiles. The strength of the watercolor spreading was similar for the two patterns at narrow widths of the contour possibly because of chromatic aberration, but with wider contours, the standard stimulus produced stronger assimilation than the ramped stimulus. This research suggests that luminance-dependent chromatic mechanisms mediate the WCE and that these mechanisms are sensitive to differences in the two spatial profiles of the pattern contours only when they are wide.

  13. Serum Protein Profile Study of Clinical Samples Using High Performance Liquid Chromatography-Laser Induced Fluorescence

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Ukendt, Sujatha; Rai, Lavanya

    2009-01-01

    The serum protein profiles of normal subjects, patients diagnosed with cervical cancer, and oral cancer were recorded using High Performance Liquid Chromatography combined with Laser Induced Fluorescence detection (HPLC-LIF). Serum protein profiles of the above three classes were tested for estab...

  14. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  15. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    Science.gov (United States)

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  16. PPARalpha siRNA-treated expression profiles uncover the causal sufficiency network for compound-induced liver hypertrophy.

    Directory of Open Access Journals (Sweden)

    Xudong Dai

    2007-03-01

    Full Text Available Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs against the gene for peroxisome proliferator-activated receptor alpha (Ppara, our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARalpha-induced liver hypertrophy is supported by their ability to predict non-PPARalpha-induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005. Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug-induced

  17. Effects of Arctium lappa aqueous extract on lipid profile and hepatic enzyme levels of sucrose-induced metabolic syndrome in female rats

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    Full Text Available ABSTRACT Arctium lappa is known to have antioxidant and antidiabetic effects in traditional medicine. Objectives: The aim of this paper was to study the effects of A. lappa root extract (AE on lipid profile and hepatic enzyme levels in sucrose-induced metabolic syndrome (MS in female rats. The study used 40 adult female Wistar rats weighing 150 g-250 g randomly divided into five groups: control, metabolic syndrome (MS, metabolic syndrome+AE at 50,100, 200 mg/kg. MS was induced by administering 50% sucrose in drinking water for 6 weeks. AE was intra-peritoneally administered daily at doses of 50,100, and 200 mg/kg for two sequential weeks at the end of the fourth week in metabolic syndrome rats. Twenty-four hours after the last administration of AE, blood was collected and centrifuged, and then the serum was used for the measurement of lipid profile and hepatic enzyme. Serum glucose, insulin, fasting insulin resistance index, body weight, water intake, lipid profile, and hepatic enzymes were significantly increased although food intake was decreased in MS rats compared to the control rats. The lipids and liver enzymes were reduced by AE extracts in the MS group. This study showed that the A. lappa root aqueous extract exhibits a hypolipidemic activity of hyperlipidemic rats. This activity is practically that of a triple-impact antioxidant, hypolipidemic, and hepatoprotective.

  18. [Gene Expression Profile of Apoptosis in Leukemia Cells Induced by Hsp90 Selective inhibitor 17-AAG].

    Science.gov (United States)

    Wang, Na-Na; Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Pan, Jian; Hu, Shao-Yan

    2016-06-01

    To investigate the apoptotic effects of Hsp90 selective inhibitor 17-AAG on human leukemia HL-60 and NB4 cells and analyse its possible mechanism. CCK-8 assay was used to quantify the growth inhibition of cells after exposure to 17-AAG for 24 hours. Flow cytometrve with annexin V/propidium iodide staining was used to detect apoptosis of leukemia cells. Then Western blot was used to detect the activation of apoptosis related protein caspase-3 and PARP level. Gene expression profile of NB4 cells treated with 17-AAG was analyzed with real-time PCR arrays. The inhibition of leukemia cell proliferation displayed a dose-dependent manner. Annexin V assay, cell cycle analysis and activation of PARP demonstrate that 17-AAG induced apoptosis leukemia cells. Real-time PCR array analysis showed that expression of 56 genes significantly up-regulated and expression of 23 genes were significantly down-regulated after 17-AAG treatment. The 17-AAG can inhibit the proliferation and induce the apoptosis of leukemia cells. After leukemia cells are treated with 17-AAG, the significant changes of apoptosis-related genes occured, and the cell apoptosis occurs via activating apoptosis related signaling pathway.

  19. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  20. Hypolipidemic and hypoglycemic activities of a oleanolic acid derivative from Malva parviflora on streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Gutiérrez, Rosa Martha Pérez

    2017-05-01

    One new oleanolic acid derivative, 2α,3β,23α,29α tetrahydroxyolean-12(13)-en-28-oic acid (1) was isolated from the aerial parts of Malva parviflora. Their structure was characterized by spectroscopic methods. The hypolipidemic and hypoglycemic activities of 1 was analyzed in in streptozotocin (STZ)-nicotinamide-induced type 2 diabetes in mice (MD) and type 1 diabetes in streptozotocin-induced diabetic mice (SD). Triterpene was administered orally at doses of 20 mg/kg for 4 weeks. Organ weight, body weight, glucose, fasting insulin, cholesterol-related lipid profile parameters, glutamate oxaloacetate transaminase (SGOT), glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase (SALP), glucokinase, hexokinase, glucose-6-phosphatase activities and glycogen in liver were measured after 4 weeks of treatment. The results indicated that 1 regulate glucose metabolism, lipid profile, lipid peroxidation, increased body weight, glucokinase and hexokinase activities inhibited triglycerides, total cholesterol, low density lipoproteins level, SGOT, SGPT, SALP, glycogen in liver and glucose-6-phosphatase. In addition, improvement of insulin resistance and protective effect for pancreatic β-cells, also 1 may changes the expression of pro-inflammatory cytokine (IL-6 and TNF-α levels) and enzymes (PAL2, COX-2, and LOX). The results suggest that 1 has hypolipidemic and hypoglycemic, anti-inflammatory, activities, improve insulin resistance and hepatic enzymes in streptozotocin-induced diabetic mice.

  1. Andrographolide reorganise hyperglycaemia and distorted antioxidant profile in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naik, Ramavat Ravindhar; Munipally, Praveen Kumar; Nagaraju, Turlapati

    2017-10-26

    Diabetes mellitus (DM) is a constant and illimitable metabolic disorder that can happen even at a young age due to the virtual absence of naturally acting insulin, which uptakes and accumulates glucose; thereby reduce the use of glucose. In the present study, we evaluated the neuroprotective efficacy of andrographolide on streptozotocin (STZ) induced diabetic Sprague dawley rats. Diabetes was induced by intraperitonial injection of STZ (45 mg/kg B.W) in Sprague dawley rats. Andrographolide (2.5 mg/kg B.W) was administered orally to diabetic rats and Glibenclamide (25mg/kg B.W) as control for 30 days to assess its effects on blood glucose, insulin, insulin resistance and antioxidant profiles such as superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione and lipid peroxidation in various regions of brain namely hypothalamus, cerebellum, hippocampus and brain cerebral cortex. Oral supplementation of andrographolide extensively diminished the blood glucose levels than diabetic control. There was noteworthy reduction in the CAT, SOD and GPx activities in the hippocampus, hypothalamus and cerebral cortex cerebellum of the DM rat brain. However, andrographolide supplementation drastically reverses the CAT, GPx and SOD back to normal levels. In conclusion, the results revealed that andrographolide shown beneficial potentiality against neuropathy in STZ induced diabetic rats. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  3. Chemical profile of a polysaccharide from Psidium guajava leaves and it's in vivo antitussive activity.

    Science.gov (United States)

    Khawas, Sadhana; Sivová, Veronika; Anand, Namrata; Bera, Kaushik; Ray, Bimalendu; Nosáľová, Gabriela; Ray, Sayani

    2018-04-01

    Decoction of Psidium guajava leaves has been used as medication for chronic coughs and breathlessness for ages. Despite demonstration of antitussive activity, the specific molecule responsible for this remains unidentified. Herein, we report chemical profile and antitussive activity of its water extract (WE) and a polysaccharide (F1) present therein. This polysaccharide (F1), purified from WE by precipitation with ethanol and then through Cu(II)acetate, contains Ara, Gal, Rha, Glc and GalA residues, and has a molecular mass of 156 kDa. It comprises of terminal-, (1,5)- and (1,3,5)-linked Araf; (1,3)-, (1,6)- and (1,3,6)-linked Galp alongside (1,2)- and (1,2,4)-linked Rhap residues. Oligosaccharides indicating polysaccharide structure have been generated by Smith degradation and characterized. The WE fraction suppressed citric acid induced cough efforts in guinea pigs in the dose of 50 mg kg -1 . Assessment of antitussive activity of fractions prepared from WE namely F1 (polysaccharide) and F2 (ethanol soluble fraction) revealed that polysaccharide is the active component. Remarkably, tested samples do not alter the specific airway smooth muscle reactivity in animals significantly. The simple extraction method, prominent activity and favorable reactions profile suggest that this macromolecule could be an antitussive drug candidate. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Annida, B; Stanely Mainzen Prince, P

    2004-01-01

    The present study was undertaken to evaluate the lipid-lowering effect of fenugreek leaves in diabetes mellitus. Albino Wistar rats were randomly divided into six groups: normal untreated rats; streptozotocin (STZ)-induced diabetic rats; STZ-induced rats + fenugreek leaves (0.5 g/kg of body weight); STZ-induced rats + fenugreek leaves (1 g/kg of body weight); STZ-induced rats + glibenclamide (600 microg/kg of body weight); and STZ-induced rats + insulin (6 units/kg of body weight). Rats were made diabetic by STZ (40 mg/kg) injected intraperitoneally. Fenugreek leaves were supplemented in the diet daily to diabetic rats for 45 days, and food intake was recorded daily. Blood glucose, total cholesterol, triglycerides, and free fatty acids were determined in serum, liver, heart, and kidney. Our results show that blood glucose and serum and tissue lipids were elevated in STZ-induced diabetic rats. Supplementation of fenugreek leaves lowered the lipid profile in STZ-induced diabetic rats.

  5. Quantitative genetic activity graphical profiles for use in chemical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Waters, M.D. [Environmental Protection Agency, Washington, DC (United States); Stack, H.F.; Garrett, N.E.; Jackson, M.A. [Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)

    1990-12-31

    A graphic approach, terms a Genetic Activity Profile (GAP), was developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose or highest ineffective dose is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for producing and evaluating genetic activity profile was developed in collaboration with the International Agency for Research on Cancer (IARC). Data on individual chemicals were compiles by IARC and by the US Environmental Protection Agency (EPA). Data are available on 343 compounds selected from volumes 1-53 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar profiles of genetic activity. Through examination of the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluation of chemical analogs. GAPs provided useful data for development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from an assessment of the genetic activity profiles of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines. 36 refs., 2 figs.

  6. Depth profiling of residual activity of ^{237}U fragments as a range verification technique for ^{238}U primary ion beam

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2012-07-01

    Full Text Available Experimental and simulation data concerning fragmentation of ^{238}U ion beam in aluminum, copper, and stainless-steel targets with the initial energy 500 and 950  MeV/u are collected in the paper. A range-verification technique based on depth profiling of residual activity is presented. The irradiated targets were constructed in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. One of the purposes of these experiments was depth profiling of residual activity of induced nuclides and projectile fragments. Among the projectile fragments, special attention is paid to the ^{237}U isotope that has a range very close to the range of the primary ^{238}U ions. Therefore, the depth profiling of the ^{237}U isotope can be utilized for experimental verification of the ^{238}U primary-beam range, which is demonstrated and discussed in the paper. The experimental data are compared with computer simulations by FLUKA, SRIM, and ATIMA, as well as with complementary experiments.

  7. DS86 neutron dose. Monte Carlo analysis for depth profile of {sup 152}Eu activity in a large stone sample

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Iwatani, Kazuo; Oka, Takamitsu; Shizuma, Kiyoshi; Imanaka, Tetsuji; Fujita, Shoichiro; Hasai, Hiromi

    1999-06-01

    The depth profile of {sup 152}Eu activity induced in a large granite stone pillar by Hiroshima atomic bomb neutrons was calculated by a Monte Carlo N-Particle Transport Code (MCNP). The pillar was on the Motoyasu Bridge, located at a distance of 132 m (WSW) from the hypocenter. It was a square column with a horizontal sectional size of 82.5 cm x 82.5 cm and height of 179 cm. Twenty-one cells from the north to south surface at the central height of the column were specified for the calculation and {sup 152}Eu activities for each cell were calculated. The incident neutron spectrum was assumed to be the angular fluence data of the Dosimetry System 1986 (DS86). The angular dependence of the spectrum was taken into account by dividing the whole solid angle into twenty-six directions. The calculated depth profile of specific activity did not agree with the measured profile. A discrepancy was found in the absolute values at each depth with a mean multiplication factor of 0.58 and also in the shape of the relative profile. The results indicated that a reassessment of the neutron energy spectrum in DS86 is required for correct dose estimation. (author)

  8. Lipidic profile and the level of physical activity of adolescent scholars

    Directory of Open Access Journals (Sweden)

    Renato Canevari Dutra da Silva

    2011-12-01

    Full Text Available Objective: To assess the relationship between lipid profile and physical activity level of adolescent students in Rio Verde-GO, Brazil. Methods: A descriptive and cross-sectionalstudy, conducted in 2006, with a population comprised by 1,229 adolescent students of both genders, aged 15 to 17 years (X = 15.9 years, SD + 0.81, from public and private schools. The level of physical activity was assessed through the International PhysicalActivity Questionnaire (IPAQ. Later, 48 teenagers underwent a lipidogram (lipid profile. Lipid concentrations of total cholesterol (TC, HDL-c (high density lipoprotein and LDL (low density lipoprotein and triglycerides (TGL were determined and assessed according to cutoff points proposed by the III Brazilian Guidelines on dyslipidemias and Guideline of Atherosclerosis, Department of Atherosclerosis of Brazilian Society of Cardiology. Statisticalanalysis was performed by binomial test for proportions and Pearson’s correlation test, adopting p <0.05. Results: Applying IPAQ we found a percentage of 77.7% active adolescents and 22.3% of insufficiently active adolescents, with the highest percentage of active teens inmales (p = 0.0000. Adolescents of both sexes from public network were considered more active than teens from private schools. The lipid profile of the studied adolescents was within normal range. Conclusion: There was no relationship between physical activity level and lipid profile of the adolescents assessed.

  9. Investigation of fitting capability of active mirror for controlling ICF's focal profile

    International Nuclear Information System (INIS)

    Zeng Zhige; Ling Ning; Jiang Wenhan

    1998-01-01

    Laser beam's profile at focal plane can be controlled using active mirror in ICF system because the beam's profile has strong relationship with the surface of active mirror, the surface of active mirror can be changed at any time and maintained for a long time. The capabilities of fitting given wave-front (computed by Geometric Transformation Method) at conditions of different actuator numbers and different arrangement have been investigated by computer simulation. The computing results present that the needed laser profile can obtained by adaptive optical technology

  10. Using Activity Metrics for DEVS Simulation Profiling

    Directory of Open Access Journals (Sweden)

    Muzy A.

    2014-01-01

    Full Text Available Activity metrics can be used to profile DEVS models before and during the simulation. It is critical to get good activity metrics of models before and during their simulation. Having a means to compute a-priori activity of components (analytic activity may be worth when simulating a model (or parts of it for the first time. After, during the simulation, analytic activity can be corrected using dynamic one. In this paper, we introduce McCabe cyclomatic complexity metric (MCA to compute analytic activity. Both static and simulation activity metrics have been implemented through a plug-in of the DEVSimPy (DEVS Simulator in Python language environment and applied to DEVS models.

  11. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Yan, Hui; Qiao, Zheng; Shen, Baohua; Xiang, Ping; Shen, Min

    2016-10-01

    Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  13. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Directory of Open Access Journals (Sweden)

    Karina Sánchez-Reyes

    2014-01-01

    Full Text Available Cervical cancer (CC is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated and M2 (alternatively activated. Macrophage polarization exerts profound effects on the Toll-like receptor (TLR profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  14. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    Science.gov (United States)

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  15. The Genetic Activity Profile database.

    Science.gov (United States)

    Waters, M D; Stack, H F; Garrett, N E; Jackson, M A

    1991-12-01

    A graphic approach termed a Genetic Activity Profile (GAP) has been developed to display a matrix of data on the genetic and related effects of selected chemical agents. The profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each chemical. Either the lowest effective dose (LED) or highest ineffective dose (HID) is recorded for each agent and bioassay. Up to 200 different test systems are represented across the GAP. Bioassay systems are organized according to the phylogeny of the test organisms and the end points of genetic activity. The methodology for the production and evaluation of GAPs has been developed in collaboration with the International Agency for Research on Cancer. Data on individual chemicals have been compiled by IARC and by the U.S. Environmental Protection Agency. Data are available on 299 compounds selected from volumes 1-50 of the IARC Monographs and on 115 compounds identified as Superfund Priority Substances. Software to display the GAPs on an IBM-compatible personal computer is available from the authors. Structurally similar compounds frequently display qualitatively and quantitatively similar GAPs. By examining the patterns of GAPs of pairs and groups of chemicals, it is possible to make more informed decisions regarding the selection of test batteries to be used in evaluating chemical analogs. GAPs have provided useful data for the development of weight-of-evidence hazard ranking schemes. Also, some knowledge of the potential genetic activity of complex environmental mixtures may be gained from assessing the GAPs of component chemicals. The fundamental techniques and computer programs devised for the GAP database may be used to develop similar databases in other disciplines.

  16. Modulatory role of vanadium on trace element profile in diethylnitrosamine-induced rat hepatocarcinogenesis

    Science.gov (United States)

    Chakraborty, A.; Selvaraj, S.; Sudarshan, M.; Dutta, R. K.; Ghugre, S. S.; Chintalapudi, S. N.

    2000-09-01

    Particle-induced X-ray emission (PIXE) analysis was employed in the present study to investigate the chemopreventive potential of vanadium in influencing trace elemental profile and antioxidant status in chemical carcinogenesis. The elements with Z=15-40 were studied. Data reveal remarkable alterations in elemental composition in the hepatic tissue of diethylnitrosamine (DENA)-induced Sprague-Dawley male rats (intraperitoneal (ip) dose: 200 mg/kg body weight) after four weeks of induction. Several elements like Mn, Cu, Zn, Rb showed large depletion while other elements like Fe, Ca, K, Br showed large enhancement in comparison to that of the normal control animals. These elements compete for binding sites in the cell, change its enzymatic activity and exert direct or indirect action on the carcinogenic process. Supplementary vanadium (0.5 ppm ad libitum in drinking water) has shown effective modulation by alteration in the concentration of trace elements in the tumorigenic tissue ( Pcomposition, antioxidant status in the initiation phase of carcinogenesis and the period of exposure to vanadium. The possibility of selecting vanadium as a therapeutic agent for chemoprevention is discussed in the light of its influence in maintaining trace elemental homeostasis, a parameter of importance in cancer prevention research.

  17. Whole-body profile scanner for in vivo quantitative activity measurement

    International Nuclear Information System (INIS)

    Bergmann, H.

    1978-01-01

    A whole-body profile scanner has been developed by fitting parallel slit collimators to a shadow shield whole-body counter. Sensitivity, uniformity and resolution measurements were performed using a number of different counting conditions. It is shown that improved accuracy of activity measurements is obtained by using a wide window counting technique for low and medium energy gamma emitters (99m Tc, 131 I), whereas a photopeak window should be used for high energy gamma emitters (47 Ca). Due to the finite spatial resolution of the system a systematic error in evaluating regional activities from the counting rate profile occurs which is characterized by a spatial spillover factor. The spatial spillover factor is measured and is subsequently used to calculate the error on basis of a simple model. It is shown that only small errors are caused by spatial spillover when the length of a region is at least three times the full width half maximum of the point spread function. Applying the above mentioned simple rules it is concluded that profile scanning is a sensitive and accurate technique for activity measurements in vivo. Two examples of clinical applications (measurement of bone accretion rates of calcium and Tc-pyrophosphate, regional radioiodine retention in patients with thyroid carcinoma) and a review of the papers on profile scanning demonstrate the types of investigations in which profile scanning is superior to alternative techniques. (author)

  18. Molecular profiling of signalling proteins for effects induced by the anti-cancer compound GSAO with 400 antibodies

    International Nuclear Information System (INIS)

    Cadd, Verity A; Hogg, Philip J; Harris, Adrian L; Feller, Stephan M

    2006-01-01

    GSAO (4-[N-[S-glutathionylacetyl]amino] phenylarsenoxide) is a hydrophilic derivative of the protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO). It inhibits angiogenesis and tumour growth in mouse models and may be evaluated in a phase I clinical trial in the near future. Initial experiments have implicated GSAO in perturbing mitochondrial function. Other molecular effects of GSAO in human cells, for example on the phosphorylation of proteins, are still largely unknown. Peripheral white blood cells (PWBC) from healthy volunteers were isolated and used to profile effects of GSAO vs. a control compound, GSCA. Changes in site-specific phosphorylations, other protein modifications and expression levels of many signalling proteins were analysed using more than 400 different antibodies in Western blots. PWBC were initially cultured in low serum conditions, with the aim to reduce basal protein phosphorylation and to increase detection sensitivity. Under these conditions pleiotropic intracellular signalling protein changes were induced by GSAO. Subsequently, PWBC were cultured in 100% donor serum to reflect more closely in vivo conditions. This eliminated detectable GSAO effects on most, but not all signalling proteins analysed. Activation of the MAP kinase Erk2 was still observed and the paxillin homologue Hic-5 still displayed a major shift in protein mobility upon GSAO-treatment. A GSAO induced change in Hic-5 mobility was also found in endothelial cells, which are thought to be the primary target of GSAO in vivo. Serum conditions greatly influence the molecular activity profile of GSAO in vitro. Low serum culture, which is typically used in experiments analysing protein phosphorylation, is not suitable to study GSAO activity in cells. The signalling proteins affected by GSAO under high serum conditions are candidate surrogate markers for GSAO bioactivity in vivo and can be analysed in future clinical trials. GSAO effects on Hic-5 in endothelial cells may

  19. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    Science.gov (United States)

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Elite futsal refereeing: Activity profile and physiological demands

    DEFF Research Database (Denmark)

    Rebelo, António N.; Ascensão, António A.; Magalhães, José F.

    2011-01-01

    Rebelo, AN, Ascensão, AA, Magalhães, JF, Bischoff, R, Bendiksen, M, and Krustrup, P. Elite futsal refereeing: activity profile and physiological demands. J Strength Cond Res 24(X): 000-000, 2010-The purpose of this study was to determine the physiological demands and to establish the relationship...... between activity profile and endurance capacity of futsal referees. Eighteen elite futsal referees (33.0 ± 5.1 years, 173 ± 5 cm, and 73.2 ± 8.4 kg) were studied. Video filming (n = 18) and heart rate (HR) recordings were performed throughout games. Blood lactate (n = 14) was determined at rest and after....... Considering the data obtained in the present study, the use of match-specific intermittent fitness tests to evaluate futsal referees seems to be required....

  1. High-resolution phenotypic profiling of natural products-induced effects on the single-cell level

    KAUST Repository

    Kremb, Stephan Georg; Voolstra, Christian R.

    2017-01-01

    Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High

  2. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Science.gov (United States)

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  3. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Directory of Open Access Journals (Sweden)

    Andrew L Frelinger

    Full Text Available Activated autologous platelet-rich plasma (PRP used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma.To determine whether sub-microsecond duration, low electric field (SMLEF bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity.PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF, vascular endothelial growth factor (VEGF, endothelial growth factor (EGF and platelet factor 4 (PF4, and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin.PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  4. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  5. Activity-Based Profiling of Retaining β-Glucosidases: A Comparative Study

    NARCIS (Netherlands)

    Witte, Martin D.; Walvoort, Marthe T. C.; Li, Kah-Yee; Kallemeijn, Wouter W.; Donker-Koopman, Wilma E.; Boot, Rolf G.; Aerts, Johannes M. F. G.; Codée, Jeroen D. C.; van der Marel, Gijsbert A.; Overkleeft, Herman S.

    2011-01-01

    Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based

  6. Activity-Based Profiling of Retaining beta-Glucosidases : A Comparative Study

    NARCIS (Netherlands)

    Witte, Martin D.; Walvoort, Marthe T. C.; Li, Kah-Yee; Kallemeijn, Wouter W.; Donker-Koopman, Wilma E.; Boot, Rolf G.; Aerts, Johannes M. F. G.; Codee, Jeroen D. C.; van der Marel, Gijsbert A.; Overkleeft, Herman S.

    2011-01-01

    Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based

  7. Activity-Based Profiling of Retaining β-Glucosidases : A Comparative Study

    NARCIS (Netherlands)

    Witte, Martin D.; Walvoort, Marthe T.C.; Li, Kah-Yee; Kallemeijn, Wouter W.; Donker-Koopman, Wilma E.; Boot, Rolf G.; Aerts, Johannes M.F.G.; Codée, Jeroen D.C.; Marel, Gijsbert A. van der; Overkleeft, Herman S.

    2011-01-01

    Activity-based protein profiling (ABPP) is a versatile strategy to report on enzyme activity in vitro, in situ, and in vivo. The development and use of ABPP tools and techniques has met with considerable success in monitoring physiological processes involving esterases and proteases. Activity-based

  8. Identification of distinct genes associated with seawater aspiration-induced acute lung injury by gene expression profile analysis

    Science.gov (United States)

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-01-01

    Seawater aspiration-induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration-induced ALI. Adult male Sprague-Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration-induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine-cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration-induced ALI. In conclusion, activation of the cytokine-cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration-induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL-6 may be considered a biomarker in seawater aspiration-induced ALI. PMID:27509884

  9. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats.

    Science.gov (United States)

    Rony, K A; Ajith, T A; Nima, N; Janardhanan, K K

    2014-03-01

    Patients with the risk for atherosclerotic disease will be targeted to reduce the existing hyperlipidemia. The hypolipidemic activity of Phellinus rimosus was studied using triton WR-1339 and high cholesterol diet (HCD) induced models. The triton induced elevated lipid profile was attenuated by P. rimosus or standard drug atorvastatin. Similarly, administration of P. rimosus along with HCD significantly decline serum triglyceride, total cholesterol, low-density lipoprotein, with elevating the high-density lipoprotein. Thiobarbituric acid reacting substances in heart and liver significantly decreased; where as activity of enzymatic antioxidants and level of reduced glutathione were significantly increased. In both models, P. rimosus extract showed a significant ameliorative effect on the elevated atherogenic index as well as LDL/HDL-C ratio. The hypolipidemic activity of P. rimosus can be ascribed to its inhibitory effect on the liver HMG CoA reductase activity. The results suggest the possible therapeutic potential of this fungus as hypolipidemic agent. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Modulatory role of vanadium on trace element profile in diethylnitrosamine-induced rat hepatocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, A.; Selvaraj, S.; Sudarshan, M.; Dutta, R.K.; Ghugre, S.S.; Chintalapudi, S.N. E-mail: snc@iuccal.ernet.insnc@gamma.iuc.res.in

    2000-09-01

    Particle-induced X-ray emission (PIXE) analysis was employed in the present study to investigate the chemopreventive potential of vanadium in influencing trace elemental profile and antioxidant status in chemical carcinogenesis. The elements with Z=15-40 were studied. Data reveal remarkable alterations in elemental composition in the hepatic tissue of diethylnitrosamine (DENA)-induced Sprague-Dawley male rats (intraperitoneal (ip) dose: 200 mg/kg body weight) after four weeks of induction. Several elements like Mn, Cu, Zn, Rb showed large depletion while other elements like Fe, Ca, K, Br showed large enhancement in comparison to that of the normal control animals. These elements compete for binding sites in the cell, change its enzymatic activity and exert direct or indirect action on the carcinogenic process. Supplementary vanadium (0.5 ppm ad libitum in drinking water) has shown effective modulation by alteration in the concentration of trace elements in the tumorigenic tissue (P<0.001-0.005). Data reflect a definite correlation between elemental composition, antioxidant status in the initiation phase of carcinogenesis and the period of exposure to vanadium. The possibility of selecting vanadium as a therapeutic agent for chemoprevention is discussed in the light of its influence in maintaining trace elemental homeostasis, a parameter of importance in cancer prevention research.

  11. Profiles and Pauses: Two Practical Activities for the Writing Class

    Directory of Open Access Journals (Sweden)

    Ernest Hall

    1998-01-01

    Full Text Available Abstract : This article describes two classroom activities, "Profiling" and "Pause Analysis", that can be successfully used in ESL writing classes. "Profiling" addresses such problems as poor development of ideas, simplistic ideas, and lack of coherence in written texts. "Pause Analysis" focusses on the thinking processes that students engage in while drafting text, processes such as searching for ideas, evaluat­ing ideas, and postponing ideas. Both activities enable the instructor to assume the role of intervener in the students' writing processes, rather than evaluator of the text produced. In drawing The attention of the student write to both product and process, "Profiling" and "Pause Analysis" help them develop an awareness of the relation-ship between ideas in English expository text and the thinking pro­cesses that writers engage in while drafting such text.

  12. Phytopharmacological evaluation of Byesukar for hypoglycaemic activity and its effect on lipid profile and hepatic enzymes of glucose metabolism in diabetic rats.

    Science.gov (United States)

    Guruvayoorappan, C; Sudha, G

    2008-01-01

    Many anti-diabetic herbal preparations have been recommended in alternative systems of medicine for the treatment of diabetes. No systematic study has been done on the anti-diabetic efficacy of Byesukar, a polyherbal formulation to treat diabetes. The anti-diabetic efficacy of byesukar ethanol extract was evaluated in an animal model of diabetes induced by alloxan. Male Wistar rats were divided in to four groups. Group 1 was normal control group; group 2 and 3 received alloxan. After inducing experimental diabetes group 2 served as diabetic control; group 3 received byesukar (500 mg/kg body weight) orally for 30 consecutive days. Group 4 were normal rats which received byesukar extract alone. The effect of byesukar on glucose level in diabetic rats was studied and the level of glucose metabolizing enzymes (Hexokinase, glucose-6-phosphatase and fructose 1, 6-bisphosphatase) in the liver and kidney were estimated. The effect of byesukar on the serum and tissue lipid profile (Cholesterol, triglycerides, phospholipids and free fatty acids) were also estimated in diabetic rats. Our results indicate that treatment with byesukar resulted in significant reduction of blood glucose, tissue glucose-6-phosphatase and fructose 1, 6- bisphosphatase activity. The decreased tissue hexokinase activity in diabetes state was found to be significantly increased by byesukar treatment. Also the byesukar treated diabetic rats showed a significant decrease in the tissue lipid profile compared to the diabetic rats. In conclusion the decreased blood glucose accompanied with decreased lipid profile and changes in the activities of the glucose metabolizing enzymes shows the antidiabetic effect of byesukar.

  13. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.

  14. Birefringence profile adjustment by spatial overlap of nanogratings induced by ultra-short laser pulses inside fused silica

    Science.gov (United States)

    Arabanian, Atoosa Sadat; Najafi, Somayeh; Ajami, Aliasghar; Husinsky, Wolfgang; Massudi, Reza

    2018-02-01

    We have succeeded in realizing a method to control the spatial distribution of optical retardation as a result of nanogratings in bulk-fused silica induced by ultrashort laser pulses. A colorimetry-based retardation measurement (CBRM) based on the Michel-Levy interference color chart using a polarization microscope is used to determine the profiles of the optical retardation. Effects of the spatial overlap of written regions as well as the energy and polarization of the writing pulses on the induced retardations are studied. It has been found that the spatial overlap of lines written by pulse trains with different energies and polarizations can result in an adjustment of the induced birefringence in the overlap region. This approach offers the possibility of designing polarization-sensitive components with a desired birefringence profile.

  15. Profiling Occupant Behaviour in Danish Dwellings using Time Use Survey Data - Part I: Data Description and Activity Profiling

    DEFF Research Database (Denmark)

    Barthelmes, V.M.; Li, R.; Andersen, R.K.

    2018-01-01

    Occupant behaviour has been shown to be one of the key driving factors of uncertainty in prediction of energy consumption in buildings. Building occupants affect building energy use directly and indirectly by interacting with building energy systems such as adjusting temperature set...... occupant profiles for prediction of energy use to reduce the gap between predicted and real building energy consumptions. To generate accurate occupant profiles for the residential sector in Denmark, the Danish time use surveys are considered an essential data source. The latest Danish diarybased time use......-points, switching lights on/off, using electrical devices and opening/closing windows. Furthermore, building inhabitants’ daily activity profiles clearly shape the timing of energy demand in households. Modelling energy-related human activities throughout the day, therefore, is crucial to defining more realistic...

  16. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  17. Teachers’ goal orientation profiles and participation in professional development activities

    NARCIS (Netherlands)

    Kunst, E.M.; van Woerkom, M.; Poell, R.F.

    2018-01-01

    Participation in professional development activities is important for teachers to continuously improve their knowledge and skills. However, teachers differ in their attitude towards learning activities. This paper examined how different goal orientation profiles are related to participation in

  18. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  19. A ranking method for the concurrent learning of compounds with various activity profiles.

    Science.gov (United States)

    Dörr, Alexander; Rosenbaum, Lars; Zell, Andreas

    2015-01-01

    In this study, we present a SVM-based ranking algorithm for the concurrent learning of compounds with different activity profiles and their varying prioritization. To this end, a specific labeling of each compound was elaborated in order to infer virtual screening models against multiple targets. We compared the method with several state-of-the-art SVM classification techniques that are capable of inferring multi-target screening models on three chemical data sets (cytochrome P450s, dehydrogenases, and a trypsin-like protease data set) containing three different biological targets each. The experiments show that ranking-based algorithms show an increased performance for single- and multi-target virtual screening. Moreover, compounds that do not completely fulfill the desired activity profile are still ranked higher than decoys or compounds with an entirely undesired profile, compared to other multi-target SVM methods. SVM-based ranking methods constitute a valuable approach for virtual screening in multi-target drug design. The utilization of such methods is most helpful when dealing with compounds with various activity profiles and the finding of many ligands with an already perfectly matching activity profile is not to be expected.

  20. Application of metabolite profiling and antioxidant activity in ...

    African Journals Online (AJOL)

    This paper investigates the effect of processing and extraction method on chemical profiles and antioxidant activity of Malaysian stingless bee propolis. High Performance Thin Layer Chromatography (HPTLC) analysis in combination with chemometric shows that some of the compounds were degraded or not detected in ...

  1. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  2. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  3. Cytokine profiles in tears accompanying the secondary conjunctival responses induced by nasal allergy.

    Science.gov (United States)

    Pelikan, Zdenek

    2014-02-01

    Allergic conjunctivitis (AC) occurs either in a primary form, due to the allergic reaction localized in the conjunctivae or in a secondary form, induced by an allergic reaction initiated primarily in the nasal mucosa. The purpose of this study was to investigate the cytokine profiles in tears associated with the secondary conjunctival response (SCR) types. In 47 AC patients developing 16 immediate (SICR; p tears. The SCRs were associated with significant concentration changes of particular cytokines in tears (p tears during the phosphate-buffered saline controls or negative SCRs. Different cytokine profiles in the tears accompanying the immediate, late and delayed types of SCR, induced by nasal allergy, would indicate involvement of different hypersensitivity mechanisms in the particular SCR types. The low cytokine concentrations in tears recorded during the SCRs may suggest their origin from the nasal mucosa. These results emphasize the diagnostic value of NPTs with allergens combined with monitoring of various ocular features in patients suffering from the secondary form of AC. These results may also have an impact on the therapeutical approach to this clinical entity.

  4. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  5. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  6. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle.

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Cigliano, Riccardo Aiese; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-10-23

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B₁, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  7. Chemical profiling and antioxidant activity of Bolivian propolis.

    Science.gov (United States)

    Nina, Nélida; Quispe, Cristina; Jiménez-Aspee, Felipe; Theoduloz, Cristina; Giménez, Alberto; Schmeda-Hirschmann, Guillermo

    2016-04-01

    Propolis is a relevant research subject worldwide. However, there is no information so far on Bolivian propolis. Ten propolis samples were collected from regions with high biodiversity in the main honey production places in Bolivia and were analyzed for their total phenolics (TP), flavonoids (TF) and antioxidant activity. The chemical profiles of the samples were assessed by TLC, HPLC-DAD, HPLC-DAD-MS/MS(n) and NMR analysis. TP, TF, TLC and NMR analysis showed significant chemical differences between the samples. Isolation of the main constituents by chromatography and identification by HPLC-DAD-MS/MS(n) achieved more than 35 constituents. According to their profiles, the Bolivian propolis can be classified into phenolic-rich and triterpene-rich samples. Propolis from the valleys (Cochabamba, Chuquisaca and Tarija) contained mainly prenylated phenylpropanoids, while samples from La Paz and Santa Cruz contained cycloartane and pentacyclic triterpenes. Phenolic-rich samples presented moderate to strong antioxidant activity while the triterpene-rich propolis were weakly active. High chemical diversity and differential antioxidant effects were found in Bolivian propolis. Our results provide additional evidence on the chemical composition and bioactivity of South American propolis. © 2015 Society of Chemical Industry.

  8. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai

    2015-07-18

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (PMoringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.

  9. The interplay between neuroendocrine activity and psychological stress-induced exacerbation of allergic asthma

    Directory of Open Access Journals (Sweden)

    Tomomitsu Miyasaka

    2018-01-01

    Full Text Available Psychological stress is recognized as a key factor in the exacerbation of allergic asthma, whereby brain responses to stress act as immunomodulators for asthma. In particular, stress-induced enhanced type 2 T-helper (Th2-type lung inflammation is strongly associated with asthma pathogenesis. Psychological stress leads to eosinophilic airway inflammation through activation of the hypothalamic-pituitary-adrenal pathway and autonomic nervous system. This is followed by the secretion of stress hormones into the blood, including glucocorticoids, epinephrine, and norepinephrine, which enhance Th2 and type 17 T-helper (Th17-type asthma profiles in humans and rodents. Recent evidence has shown that a defect of the μ-opioid receptor in the brain along with a defect of the peripheral glucocorticoid receptor signaling completely disrupted stress-induced airway inflammation in mice. This suggests that the stress response facilitates events in the central nervous and endocrine systems, thus exacerbating asthma. In this review, we outline the recent findings on the interplay between stress and neuroendocrine activities followed by stress-induced enhanced Th2 and Th17 immune responses and attenuated regulatory T (Treg cell responses that are closely linked with asthma exacerbation. We will place a special focus on our own data that has emphasized the continuity from central sensing of psychological stress to enhanced eosinophilic airway inflammation. The mechanism that modulates psychological stress-induced exacerbation of allergic asthma through neuroendocrine activities is thought to involve a series of consecutive pathological events from the brain to the lung, which implies there to be a “neuropsychiatry phenotype” in asthma.

  10. Adolescent Physical Activity and Motivational Profiles While Keeping a Physical Activity Record

    Science.gov (United States)

    Fullmer, Matthew O.; Wilkinson, Carol; Prusak, Keven A.; Eggett, Dennis; Pennington, Todd

    2018-01-01

    Purpose: This study examined the relationship between adolescents (N = 124) from physical education classes keeping a daily online leisure-time physical activity (LTPA) record and feelings of competence toward LTPA, motivational profiles toward LTPA, and LTPA behaviors. Method: A repeated measures ANCOVA was used to examine the relationships…

  11. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rabbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated (n = 10) groups. After diabetes induction, the animals were investigated for daily glucose measurements for 35 days. Serum lipid profile and haemoglobin A1c (HbA(1c)) were assayed at the baseline (before induction of diabetes) and at 35-day follow-up. The glycaemia levels in the rats treated with opium were similar to the levels measured in the control rats (544.8 +/- 62.2 mg/dl v. 524.6 +/- 50.0 mg/dl, P = 0.434). In addition, there was no difference between the opium-treated rats and control rats in HbA(1c) (6.5 +/- 0.5% v. 6.6 +/- 0.2%, P = 0.714). Compared to the control rats, the serum total cholesterol, high density lipoprotein (HDL), triglyceride and lipoprotein (a) in the test animals were similar. Opium use has no significant effect on glucose metabolism and serum lipid profile in rats with induced diabetes.

  12. Teachers' Goal Orientation Profiles and Participation in Professional Development Activities

    Science.gov (United States)

    Kunst, Eva M.; van Woerkom, Marianne; Poell, Rob F.

    2018-01-01

    Participation in professional development activities is important for teachers to continuously improve their knowledge and skills. However, teachers differ in their attitude towards learning activities. This paper examined how different goal orientation profiles are related to participation in professional development activities (acquiring…

  13. Relationships between physical education students' motivational profiles, enjoyment, state anxiety, and self-reported physical activity.

    Science.gov (United States)

    Yli-Piipari, Sami; Watt, Anthony; Jaakkola, Timo; Liukkonen, Jarmo; Nurmi, Jari-Erik

    2009-01-01

    The purpose of this study was to analyze motivational profiles based on the self-determination theory (Deci and Ryan, 2000) and how these profiles are related to physical education students' enjoyment, state anxiety, and physical activity. The participants, 429 sixth grade students (girls = 216; boys = 213) completed SMS, Sport Enjoyment Scale, PESAS, and Physical Activity Scale. Cluster analyses identified two motivational profiles: 1) the "High motivation profile", in which the students had high intrinsic and extrinsic motivation, and low levels of amotivation, and 2) the "Low motivation profile", in which the students had low intrinsic and extrinsic motivation, and low levels of amotivation. The students in the first cluster enjoyed physical education more and were physically more active. The results revealed that students may be motivated towards physical education lessons both intrinsically and extrinsically, and still experience enjoyment in physical education. Key pointsTWO MOTIVATIONAL PROFILES WERE REVEALED: 1) the "High motivation profile", in which the students had high intrinsic and extrinsic motivation, and low levels of amotivation, and 2) the "Low motivation profile", in which the students had low intrinsic and extrinsic motivation, and low levels of amotivation.The students in the first profile enjoyed physical education more and were physically more active than the students in the second profile.Moreover, the representatives of the "High motivation profile "experienced greater anxiety toward physical education than the representatives of the "Low motivation profile"These findings raised an interesting question whether students engaging in physical education benefit more from the presence of both self-determined and non-self-determined forms of motivation, or are the benefits higher if students are primarily self-determined?

  14. A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma

    DEFF Research Database (Denmark)

    Aggerholm-Pedersen, Ninna; Sørensen, Brita Singers; Overgaard, Jens

    2016-01-01

    sarcoma (STS). METHODS: The hypoxia-induced gene quantification was performed by real-time quantitative PCR (RT-qPCR) of formalin-fixed, paraffin-embedded tissue samples. The gene expression cut-points were determined in a test cohort of 55 STS patients and used to allocate each patient into a more......BACKGROUND: For decades, tumour hypoxia has been pursued as a cancer treatment target. However, prognostic and predictive biomarkers are essential for the use of this target in the clinic. This study investigates the prognostic value of a hypoxia-induced gene profile in localised soft tissue...

  15. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Science.gov (United States)

    Zaccaria, Marco; Ludovici, Matteo; Sanzani, Simona Marianna; Ippolito, Antonio; Aiese Cigliano, Riccardo; Sanseverino, Walter; Scarpari, Marzia; Scala, Valeria; Fanelli, Corrado; Reverberi, Massimo

    2015-01-01

    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies. PMID:26512693

  16. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Directory of Open Access Journals (Sweden)

    Marco Zaccaria

    2015-10-01

    Full Text Available Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile to transcriptional analysis (RNA-seq. There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  17. Characterization of the transcriptional profile in primary astrocytes after oxidative stress induced by Paraquat

    DEFF Research Database (Denmark)

    Olesen, Birgitte S. M. Thuesen; Clausen, Jørgen; Vang, Ole

    2008-01-01

    the antioxidative enzymes Mn- and CuZn superoxide dismutase (SOD) and catalase as well as the transcription factor component AP-1. Paraquat induced the expression of Mn- and CuZn SOD, catalase and decreases the expression of c-jun (a part of AP-1). Furthermore, the gene expression profiles were investigated after...

  18. Impact of Physical Activity on Obesity and Lipid Profile of Adults with Intellectual Disability

    Science.gov (United States)

    Gawlik, Krystyna; Zwierzchowska, Anna; Celebanska, Diana

    2018-01-01

    Introduction: This study assessed overweight, obesity and lipid profiles in adults with intellectual disability and compared these metrics with their physical activity. Materials and Method: Basic somatic parameters, lipid profile and weekly physical activity were examined in 27 adults with moderate intellectual disability. Chi-square independence…

  19. Geometrical and profile effects on toroidicity and ellipticity induced Alfven eigenmodes

    International Nuclear Information System (INIS)

    Villard, L.; Fu, G.Y.

    1992-04-01

    The wave structures, eigenfrequencies and damping rates of toroidicity and ellipticity induced Alfven eigenmodes (TAE, EAE) of low toroidal mode numbers (n) are calculated in various axisymmetric ideal MHD equilibria with the global wave finite element code LION. The importance of safety factor (q) and density (ρ) profiles on continuum damping rates is analysed. For realistic profiles several continuum gaps exist in the plasma discharge. Frequency misalignment of these gaps yields continuum damping rates γ/ω of the order of a few percent. Finite β pol lowers the TAE eigenfrequency. For β values below the Troyon limit the TAE enters the continuum and can thus be stabilized. Finite elongation allows the EAE to exist but triangularity can have a stabilizing effect through coupling to the continuum. The localization of TAE and EAE eigenfunctions is found to increase with the shear and with n. Therefore large shear, through enhanced Landau and collisional damping, is a stabilizing factor for TAE and EAE modes. (author) 16 figs., 28 refs

  20. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Swelm, Rachel P.L. van [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Laarakkers, Coby M.M. [Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Pertijs, Jeanne C.L.M.; Verweij, Vivienne; Masereeuw, Rosalinde [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Russel, Frans G.M., E-mail: F.Russel@pharmtox.umcn.nl [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2013-06-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p < 0.01). Kidney injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.

  1. Ion-beam-induced topography and compositional changes in depth profiling

    International Nuclear Information System (INIS)

    Carter, G.; Nobes, M.J.

    1992-01-01

    When energetic ions penetrate and stop in solids they not only add a new atomic constituent to the matrix but they also create atomic recoils and defects. The fluxes of these entities can give rise to spatial redistribution of atomic components, which may be partly or completely balanced by reordering and relaxation processes. These latter, in turn, may be influenced by fields and gradients induced by the primary relocation processes and by the energy deposited. These will include quasi-thermal, concentration (or chemical potential) and electrostatic gradients and may act to enhance or suppress atomic redistribution. Some, or all, of these processes will operate, depending upon the system under study, when energetic ions are employed to sputter erode a substrate for depth sectioning and, quite generally, can perturb the atomic depth profile that it is intended to evaluate. Theoretical and computational approaches to modelling such processes will be outlined and experimental examples shown which illustrate specific phenomena. In particular the accumulation of implant species and defect generation or redistribution can modify, with increasing ion fluence, the local sputtering mechanism and create further problems in depth profile analysis as a changing surface topography penetrates the solid. Examples of such topographic evolution and its influence on depth profiling analysis will be given and models to explain general and specific behaviour will be outlined. The commonality of models which examine both depth-dependent composition modification and surface topography evolution will be stressed. (author)

  2. Profiles of Nature Exposure and Outdoor Activities Associated With Occupational Well-Being Among Employees

    Science.gov (United States)

    Hyvönen, Katriina; Törnroos, Kaisa; Salonen, Kirsi; Korpela, Kalevi; Feldt, Taru; Kinnunen, Ulla

    2018-01-01

    This research addresses the profiles of nature exposure and outdoor activities in nature among Finnish employees (N = 783). The profiles were formed on the bases of nature exposure at work and the frequency and type of outdoor activities in nature engaged in during leisure time. The profiles were investigated in relation to work engagement and burnout. The latent profile analysis identified a five-class solution as the best model: High exposure (8%), Versatile exposure (22%), Unilateral exposure (38%), Average exposure (13%), and Low exposure (19%). An Analysis of Covariance (ANCOVA) was conducted for each well-being outcome in order to evaluate how the identified profiles related to occupational well-being. Participants with a High, Versatile, or Unilateral exposure profile reported significantly higher work engagement in the dimensions of vigor and dedication than did the participants with a Low exposure profile. The participants with the High exposure profile also reported lower burnout in the dimensions of cynicism and professional inadequacy than the participants with the Low exposure profile. Nature exposure during the workday and leisure time is an under researched but important aspect in promoting occupational well-being. PMID:29867699

  3. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue

    OpenAIRE

    Nanduri, Bindu; Shack, Leslie A.; Rai, Aswathy N.; Epperson, William B.; Baumgartner, Wes; Schmidt, Ty B.; Edelmann, Mariola J.

    2016-01-01

    To develop a reproducible tissue-lysis method that retains enzyme function for activity-based protein profiling, we compared four different tissue lysis methods of bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue and focused ultrasonication had also the fastest pr...

  4. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  5. Attenuation of Streptozotocin-Induced Lipid Profile Anomalies in the Heart, Brain, and mRNA Expression of HMG-CoA Reductase by Diosgenin in Rats.

    Science.gov (United States)

    Hao, Shuang; Xu, Rihao; Li, Dan; Zhu, Zhicheng; Wang, Tiance; Liu, Kexiang

    2015-07-01

    Diabetes mellitus is associated with significant morbidity and mortality that contributes to pathogenesis of cardiovascular diseases. Diosgenin, a naturally occurring aglycone, is present abundantly in fenugreek. The steroidal saponin is being used as a traditional medicine for diabetes. The present study has investigated the effects of diosgenin on lipid profile in the heart and brain, mRNA expression, and hepatic HMG-CoA reductase (HMGR) activity of streptozotocin-induced diabetic rats. In our study, diosgenin was administered (40 mg/kg b.w.) orally for 45 days to control animals and experimentally induced diabetic rats. The effects of diosgenin on glucose, plasma insulin, cholesterol, triglycerides, free fatty acids, and phospholipids (PLs) in the heart and brain were studied. The levels of glucose, cholesterol, triglycerides, free fatty acids, PLs, and HMGR activity were increased significantly (P rats. Administration of diosgenin to diabetic rats significantly reduced blood glucose, cholesterol, triglycerides, free fatty acids, PLs levels, and also HMGR activity. In addition, the plasma insulin level was increased in diosgenin-treated diabetic rats. The above findings were correlated with histological observations of the heart and brain. The results showed that administration of diosgenin remarkably increased plasma insulin level with absolute reduction of blood glucose, lipid profile, and HMGR level when compared to diabetic control rats. The results have suggested that diosgenin prevents hypercholesterolemia and hepatosteatosis by modulation of enzymatic expression that is associated with cholesterol metabolism.

  6. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  7. Use of focused ultrasonication in activity-based profiling of deubiquitinating enzymes in tissue.

    Science.gov (United States)

    Nanduri, Bindu; Shack, Leslie A; Rai, Aswathy N; Epperson, William B; Baumgartner, Wes; Schmidt, Ty B; Edelmann, Mariola J

    2016-12-15

    To develop a reproducible tissue lysis method that retains enzyme function for activity-based protein profiling, we compared four different methods to obtain protein extracts from bovine lung tissue: focused ultrasonication, standard sonication, mortar & pestle method, and homogenization combined with standard sonication. Focused ultrasonication and mortar & pestle methods were sufficiently effective for activity-based profiling of deubiquitinases in tissue, and focused ultrasonication also had the fastest processing time. We used focused-ultrasonicator for subsequent activity-based proteomic analysis of deubiquitinases to test the compatibility of this method in sample preparation for activity-based chemical proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Comparison of parameters of bone profile and homocysteine in physically active and non-active postmenopausal females.

    Science.gov (United States)

    Tariq, Sundus; Lone, Khalid Parvez; Tariq, Saba

    2016-01-01

    Optimal physical activity is important in attaining a peak bone mass. Physically active women have better bone mineral density and reduce fracture risk as compared to females living a sedentary life. The objective of this study was to compare parameters of bone profile and serum homocysteine levels in physically active and non-active postmenopausal females. In this cross sectional study postmenopausal females between 50-70 years of age were recruited and divided into two groups: Physically inactive (n=133) performing light physical activity and Physically active (n=34) performing moderate physical activity. Physical activity (in metabolic equivalents), bone mineral density and serum homocysteine levels were assessed. Spearman's rho correlation was applied to observe correlations. Two independent sample t test and Mann Whitney U test were applied to compare groups. P-value ≤ 0.05 was taken statistically significant. Parameters of bone profile were significantly higher and serum homocysteine levels were significantly lower in postmenopausal females performing moderate physical activity as compared to females performing light physical activity. Homocysteine was not significantly related to T-score and Z-score in both groups. Improving physical activity could be beneficial for improving the quality of bone, decreasing fracture risk and decreasing serum homocysteine levels.

  9. A new method for depth profiling

    International Nuclear Information System (INIS)

    Chittleborough, C.W.; Chaudhri, M.A.; Rouse, J.L.

    1978-01-01

    A simple method for obtaining depth profiles of concentrations has been developed for charged particle induced nuclear reactions which produce γ-rays or neutrons. This method is particularly suitable for non-resonant reactions but is also applicable to resonant reactions and can examine the concentration of the sought nuclide throughout the entire activation depth of the incoming particles in the matrix

  10. RELATIONSHIPS BETWEEN PHYSICAL EDUCATION STUDENTS' MOTIVATIONAL PROFILES, ENJOYMENT, STATE ANXIETY, AND SELF-REPORTED PHYSICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Sami Yli-Piipari

    2009-09-01

    Full Text Available The purpose of this study was to analyze motivational profiles based on the self-determination theory (Deci and Ryan, 2000 and how these profiles are related to physical education students' enjoyment, state anxiety, and physical activity. The participants, 429 sixth grade students (girls = 216; boys = 213 completed SMS, Sport Enjoyment Scale, PESAS, and Physical Activity Scale. Cluster analyses identified two motivational profiles: 1 the "High motivation profile", in which the students had high intrinsic and extrinsic motivation, and low levels of amotivation, and 2 the "Low motivation profile", in which the students had low intrinsic and extrinsic motivation, and low levels of amotivation. The students in the first cluster enjoyed physical education more and were physically more active. The results revealed that students may be motivated towards physical education lessons both intrinsically and extrinsically, and still experience enjoyment in physical education.

  11. Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.

    Directory of Open Access Journals (Sweden)

    Neeraj Saxena

    Full Text Available Stimulus-induced gamma oscillations in the 30-80 Hz range have been implicated in a wide number of functions including visual processing, memory and attention. While occipital gamma-band oscillations can be pharmacologically modified in animal preparations, pharmacological modulation of stimulus-induced visual gamma oscillations has yet to be demonstrated in non-invasive human recordings. Here, in fifteen healthy humans volunteers, we probed the effects of the GABAA agonist and sedative propofol on stimulus-related gamma activity recorded with magnetoencephalography, using a simple visual grating stimulus designed to elicit gamma oscillations in the primary visual cortex. During propofol sedation as compared to the normal awake state, a significant 60% increase in stimulus-induced gamma amplitude was seen together with a 94% enhancement of stimulus-induced alpha suppression and a simultaneous reduction in the amplitude of the pattern-onset evoked response. These data demonstrate, that propofol-induced sedation is accompanied by increased stimulus-induced gamma activity providing a potential window into mechanisms of gamma-oscillation generation in humans.

  12. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  13. Anti-inflammatory activity and phenolic profile of propolis from two locations in Región Metropolitana de Santiago, Chile.

    Science.gov (United States)

    Valenzuela-Barra, Gabriela; Castro, Consuelo; Figueroa, Catalina; Barriga, Andrés; Silva, Ximena; de Las Heras, Beatriz; Hortelano, Sonsoles; Delporte, Carla

    2015-06-20

    Propolis has long been used as a popular folk medicine due to its wide spectrum of alleged biological and pharmaceutical properties. In Chile, propolis is widely used by folklore medicine as an anti-inflammatory agent; however, this property has not been demonstrated by scientific methods. The objective of this study was to determine the anti-inflammatory activity in vivo and in vitro and to establish the phenolic profile of propolis collected in two localities in Región Metropolitana de Santiago (RM), Chile. Propolis was collected in the areas of Caleu and Buin, RM Chile. Following that, the samples were unwaxed to obtain the global ethanolic extracts of propolis (EEPs) and, from these, the serial extracts of dichloromethane (EEP-DCMs) and ethanol (EEP-EtOHs). The topic anti-inflammatory effect was evaluated through mice ear edema induced by arachidonic acid (AA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) at a dose of 3 mg/ear. Nitric oxide (NO) measurements were determined spectrophotometrically (Greiss reagent) by the accumulation of nitrite in the medium of macrophages RAW 264.7 stimulated with the lipopolysaccharide (LPS, 1 μg/mL) for 20 h at different concentrations of the EEPs, EEP-DCMs and EEP-EtOHs (6.25-50.00 μg/mL). The content of total phenols and flavonoids were determined through the methods of Folin-Ciocalteau and AlCl3, respectively. The profile of phenolic compounds was determined by HPLC-UV-ESI-MS/MS. The EEP-EtOH (64%) and EEP (59%) of Buin were the most active in the inflammation induced by TPA and AA respectively, being the anti-inflammatory effect stronger than the same Caleu extracts. Regarding the release of NO, all the extracts from the Buin propolis inhibited significantly its release in a concentration-dependent manner, this inhibition was stronger than the extracts from Caleu propolis. Our research shows for the first time a comparative study of the topical in vivo activity of two Chilean propolis. Both propolis showed in vivo

  14. Variability of activity profile during medium-sided games in professional soccer

    DEFF Research Database (Denmark)

    Rago, Vincenzo; Silva, João R; Mohr, Magni

    2018-01-01

    BACKGROUND: In Southern European countries it is very frequent to perform medium-sized games (MSG) as last training drill. We analyzed the individual variability and changes in activity patterns during MSG throughout the preseason. METHODS: Activity profile during MSGs (10v10+goalkeepers, duratio...

  15. Match score affects activity profile and skill performance in professional Australian Football players.

    Science.gov (United States)

    Sullivan, Courtney; Bilsborough, Johann C; Cianciosi, Michael; Hocking, Joel; Cordy, Justin; Coutts, Aaron J

    2014-05-01

    To examine the influence of quarter outcome and the margin of the score differential on both the physical activity profile and skill performance of players during professional Australian Football matches. Prospective, longitudinal. Physical activity profiles were assessed via microtechnology (Global Positioning System and accelerometer) from 40 professional AF players from the same team during 15 Australian Football League games. Skill performance measures (involvement and effectiveness) and player rank scores (Champion Data(©) Rank) were provided by a commercial statistical provider. The physical performance variables, skill involvements and individual player performance scores were expressed relative to playing time for each quarter. The influence of the quarter result (i.e. win vs. loss) and score margin (i.e. small: 19 points) on activity profile and skill involvements and skill efficiency performance of players were examined. Skill involvements (total disposals/min, long kicks/min, marks/min, running bounces/min and player rank/min) were greater in quarters won (all p14.5 km h(-1), HSR/min), sprints/min and peak speed were higher in losing quarters (all pProfessional AF players are likely to have an increased physical activity profile and decreased skill involvement and proficiency when their team is less successful. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. Production of flat KrF laser focal profiles with echelon free-induced spatial incoherence

    International Nuclear Information System (INIS)

    Deniz, A.V.; Obenschain, S.P.; Pronko, M.; Lehmberg, R.H.

    1990-01-01

    High gain direct-drive laser fusion requires a uniform spherical pellet implosion. This in turn requires that the focal profile of each driving beam be sufficiently uniform and controlled. Several methods for producing uniform beams have been proposed. One promising technique, echelon free-induced spatial incoherence (ISI), consists of propagating a broadband spatially incoherent beam through an entire laser system. This technique will be used in the Nike laser, which is a twenty-four- to forty-eight-beam multikilojoule KrF system currently under construction at the Naval Research Laboratory (NRL). This paper presents measurements of focal profiles of laser light smoothed by echelon free ISI from a KrF oscillator and amplifier. The initial implementation is shown

  17. Analysis of protein profiles in diabetic rat blood plasma that induced by alloxan

    Science.gov (United States)

    Hidayati, Dewi; Abdulgani, Nurlita; Setiyawan, Hengki; Trisnawati, Indah; Ashuri, Nova Maulidina; Sa'adah, Noor Nailis

    2017-06-01

    Proteomics is the study to identify the proteins involved in physiological metabolic pathway. The protein profiles of blood plasma from alloxan-induced diabetic rats has investigated using Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE). Data were analyzed descriptively based on variations of the type and intensity of the protein. There were identified the similarity of protein variant between diabetic and control rats included ankyrin (200kDa), IgG (150kDa), nephrin (136 kDa), IDE (112 kDA), albumin (66 kDa), prealbumin (55 kDA), CICP (43 kDa), ApoA-V (39 kDa), GAPDH (35 kDa), C-RP (27,1 kDa), leptin (16 kDa) and apelin (13 kDa). However, the apelin profile at diabetic rats shows the higher intensity than control.

  18. Formation of compositional gradient profiles by using shear-induced polymer migration phenomenon under Couette flow field

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hyuk; Lee, Su Jin [Kyung Hee University, Yongin (Korea, Republic of); Suh, Duck Jong; Park, O Ok [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kwon, Moo Hyun [Woosuk University, Wanju (Korea, Republic of)

    2015-07-15

    We investigated whether a graded-index profile, specified by the polymer compositional gradient, could be formed using shear-induced polymer migration phenomenon in a polymer solution. For the presented model system, we generated a shear flow by rotating a glass rod at the center of a polystyrene/methylmethacrylate (PS/MMA) solution and measured the degree of polymer migration by the shear flow field by examining the concentration of polymer solution along the radial direction from the rotating axis to the periphery. Through model experiments, we formed a compositional gradient and controlled its profile in the solution by varying the concentration of polymer solution, molecular weight of polymer, and shear rate. Finally, we solidified the gradient profiles by the polymerization of the PS/MMA solution and confirmed that the gradient profiles were maintained with a compositional gradient twice larger than the mother PS/MMA solution.

  19. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    International Nuclear Information System (INIS)

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-01-01

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  20. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  1. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes

    Czech Academy of Sciences Publication Activity Database

    Wolf, E. V.; Seybold, M.; Hadravová, Romana; Stříšovský, Kvido; Verhelst, S. H. L.

    2015-01-01

    Roč. 16, č. 11 (2015), s. 1616-1621 ISSN 1439-4227 R&D Projects: GA MŠk(CZ) LK11206; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : activity-based protein profiling * chemical probes * inhibitors * intramembrane proteases * liposomes Subject RIV: CE - Biochemistry Impact factor: 2.850, year: 2015

  2. Active Learning Strategies for Phenotypic Profiling of High-Content Screens.

    Science.gov (United States)

    Smith, Kevin; Horvath, Peter

    2014-06-01

    High-content screening is a powerful method to discover new drugs and carry out basic biological research. Increasingly, high-content screens have come to rely on supervised machine learning (SML) to perform automatic phenotypic classification as an essential step of the analysis. However, this comes at a cost, namely, the labeled examples required to train the predictive model. Classification performance increases with the number of labeled examples, and because labeling examples demands time from an expert, the training process represents a significant time investment. Active learning strategies attempt to overcome this bottleneck by presenting the most relevant examples to the annotator, thereby achieving high accuracy while minimizing the cost of obtaining labeled data. In this article, we investigate the impact of active learning on single-cell-based phenotype recognition, using data from three large-scale RNA interference high-content screens representing diverse phenotypic profiling problems. We consider several combinations of active learning strategies and popular SML methods. Our results show that active learning significantly reduces the time cost and can be used to reveal the same phenotypic targets identified using SML. We also identify combinations of active learning strategies and SML methods which perform better than others on the phenotypic profiling problems we studied. © 2014 Society for Laboratory Automation and Screening.

  3. Comparison of the Effects of Edible Oils: Rice Bran, Grape Seed, and Canola on Serum Lipid Profile and Paraoxonase Activity in Hyperlipidemic Rats

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar-Zahedani

    2015-03-01

    Full Text Available Background: Dyslipidemia is considered as one of the crucial contributors to cardio- cerebro-vascular diseases. Objectives: The present study aimed to compare the effects of Rice Barn Oil (RBO, Grape Seed Oil (GSO, and Canola Oil (CO on dyslipidemia and oxidative stress in experimentally induced hyperlipidemic rats. Materials and Methods: In the present experimental study, forty hyperlipidemic male Wistar rats were randomly assigned to 4 groups to receive RBO, GSO, or CO or Soy Bean Oil (SBO, as controls, for 4 weeks following a 3-week period of Atherogenic Diet (AD intake. Blood samples were collected at the beginning of the study, after inducing dyslipidemia, and at the end of the experimental period. Then, the data were entered into the SPSS statistical software (v. 13.0 and analyzed using paired t-test, paired sample Wilcoxon signed rank test, and Kruskal-Wallis test. Results: AD elevated lipid and/or lipoprotein profile and decreased the paraoxonase activity in the hyperlipidemic rats. The results of paired t-test revealed that RBO led to a significant improvement in serum lipoprotein profile and paraoxonase activity. Besides, a significant difference was found in the GSO group regarding all the measured parameters, except for paraoxonase activity. Moreover, CO diet showed a significant hypolipidemic effect on serum Triglyceride (TG and Total Cholesterol (TC and led to a slight improvement in Low Density Lipoprotein-Cholesterol (LDL-C and High Density Lipoprotein-Cholesterol (HDL-C. Conclusions: The results of the present study suggested that vegetable oils, including RBO, GSO, and CO, might improve dyslipidemia and oxidative stress in hyperlipidemic rats. Indeed, substituting saturated fatty acids with unsaturated fatty acids in rats’ diet had beneficial effects on serum lipid profile and oxidative stress. Comparison of the 3 edible oils showed that GSO had a more profound effect on decreasing hyperlipidemia.

  4. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    Science.gov (United States)

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  5. Gamma-ray scanning of neutron activated geological sediments for studying elemental profile distributions

    International Nuclear Information System (INIS)

    Ellinger, M.; Janghorbani, M.; Starke, K.

    1976-01-01

    Gamma-ray scanning for application to elemental profile studies of geological samples was studied with a neutron activated Baltic Shield sediment. Profile distribution of seven elements were measured. The capabilities and limitations of gamma-ray scanning are discussed by comparing the results with profiles obtained after the mechanical subdivision of the sample and the activation of the appropriately sized separates. With respect to the merits and limitations of scanning gamma-ray spectrometry applied to activated complex matrices the following conclusions were drawn. Qualitatively, the scanning method yields the same information as the much more laborious method of mechanical sudbisubdivision. Quantitatively, it is significantly less accurate. The scanning method has the significant advantage of allowing preservation of the sample. This could be important for such speciments as lunar and archeological materials. The method reduces sample preparation time and the possibility of sample contamination. (T.G.)

  6. Physiological response and activity profile in recreational small-sided football

    DEFF Research Database (Denmark)

    Randers, Morten Bredsgaard; Nielsen, Jens Jung; Bangsbo, Jens

    2014-01-01

    We examined the effect of the number of players on the activity profile and physiological response to small-sided recreational football games with fixed relative pitch size. Twelve untrained men (age: 33.0 ± 6.4 (± standard deviation) years, fat%: 22.4 ± 6.1%, VO2 max: 43.3 ± 5.2 mL/min/kg) compl......We examined the effect of the number of players on the activity profile and physiological response to small-sided recreational football games with fixed relative pitch size. Twelve untrained men (age: 33.0 ± 6.4 (± standard deviation) years, fat%: 22.4 ± 6.1%, VO2 max: 43.3 ± 5.2 m......L/min/kg) completed three football sessions of 4 times 12 min with 3v3, 5v5, or 7v7 in a randomized order. Pitch sizes were 80 m(2) per player. Activity profile (10 Hz global positioning system), heart rate (HR), and rating of perceived exertion (RPE) were measured, and blood samples were collected before and during...... accelerations (500 ± 139 vs 459 ± 143 and 396 ± 144) were higher (P football games, with similar physiological responses for 6-14 players when pitch size is adapted, providing further evidence...

  7. Profiling physical activity motivation based on self-determination theory: a cluster analysis approach.

    Science.gov (United States)

    Friederichs, Stijn Ah; Bolman, Catherine; Oenema, Anke; Lechner, Lilian

    2015-01-01

    In order to promote physical activity uptake and maintenance in individuals who do not comply with physical activity guidelines, it is important to increase our understanding of physical activity motivation among this group. The present study aimed to examine motivational profiles in a large sample of adults who do not comply with physical activity guidelines. The sample for this study consisted of 2473 individuals (31.4% male; age 44.6 ± 12.9). In order to generate motivational profiles based on motivational regulation, a cluster analysis was conducted. One-way analyses of variance were then used to compare the clusters in terms of demographics, physical activity level, motivation to be active and subjective experience while being active. Three motivational clusters were derived based on motivational regulation scores: a low motivation cluster, a controlled motivation cluster and an autonomous motivation cluster. These clusters differed significantly from each other with respect to physical activity behavior, motivation to be active and subjective experience while being active. Overall, the autonomous motivation cluster displayed more favorable characteristics compared to the other two clusters. The results of this study provide additional support for the importance of autonomous motivation in the context of physical activity behavior. The three derived clusters may be relevant in the context of physical activity interventions as individuals within the different clusters might benefit most from different intervention approaches. In addition, this study shows that cluster analysis is a useful method for differentiating between motivational profiles in large groups of individuals who do not comply with physical activity guidelines.

  8. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naidu, Parim Brahma; Ponmurugan, Ponnusamy; Begum, Mustapha Sabana; Mohan, Karthick; Meriga, Balaji; RavindarNaik, Ramavat; Saravanan, Ganapathy

    2015-12-01

    Diabetes is often connected with significant morbidity, mortality and also has a pivotal role in the development of cardiovascular diseases. Diet intervention, particularly naturaceutical antioxidants have anti-diabetic potential and avert oxidative damage linked with diabetic pathogenesis. The present study investigated the effects of diosgenin, a saponin from fenugreek, on the changes in lipid profile in plasma, liver, heart and brain in high-fat diet-streptozotocin (HFD-STZ)-induced diabetic rats. Diosgenin was administered to HFD-STZ induced diabetic rats by orally at 60 mg kg(-1) body weight for 30 days to assess its effects on body weight gain, glucose, insulin, insulin resistance and cholesterol, triglycerides, free fatty acids and phospholipids in plasma, liver, heart and brain. The levels of body weight, glucose, insulin, insulin resistance, cholesterol, triglycerides, free fatty acids, phospholipids, VLDL-C and LDL-C were increased significantly (P rats. Administration of diosgenin to HFD-STZ diabetic rats caused a decrease in body weight gain, blood glucose, insulin, insulin resistance and also it modulated lipid profile in plasma and tissues. The traditional plant fenugreek and its constituents mediate its anti-diabetic potential through mitigating hyperglycaemic status, altering insulin resistance by alleviating metabolic dysregulation of lipid profile in both plasma and tissues. © 2014 Society of Chemical Industry.

  9. Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells

    International Nuclear Information System (INIS)

    Chen, Jie; Li, Jian-Liang; Chen, Zirong; Griffin, James D.; Wu, Lizi

    2015-01-01

    Mucoepidermoid carcinoma (MEC) arises from multiple organs and accounts for the most common types of salivary gland malignancies. Currently, patients with unresectable and metastatic MEC have poor long-term clinical outcomes and no targeted therapies are available. The majority of MEC tumors contain a t(11;19) chromosomal translocation that fuses two genes, CRTC1 and MAML2, to generate the chimeric protein CRTC1-MAML2. CRTC1-MAML2 displays transforming activity in vitro and is required for human MEC cell growth and survival, partially due to its ability to constitutively activate CREB-mediated transcription. Consequently, CRTC1-MAML2 is implicated as a major etiologic molecular event and a therapeutic target for MEC. However, the molecular mechanisms underlying CRTC1-MAML2 oncogenic action in MEC have not yet been systematically analyzed. Elucidation of the CRTC1-MAML2-regulated transcriptional program and its underlying mechanisms will provide important insights into MEC pathogenesis that are essential for the development of targeted therapeutics. Transcriptional profiling was performed on human MEC cells with the depletion of endogenous CRTC1-MAML2 fusion or its interacting partner CREB via shRNA-mediated gene knockdown. A subset of target genes was validated via real-time RT-PCR assays. CRTC1-MAML2-perturbed molecular pathways in MEC were identified through pathway analyses. Finally, comparative analysis of CRTC1-MAML2-regulated and CREB-regulated transcriptional profiles was carried out to assess the contribution of CREB in mediating CRTC1-MAML2-induced transcription. A total of 808 differentially expressed genes were identified in human MEC cells after CRTC1-MAML2 knockdown and a subset of known and novel fusion target genes was confirmed by real-time RT-PCR. Pathway Analysis revealed that CRTC1-MAML2-regulated genes were associated with network functions that are important for cell growth, proliferation, survival, migration, and metabolism. Comparison of CRTC

  10. Chemical profiles and pharmacological activities of Chang-Kang-Fang, a multi-herb Chinese medicinal formula, for treating irritable bowel syndrome.

    Science.gov (United States)

    Mao, Qian; Shi, Lei; Wang, Zhi-Gang; Luo, Yu-Hui; Wang, Yin-Yu; Li, Xue; Lu, Min; Ju, Jian-Min; Xu, Jin-Di; Kong, Ming; Zhou, Shan-Shan; Shen, Min-Qin; Li, Song-Lin

    2017-04-06

    Chang-Kang-Fang formula (CKF), a multi-herb traditional Chinese medicinal formula, has been clinically used for treatment of irritable bowel syndrome (IBS). The mechanisms of CKF for treating IBS and the components that are responsible for the activities were still unknown. To investigate the chemical profiles and effects of CKF on IBS model. The chemical profiles of CKF were investigated by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS). On colon irritation induced rat neonates IBS model, the influence of CKF on neuropeptides, including substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and 5-hydroxytryptamine (5-HT), were measured by ELISA, and the effect on intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores. In addition, the activities of CKF against acetic acid-induced nociceptive responses and prostigmin methylsulfate triggered intestinal propulsion in mice were also evaluated. 80 components were identified or tentatively assigned from CKF, including 11 alkaloids, 20 flavanoids, 4 monoterpenoids, 9 iridoid glycoside, 9 phenylethanoid glycosides, 10 chromones, 7 organic acid, 3 coumarins, 2 triterpene and 5 other compounds. On IBS rat model, CKF was observed to reduce AWR scores and levels of SP, CGRP, VIP and 5-HT. Moreover, CKF reduced the acetic acid-induced writhing scores at all dosages and reduced the intestinal propulsion ration at dosage of 7.5 and 15.0g/kg/d. CKF could alleviate the symptoms of IBS by modulating the brain-gut axis through increasing the production of neuropeptides such as CGRP, VIP, 5-HT and SP, releasing pain and reversing disorders of intestinal propulsion. Berberine, paeoniflorin, acteoside, flavonoids and chromones may be responsible for the multi-bioactivities of CKF. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  12. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  13. Phenyl Saligenin Phosphate Induced Caspase-3 and c-Jun N-Terminal Kinase Activation in Cardiomyocyte-Like Cells.

    Science.gov (United States)

    Felemban, Shatha G; Garner, A Christopher; Smida, Fathi A; Boocock, David J; Hargreaves, Alan J; Dickenson, John M

    2015-11-16

    At present, little is known about the effect(s) of organophosphorous compounds (OPs) on cardiomyocytes. In this study, we have investigated the effects of phenyl saligenin phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and caspase-3 activity. Cytotoxicity was not observed with diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 μM. In marked contrast, PSP displayed pronounced cytotoxicity toward mitotic and differentiated H9c2 cells. PSP triggered the activation of JNK1/2 but not ERK1/2, p38 MAPK, or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently labeled PSP (dansylated PSP) was used to identify novel PSP binding proteins. Dansylated PSP displayed cytotoxicity toward differentiated H9c2 cells. 2D-gel electrophoresis profiles of cells treated with dansylated PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. Proteomic analysis identified tropomyosin, heat shock protein β-1, and nucleolar protein 58 as novel protein targets for PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via JNK1/2-mediated activation of caspase-3. Further studies are required to investigate whether the identified novel protein targets of PSP play a role in the cytotoxicity of this OP, which is usually associated with the development of OP-induced delayed neuropathy.

  14. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    Science.gov (United States)

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  15. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver

    International Nuclear Information System (INIS)

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-01-01

    Research highlights: → PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression. → Hepatic expressions of PPARγ and PCG-1α are induced by a ketogenic diet. → PPARγ antagonist attenuates a ketogenic diet-induced PAI-1 expression. → Ketogenic diet advances the phase of circadian clock in a PPARα-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression

  16. Shock-induced electrical activity in polymeric solids. A mechanically induced bond scission model

    International Nuclear Information System (INIS)

    Graham, R.A.

    1979-01-01

    When polymeric solids are subjected to high-pressure shock loading, two anomalous electrical phenomena, shock-induced conduction and shock-induced polarization, are observed. The present paper proposes a model of mechanically induced bond scission within the shock front to account for the effects. An experimental study of shock-induced polarization in poly(pyromellitimide) (Vespel SP-1) is reported for shock compressions from 17 to 23% (pressures from 2.5 to 5.4 GPa). Poly(pyromellitimide) is found to be a strong generator of such polarization and the polarization is found to reflect an irreversible or highly hysteretic process. The present measurements are combined with prior measurements to establish a correlation between monomer structure and strength of shock-induced polarization; feeble signals are observed in the simpler monomer repeat units of poly(tetrafluoroethylene) and polyethylene while the strongest signals are observed in more complex monomers of poly(methyl methacrylate) and poly(pyromellitimide). It is also noted that there is an apparent correlation between shock-induced conduction and shock-induced polarization. Such shock-induced electrical activity is also found to be well correlated with the propensity for mechanical bond scission observed in experiments carried out in conventional mechanochemical studies. The bond scission model can account for characteristics observed for electrical activity in shock-loaded polymers and their correlation to monomer structure. Localization of elastic energy within the monomer repeat unit or along the main chain leads to the different propensities for bond scission and resulting shock-induced electrical activity

  17. Comparison of parameters of bone profile and homocysteine in physically active and non-active postmenopausal females

    OpenAIRE

    Tariq, Sundus; Lone, Khalid Parvez; Tariq, Saba

    2016-01-01

    Background and objectives: Optimal physical activity is important in attaining a peak bone mass. Physically active women have better bone mineral density and reduce fracture risk as compared to females living a sedentary life. The objective of this study was to compare parameters of bone profile and serum homocysteine levels in physically active and non-active postmenopausal females. Methods: In this cross sectional study postmenopausal females between 50-70 years of age were recruited and di...

  18. Determination of the neutron activation profile of core drill samples by gamma-ray spectrometry.

    Science.gov (United States)

    Gurau, D; Boden, S; Sima, O; Stanga, D

    2018-04-01

    This paper provides guidance for determining the neutron activation profile of core drill samples taken from the biological shield of nuclear reactors using gamma spectrometry measurements. Thus, it provides guidance for selecting a model of the right form to fit data and using least squares methods for model fitting. The activity profiles of two core samples taken from the biological shield of a nuclear reactor were determined. The effective activation depth and the total activity of core samples along with their uncertainties were computed by Monte Carlo simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS.

    Science.gov (United States)

    Huang, Yue; Liu, Xinyu; Zhao, Longshan; Li, Famei; Xiong, Zhili

    2014-06-01

    Traditional Chinese medicine and modern science have indicated that there is a close relationship between bone and kidney. In light of this, this project was designed to study the metabolic profiling by UHPLC/MS/MS of glucocorticoid-induced osteoporosis in kidney tissue and the possible therapeutic effects of Rhizoma Drynariae (RD), a classic traditional Chinese medicine, in improving the kidney function and strengthening bone. Twenty-one Wistar rats were divided into three groups: control group (rats before prednisolone inducing), a model group (prednisolone-induced group) and a treatment group (prednisolone-induced rats that were then administered RD ethanol extracts). By using pattern recognition analysis, a significant change in the metabolic profile of kidney tissue samples was observed in the model group and restoration of the profile was observed after the administration of RD ethanol extracts. Some significantly changed biomarkers related to osteoporosis such as sphingolipids (C16 dihydrosphingosine, C18 dihydrosphingosine, C18 phytosphingosine, C20 phytosphingosine), lysophosphatidycholines (C16:0 LPC, C18:0 LPC) and phenylalanine were identified. As a complement to the metabolic profiling of RD in plasma, these biomarkers suggest that kidney damage, cell cytotoxicity and apoptosis exist in osteoporosis rats, which is helpful in further understanding the underlying process of glucocorticoid-induced osetoporosis and the suggested therapeutic effects of RD. The method shows that tissue target metabonomics might provide a powerful tool to further understand the process of disease and the mechanism of therapeutic effect of Chinese medicines. Copyright © 2014 John Wiley & Sons, Ltd.

  20. A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma.

    Directory of Open Access Journals (Sweden)

    Vasu Punj

    Full Text Available Infection with Kaposi's sarcoma associated herpesvirus (KSHV has been linked to the development of primary effusion lymphoma (PEL, a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.

  1. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  2. Food Additive Sodium Benzoate (NaB Activates NFκB and Induces Apoptosis in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Betul Yilmaz

    2018-03-01

    Full Text Available NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM–50 mM treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis.

  3. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    International Nuclear Information System (INIS)

    Stolk, P.A.; Ponomarev, Y.V.; Schmitz, J.; Brandenburg, A.C.M.C. van; Roes, R.; Montree, A.H.; Woerlee, P.H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation

  4. Study of Hypoglycemic Activity of Aqueous Extract of Leucas indica Linn. Aerial Parts on Streptozotocin Induced Diabetic Rats

    OpenAIRE

    Mahananda Sarkar; Prova Biswas; Amalesh Samanta

    2013-01-01

    The present study was designed to evaluate the hypoglycemic activity of the aqueous extract of Leucas indica Linn. on streptozotocin induced diabetic rats. The extract showed a significant dose depended (200 and 400 mg/kg b.w, orally) reduction in fasting blood glucose level, comparing with reference drug, glibenclamide (0.5 mg/kg b.w, orally). In addition, the changes in body weight, analysis of serum biochemical parameters like lipid profile, glutamate oxaloacetate transaminase, glutamate p...

  5. Adolescents' physical activity in physical education, school recess, and extra-curricular sport by motivational profiles.

    Science.gov (United States)

    Mayorga-Vega, Daniel; Viciana, Jesús

    2014-06-01

    The main purpose of this study was to evaluate the differences in adolescents´ objective physical activity levels and perceived effort in physical education, school recess, and extra-curricular organized sport by motivational profiles in physical education. A sample of 102 students 11-16 yr. old completed a self-report questionnaire assessing self-determined motivation toward physical education. Subsequently, students' objective physical activity levels (steps/min., METs, and moderate-to-vigorous physical activity) and perceived effort were evaluated for each situation. Cluster analysis identified a two-cluster structure: "Moderate motivation toward physical education profile" and "High motivation toward physical education profile." Adolescents in the second cluster had higher physical activity and perceived effort values than adolescents in the first cluster, except for METs and moderate-to-vigorous physical activity in extra-curricular sport. These results support the importance of physical education teachers who should promote self-determined motivation toward physical education so that students can reach the recommended physical activity levels.

  6. Responsiveness of the rehabilitation activities profile and the Barthel index

    NARCIS (Netherlands)

    van Bennekom, C. A.; Jelles, F.; Lankhorst, G. J.; Bouter, L. M.

    1996-01-01

    The goal of this study was to compare the responsiveness for clinically meaningful change over time of a newly designed functional status scale, the Rehabilitation Activities Profile (RAP), with more frequently used Barthel Index (BI). Four techniques for the quantification of responsiveness were

  7. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  8. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors.

    Directory of Open Access Journals (Sweden)

    Brigitte Teissedre

    Full Text Available Canonical Wnt/beta-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-DeltaN89beta-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-DeltaN89beta-catenin activate canonical Wnt signaling within distinct cell-types. DeltaN89beta-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18(+ER(-PR(-CD24(highCD49f(low profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14(+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14(+/p63(+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-DeltaN89beta-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.

  9. Profiling of exercise-induced transcripts in the peripheral blood cells of Thoroughbred horses.

    Science.gov (United States)

    Tozaki, Teruaki; Kikuchi, Mio; Kakoi, Hironaga; Hirota, Kei-Ichi; Mukai, Kazutaka; Aida, Hiroko; Nakamura, Seiji; Nagata, Shun-Ichi

    2016-01-01

    Transcriptome analyses based on DNA microarray technology have been used to investigate gene expression profiles in horses. In this study, we aimed to identify exercise-induced changes in the expression profiles of genes in the peripheral blood of Thoroughbred horses using DNA microarray technology (15,429 genes on 43,603 probes). Blood samples from the jugular vein were collected from six horses before and 1 min, 4 hr, and 24 hr after all-out running on a treadmill. After the normalization of microarray data, a total of 26,830 probes were clustered into four groups and 11 subgroups showing similar expression changes based on k-mean clustering. The expression level of inflammation-related genes, including interleukin-1 receptor type II (IL-1R2), matrix metallopeptidase 8 (MMP8), protein S100-A8 (S100-A8), and serum amyloid A (SAA), increased at 4 hr after exercise, whereas that of c-Fos (FOS) increased at 1 min after exercise. These results indicated that the inflammatory response increased in the peripheral blood cells after exercise. Our study also revealed the presence of genes that may not be affected by all-out exercise. In conclusion, transcriptome analysis of peripheral blood cells could be used to monitor physiological changes induced by various external stress factors, including exercise, in Thoroughbred racehorses.

  10. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    2014-09-01

    Full Text Available The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs in the cargo proteins, and modulates nuclear-cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS. Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.

  11. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  12. On Active Current Selection for Lagrangian Profilers

    Directory of Open Access Journals (Sweden)

    J. Jouffroy

    2013-01-01

    Full Text Available Autonomous Lagrangian profilers are now widely used as measurement and monitoring platforms, notably in observation programs as Argo. In a typical mode of operation, the profilers drift passively at their parking depthbefore making a vertical profile to go back to the surface. This paperpresents simple and computationally-efficient control strategies to activelyselect and use ocean currents so that a profiler can autonomously reach adesired destination. After briefly presenting a typical profiler andpossible mechanical modifications for a coastal environment, we introducesimple mathematical models for the profiler and the currents it will use. Wethen present simple feedback controllers that, using the direction of thecurrents and taking into account the configuration of the environment(coastal or deep-sea, is able to steer the profiler to any desiredhorizontal location. To illustrate the approach, a few results are presentedusing both simulated currents and real current velocity profiles from theNorth Sea.

  13. Discovery of a novel orally active PDE-4 inhibitor effective in an ovalbumin-induced asthma murine model.

    Science.gov (United States)

    Kwak, Hyun Jeong; Nam, Ji Yeon; Song, Jin Sook; No, Zaesung; Yang, Sung Don; Cheon, Hyae Gyeong

    2012-06-15

    Phosphodiesterase-4 (PDE-4) is responsible for metabolizing adenosine 3',5'-cyclic monophosphate that reduces the activation of a wide range of inflammatory cells including eosinophils. PDE-4 inhibitors are under development for the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. Herein, we report a novel PDE-4 inhibitor, PDE-423 (3-[1-(3-cyclopropylmethoxy-4-difluoromethoxybenzyl)-1H-pyrazol-3-yl]-benzoic acid), which shows good in vitro and in vivo oral activities. PDE-423 exhibited in vitro IC(50)s of 140 nM and 550 nM in enzyme assay and cell-based assay, respectively. In vivo study using ovalbumin-induced asthmatic mice revealed that PDE-423 reduced methacholine-stimulated airway hyperreactivity in a dose-dependent manner by once daily oral administration (ED(50)=18.3 mg/kg), in parallel with decreased eosinophil peroxidase activity and improved lung histology. In addition, PDE-423 was effective in diminishing lipopolysaccharide-induced neutrophilia in vivo as well as in vitro. Oral administration of PDE-423 (100 mg/kg) had no effect on the duration of xylazine/ketamine-induced anesthesia and did not induce vomiting incidence in ferrets up to the dose of 1000 mg/kg. The present study indicates that a novel PDE-4 inhibitor, PDE-423, has good pharmacological profiles implicating this as a potential candidate for the development of a new anti-asthmatic drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Numerical and experimental depth profile analyses of coated and attached layers by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ardakani, H. Afkhami [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran (Iran, Islamic Republic of); Tavassoli, S.H., E-mail: h-tavassoli@sbu.ac.i [Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran (Iran, Islamic Republic of)

    2010-03-15

    Laser-induced breakdown spectroscopy (LIBS) is applied for depth profile analysis of different thicknesses of copper foils attached on steel and aluminum substrates. In order to account interfacial effects, depth profile analysis of copper coated on steel is also carried out. Experiments are done at ambient air and at two different wavelengths of 266 and 1064 nm of a Nd:YAG laser with pulse durations of 5 ns. A three-dimensional model of multi-pulse laser ablation is introduced on the base of normal evaporation mechanism and the simulation results are compared with the experiments. A normalized concentration (C{sup N}) is introduced for determination of interface position and results are compared with the usually used normalized intensity (I{sup N}). The effect of coating thickness on average ablation rate and resolution of depth profiling are examined. There is a correlation coefficient higher than 0.95 between the model and experimental depth profiles based on the C{sup N} method. Depth profile analysis on the base of C{sup N} method shows a better depth resolution in comparison with I{sup N} method .Increase in the layer thickness, leads to a decrease in the ablation rate.

  15. Lipid, lipoprotein, and apolipoprotein profiles in active and sedentary men with tetraplegia

    NARCIS (Netherlands)

    Dallmeijer, A J; Hopman, M T; van der Woude, L H

    1997-01-01

    OBJECTIVE: To investigate whether the risk profile of coronary heart disease (CHD) is more favorable in physically active men with tetraplegia compared with sedentary men with tetraplegia. DESIGN: Using a cross-sectional design, the lipid and (apo)lipoprotein concentrations of 11 active and 13

  16. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Directory of Open Access Journals (Sweden)

    Hermanova Marketa

    2010-05-01

    Full Text Available Abstract Background We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2 and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA and inhibitors of lipoxygenases (LOX and cyclooxygenases (COX. This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Methods Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Results Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2 or SH-SY5Y after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX in combination with ATRA in both cell lines. Conclusions Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  17. Activation of Nrf2 protects against triptolide-induced hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available Triptolide, the major active component of Tripterygium wilfordii Hook f. (TWHF, has a wide range of pharmacological activities. However, the toxicities of triptolide, particularly the hepatotoxicity, limit its clinical application. The hepatotoxicity of triptolide has not been well characterized yet. The aim of this study was to investigate the role of NF-E2-related factor 2 (Nrf2 in triptolide-induced toxicity and whether activation of Nrf2 could protect against triptolide-induced hepatotoxicity. The results showed that triptolide caused oxidative stress and cell damage in HepG2 cells, and these toxic effects could be aggravated by Nrf2 knockdown or be counteracted by overexpression of Nrf2. Treatment with a typical Nrf2 agonist, sulforaphane (SFN, attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and decrease in antioxidant enzymes in BALB/C mice. Moreover, the hepatoprotective effect of SFN on triptolide-induced liver injury was associated with the activation of Nrf2 and its downstream targets. Collectively, these results indicate that Nrf2 activation protects against triptolide-induced hepatotoxicity.

  18. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death

    International Nuclear Information System (INIS)

    Nakatsu, Yusuke; Kotake, Yaichiro; Hino, Atsuko; Ohta, Shigeru

    2008-01-01

    AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release

  19. EGFR Activation and Ultraviolet Light‐Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Taghrid B. El-Abaseri

    2007-01-01

    Full Text Available The epidermal growth factor receptor (EGFR regulates the proliferation of keratinocytes through multiple mechanisms that differ depending on the localization of the cell within the skin. Ultraviolet (UV irradiation, the main etiologic factor in the development of skin cancer, also activates the receptor. In this review, we discuss how the UV-induced activation of EGFR regulates the response of the skin to UV. UV-induced EGFR activation increases keratinocyte proliferation, suppresses apoptosis, and augments and accelerates epidermal hyperplasia in response to UV. Pharmacological inhibition of the UV-induced activation of EGFR in a genetically initiated mouse skin tumorigenesis model suppresses tumorigenesis and the activation of mitogen-activated protein (MAP kinases and phosphatidyl inositol-3-kinase (PI3K/AKT signaling pathways. EGFR has pleiotropic, complex, and cell-type-specific functions in cutaneous keratinocytes; suggesting that the receptor is an appropriate target for the development of molecularly targeted therapies for skin cancer and other pathologies.

  20. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available Peony seed oil (PSO is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%, fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69, and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.

  1. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  2. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity

    Science.gov (United States)

    Zhong, Ze-yu; Sun, Bin-bin; Shu, Nan; Xie, Qiu-shi; Tang, Xian-ge; Ling, Zhao-li; Wang, Fan; Zhao, Kai-jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-zhu; Liu, Xiao-dong

    2016-01-01

    Aim: Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. Methods: The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Results: Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestinediclofenac, typical enteropathy was developed with severe enteropathy occurred in distal small intestine. Co-administration of ciprofloxacin significantly alleviated diclofenac-induced enteropathy. Conclusion: Co-administration of ciprofloxacin attenuated enterohepatic circulation of diclofenac and alleviated diclofenac-induced enteropathy in rats, partly via the inhibition of intestinal β-glucuronidase activity. PMID:27180979

  3. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity.

    Science.gov (United States)

    Zhong, Ze-Yu; Sun, Bin-Bin; Shu, Nan; Xie, Qiu-Shi; Tang, Xian-Ge; Ling, Zhao-Li; Wang, Fan; Zhao, Kai-Jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-Zhu; Liu, Xiao-Dong

    2016-07-01

    Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestinediclofenac, typical enteropathy was developed with severe enteropathy occurred in distal small intestine. Co-administration of ciprofloxacin significantly alleviated diclofenac-induced enteropathy. Co-administration of ciprofloxacin attenuated enterohepatic circulation of diclofenac and alleviated diclofenac-induced enteropathy in rats, partly via the inhibition of intestinal β-glucuronidase activity.

  4. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X.L.; Coetsee, E. [Department of Physics, University of the Free State, P O Box 339, Bloemfontein, ZA9300 (South Africa); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong (China); Swart, H.C., E-mail: swartHC@ufs.ac.za [Department of Physics, University of the Free State, P O Box 339, Bloemfontein, ZA9300 (South Africa); Terblans, J.J., E-mail: terblansjj@ufs.ac.za [Department of Physics, University of the Free State, P O Box 339, Bloemfontein, ZA9300 (South Africa)

    2017-07-31

    Highlights: • Linear Least Square (LLS) method used to separate Ni and Cu Auger spectra. • The depth-dependent ion sputtering induced roughness was quantitatively evaluated. • The depth resolution better when profiling with dual-ion beam vs. a single-ion beam. • AES depth profiling with a lower ion energy results in a better depth resolution. - Abstract: The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO{sub 2} substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar{sup +} ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  5. Antihyperglycaemic activity of the methanol extract from leaves of Eremophila maculata (Scrophulariaceae) in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Youssef, Fadia S; Ashour, Mohamed L; Ebada, Sherif S; Sobeh, Mansour; El-Beshbishy, Hesham A; Singab, Abdel Nasser; Wink, Michael

    2017-06-01

    This study was designed to evaluate the antihyperglycaemic activity of the methanol leaf extract of Eremophila maculata (EMM) both in vitro and in vivo. The antihyperglycaemic activity was assessed in vitro using differentiated 3T3-L1 adipocytes, whereas in-vivo effect was evaluated in streptozotocin-induced diabetic rats. Chemical profiling of EMM was done using LC-ESI-MS techniques. Molecular modelling experiments of the identified compounds were performed using C-Docker protocol. Eremophila maculata slightly enhanced cellular glucose uptake and utilization in vitro by 3.92% relative to the untreated control. A stronger in-vivo effect was observed for EMM and its dichloromethane fraction. A pronounced elevation in serum insulin by 88.89 and 66.67%, respectively, accompanied by an apparent decline in fasting blood glucose (FBG) level by 65.60 and 70.37% comparable to streptozotocin-induced diabetic rats was observed. This effect was stronger than that of the reference drug glibenclamide (GLB). Chemical profiling of EMM revealed that leucoseptoside A, verbascoside, syringaresinol-4-O-β-D-glucopyranoside, pinoresinol-4-O-β-D-glucopyranoside and pinoresinol-4-O-[6″-O-(E)-feruloyl]-β-D-glucopyranoside are the major compounds. Molecular modelling showed that martynoside, verbascoside and phillygenin exhibited the highest inhibition to human pancreatic α-amylase (HPA), maltase glucoamylase (MGAM) and aldose reductase (AR), respectively. Eremophila maculata offers an interesting relatively safer antihyperglycaemic candidate comparable to synthetic analogues. © 2017 Royal Pharmaceutical Society.

  6. Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Valéria Nunes-Souza

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has been considered a novel component of the metabolic syndrome (MetS, with the oxidative stress participating in its progression. This study aimed to evaluate the metabolic profile in young and old mice with MetS, and the effects of apocynin and tempol on glycemic and lipid parameters. Young and old C57BL/6 mice with high fat diet- (HFD- induced MetS received apocynin and tempol 50 mg·kg−1/day in their drinking water for 10 weeks. After HFD, the young group showed elevated fasting glucose, worsened lipid profile in plasma, steatosis, and hepatic lipid peroxidation. Nevertheless, the old group presented significant increase in fasting insulin levels, insulin resistance, plasma and hepatic lipid peroxidation, and pronounced steatosis. The hepatic superoxide dismutase and catalase activity did not differ between the groups. Tempol and apocynin seemed to prevent hepatic lipid deposition in both groups. Furthermore, apocynin improved glucose tolerance and insulin sensitivity in old mice. In summary, old mice are more susceptible to HFD-induced metabolic changes than their young counterparts. Also, the antioxidant therapy improved insulin sensitivity and glucose tolerance, and in addition, apocynin seemed to prevent the HFD-induced hepatic fat deposition, suggesting an important role of oxidative stress in the induction of NAFLD.

  7. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    Directory of Open Access Journals (Sweden)

    Samantha K Dunmire

    Full Text Available Epstein-Barr Virus (EBV causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza, respiratory syncytial virus (RSV, human rhinovirus (HRV, attenuated yellow fever virus (YFV, and Dengue fever virus (DENV, revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  8. Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes

    Science.gov (United States)

    Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555

  9. Profiles of recreational activities of daily living (RADL) in patients with mental disorders.

    Science.gov (United States)

    Linden, Michael; Gehrke, G; Geiselmann, B

    2009-12-01

    Activities of daily living, play a key role in the measurement of functional health as defined by the International Classification of Functioning, Disability and Health (ICF) and in prevention and treatment of mental or somatic illnesses. From a clinical context it is important to discriminate between basic "activities of daily living, ADL", "intentional activities of daily living, IADL", and "recreational activities of daily living, RADL". While ADL and IADL have gained much attention in dementia, the elderly, or severe somatic illnesses, there is a lack of research on RADL, which are important in depression, anxiety, or other neurotic disorders. 154 unselected inpatients of a department of behavioral and psychosomatic medicine filled in the "Check List of Recreational Activities" to assess the rates and profiles of RADL. Patients reported on average 19.3 (s.d. 7.0) activities (range 4 - 40), i.e. males 21.3 (s.d. 6.5, 9 - 34) and females 18.9 (s.d. 7.1, 4 - 40). Most frequent RADL were passive and unspecific activities like "watching tv" (93.4%). Least frequent were activities which need special skills or preparation like "horse back riding" (0.7%). Low rates were also found for activities which are in the centre of inpatient occupational therapy like "ceramics" (4.7%) or "silk-painting" (2.6%). There are differences between sexes but not in respect to age (18 to 60), sick leave and unemployment, or diagnostic status. When patients were asked what they would like to do in the future, the same activity profile emerged as when looking at what they had done in the last month The data give a reference profile for recreational activities, help to define what can be considered a normal frequency and spectrum of RADL, and, by this, can guide therapeutic interventions.

  10. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Park, Ji-hoon [Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, 301-747 (Korea, Republic of); Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of); Kim, Soon Ha, E-mail: shakim@lgls.com [LG Life Sciences Ltd., R and D Park, Daejeon, 305-380 (Korea, Republic of)

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  11. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  12. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    International Nuclear Information System (INIS)

    Wei, Kuo-Liang; Chen, Fei-Yun; Lin, Chih-Yi; Gao, Guan-Lun; Kao, Wen-Ya; Yeh, Chi-Hui; Chen, Chang-Rong; Huang, Hao-Chun; Tsai, Wei-Ren; Jong, Koa-Jen; Li, Wan-Jung; Su, Jyan-Gwo Joseph

    2016-01-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG 0 /G 1 population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl hydrocarbon

  13. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Kuo-Liang [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Chen, Fei-Yun; Lin, Chih-Yi [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Gao, Guan-Lun [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Kao, Wen-Ya [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Yeh, Chi-Hui [Department of Environmental Engineering, College of Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan, ROC (China); Chen, Chang-Rong [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Huang, Hao-Chun [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); Tsai, Wei-Ren [Division of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung 41358, Taiwan, ROC (China); Jong, Koa-Jen [Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Li, Wan-Jung [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Su, Jyan-Gwo Joseph, E-mail: jgjsu@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China)

    2016-09-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG{sub 0}/G{sub 1} population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl

  14. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  15. GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production

    International Nuclear Information System (INIS)

    Wu, Yong-hong; Li, Quan; Li, Ping; Liu, Bei

    2016-01-01

    LPS stimulation in macrophages/monocytes induces TNFα production. We here tested the potential effect of GSK621, a novel AMP-activated protein kinase (AMPK) activator, against the process. In RAW264.7 macrophages, murine bone marrow-derived macrophages (BMDMs), and chronic obstructive pulmonary disease (COPD) patients' monocytes, GSK621 significantly inhibited LPS-induced TNFα protein secretion and mRNA synthesis. Inhibition of AMPK, through AMPKα shRNA knockdown or dominant negative mutation (T172A), almost abolished GSK621's suppression on TNFα in RAW264.7 cells. Reversely, forced-expression of a constitutively-active AMPKα (T172D) mimicked GSK621 actions and reduced LPS-induced TNFα production. Molecularly, GSK621 suppressed LPS-induced reactive oxygen species (ROS) production and nuclear factor kappa B (NFκB) activation. In vivo, GSK621 oral administration inhibited LPS-induced TNFα production and endotoxin shock in mice. In summary, GSK621 activates AMPK signaling to inhibit LPS-induced TNFα production in macrophages/monocytes. - Highlights: • GSK621 inhibits LPS-induced TNFα production/expression in RAW264.7 cells and BMDMs. • GSK621 inhibits LPS-induced TNFα production/expression in COPD patients' PBMCs. • GSK621's inhibition on TNFα production by LPS requires AMPK activation. • GSK621 inhibits LPS-induced ROS production and NFκB activation, dependent on AMPK. • GSK621 oral administration inhibits LPS-induced TNFα production and endotoxin shock in mice.

  16. Salicylate-induced abnormal activity in the inferior colliculus of rats.

    Science.gov (United States)

    Chen, G D; Jastreboff, P J

    1995-02-01

    The evaluation of the spontaneous activity of 471 units from the external nucleus of the IC revealed that salicylate induces an increase of the spontaneous activity and the emergence of a bursting type of activity longer than 4 spikes. For sharply tuned units, the affected cells were from the frequency range of 10-16 kHz, which corresponds to the behaviorally measured pitch of salicylate-induced tinnitus in rats. An exogenous calcium supplement, provided under the conditions shown to attenuate the behavioral manifestation of salicylate-induced tinnitus, abolished the modification of the spontaneous activity induced by salicylate. Finally, profound changes of activity were observed for cells not responding to contralateral sound. We propose that the observed long bursts of discharges represent tinnitus-related neuronal activity. The results are consistent with the hypothesis that GABA-mediated disinhibition is involved in the processing of tinnitus-related neuronal activity.

  17. Antidotal activity of Averrhoa carambola (Star fruit on fluoride induced toxicity in rats

    Directory of Open Access Journals (Sweden)

    Vasant Rupal A.

    2014-06-01

    Full Text Available Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress

  18. Antidotal activity of Averrhoa carambola (Star fruit) on fluoride induced toxicity in rats.

    Science.gov (United States)

    Vasant, Rupal A; Narasimhacharya, A V R L

    2014-06-01

    Consumption of fluoride leads to several physiological disturbances in carbohydrate, lipid and antioxidant metabolisms. Averrhoa carambola L. fruit (Star fruit) is a commonly consumed fruit in tropical countries and is an ingredient in folklore medicines. As the fruits have high polyphenolic and antioxidant contents, the present study was undertaken to investigate the potential of star fruit as a dietary supplement in attenuating the fluoride induced hyperglycemia, hypercholesterolemia and oxidative stress in laboratory rats. A four-week exposure to fluoride caused sustained hyperglycemia, hyperlipidemia and oxidative stress and, when the diet was supplemented with star fruit powder, carbohydrate, lipid and antioxidant profiles were restored significantly. It is surmised that the antihyperglycemic, antihypercholesterolemic and antioxidant activities of star fruit in fluoride exposed rats could be due to the presence of polyphenols, flavonoids, saponins, phytosterols, ascorbic acid and fibers in the fruit, which are all well known regulators of carbohydrate, lipid and antioxidant metabolisms. These findings suggest that star fruit can be used as a dietary supplement in fluoride endemic regions to contain fluoride induced hyperglycemia, hyperlipidemia and oxidative stress.

  19. High-resolution phenotypic profiling of natural products-induced effects on the single-cell level

    KAUST Repository

    Kremb, Stephan Georg

    2017-03-15

    Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High-Content Screening to inform on physiology, mechanisms-of-actions, and multi-level toxicity. Our technology platform aims at broad applicability using a comprehensive marker panel with standardized settings streamlined towards an easy implementation in laboratories dedicated to natural products research.

  20. Effects of Parecoxib and Fentanyl on nociception-induced cortical activity

    Directory of Open Access Journals (Sweden)

    Wang Ying-Wei

    2010-01-01

    Full Text Available Abstract Background Analgesics, including opioids and non-steroid anti-inflammatory drugs reduce postoperative pain. However, little is known about the quantitative effects of these drugs on cortical activity induced by nociceptive stimulation. The aim of the present study was to determine the neural activity in response to a nociceptive stimulus and to investigate the effects of fentanyl (an opioid agonist and parecoxib (a selective cyclooxygenase-2 inhibitor on this nociception-induced cortical activity evoked by tail pinch. Extracellular recordings (electroencephalogram and multi-unit signals were performed in the area of the anterior cingulate cortex while intracellular recordings were made in the primary somatosensory cortex. The effects of parecoxib and fentanyl on induced cortical activity were compared. Results Peripheral nociceptive stimulation in anesthetized rats produced an immediate electroencephalogram (EEG desynchronization resembling the cortical arousal (low-amplitude, fast-wave activity, while the membrane potential switched into a persistent depolarization state. The induced cortical activity was abolished by fentanyl, and the fentanyl's effect was reversed by the opioid receptor antagonist, naloxone. Parecoxib, on the other hand, did not significantly affect the neural activity. Conclusion Cortical activity was modulated by nociceptive stimulation in anesthetized rats. Fentanyl showed a strong inhibitory effect on the nociceptive-stimulus induced cortical activity while parecoxib had no significant effect.

  1. Organosulphide profile and hydrogen sulphide-releasing activity of garlic fermented by Lactobacillus plantarum

    NARCIS (Netherlands)

    Tocmo, Restituto; Lai, Abigail Nianci; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-01-01

    Blanched and unblanched garlic were fermented using L. plantarum for investigation of organosulphide profiles, hydrogen sulphide-releasing activity, pH, titratable activity and microbial growth. Both raw and blanched garlic preparations allowed growth of L. plantarum with corresponding lowering of

  2. Changes in miRNA Expression Profiling during Neuronal Differentiation and Methyl Mercury-Induced Toxicity in Human in Vitro Models

    Directory of Open Access Journals (Sweden)

    Giorgia Pallocca

    2014-08-01

    Full Text Available MicroRNAs (miRNAs are implicated in the epigenetic regulation of several brain developmental processes, such as neurogenesis, neuronal differentiation, neurite outgrowth, and synaptic plasticity. The main aim of this study was to evaluate whether miRNA expression profiling could be a useful approach to detect in vitro developmental neurotoxicity. For this purpose, we assessed the changes in miRNA expression caused by methyl mercury chloride (MeHgCl, a well-known developmental neurotoxicant, comparing carcinoma pluripotent stem cells (NT-2 with human embryonic stem cells (H9, both analyzed during the early stage of neural progenitor commitment into neuronal lineage. The data indicate the activation of two distinct miRNA signatures, one activated upon neuronal differentiation and another upon MeHgCl-induced toxicity. Particularly, exposure to MeHgCl elicited, in both neural models, the down-regulation of the same six out of the ten most up-regulated neuronal pathways, as shown by the up-regulation of the corresponding miRNAs and further assessment of gene ontology (GO term and pathway enrichment analysis. Importantly, some of these common miRNA-targeted pathways defined in both cell lines are known to play a role in critical developmental processes, specific for neuronal differentiation, such as axon guidance and neurotrophin-regulated signaling. The obtained results indicate that miRNAs expression profiling could be a promising tool to assess developmental neurotoxicity pathway perturbation, contributing towards improved predictive human toxicity testing.

  3. Gene expression profiling distinguishes between spontaneous and radiation-induced rat mammary carcinomas

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Shimada, Yoshiya; Yamashita, Satoshi; Ushijima, Toshikazu

    2008-01-01

    The ability to distinguish between spontaneous and radiation-induced cancers in humans is expected to improve the resolution of estimated risk from low dose radiation. Mammary carcinomas were obtained from Sprague-Dawley rats that were either untreated (n=45) or acutely γ-irradiated (1 Gy; n=20) at seven weeks of age. Gene expression profiles of three spontaneous and four radiation-induced carcinomas, as well as those of normal mammary glands, were analyzed by microarrays. Differential expression of identified genes of interest was then verified by quantitative polymerase chain reaction (qPCR). Cluster analysis of global gene expression suggested that spontaneous carcinomas were distinguished from a heterogeneous population of radiation-induced carcinomas, though most gene expressions were common. We identified 50 genes that had different expression levels between spontaneous and radiogenic carcinomas. We then selected 18 genes for confirmation of the microarray data by qPCR analysis and obtained the following results: high expression of Plg, Pgr and Wnt4 was characteristic to all spontaneous carcinomas; Tnfsf11, Fgf10, Agtr1a, S100A9 and Pou3f3 showed high expression in a subset of radiation-induced carcinomas; and increased Gp2, Areg and Igf2 expression, as well as decreased expression of Ca3 and noncoding RNA Mg1, were common to all carcinomas. Thus, gene expression analysis distinguished between spontaneous and radiogenic carcinomas, suggesting possible differences in their carcinogenic mechanism. (author)

  4. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul

    2017-05-15

    Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.

  5. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  6. Photonic activation of plasminogen induced by low dose UVB.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm. Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å. Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the

  7. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    Science.gov (United States)

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Time-dependent narrow emission-line profiles of quasars and active galactic nuclei

    International Nuclear Information System (INIS)

    Capriotti, E.R.; Foltz, C.B.

    1982-01-01

    The narrow-line emitting regions of quasars and active nuclei of galaxies are assumed to consist of material undergoing gravitational infall due to acceleration by centrally located mass concentrations. Two cases are considered. In one, the material is assumed to be in the form of optically thick, similar clouds which emit line radiation monochromatically, isotropically and in inverse proportion to the square of the distance from the center of the system. In the other case, the material is assumed to be homogeneous, isothermal and to have the same ionization structure everywhere. The material is assumed to be excited by an ionizing continuum created ty a supernova-like outburst of radiation. Line profiles are computed for various combinations of epoch after outburst, continuum decay times, and spectral resolution. The computed profiles are clearly asymmetric to the blue of the profile peak and for certain combinations of epoch and decay time, clearly asymmetric to the blue of line center. The computed profiles compare well with many observed [O III] profiles

  9. Persistent activation of NF-kappaB related to IkappaB's degradation profiles during early chemical hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    García-Román Rebeca

    2007-04-01

    Full Text Available Abstract Background To define the NF-kappaB activation in early stages of hepatocarcinogenesis and its IkappaB's degradation profiles in comparison to sole liver regeneration. Methods Western-blot and EMSA analyses were performed for the NF-kappaB activation. The transcriptional activity of NF-kappaB was determined by RT-PCR of the IkappaB-α mRNA. The IkappaB's degradation proteins were determined by Western-blot assay. Results We demonstrated the persistent activation of NF-kappaB during early stages of hepatocarcinogenesis, which reached maximal level 30 min after partial hepatectomy. The DNA binding and transcriptional activity of NF-kappaB, were sustained during early steps of hepatocarcinogenesis in comparison to only partial hepatectomy, which displayed a transitory NF-kappaB activation. In early stages of hepatocarconogenesis, the IkappaB-α degradation turned out to be acute and transitory, but the low levels of IkappaB-β persisted even 15 days after partial hepatectomy. Interestingly, IkappaB-β degradation is not induced after sole partial hepatectomy. Conclusion We propose that during liver regeneration, the transitory stimulation of the transcription factor response, assures blockade of NF-kappaB until recovery of the total mass of the liver and the persistent NF-kappaB activation in early hepatocarcinogenesis may be due to IkappaB-β and IkappaB-α degradation, mainly IkappaB-β degradation, which contributes to gene transcription related to proliferation required for neoplasic progression.

  10. Critical reflection activation analysis - a new near-surface probe

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Trohidou, K.N.

    1988-09-01

    We propose a new surface analytic technique, Critical Reflection Activation Analysis (CRAA). This technique allows accurate depth profiling of impurities ≤ 100A beneath a surface. The depth profile of the impurity is simply related to the induced activity as a function of the angle of reflection. We argue that the technique is practical and estimate its accuracy. (author)

  11. Neuroprotection by aripiprazole against β-amyloid-induced toxicity by P-CK2α activation via inhibition of GSK-3β

    OpenAIRE

    Park, So Youn; Shin, Hwa Kyoung; Lee, Won Suk; Bae, Sun Sik; Kim, Koanhoi; Hong, Ki Whan; Kim, Chi Dae

    2017-01-01

    Psychosis is reported over 30% of patients with Alzheimer's disease (AD) in clinics. Aripiprazole is an atypical antipsychotic drug with partial agonist activity at the D2 dopamine and 5-HT1A receptors with low side-effect profile. We identified aripiprazole is able to overcome the amyloid-β (Aβ)-evoked neurotoxicity and then increase the cell viability. This study elucidated the mechanism(s) by which aripiprazole ameliorates Aβ1-42-induced decreased neurite outgrowth and viability in neurona...

  12. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  13. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a positive effect of caffeine and potential role of microtubules.

    Science.gov (United States)

    Tariqul Islam, A F M; Yue, Haicen; Scavello, Margarethakay; Haldeman, Pearce; Rappel, Wouter-Jan; Charest, Pascale G

    2018-08-01

    To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Methylphenidate Actively Induces Emergence from General Anesthesia

    Science.gov (United States)

    Solt, Ken; Cotten, Joseph F.; Cimenser, Aylin; Wong, Kin F.K.; Chemali, Jessica J.; Brown, Emery N.

    2011-01-01

    Background Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study we tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from isoflurane anesthesia. Methods Using adult rats we tested the effect of methylphenidate IV on time to emergence from isoflurane anesthesia. We then performed experiments to test separately for methylphenidate-induced changes in arousal and changes in minute ventilation. A dose-response study was performed to test for methylphenidate–induced restoration of righting during continuous isoflurane anesthesia. Surface electroencephalogram recordings were performed to observe neurophysiological changes. Plethysmography recordings and arterial blood gas analysis were performed to assess methylphenidate-induced changes in respiratory function. Droperidol IV was administered to test for inhibition of methylphenidate's actions. Results Methylphenidate decreased median time to emergence from 280 to 91 s. The median difference in time to emergence without compared to with methylphenidate was 200 [155, 331] s (median, [95% confidence interval]). During continuous inhalation of isoflurane, methylphenidate induced return of righting in a dose-dependent manner, induced a shift in electroencephalogram power from delta to theta, and induced an increase in minute ventilation. Administration of droperidol (0.5 mg/kg IV) prior to methylphenidate (5 mg/kg IV) largely inhibited methylphenidate-induced emergence behavior, electroencephalogram changes, and changes in minute ventilation. Conclusions Methylphenidate actively induces emergence from isoflurane anesthesia by increasing arousal and respiratory drive, possibly through activation of dopaminergic and adrenergic arousal circuits. Our findings suggest that methylphenidate may be clinically

  15. Variations in Tectonic Activities of the Central and Southwestern Foothills, Taiwan, Inferred from River Hack Profiles

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Chen

    2006-01-01

    Full Text Available A longitudinal profile of a river under static equilibrium shows no degradation or aggradation and can be ideally described as a straight line on a semi-logarithmic graph. This type of profile is called a “Hack profile”. If a river runs across uprising active structure systems, its Hack profile becomes convex. Accumulated tectonic strain varies positively with the intensity of the upwarping in Hack-profile convexity. In this paper, we compare curvature changes in Hack profiles of a series of rivers running through faults in the central and southwestern Foothills of Taiwan. Longitudinal profiles of these rivers were derived from two versions of topographic maps (1904 and 1985 and recent DTM data (2000. Prior to comparisons, we calibrated the 1904 topographic map, named “Taiwan Bautu”, by “offsetting” horizontal coordinates north and westward approximately 440 m and then “linear transforming” the elevation values. The Tungtzchiau fault of the central Foothills has remained inactive since 1935. Here relatively high uplift activity near the Wu River is indicated by significantly convex Hack profiles. This strain accumulation can be attributed to a lack of small magnitude earthquakes along the fault over the past 70 years. In the southwestern Foothills, relatively high uplift activity of similar intensity to the central Foothills is indicted near the Neocho River. Significant profiles with concave segments below the ideal graded profiles, at the lower reaches of rivers where continuous small magnitude strain release events have occurred, can only be found along the Sandieh, Neocho and Bazhang rivers in the southwestern Foothills. All these findings indicate that fault systems in the central Foothills tend to be locked and these faults could yield large earthquakes similar to the Chi-Chi event.

  16. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  17. Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast

    Directory of Open Access Journals (Sweden)

    Cory H.T. Boone

    2017-08-01

    Full Text Available The World Health Organization designates lidocaine as an essential medicine in healthcare, greatly increasing the probability of human exposure. Its use has been associated with ROS generation and neurotoxicity. Physiological and metabolomic alterations, and genetics leading to the clinically observed adverse effects have not been temporally characterized. To study alterations that may lead to these undesirable effects, Saccharomyces cerevisiae grown on aerobic carbon sources to stationary phase was assessed over 6 h. Exposure of an LC50 dose of lidocaine, increased mitochondrial depolarization and ROS/RNS generation assessed using JC-1, ROS/RNS specific probes, and FACS. Intracellular calcium also increased, assessed by ICP-MS. Measurement of the relative ATP and ADP concentrations indicates an initial 3-fold depletion of ATP suggesting an alteration in the ATP:ADP ratio. At the 6 h time point the lidocaine exposed population contained ATP concentrations roughly 85% that of the negative control suggesting the surviving population adapted its metabolic pathways to, at least partially restore cellular bioenergetics. Metabolite analysis indicates an increase of intermediates in the pentose phosphate pathway, the preparatory phase of glycolysis, and NADPH. Oxidative stress produced by lidocaine exposure targets aconitase decreasing its activity with an observed decrease in isocitrate and an increase citrate. Similarly, increases in α-ketoglutarate, malate, and oxaloacetate imply activation of anaplerotic reactions. Antioxidant molecule glutathione and its precursor amino acids, cysteine and glutamate were greatly increased at later time points. Phosphatidylserine externalization suggestive of early phase apoptosis was also observed. Genetic studies using metacaspase null strains showed resistance to lidocaine induced cell death. These data suggest lidocaine induces perpetual mitochondrial depolarization, ROS/RNS generation along with increased

  18. Activity Pattern Profiles: Relationship With Affect, Daily Functioning, Impairment, and Variables Related to Life Goals.

    Science.gov (United States)

    Esteve, Rosa; López-Martínez, Alicia E; Peters, Madelon L; Serrano-Ibáñez, Elena R; Ruíz-Párraga, Gema T; González-Gómez, Henar; Ramírez-Maestre, Carmen

    2017-05-01

    The aim of this cross-sectional study was to identify subgroups of patients on the basis of their activity patterns and to investigate their relationship with life goals, optimism, affect, and functioning. The sample was comprised of 276 patients with chronic musculoskeletal pain. Hierarchical cluster analysis was performed on the activity pattern variables and the resulting clusters were compared using 1-way analysis of variance. The 4-cluster was the optimal solution. The 4 clusters comprised: 1) avoiders: patients with high levels of avoidance and low levels of persistence, who use pacing to reduce pain, 2) doers: patients with high levels of persistence and low levels of pacing and avoidance, 3) extreme cyclers: patients with high levels of avoidance and persistence and low levels of pacing, and 4) medium cyclers: patients with moderately high levels of avoidance and persistence and high levels of pacing. Comparison of the clusters showed that doers had the most adaptive profile, whereas avoiders, followed by extreme cyclers, had unhealthy profiles. Doers showed a high level of optimism and a good balance between goal value, expectancy, and conflict. It is useful to distinguish profiles on the basis of various activity patterns. In contrast to profiles characterized by avoidance, profiles characterized by high persistence and low avoidance were associated with adaptive results. Patients with this profile also showed a high level of optimism and a good balance between goal value, expectancy, and conflict. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Physical activity and sleep profiles in Finnish men and women.

    Science.gov (United States)

    Wennman, Heini; Kronholm, Erkki; Partonen, Timo; Tolvanen, Asko; Peltonen, Markku; Vasankari, Tommi; Borodulin, Katja

    2014-01-27

    Physical activity (PA) and sleep are related to cardiovascular diseases (CVD) and their risk factors. The interrelationship between these behaviors has been studied, but there remain questions regarding the association of different types of PA, such as occupational, commuting, and leisure time to sleep, including quality, duration and sufficiency. It is also unclear to what extent sleep affects peoples' PA levels and patterns. Our aim is to investigate the interrelationship between PA and sleep behaviors in the Finnish population, including employment status and gender. The study comprised population based data from the FINRISK 2012 Study. A stratified, random sample of 10,000 Finns, 25 to 74 years-old, were sent a questionnaire and an invitation to a health examination. The participation rate was 64% (n = 6,414). Latent class analysis was used to search for different underlying profiles of PA and sleep behavior in men and women, respectively. Models with one through five latent profiles were fitted to the data. Based on fit indicators, a four-class model for men and women, respectively, was decided to be the best fitted model. Four different profiles of PA and sleep were found in both men and women. The most common profile of men comprised 45% of the total participants, and in women, 47%. These profiles were distinguished by probabilities for high leisure time PA and sleep, subjectively rated as sufficient, as well as sleep duration of 7-7.9 hours. The least common profiles represented 5% (men) and 11% (women) of the population, and were characterized by probabilities for physical inactivity, short sleep, and evening type for women and morning type for men. There was also one profile in both genders characterized by likelihood for both high occupational PA and subjectively experienced insufficient sleep. The use of latent class analysis in investigating the interrelationship between PA and sleep is a novel perspective. The method provides information on the

  20. Year in school and physical activity stage of change as discriminators of variation in the physical activity correlate profile of adolescent females.

    Science.gov (United States)

    Burns, Con; Murphy, John J; MacDonncha, Ciaran

    2014-05-01

    Knowledge of the physical activity correlate profile of adolescent females will provide insight into decreasing physical activity patterns among adolescent females. Correlates of physical activity and physical activity stage of change were assessed during 2007-2008 among 871 Irish adolescent females in years 1-6 in secondary schools (15.28 ± 1.8 years). Multivariate Analysis of Variance was used to identify whether differences in correlates of physical activity could be detected across year in school and physical activity stages of change. Significant differences (P physically active (partial eta range (ηp2) .21-.25) to be the most important predictors of physical activity stage of change. Females in more senior years in school and in earlier physical activity stages of change reported a significantly less positive physical activity correlate profile than females in junior years and in later physical activity stages of change. This finding supports the construct validity of the physical activity stages of change.

  1. Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

    Science.gov (United States)

    Achiron, Anat; Feldman, Anna; Gurevich, Michael

    2009-01-01

    Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201

  2. A COMPARATIVE STUDY OF LIPID PROFILE IN SEDENTARY AND ACTIVE ADULT FEMALES

    Directory of Open Access Journals (Sweden)

    Suhasini Sanda

    2018-11-01

    Full Text Available BACKGROUND Lipids and lipoproteins are essential constituents of the body and their activities assist in maintenance of body homeostasis. Sedentary lifestyle has been shown to lead to inactivity, which could lead to lipid disorders. Hyperlipidaemias is one of the major independent risk factor, which affects the cardiovascular system adversely resulting eventually damage to various organs most notably heart, kidneys and brain. The present study is therefore designed to ascertain the effect of sedentary lifestyle on lipid status of sedentary adult females when compared to that of the lipid status of active adult females. MATERIALS AND METHODS The present study comprised of Group I - 50 sedentary adult females and Group II - 50 active adult females aged between 30 to 60 years. The subjects selected in both groups were matched for age and dietary habits. The subjects with hypertension, diabetes, smokers, pregnancy and subjects with Body Mass Index (BMI greater than 30 are excluded. After overnight fasting of 12 to 14 hours, 5 mL of blood is collected from the subjects and fasting Total Serum Cholesterol (TC, Total Serum Triglycerides (TG, HDL cholesterol (HDL-C, LDL cholesterol (LDL-C and total serum cholesterol/HDL-C ratio are measured and data is statistically analysed. RESULTS The evaluation of lipid profile patterns in above subjects showed hypercholesterolaemia, hypertriglyceridaemia, increased LDLC and total serum cholesterol/HDL-C ratio in sedentary adult females and also decreased HDL-C levels in them when compared to the normal healthy lipid profile patterns in active adult females. A statistically significant increased lipid profiles (P-value <0.001 was observed in the sedentary adult females than in active adult females. CONCLUSION This study shows that sedentary lifestyle predisposes to hyperlipidaemias, one of the major risk factor of cardiovascular disease and lack of exercise worsens the situation.

  3. Effects of experimentally induced intestinal obstruction on the electrolyte profile in dogs

    International Nuclear Information System (INIS)

    Dar, E.M.; Khan, M.A.; Mehmood, A.K.

    2004-01-01

    This study was conducted to quantitatively asses the changes in serum electrolyte profile after experimentally induced upper and lower intestinal obstruction in dogs. Ten dogs of either sex ranging in weight from 20-25 Kg were selected. After thorough physical examination, de-worming and vaccination they were randomly divided into 3 groups. Groups A and B comprised of four animals each while group C had two animals. After preparing the operation site, upper intestinal obstruction was induced in animals of group A and lower intestinal obstruction was induced in all animals of group B through mid line laparotomy under general anesthesia. Animals of group C were kept as control without induction of any obstruction. Proper post-operative care was given to the operated animals. Blood samples were collected from all animals at an interval of 24 hours and evaluated to observe changes in serum sodium, potassium and chloride levels. The results of this study showed marked decline in electrolyte levels in animals of both groups A and B, however this decline was more severe and rapid in group A than group B, while group c acted normally. It can be concluded that upper intestinal obstruction is more fatal in its consequences than lower intestinal obstruction, which is relatively less dangerous in producing its ill effects. (author)

  4. Analysis of the activation profile of dendritic cells derived from the bone marrow of interleukin-12/interleukin-23-deficient mice

    Science.gov (United States)

    Bastos, Karina R B; de Deus Vieira de Moraes, Luciana; Zago, Cláudia A; Marinho, Cláudio R F; Russo, Momtchilo; Alvarez, José M M; D'Império Lima, Maria R

    2005-01-01

    We have previously shown that macrophages from interleukin (IL)-12p40 gene knockout (IL-12/IL-23−/−) mice have a bias towards the M2 activation profile, spontaneously secreting large quantities of transforming growth factor-β1 (TGF-β1) and producing low levels of nitric oxide (NO) in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). To verify whether the activation profile of dendritic cells (DCs) is also influenced by the absence of IL-12/IL-23, bone marrow-derived DCs from IL-12/IL-23−/− and C57BL/6 mice were evaluated. At first we noticed that ≈ 50% of the C57BL/6 DCs were dead after LPS-induced maturation, whereas the mortality of IL-12/IL-23−/− DCs was < 10%, a protective effect that diminished when recombinant IL-12 (rIL-12) was added during maturation. Similarly to macrophages, mature IL-12/IL-23−/− DCs (mDCs) produced higher levels of TGF-β1 and lower levels of NO than C57BL/6 mDCs. NO release was IFN-γ-dependent, as evidenced by the poor response of IFN-γ−/− and IL-12/IL-23−/−IFN-γ−/− mDCs. Nevertheless, IFN-γ deficiency was not the sole reason for the weak NO response observed in the absence of IL-12/IL-23. The high level of TGF-β1 secretion by IL-12/IL-23−/− mDCs could explain why exogenous IFN-γ partially restored the NO production of IFN-γ−/− mDCs, while IL-12/IL-23−/− IFN-γ−/− mDCs remained unresponsive. We also showed that CD4+ T-cell proliferation was inhibited by C57BL/6 mDCs, but not by IL-12/IL-23−/− mDCs. IFN-γ and NO appear to mediate this antiproliferative effect because this effect was not observed in the presence of mDCs from IFN-γ−/− or IL-12/IL-23−/− IFN-γ−/− mice and it was attenuated by aminoguanidine. We conclude that the presence of IL-12/IL-23 during LPS-induced maturation influences the activation profile of DCs by a mechanism that is, only in part, IFN-γ dependent. PMID:15804287

  5. Physical activity levels and health profiles of adult women living in ...

    African Journals Online (AJOL)

    This study investigated the physical activity levels and health profiles of adult women living in the Mmasechaba informal settlement in Gauteng. Apart from the questionnaire, anthropometric measurements were recorded and body mass index and waist-to-hip ratios were calculated. The results indicated that the incidence of ...

  6. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling.

    Science.gov (United States)

    Schweigel, Hardy; Geiger, Jörg; Beck, Florian; Buhs, Sophia; Gerull, Helwe; Walter, Ulrich; Sickmann, Albert; Nollau, Peter

    2013-03-01

    Tyrosine phosphorylation plays a central role in signal transduction controlling many important biological processes. In platelets, the activity of several signaling proteins is controlled by tyrosine phosphorylation ensuring proper platelet activation and aggregation essential for regulation of the delicate balance between bleeding and hemostasis. Here, we applied Src-homology 2 region (SH2)-profiling for deciphering of the phosphotyrosine state of human platelets activated by adenosine diphosphate (ADP). Applying a panel of 31 SH2-domains, rapid and complex regulation of the phosphotyrosine state of platelets was observed after ADP stimulation. Specific inhibition of platelet P2Y receptors by synthetic drugs revealed a major role for the P2Y1 receptor in tyrosine phosphorylation. Concomitant activation of protein kinase A (PKA) abolished ADP-induced tyrosine phosphorylation in a time and concentration-dependent manner. Given the fact that PKA activity is negatively regulated by the P2Y12 receptor, our data provide evidence for a novel link of synergistic control of the state of tyrosine phosphorylation by both P2Y receptors. By SH2 domain pull down and MS/MS analysis, we identified distinct tyrosine phosphorylation sites in cell adhesion molecules, intracellular adapter proteins and phosphatases suggesting a major, functional role of tyrosine phosphorylation of theses candidate proteins in ADP-dependent signaling in human platelets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia.

    Science.gov (United States)

    Jiménez-Aspee, Felipe; Thomas-Valdés, Samanta; Schulz, Ayla; Ladio, Ana; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo

    2016-07-01

    The Patagonian currant Ribes magellanicum is highly valued due to its pleasant flavor and sweet taste. The aim of this study was to characterize its constituents and to assess their antioxidant and cytoprotective properties. For the fruit phenolic-enriched extract (PEE), total phenolics (TP), total flavonoids (TF), and antioxidant activity (DPPH, Ferric reducing antioxidant power (FRAP), and Trolox equivalent antioxidant activity (TEAC)) were determined. Argentinean samples presented better activity in the DPPH and FRAP assays. Best cytoprotection against oxidative stress induced by H2O2 in AGS cells was found in one Argentinean sample at 500 μg mL(-1) (65.7%). HPLC MS/MS analysis allowed the tentative identification of 59 constituents, including eight anthocyanins, 11 conjugates of caffeic-, ferulic-, and coumaric acid, and 38 flavonoids, most of them quercetin and kaempferol derivatives. Argentinean samples showed a more complex pattern of anthocyanins, hydroxycinnamic acids (HCA), and flavonoids. Cyanidin rhamnoside hexoside and cyanidin hexoside were the main anthocyanins, accounting for 35 and 55% for the Argentinean and 60 and 27% for the ripe Chilean fruits. HCA content was about three times higher in Argentinean samples. The phenolic profiles of Chilean and Argentinean Ribes magellanicum show remarkable differences in chemical composition with higher HCA and flavonoid content in Argentinean samples.

  8. Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors

    Science.gov (United States)

    Turner, D. D.; Feltz, W. F.; Ferrare, R. A.

    2000-01-01

    The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

  9. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  10. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation.

    Science.gov (United States)

    Rocha, Sandra M; Saraiva, Tatiana; Cristóvão, Ana C; Ferreira, Raquel; Santos, Tiago; Esteves, Marta; Saraiva, Cláudia; Je, Goun; Cortes, Luísa; Valero, Jorge; Alves, Gilberto; Klibanov, Alexander; Kim, Yoon-Seong; Bernardino, Liliana

    2016-06-04

    Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced

  11. Socio-clinical profile of married women with history of induced abortion: A community-based cross-sectional study in a rural area

    Directory of Open Access Journals (Sweden)

    Sumitra Pattanaik

    2017-01-01

    Full Text Available Background: Induced abortion contributes significantly to maternal mortality in developing countries yet women still seek repeat induced abortion in spite of the availability of contraceptive services. Objectives: (1 To study the sociodemographic profile of abortion seekers. (2 To study the reasons for procuring abortions by married women of reproductive age group. Materials and Methods: It was a cross-sectional community-based study. All the married women of reproductive age group (15–49 years with a history of induced abortion were selected as the subjects. Results: The most common reason for seeking an abortion was poverty (39.4%, followed by girl child and husband's insistence, which accounted for 17.2% each. More complications were noted in women undergoing an abortion in places other than government hospitals and also who did it in the second trimester. Conclusions: To reduce maternal deaths from unsafe abortion, several broad activities require strengthening such as decreasing unwanted pregnancies, increasing geographic accessibility and affordability, upgrading facilities that offers medical termination of pregnancy (MTP services, increasing awareness among the reproductive age about the legal and safe abortion facilities, the consequences of unsafe abortion, ensuring appropriate referral facilities, increasing access to safe abortion services and increasing the quality of abortion care, including postabortion care.

  12. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P L; Hadi, Mackenzie; Laarakkers, Coby M M; Masereeuw, R.|info:eu-repo/dai/nl/155644033; Groothuis, Geny M M; Russel, Frans G M

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker

  13. Misconceptions about mirror-induced motor cortex activation.

    NARCIS (Netherlands)

    Praamstra, P.; Torney, L.; Rawle, C.J.; Miall, R.C.

    2011-01-01

    Observation of self-produced hand movements through a mirror, creating an illusion of the opposite hand moving, was recently reported to induce ipsilateral motor cortex activation, that is, motor cortex activation for the hand in rest. The reported work goes far beyond earlier work on motor cortex

  14. Keep-Left Behavior Induced by Asymmetrically Profiled Walls

    Science.gov (United States)

    Oliveira, C. L. N.; Vieira, A. P.; Helbing, D.; Andrade, J. S.; Herrmann, H. J.

    2016-01-01

    We show, computationally and analytically, that asymmetrically shaped walls can organize the flow of pedestrians driven in opposite directions through a corridor. Precisely, a two-lane ordered state emerges in which people always walk on the left-hand side (or right-hand side), controlled by the system's parameters. This effect depends on features of the channel geometry, such as the asymmetry of the profile and the channel width, as well as on the density and the drift velocity of pedestrians, and the intensity of noise. We investigate in detail the influence of these parameters on the flow and discover a crossover between ordered and disordered states. Our results show that an ordered state only appears within a limited range of drift velocities. Moreover, increasing noise may suppress such flow organization, but the flow is always sustained. This is in contrast with the "freezing by heating" phenomenon according to which pedestrians tend to clog in smooth channels for strong noise [Phys. Rev. Lett. 84, 1240 (2000)]. Therefore, the ratchetlike effect proposed here acts on the system not only to induce a "keep-left" behavior but also to prevent the freezing by heating clogging phenomenon. Besides pedestrian flow, this new phenomenon has other potential applications in microfluidics systems.

  15. Effect of the Combination of Gelam Honey and Ginger on Oxidative Stress and Metabolic Profile in Streptozotocin-Induced Diabetic Sprague-Dawley Rats

    Science.gov (United States)

    Abdul Sani, Nur Fathiah; Belani, Levin Kesu; Pui Sin, Chong; Abdul Rahman, Siti Nor Amilah; Zar Chi, Thent; Makpol, Suzana; Yusof, Yasmin Anum Mohd

    2014-01-01

    Diabetic complications occur as a result of increased reactive oxygen species (ROS) due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight). Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight), ginger (60 mg/kg body weight), and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH): oxidized glutathione (GSSG), and malondialdehyde (MDA). The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P < 0.05) SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P < 0.05) in STZ-induced diabetic rats compared to diabetic control rats. PMID:24822178

  16. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    Science.gov (United States)

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Gastroprotective activity of polysaccharide from Hericium erinaceus against ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer, and its antioxidant activities.

    Science.gov (United States)

    Wang, Xiao-Yin; Yin, Jun-Yi; Zhao, Ming-Ming; Liu, Shi-Yu; Nie, Shao-Ping; Xie, Ming-Yong

    2018-04-15

    The gastroprotective activity of Hericium erinaceus polysaccharide was investigated in rats. The antioxidant activities were also evaluated. Pre-treatment of polysaccharide could reduce ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer. The polysaccharide exhibited scavenging activities of 1, 1-diphenyl-2-picryl-hydrozyl and hydroxyl radicals, and ferrous ion-chelating ability. In the pylorus ligation-induced model, gastric secretions (volume of gastric juice, gastric acid, pepsin and mucus) of ulcer rats administrated with polysaccharide were regulated. Levels of tumor necrosis factor-α and interleukins-1β in serum, and myeloperoxidase activity of gastric tissue were reduced, while antioxidant status of gastric tissue was improved. Defensive factors (nitric oxide, prostaglandin E2, epidermal growth factor) in gastric tissue were increased. These results indicate that Hericium erinaceus polysaccharide possess gastroprotective activity, and the possible mechanisms are related to its regulations of gastric secretions, improvements of anti-inflammatory and antioxidant status, as well as increments of defensive factors releases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  19. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  20. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  1. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  2. Cardiac autonomic profile in different sports disciplines during all-day activity.

    Science.gov (United States)

    Sztajzel, J; Jung, M; Sievert, K; Bayes De Luna, A

    2008-12-01

    Physical training and sport activity have a beneficial effect on cardiac autonomic activity. However, the exact impact of different types of sports disciplines on cardiac autonomic function is still unclear. The aim of this study was to evaluate the cardiac autonomic profile in different sports discplines and to determine their impact on cardiac autonomic function by using heart rate variability (HRV), a noninvasive electrocardiographic (ECG) analysis of the sympatho-vagal balance. Temporal and spectral HRV parameters determined from 24-hour continuous ECG monitoring were studied in 40 subjects, including 12 endurance athletes, 14 hockey players and 14 untrained male volunteers (control group). Each participant had to wear a Holter recorder during 24 hours and to continue his everyday activities. All HRV parameters were compared between the 3 study groups. All heart rate values were lower and all parasympathetic-related time domain indices, including root mean square of successive differences (RMSSD) and pNN50 (NN50 count divided by the total number of all NN intervals), were higher in both athletes groups as compared with controls (PHRV, were significantly higher only in endurance athletes (PHRV (higher SDNN), indicating thereby that this type sports discipline may have a more substantially favorable effect on the cardiac autonomic profile.

  3. Tomato Juice Consumption Modifies the Urinary Peptide Profile in Sprague-Dawley Rats with Induced Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Gala Martín-Pozuelo

    2016-10-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is the most common liver disorder in Western countries, with a high prevalence, and has been shown to increase the risk of type 2 diabetes, cardiovascular disease (CVD, etc. Tomato products contain several natural antioxidants, including lycopene—which has displayed a preventive effect on the development of steatosis and CVD. Accordingly, the aim of the present work was to evaluate the effect of tomato juice consumption on the urinary peptide profile in rats with NAFLD induced by an atherogenic diet and to identify potential peptide biomarkers for diagnosis. Urine samples, collected weekly for four weeks, were analyzed by capillary electrophoresis (CE coupled to a mass spectrometer (MS. A partial least squares-discriminant analysis (PLS-DA was carried out to explore the association between differential peptides and treatments. Among the 888 peptides initially identified, a total of 55 were obtained as potential biomarkers. Rats with steatosis after tomato juice intake showed a profile intermediate between that of healthy rats and that of rats with induced hepatic steatosis. Accordingly, tomato products could be considered as a dietary strategy for the impairment of NAFLD, although further research should be carried out to develop a specific biomarkers panel for NAFLD.

  4. Tomato Juice Consumption Modifies the Urinary Peptide Profile in Sprague-Dawley Rats with Induced Hepatic Steatosis.

    Science.gov (United States)

    Martín-Pozuelo, Gala; González-Barrio, Rocío; Barberá, Gonzalo G; Albalat, Amaya; García-Alonso, Javier; Mullen, William; Mischak, Harald; Periago, María Jesús

    2016-10-26

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in Western countries, with a high prevalence, and has been shown to increase the risk of type 2 diabetes, cardiovascular disease (CVD), etc. Tomato products contain several natural antioxidants, including lycopene-which has displayed a preventive effect on the development of steatosis and CVD. Accordingly, the aim of the present work was to evaluate the effect of tomato juice consumption on the urinary peptide profile in rats with NAFLD induced by an atherogenic diet and to identify potential peptide biomarkers for diagnosis. Urine samples, collected weekly for four weeks, were analyzed by capillary electrophoresis (CE) coupled to a mass spectrometer (MS). A partial least squares-discriminant analysis (PLS-DA) was carried out to explore the association between differential peptides and treatments. Among the 888 peptides initially identified, a total of 55 were obtained as potential biomarkers. Rats with steatosis after tomato juice intake showed a profile intermediate between that of healthy rats and that of rats with induced hepatic steatosis. Accordingly, tomato products could be considered as a dietary strategy for the impairment of NAFLD, although further research should be carried out to develop a specific biomarkers panel for NAFLD.

  5. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum

    International Nuclear Information System (INIS)

    Trigiano, R.N.; Scott, M.C.; Caetano-Anolles, G.

    1998-01-01

    The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars 'Dark Charm', 'Salmon Charm', 'Coral Charm' and 'Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of 'Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing approximately 37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars

  6. Lipidic profile and the level of physical activity of adolescent scholars - doi:10.5020/18061230.2011.p384

    Directory of Open Access Journals (Sweden)

    Renato Canevari Dutra da Silva

    2012-01-01

    Full Text Available Objective: To assess the relationship between lipid profile and physical activity level of adolescent students in Rio Verde-GO, Brazil. Methods: A descriptive and cross-sectional study, conducted in 2006, with a population comprised by 1,229 adolescent students of both genders, aged 15 to 17 years (X = 15.9 years, SD + 0.81, from public and private schools. The level of physical activity was assessed through the International Physical Activity Questionnaire (IPAQ. Later, 48 teenagers underwent a lipidogram (lipid profile. Lipid concentrations of total cholesterol (TC, HDL-c (high density lipoprotein and LDL (low density lipoprotein and triglycerides (TGL were determined and assessed according to cutoff points proposed by the III Brazilian Guidelines on dyslipidemias and Guideline of Atherosclerosis, Department of Atherosclerosis of Brazilian Society of Cardiology. Statistical analysis was performed by binomial test for proportions and Pearson’s correlation test, adopting p <0.05. Results: Applying IPAQ we found apercentage of 77.7% active adolescents and 22.3% of insufficiently active adolescents, with the highest percentage of active teens in males (p = 0.0000. Adolescents of both sexes from public network were considered more active than teens from private schools. The lipid profile of the studied adolescents was within normal range. Conclusion: There was no relationship between physical activity level and lipid profile of the adolescents assessed.

  7. Gene Expression Profile in the Early Stage of Angiotensin II-induced Cardiac Remodeling: a Time Series Microarray Study in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Meng-Qiu Dang

    2015-01-01

    Full Text Available Background/Aims: Angiotensin II (Ang II plays a critical role in the cardiac remodeling contributing to heart failure. However, the gene expression profiles induced by Ang II in the early stage of cardiac remodeling remain unknown. Methods: Wild-type male mice (C57BL/6 background, 10-weeek-old were infused with Ang II (1500 ng/kg/min for 7 days. Blood pressure was measured. Cardiac function and remodeling were examined by echocardiography, H&E and Masson staining. The time series microarrays were then conducted to detected gene expression profiles. Results: Microarray results identified that 1,489 genes were differentially expressed in the hearts at day 1, 3 and 7 of Ang II injection. These genes were further classified into 26 profiles by hierarchical cluster analysis. Of them, 4 profiles were significant (No. 19, 8, 21 and 22 and contained 904 genes. Gene Ontology showed that these genes mainly participate in metabolic process, oxidation-reduction process, extracellular matrix organization, apoptotic process, immune response, and others. Significant pathways included focal adhesion, ECM-receptor interaction, cytokine-cytokine receptor interaction, MAPK and insulin signaling pathways, which were known to play important roles in Ang II-induced cardiac remodeling. Moreover, gene co-expression networks analysis suggested that serine/cysteine peptidase inhibitor, member 1 (Serpine1, also known as PAI-1 localized in the core of the network. Conclusions: Our results indicate that many genes are mainly involved in metabolism, inflammation, cardiac fibrosis and hypertrophy. Serpine1 may play a central role in the development of Ang II-induced cardiac remodeling at the early stage.

  8. NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence

    Directory of Open Access Journals (Sweden)

    Modesto Rojas

    2017-06-01

    Full Text Available Increases in reactive oxygen species (ROS and decreases in nitric oxide (NO have been linked to vascular dysfunction during diabetic retinopathy (DR. Diabetes can reduce NO by increasing ROS and by increasing activity of arginase, which competes with nitric oxide synthase (NOS for their commons substrate l-arginine. Increased ROS and decreased NO can cause premature endothelial cell (EC senescence leading to defective vascular repair. We have previously demonstrated the involvement of NADPH oxidase 2 (NOX2-derived ROS, decreased NO and overactive arginase in DR. Here, we investigated their impact on diabetes-induced EC senescence. Studies using diabetic mice and retinal ECs treated with high glucose or H2O2 showed that increases in ROS formation, elevated arginase expression and activity, and decreased NO formation led to premature EC senescence. NOX2 blockade or arginase inhibition prevented these effects. EC senescence was also increased by inhibition of NOS activity and this was prevented by treatment with a NO donor. These results indicate that diabetes/high glucose-induced activation of arginase and decreases in NO bioavailability accelerate EC senescence. NOX2-generated ROS contribute importantly to this process. Blockade of NOX2 or arginase represents a strategy to prevent diabetes-induced premature EC senescence by preserving NO bioavailability.

  9. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  10. Physical qualities and activity profiles of sub-elite and recreational Australian football players.

    Science.gov (United States)

    Stein, Josh G; Gabbett, Tim J; Townshend, Andrew D; Dawson, Brian T

    2015-11-01

    To investigate the relationship between physical qualities and match activity profiles of recreational Australian football players. Prospective cohort study. Forty players from three recreational Australian football teams (Division One, Two and Three) underwent a battery of fitness tests (vertical jump, 10 and 40 m sprint, 6 m × 30 m repeated sprint test, Yo-Yo intermittent recovery level Two and 2-km time trial). The activity profiles of competitive match-play were quantified using 10-Hz Global Positioning System units. Division One players possessed greater maximum velocity, Yo-Yo level Two and 2-km time trial performances than Division Two and Three players. In addition, Division One players covered greater relative distance, and relative distances at moderate- and high-intensities during match-play than Division Two and Three players. Division Two players had better 2-km time trial performances than Division Three players. Positive associations (P football players competing at a higher level exhibit greater physical qualities and match-play activity profiles than lesser-skilled recreational players. Acceleration and maximum velocity, 2-km time trial and Yo-Yo level Two performances discriminate between players of different playing levels, and are related to physical match performance in recreational Australian football. The development of these qualities is likely to contribute to improved match performance in recreational Australian football players. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    CERN Document Server

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  12. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.

    Directory of Open Access Journals (Sweden)

    Véronique Bertrand-Vallery

    Full Text Available BACKGROUND: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence. METHODOLOGY/PRINCIPAL FINDINGS: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival. Among these protein species was TRIpartite Motif Protein 29 (TRIM29. Increased abundance of TRIM29 following UVB exposures was validated by Western blot using specific antibody and was also further analysed by immunochemistry and by RT-PCR. TRIM29 was found very abundant in keratinocytes and reconstructed epidermis. Knocking down the expression of TRIM29 by short-hairpin RNA interference decreased the viability of keratinocytes after UVB exposure. The abundance of involucrin mRNA, a marker of late differentiation, increased concomitantly. In TRIM29-knocked down reconstructed epidermis, the presence of picnotic cells revealed cell injury. Increased abundance of TRIM29 was also observed upon exposure to DNA damaging agents and PKC activation. The UVB-induced increase of TRIM29 abundance was dependent on a PKC signaling pathway, likely PKCdelta. CONCLUSIONS/SIGNIFICANCE: These findings suggest that TRIM29 allows keratinocytes to enter a protective alternative differentiation process rather than die massively after stress.

  13. Biological activities and phytochemical profile of Passiflora mucronata from the Brazilian restinga

    Directory of Open Access Journals (Sweden)

    Marlon H. de Araujo

    Full Text Available ABSTRACT In general, Passiflora species have been reported for their folk medicinal use as sedative and anti-inflammatory. However, P. caerulea has already been reported to treat pulmonary diseases. Severe pulmonary tuberculosis, generally caused by Mycobacterium tuberculosis strains resistant to multiple drugs, can lead to deleterious inflammation and high mortality, encouraging new approaches in drug discovery. Thus, the aim of this work was to evaluate the Passiflora mucronata Lam., Passifloraceae, potential for tuberculosis treatment. Specifically, related to antimycobacterial activity and anti-inflammatory related effects (based on inhibition of nitric oxide, tumor necrosis factor-alpha production and antioxidant potential, as well as the chemical profile of P. mucronata. High performance liquid chromatography coupled with diode-array ultraviolet and mass spectrometer analyses of crude hydroalcoholic extract and ethyl acetate fraction showed the presence of flavonoids. Ethyl acetate fraction showed to be as antioxidant as Ginkgo biloba standard extract with EC50 of 14.61 ± 1.25 µg/ml. One major flavonoid isolated from ethyl acetate fraction was characterized as isoorientin. The hexane fraction and its main isolated compound, the triterpene β-amyrin, exhibited significant growth inhibitory activity against Mycobacterium bovis BCG (MIC50 1.61 ± 1.43 and 3.93 ± 1.05 µg/ml, respectively. In addition, Passiflora mucronata samples, specially hexane and dichloromethane fractions, as well as pure β-amyrin, showed a dose-related inhibition of lipopolysaccharide (LPS-induced nitric oxide production. In conclusion, Passiflora mucronata presented relevant biological potential and should be considered for further studies using in vivo pulmonary tuberculosis model.

  14. Hyperglycemia induces mixed M1/M2 cytokine profile in primary human monocyte-derived macrophages.

    Science.gov (United States)

    Moganti, Kondaiah; Li, Feng; Schmuttermaier, Christina; Riemann, Sarah; Klüter, Harald; Gratchev, Alexei; Harmsen, Martin C; Kzhyshkowska, Julia

    2017-10-01

    Hyperglycaemia is a key factor in diabetic pathology. Macrophages are essential regulators of inflammation which can be classified into two major vectors of polarisation: classically activated macrophages (M1) and alternatively activated macrophages (M2). Both types of macrophages play a role in diabetes, where M1 and M2-produced cytokines can have detrimental effects in development of diabetes-associated inflammation and diabetic vascular complications. However, the effect of hyperglycaemia on differentiation and programming of primary human macrophages was not systematically studied. We established a unique model to assess the influence of hyperglycaemia on M1 and M2 differentiation based on primary human monocyte-derived macrophages. The effects of hyperglycaemia on the gene expression and secretion of prototype M1 cytokines TNF-alpha and IL-1beta, and prototype M2 cytokines IL-1Ra and CCL18 were quantified by RT-PCR and ELISA. Hyperglycaemia stimulated production of TNF-alpha, IL-1beta and IL-1Ra during macrophage differentiation. The effect of hyperglycaemia on TNF-alpha was acute, while the stimulating effect on IL-1beta and IL-1Ra was constitutive. Expression of CCL18 was supressed in M2 macrophages by hyperglycaemia. However the secreted levels remained to be biologically significant. Our data indicate that hyperglycaemia itself, without additional metabolic factors induces mixed M1/M2 cytokine profile that can support of diabetes-associated inflammation and development of vascular complications. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Effect of moderate walnut consumption on lipid profile, arterial stiffness and platelet activation in humans.

    Science.gov (United States)

    Din, J N; Aftab, S M; Jubb, A W; Carnegy, F H; Lyall, K; Sarma, J; Newby, D E; Flapan, A D

    2011-02-01

    A large intake of walnuts may improve lipid profile and endothelial function. The effect of moderate walnut consumption is not known. We investigated whether a moderate intake of walnuts would affect lipid profile, arterial stiffness and platelet activation in healthy volunteers. A total of 30 healthy males were recruited into a single-blind randomized controlled crossover trial of 4 weeks of dietary walnut supplementation (15 g/day) and 4 weeks of control (no walnuts). Arterial stiffness was assessed using pulse waveform analysis to determine the augmentation index and augmented pressure. Platelet activation was determined using flow cytometry to measure circulating platelet-monocyte aggregates. There were no differences in lipid profile after 4 weeks of walnut supplementation compared with control. Dietary intake of α-linolenic acid was increased during the walnut diet (2.1±0.4 g/day versus 0.7±0.4 g/day, Pprofile, arterial stiffness or platelet activation in man. Our results suggest that the potentially beneficial cardiac effects of walnuts may not be apparent at lower and more practical levels of consumption.

  16. Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells

    NARCIS (Netherlands)

    Staszewski, Ori; Baker, Richard E.; Ucher, Anna J.; Martier, Raygene; Stavnezer, Janet; Guikema, Jeroen E. J.

    2011-01-01

    After immunization or infection, activation-induced cytidine deaminase (AID) initiates diversification of immunoglobulin (Ig) genes in B cells, introducing mutations within the antigen-binding V regions (somatic hypermutation, SHM) and double-strand DNA breaks (DSBs) into switch (S) regions, leading

  17. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  18. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  19. Obesity-induced vascular inflammation involves elevated arginase activity.

    Science.gov (United States)

    Yao, Lin; Bhatta, Anil; Xu, Zhimin; Chen, Jijun; Toque, Haroldo A; Chen, Yongjun; Xu, Yimin; Bagi, Zsolt; Lucas, Rudolf; Huo, Yuqing; Caldwell, Ruth B; Caldwell, R William

    2017-11-01

    Obesity-induced vascular dysfunction involves pathological remodeling of the visceral adipose tissue (VAT) and increased inflammation. Our previous studies showed that arginase 1 (A1) in endothelial cells (ECs) is critically involved in obesity-induced vascular dysfunction. We tested the hypothesis that EC-A1 activity also drives obesity-related VAT remodeling and inflammation. Our studies utilized wild-type and EC-A1 knockout (KO) mice made obese by high-fat/high-sucrose (HFHS) diet. HFHS diet induced increases in body weight, fasting blood glucose, and VAT expansion. This was accompanied by increased arginase activity and A1 expression in vascular ECs and increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in both VAT and ECs. HFHS also markedly increased circulating inflammatory monocytes and VAT infiltration by inflammatory macrophages, while reducing reparative macrophages. Additionally, adipocyte size and fibrosis increased and capillary density decreased in VAT. These effects of HFHS, except for weight gain and hyperglycemia, were prevented or reduced in mice lacking EC-A1 or treated with the arginase inhibitor 2-( S )-amino-6-boronohexanoic acid (ABH). In mouse aortic ECs, exposure to high glucose (25 mM) and Na palmitate (200 μM) reduced nitric oxide production and increased A1, TNF-α, VCAM-1, ICAM-1, and MCP-1 mRNA, and monocyte adhesion. Knockout of EC-A1 or ABH prevented these effects. HFHS diet-induced VAT inflammation is mediated by EC-A1 expression/activity. Limiting arginase activity is a possible therapeutic means of controlling obesity-induced vascular and VAT inflammation.

  20. Topside electron density: comparison of experimental and IRI model profiles during low solar activity period

    International Nuclear Information System (INIS)

    Alazo, K.; Coisson, P.; Radicella, S.M.

    2003-01-01

    The pattern of the topside electron density profiles is not yet very well represented by the IRI model. In this work the topside profiles obtained by the ISIS-2 satellite during low solar activity conditions are compared to those modeled by IRI. We take the quantitative parameter ε to measure the deviation of the model from the observed profiles. The results showed that the IRI overestimation of the topside profile is higher for low dip latitudes. The dispersion of the epsilon values is from 40 to 140%, more in equinoctial months and some lower for Winter. The best modeling is about 20% to 40% in middle and high latitudes of the North Hemisphere. (author)

  1. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data

    DEFF Research Database (Denmark)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme

    2018-01-01

    activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system......Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds......, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter...

  2. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells

    Directory of Open Access Journals (Sweden)

    Chim-Kei Chan

    2017-06-01

    Full Text Available Elephantopus scaber L. (family: Asteraceae has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF on the release of pro-inflammatory mediators in lipopolysaccharide (LPS-induced microglia cells (BV-2. Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.

  3. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-08-01

    Full Text Available Redox imbalance in cells induces lipid peroxidation and generates a class of highly reactive metabolites known as lipid-derived electrophiles (LDEs that can modify proteins and affects their functions. Identifying targets of LDEs is critical to understand how such modifications are functionally implicated in oxidative-stress associated diseases. Here we report a quantitative chemoproteomic method to globally profile protein targets and sites modified by LDEs. In this strategy, we designed and synthesized an alkyne-functionalized aminooxy probe to react with LDE-modified proteins for imaging and proteomic profiling. Using this probe, we successfully quantified >4000 proteins modified by 4-hydroxy-2-nonenal (HNE of high confidence in mammalian cell lysate and combined with a tandem-orthogonal proteolysis activity-based protein profiling (TOP-ABPP strategy, we identified ~400 residue sites targeted by HNE including reactive cysteines in peroxiredoxins, an important family of enzymes with anti-oxidant roles. Our method expands the toolbox to quantitatively profile protein targets of endogenous electrophiles and the enlarged inventory of LDE-modified proteins and sites will contribute to functional elucidation of cellular pathways affected by oxidative stress. Keywords: Lipid-derived electrophile, 4-hydroxy-2-nonenal, Chemoproteomics, Aminooxy probe, Activity-based protein profiling

  4. Changes in electrophoretic profiles of Ipomoea batatas (sweet potato induced by gamma radiation

    Directory of Open Access Journals (Sweden)

    Celso Luiz Salgueiro Lage

    2002-06-01

    Full Text Available The ability of nodal segments of Ipomoea batatas to differentiate shoots and roots was evaluated after gamma irradiation. Shoot differentiation was less sensitive to irradiation than roots. However, at 90 Gy, no shoot was able to regenerate a new plant; in contrast 76 % of the roots from irradiated nodal segments continued to grow. The gamma radiation also induced changes in electrophoretic profiles of peroxidases of storage roots. Plants originated from irradiated storage roots presented changes in leaf peroxidase profiles very similar to those produced by leaves directly irradiated. The peroxidase profile of absorbent roots from irradiated storage roots was different from that obtained from directly irradiated absorbent roots.A capacidade de Ipomoea batatas diferenciar parte aérea e raízes foi avaliada após irradiação com raios gama. A diferenciação da parte aérea foi menos sensível que a das raízes. Contudo, na dose de 90 Gy nenhum broto diferenciado regenerou planta, enquanto 76 % das raízes diferenciadas dos segmentos nodais irradiados manteve o crescimento. A radiação também induziu mudanças no perfil elotroforético de isoperoxidases. Plantas originadas de raízes tuberosas irradiadas apresentaram alteração no perfil de isoperoxidases foliares semelhantes ao perfil de folhas diretamente irradiadas. O perfil de isoperoxidases de raízes absorventes irradiadas diretamente não apresentou o mesmo padrão do perfil das raízes absorventes desenvolvidas de raízes tuberosas irradiadas.

  5. Lysosomal Exoglycosidase Profile and Secretory Function in the Salivary Glands of Rats with Streptozotocin-Induced Diabetes

    OpenAIRE

    Maciejczyk, Mateusz; Kossakowska, Agnieszka; Szulimowska, Julita; Klimiuk, Anna; Knaś, Małgorzata; Car, Halina; Niklińska, Wiesława; Ładny, Jerzy Robert; Chabowski, Adrian; Zalewska, Anna

    2017-01-01

    Before this study, there had been no research evaluating the relationship between a lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin- (STZ-) induced type 1 diabetes. In our work, rats were divided into 4 groups of 8 animals each: control groups (C2, C4) and diabetic groups (STZ2, STZ4). The secretory function of salivary glands—nonstimulated and stimulated salivary flow, α-amylase, total protein—and salivary exoglycosidase activities—N...

  6. Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency.

    Science.gov (United States)

    Chakraborty, Nabarun; Cheema, Amrita; Gautam, Aarti; Donohue, Duncan; Hoke, Allison; Conley, Carolynn; Jett, Marti; Hammamieh, Rasha

    2018-01-01

    Spaceflight presents a spectrum of stresses very different from those associated with terrestrial conditions. Our previous study (BMC Genom. 15 : 659, 2014) integrated the expressions of mRNAs, microRNAs, and proteins and results indicated that microgravity induces an immunosuppressive state that can facilitate opportunistic pathogenic attack. However, the existing data are not sufficient for elucidating the molecular drivers of the given immunosuppressed state. To meet this knowledge gap, we focused on the metabolite profile of spaceflown human cells. Independent studies have attributed cellular energy deficiency as a major cause of compromised immunity of the host, and metabolites that are closely associated with energy production could be a robust signature of atypical energy fluctuation. Our protocol involved inoculation of human endothelial cells in cell culture modules in spaceflight and on the ground concurrently. Ten days later, the cells in space and on the ground were exposed to lipopolysaccharide (LPS), a ubiquitous membrane endotoxin of Gram-negative bacteria. Nucleic acids, proteins, and metabolites were collected 4 and 8 h post-LPS exposure. Untargeted profiling of metabolites was followed by targeted identification of amino acids and knowledge integration with gene expression profiles. Consistent with the past reports associating microgravity with increased energy expenditure, we identified several markers linked to energy deficiency, including various amino acids such as tryptophan, creatinine, dopamine, and glycine, and cofactors such as lactate and pyruvate. The present study revealed a molecular architecture linking energy metabolism and immunodeficiency in microgravity. The energy-deficient condition potentially cascaded into dysregulation of protein metabolism and impairment of host immunity. This project is limited by a small sample size. Although a strict statistical screening was carefully implemented, the present results further emphasize

  7. Stress-Induced In Vivo Recruitment of Human Cytotoxic Natural Killer Cells Favors Subsets with Distinct Receptor Profiles and Associates with Increased Epinephrine Levels.

    Directory of Open Access Journals (Sweden)

    Marc B Bigler

    Full Text Available Acute stress drives a 'high-alert' response in the immune system. Psychoactive drugs induce distinct stress hormone profiles, offering a sought-after opportunity to dissect the in vivo immunological effects of acute stress in humans.3,4-methylenedioxymethamphetamine (MDMA, methylphenidate (MPH, or both, were administered to healthy volunteers in a randomized, double-blind, placebo-controlled crossover-study. Lymphocyte subset frequencies, natural killer (NK cell immune-phenotypes, and changes in effector function were assessed, and linked to stress hormone levels and expression of CD62L, CX3CR1, CD18, and stress hormone receptors on NK cells.MDMA/MPH > MDMA > MPH robustly induced an epinephrine-dominant stress response. Immunologically, rapid redistribution of peripheral blood lymphocyte-subsets towards phenotypically mature NK cells occurred. NK cytotoxicity was unaltered, but they expressed slightly reduced levels of the activating receptor NKG2D. Preferential circulation of mature NK cells was associated with high epinephrine receptor expression among this subset, as well as expression of integrin ligands previously linked to epinephrine-induced endothelial detachment.The acute epinephrine-induced stress response was characterized by rapid accumulation of mature and functional NK cells in the peripheral circulation. This is in line with studies using other acute stressors and supports the role of the acute stress response in rapidly mobilizing the innate immune system to counteract incoming threats.

  8. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    Science.gov (United States)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  9. Gene Expression Profiling as a Tool to Investigate the Molecular Machinery Activated during Hippocampal Neurodegeneration Induced by Trimethyltin (TMT Administration

    Directory of Open Access Journals (Sweden)

    Maria Concetta Geloso

    2013-08-01

    Full Text Available Trimethyltin (TMT is an organotin compound exhibiting neurotoxicant effects selectively localized in the limbic system and especially marked in the hippocampus, in both experimental animal models and accidentally exposed humans. TMT administration causes selective neuronal death involving either the granular neurons of the dentate gyrus or the pyramidal cells of the Cornu Ammonis, with a different pattern of localization depending on the different species studied or the dosage schedule. TMT is broadly used to realize experimental models of hippocampal neurodegeneration associated with cognitive impairment and temporal lobe epilepsy, though the molecular mechanisms underlying the associated selective neuronal death are still not conclusively clarified. Experimental evidence indicates that TMT-induced neurodegeneration is a complex event involving different pathogenetic mechanisms, probably acting differently in animal and cell models, which include neuroinflammation, intracellular calcium overload, and oxidative stress. Microarray-based, genome-wide expression analysis has been used to investigate the molecular scenario occurring in the TMT-injured brain in different in vivo and in vitro models, producing an overwhelming amount of data. The aim of this review is to discuss and rationalize the state-of-the-art on TMT-associated genome wide expression profiles in order to identify comparable and reproducible data that may allow focusing on significantly involved pathways.

  10. Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts

    Science.gov (United States)

    Smith, Susan M.; Murray, Sandy; Pham, Lucia D.; Minoo, Parviz; Nielsen, Heber C.

    2014-01-01

    Lung maturation is regulated by interactions between mesenchymal and epithelial cells, and is delayed by androgens. Fibroblast–Type II cell communications are dependent on extracellular signal-regulated kinases (ERK) 1/2 activation by the ErbB receptor ligands epidermal growth factor (EGF), transforming growth factor (TGF)-α, and neuregulin (Nrg). In other tissues, dihydrotestosterone (DHT) has been shown to activate SRC by a novel nontranscriptional mechanism, which phosphorylates EGF receptors to potentiate EGF-induced ERK1/2 activation. This study sought to determine if DHT potentiates EGFR signaling by a nontranscriptional mechanism. Embryonic day (E)17 fetal lung cells were isolated from dams treated with or without DHT since E12. Cells were exposed to 30 ng/ml DHT for periods of 30 minutes to 3 days before being stimulated with 100 ng/ml EGF, TGF-α, or Nrg for up to 30 minutes. Lysates were immunoblotted for ErbB and SRC pathway signaling intermediates. DHT increased ERK1/2 activation by EGF, TGF-α, and Nrg in fibroblasts and Type II cells. Characterization in fibroblasts showed that potentiation of the EGF pathway was significant after 60 minutes of DHT exposure and persisted in the presence of the translational inhibitor cycloheximide. SRC and EGF receptor phosphorylation was increased by DHT, as was EGF-induced SHC1 phosphorylation and subsequent association with GRB2. Finally, SRC silencing, SRC inhibition with PP2, and overexpression of a dominant-negative SRC each prevented DHT from increasing EGF-induced ERK1/2 phosphorylation. These results suggest that DHT activates SRC to potentiate the signaling pathway leading from the EGF receptor to ERK activation in primary fetal lung fibroblasts. PMID:24484548

  11. Epstein-Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease.

    Science.gov (United States)

    Nagata, Keiko; Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko

    2017-04-01

    Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein-Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases.

  12. Heart rate and activity profile for young female soccer players

    OpenAIRE

    Barbero Álvarez, José Carlos; Gómez López, Maite; Barbero Álvarez, Verónica; Granda Vera, Juan; Castagna, Carlo

    2008-01-01

    The physical and physiological demands of high-level male soccer have been studied extensively, while few studies have investigated the demands placed on females during match-play, however, there is no information available about the heart rate and activity profile of young female soccer players during match play. Therefore, the aim of this study was to examine cardiovascular (heart-rates HR) and physical demands of young female soccer players during a match. Players were observed during a fr...

  13. Effect of the Combination of Gelam Honey and Ginger on Oxidative Stress and Metabolic Profile in Streptozotocin-Induced Diabetic Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Nur Fathiah Abdul Sani

    2014-01-01

    Full Text Available Diabetic complications occur as a result of increased reactive oxygen species (ROS due to long term hyperglycaemia. Honey and ginger have been shown to exhibit antioxidant activity which can scavenge ROS. The main aim of this study was to evaluate the antioxidant and antidiabetic effects of gelam honey, ginger, and their combination. Sprague-Dawley rats were divided into 2 major groups which consisted of diabetic and nondiabetic rats. Diabetes was induced with streptozotocin intramuscularly (55 mg/kg body weight. Each group was further divided into 4 smaller groups according to the supplements administered: distilled water, honey (2 g/kg body weight, ginger (60 mg/kg body weight, and honey + ginger. Body weight and glucose levels were recorded weekly, while blood from the orbital sinus was obtained after 3 weeks of supplementation for the estimation of metabolic profile: glucose, triglyceride (TG, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, reduced glutathione (GSH: oxidized glutathione (GSSG, and malondialdehyde (MDA. The combination of gelam honey and ginger did not show hypoglycaemic potential; however, the combination treatment reduced significantly (P<0.05 SOD and CAT activities as well as MDA level, while GSH level and GSH/GSSG ratio were significantly elevated (P<0.05 in STZ-induced diabetic rats compared to diabetic control rats.

  14. Physicochemical properties, fatty acid profile and antioxidant activity of peanut oil

    International Nuclear Information System (INIS)

    Shad, M.A.; Pervez, H.; Zafar, Z.I.

    2011-01-01

    The oil from seeds of 4 pea nut (Arachis hypogaea L.) varieties: Golden, Bari 2000, Mongphalla, and Mongphalli 334 cultivated in arid zones, was subjected to the comparative evaluation of its physicochemical properties, fatty acid profile and antioxidant activity. Pea nut seeds were found to be a rich source of crude fat (45.09-51.63 g/100 g dry weight). The physicochemical properties of the oil were investigated as specific gravity (0.915 +-0.008-0.918+-0.008), acid value (3.96+-0.22-4.95+-0.71 mg KOH/g oil), saponification value ( 226.40+-3.59-246.56+-2.04 mg KOH/g oil) and unsaponifiable matter (3.20 +- 0.23-4.20+-0.04 g/100 g oil). The higher amounts of unsaturated fatty acids (82.06-85.93%) were found to be present in each variety. A significant variation (p<0.05) was observed among the varieties regarding crude oil content, saponification value, oleic/linoleic (O/L) ratios, phenolic acid content and total antioxidant content. Golden was found to be high in oil content, O/L ratio, antioxidant profile and DPPH scavenging activity but low in iodine value. (author)

  15. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Li, Xiao-Dong [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Hong, Mo-Na [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Shanghai Institute of Hypertension, Shanghai (China); Chen, Qi-Zhi [Shanghai Institute of Hypertension, Shanghai (China); Han, Wei-Qing, E-mail: whan020@gmail.com [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China); Gao, Ping-Jin, E-mail: gaopingjin@sibs.ac.cn [State Key Laboratory of Medical Genetics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (China); Laboratory of Vascular Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Shanghai Institute of Hypertension, Shanghai (China)

    2016-04-29

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  16. Protease-activated receptor 1 and 2 contribute to angiotensin II-induced activation of adventitial fibroblasts from rat aorta

    International Nuclear Information System (INIS)

    He, Rui-Qing; Tang, Xiao-Feng; Zhang, Bao-Li; Li, Xiao-Dong; Hong, Mo-Na; Chen, Qi-Zhi; Han, Wei-Qing; Gao, Ping-Jin

    2016-01-01

    Adventitial fibroblasts (AFs) can be activated by angiotensin II (Ang II) and exert pro-fibrotic and pro-inflammatory effects in vascular remodeling. Protease-activated receptor (PAR) 1 and 2 play a significant role in fibrogenic and inflammatory diseases. The present study hypothesized that PAR1 and PAR2 are involved in Ang II-induced AF activation and contribute to adventitial remodeling. We found that direct activation of PAR1 and PAR2 with PAR1-AP and PAR2-AP led to AF activation, including proliferation and differentiation of AFs, extracellular matrix synthesis, as well as production of pro-fibrotic cytokine TGF-β and pro-inflammatory cytokines IL-6 and MCP-1. Furthermore, PAR1 and PAR2 mediated Ang II-induced AF activation, since both PAR1 and PAR2 antagonists inhibited Ang II-induced proliferation, migration, differentiation, extracellular matrix synthesis and production of pro-fibrotic and pro-inflammatory cytokines in AFs. Finally, mechanistic study showed that Ang II, via Ang II type I receptor (AT1R), upregulated both PAR1 and PAR2 expression, and transactivated PAR1 and PAR2, as denoted by internalization of both proteins. In conclusion, our results suggest that PAR1 and PAR2 play a critical role in Ang II-induced AF activation, and this may contribute to adventitia-related pathological changes. - Highlights: • Direct activation of PAR1 and PAR2 led to adventitial fibroblast (AF) activation. • PAR1 and PAR2 antagonists attenuated Ang II-induced AF activation. • Ang II induced the upregulation and transactivation of PAR1/PAR2 in AFs.

  17. LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion-induced brain injury in rats.

    Science.gov (United States)

    Viswanatha, Gollapalle Lakshminarayanashastry; Kumar, Lakkavalli Mohan Sharath; Rafiq, Mohamed; Kavya, Kethaganahalli Jayaramaiah; Thippeswamy, Agadi Hiremath; Yuvaraj, Huvvinamadu Chandrashekarappa; Azeemuddin, Mohammed; Anturlikar, Suryakanth Dattatreya; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Ramakrishnan, Shyam

    2015-01-01

    The aim of this study was to evaluate the possible beneficial effects of Mentat against transient global ischemia and reperfusion-induced brain injury in rats. The neuroprotective effects of Mentat were evaluated against transient global ischemia and reperfusion (I/R)-induced brain injury in rats. Various neurobehavioral and biochemical parameters were assessed, followed by morphologic and histopathologic evaluation of brain tissue to conclude the protective effect of Mentat. Additionally, in vitro antioxidant assays were performed to explore the antioxidant capacity of Mentat and detailed liquid chromatography-mass spectrometry (LC-MS/MS) profiling was carried out to identify the active phytoconstituents responsible for the protective effects of Mentat. Sixty minutes of transient global ischemia followed by 24 h reperfusion (I/R) caused significant alterations in the cognitive and neurologic functions in the ischemia control group (P cerebral infarct area (P protective effects. These findings suggest that Mentat is a neuroprotective agent that may be a useful adjunct in the management of ischemic stroke and its rehabilitation especially with respect to associated memory impairment and other related neurologic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    Science.gov (United States)

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  19. Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy.

    Directory of Open Access Journals (Sweden)

    Franziska Altmüller

    2017-03-01

    Full Text Available Noonan syndrome (NS is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced

  20. Acupuncture inhibits cue-induced heroin craving and brain activation.

    Science.gov (United States)

    Cai, Xinghui; Song, Xiaoge; Li, Chuanfu; Xu, Chunsheng; Li, Xiliang; Lu, Qi

    2012-11-25

    Previous research using functional MRI has shown that specific brain regions associated with drug dependence and cue-elicited heroin craving are activated by environmental cues. Craving is an important trigger of heroin relapse, and acupuncture may inhibit craving. In this study, we performed functional MRI in heroin addicts and control subjects. We compared differences in brain activation between the two groups during heroin cue exposure, heroin cue exposure plus acupuncture at the Zusanli point (ST36) without twirling of the needle, and heroin cue exposure plus acupuncture at the Zusanli point with twirling of the needle. Heroin cue exposure elicited significant activation in craving-related brain regions mainly in the frontal lobes and callosal gyri. Acupuncture without twirling did not significantly affect the range of brain activation induced by heroin cue exposure, but significantly changed the extent of the activation in the heroin addicts group. Acupuncture at the Zusanli point with twirling of the needle significantly decreased both the range and extent of activation induced by heroin cue exposure compared with heroin cue exposure plus acupuncture without twirling of the needle. These experimental findings indicate that presentation of heroin cues can induce activation in craving-related brain regions, which are involved in reward, learning and memory, cognition and emotion. Acupuncture at the Zusanli point can rapidly suppress the activation of specific brain regions related to craving, supporting its potential as an intervention for drug craving.

  1. Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration.

    Science.gov (United States)

    Lee, Su Jin; Park, Jeen Woo; Kang, Beom Sik; Lee, Dong-Seok; Lee, Hyun-Shik; Choi, Sooyoung; Kwon, Oh-Shin

    2017-06-01

    Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and 14-3-3ζ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to 14-3-3ζ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling. [BMB Reports 2017; 50(6): 335-340].

  2. Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness.

    Science.gov (United States)

    Yasugi, Mayo; Okuzaki, Daisuke; Kuwana, Ritsuko; Takamatsu, Hiromu; Fujita, Masaya; Sarker, Mahfuzur R; Miyake, Masami

    2016-05-15

    Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for

  3. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages.

    Science.gov (United States)

    Giannotti, Karina Cristina; Leiguez, Elbio; Carvalho, Ana Eduarda Zulim de; Nascimento, Neide Galvão; Matsubara, Márcio Hideki; Fortes-Dias, Consuelo Latorre; Moreira, Vanessa; Teixeira, Catarina

    2017-06-22

    Crotoxin B (CB) is a catalytically active group IIA sPLA 2 from Crotalus durissus terrificus snake venom. In contrast to most GIIA sPLA 2 s, CB exhibits anti-inflammatory effects, including the ability to inhibit leukocyte functions. Lipid droplets (LDs) are lipid-rich organelles associated with inflammation and recognized as a site for the synthesis of inflammatory lipid mediators. Here, the ability of CB to induce formation of LDs and the mechanisms involved in this effect were investigated in isolated macrophages. The profile of CB-induced 15-d-PGJ 2 (15-Deoxy-Delta-12,14-prostaglandin J 2 ) production and involvement of LDs in 15-d-PGJ 2 biosynthesis were also investigated. Stimulation of murine macrophages with CB induced increased number of LDs and release of 15-d-PGJ 2 . LDs induced by CB were associated to PLIN2 recruitment and expression and required activation of PKC, PI3K, MEK1/2, JNK, iPLA 2 and PLD. Both 15-d-PGJ 2 and COX-1 were found in CB-induced LDs indicating that LDs contribute to the inhibitory effects of CB by acting as platform for synthesis of 15-d-PGJ 2 , a pro-resolving lipid mediator. Together, our data indicate that an immunomodulatory GIIA sPLA 2 can directly induce LD formation and production of a pro-resolving mediator in an inflammatory cell and afford new insights into the roles of LDs in resolution of inflammatory processes.

  4. Anomalous plasma heating induced by modulation of the current-density profile

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.

    1985-05-01

    The usual plasma heating in a tokamak needs additional heating to reach ignition temperature (approx. 10 8 K). The method used in the TORTUR III experiment is to induce anomalous plasma resistivity by applying a short (10 microseconds) high-voltage pulse. A sharp rise of the plasma temperature is found almost simultaneously, but this effect, though considerable, is too short-lived to be of interest for a thermonuclear chain reaction. A second pulse gives a second rise of temperature, but this time a slow one, extending over several milliseconds. The mechanism of this delayed heating and the reservoir within the plasma supplying the energy are subjects of investigation in the TORTUR III experiments. Some conclusions concerning the plasma heating mechanism are presented. The conclusion is reached that the application of the high-voltage pulse results in a modulation of the current-density profile: the (normally already peaked) profile sharpens, the current concentrates in the centre of the plasma column. This is a non-equilibrium situation. It relaxes to the noraml current distribution within approximately 2 milliseconds. As long as this relaxation process is not finished, the dissipation is on an enhanced level and anomalous plasma heating is observed. Many plasma parameters are surveyed and evaluated: temperature (both of the ions and the electrons), density, emission spectrum (from microwaves to hard X-rays) and the fluctuation spectrum. Main subject of this report is the measurement and interpretation of the X-rays of the emission spectrum. Experimental results are presented and discussed

  5. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  6. Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.

    Science.gov (United States)

    Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga

    2010-01-01

    Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®

  7. Plasma renin activity profile in normal and hypertensive Filipinos

    International Nuclear Information System (INIS)

    Guevara, R.; Torres, J. Jr.; Abundo, H.P.; Perez, A.P.

    To establish a base line profile of plasma renin activity in normotensive and hypertensive Filipinos, 1.019 cases, 479 males and 540 females with an age range 14 - 89 years (mean - 46 + -20) were studied at the Santo Tomas University Hospital of various life styles from the Metro-Manila area, 248 comprised the normotensive group (male - 122 or 49.2 %, female 126 or 50.8 %) and 771 were hypertensive. Of these, 711 (92.6 %) has essential hypertension and are presented in this report. Plasma Renin Activity was determined by radioimmunoassay using Dainabot Renin-Ricket. Concurrent 24 hr. urine sodium and potassium were determined. Nomograms of plasma renin activity as related to urine sodium excretion were drawn after computerized statistical analysis of data. The normal mean value of plasma renin activity was found to be 1.64 + - 0.81 ng./ml./hr. in the upright position and 1.15 + - .68 ng./ml./hr. in the supine position. Based on the nomogram derived, the values obtained in the 711 cases of essential hypertension were classified into High Renin - 14.3 % Normal Renin - 56.1 % and Low Renin - 29.6 %. This study establishes normal levels of plasma renin activity as well as define and classify same renin activity among hypertensive Filipinos, a useful and practicable guide for treatment and can be of prognostic significance. (author)

  8. Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.

    Science.gov (United States)

    Tausendschön, Michaela; Rehli, Michael; Dehne, Nathalie; Schmidl, Christian; Döring, Claudia; Hansmann, Martin-Leo; Brüne, Bernhard

    2015-01-01

    Macrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10. 713 HIF-1 and 795 HIF-2 binding sites were identified under hypoxia. Pretreatment with IL-10 altered the binding pattern, with 120 new HIF-1 and 188 new HIF-2 binding sites emerging. HIF-1 binding was most prominent in promoters, while HIF-2 binding was more abundant in enhancer regions. Comparison of ChIP-seq data obtained in other cells revealed a highly cell type specific binding of HIF. In MΦ HIF binding occurred preferentially in already active enhancers or promoters. To assess the roles of HIF on gene expression, primary human macrophages were treated with siRNA against HIF-1α or HIF-2α, followed by genome-wide gene expression analysis. Comparing mRNA expression to the HIF binding profile revealed a significant enrichment of hypoxia-inducible genes previously identified by ChIP-seq. Analysis of gene expression under hypoxia alone and hypoxia/IL-10 showed the enhanced induction of a set of genes including PLOD2 and SLC2A3, while another group including KDM3A and ADM remained unaffected or was reduced by IL-10. Taken together IL-10 influences the DNA binding pattern of HIF and the level of gene induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Increased cell surface metallopeptidase activity in cells undergoing UV-induced apoptosis

    International Nuclear Information System (INIS)

    Piva, T.J.; Davern, C.M.; Ellem, K.A.O.

    1999-01-01

    Full text: We have previously shown that UVC irradiation activated a range of cell surface peptidases (CSP) in HeLa cell monolayer cultures 20 h post-irradiation (1). In cells undergoing apoptosis there is an increase in CSP activity compared to control viable cells in cultures which have been treated by a wide range of agents including UV-irradiation (2). In order to further understand the mechanism involved in this process, we induced apoptosis in HeLa cells using 500 Jm -2 UVB. The separation of viable, apoptotic and necrotic cells of irradiated HeLa cell cultures was made by FACS analysis and sorting. The three populations were distinguished by their staining with PI and Hoechst 33342 dyes. CSP activity was measured using the P9 assay developed in this laboratory (1-3). The viable fraction of the irradiated cells had a higher level of CSP activity compared to unirradiated controls. The level of CSP activity in the apoptotic fraction was higher than that of the viable fraction, however that of the necrotic fraction was significantly lower. This finding agreed with that seen in UVC-irradiated (50 Jm -2 ) cultures (2). In order to elucidate the mechanism by which CSP activity was increased in UVB-irradiated cells undergoing apoptosis, the cultures were treated with the following agents: bestatin, aminopeptidase inhibitor, DEVD, caspase 3 inhibitor, and 3-aminobenzamide (3AB), PARP activation inhibitor. Bestatin and DEVD did not affect the level of CSP activity in the different cell subpopulations following UVB-irradiation. Treatment with 3AB abolished the increased CSP activity seen in the viable and apoptotic fraction following UVB-irradiation. All treated cells had the same morphology as observed under EM. The degree of phosphatidylserine eversion on the cell membrane was similar as were the cleavage profiles of PARP and actin. Only DEVD-treated cells had reduced caspase 3 activity which confirmed that the activation of CSP activity in apoptotic cells is

  10. Screening of cardioprotective activity of leaves of Andrographis paniculata against isoproterenol induced myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Dipendra Kumar Sah

    2016-01-01

    Full Text Available Objective: The objective of the present study was to investigate the cardioprotective effects of methanolic extract of leaves of Andrographis paniculata against Isoproterenol-induced myocardial infarction (MI in rats.Method: The rats were divided into five experimental groups viz., Normal control, ISO-treated (Disease control, Propranolol (10 mg/kg + ISO, Andrographis paniculata (100 mg/kg +ISO and Andrographis paniculata (200 mg/kg + ISO. Myocardial infarction in rats was induced by the administration of isoproterenol at a dose of 85mg/kg i.p., the rats in group IV and group V were pretreated with methanolic extract of Andrographis paniculata in the dose of 100mg/kg b.w. and 200mg/kg b.w. through oral route. Cardiac marker enzymes, lipid profile and antioxidant enzymes as biomarker of cardiotoxicity were determined in experimental animals.Result: Animals treated with flavonoid of leaves of Andrographis paniculata showed significant decrease in LDL-Cholesterol, total cholesterol, Triglycerides, AST, ALT, ALP, antioxidant enzymes viz., superoxide dismutase, catalase LPO and increase in HDL-Cholesterol and further was confirmed by histopathological study.Conclusion: The results of the study demonstrate that Andrographis paniculata strongly protected the myocardium against isoproterenol-induced infarction and suggest that the cardioprotective effects could be related to antioxidant activities.

  11. Bioorthogonal chemistry: applications in activity-based protein profiling.

    Science.gov (United States)

    Willems, Lianne I; van der Linden, Wouter A; Li, Nan; Li, Kah-Yee; Liu, Nora; Hoogendoorn, Sascha; van der Marel, Gijs A; Florea, Bogdan I; Overkleeft, Herman S

    2011-09-20

    of chemical biology research include contributions from many areas of the multifaceted discipline of chemistry, and particularly from organic chemistry. Researchers apply knowledge inherent to organic chemistry, such as reactivity and selectivity, to the manipulation of specific biomolecules in biological samples (cell extracts, living cells, and sometimes even animal models) to gain insight into the biological phenomena in which these molecules participate. In this Account, we highlight some of the recent developments in chemical biology research driven by organic chemistry, with a focus on bioorthogonal chemistry in relation to activity-based protein profiling. The rigorous demands of bioorthogonality have not yet been realized in a truly bioorthogonal reagent pair, but remarkable progress has afforded a range of tangible contributions to chemical biology research. Activity-based protein profiling, which aims to obtain information on the workings of a protein (or protein family) within the larger context of the full biological system, has in particular benefited from these advances. Both activity-based protein profiling and bioorthogonal chemistry have been around for approximately 15 years, and about 8 years ago the two fields very profitably intersected. We expect that each discipline, both separately and in concert, will continue to make important contributions to chemical biology research. © 2011 American Chemical Society

  12. HTLV-1 Tax-induced NFκB activation is independent of Lys-63-linked-type polyubiquitination

    International Nuclear Information System (INIS)

    Gohda, Jin; Irisawa, Masato; Tanaka, Yuetsu; Sato, Shintaro; Ohtani, Kiyoshi; Fujisawa, Jun-ichi; Inoue, Jun-ichiro

    2007-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) Tax-induced activation of nuclear factor-κB (NFκB) is thought to play a critical role in T-cell transformation and onset of adult T-cell leukemia. However, the molecular mechanism of the Tax-induced NFκB activation remains unknown. One of the mitogen-activated protein kinase kinase kinses (MAP3Ks) members, TAK1, plays a critical role in cytokine-induced activation of NFκB, which involves lysine 63-linked (K63) polyubiquitination of NEMO, a noncatalytic subunit of the IκB kinase complex. Here we show that Tax induces K63 polyubiquitination of NEMO. However, TAK1 is dispensable for Tax-induced NFκB activation, and deubiquitination of the K63 polyubiquitin chain failed to block Tax-induced NFκB activation. In addition, silencing of other MAP3Ks, including MEKK1, MEKK3, NIK, and TPL-2, did not affect Tax-induced NFκB activation. These results strongly suggest that unlike cytokine signaling, Tax-induced NFκB activation does not involve K63 polyubiquitination-mediated MAP3K activation

  13. Activity Profiles and Physiological Responses of Representative Tag Football Players in Relation to Playing Position and Physical Fitness

    Science.gov (United States)

    2015-01-01

    This study determined the physical fitness, match-activity profiles and physiological responses of representative tag football players and examined the relationship between physical fitness and the match-activity profile. Microtechnology devices and heart rate (HR) chest straps were used to determine the match-activity profiles of sixteen tag football players for five matches during the 2014 Australian National Championships. The relationships between lower body muscular power, straight line running speed and Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) and the match-activity profile were examined using Pearson’s correlation coefficients. Outside players had greater lower body muscular power (ES = 0.98) and straight line running speed (ES = 1.03–1.18) than inside players, and also covered greater very high-speed running (VHSR) distance/min (ES = 0.67) and reached higher peak running speeds (ES = 0.95) during matches. Inside and outside players performed a similar number of repeated high-intensity effort (RHIE) bouts and reported similar mean and maximum efforts per RHIE bout. However, there were differences between playing positions for mean and maximal RHIE effort durations (ES = 0.69–1.15) and mean RHIE bout recovery (ES = 0.56). Inside and outside players also reported small to moderate differences (ES = 0.43–0.80) for times spent in each HR zone. There were a number of moderate to very large correlations between physical fitness measures and match-activity profile variables. This study found lower body muscular power, straight line running speed and Yo-Yo IR2 to be related to the match-activities of representative tag football players, although differences between inside and outside players suggest that athlete testing and training practices should be modified for different playing positions. PMID:26642320

  14. Fructokinase activity mediates dehydration-induced renal injury.

    Science.gov (United States)

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  15. Transcriptional profiling of the bovine hepatic response to experimentally induced E. coli mastitis

    DEFF Research Database (Denmark)

    Jørgensen, Hanne Birgitte Hede; Buitenhuis, Bart; Røntved, Christine Maria

    2012-01-01

    The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally E. coli-induced ......The mammalian liver works to keep the body in a state of homeostasis and plays an important role in systemic acute phase response to infections. In this study we investigated the bovine hepatic acute phase response at the gene transcription level in dairy cows with experimentally E. coli......-induced mastitis. At time = 0, each of 16 periparturient dairy cows received 20-40 CFU of live E. coli in one front quarter of the udder. A time series of liver biopsies was collected at -144, 12, 24 and 192 hours relative to time of inoculation. Changes in transcription levels in response to E. coli inoculation...... were analyzed using the Bovine Genome Array and tested significant for 408 transcripts over the time series (adjusted p0.05; abs(fold-change)>2). After 2-D clustering, transcripts represented three distinct transcription profiles: 1) regulation of gene transcription and apoptosis, 2) responses...

  16. Insights on the Phytochemical Profile (Cyclopeptides and Biological Activities of Calotropis procera Latex Organic Fractions

    Directory of Open Access Journals (Sweden)

    Thiago Lustosa Jucá

    2013-01-01

    Full Text Available Calotropis procera is a medicinal plant whose pharmacological properties are associated with its latex. Here, the Calotropis procera latex fractions were investigated in an attempt to trace its phytochemical profile and measure its anti-inflammatory and toxicity activity. The crude latex was partitioned, yielding five fractions (49.4% hexane, 5.2% dichloromethane, 2.0% ethyl acetate, 2.1% n-butanol, and 41.1% aqueous. Phytochemical screening and spectroscopy analysis revealed that dichloromethane is the most chemically diverse fraction. Triterpenes were detected in both the hexane and dichloromethane fractions, while flavonoids were detected in the dichloromethane and ethyl acetate fractions. These fractions were cytotoxic to cancer cell lines (LD50 0.05 to 3.9 μg/mL and lethal to brine shrimp (LD50 10.9 to 65.7 μg/mL. Reduced neutrophil migration in rats was observed in carrageenan-induced peritonitis for the dichloromethane (67%, ethyl acetate (56%, and aqueous (72% fractions. A positive reaction with tolidine and ninhydrin suggested that cyclopeptides are in the ethyl acetate fraction. It is therefore concluded that Calotropis procera latex dichloromethane and ethyl acetate fractions exhibit both in vitro and in vivo activities as well as anti-inflammatory properties. Cyclopeptide detection is especially interesting because previous attempts to investigate these low-molecular cyclic amino acid sequences in C. procera have failed.

  17. Neuropharmacology of light-induced locomotor activation.

    Science.gov (United States)

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of Green Tea Extract on Systemic Metabolic Homeostasis in Diet-Induced Obese Mice Determined via RNA-Seq Transcriptome Profiles

    Directory of Open Access Journals (Sweden)

    Ji-Young Choi

    2016-10-01

    Full Text Available Green tea (GT has various health effects, including anti-obesity properties. However, the multiple molecular mechanisms of the effects have not been fully determined. The aim of this study was to elucidate the anti-obesity effects of GT via the analysis of its metabolic and transcriptional responses based on RNA-seq profiles. C57BL/6J mice were fed a normal, high-fat (60% energy as fat, or high-fat + 0.25% (w/w GT diet for 12 weeks. The GT extract ameliorated obesity, hepatic steatosis, dyslipidemia, and insulin resistance in diet-induced obesity (DIO mice. GT supplementation resulted in body weight gain reduction than mice fed high-fat through enhanced energy expenditure, and reduced adiposity. The transcriptome profiles of epididymal white adipose tissue (eWAT suggested that GT augments transcriptional responses to the degradation of branched chain amino acids (BCAAs, as well as AMP-activated protein kinase (AMPK signaling, which suggests enhanced energy homeostasis. Our findings provide some significant insights into the effects of GT for the prevention of obesity and its comorbidities. We demonstrated that the GT extract contributed to the regulation of systemic metabolic homeostasis via transcriptional responses to not only lipid and glucose metabolism, but also amino acid metabolism via BCAA degradation in the adipose tissue of DIO mice.

  19. Urban Adolescents' Out-of-School Activity Profiles: Associations with Youth, Family, and School Transition Characteristics

    Science.gov (United States)

    Pedersen, Sara

    2005-01-01

    This study applied individual growth trajectory analyses and person-oriented analysis to identify common profiles of out-of-school activity engagement trajectories among racially and ethnically diverse inner city teens (N = 1,430). On average, teens exhibited declining trajectories of participation in school-based and team sports activities and…

  20. Autophagy activation, not peroxisome proliferator-activated receptor γ coactivator 1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity.

    Science.gov (United States)

    Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P

    2017-09-01

    What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED

  1. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    Science.gov (United States)

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb buffer gas cell

    International Nuclear Information System (INIS)

    Nikolić, S N; Radonjić, M; Krmpot, A J; Lučić, N M; Zlatković, B V; Jelenković, B M

    2013-01-01

    Electromagnetically induced transparency (EIT) due to Zeeman coherences in the Rb buffer gas cell is studied for different laser beam profiles, laser beam radii and intensities from 0.1 to 10 mW cm −2 . EIT line shapes can be approximated by the Lorentzian for wide Gaussian laser beam (6.5 mm in diameter) if laser intensity is weak and for a Π laser beam profile of the same diameter. Line shapes of EIT become non-Lorentzian for the Gaussian laser beam if it is narrow (1.3 mm in diameter) or if it has a higher intensity. EIT amplitudes and linewidths, for both laser beam profiles of the same diameter, have very similar behaviour regarding laser intensity and Rb cell temperature. EIT amplitudes are maximal at a certain laser beam intensity and this intensity is higher for narrower laser beams. The EIT linewidth estimated at zero laser intensity is about 50 nT or 0.7 kHz, which refers to 1.5 ms relaxation times of Zeeman coherences in 87 Rb atoms in our buffer gas cell. Blocking of the centre of the wide Gaussian laser beam in front of the photo detector yields Lorentzian profiles with a much better contrast to the linewidth ratio for EIT at higher intensities, above ∼2 mW cm −2 . (paper)

  3. THE INFLUENCE OF THYROID FUNCTION AND BONE TURNOVER ON LIPOPROTEIN PROFILE IN YOUNG PHYSICALLY ACTIVE MEN WITH DIFFERENT INSULIN SENSITIVITY

    Directory of Open Access Journals (Sweden)

    A. Kęska

    2014-07-01

    Full Text Available Physical activity induces changes in the endocrine system. Previous data indicated that changes in insulin secretion and the tissue response to this hormone are very important for energy metabolism. It is believed that they are accompanied by changes in lipid metabolism, but factors contributing to this process are still disputed. The aim of this study was to assess interactions among insulin sensitivity, thyroid function, a bone turnover marker and serum lipid profile in young physically active men. Eighty-seven physical education students, aged 18-23 years, participated in the study. We measured serum levels of glucose, lipids, insulin, thyroid-stimulating hormone (TSH, osteocalcin and anthropometric parameters. Insulin sensitivity was determined using homeostatic model assessment for insulin resistance (HOMA-IR. The median value of HOMA-IR (1.344 was used to divide the study population into Group A (above the median and Group B (below the median. Men from both groups did not differ in anthropometric parameters or in daily physical activity. Triglycerides (TG, total cholesterol (TC and high-density lipoprotein cholesterol (HDL-C levels were higher in Group A (P<0.05. TSH and osteocalcin levels were similar in males with different HOMA-IR. Multiple regression analysis for TSH and osteocalcin showed that in Group A these hormones had no effect on plasma lipoproteins. However, in Group B they significantly determined the variation of plasma TC and low-density lipoprotein cholesterol (LDL-C levels (in about 28% and 29%, respectively. We concluded that TSH and osteocalcin are involved in determination of a more healthy lipid profile at a certain level of insulin sensitivity.

  4. BDE-47 induces oxidative stress, activates MAPK signaling pathway, and elevates de novo lipogenesis in the copepod Paracyclopina nana.

    Science.gov (United States)

    Lee, Min-Chul; Puthumana, Jayesh; Lee, Seung-Hwi; Kang, Hye-Min; Park, Jun Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Seo, Jung Soo; Park, Heum Gi; Om, Ae-Son; Lee, Jae-Seong

    2016-12-01

    Brominated flame retardant, 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), has received grave concerns as a persistent organic pollutant, which is toxic to marine organisms, and a suspected link to endocrine abnormalities. Despite the wide distribution in the marine ecosystem, very little is known about the toxic impairments on marine organisms, particularly on invertebrates. Thus, we examined the adverse effects of BDE-47 on life history trait (development), oxidative markers, fatty acid composition, and lipid accumulation in response to BDE-47-induced stress in the marine copepod Paracyclopina nana. Also, activation level of mitogen-activated protein kinase (MAPK) signaling pathways along with the gene expression profile of de novo lipogenesis (DNL) pathways were addressed. As a result, BDE-47 induced oxidative stress (e.g. reactive oxygen species, ROS) mediated activation of extracellular signal-regulated kinase (ERK) and c-Jun-N-terminal kinase (JNK) signaling cascades in MAPK pathways. Activated MAPK pathways, in turn, induced signal molecules that bind to the transcription factors (TFs) responsible for lipogenesis to EcR, SREBP, ChREBP promoters. Also, the stress stimulated the conversion of saturated fatty acids (SFAs) to polyunsaturated fatty acids (PUFAs), a preparedness of the organism to adapt the observed stress, which could be correlated with the elongase and desaturase gene (e.g. ELO3, Δ5-DES, Δ9-DES) expressions, and then extended to the delayed early post-embryonic development and increased accumulation of lipid droplets in P. nana. This study will provide a better understanding of how BDE-47 effects on marine invertebrates particularly on the copepods, an important link in the marine food chain. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Activation of peroxisome proliferator-activated receptor-γ (PPARγ) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    International Nuclear Information System (INIS)

    Kim, Sung Hun; Yoo, Chong Il; Kim, Hui Taek; Park, Ji Yeon; Kwon, Chae Hwa; Keun Kim, Yong

    2006-01-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPARγ agonists in osteoblastic cells. Ciglitazone and troglitazone, PPARγ agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPARα agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPARγ antagonist GW9662. Ciglitazone treatment caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis

  6. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    Science.gov (United States)

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, P.J.A. [Birmingham Univ. (United Kingdom); Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Jarvis, O.N.; Marcus, F.B.; Sadler, G.; Belle, P. van [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-12-31

    Ion Cyclotron Resonant Heating (ICRH) that is tuned to minority fuel ions can induce an energy diffusion of the heated species and create high energy tail temperatures of {approx} 1 MeV. The most energetic of these accelerated minority ions can undergo nuclear reactions with impurity Be and C that produces {gamma}-ray emission from the decay of the excited product nuclei. This RF-induced {gamma}-ray emission has been recorded using the JET neutron emission profile diagnostic which is capable of distinguishing neutrons and {gamma}-rays. Appropriate data processing has enabled the RF-induced {gamma}-ray emission signals to be isolated from the {gamma}-ray emission signals associated with neutron interactions in the material surrounding the profile monitor. The 2-d {gamma}-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. (author) 6 refs., 4 figs.

  8. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  9. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  10. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  11. UML Profile for Mining Process: Supporting Modeling and Simulation Based on Metamodels of Activity Diagram

    Directory of Open Access Journals (Sweden)

    Andrea Giubergia

    2014-01-01

    Full Text Available An UML profile describes lightweight extension mechanism to the UML by defining custom stereotypes, tagged values, and constraints. They are used to adapt UML metamodel to different platforms and domains. In this paper we present an UML profile for models supporting event driving simulation. In particular, we use the Arena simulation tool and we focus on the mining process domain. Profiles provide an easy way to obtain well-defined specifications, regulated by the Object Management Group (OMG. They can be used as a presimulation technique to obtain solid models for the mining industry. In this work we present a new profile to extend the UML metamodel; in particular we focus on the activity diagram. This extended model is applied to an industry problem involving loading and transportation of minerals in the field of mining process.

  12. Examination of emotion-induced changes in eating: A latent profile analysis of the Emotional Appetite Questionnaire.

    Science.gov (United States)

    Bourdier, L; Morvan, Y; Kotbagi, G; Kern, L; Romo, L; Berthoz, S

    2018-04-01

    It is now recognized that emotions can influence food intake. While some people report eating less when distressed, others report either no change of eating or eating more in the same condition. The question whether this interindividual variability also occurs in response to positive emotions has been overlooked in most studies on Emotional Eating (EE). Using the Emotional Appetite Questionnaire (EMAQ) and Latent Profile Analysis, this study aimed to examine the existence of latent emotion-induced changes in eating profiles, and explore how these profiles differ by testing their relations with 1) age and sex, 2) BMI and risk for eating disorders (ED) and 3) factors that are known to be associated with EE such as perceived positive/negative feelings, depression, anxiety, stress symptoms and impulsivity. Among 401 university students (245 females) who completed the EMAQ, 3 profiles emerged (P1:11.2%, P2:60.1%, P3:28.7%), with distinct patterns of eating behaviors in response to negative emotions and situations but few differences regarding positive ones. Negative emotional overeaters (P1) and negative emotional undereaters (P3) reported similar levels of emotional distress and positive feelings, and were at greater risk for ED. However, the people in the former profile i) reported decreasing their food intake in a positive context, ii) were in majority females, iii) had higher BMI and iv) were more prone to report acting rashly when experiencing negative emotions. Our findings suggest that a person-centred analysis of the EMAQ scores offers a promising way to capture the inter-individual variability of emotionally-driven eating behaviors. These observations also add to the growing literature underscoring the importance of further investigating the role of different facets of impulsivity in triggering overeating and to develop more targeted interventions of EE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Transcript and Protein Profiling Analysis of the Destruxin A-Induced Response in Larvae of Plutella xylostella

    Science.gov (United States)

    Dong, Xiaolin; Fan, Jiqiao; Qiu, Baoli; Ren, Shunxiang

    2013-01-01

    Background Destruxins (dtxs) are the mycotoxin produced by certain entomopathogenic fungi, such as Metarhizium anisopliae, Aschersonia sp, Alternaria brassicae and Ophiosphaerella herpotrichae. It can affect a wide variety of biological processes in insects, including innate immune, Ca2+ channel in cells, and apoptosis in a dose-dependent manner. Dtxs have been used as biological control agent for a long time, however, their molecular mechanism of action is still unknown. Principal Findings In this study, both digital gene expression (DGE) and two-dimensional electrophoresis (2-DE) approaches were adopted to examine the effects of dtx A on Plutella xyllostella (L.) larvae. By using DGE and 2-DE analyses, 1584 genes and 42 protein points were identified as being up- or down regulated at least 2-fold in response to dtx A. Firstly, injection of dtx A to larvae accelerated the increase of peptidoglycan recognition protein (PGRP), which could activate the Toll signal pathway inducing production of antibacterial substances such as cecropin and gloverin. Dtx A also stimulated prophenoloxidase (proPO) system which plays an important role in innate immunity and leads to melanization of external organisms. Secondly, dtx A suppressed the expression of genes related to the Toll pathway, and induced expression of serine proteinase inhibitors (serpins), especially the serpin 2 that blocked process of the proPO system. Finally, other physiological process like xenobiotics detoxification, apoptosis, calcium signaling pathway and insect hormone biosynthesis, were also mediated in response to dtx A toxicity. Conclusions Transcript and protein profiling analyses will provide an insight into the potential molecular mechanism of action in P. xylostella larvae in response to dtx A. PMID:23585848

  14. Effect of microalga Spirulina platensis (Arthrospira platensis on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Telma Elita Bertolin

    2009-10-01

    Full Text Available Studies have been conducted on microalga Spirulina platensis (Arthrospira platensis due to its therapeutic potential in several areas, including the capacity for preventing and decreasing the damages caused by hyperlipidemia and the antioxidant activity. The aim of the study was to evaluate the effect of microalga Spirulina platensis on hippocampus lipoperoxidation and lipid profile in rats with induced hypercholesterolemia during 60 days. The measurement of hippocampus lipoperoxidation did not demonstrate significant difference (p>0.05 when Spirulina platensis was added to hypercholesterolemic diet. The evaluation of lipid profile showed that the administration of the microalga in therapeutic and preventive ways led to a significant protective effect (pA microalga Spirulina platensis (Arthrospira platensis vem sendo fonte de pesquisas devido a evidências de seu potencial terapêutico em diversas áreas, dentre elas a capacidade de prevenção e diminuição dos danos causados por dislipidemias e sua atividade antioxidante. Objetivou-se avaliar o efeito da microalga Spirulina platensis sobre a lipoperoxidação no hipocampo e perfil lipídico sérico em ratos com hipercolesterolemia induzida durante 60 dias. A dosagem da lipoperoxidação no hipocampo não demonstrou diferença significativa (p>0,05 quando Spirulina platensis foi adicionada na dieta hipercolêsterolemica. A avaliação do perfil lipídico demonstrou que a administração da microlaga de forma terapêutica e preventiva demonstrou efeito significativo (p<0,05 na proteção do desenvolvimento de hipercolesterolemia.

  15. Tea and herbal infusions: Their antioxidant activity and phenolic profile

    International Nuclear Information System (INIS)

    Atoui, A.; Mansouri, A.; Panagiotis Kefalas; Boskou, G.

    2005-01-01

    Tea and herbal infusions have been studied for their polyphenolic content, antioxidant activity and phenolic profile. The total phenolics recovered by ethyl acetate from the water extract, were determined by the Folin-Ciocalteu procedure and ranged from 88.1 ± 0.42 (Greek mountain tea) to 1216 ± 32.0 mg (Chinese green tea) GAE (Gallic acid equivalents)/cup. The antioxidant activity was evaluated by two methods, DPPH and chemiluminescence assays, using Trolox and quercetin as standards. The EC50 of herbal extracts ranged from 0.151 ± 0.002 mg extract/mg DPPH (0.38 quercetin equivalents and 0.57 Trolox equivalents), for Chinese green tea, to 0.77 ± 0.012 mg extract/mg DPPH (0.08 quercetin equivalents and 0.13 Trolox equivalents), for Greek mountain tea. Chemiluminescence assay results showed that the IC50 ranged from 0.17 ± 3.4 x 103 lg extract/ml of the final solution in the measuring cell (1.89 quercetin and 5.89 Trolox equivalents) for Chinese green tea, to 1.10 ± 1.86 x 102 g extract/ml of the final solution in the measuring cell (0.29 quercetin and 0.90 Trolox equivalents) for Greek mountain tea. The phenolic profile in the herbal infusions was investigated by LC-DAD-MS in the positive electrospray ionization (ESI) mode. About 60 different flavo- noids, phenolic acids and their derivatives have been identified. (author)

  16. Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating

    DEFF Research Database (Denmark)

    Zhang, Yang

    . The third hypothesis is that the activation and rinsing process can be described by diffusion. This hypothesis is proved using Fick’s diffusion laws combined with the short-time-plating experiment. The influence of laser parameters on the surface structure is investigated for Nd:YAG, UV, and fiber lasers......The subject of this PhD thesis is “Laser induced selective activation for subsequent autocatalytic electroless plating.” The objective of the project is to investigate the process chains for micro structuring of polymer surfaces for selective micro metallization. Laser induced selective activation...... (LISA) is introduced and studied as a new technique for producing 3D moulded interconnect devices (3D-MIDs). This technique enables the metallization of polymer surface modified by laser and subsequently activated by a PdCl2/SnCl2 system. Various technologies exist on an industrial level...

  17. Contribution to depth profiling by particle induced X-ray emission application to the study of zinc diffusion in AgZn alloy

    International Nuclear Information System (INIS)

    Frontier, J.P.

    1987-08-01

    A contribution of the study of the capacities of Particle Induced X-ray Emission (P.I.X.E.) for depth profiling, in the range of 1 to 10 micrometers and over, is presented here. It is shown that, in a non destructuve way, the concentration profile of a given element can be obtained, in principle, by deconvoluting the X-ray yields of this element, measured in a set of experiments in which the energy of the impinging protons, hence their range, is systematically varied. Direct deconvolution procedure, which leads to the inversion of an ill-conditionned matrix is unsuitable. So we generalized the iterative procedure previously used by Vegh to solve a similar problem. Alternatively we also used a fitting procedure of several parameters which gave us somewhat better than those of the iterative procedure. Both algorithms where applied to a set of X-ray yields induced by protons of energy between 0.45 to 2 MeV, corresponding to the first 6 micrometers of various depletion profiles of zinc in an initially homogeneous Ag-3 at % Zn annealed under vacuum. For investigation of deeper layers, a sectionning technique which consists in analysing thin film hydroxide targets by specific chemistry of tiny turning, was developped with success. Cross-reference of all the obtained profiles was made with electron microprobe determination on transverse section, and with the predictions of the theory of atomic diffusion. In addition, the possibilities of increasing the depth resolution by developping techniques either of controled sanding of the surface, or analysis of the sample is discussed [fr

  18. Inflammatory mediator profiles in tears accompanying keratoconjunctival responses induced by nasal allergy.

    Science.gov (United States)

    Pelikan, Zdenek

    2013-07-01

    The allergic reaction taking place in the nasal mucosa can induce a secondary ocular (keratoconjunctival) response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type in some patients with keratoconjunctivitis (KC). To investigate the concentration changes of histamine, tryptase, eosinophil-derived neurotoxin (EDN), eosinophil cationic protein (ECP), eosinophilic peroxidase (EPO), leucotrienes (LTB₄, LTC₄, LTE₄), prostaglandins (PGD₂, PGE₂ and PGF₂α), thromboxane B₂ (TXB₂), myeloperoxidase (MPO), interferon-γ (IFN-γ) and interleukins (IL-2, IL-4 and IL-5) in tears during the SIOR, SLOR and SDYOR. 19 SIORs (ptears. The ocular response types were associated with significant changes (ptears as follows: (1) SIORs: histamine, tryptase, ECP, LTC₄, PGD₂, PGF₂α, IL-4 and IL-5; (2) SLORs: histamine, ECP, EDN, LTB₄, LTC₄, PGE₂, MPO, IL-4 and IL-5; (3) SDYORs: LTB4, TXB₂, MPO, IFN-γ and IL-2. No significant changes of these factors were measured in tears during the 57 PBS controls (p>0.1). These results demonstrate a causal involvement of nasal allergy in some KC patients, inducing a secondary keratoconjunctival response of an immediate (SIOR), late (SLOR) or delayed (SDYOR) type, associated with different inflammatory mediator profiles in the tears, suggesting participation of different hypersensitivity mechanisms. These results also emphasise the diagnostic value of nasal challenge with allergen combined with monitoring of ocular response in KC patients, responding insufficiently to the usual ophthalmologic therapy.

  19. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum

    Directory of Open Access Journals (Sweden)

    Guangyue Su

    2017-05-01

    Full Text Available Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin.Method:1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar-induced liver and kidney toxicity.Results: The metabolic profiles of groups receiving Baicalin at a dose of 80 mg/kg were remarkably different from cinnabar, and meanwhile, the level of endogenous metabolites returned to normal compared to group cinnabar. PLS-DA scores plots demonstrated that the variation tendency of control and Baicalein are apart from Cinnabar. The metabolic profiles of group Baicalein were similar to those of group control. Statistics results were confirmed by the histopathological examination and biochemical assay.Conclusion: Baicalin have the alleviation effect to the liver and kidney damage induced by cinnabar. The Baicalin could regulate endogenous metabolites associated with the energy metabolism, choline metabolism, amino acid metabolism, and gut flora.

  20. Problems of determination of principle of psychological profile of unknown criminal person in investigational activity

    Directory of Open Access Journals (Sweden)

    Galina Getman

    2017-03-01

    By the author of the article of analysis different determinations of «psychological profile of unknown criminal person» were subjected. They are set positive lines and separate positions that in opinion of author are not expedient and important are subjected to criticism. That is why, the author points in conclusions the argued positions in relation to the necessity of the use of psychological profile of  unknown criminal person during investigation of criminal realizations in activity of investigator.

  1. Kefiran suppresses antigen-induced mast cell activation.

    Science.gov (United States)

    Furuno, Tadahide; Nakanishi, Mamoru

    2012-01-01

    Kefir is a traditional fermented milk beverage produced by kefir grains in the Caucasian countries. Kefiran produced by Lactobacillus kefiranofaciens in kefir grains is an exopolysaccharide having a repeating structure with glucose and galactose residues in the chain sequence and has been suggested to exert many health-promoting effects such as immunomodulatory, hypotensive, hypocholesterolemic activities. Here we investigated the effects of kefiran on mast cell activation induced by antigen. Pretreatment with kefiran significantly inhibited antigen-induced Ca(2+) mobilization, degranulation, and tumor necrosis factor-α production in bone marrow-derived mast cells (BMMCs) in a dose-dependent manner. The phosphorylation of Akt, glycogen synthase kinase 3β, and extracellular signal-regulated kinases (ERKs) after antigen stimulation was also suppressed by pretreatment of BMMCs with kefiran. These findings indicate that kefiran suppresses mast cell degranulation and cytokine production by inhibiting the Akt and ERKs pathways, suggesting an anti-inflammatory effect for kefiran.

  2. Cognitive profile and activities of daily living

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Thuesen, A M; Olsen, K J

    2015-01-01

    on the cognitive function and activities of daily living in patients with AM. METHODS: Thirty five AM patients, age 6-35 years, were included in the study. As a cognitive function test, we used the Leiter international performance scale-revised (Leiter-R), which consists of two batteries: the visual function...... and reasoning battery and the memory and attention battery, the latter including a memory screening. Additional two questionnaires, The Childhood Health Assessment Questionnaire (CHAQ) and EQ-5D-5 L, were filled out. RESULTS: We found IQ in the range of 30-81 in our cohort. The total equivalent age (mental age......) was significantly reduced, between 3-9 years old for the visual function and reasoning battery, between 2.3-10.2 years for the memory screening. Data suggested a specific developmental profile for AM with a positive intellectual development until the chronological age 10-12 years, followed by a static or slightly...

  3. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2

    Science.gov (United States)

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-01-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway. PMID:28260081

  4. mTOR inhibition sensitizes ONC201-induced anti-colorectal cancer cell activity.

    Science.gov (United States)

    Jin, Zhe-Zhu; Wang, Wei; Fang, Di-Long; Jin, Yong-Jun

    2016-09-30

    We here tested the anti-colorectal cancer (CRC) activity by a first-in-class small molecule TRAIL inducer ONC201. The potential effect of mTOR on ONC201's actions was also examined. ONC201 induced moderate cytotoxicity against CRC cell lines (HT-29, HCT-116 and DLD-1) and primary human CRC cells. Significantly, AZD-8055, a mTOR kinase inhibitor, sensitized ONC201-induced cytotoxicity in CRC cells. Meanwhile, ONC201-induced TRAIL/death receptor-5 (DR-5) expression, caspase-8 activation and CRC cell apoptosis were also potentiated with AZD-8055 co-treatment. Reversely, TRAIL sequestering antibody RIK-2 or the caspase-8 specific inhibitor z-IETD-fmk attenuated AZD-8055 plus ONC201-induced CRC cell death. Further, mTOR kinase-dead mutation (Asp-2338-Ala) or shRNA knockdown significantly sensitized ONC201's activity in CRC cells, leading to profound cell death and apoptosis. On the other hand, expression of a constitutively-active S6K1 (T389E) attenuated ONC201-induced CRC cell apoptosis. For the mechanism study, we showed that ONC201 blocked Akt, but only slightly inhibited mTOR in CRC cells. Co-treatment with AZD-8055 also concurrently blocked mTOR activation. These results suggest that mTOR could be a primary resistance factor of ONC201 in CRC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Comparison between the International Physical Activity Questionnaire and the American College of Sports Medicine/American Heart Association criteria to classify the physical activity profile in adults.

    Science.gov (United States)

    de Moraes, Suzana Alves; Suzuki, Cláudio Shigueki; de Freitas, Isabel Cristina Martins

    2013-01-01

    the study aims to evaluate the reproducibility between the International Physical Activity Questionnaire and the American College of Sports Medicine/American Heart Association criteria to classify the physical activity profile in an adult population living in Ribeirão Preto, SP, Brazil. population-based cross-sectional study, including 930 adults of both genders. The reliability was evaluated by Kappa statistics, estimated according to socio-demographic strata. the kappa estimates showed good agreement between the two criteria in all strata. However, higher prevalence of "actives" was found by using the American College of Sports Medicine/American Heart Association. although the estimates have indicated good agreement, the findings suggest caution in choosing the criteria to classify physical activity profile mainly when "walking" is the main modality of physical activity.

  6. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  7. UPLC/QTOF/MS profiling of two Psidium species and the in-vivo hepatoprotective activity of their nano-formulated liposomes.

    Science.gov (United States)

    Saber, Fatema R; Abdelbary, Ghada A; Salama, Maha M; Saleh, Dalia O; Fathy, Magda M; Soliman, Fathy M

    2018-03-01

    Liver diseases are major health problem in Egypt influencing lifestyle and economy. The demand for nutraceutical hepatoprotective agents is crucial to ameliorate the side effects of synthetic drugs. The present study aims to evaluate antioxidant and hepatoprotective activities of extracts of Psidium guajava L. and Psidium cattleianum Sabine leaves and their nano-formulated liposomes against paracetamol-induced liver damage in rats. Secondary metabolites profile of P. guajava and P. cattleianum leaves was investigated using UPLC-PDA-ESI-qTOF-MSn. The nano-liposomes containing Psidium extracts were prepared using thin film hydration method. Biochemical analysis was based on monitoring serum levels of AST, ALT, ALP and total bilirubin. The liver homogenate was used for determination of GSH and MDA. Histopathological alterations were also studied. Metabolic profiling revealed qualitative differences between the two investigated species providing a comprehensive map for the metabolites present in P. guajava and P. cattleianum leaves cultivated in Egypt. The identified metabolites belong to different phytochemical classes; polyphenolics, flavonoids, triterpenes and meroterpenoids. Significant hepatoprotective effects were observed as evident from the decreased levels of AST, ALT, ALP, MDA and total bilirubin as well as restoration of decreased GSH level in the two studied Psidium extracts (250, 500mg/kg b. wt) and their respective nano-liposomes (500mg/kg b. wt), when compared to the diseased group. Nano-liposomes of Psidium guajava leaves (500mg/kg b. wt) greatly restored the normal architecture of the liver in the histopathological study, as regards to standard silymarin. The present study verified the effectiveness of Psidium guajava and Psidium cattleianum leaves extracts and their nano-liposomes in ameliorating the paracetamol-induced hepatotoxicity in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Clinical significance of plasminogen activator inhibitor activity in patients with exercise-induced ischemia

    International Nuclear Information System (INIS)

    Sakata, K.; Kurata, C.; Taguchi, T.; Suzuki, S.; Kobayashi, A.; Yamazaki, N.; Rydzewski, A.; Takada, Y.; Takada, A.

    1990-01-01

    To assess the fibrinolytic system in patients with exercise-induced ischemia and its relation to ischemia and severity of coronary artery disease (CAD), 47 patients with CAD confirmed by results of coronary angiography underwent symptom-limited multistage exercise thallium-201 emission computed tomography. All patients with CAD had exercise-induced ischemia as assessed from thallium-201 images. Pre- and peak exercise blood samples from each patient and preexercise blood samples from control subjects were assayed for several fibrinolytic components and were also assayed for plasma adrenaline. The extent of ischemia was defined as delta visual uptake score (total visual uptake score in delayed images minus total visual uptake score in initial images) and the severity of CAD as the number of diseased vessels. In the basal condition, plasminogen activator inhibitor (PAI) activity was significantly higher in patients with exercise-induced ischemia as compared to control subjects (p less than 0.01), although there were no significant differences in other fibrinolytic variables between the two groups. Moreover, PAI activity in the basal condition displayed a significantly positive correlation with the extent of ischemia (r = 0.47, p less than 0.01). Patients with exercise-induced ischemia were divided into two groups (24 with single-vessel disease and 23 with multivessel disease). There were no significant differences in coronary risk factors, hemodynamics, or plasma adrenaline levels during exercise between single-vessel and multivessel disease except that delta visual uptake score was significantly higher in multivessel disease (p less than 0.01)

  9. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  10. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Science.gov (United States)

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  11. Pharmacological Correction of Stress-Induced Gastric Ulceration by Novel Small-Molecule Agents with Antioxidant Profile

    Directory of Open Access Journals (Sweden)

    Konstantin V. Kudryavtsev

    2014-01-01

    Full Text Available This study was designed to determine novel small-molecule agents influencing the pathogenesis of gastric lesions induced by stress. To achieve this goal, four novel organic compounds containing structural fragments with known antioxidant activity were synthesized, characterized by physicochemical methods, and evaluated in vivo at water immersion restraint conditions. The levels of lipid peroxidation products and activities of antioxidative system enzymes were measured in gastric mucosa and correlated with the observed gastroprotective activity of the active compounds. Prophylactic single-dose 1 mg/kg treatment with (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline efficiently decreases up to 86% stress-induced stomach ulceration in rats. Discovered small-molecule antiulcer agents modulate activities of gastric mucosa tissue superoxide dismutase, catalase, and xanthine oxidase in concerted directions. Gastroprotective effect of (2-hydroxyphenylthioacetyl derivatives of L-lysine and L-proline at least partially depends on the correction of gastric mucosa oxidative balance.

  12. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    Science.gov (United States)

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  13. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  14. Organelle-Specific Activity-Based Protein Profiling in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wiedner, Susan D.; Anderson, Lindsey N.; Sadler, Natalie C.; Chrisler, William B.; Kodali, Vamsi K.; Smith, Richard D.; Wright, Aaron T.

    2014-02-06

    A multimodal acidic organelle targeting activity-based probe was developed for analysis of subcellular native enzymatic activity of cells by fluorescent microscopy and mass spectrometry. A cathepsin reactive warhead was conjugated to an acidotropic amine, and a clickable alkyne for appendage of AlexaFluor 488 or biotin reporter tags. This probe accumulated in punctate vesicles surrounded by LAMP1, a lysosome marker, as observed by Structured Illumination Microscopy (SIM) in J774 mouse macrophage cells. Biotin conjugation, affinity purification, and analysis of in vivo labeled J774 by mass spectrometry showed that the probe was very selective for Cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation induced autophagy, which is an increase in cell component catabolism involving lysosomes, showed a large increase in tagged protein number and an increase in cathepsin activity. Organelle targeting activity-based probes and subsequent analysis of resident proteins by mass spectrometry is enabled by tuning the physicochemical properties of the probe.

  15. Gamma-ray emission profile measurements during JET ICRH discharges

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, O N; Marcus, F B; Sadler, G; Van Belle, P [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Howarth, P J.A. [Birmingham Univ. (United Kingdom); Adams, J M; Bond, D S [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.

    1994-07-01

    Gamma-ray emission from plasma-impurity reactions caused by minority ICRH accelerating fuel ions to MeV energies has been measured using the JET neutron profile monitor. A successful data analysis technique has been used to isolate the RF-induced gamma-ray emission that was detected, enabling profiles of gamma-ray emission to be obtained. The 2-d gamma-ray emission profiles show that virtually all the radiation originates from the low field side of the RF resonance layer, as expected from RF-induced pitch angle diffusion. The emission profiles indicate the presence of a small population of resonant {sup 3}He ions that possess orbits lying near the passing-trapped boundary. 6 refs., 4 figs.

  16. Apoptosis induced by low-intensity ultrasound in vitro: Alteration of protein profile and potential molecular mechanism

    Science.gov (United States)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To analyze the potential mechanism related to the apoptosis induced by low intensity focused ultrasound, comparative proteomic method was introduced in the study. After ultrasound irradiation (3.0 W/cm2, 1 minute, 6 hours incubation post-irradiation), the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the percentage of early apoptosis were tested by the flow cytometry with double staining of FITC-labelled Annexin V/Propidium iodide. Two-dimensional SDS polyacrylamide gel electrophoresis was used to get the protein profile and some proteins differently expressed after ultrasound irradiation were identified by MALDI-TOF mass spectrometry. It's proved early apoptosis of cells were induced by low intentisy focused ultrasound. After ultrasound irradiation, the expressing characteristics of several proteins changed, in which protein p53 and heat shock proteins are associated with apoptosis initiation. It is suggested that the low-intensity ultrasound-induced apoptotic cancer therapy has the potential application via understanding its relevant molecular signaling and key proteins. Moreover, the comparative proteomic method is proved to be useful to supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.

  17. Physical activity and depression symptom profiles in young men and women with major depression.

    Science.gov (United States)

    McKercher, Charlotte; Patton, George C; Schmidt, Michael D; Venn, Alison J; Dwyer, Terence; Sanderson, Kristy

    2013-05-01

    This study explored whether young adults with major depression who are physically active differ in their depression symptom profile from those physically inactive. Analyses included data from 950 (47.6%) men and 1045 women (mean [standard deviation] age = 31.5 [2.6] years) participating in a national study. Participants reported leisure physical activity (International Physical Activity Questionnaire) and ambulatory activity (pedometer steps per day). Diagnosis and symptoms of major depression were assessed using the Composite International Diagnostic Interview. Prevalence of major depression was 5.5% (n = 52) for men and 11.6% (n = 121) for women. Interactions between physical activity and sex were observed for depressed mood, appetite changes, vacillating thoughts, and suicidality (all, p physically active men were significantly less likely to endorse the presence of insomnia (prevalence ratio [PR] = 0.78, 95% confidence interval [CI] = 0.63-0.96), fatigue (PR = 0.82, 95% CI = 0.69-0.99), and suicidality (PR = 0.69, 95% CI = 0.49-0.96) compared with inactive men. Physically active women were significantly less likely to endorse hypersomnia (PR = 0.50, 95% CI = 0.27-0.95), excessive/irrational guilt (PR = 0.76, 95% CI = 0.59-0.97), vacillating thoughts (PR = 0.74, 95% CI = 0.58-0.95), and suicidality (PR = 0.43, 95% CI = 0.20-0.89) compared with inactive women. Associations were adjusted for age, physical health, educational attainment, depression severity, and other depressive symptoms. Among adults with major depression, those physically active seem to differ in their depression symptom profile from those physically inactive.

  18. Tetrandrine, an Activator of Autophagy, Induces Autophagic Cell Death via PKC-α Inhibition and mTOR-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Vincent Kam Wai Wong

    2017-06-01

    Full Text Available Emerging evidence suggests the therapeutic role of autophagic modulators in cancer therapy. This study aims to identify novel traditional Chinese medicinal herbs as potential anti-tumor agents through autophagic induction, which finally lead to autophagy mediated-cell death in apoptosis-resistant cancer cells. Using bioactivity-guided purification, we identified tetrandrine (Tet from herbal plant, Radix stephaniae tetrandrae, as an inducer of autophagy. Across a number of cancer cell lines, we found that breast cancer cells treated with tetrandrine show an increase autophagic flux and formation of autophagosomes. In addition, tetrandrine induces cell death in a panel of apoptosis-resistant cell lines that are deficient for caspase 3, caspase 7, caspase 3 and 7, or Bax-Bak respectively. We also showed that tetrandrine-induced cell death is independent of necrotic cell death. Mechanistically, tetrandrine induces autophagy that depends on mTOR inactivation. Furthermore, tetrandrine induces autophagy in a calcium/calmodulin-dependent protein kinase kinase-β (CaMKK-β, 5′ AMP-activated protein kinase (AMPK independent manner. Finally, by kinase profiling against 300 WT kinases and computational molecular docking analysis, we showed that tetrandrine is a novel PKC-α inhibitor, which lead to autophagic induction through PKC-α inactivation. This study provides detailed insights into the novel cytotoxic mechanism of an anti-tumor compound originated from the herbal plant, which may be useful in promoting autophagy mediated- cell death in cancer cell that is resistant to apoptosis.

  19. Activation of PPARγ is not involved in butyrate-induced epithelial cell differentiation

    International Nuclear Information System (INIS)

    Ulrich, S.; Waechtershaeuser, A.; Loitsch, S.; Knethen, A. von; Bruene, B.; Stein, J.

    2005-01-01

    Histone deacetylase-inhibitors affect growth and differentiation of intestinal epithelial cells by inducing expression of several transcription factors, e.g. Peroxisome proliferator-activated receptor γ (PPARγ) or vitamin D receptor (VDR). While activation of VDR by butyrate mainly seems to be responsible for cellular differentiation, the activation of PPARγ in intestinal cells remains to be elucidated. The aim of this study was to determine the role of PPARγ in butyrate-induced cell growth inhibition and differentiation induction in Caco-2 cells. Treatment with PPARγ ligands ciglitazone and BADGE (bisphenol A diglycidyl) enhanced butyrate-induced cell growth inhibition in a dose- and time-dependent manner, whereas cell differentiation was unaffected after treatment with PPARγ ligands rosiglitazone and MCC-555. Experiments were further performed in dominant-negative PPARγ mutant cells leading to an increase in cell growth whereas butyrate-induced cell differentiation was again unaffected. The present study clearly demonstrated that PPARγ is involved in butyrate-induced inhibition of cell growth, but seems not to play an essential role in butyrate-induced cell differentiation

  20. Alleviation of salt-induced oxidative damage by 5-aminolevulinic acid in wheat seedlings

    Science.gov (United States)

    Genişel, Mucip; Erdal, Serkan

    2016-04-01

    The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg.l-1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treating with ALA significantly mitigated these stress-induced reductions. The data for the isoenzyme profiles of the antioxidant enzymes paralleled that of the ALA-induced increases in antioxidant activity. As a consequence of the high antioxidant activity in the seedlings pre-treated with ALA, the stress-induced elevations in the reactive oxygen species, superoxide anion, and hydrogen peroxide contents and lipid peroxidation levels were markedly diminished. Taken together, this data demonstrated that pre-treating with ALA confers resistance to salt stress by modulating the protein synthesis and antioxidant activity in wheat seedlings.

  1. Regulation of radiation-induced protein kinase Cδ activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Yukawa, Osami; Tsuji, Hideo; Ohyama, Harumi; Wang, Bing; Tatsumi, Kouichi; Hayata, Isamu; Hama-Inaba, Hiroko

    2006-01-01

    Protein kinase Cδ (PKCδ) has an important role in radiation-induced apoptosis. The expression and function of PKCδ in radiation-induced apoptosis were assessed in a radiation-sensitive mouse thymic lymphoma cell line, 3SBH5, and its radioresistant variant, XR223. Rottlerin, a PKCδ-specific inhibitor, completely abolished radiation-induced apoptosis in 3SBH5. Radiation-induced PKCδ activation correlated with the degradation of PKCδ, indicating that PKCδ activation through degradation is involved in radiation-induced apoptosis in radiosensitive 3SBH5. In radioresistant XR223, radiation-induced PKCδ activation was lower than that in radiosensitive 3SBH5. Cytosol PKCδ levels in 3SBH5 decreased markedly after irradiation, while those in XR223 did not. There was no apparent change after irradiation in the membrane fractions of either cell type. In addition, basal cytosol PKCδ levels in XR223 were higher than those in 3SBH5. These results suggest that the radioresistance in XR223 to radiation-induced apoptosis is due to a difference in the regulation of radiation-induced PKCδ activation compared to that of 3SBH5. On the other hand, Atm -/- mouse thymic lymphoma cells were more radioresistant to radiation-induced apoptosis than wild-type mouse thymic lymphoma cells. Irradiated wild-type cells, but not Atm -/- cells, had decreased PKCδ levels, indicating that the Atm protein is involved in radiation-induced apoptosis through the induction of PKCδ degradation. The decreased Atm protein levels induced by treatment with Atm small interfering RNA had no effect on radiation-induced apoptosis in 3SBH5 cells. These results suggest that the regulation of radiation-induced PKCδ activation, which is distinct from the Atm-mediated cascade, determines radiation sensitivity in radiosensitive 3SBH5 cells

  2. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  3. Active Tectonics Revealed by River Profiles along the Puqu Fault

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-04-01

    Full Text Available The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (DEM, 20 m was generated from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo pair of images and the stream network in this region was extracted from this DEM. The indices of slope and drainage area were subsequently calculated from this ASTER DEM. Based on the stream power law, the area-slope plots of the streams were delineated to derive the indices of channel concavity and steepness, which are closely related to tectonic activity. The results show the active tectonics varying significantly along the Puqu Fault, although the potential influence of glaciations may exist. These results are expected to be useful for a better understanding of tectonic evolution in Southeastern Tibet.

  4. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  5. Diverse bone morphogenetic protein expression profiles and smad pathway activation in different phenotypes of experimental canine mammary tumors.

    Directory of Open Access Journals (Sweden)

    Helena Wensman

    Full Text Available BACKGROUND: BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones. CONCLUSIONS/SIGNIFICANCE: We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.

  6. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  7. Active Boundary Layer Control on a Highly Loaded Turbine Exit Case Profile

    Directory of Open Access Journals (Sweden)

    Julia Kurz

    2018-03-01

    Full Text Available A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as well as boundary layer investigations with a flattened Pitot probe. Active boundary layer control by fluidic oscillators was applied to achieve improved performance in the low Reynolds number regime. Low solidity, which can be applied to reduce the number of blades, increases the risk of flow separation resulting in increased total pressure losses. Active boundary layer control is supposed to overcome these negative effects. The experiments show that active boundary layer control by fluidic oscillators is an appropriate way to suppress massive open separation bubbles in the low Reynolds number regime.

  8. The Rehabilitation Activities Profile: a validation study of its use as a disability index with stroke patients

    NARCIS (Netherlands)

    van Bennekom, C. A.; Jelles, F.; Lankhorst, G. J.; Bouter, L. M.

    1995-01-01

    This study evaluates the criterion, content, and construct validity of the Rehabilitation Activities Profile (RAP) in patients with stroke. This instrument is constructed for screening, monitoring, and prognosis purposes to assist clinical rehabilitation. It consists of 21 activities, covering the

  9. Assessment of leisure-time physical activity for the prediction of inflammatory status and cardiometabolic profile.

    Science.gov (United States)

    Pires, Milena Monfort; Salvador, Emanuel P; Siqueira-Catania, Antonela; Folchetti, Luciana D; Cezaretto, Adriana; Ferreira, Sandra Roberta G

    2012-11-01

    Associations of leisure-time physical activity (LTPA), commuting and total physical activity with inflammatory markers, insulin resistance and metabolic profile in individuals at high cardiometabolic risk were investigated. This was a cross-sectional study. A total of 193 prediabetic adults were compared according to physical activity levels measured by the international physical activity questionnaire; p for trend and logistic regression was employed. The most active subset showed lower BMI and abdominal circumference, reaching significance only for LTPA (p for trend=0.02). Lipid profile improved with increased physical activity levels. Interleukin-6 decreased with increased total physical activity and LTPA (p for trend=0.02 and 0.03, respectively), while adiponectin increased in more active subsets for LTPA (p for trend=0.03). Elevation in adjusted OR for hypercholesterolemia was significant for lower LTPA durations (p for trend=0.04). High apolipoprotein B/apolipoprotein A ratio was inversely associated with LTPA, commuting and total physical activity. Increase in adjusted OR for insulin resistance was found from the highest to the lowest category of LTPA (p for trend=0.04) but significance disappeared after adjustments for BMI and energy intake. No association of increased C-reactive protein with physical activity domains was observed. In general, the associations of LTPA, but not commuting or total physical activity, with markers of cardiometabolic risk reinforces the importance of initiatives to increase this domain in programs for the prevention of lifestyle-related diseases. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Comparative Analysis of Click Chemistry Mediated Activity-Based Protein Profiling in Cell Lysates

    Directory of Open Access Journals (Sweden)

    Yinliang Yang

    2013-10-01

    Full Text Available Activity-based protein profiling uses chemical probes that covalently attach to active enzyme targets. Probes with conventional tags have disadvantages, such as limited cell permeability or steric hindrance around the reactive group. A tandem labeling strategy with click chemistry is now widely used to study enzyme targets in situ and in vivo. Herein, the probes are reacted in live cells, whereas the ensuing detection by click chemistry takes place in cell lysates. We here make a comparison of the efficiency of the activity-based tandem labeling strategy by using Cu(I-catalyzed and strain-promoted click chemistry, different ligands and different lysis conditions.

  11. Characteristics of induced activity from medical linear accelerators

    International Nuclear Information System (INIS)

    Wang Yizhen; Evans, Michael D.C.; Podgorsak, Ervin B.

    2005-01-01

    A study of the induced activity in a medical linear accelerator (linac) room was carried out on several linac installations. Higher beam energy, higher dose rate, and larger field size generally result in higher activation levels at a given point of interest, while the use of multileaf collimators (MLC) can also increase the activation level at the isocenter. Both theoretical and experimental studies reveal that the activation level in the morning before any clinical work increases from Monday to Saturday and then decreases during the weekend. This weekly activation picture keeps stable from one week to another during standard clinical operation of the linac. An effective half-life for a given point in the treatment room can be determined from the measured or calculated activity decay curves. The effective half-life for points inside the treatment field is longer than that for points outside of the field in the patient plane, while a larger field and longer irradiation time can also make the effective half-life longer. The activation level reaches its practical saturation value after a 30 min continuous irradiation, corresponding to 12 000 MU at a 'dose rate' of 400 MU/min. A 'dose' of 300 MU was given 20 times in 15 min intervals to determine the trends in the activation level in a typical clinical mode. As well, a long-term (85 h over a long weekend) decay curve was measured to evaluate the long-term decay of room activation after a typical day of clinical linac use. A mathematical model for the activation level at the isocenter has been established and shown to be useful in explaining and predicting the induced activity levels for typical clinical and experimental conditions. The activation level for a 22 MeV electron beam was also measured and the result shows it is essentially negligible

  12. Phytochemical profiles and antioxidant activity of 27 cultivars of tea.

    Science.gov (United States)

    Zeng, Liang; Luo, Liyong; Li, Hongjun; Liu, Ruihai

    2017-08-01

    Tea, rich in phytochemicals, has been suggested to have human health benefits. The phenolic profiles, antioxidant and antiproliferative activities of 27 tea cultivars were determined. Wide ranges of variation were found in analyzed cultivars for the contents of water-soluble phenolics (121.6-223.7 mg/g dry weight (DW)), total catechins (TC) (90.5-177.2 mg/g DW), antioxidant activities (PSC values 627.3-2332.3 μmol of vitamin C equiv/g DW, ORAC values (1865.1-3489.3 μmol of vitamin C equiv/g DW), CAA values (37.7-134.3 μmol of QE/g DW without PBS wash and 25.3-75.4 μmol of QE/g DW with PBS wash) and antiproliferative activity (53.0-90.8% at the concentration of 400 μg/mL extracts). The PSC, ORAC and CAA values were significantly correlated with phenolics, epicatechin gallate (ECG), CC and TC. Knowledge of specific differences among tea cultivars is important for breeding tea cultivars and gives sights to its potential application to promote health.

  13. Activation of c-MET induces a stem-like phenotype in human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Geert J L H van Leenders

    Full Text Available Prostate cancer consists of secretory cells and a population of immature cells. The function of immature cells and their mutual relation with secretory cells are still poorly understood. Immature cells either have a hierarchical relation to secretory cells (stem cell model or represent an inducible population emerging upon appropriate stimulation of differentiated cells. Hepatocyte Growth Factor (HGF receptor c-MET is specifically expressed in immature prostate cells. Our objective is to determine the role of immature cells in prostate cancer by analysis of the HGF/c-MET pathway.Gene-expression profiling of DU145 prostate cancer cells stimulated with HGF revealed induction of a molecular signature associated with stem cells, characterized by up-regulation of CD49b, CD49f, CD44 and SOX9, and down-regulation of CD24 ('stem-like signature'. We confirmed the acquisition of a stem-like phenotype by quantitative PCR, FACS analysis and Western blotting. Further, HGF led to activation of the stem cell related Notch pathway by up-regulation of its ligands Jagged-1 and Delta-like 4. Small molecules SU11274 and PHA665752 targeting c-MET activity were both able to block the molecular and biologic effects of HGF. Knock-down of c-MET by shRNA infection resulted in significant reduction and delay of orthotopic tumour-formation in male NMRI mice. Immunohistochemical analysis in prostatectomies revealed significant enrichment of c-MET positive cells at the invasive front, and demonstrated co-expression of c-MET with stem-like markers CD49b and CD49f.In conclusion, activation of c-MET in prostate cancer cells induced a stem-like phenotype, indicating a dynamic relation between differentiated and stem-like cells in this malignancy. Its mediation of efficient tumour-formation in vivo and predominant receptor expression at the invasive front implicate that c-MET regulates tumour infiltration in surrounding tissues putatively by acquisition of a stem-like phenotype.

  14. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Shearstone

    Full Text Available Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF is a promising approach for ameliorating sickle cell disease (SCD and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2, elicits a dose and time dependent induction of γ-globin mRNA (HBG and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB. Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.

  15. DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies.

    Science.gov (United States)

    Kiersztan, Anna; Nagalski, Andrzej; Nalepa, Paweł; Tempes, Aleksandra; Trojan, Nina; Usarek, Michał; Jagielski, Adam K

    2016-02-01

    In view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor. DHEA decreased glucose synthesis via inhibition of glucose-6-phosphatase (G6Pase) and suppressed the dexP-induced stimulation of renal gluconeogenesis. Studies with the use of inhibitors of DHEA metabolism in cultured renal tubules showed for the first time that DHEA directly affects renal gluconeogenesis. However, in view of analysis of glucocorticoids and DHEA metabolites levels in urine, it seems likely, that testosterone may also contribute to DHEA-evoked effects. In dexP-treated rabbits, plasma glucose level was not altered despite increased renal and hepatic FBPase and G6Pase activities, while a significant elevation of both plasma insulin and HOMA-IR was accompanied by a decline of ISI index. It thus appears that increased insulin levels were required to maintain normoglycaemia and to compensate the insulin resistance. DHEA alone affected neither plasma glucose nor lipid levels, while it increased insulin sensitivity and diminished both renal and hepatic G6Pase activities. Surprisingly, DHEA co-administrated with dexP did not alter insulin sensitivity, while it partially suppressed the dexP-induced elevation of renal G6Pase activity and plasma cholesterol and triglyceride contents. As (i) gluconeogenic pathway in rabbit is similar to that in human, and (ii) DHEA counteracts several

  16. Schiff Bases of Benzothiazol-2-ylamine and Thiazolo[5,4-b] pyridin-2-ylamine as Anticonvulsants: Synthesis, Characterization and Toxicity Profiling.

    Science.gov (United States)

    Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K

    2016-01-01

    Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.

  17. Cytotoxic activity of abietane diterpenoids from roots of Salvia sahendica by HPLC-based activity profiling

    Directory of Open Access Journals (Sweden)

    Fahimeh Moradi-Afrapoli

    Full Text Available ABSTRACT Screening of medicinal plants from Iranian flora against human cancer cell-lines have shown that an hexane extract from roots of Salvia sahendica Boiss. & Buhse, Lamiaceae, is active against human cervical cancer (HeLa and colorectal adenocarcinoma (Caco-2 cell-lines at the test concentration of 100 µg/ml (100% inhibition. Cytotoxicity of the extract was localized with the aid of HPLC-time-based activity profiling adapted to the tetrazolium colorimetric bioassay. Four abietane-type diterpenoids in active time-windows were identified as cytotoxic compounds namely: sahandone (1, sahandol (2, 12-deoxy-salvipisone (3 and sahandinone (4. Compound 1 showed the highest toxicity against HeLa cells (IC50 = 5.6 ± 0.1 µg/ml, which was comparable with betulinic acid (IC50 = 4.3 ± 1.2 µg/ml, the positive control. Compound 2 was active against the HeLa cells (IC50 = 8.9 ± 0.7 µg/ml but not the Caco-2 cell-line. Compounds 1, 3 and 4 exhibited moderate activity (IC50 = 22.9–41.4 µg/ml against the Caco-2 cells. This study reveals that the HeLa cells are more sensitive to all tested compounds than the Caco-2 cells. In silico molecular docking study showed a rigid binding of the compounds to tyrosine kinase pp60src, and proved their cytotoxic activity.

  18. Chemically induced and light-independent cryptochrome photoreceptor activation.

    Science.gov (United States)

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  19. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  20. Raw Camel Milk Properties on Alloxan-Induced Diabetic Wistar Rats

    Directory of Open Access Journals (Sweden)

    Kebir Nasr-Eddine

    2017-03-01

    Full Text Available Background and aims: Diabetes is one of the most frequent and serious chronic diseases in humans all over the world. The aim of our study was to evaluate the antidiabetic activity of camel milk on serum glucose and lipid profile of alloxan-induced diabetic rats.

  1. Radiation-induced Changes in the Electrophoretic Profile of Serum Albumin

    Directory of Open Access Journals (Sweden)

    Celso Vieira Lima

    2018-01-01

    Full Text Available ABSTRACT Albumin protein profiles were investigated in electrophoresis system in relation to the whole body exposition to the radiation. Two groups of rats Wistar were set up as the control (CG and the irradiated one (IG. The IG was exposed to Co-60 at a dose of 5 Gy. After a 72-hour exposition, 300 μL of blood was collected in the inferior vena cava, renal, jugular, hepatic, and pulmonary veins and the serum separated. The albumin protein was identified by vertical electrophoresis in acrylamide Commassi blue or silver stained. The calibration procedure was applied to albumin samples with well-known concentrations. The mathematical correlation was developed involving electrophoretic parameters of band intensities and sizes from gel representation, providing values of protein concentrations in comparison with standard bands with known concentrations. There were significant differences in the physiological concentrations in the jugular and pulmonary sites in relation to renal and cava regional sites. Significant differences induced by radiation in serum albumin concentration were also found in hepatic and jugular sites. Alteration of albumin concentration was found as a nearly effect from whole body irradiation. This phenomenon points out to alterations in cell metabolism in the liver justified by a possible indication of proteomics damage from radiation.

  2. Induced resistance in tomato by SAR activators during predisposing salinity stress

    Directory of Open Access Journals (Sweden)

    Matthew Francis Pye

    2013-05-01

    Full Text Available Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA is a crucial signal for systemic acquired resistance (SAR, and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-s-methyl-ester, BTH and Tiadinil (N-(3-chloro-4-methylphenyl-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL. BTH and TDL were examined for their impact on abscisic acid (ABA-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in WT and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by P. capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA.

  3. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    Science.gov (United States)

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  4. Heating and active control of profiles and transport by IBW in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping; Wan Baonian; Li Jiangang

    2003-01-01

    Significant progress on Ion Bernstein Wave (IBW) heating and control of profiles has been obtained in HT-7. Both on-axis and off-axis electron heating with global peaked and local steep electron pressure profiles were realized if the position of the resonant layer was selected to be plasma far from the plasma edge region. Reduction of electron heat transport has been observed from sawtooth heat pulse propagation. Improvement of both particle and energy confinement was slight in the on-axis and considerable in the off-axis heating cases. The improved confinement in off-axis heating mode may be due to the extension of the high performance plasma volume caused by IBW. These studies demonstrate that IBWs are potentially a tool for active control of plasma profiles and transport. (author)

  5. Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release.

    Science.gov (United States)

    Martín-Sánchez, Fátima; Martínez-García, Juan José; Muñoz-García, María; Martínez-Villanueva, Miriam; Noguera-Velasco, José A; Andreu, David; Rivas, Luís; Pelegrín, Pablo

    2017-08-10

    The nucleotide-binding domain and leucine-rich repeat-containing receptor with a pyrin domain 3 (NLRP3) inflammasome is a sensor for different types of infections and alterations of homeostatic parameters, including abnormally high levels of the extracellular nucleotide ATP or crystallization of different metabolites. All NLRP3 activators trigger a similar intracellular pathway, where a decrease in intracellular K + concentration and permeabilization of plasma membrane are key steps. Cationic amphipathic antimicrobial peptides and peptide toxins permeabilize the plasma membrane. In fact, some of them have been described to activate the NLRP3 inflammasome. Among them, the bee venom antimicrobial toxin peptide melittin is known to elicit an inflammatory reaction via the NLRP3 inflammasome in response to bee venom. Our study found that melittin induces canonical NLRP3 inflammasome activation by plasma membrane permeabilization and a reduction in the intracellular K + concentration. Following melittin treatment, the apoptosis-associated speck-like protein, an adaptor protein with a caspase recruitment domain (ASC), was necessary to activate caspase-1 and induce IL-1β release. However, cell death induced by melittin prevented the formation of large ASC aggregates, amplification of caspase-1 activation, IL-18 release and execution of pyroptosis. Therefore, melittin-induced activation of the NLRP3 inflammasome results in an attenuated inflammasome response that does not result in caspase-1 dependent cell death.

  6. Physical fitness and activity, metabolic profile, adipokines and endothelial function in children.

    Science.gov (United States)

    Penha, Jociene Terra da; Gazolla, Fernanda Mussi; Carvalho, Cecília Noronha de Miranda; Madeira, Isabel Rey; Rodrigues-Junior, Flávio; Machado, Elisabeth de Amorim; Sicuro, Fernando Lencastre; Farinatti, Paulo; Bouskela, Eliete; Collett-Solberg, Paulo Ferrez

    2018-05-29

    The prevalence of obesity is increasing. The aim of this study was to investigate if there is endothelial dysfunction in children with normal or excess weight, and whether the metabolic profile, adipokines, and endothelial dysfunction would be more strongly associated with physical fitness or with physical activity levels. Cross-sectional study involving children aged 5-12 years. The evaluation included venous occlusion plethysmography, serum levels of adiponectin, leptin and insulin, lipid profile, physical activity score (PAQ-C questionnaire), and physical fitness evaluation (Yo-Yo test). A total of 62 children participated in this study. Based on the body mass index, 27 were eutrophic, 10 overweight and 25 obese. Triglycerides, LDL cholesterol, HOMA-IR, and leptin were higher in the obese and excess-weight groups compared to the eutrophic group (pPAQ-C. The Yo-Yo test was significantly associated with HDL cholesterol (rho=-0.41; p=0.01), and this association remained after adjusting for body mass index z-score (rho=0.28; p=0.03). This study showed that endothelial dysfunction is already present in obese children, suggesting a predisposition to atherosclerotic disease. Moreover, HDL cholesterol levels were correlated with physical fitness, regardless of body mass index. Copyright © 2018. Published by Elsevier Editora Ltda.

  7. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  8. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  9. Profile-IQ: Web-based data query system for local health department infrastructure and activities.

    Science.gov (United States)

    Shah, Gulzar H; Leep, Carolyn J; Alexander, Dayna

    2014-01-01

    To demonstrate the use of National Association of County & City Health Officials' Profile-IQ, a Web-based data query system, and how policy makers, researchers, the general public, and public health professionals can use the system to generate descriptive statistics on local health departments. This article is a descriptive account of an important health informatics tool based on information from the project charter for Profile-IQ and the authors' experience and knowledge in design and use of this query system. Profile-IQ is a Web-based data query system that is based on open-source software: MySQL 5.5, Google Web Toolkit 2.2.0, Apache Commons Math library, Google Chart API, and Tomcat 6.0 Web server deployed on an Amazon EC2 server. It supports dynamic queries of National Profile of Local Health Departments data on local health department finances, workforce, and activities. Profile-IQ's customizable queries provide a variety of statistics not available in published reports and support the growing information needs of users who do not wish to work directly with data files for lack of staff skills or time, or to avoid a data use agreement. Profile-IQ also meets the growing demand of public health practitioners and policy makers for data to support quality improvement, community health assessment, and other processes associated with voluntary public health accreditation. It represents a step forward in the recent health informatics movement of data liberation and use of open source information technology solutions to promote public health.

  10. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  11. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  12. Patterns of screen-based sedentary behavior and physical activity and associations with overweight among Norwegian adolescents: a latent profile approach

    Directory of Open Access Journals (Sweden)

    Ole Melkevik

    2011-03-01

    Full Text Available Background: Physical activity and screen based sedentary behaviors are both related to energy balance and to risk for becoming overweight. The aim of this study is to find out if these behaviors cluster together in order to find out whether groups of adolescents have particularly unfortunate levels of both physical activity and screen-based sedentary behaviors. Methods: Data are from the Norwegian 2005/2006 sample of the international "Health Behaviour in School-aged Children (HBSC study; A WHO cross-National Survey". Data were collected through questionnaires from 13-, 15- and 16-year-olds. The final sample included 4848 adolescents. Gender-stratified latent profile analysis was used to identify the different profiles. Results: Six profiles were identified for both boys and girls. Less than 30% of adolescents were found to have behavioral patterns which were associated with higher risk for overweight relative to the most healthy behavioral profile. Physical activity and screen-based sedentary behaviors cluster together in different ways suggesting independence between the behaviors. Low levels of physical activity was the most important predictor for overweight among boys. Screen-based sedentary behaviors were more important predictors of overweight among girls. Conclusions: Physical activity and screen-based sedentary behaviors are independent behaviors and may cluster together in manners which lead to low energy expenditure and subsequent increased risk for overweight among adolescents.

  13. Code ACTIVE for calculation of the transmutation, induced activity and decay heat in neutron irradiation

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Harada, Yuhei; Asami, Naoto.

    1976-03-01

    The computer code ACTIVE has been prepared for calculation of the transmutation rate, induced activity and decay heat. Calculations are carried out with activation chain and spatial distribution of neutron energy spectrum. The spatial distribution of secondary gamma-ray source due to the unstable nuclides is also obtainable. Special attension is paid to the short life decays. (auth.)

  14. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

  15. Estradiol-induced antinociceptive responses on formalin-induced nociception are independent of COX and HPA activation.

    Science.gov (United States)

    Hunter, Deirtra A; Barr, Gordon A; Amador, Nicole; Shivers, Kai-Yvonne; Kemen, Lynne; Kreiter, Christopher M; Jenab, Shirzad; Inturrisi, Charles E; Quinones-Jenab, Vanya

    2011-07-01

    Estrogen modulates pain perception but how it does so is not fully understood. The aim of this study was to determine if estradiol reduces nociceptive responses in part via hypothalamic-pituitary-adrenal (HPA) axis regulation of cyclooxygenase (COX)-1/COX-2 activity. The first study examined the effects of estradiol (20%) or vehicle with concurrent injection nonsteroidal antiinflammatory drugs (NSAIDs) on formalin-induced nociceptive responding (flinching) in ovariectomized (OVX) rats. The drugs were ibuprofen (COX-1 and COX-2 inhibitor), SC560 (COX-1 inhibitor), or NS398 (COX-2 inhibitor). In a second study, estradiol's effects on formalin-induced nociception were tested in adrenalectomized (ADX), OVX, and ADX+OVX rats. Serum levels of prostaglandins (PG) PGE(2) and corticosterone were measured. Estradiol significantly decreased nociceptive responses in OVX rats with effects during both the first and the second phase of the formalin test. The nonsteroidal antiinflammatory drugs (NSAIDs) did not alter nociception at the doses used here. Adrenalectomy neither altered flinching responses in female rats nor reversed estradiol-induced antinociceptive responses. Estradiol alone had no effect on corticosterone (CORT) or prostaglandin levels after the formalin test, dissociating the effects of estradiol on behavior and these serum markers. Ibuprofen and NS398 significantly reduced PGE2 levels. CORT was not decreased by OVX surgery or by estradiol below that of ADX. Only IBU significantly increased corticosterone levels. Taken together, our results suggest that estradiol-induced antinociception in female rats is independent of COX activity and HPA axis activation. Copyright © 2010 Wiley-Liss, Inc.

  16. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    International Nuclear Information System (INIS)

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-01-01

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  17. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  18. Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes

    OpenAIRE

    Esteves Mabel B.; Marques-Santos Luis F.; Affonso-Mitidieri Ottília R.; Rumjanek Vivian M.

    2005-01-01

    Lymphocytes activated by mitogenic lectins display changes in transmembrane potential, an elevation in the cytoplasmic Ca2+ concentrations, proliferation and/or activation induced cell death. Low concentrations of ouabain (an inhibitor of Na+,K+-ATPase) suppress mitogen-induced proliferation and increases cell death. To understand the mechanisms involved, a number of parameters were analyzed using fluorescent probes and flow cytometry. The addition of 100nM ouabain to cultures of peripheral b...

  19. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis.

    Science.gov (United States)

    Rodríguez, Ana M; Delpino, M Victoria; Miraglia, M Cruz; Costa Franco, Miriam M; Barrionuevo, Paula; Dennis, Vida A; Oliveira, Sergio C; Giambartolomei, Guillermo H

    2017-07-01

    Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis. © 2017 Wiley Periodicals, Inc.

  20. Activated rat hepatic stellate cells influence Th1/Th2 profile in vitro.

    Science.gov (United States)

    Xing, Zhi-Zhi; Huang, Liu-Ye; Wu, Cheng-Rong; You, Hong; Ma, Hong; Jia, Ji-Dong

    2015-06-21

    To investigate the effects of activated rat hepatic stellate cells (HSCs) on rat Th1/Th2 profile in vitro. Growth and survival of activated HSCs and CD4(+) T lymphocytes cultured alone or together was assessed after 24 or 48 h. CD4(+) T lymphocytes were then cultured with or without activated HSCs for 24 or 48 h and the proportion of Th1 [interferon (IFN)-γ(+)] and Th2 [interleukin (IL)-4(+)] cells was assessed by flow cytometry. Th1 and Th2 cell apoptosis was assessed after 24 h of co-culture using a caspase-3 staining procedure. Differentiation rates of Th1 and Th2 cells from CD4(+) T lymphocytes that were positive for CD25 but did not express IFN-γ or IL-4 were also assessed after 48 h of co-culture with activated HSCs. Galectin-9 expression in HSCs was determined by immunofluorescence and Western blotting. ELISA was performed to assess galectin-9 secretion from activated HSCs. Co-culture of CD4(+) T lymphocytes with activated rat HSCs for 48 h significantly reduced the proportion of Th1 cells compared to culture-alone conditions (-1.73% ± 0.71%; P Th1/Th2 ratio was significantly decreased (-0.44 ± 0.13; P Th1 cells was decreased (-65.71 ± 9.67; P Th1 (12.27% ± 0.99%; P Th1 cell apoptosis rate was significantly higher than in Th2 cells (P Th1 and Th2 cells; however, the increase in the proportion of Th2 cells was significantly higher than that of Th1 cells (1.85% ± 0.48%; P Th1/Th2 profile, inhibiting the Th1 response and enhancing the Th2 response, and this may be a novel pathway for liver fibrogenesis.

  1. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    Science.gov (United States)

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  2. Verticillium dahliae-Arabidopsis Interaction Causes Changes in Gene Expression Profiles and Jasmonate Levels on Different Time Scales

    Directory of Open Access Journals (Sweden)

    Sandra S. Scholz

    2018-02-01

    Full Text Available Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h induces many changes in the gene expression profiles of both partners, even before defense-related phytohormone levels are induced in the plant. Both partners reprogram sugar and amino acid metabolism, activate genes for signal perception and transduction, and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis expression profiles suggests a redirection from growth to defense. After 3 weeks, severe disease symptoms can be detected for wild-type plants while mutants impaired in jasmonate synthesis and perception perform much better. Thus, plant jasmonates have an important influence on the interaction, which is already visible at the mRNA level before hormone changes occur. The plant and fungal genes that rapidly respond to the presence of the partner might be crucial for early recognition steps and the future development of the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt diseases.

  3. Sequential activation of proteases in radiation induced apoptosis

    International Nuclear Information System (INIS)

    Watters, D.; Waterhouse, N.

    1997-01-01

    Full text: Significant advances have been made in recent years in unraveling the molecular mechanisms of apoptosis particularly in relation to Fas- and TNF-mediated cell death, however there are considerable gaps in our knowledge of the processes involved in apoptosis induced by ionizing radiation. We have used the degradation of specific proteolytic targets in a pair of isogenic Burkitt's Iymphoma cells lines (BL30A, sensitive and BL30K resistant) to study the sequence of events in the execution of radiation-induced apoptosis. Fodrin can be cleaved to fragments of 150 kDa and 120 kDa. In the case of Fas-mediated apoptosis both cleavages are inhibited by the caspase inhibitor zVAD-fmk at 10 μM, a concentration which inhibits all the hallmarks of apoptosis. However in radiation-induced apoptosis, inhibition of the clevage of fodrin to the 150 kDa fragment requires 100 μM zVAD-fink while apoptosis itself is inhibited at 10 μM. This suggests that different enzymes are responsible for the generation of the 150 kDa fragment in the two models of apoptosis. Fodrin has been reported to be cleaved by μ-calpain to a 150 kDa fragment however, the involvement of μ-calpain in apoptosis has not yet been established. In murine fodrin there is a caspase cleavage site within 1 kDa of the calpain cleavage site. In vitro studies using purified enzymes showed that only caspase-3 and μ-calpain could cleave fodrin in untreated cell extracts to the same sized fragments as seen during apoptosis in vivo. We provide evidence for the early activation of μ-calpain after ionizing radiation in the sensitive BL30A cell line, and show that the time course of μ-calpain activation parallels that of the appearance of the 150 kDa fragment. Caspase-3 is activated much later and is likely to be responsible for the generation of the 120 kDa fragment. μ-Calpain was not activated in the resistant cell line. Based on these results we propose a model for the proteolytic cascade in radiation-induced

  4. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    Enzymes involved in redox control are important during seed germination and seedling growth. Ascorbate-glutathione cycle enzymes in barley embryo extracts were monitored both by 2D-gel electrophoresis and activity measurements from 4 to 144 h post imbibition (PI). Strikingly different activity...... profiles were observed. No ascorbate peroxidase (APX) activity was present in mature seeds but activity was detected after 24 h PI and increased 14-fold up to 144 h PI. In contrast, dehydroascorbate reductase (DHAR) activity was present at 4 h PI and first decreased by 9-fold until 72 h PI followed by a 5......-fold increase at 144 h PI. Glutathione reductase and monodehydroascorbate reductase activities were also detected at 4 h PI, and showed modest increases of 1.8- and 2.7-fold, respectively, by 144 h PI. The combination of functional analysis with the proteomics approach enabled correlation...

  5. Lipid profile lowering effect of Soypro fermented with lactic acid bacteria isolated from Kimchi in high-fat diet-induced obese rats.

    Science.gov (United States)

    Kim, Na-Hyung; Moon, Phil-Dong; Kim, Su-Jin; Choi, In-Young; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2008-01-01

    Lactic acid bacteria are known to exert various physiologic functions in humans. In the current study, we investigated the effects of Soypro, a new soymilk fermented with lactic acid bacteria, like Leuconostoc kimchii, Leuconostoc citreum, and Lactobacillus plantarum, isolated from Kimchi, on adipocyte differentiation in preadipocyte 3T3-L1 cell lines and weight gain or the plasma lipid profile in Sprague-Dawley rats. Adipocyte 3T3-L1 cells treated with Soypro (10 microg/ml) significantly reduced the contents of cellular triglyceride and inhibited cell differentiation by Oil red O staining. Treatment with Soypro (10 microg/ml) for an additional two days in adipocytes inhibited the expression of peroxisome proliferator-activated receptor-gamma2 and CCAAT/enhancer binding protein-alpha, transcription factors of adipocyte differentiation. Based on these in vitro studies, we examined the anti-obesity effect of Soypro in rats for six weeks. Soypro had no significant effect on high-fat diet-induced increases in body weight, food intake, or feed gain ratio. However, the administration of Soypro significantly reduced the concentration of the plasma low density lipoprotein cholesterol. Changes in the plasma levels of total cholesterol and glucose were inclined to decrease in Soypro administrated groups compared with saline treated group. Triglyceride and high density lipoprotein cholesterol values in Soypro fed groups were similar compared to those of saline fed groups. Although further research is needed, these findings suggest that Soypro decreased the levels of low density lipoprotein cholesterol in high-fat diet-induced obesity and might partially inhibit the adipocyte differentiation through the suppression of a transcription factors peroxisome proliferator-activated receptor-gamma2 and CCAAT/enhancer binding protein-alpha.

  6. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  7. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  8. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, B.; Vendelbo, M.H.; Nielsen, Thomas Svava

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  9. Substrate Stiffness Influences Doxorubicin-Induced p53 Activation via ROCK2 Expression

    Directory of Open Access Journals (Sweden)

    Takahiro Ebata

    2017-01-01

    Full Text Available The physical properties of the extracellular matrix (ECM, such as stiffness, are involved in the determination of the characteristics of cancer cells, including chemotherapy sensitivity. Resistance to chemotherapy is often linked to dysfunction of tumor suppressor p53; however, it remains elusive whether the ECM microenvironment interferes with p53 activation in cancer cells. Here, we show that, in MCF-7 breast cancer cells, extracellular stiffness influences p53 activation induced by the antitumor drug doxorubicin. Cell growth inhibition by doxorubicin was increased in response to ECM rigidity in a p53-dependent manner. The expression of Rho-associated coiled coil-containing protein kinase (ROCK 2, which induces the activation of myosin II, was significantly higher when cells were cultured on stiffer ECM substrates. Knockdown of ROCK2 expression or pharmacological inhibition of ROCK decreased doxorubicin-induced p53 activation. Our results suggest that a soft ECM causes downregulation of ROCK2 expression, which drives resistance to chemotherapy by repressing p53 activation.

  10. Cell-specific prediction and application of drug-induced gene expression profiles.

    Science.gov (United States)

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David; Dudley, Joel

    2018-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.

  11. Liver Gene Expression Profiles of Rats Treated with Clofibric Acid

    Science.gov (United States)

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-01-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor α, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci. PMID:14633594

  12. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging.

    Science.gov (United States)

    Zhang, J; Wang, J; Lee, Y-M; Lim, T-K; Lin, Q; Shen, H-M

    2017-01-01

    Autophagy is an intracellular degradation process activated by stress factors such as nutrient starvation to maintain cellular homeostasis. There is emerging evidence demonstrating that de novo protein synthesis is involved in the autophagic process. However, up-to-date characterizing of these de novo proteins is technically difficult. In this chapter, we describe a novel method to identify newly synthesized proteins during starvation-mediated autophagy by bioorthogonal noncanonical amino acid tagging (BONCAT), in conjunction with isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics. l-azidohomoalanine (AHA) is an analog of methionine, and it can be readily incorporated into the newly synthesized proteins. The AHA-containing proteins can be enriched with avidin beads after a "click" reaction between alkyne-bearing biotin and the azide moiety of AHA. The enriched proteins are then subjected to iTRAQ™ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By using this technique, we have successfully profiled more than 700 proteins that are synthesized during starvation-induced autophagy. We believe that this approach is effective in identification of newly synthesized proteins in the process of autophagy and provides useful insights to the molecular mechanisms and biological functions of autophagy. © 2017 Elsevier Inc. All rights reserved.

  13. Kainate-induced network activity in the anterior cingulate cortex.

    Science.gov (United States)

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Motivational Profiles for Physical Activity Practice in Adults with Type 2 Diabetes: A Self-Determination Theory Perspective.

    Science.gov (United States)

    Gourlan, Mathieu; Trouilloud, David; Boiché, Julie

    2016-01-01

    Drawing on Self-Determination Theory, this study explored the motivational profiles toward Physical Activity (PA) among adults with type 2 diabetes and the relationships between motivational profile, perceived competence and PA. Participants were 350 men and women (Mean age 62.77 years) who were interviewed on their motivations toward PA, perceived level of competence to practice, and PA practice. Cluster analyses reveal the existence of three distinct profiles: "High Combined" (ie, high scores on motivations ranging from intrinsic to external regulation, moderate level on amotivation), "Self-Determined" (ie, high scores on intrinsic, integrated, and identified regulations; low scores on other regulations), and "Moderate" (ie, moderate scores on all regulations). Participants with "High Combined" and "Self-Determined" profiles reported higher perceived competence and longer leisure-time PA practice in comparison to those with a "Moderate" profile. This study highlights the necessity of adopting a person-centered approach to better understand motivation toward PA among type 2 diabetics.

  15. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  16. Oxidative profiles of LDL and HDL isolated from women with preeclampsia.

    Science.gov (United States)

    León-Reyes, G; Maida-Claros, R F; Urrutia-Medina, A X; Jorge-Galarza, E; Guzmán-Grenfell, A M; Fuentes-García, S; Medina-Navarro, R; Moreno-Eutimio, M A; Muñoz-Sánchez, J L; Hicks, J J; Torres-Ramos, Y D

    2017-05-16

    Oxidative stress causes biochemical changes in lipids and proteins; these changes can induce damage to the vascular endothelium and create maternal complications that are characteristic of preeclampsia. In this study, we evaluated the oxidative profile of lipoproteins isolated from women with preeclampsia. Thirty women diagnosed with preeclampsia and thirty women without preeclampsia were included in the study. Lipid-damage biomarkers, including conjugated dienes, lipohydroperoxides and malondialdehyde, were measured. The reduction of nitroblue tetrazolium, the formation of dityrosines, and the carbonylation of proteins were assessed as indicators of protein damage. The protective activity of HDL-c was evaluated by the paraoxonase-I activity present on the HDL-c particles. Serum lipid profiles were also quantified in both groups. Data were analysed using Student's t test and the Pearson correlation coefficient. Our results demonstrated in PE women evident oxidative changes in the lipids and proteins in HDL-c and LDL-c particles and the activity of the antioxidant enzyme PON-I decreased 59.9%. HDL-c exhibited self-defence, as demonstrated by the negative correlation between paraoxonase-I activity and the formation of lipohydroperoxides in HDL-c (r = -0.3755, p preeclampsia show oxidative damage to lipids and proteins. We propose an oxidative profile based on the oxidation levels indicated by each of the markers used. We also found that paraoxonase-I is inactivated in the presence of lipohydroperoxides. Antioxidant support might be helpful to reduce oxidative stress in patients with preeclampsia. Further investigations are necessary to define the association between antioxidant activities and preeclampsia.

  17. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    Science.gov (United States)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  18. Nitrate induces a type 1 diabetic profile in alligator hatchlings.

    Science.gov (United States)

    Edwards, Thea M; Hamlin, Heather J; Freymiller, Haley; Green, Stephen; Thurman, Jenna; Guillette, Louis J

    2018-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that affects 1 in 300 children by age 18. T1D is caused by inflammation-induced loss of insulin-producing pancreatic beta cells, leading to high blood glucose and a host of downstream complications. Although multiple genes are associated with T1D risk, only 5% of genetically susceptible individuals actually develop clinical disease. Moreover, a growing number of T1D cases occur in geographic clusters and among children with low risk genotypes. These observations suggest that environmental factors contribute to T1D etiology. One potential factor, supported primarily by epidemiological studies, is the presence of nitrate and nitrite in drinking water. To test this hypothesis, female hatchling alligators were exposed to environmentally relevant concentrations of nitrate in their tank water (reference, 10mg/L, or 100mg/L NO 3 -N) from hatch through 5 weeks or 5 months of age. At each time point, endpoints related to T1D were investigated: plasma levels of glucose, triglycerides, testosterone, estradiol, and thyroxine; pancreas, fat body, and thyroid weights; weight gain or loss; presence of immune cells in the pancreas; and pancreatic beta cell number, assessed by antibody staining of nkx6.1 protein. Internal dosing of nitrate was confirmed by measuring plasma and urine nitrate levels and whole blood methemoglobin. Cluster analysis indicated that high nitrate exposure (most animals exposed to 100mg/L NO3-N and one alligator exposed to 10mg/L NO3-N) induced a profile of endpoints consistent with early T1D that could be detected after 5 weeks and was more strongly present after 5 months. Our study supports epidemiological data correlating elevated nitrate with T1D onset in humans, and highlights nitrate as a possible environmental contributor to the etiology of T1D, possibly through its role as a nitric oxide precursor. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  20. JET steady state ITB operation with active control of the pressure profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisanti, F.; Litaudon, X.; Mailloux, J. [and others

    2002-07-01

    Stationary operations have been achieved at JET in ITBs scenarios, with the discharge time limited only by plant constraints. Full current drive was obtained, all over the high performance phase, with the current density profile frozen by using Lower Hybrid current drive. For the first time a feed-back control on the total pressure and on the electron temperature profile was implemented by using respectively the Neutral Beams and the Ion Cyclotron waves. Although impurity accumulation could be a problem in steady state ITBs, these experiments bring some elements to answer to it. Tokamak operation in enhanced confinement regimes, characterized by edge and/or Internal Transport Barriers (respectively known as H-mode and ITB), is attractive as it represents an important step towards the approach of ignition conditions. Moreover, the necessity of steady state operation in a Tokamak reactor, has led to the concept of the Advanced Tokamak, in which the current density profile is no longer tied to the plasma conductivity and is non inductively driven. Since the bootstrap current is a consequence of the pressure gradient, one of the primary goal of the Advanced Tokamak studies is to maximize the bootstrap fraction, with a proper alignment, both in H mode and in ITB regimes. However, for several reasons, it is difficult to envisage an operational situation in which the bootstrap fraction is close to 100%: for instance, there are few chances of pressure or/and current profile control to optimize the MHD stability. So far, various experiments have been performed with improved confinement regimes lasting up to tens of the confinement time and up to some current relaxation times. In some experiments a large non inductive plasma current (< 75%) was obtained with about 50% from bootstrap and 25% from Neutral Beam Injection (NBI); however, no full current drive operation was achieved and, moreover, with the available heating systems, no active feedback control of the current

  1. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role.

    Science.gov (United States)

    Kovacs-Kasa, Anita; Kim, Kyung Mi; Cherian-Shaw, Mary; Black, Stephen M; Fulton, David J; Verin, Alexander D

    2018-08-01

    We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling. © 2017 Wiley Periodicals, Inc.

  2. Integrin Activation Contributes to Lower Cisplatin Sensitivity in MV3 Melanoma Cells by Inducing the Wnt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Maria B. R. Piva

    2017-09-01

    Full Text Available Background: integrins have been associated with the development of chemotherapy resistant tumour cells, mostly those of hematopoietic origin, by mediating the binding to the extracellular matrix. The relevance for solid tumour cells and the underlying mechanisms remain elusive. Methods: using MTT assays, we detected the loss in cisplatin sensitivity of human MV3 melanoma cells upon integrin activation. Underlying cellular pathways were evaluated by flow cytometry. A crosstalk between integrin activation and the canonical wnt signalling pathway was tested by measuring β-catenin activity. Results: MV3 cells display a higher resistance against cisplatin cytotoxicity when cellular integrins were activated by manganese or collagen. Proteome profiler array showed a deregulation of the integrin expression pattern by cisplatin. Integrin activation by manganese induces the phosphorylation of PI3K/AKT. The inhibition of PI3K using BEZ235 strongly increases cell sensitivity to cisplatin, blocking manganese and collagen effects. PI3K/AKT activates wnt signalling by blocking Gsk3-β, which was confirmed by β-catenin up-regulation and nuclear localization. Integrins did not affect E-cadherin expression levels, thus endothelial to mesenchymal transition (EMT can be excluded. Conclusion: This is the first report on an integrin/wnt signalling activation axis addressing the consequences for chemotherapy sensitiveness of melanoma cells, which thus offers novel therapeutic targets for approaches to interfere with chemoresistance.

  3. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2.

    Science.gov (United States)

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-04-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway.

  4. Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity

    Directory of Open Access Journals (Sweden)

    Marialice Pinto Coelho Silvestre

    2012-12-01

    Full Text Available The aim of this study was to prepare enzymatic hydrolysates from whey protein concentrate with a nutritionally adequate peptide profile and the ability to inhibit angiotensin-converting enzyme (ACE activity. The effects of the type of enzyme used (pancreatin or papain, the enzyme:substrate ratio (E:S ratio=0.5:100, 1:100, 2:100 and 3:100 and the use of ultrafiltration (UF were investigated. The fractionation of peptides was performed by size-exclusion-HPLC, and the quantification of the components of the chromatographic fractions was carried out by a rapid Corrected Fraction Area method. The ACE inhibitory activity (ACE-IA was determined by Reverse Phase-HPLC. All parameters tested affected both the peptide profile and the ACE-IA. The best peptide profile was achieved for the hydrolysates obtained with papain, whereas pancreatin was more advantageous in terms of ACE-IA. The beneficial effect of using a lower E:S ratio on the peptide profile and ACE-IA was observed for both enzymes depending on the conditions used to prepare the hydrolysates. The beneficial effect of not using UF on the peptide profile was observed in some cases for pancreatin and papain. However, the absence of UF yielded greater ACE-IA only when using papain.O objetivo deste estudo foi preparar hidrolisados enzimáticos do concentrado proteico do soro de leite com perfil peptídico nutricionalmente adequado e com capacidade para inibir a atividade da enzima conversora da angiotensina (ECA. Os efeitos do tipo de enzima usado (pancreatina ou papaína, da relação enzima:substrato (E:S=0,5:100, 1:100, 2:100 e 3:100 e do uso da ultrafiltração (UF foram investigados. O fracionamento dos peptídeos foi feito por CLAE de exclusão molecular e a quantificação dos componentes das frações cromatográficas foi realizada pelo método da Área Corrigida da Fração. A atividade inibitória da ECA (AI-ECA foi determinada por CLAE de fase reversa. Todos os parâmetros testados afetaram

  5. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  6. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  7. Comparison of Polyphenol Profile and Antimutagenic and Antioxidant Activities in Two Species Used as Source of Solidaginis herba - Goldenrod.

    Science.gov (United States)

    Woźniak, Dorota; Ślusarczyk, Sylwester; Domaradzki, Krzysztof; Dryś, Andrzej; Matkowski, Adam

    2018-04-01

    European Pharmacopoeia accepts two equivalent species Solidago canadensis L. and S. gigantea Aiton as goldenrod (Solidaginis herba). We compared phytochemical profile of both species from invasive populations in Poland. Further, we compared in vitro antimutagenic and antioxidant activities of solvent extracts from aerial (AP) and underground parts (UP). In S. gigantea, flavonoid profile was dominated by quercetin glycosides, with quercitrin as the major compound. In S. canadensis, quercetin and kaempferol rutinosides were two major constituents. Caffeoylquinic acids (CQAs) were less diverse with 5-CQA as a main compound. In UP, over 20 putative diterpenoids were detected, mostly unidentified. Several CQAs were present in higher amounts than in AP. Antioxidant and antimutagenic activities were different between species and organs, with the strongest inhibition of lipid peroxidation by Et 2 O and AcOEt fractions from AP of both species (IC 50 13.33 - 16.89 μg/mL) and BuOH fraction from S. gigantea UP (IC 50  = 13.32 μg/mL). Chemical mutagenesis was completely inhibited by non-polar fractions, but oxidative mutagenesis was inhibited up to 35% only by S. canadensis. No clear relationship was found between chemical profiles and antimutagenic activity. In conclusion, both species have diverse activity and their phytochemical profiles should be considered in quality evaluation. UP of these weeds can also provide potential chemopreventive substances for further studies. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  8. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    International Nuclear Information System (INIS)

    Dolan, J.L.; Marcath, M.J.; Flaska, M.; Pozzi, S.A.; Chichester, D.L.; Tomanin, A.; Peerani, P.

    2014-01-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and 235 U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators

  9. Active-interrogation measurements of fast neutrons from induced fission in low-enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, J.L., E-mail: jldolan@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Marcath, M.J.; Flaska, M.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Tomanin, A.; Peerani, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Ispra (Italy)

    2014-02-21

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutrons to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials. -- Highlights: • We studied low-enriched uranium using active-interrogation experiments including a deuterium–tritium neutron generator and an americium–lithium isotopic neutron source. • Liquid scintillators measured induced-fission neutrons from the active-interrogation methods. • Fast-neutron (DT) and thermal-neutron (Am–Li) interrogation resulted in the measurement of trends in uranium mass and {sup 235}U enrichment respectively. • MCNPX-PoliMi, the Monte Carlo transport code, simulated the measured induced-fission neutron trends in the liquid scintillators.

  10. Antioxidant activity and profile fatty acids of jabuticaba seeds (Myrciaria cauliflora berg)

    International Nuclear Information System (INIS)

    Jorge, Neuza; Bruna Jorge Bertanha; Moreno Luzia, Debora Maria

    2011-01-01

    Numerous natural compounds found in fruits, grains and vegetables have antioxidant activity. This work aimed to characterize jabuticaba seeds (Myrciaria cauliflora berg) by proximate composition, antioxidant activity and fatty acids profile of their extracted oil. To obtain the extract, the dehydrated and triturated seeds were extracted with ethyl alcohol for 30 min, at a proportion of 1:3 of seeds: ethyl alcohol, under continuous agitation, at room temperature. Afterwards, the mixture was filtered and the supernatant dehydrated at 40 Celsius degrade aiming to determine, by direct weighing, the extracts dry matter yield. According to the results, the jabuticaba seeds are an important source of total carbohydrates, and also presented relevant antioxidant activity. In the jabuticaba seeds oil, a significant percentage of polyunsaturated fatty acids stood out, with linoleic and α-linolenic being the main component, essentials fatty acids.

  11. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  12. Expression profile of human cells in culture exposed to glycidamide, a reactive metabolite of the heat-induced food carcinogen acrylamide

    International Nuclear Information System (INIS)

    Clement, Flurina C.; Dip, Ramiro; Naegeli, Hanspeter

    2007-01-01

    Recent findings of acrylamide in many common foods have sparked renewed interest in assessing human health hazards and the long-term risk associated with exposure to vinyl compounds. Acrylamide is tumorigenic at high doses in rodents and has been classified as a probable human carcinogen. However, cancer risk projections in the population remain problematic because the molecular pathogenesis of acrylamide at the low level of dietary uptake is not understood. In particular, the question of whether specific transcriptional responses may amplify or mitigate the known genotoxicity of acrylamide has never been examined. Here, we used high-density DNA microarrays and PCR validations to assess genome-wide messenger profiles induced by glycidamide, the more reactive metabolite of acrylamide. The expression changes resulting from glycidamide treatment of human epithelial cells are characterized by the induction of detoxification enzymes, several members of the glutathione system and antioxidant factors. Low-dose experiments indicate that the up-regulation of epoxide hydrolase 1 represents the most sensitive transcriptional biomarker of glycidamide exposure. At higher concentrations, glycidamide induces typical markers of tumor progression such as steroid hormone activators, positive regulators of nuclear factor-κB, growth stimulators and apoptosis inhibitors. Concomitantly, growth suppressors and cell adhesion molecules are down-regulated. The main implication of these findings for risk assessment is that low concentrations of glycidamide elicit cytoprotective reactions whereas transcriptional signatures associated with tumor progression may be expected only at doses that exceed the range of ordinary dietary exposures

  13. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  14. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  15. Parent Prevention Communication Profiles and Adolescent Substance Use: A Latent Profile Analysis and Growth Curve Model

    Science.gov (United States)

    Choi, Hye Jeong; Miller-Day, Michelle; Shin, YoungJu; Hecht, Michael L.; Pettigrew, Jonathan; Krieger, Janice L.; Lee, JeongKyu; Graham, John W.

    2017-01-01

    This current study identifies distinct parent prevention communication profiles and examines whether youth with different parental communication profiles have varying substance use trajectories over time. Eleven schools in two rural school districts in the Midwestern United States were selected, and 784 students were surveyed at three time points from the beginning of 7th grade to the end of 8th grade. A series of latent profile analyses were performed to identify discrete profiles/subgroups of substance-specific prevention communication (SSPC). The results revealed a 4-profile model of SSPC: Active-Open, Passive-Open, Active-Silent, and Passive-Silent. A growth curve model revealed different rates of lifetime substance use depending on the youth’s SSPC profile. These findings have implications for parenting interventions and tailoring messages for parents to fit specific SSPC profiles. PMID:29056872

  16. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant.

    Science.gov (United States)

    Muhammad, Naveed; Saeed, Muhammad; Khan, Haroon

    2012-05-02

    Pyrexia, algesia and inflammation are associated with several pathological conditions. Synthetic drugs available for the treatment of these conditions cause multiple unwanted effects. Several studies are ongoing worldwide to find natural healing agents with better safety profile. The current study was thus aimed at evaluating antipyretic, analgesic and anti-inflammatory activities of the methanolic extract of whole plant of V. betonicifolia (VBME). VBME was employed to assess antipyretic activity in yeast induced hyperthermia. Analgesic profile was ascertained in acetic acid induced writhing, hot plat and tail immersion test. Nevertheless, the anti-inflammatory activity was tested in carrageenan induced paw edema and histamine induced inflammatory tests. BALB/c mice were used at test doses of 100, 200 and 300 mg/kg body weight intra peritoneally (i.p). In yeast induced pyrexia, VBME demonstrated dose dependently (78.23%) protection at 300 mg/kg, similar to standard drug, paracetamol (90%) at 150 mg/kg i.p. VBME showed a dose dependent analgesia in various pain models i.e. acetic acid, hot plat and tail immersion having 78.90%, 69.96% and 68.58% protection respectively at 300 mg/kg. However, the analgesic action of VBME was completely antagonized by the injection of naloxone like opiate antagonists. Similarly carrageenan and histamine induces inflammation was significantly antagonized by VBME, 66.30% and 60.80% respectively at 300 mg/kg. It is concluded that VBME has marked antipyretic, analgesic and anti-inflammatory activities in various animal models and this strongly supports the ethnopharmacological uses of Viola betonicifolia as antipyretic, analgesic and anti-inflammatory plant.

  17. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Effects of induced subacute ruminal acidosis on milk fat content and milk fatty acid profile.

    Science.gov (United States)

    Enjalbert, F; Videau, Y; Nicot, M C; Troegeler-Meynadier, A

    2008-06-01

    Two lactating dairy cows fitted with a rumen cannula received successively diets containing 0%, 20%, 34% and again 0% of wheat on a dry matter basis. After 5, 10 and 11 days, ruminal pH was measured between 8:00 and 16:00 hours, and milk was analysed for fat content and fatty acid profile. Diets with 20% and 34% wheat induced a marginal and a severe subacute ruminal acidosis respectively. After 11 days, diets with wheat strongly reduced the milk yield and milk fat content, increased the proportions of C8:0 to C13:0 even- or odd-chain fatty acids, C18:2 n-6 and C18:3 n-3 fatty acids but decreased the proportions of C18:0 and cis-9 C18:1 fatty acids. Wheat also increased the proportions of trans-5 to trans-10 C18:1, the latter exhibiting a 10-fold increase with 34% of wheat compared with value during the initial 0% wheat period. There was also an increase of trans-10, cis-12 C18:2 fatty acid and a decrease of trans-11 to trans-16 C18:1 fatty acids. The evolution during adaptation or after return to a 0% wheat diet was rapid for pH but much slower for the fatty acid profile. The mean ruminal pH was closely related to milk fat content, the proportion of odd-chain fatty acids (linear relationship) and the ratio of trans-10 C18:1/trans-11 C18:1 (nonlinear relationship). Such changes in fatty acid profile suggested a possible use for non-invasive diagnosis of subacute ruminal acidosis.

  19. Creatine kinase activity in dogs with experimentally induced acute inflammation

    Directory of Open Access Journals (Sweden)

    Dimitrinka Zapryanova

    2013-01-01

    Full Text Available The main purpose of this study was to investigate the effect of acute inflammation on total creatine kinase (CK activity in dogs. In these animals, CK is an enzyme found predominantly in skeletal muscle and significantly elevated serum activity is largely associated with muscle damage. Plasma increases in dogs are associated with cell membrane leakage and will therefore be seen in any condition associated with muscular inflammation. The study was induced in 15 mongrel male dogs (n=9 in experimental group and n=6 in control group at the age of two years and body weight 12-15 kg. The inflammation was reproduced by inoculation of 2 ml turpentine oil subcutaneously in lumbar region. The plasma activity of creatine kinase was evaluated at 0, 6, 24, 48, 72 hours after inoculation and on days 7, 14 and 21 by a kit from Hospitex Diagnostics. In the experimental group, the plasma concentrations of the CK-activity were increased at the 48th hour (97.48±6.92 U/L and remained significantly higher (p<0.05 at the 72 hour (97.43±2.93 U/L compared to the control group (77.08±5.27 U/L. The results of this study suggest that the evaluation of creatine kinase in dogs with experimentally induced acute inflammation has a limited diagnostic value. It was observed that the creatine kinase activity is slightly affected by the experimentally induced acute inflammation in dogs.

  20. Validation of the human activity profile questionnaire as a measure of physical activity levels in older community-dwelling women.

    Science.gov (United States)

    Bastone, Alessandra de Carvalho; Moreira, Bruno de Souza; Vieira, Renata Alvarenga; Kirkwood, Renata Noce; Dias, João Marcos Domingues; Dias, Rosângela Corrêa

    2014-07-01

    The purpose of this study was to assess the validity of the Human Activity Profile (HAP) by comparing scores with accelerometer data and by objectively testing its cutoff points. This study included 120 older women (age 60-90 years). Average daily time spent in sedentary, moderate, and hard activity; counts; number of steps; and energy expenditure were measured using an accelerometer. Spearman rank order correlations were used to evaluate the correlation between the HAP scores and accelerometer variables. Significant relationships were detected (rho = .47-.75, p < .001), indicating that the HAP estimates physical activity at a group level well; however, scatterplots showed individual errors. Receiver operating characteristic curves were constructed to determine HAP cutoff points on the basis of physical activity level recommendations, and the cutoff points found were similar to the original HAP cutoff points. The HAP is a useful indicator of physical activity levels in older women.

  1. Effect of seafood mediated PCB exposure on desaturase activity and PUFA profile in Faroese septuagenarians

    DEFF Research Database (Denmark)

    Tøttenborg, Sandra Søgaard; Choi, Anna L; Bjerve, Kristian S

    2015-01-01

    and desaturase activity. In multiple regression models, PCB exposure was inversely related to the estimated Δ6 desaturase activity resulting in accumulation of precursor fatty acids and decrease in the corresponding product PUFAs. A positive association between PCB and Δ5 desaturation was also found. A relative...... increase in EA was also observed, though only in the third tertile of PCB exposure. Non-linear relationships between the exposure and the desaturase activity were not found. Consuming fish and seafood may not be translated into beneficial fatty acid profiles if the diet simultaneously causes exposure...

  2. Profiles of Gene Expression Induced by Ionizing Radiation in Different Human Cell Types. Doctoral thesis prepared at SCK-CEN and defended in 2005

    International Nuclear Information System (INIS)

    Mori, M.

    2006-01-01

    Ionizing radiation disrupts chemical bonds in biomolecules, such as proteins and DNA, which result in important cellular damage. Exposure to relatively high doses of ionizing radiation such as those delivered to the tumor in a radiotherapy protocol is generally lethal for the cell. However, non-lethal dose of ionizing radiation can be delivered during radiotherapy to the healthy tissue surrounding the tumor. Although the effects of ionizing radiation at the cellular level are quite well established (cell cycle arrest, senescence, apoptosis, mitotic catastrophe), questions remain concerning the molecular pathways regulating these cellular responses, including those differentiating the responses between tumor and normal cells. In normal cells, the p53 protein plays a central role. However, the efficacy of radiation treatments on tumor cells is often reduced because of the frequent inactivation of the p53 protein in those cells. Our study used the microarray technology to investigate the molecular pathways induced by irradiation in transformed and nontransformed human cells. Profiles of gene expression obtained with cDNA microarrays were regarded as steps to characterize the general response to ionizing radiation and, possibly also, differentiating the response between transformed and nontransformed cells. Possible implications of such research include the development of radiosensitizing (to maximize the effect of radiotherapeutic irradiation) and of radioprotecting strategies. Transcriptional profiles were investigated in transformed (Jurkat, HL60) and non-transformed (freshly isolated lymphocyte subpopulations) cells of hematopoietic origin. Also, because HeLa carcinoma-derived cells expressing human papilloma virus (HPV) 18 derived E2 protein represent a reliable model to study the p53 pathway, which is normally activated in response to radiation, molecular profiles were obtained to characterize this pathway in these cells

  3. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  4. Mediator profiles in tears during the conjunctival response induced by allergic reaction in the nasal mucosa.

    Science.gov (United States)

    Pelikan, Zdenek

    2013-01-01

    The allergic reaction occurring primarily in the nasal mucosa can induce a secondary conjunctival response of an immediate (SICR), late (SLCR), or delayed (SDYCR) type in some patients with allergic conjunctivitis (AC). To investigate the concentration changes of histamine, tryptase, eosinophil cationic protein (ECP), eosinophil-derived neurotoxin (EDN), leukotrienes (LTB 4, LTC4, LTE4), myeloperoxidase (MPO), interferon-γ (IFN-γ), and interleukins (IL-2, IL-4, IL-5) in tears during the SICR, SLCR, and SDYCR. In 32 patients with AC, 11 SICR (ptears. The SICRs were associated with significant concentration changes in tears (ptears (ptears during the 32 PBS controls (p>0.1) or in the ten control patients (p>0.1). These results provide evidence for causal involvement of nasal allergy in some patients with AC, inducing secondary conjunctival response of immediate (SICR), late SLCR, or delayed SDYCR type, associated with different mediator, cytokine, and cellular profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also emphasize the diagnostic value of nasal allergen challenge combined with monitoring of the conjunctival response in some patients with AC.

  5. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    Science.gov (United States)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  6. The activity profile of elite male amateur boxing.

    Science.gov (United States)

    Davis, Philip; Benson, Peter R; Pitty, James D; Connorton, Andrew J; Waldock, Robert

    2015-01-01

    An activity profile of competitive 3 × 3-min elite-level amateur boxing was created from video footage of 29 Olympic final and semifinal bouts in 39 male boxers (mean ± SD) age 25.1 ± 3.6 y, height 178.3 ± 10.4 cm, and body mass 69.7 ± 16.5 kg. Boxing at this level requires the ability to maintain an activity rate of ~1.4 actions/s, consisting of ~20 punches, ~2.5 defensive movements, and ~47 vertical hip movements, all per minute, over 3 subsequent rounds lasting ~200 s each. Winners had higher total punches landed (P = .041) and a lower ratio of punches thrown to landed (P = .027) than losers in round 3. The hook rear-hand landed was also higher for winners than losers in round 2 (P = .038) and round 3 (P = .016), and defensive movements were used less by winners (P = .036). However, the results suggest that technical discrimination between winners and losers is difficult; bout outcome may be more dependent on which punch is "lucky" enough to be scored by the judges or who appears to be dominant on the day. This study gives both boxers and coaches a good idea of where subelite boxers need to aim if they want to become among the best amateur boxers in the world.

  7. Amateur boxing: activity profile of winners and losers.

    Science.gov (United States)

    Davis, Philip; Wittekind, Anna; Beneke, Ralph

    2013-01-01

    An activity profile of competitive 3 × 2-min novice-level amateur boxing was created based on video footage and postbout blood [La] in 32 male boxers (mean ± SD) age 19.3 ± 1.4 y, body mass 62.6 ± 4.1 kg. Winners landed 18 ± 11 more punches than losers by applying more lead-hand punches in round 1 (34.2 ± 10.9 vs 26.5 ± 9.4), total punches to the head (121.3 ± 10.2 vs 96.0 ± 9.8), and block and counterpunch combinations (2.8 ± 1.1 vs. 0.1 ± 0.2) over all 3 rounds and punching combinations (44.3 ± 6.4 vs 28.8 ± 6.7) in rounds 1 and 3 (all P < .05). In 16 boxers, peak postbout blood [La] was 11.8 ± 1.6 mmol/L irrespective of winning or losing. The results suggest that landing punches requires the ability to maintain a high frequency of attacking movements, in particular the lead-hand straight punch to the head together with punching combinations. Defensive movements must initiate a counterattack. Postbout blood [La] suggests that boxers must be able to tolerate a lactate production rate of 1.8 mmol · L-1 · min-1 and maintain skillful techniques at a sufficient activity rate.

  8. Modern g,d,p,n-induced activation-transmutation systems

    International Nuclear Information System (INIS)

    Sublet, J.Ch.

    2010-01-01

    Document available in abstract form only. Full text of publication follows: The European Activation System (EASY) includes as the source of nuclear data the European Activation File (EAF) and as its engine the FISPACT activation-transmutation code. The latest version of the EAF, EAF-2010, contains cross-section data for gamma-, deuteron- and proton-induced reactions in addition to the traditional neutron-induced data. The main reason for the addition of these data to EAF is to enable activation-transmutation calculations to be performed for even more nuclear facilities, including 'accelerator'-driven devices with incident upper energy limit of 60 or 200 MeV. EAF-2010 has benefited from the generation and maintenance of comprehensive activation files in the past and the development of the processing code SAFEPAQ-II and model code TALYS. TALYS is the source for all gamma-, proton- and deuteron-induced data and a fair share of the neutron-induced data. Cross-section validation exercises against both experimental data and systematic, which were started in 1995, enable a comprehensive assessment of the data. Although EAF-2010 is certainly the most-validated activation neutron cross-section library in the world, currently less than 3% of all the reactions can be compared with experimental information, and even then only for a very limited, and not always application-relevant, energy range. As with EAF-2010, -2003, -2005 and -2007 results of integral experiments have been used to correct, adjust and validate data. This can be done using SAFEPAQ II by inputting the measured effective cross-sections. Validation using integral data has been performed by means of direct comparison with measurements of various materials under relevant particle spectra. A tool has recently been developed which is important now that the libraries contain so much TALYS-calculated data. Statistical analysis of cross-sections (SACS) is used to look for trends in the library data for a particular

  9. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  10. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Science.gov (United States)

    Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  11. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  12. A conceptual framework for a sports knee injury performance profile (SKIPP) and return to activity criteria (RTAC).

    Science.gov (United States)

    Logerstedt, David; Arundale, Amelia; Lynch, Andrew; Snyder-Mackler, Lynn

    2015-01-01

    Injuries to the knee, including intra-articular fractures, ligamentous ruptures, and meniscal and articular cartilage lesions, are commonplace within sports. Despite advancements in surgical techniques and enhanced rehabilitation, athletes returning to cutting, pivoting, and jumping sports after a knee injury are at greater risk of sustaining a second injury. The clinical utility of objective criteria presents a decision-making challenge to ensure athletes are fully rehabilitated and safe to return to sport. A system centered on specific indicators that can be used to develop a comprehensive profile to monitor rehabilitation progression and to establish return to activity criteria is recommended to clear athletes to begin a progressive and systematic approach to activities and sports. Integration of a sports knee injury performance profile with return to activity criteria can guide clinicians in facilitating an athlete's safe return to sport, prevention of subsequent injury, and life-long knee joint health.

  13. A conceptual framework for a sports knee injury performance profile (SKIPP and return to activity criteria (RTAC

    Directory of Open Access Journals (Sweden)

    David Logerstedt

    2015-10-01

    Full Text Available ABSTRACTInjuries to the knee, including intra-articular fractures, ligamentous ruptures, and meniscal and articular cartilage lesions, are commonplace within sports. Despite advancements in surgical techniques and enhanced rehabilitation, athletes returning to cutting, pivoting, and jumping sports after a knee injury are at greater risk of sustaining a second injury. The clinical utility of objective criteria presents a decision-making challenge to ensure athletes are fully rehabilitated and safe to return to sport. A system centered on specific indicators that can be used to develop a comprehensive profile to monitor rehabilitation progression and to establish return to activity criteria is recommended to clear athletes to begin a progressive and systematic approach to activities and sports. Integration of a sports knee injury performance profile with return to activity criteria can guide clinicians in facilitating an athlete's safe return to sport, prevention of subsequent injury, and life-long knee joint health.

  14. The profile of physical activity and coronary risk factors in Monica Jakarta survey

    Directory of Open Access Journals (Sweden)

    Dede Kusmana

    2001-03-01

    Full Text Available A population study was done to know the profile of daily physical activity including sports, and its influence on major coronary risk factors in three districts of Jakarta using questionnaire, physicaL and laboratory examination, and 12 leads ECC. The questionnaire gave the data about physical activity (work load and sport, and smoking habit. Work load was divided into light, moderate and heavy. Sport activity was divided into regular (≥ twice a week, 20 minutes or more, irregular (≤ once or occasional, and no sport activity. In addition, blood pressure  (hypertension was grouped according to WHO criteria, total cholesterol (regarded as hypercholesterolemia when > 200 mg%, and ECG were measured. ECG interpretation was done using Minnesota Code. Statistical analysis was done using SPSS. Out of 2400 people there were  2073(86.4%  respondents that consist of 1086 females and 987 males. The profile of physical activity as a whole showed 33.4% light, 50.7% moderate and 15.8% heavy activity. OnLy 22.5% of respondents had sport regularly, while 30.3% had sport irregularly, and 47.2% had no sport activity. The type of sport was walking (45.0%, callisthenic (22.0% jogging/running (15.6%, badminton (6.5%, volley ball/soccer (4.1%, tennis (3.8%, and golf (0.1%. There was a significant difference in the prevalence of hypertension between people with heavy (12.0%, moderate (44.8% and light work load (43.2% (P<0.003, in the prevalence of hypercholesterolemia (13.2%: 50.8%: 36% (P<0.0003, and smoking (19.7%; 44.1%: 36.2% (P<0.00001, respectively. The difference also occurred in the prevalence of abnormal ECG (Q/QS, ST and T  abnormalities between people having regular sport (19.0%, irregular (22.7%, and no sport activity (58.3% (P<0.05. The number of respondents having enough physical activity (including regular sport was relatively low. Therefore, promotion should be done as a preventive method to overcome cardiovascular risk factors. (Med J Indones

  15. CD36 participates in PrP(106-126-induced activation of microglia.

    Directory of Open Access Journals (Sweden)

    Mohammed Kouadir

    Full Text Available Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP fragment 106-126 (PrP(106-126. We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126 in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb. The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126. The results showed that PrP(106-126 treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α, increased iNOS expression and nitric oxide (NO production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126. Together, these results suggest that CD36 is involved in PrP(106-126-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126 and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides

  16. Silymarin ameliorates metabolic dysfunction associated with Diet-induced Obesity via activation of farnesyl X receptor

    Directory of Open Access Journals (Sweden)

    Ming Gu

    2016-09-01

    Full Text Available AbstractBACKGROUND AND PURPOSESilymarin, a standardized extract of the milk thistle seeds, has been widely used to treat chronic hepatitis, cirrhosis and other types of toxic liver damage. . Despite increasing studies on the action of silymarin and its major active constituent, silybin in their therapeutic properties against insulin resistance, diabetes and hyperlipidaemia in vitro and in vivo, the mechanism underlying silymarin action remains unclear. EXPERIMENTAL APPROACHC57BL/6 mice were fed high-fat diet (HFD for 3 months to induce obesity, insulin resistance, hyperlipidaemia and fatty liver. These mice were then continuously treated with HFD alone or mixed with silymarin at 40 mg/100 g for additional 6 weeks. Biochemical analysis was used to test the serum lipid and bile acid profiles. FXR and NF-κB transactivities were analysed in liver using a gene reporter assay based onquantitative RT-PCR.KEY RESULTSSilymarin treatment ameliorated insulin resistance, dyslipidaemia and inflammation, and reconstituted the bile acid pool in liver of diet-induced obesity. Associated with this, silybin and silymarin enhanced FXR transactivity. Consistently, in HepG2 cells, silybin inhibited NF-κB signalling, which was enhanced by FXR activation. CONCLUSIONS AND IMPLICATIONSOur results suggest that silybin is an effective component of silymarin for treating metabolic syndrome by stimulating FXR signalling. Key words: silymarin; silybin; metabolic syndrome; non-alcoholic fatty liver disease; farnesyl X receptorAbbreviationsALT, alanine aminotransferase; AST, aspartate transaminase; BA, bile acid; DIO, diet-induced obesity; CA, cholic acid; DMSO, dimethylsulfoxide; FXR, farnesyl X receptor; HDL-c, high density lipoprotein cholesterol; HF, high-fat; IPITT, intraperitoneal insulin tolerance test; LDL-c, low density lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NF-κB, nuclear factor kappa B; NR, nuclear receptor; MS, metabolic syndrome

  17. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    Science.gov (United States)

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  18. Opioid-Induced Glial Activation: Mechanisms of Activation and Implications for Opioid Analgesia, Dependence, and Reward

    Directory of Open Access Journals (Sweden)

    Mark R. Hutchinson

    2007-01-01

    Full Text Available This review will introduce the concept of toll-like receptor (TLR–mediated glial activation as central to all of the following: neuropathic pain, compromised acute opioid analgesia, and unwanted opioid side effects (tolerance, dependence, and reward. Attenuation of glial activation has previously been demonstrated both to alleviate exaggerated pain states induced by experimental pain models and to reduce the development of opioid tolerance. Here we demonstrate that selective acute antagonism of TLR4 results in reversal of neuropathic pain as well as potentiation of opioid analgesia. Attenuating central nervous system glial activation was also found to reduce the development of opioid dependence, and opioid reward at a behavioral (conditioned place preference and neurochemical (nucleus accumbens microdialysis of morphine-induced elevations in dopamine level of analysis. Moreover, a novel antagonism of TLR4 by (+- and (˗-isomer opioid antagonists has now been characterized, and both antiallodynic and morphine analgesia potentiating activity shown. Opioid agonists were found to also possess TLR4 agonistic activity, predictive of glial activation. Targeting glial activation is a novel and as yet clinically unexploited method for treatment of neuropathic pain. Moreover, these data indicate that attenuation of glial activation, by general or selective TLR antagonistic mechanisms, may also be a clinical method for separating the beneficial (analgesia and unwanted (tolerance, dependence, and reward actions of opioids, thereby improving the safety and efficacy of their use.

  19. Activity profile of 10-12-year-old Danish school girls participating in “FIFA 11 for Health” for Europe

    DEFF Research Database (Denmark)

    Ørntoft, Christina Øyangen; Madsen, Mads; Lind, Rune Rasmussen

    sessions were delivered during school time by trained teachers over 11-week-period, 2x45 min per week. Methods: A total of 34 girls were monitored. The activity profile was monitored using the ZXY tracking system (ChyronHego, Norway), during 4 of the 22 “FIFA 11 for Health” in Europe sessions for a total......Introduction: To evaluate activity profile of the girls in the health education programme, “FIFA 11 for Health” for Europe and to examine potential differences between girls involved in leisure-time sports club activities, i.e. football and other sports, and non-sport-club active girls. The 22...... of 34 girls of which 8 were football club active, 15 were involved in other leisure-time sports and 11 were non-sport-club active. Distance covered in various speed zones (Walking (0-4 km/h), jogging (4.1-8.0 km/h), running (8.1-12.0 km/h), high intensity running (12.1-16.0 km/h) and sprinting (>16 km...

  20. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    Science.gov (United States)

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  1. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    Science.gov (United States)

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  2. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression

    International Nuclear Information System (INIS)

    Khan, Zia A.; Barbin, Yousef P.; Farhangkhoee, Hana; Beier, Norbert; Scholz, Wolfgang; Chakrabarti, Subrata

    2005-01-01

    Preferential expression of oncofetal extra domain-B fibronectin (EDB + FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB + FN expression in endothelial cells (ECs) via transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB + FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-β1, and ET-1 increase the EDB + FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-β1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB + FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB + FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB + FN expression and provide novel avenues for therapeutic modalities

  3. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Karoly, Edward D.; Jones, Jan C.; Ward, William O.; Vallanat, Beena D.; Andrews, Debora L.; Schladweiler, Mette C.; Snow, Samantha J.; Bass, Virginia L.; Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D.; Kodavanti, Urmila P.

    2015-01-01

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O 3 ) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O 3 exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O 3 at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O 3 , 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O 3 increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O 3 increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O 3 . In conclusion, short-term O 3 exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia, hyperglycemia, and glucose intolerance

  4. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    Science.gov (United States)

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  5. Identification of novel senescence-associated genes in ionizing radiation-induced senescent carcinoma cells

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Bong Cho; Han, Na Kyung; Hong, Mi Na; Park, Su Min; Yoo, Hee Jung; Chu, In Sun; Lee, Sun Hee

    2009-01-01

    Cellular senescence is considered as a defense mechanism to prevent tumorigenesis. Ionizing radiation (IR) induces stress-induced premature senescence as well as apoptosis in various cancer cells. Senescent cells undergo functional and morphological changes including large and flattened cell shape, senescence-associated β-galactosidase (SA-βGal) activity, and altered gene expressions. Even with the recent findings of several gene expression profiles and supporting functional data, it is obscure that mechanism of IR-induced premature senescence in cancer cells. We performed microarray analysis to identify the common regulated genes in ionizing radiation-induced prematurely senescent human carcinoma cell lines

  6. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Science.gov (United States)

    Peng, Ruoqi; Sridhar, Sriram; Tyagi, Gaurav; Phillips, Jonathan E; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M; Kitson, Chris; Budd, David C; Fine, Jay S; Bauer, Carla M T; Stevenson, Christopher S

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  7. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Directory of Open Access Journals (Sweden)

    Ruoqi Peng

    Full Text Available The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF, has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  8. Anthropometric profile and habits of physical activity of a scho ol students Mapuches rural Temuco, Chile

    Directory of Open Access Journals (Sweden)

    Pablo Antonio Valdés-Badilla

    2015-04-01

    Full Text Available Introduction: The nutritional status of children can be a predictor of health in adulthood element, the Mapuche population has a non-Mapuche population that increased prevalence of obesity in Chile. The aim of this study was to determine the anthropometric profile and physical activity habits of Mapuche students of a particular charter school in the rural of Temuco city.Material and Methods: The design is not experimental, descriptive, transversal, with a quantitative approach. The sample included all students of the educational establishment Mapuches (n=23, in both sexes. He underwent anthropometric assessment ISAK and total time physical activity was estimated by the International Physical Activity Questionnaire, short version in Spanish (IPAQ-A. To correlate the variables a partial correlation was used.Results: The students average about 35.4% of fat mass, muscle mass 34.1%, 11.4% of residual mass, 12% of bone mass, 7% of residual mass and somatotype 4.9–5.1–1.8 that meso-endomorph classified as balanced. Regarding the total time physical activity, students reach 2225.9 minutes/week, your energy expenditure is 9592.1 (METs/min/week and stay seated equals 228.6 minutes per week, finally negative correlation was found between BMI and total time of physical activity.Conclusions: The students have a mostly standard anthropometric profile, but with a troubling obesity rate. His activity level is high, placing them as active subjects according to normative tables.

  9. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network.

    Science.gov (United States)

    Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam; Scumpia, Philip O; Lu, Jing; Pang, Yan Ling Joy; Russell, Brandon S; Lim, Kok Seong; Shell, Scarlet; Prestwich, Erin; Su, Dan; Elashoff, David; Hershberg, Robert M; Bloom, Barry R; Belisle, John T; Fortune, Sarah; Dedon, Peter C; Pellegrini, Matteo; Modlin, Robert L

    2018-05-01

    Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70. Copyright © 2018 by The American Association of Immunologists, Inc.

  10. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-01-01

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  11. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  12. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  13. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness.

    Science.gov (United States)

    Verikas, Antanas; Vaiciukynas, Evaldas; Gelzinis, Adas; Parker, James; Olsson, M Charlotte

    2016-04-23

    This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG) signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each). The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG dynamics and features

  14. Electromyographic Patterns during Golf Swing: Activation Sequence Profiling and Prediction of Shot Effectiveness

    Directory of Open Access Journals (Sweden)

    Antanas Verikas

    2016-04-01

    Full Text Available This study analyzes muscle activity, recorded in an eight-channel electromyographic (EMG signal stream, during the golf swing using a 7-iron club and exploits information extracted from EMG dynamics to predict the success of the resulting shot. Muscles of the arm and shoulder on both the left and right sides, namely flexor carpi radialis, extensor digitorum communis, rhomboideus and trapezius, are considered for 15 golf players (∼5 shots each. The method using Gaussian filtering is outlined for EMG onset time estimation in each channel and activation sequence profiling. Shots of each player revealed a persistent pattern of muscle activation. Profiles were plotted and insights with respect to player effectiveness were provided. Inspection of EMG dynamics revealed a pair of highest peaks in each channel as the hallmark of golf swing, and a custom application of peak detection for automatic extraction of swing segment was introduced. Various EMG features, encompassing 22 feature sets, were constructed. Feature sets were used individually and also in decision-level fusion for the prediction of shot effectiveness. The prediction of the target attribute, such as club head speed or ball carry distance, was investigated using random forest as the learner in detection and regression tasks. Detection evaluates the personal effectiveness of a shot with respect to the player-specific average, whereas regression estimates the value of target attribute, using EMG features as predictors. Fusion after decision optimization provided the best results: the equal error rate in detection was 24.3% for the speed and 31.7% for the distance; the mean absolute percentage error in regression was 3.2% for the speed and 6.4% for the distance. Proposed EMG feature sets were found to be useful, especially when used in combination. Rankings of feature sets indicated statistics for muscle activity in both the left and right body sides, correlation-based analysis of EMG

  15. Effect of Urtica Dioica Decoction on Serum Glucose and Lipid Profile in Stereptozotocin Induced Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Sahraki

    Full Text Available Background: Since Urtica dioica is a traditional treatment plant and is used for antihypertensive, antilipidemic and antidiabetic agents, this survey was carried out to evaluate the effect of Urtica dioica decoction on serum glucose and lipid profile in diabetic male rats induced by stereptozotocin (STZ. Materials and Methods: This experiment was performed on 30 Wistar-Albino male rats, weighing 200-250 g, which were divided in sham control (A, diabetic control (B and diabetic test groups (C randomly (N=10. Type I diabetes was induced by single intraperitoneal injection of STZ (65 mg/kg. Test group received 0.40-0.60 ml of Urtica dioica decoction for a month by gavages, control group (B received the same volume of distill water. Group (A did not receive any agent during the experiment period. Finally, animals were anesthetized, sacrificed and blood samples were collected from the cervical vein. Then, serum glucose and lipid profiles were measured by ordinary methods. Data were analyzed by SPSS-11, using ANOVA and post hoc Tukey tests. Results were expressed as mean±SD, and statistical difference was considered significant by p<0.05.Results: Results in the present study showed that fasting blood glucose (FBS, total cholesterol (TCho, triglyceride (TG, LDL, food and water intake were significantly decreased in group C compared with those of group B, but body weight gain was significantly increased compared with that of control group (B.Conclusion: These results indicated that Urtica dioica decoction caused decreased FBS and improved serum lipids in diabetic male rats. Some more studies have shown the same mechanism.

  16. Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles in proliferating and nonproliferating mammalian cells

    International Nuclear Information System (INIS)

    Korbelik, M.; Osmak, M.; Suhar, A.; Turk, V.; Skrk, J.

    1990-01-01

    Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles were examined in proliferating and nonproliferating Chinese hamster fibroblasts (V 79). The results show that there are significant alterations in cysteine and aspartic intracellular proteinases activity already in the early postirradiation period, which are different in proliferating and nonproliferating cells. Irradiation of the cells examined to low doses and up to 15 Gy induced an increase in cysteine proteinases activity in the early postexposure period, while at higher irradiation doses applied, the activity of these proteinases was decreased. These observations suggest that intracellular proteinases are actively participating in process involving recovery from radiation injury or cell killing. (orig.) [de

  17. Design and application of natural product derived probes for activity based protein profiling

    OpenAIRE

    Battenberg, Oliver Alexander

    2015-01-01

    The identification of new antibacterial protein targets by activity based protein profiling (ABPP) is an important approach to face the increasing emergence of resistant bacteria. The scope of this work focuses on three new strategies for the labeling of antibacterial protein-targets with natural product derived ABPP-probes: A.) Evaluation of the intrinsic photo-reactivity of α-pyrones and pyrimidones for use as photo-crosslinkers. B.) Synthesis of a benzophenone-tag that combines photo-cross...

  18. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Aleksandra; Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Czuba, Zenon P. [Dept. of Microbiology and Immunology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Horak, Stanisław [I-st Chair and Clin. Dept. of Gynecology, Obstetrics and Gynecological Oncology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Batorego 15, 41-902 Bytom (Poland); Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland)

    2015-05-01

    We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher in the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.

  19. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    Science.gov (United States)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  20. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  1. Antipyretic, analgesic and anti-inflammatory activity of Viola betonicifolia whole plant

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed

    2012-05-01

    Full Text Available Abstract Background Pyrexia, algesia and inflammation are associated with several pathological conditions. Synthetic drugs available for the treatment of these conditions cause multiple unwanted effects. Several studies are ongoing worldwide to find natural healing agents with better safety profile. The current study was thus aimed at evaluating antipyretic, analgesic and anti-inflammatory activities of the methanolic extract of whole plant of V. betonicifolia (VBME. Methods VBME was employed to assess antipyretic activity in yeast induced hyperthermia. Analgesic profile was ascertained in acetic acid induced writhing, hot plat and tail immersion test. Nevertheless, the anti-inflammatory activity was tested in carrageenan induced paw edema and histamine induced inflammatory tests. BALB/c mice were used at test doses of 100, 200 and 300mg/kg body weight intra peritoneally (i.p. Results In yeast induced pyrexia, VBME demonstrated dose dependently (78.23% protection at 300mg/kg, similar to standard drug, paracetamol (90% at 150mg/kg i.p. VBME showed a dose dependent analgesia in various pain models i.e. acetic acid, hot plat and tail immersion having 78.90%, 69.96% and 68.58% protection respectively at 300mg/kg. However, the analgesic action of VBME was completely antagonized by the injection of naloxone like opiate antagonists. Similarly carrageenan and histamine induces inflammation was significantly antagonized by VBME, 66.30% and 60.80% respectively at 300mg/kg. Conclusions It is concluded that VBME has marked antipyretic, analgesic and anti-inflammatory activities in various animal models and this strongly supports the ethnopharmacological uses of Viola betonicifolia as antipyretic, analgesic and anti-inflammatory plant.

  2. Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Aβ oligomerization.

    Directory of Open Access Journals (Sweden)

    Yiying Zhang

    Full Text Available Accumulation and deposition of β-amyloid protein (Aβ are the hallmark features of Alzheimer's disease. The inhalation anesthetic isoflurane has been shown to induce caspase activation and increase Aβ accumulation. In addition, recent studies suggest that isoflurane may directly promote the formation of cytotoxic soluble Aβ oligomers, which are thought to be the key pathological species in AD. In contrast, propofol, the most commonly used intravenous anesthetic, has been reported to have neuroprotective effects. We therefore set out to compare the effects of isoflurane and propofol alone and in combination on caspase-3 activation and Aβ oligomerization in vitro and in vivo. Naïve and stably-transfected H4 human neuroglioma cells that express human amyloid precursor protein, the precursor for Aβ; neonatal mice; and conditioned cell culture media containing secreted human Aβ40 or Aβ42 were treated with isoflurane and/or propofol. Here we show for the first time that propofol can attenuate isoflurane-induced caspase-3 activation in cultured cells and in the brain tissues of neonatal mice. Furthermore, propofol-mediated caspase inhibition occurred when there were elevated levels of Aβ. Finally, isoflurane alone induces Aβ42, but not Aβ40, oligomerization, and propofol can inhibit the isoflurane-mediated oligomerization of Aβ42. These data suggest that propofol may mitigate the caspase-3 activation by attenuating the isoflurane-induced Aβ42 oligomerization. Our findings provide novel insights into the possible mechanisms of isoflurane-induced neurotoxicity that may aid in the development of strategies to minimize potential adverse effects associated with the administration of anesthetics to patients.

  3. Clinical features and hormonal profiles of cloprostenol-induced early abortions in heifers monitored by ultrasonography

    Directory of Open Access Journals (Sweden)

    Beckers Jean-François

    2006-11-01

    Full Text Available Abstract Background The present study describes the clinical features and plasma profiles of bovine pregnancy-associated glycoprotein 1 (bPAG1, the main metabolite of prostaglandin F2α (PG metabolite and progesterone (P4 in heifers in which early abortions were induced. Methods Early abortions were induced in four heifers with cloprostenol and monitored by ultrasonography. Blood samples were collected and the plasma were analyzed for bPAG 1, P4 and PG metabolite. Results The foetal heartbeat rates varied from 170–186 beats per minute for all foetuses up to the date of cloprostenol treatment. Foetal death was confirmed within two days after cloprostenol treatment. Prior to cloprostenol injection, blood plasma concentrations of bPAG1, PG metabolite and P4 varied from 8.4 – 40.0 ng/mL, 158 – 275 pmol/L and 20.7 – 46.9 nmol/L, respectively. After the foetus expelled, the plasma level of bPAG1 began to decrease but the decrease was small and gradual. The estimated half-life of bPAG1 was 1.8 – 6.6 days. The plasma level of the PG metabolite started to have short lasting peaks (above 300 pmol/L within three hours after cloprostenol treatment. The plasma concentrations of P4 dropped sharply to less than 4 nmol/L after 24 hours of cloprostenol injection. Conclusion The current findings indicated that after early closprostenol-induced foetal death, the plasma concentration of bPAG1 decreased gradually and showed a tendency of variation with the stages of pregnancy.

  4. Allergen-Removed Rhus verniciflua Extract Induces Ovarian Cancer Cell Death via JNK Activation.

    Science.gov (United States)

    Kang, Se-Hui; Hwang, In-Hu; Son, Eunju; Cho, Chong-Kwan; Choi, Jong-Soon; Park, Soo-Jung; Jang, Byeong-Churl; Lee, Kyung-Bok; Lee, Zee-Won; Lee, Jong Hoon; Yoo, Hwa-Seung; Jang, Ik-Soon

    2016-01-01

    Nuclear factor-[Formula: see text]B (NF-[Formula: see text]B)/Rel transcription factors are best known for their central roles in promoting cell survival in cancer. NF-[Formula: see text]B antagonizes tumor necrosis factor (TNF)-[Formula: see text]-induced apoptosis through a process involving attenuation of the c-Jun-N-terminal kinase (JNK). However, the role of JNK activation in apoptosis induced by negative regulation of NF-[Formula: see text]B is not completely understood. We found that allergen-removed Rhus verniciflua Stokes (aRVS) extract-mediated NF-[Formula: see text]B inhibition induces apoptosis in SKOV-3 ovarian cancer cells via the serial activation of caspases and SKOV-3 cells are most specifically suppressed by aRVS. Here, we show that in addition to activating caspases, aRVS extract negatively modulates the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote JNK activation, which results in apoptosis. When the cytokine TNF-[Formula: see text] binds to the TNF receptor, I[Formula: see text]B dissociates from NF-[Formula: see text]B. As a result, the active NF-[Formula: see text]B translocates to the nucleus. aRVS extract (0.5[Formula: see text]mg/ml) clearly prevented NF-[Formula: see text]B from mobilizing to the nucleus, resulting in the upregulation of JNK phosphorylation. This subsequently increased Bax activation, leading to marked aRVS-induced apoptosis, whereas the JNK inhibitor SP600125 in aRVS extract treated SKOV-3 cells strongly inhibited Bax. Bax subfamily proteins induced apoptosis through caspase-3. Thus, these results indicate that aRVS extract contains components that inhibit NF-[Formula: see text]B signaling to upregulate JNK activation in ovarian cancer cells and support the potential of aRVS as a therapeutic agent for ovarian cancer.

  5. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. TATA-binding protein-associated factor 7 regulates polyamine transport activity and polyamine analog-induced apoptosis.

    Science.gov (United States)

    Fukuchi, Junichi; Hiipakka, Richard A; Kokontis, John M; Nishimura, Kazuhiro; Igarashi, Kazuei; Liao, Shutsung

    2004-07-16

    Identification of the polyamine transporter gene will be useful for modulating polyamine accumulation in cells and should be a good target for controlling cell proliferation. Polyamine transport activity in mammalian cells is critical for accumulation of the polyamine analog methylglyoxal bis(guanylhydrazone) (MGBG) that induces apoptosis, although a gene responsible for transport activity has not been identified. Using a retroviral gene trap screen, we generated MGBG-resistant Chinese hamster ovary (CHO) cells to identify genes involved in polyamine transport activity. One gene identified by the method encodes TATA-binding protein-associated factor 7 (TAF7), which functions not only as one of the TAFs, but also a coactivator for c-Jun. TAF7-deficient cells had decreased capacity for polyamine uptake (20% of CHO cells), decreased AP-1 activation, as well as resistance to MGBG-induced apoptosis. Stable expression of TAF7 in TAF7-deficient cells restored transport activity (55% of CHO cells), AP-1 gene transactivation (100% of CHO cells), and sensitivity to MGBG-induced apoptosis. Overexpression of TAF7 in CHO cells did not increase transport activity, suggesting that TAF7 may be involved in the maintenance of basal activity. c-Jun NH2-terminal kinase inhibitors blocked MGBG-induced apoptosis without alteration of polyamine transport. Decreased TAF7 expression, by RNA interference, in androgen-independent human prostate cancer LN-CaP104-R1 cells resulted in lower polyamine transport activity (25% of control) and resistance to MGBG-induced growth arrest. Taken together, these results reveal a physiological function of TAF7 as a basal regulator for mammalian polyamine transport activity and MGBG-induced apoptosis.

  7. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  8. Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection.

    Science.gov (United States)

    Farias, L H S; Rodrigues, A P D; Coêlho, E C; Santos, M F; Sampaio, S C; Silva, E O

    2017-09-01

    American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage - Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL-1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.

  9. The NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation

    Directory of Open Access Journals (Sweden)

    Shi Fushan

    2012-07-01

    Full Text Available Abstract Background Prion diseases are neurodegenerative disorders characterized by the accumulation of an abnormal disease-associated prion protein, PrPSc. In prion-infected brains, activated microglia are often present in the vicinity of PrPSc aggregates, and microglial activation is thought to play a key role in the pathogenesis of prion diseases. Although interleukin (IL-1β release by prion-induced microglia has been widely reported, the mechanism by which primed microglia become activated and secrete IL-1β in prion diseases has not yet been elucidated. In this study, we investigated the role of the NACHT, LRR and PYD domains-containing protein (NALP3 inflammasome in IL-1β release from lipopolysaccharide (LPS-primed microglia after exposure to a synthetic neurotoxic prion fragment (PrP106-126. Methods The inflammasome components NALP3 and apoptosis-associated speck-like protein (ASC were knocked down by gene silencing. IL-1β production was assessed using ELISA. The mRNA expression of NALP3, ASC, and pro-inflammatory factors was measured by quantitative PCR. Western blot analysis was used to detect the protein level of NALP3, ASC, caspase-1 and nuclear factor-κB. Results We found that that PrP106-126-induced IL-1β release depends on NALP3 inflammasome activation, that inflammasome activation is required for the synthesis of pro-inflammatory and chemotactic factors by PrP106-126-activated microglia, that inhibition of NF-κB activation abrogated PrP106-126-induced NALP3 upregulation, and that potassium efflux and production of reactive oxygen species were implicated in PrP106-126-induced NALP3 inflammasome activation in microglia. Conclusions We conclude that the NALP3 inflammasome is involved in neurotoxic prion peptide-induced microglial activation. To our knowledge, this is the first time that strong evidence for the involvement of NALP3 inflammasome in prion-associated inflammation has been found.

  10. A New Risk Factor Profile for Contrast-Induced Acute Kidney Injury in Patients Who Underwent an Emergency Percutaneous Coronary Intervention.

    Science.gov (United States)

    Yuan, Ying; Qiu, Hong; Song, Lei; Hu, Xiaoying; Luo, Tong; Zhao, Xueyan; Zhang, Jun; Wu, Yuan; Qiao, Shubin; Yang, Yuejin; Gao, Runlin

    2018-07-01

    We developed a new risk factor profile for contrast-induced acute kidney injury (CI-AKI) under a new definition in patients who underwent an emergency percutaneous coronary intervention (PCI). Consecutive patients (n = 1061) who underwent an emergency PCI were divided into a derivation group (n = 761) and a validation group (n = 300). The rates of CI-AKI were 23.5% (definition 1: serum creatinine [SCr] increase ≥25% in 72 hours), 4.3% (definition 2: SCr increase ≥44.2 μmol/L in 72 hours), and 7.0% (definition 3: SCr increase ≥44.2 μmol/L in 7 days). Due to the high sensitivity of definition 1 and the high rate of missed cases for late diagnosis of CI-AKI under definition 2, definition 3 was used in the study. The risk factor profile included body surface area 15.00 × 10 9 /L ( P = .047), estimated glomerular filtration rate 133 μmol/L ( P = .007), intra-aortic balloon pump application ( P = .006), and diuretics administration ( P risk factor profile of CI-AKI under a new CI-AKI definition in emergency PCI patients is easily applicable with a useful predictive value.

  11. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  12. Analysis of protein profiles using fuzzy clustering methods

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Ukendt, Sujatha; Rai, Lavanya

    The tissue protein profiles of healthy volunteers and volunteers with cervical cancer were recorded using High Performance Liquid Chromatography combined with Laser Induced Fluorescence  technique  (HPLC-LIF)  developed  in  our  lab.      We analyzed      the protein profile data using different...

  13. Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.

    Science.gov (United States)

    Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M

    2015-02-17

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.

  14. Endothelial activation and cardiometabolic profiles of treated and never-treated HIV infected Africans.

    Science.gov (United States)

    Fourie, C M T; Schutte, A E; Smith, W; Kruger, A; van Rooyen, J M

    2015-05-01

    The role the human immunodeficiency virus (HIV) and antiretroviral treatment on endothelial activation, and the subsequent relationship with cardiovascular disease, is not well understood. We investigated endothelial activation, inflammatory and cardiometabolic profiles, and measures of vascular structure and function of 66 antiretroviral treated (ART), 78 never-treated (no-ART) HIV infected and 165 HIV free Africans. Blood samples were obtained for biochemical analysis and blood pressure, pulse wave velocity (PWV) and carotid intima-media thickness (IMT) measurements were performed. The HIV infection duration was at least five years and the treatment 2.86±0.13 years. The intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) levels were elevated in the HIV infected groups compared to the controls. The odds of higher adhesion molecule levels were increased when HIV infected (especially in the no-ART group); OR no-ART vs. no-HIV: ICAM 3.92 (2.2-7.0); VCAM 16.2 (7.5-35). ICAM and VCAM associated with HIV status and interleukin-6 (IL-6) in the total group (all pART: β=-0.28, p=0.01; ART: β=-0.22, p=0.07) and TC (no-ART: β=-0.36, pART: β=-0.27, p=0.03). The ART group had an unfavourable lipid profile compared to the no-ART group. The inflammatory markers (C-reactive protein (CRP) and IL-6), PWV and IMT did not differ between the three groups. HIV infected Africans showed endothelial activation when compared to HIV free controls. The endothelial activation was not accompanied by increased inflammation (as measured with CRP and IL-6), arterial stiffness or sub-clinical atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    International Nuclear Information System (INIS)

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa; Nedergaard, Jan

    2010-01-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G i -protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  16. Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress

    DEFF Research Database (Denmark)

    Carvalho, Ana Sofia; Ribeiro, Helena; Voabil, Paula

    2014-01-01

    We investigated the molecular effects of glucosamine supplements, a popular and safe alternative to nonsteroidal anti-inflammatory drugs, for decreasing pain, inflammation, and maintaining healthy joints. Numerous studies have reported an array of molecular effects after glucosamine treatment. We...... questioned whether the differences in the effects observed in previous studies were associated with the focus on a specific subproteome or with the use of specific cell lines or tissues. To address this question, global mass spectrometry- and transcription array-based glucosamine drug profiling was performed....... Further, we hypothesize that O-HexNAcylation induced by glucosamine treatment enhances protein trafficking....

  17. Dietary salecan reverts partially the metabolic gene expressions and NMR-based metabolomic profiles from high-fat-diet-induced obese rats.

    Science.gov (United States)

    Sun, Qi; Li, Minghui; Yang, Xiao; Xu, Xi; Wang, Junsong; Zhang, Jianfa

    2017-09-01

    Previous studies suggest that dietary salecan (a water-soluble β-glucan) effectively reduces high-fat-diet-induced adiposity through disturbing bile-acid-promoted emulsification in mice. However, the effects of salecan on metabolic genes and metabolites involved in lipid accumulation are mostly unknown. Here, we confirmed that dietary 3% and 6% salecan for 4 weeks markedly decreased fat accumulation in liver and adipose tissue in high-fat-diet rats, displaying a decrease in mRNA levels of SREBP1-C, FAS, SCD1 and ACC1 involved in de novo lipogenesis and a reduction of levels of GPAT1, DGAT1 and DGAT2 related to triglyceride synthesis. Dietary salecan also increased the mRNA levels of PPARα and CYP7A1, which are related to fatty acid oxidation and cholesterol decomposition, respectively. In the 1 H nuclear magnetic resonance metabolomic analysis, both the serum and liver metabolite profiles differed among the control groups, and the metabolic profiles of the salecan groups were shifted toward that of the low-fat-diet group. Metabolites analysis showed that salecan significantly increased hepatic glutathione and betaine levels which are related to regulation of cellular reactive oxygen species. These data demonstrate that dietary salecan not only disturbed fat digestion and absorption but also influenced lipid accumulation and metabolism in diet-induced obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Striatal pre- and postsynaptic profile of adenosine A(2A receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Marco Orru

    2011-01-01

    Full Text Available Striatal adenosine A(2A receptors (A(2ARs are highly expressed in medium spiny neurons (MSNs of the indirect efferent pathway, where they heteromerize with dopamine D(2 receptors (D(2Rs. A(2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A(1 receptors (A(1Rs. It has been hypothesized that postsynaptic A(2AR antagonists should be useful in Parkinson's disease, while presynaptic A(2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A(2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261 showed no clear preference. Radioligand-binding experiments were performed in cells expressing A(2AR-D(2R and A(1R-A(2AR heteromers to determine possible differences in the affinity of these compounds for different A(2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A(2AR when co-expressed with D(2R than with A(1R. KW-6002 showed the best relative affinity for A(2AR co-expressed with D(2R than co-expressed with A(1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile

  19. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    Science.gov (United States)

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Proteomic Profiling of Radiation-Induced Skin Fibrosis in Rats: Targeting the Ubiquitin-Proteasome System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjie [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Cyrus Tang Hematology Center, Soochow University, Suzhou (China); Luo, Judong [Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou (China); Sheng, Wenjiong; Xue, Jiao; Li, Ming [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Ji, Jiang [Department of Dermatology, the Second Affiliated Hospital of Soochow University, Suzhou (China); Liu, Pengfei [Department of Gastroenterology, the Affiliated Jiangyin Hospital of Southeast University, Jiangyin (China); Zhang, Xueguang [Institute of Medical Biotechnology and Jiangsu Stem Cell Key Laboratory, Medical College of Soochow University, Suzhou (China); Cao, Jianping [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Zhang, Shuyu, E-mail: zhang.shuyu@hotmail.com [School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Cyrus Tang Hematology Center, Soochow University, Suzhou (China)

    2016-06-01

    Purpose: To investigate the molecular changes underlying the pathogenesis of radiation-induced skin fibrosis. Methods and Materials: Rat skin was irradiated to 30 or 45 Gy with an electron beam. Protein expression in fibrotic rat skin and adjacent normal tissues was quantified by label-free protein quantitation. Human skin cells HaCaT and WS-1 were treated by x-ray irradiation, and the proteasome activity was determined with a fluorescent probe. The effect of proteasome inhibitors on Transforming growth factor Beta (TGF-B) signaling was measured by Western blot and immunofluorescence. The efficacy of bortezomib in wound healing of rat skin was assessed by the skin injury scale. Results: We found that irradiation induced epidermal and dermal hyperplasia in rat and human skin. One hundred ninety-six preferentially expressed and 80 unique proteins in the irradiated fibrotic skin were identified. Through bioinformatic analysis, the ubiquitin-proteasome pathway showed a significant fold change and was investigated in greater detail. In vitro experiments demonstrated that irradiation resulted in a decline in the activity of the proteasome in human skin cells. The proteasome inhibitor bortezomib suppressed profibrotic TGF-β downstream signaling but not TGF-β secretion stimulated by irradiation in HaCaT and WS-1 cells. Moreover, bortezomib ameliorated radiation-induced skin injury and attenuated epidermal hyperplasia. Conclusion: Our findings illustrate the molecular changes during radiation-induced skin fibrosis and suggest that targeting the ubiquitin-proteasome system would be an effective countermeasure.

  1. Exploring the activity profile of health care assistants and nurses in home nursing.

    Science.gov (United States)

    De Vliegher, Kristel; Aertgeerts, Bert; Declercq, Anja; Moons, Philip

    2015-12-01

    Are home nurses (also known as community nurses) ready for their changing role in primary care? A quantitative study was performed in home nursing in Flanders, Belgium, to explore the activity profile of home nurses and health care assistants, using the 24-hour recall instrument for home nursing. Seven dates were determined, covering each day of the week and the weekend, on which data collection would take place. All the home nurses and health care assistants from the participating organisations across Flanders were invited to participate in the study. All data were measured at nominal level. A total of 2478 home nurses and 277 health care assistants registered 336 128 (47 977 patients) and 36 905 (4558 patients) activities, respectively. Home nurses and health care assistants mainly perform 'self-care facilitation' activities in combination with 'psychosocial care' activities. Health care assistants also support home nurses in the 'selfcare facilitation' of patients who do not have a specific nursing indication.

  2. Platelet-Derived MRP-14 Induces Monocyte Activation in Patients With Symptomatic Peripheral Artery Disease.

    Science.gov (United States)

    Dann, Rebecca; Hadi, Tarik; Montenont, Emilie; Boytard, Ludovic; Alebrahim, Dornaszadat; Feinstein, Jordyn; Allen, Nicole; Simon, Russell; Barone, Krista; Uryu, Kunihiro; Guo, Yu; Rockman, Caron; Ramkhelawon, Bhama; Berger, Jeffrey S

    2018-01-02

    Peripheral artery disease (PAD), a diffuse manifestation of atherothrombosis, is a major cardiovascular threat. Although platelets are primary mediators of atherothrombosis, their role in the pathogenesis of PAD remains unclear. The authors sought to investigate the role of platelets in a cohort of symptomatic PAD. The authors profiled platelet activity, mRNA, and effector roles in patients with symptomatic PAD and in healthy controls. Patients with PAD and carotid artery stenosis were recruited into ongoing studies (NCT02106429 and NCT01897103) investigating platelet activity, platelet RNA, and cardiovascular disease. Platelet RNA sequence profiling mapped a robust up-regulation of myeloid-related protein (MRP)-14 mRNA, a potent calcium binding protein heterodimer, in PAD. Circulating activated platelets were enriched with MRP-14 protein, which augmented the expression of the adhesion mediator, P-selectin, thereby promoting monocyte-platelet aggregates. Electron microscopy confirmed the firm interaction of platelets with monocytes in vitro and colocalization of macrophages with MRP-14 confirmed their cross talk in atherosclerotic manifestations of PAD in vivo. Platelet-derived MRP-14 was channeled to monocytes, thereby fueling their expression of key PAD lesional hallmarks and increasing their directed locomotion, which were both suppressed in the presence of antibody-mediated blockade. Circulating MRP-14 was heightened in the setting of PAD, significantly correlated with PAD severity, and was associated with incident limb events. The authors identified a heightened platelet activity profile and unraveled a novel immunomodulatory effector role of platelet-derived MRP-14 in reprograming monocyte activation in symptomatic PAD. (Platelet Activity in Vascular Surgery and Cardiovascular Events [PACE]; NCT02106429; and Platelet Activity in Vascular Surgery for Thrombosis and Bleeding [PIVOTAL]; NCT01897103). Copyright © 2018 American College of Cardiology Foundation

  3. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53Ser-15 phosphorylation

    International Nuclear Information System (INIS)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader; Shahin, Allen; Patel, Mahendra; Galadari, Sehamuddin

    2009-01-01

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser 15 . Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53 Ser-15 phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  4. Impurities and evaluation of induced activity of SiCf/SiC composites

    International Nuclear Information System (INIS)

    Noda, Tetsuji; Araki, Hiroshi; Ito, Shinji; Fujita, Mitsutane; Maki, Koichi

    1997-01-01

    Impurity of SiC f /SiC composites prepared by CVI was analyzed by neutron activation analysis and glow discharge mass spectrometry. The evaluation of the induced activity of the composites based on the chemical compositions was made using a simulation calculation for fusion reactor blanket. Impurities of 35 elements were detected in the composites. However the total concentration of metallic impurities was below 20 mass ppm. The analyses of induced activity of the composites show that the dose rate decreases by about 5 orders of magnitude in a day after the shutdown. It is recommended that the purification of SiC fibers is necessary to reduce the activity by 10 9 after several ten years cooling of fusion reactors. (author)

  5. p38 mitogen-activated protein kinase up-regulates NF-κB transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    International Nuclear Information System (INIS)

    Ji, Guoping; Liu, Dongxu; Liu, Jing; Gao, Hui; Yuan, Xiao; Shen, Gang

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-κB in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-κB activation during myogenesis, not through down-regulation of degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that stretch-induced NF-κB activation by phosphorylation of p65 NF-κB. Moreover, depletion of p38α using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-κB activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-κB signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The α isoform of p38MAP kinase regulates the transcriptional activation of NF-κB following stimulation with cyclic stretch.

  6. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  7. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  8. High-Density Plasma-Induced Etch Damage of GaN

    International Nuclear Information System (INIS)

    Baca, A.G.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-01-01

    Anisotropic, smooth etching of the group-III nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high de-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III-V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN

  9. Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease

    Science.gov (United States)

    Baker, Christopher A.; Manuelidis, Laura

    2003-01-01

    Previous studies in Creutzfeldt-Jakob disease (CJD) have shown that myeloid cells in the periphery as well as derivative microglial cells in the brain are infectious. Microglia can show an activated phenotype before prion protein (PrP) pathology is detectable in brain, and isolated infectious microglia contain very little PrP. To find whether a set of inflammatory genes are significantly induced or suppressed with infection, we analyzed RNA from isolated microglia with relevant cDNA arrays, and identified 30 transcripts not previously examined in any transmissible spongiform encephalopathy. This CJD expression profile contrasted with that of uninfected microglia exposed to prototypic inflammatory stimuli such as lipopolysaccharide and IFN-, as well as PrP amyloid. These findings underscore inflammatory pathways evoked by the infectious agent in brain. Transcript profiles unique for CJD microglia and other myeloid cells provide opportunities for more sensitive preclinical diagnoses of infectious and noninfectious neurodegenerative diseases.

  10. Irradiation-induced telomerase activity and gastric cancer risk: a case-control analysis in a Chinese Han population

    International Nuclear Information System (INIS)

    He, Xianli; Qiao, Qing; Ge, Naijian; Nan, Jing; Shen, Shuqun; Wang, Zizhong; Yang, Yefa; Bao, Guoqiang

    2010-01-01

    Telomerase expression is one of the characteristics of gastric cancer (GC) cells and telomerase activity is frequently up-regulated by a variety of mechanisms during GC development. Therefore, we hypothesized that elevated levels of activated telomerase might enhance GC risk due to increased propagation of cells with DNA damage, such as induced by γ-radiation. To explore this hypothesis, 246 GC cases and 246 matched controls were recruited in our case-control study. TRAP-ELISA was used to assess the levels of telomerase activity at baseline and after γ-radiation and the γ-radiation-induced telomerase activity (defined as after γ-irradiation/baseline) in cultured peripheral blood lymphocytes (PBLs). Our data showed that there was no significant difference for the baseline telomerase activity between GC cases and controls (10.17 ± 7.21 vs. 11.02 ± 8.03, p = 0.168). However, after γ-radiation treatment, γ-radiation-induced telomerase activity was significantly higher in the cases than in the controls (1.51 ± 0.93 vs. 1.22 ± 0.66, p < 0.001). Using the median value of γ-radiation-induced telomerase activity in the controls as a cutoff point, we observed that high γ-radiation-induced telomerase activity was associated with a significantly increased GC risk (adjusted odds ratio, 2.45; 95% confidence interval, 1.83-3.18). Moreover, a dose response association was noted between γ-radiation-induced telomerase activity and GC risk. Age, but not sex, smoking and drinking status seem to have a modulating effect on the γ-radiation-induced telomerase activities in both cases and controls. Overall, our findings for the first time suggest that the increased γ-radiation-induced telomerase activity in PBLs might be associated with elevated GC risk. Further confirmation of this association using a prospective study design is warranted

  11. Effect of administration of antibiotics peripartum to wistar rats on bile acid profiles in offspring

    DEFF Research Database (Denmark)

    Clement Thaarup, Ida; Roager, Henrik Munch; Tulstrup, Monica Vera-Lise

    2016-01-01

    Vertical transmission of the maternal microbiota is assumed to be crucial for the offspring’s development. A disrupted microbiota composition leading to an altered metabolic activity of the microbiota can affect bile acid profiles, which are known to influence host metabolism. Here, we examined...... whether perturbation of the maternal gut microbiota during pregnancy, induced by administration of either amoxicillin or vancomycin to pregnant rats, influenced bile acid profiles in the offspring. The dams were treated with antibiotics from 8 days before the dams gave birth and continued until weaning (4...... weeks later). Blood samples were collected from offspring at ages 2, 4 and 14 weeks, and from dams at the end of treatment. From these blood samples, bile acids were extracted and 22 bile acids were quantified by targeted liquid chromatography mass spectrometry. Comparing the serum bile acid profiles...

  12. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  13. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  14. HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2012-02-01

    Full Text Available The first profile retrieval results of the Terahertz and submillimeter Limb Sounder (TELIS balloon instrument are presented. The spectra are recorded during a 13-h balloon flight on 24 January 2010 from Kiruna, Sweden. The TELIS instrument was mounted on the MIPAS-B2 gondola and shared this platform with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the mini-Differential Optical Absorption Spectroscopy (mini-DOAS instruments. The flight took place within the Arctic vortex at an altitude of ≈34 km in chlorine activated air, and both active (ClO and inactive chlorine (HCl were measured over an altitude range of respectively ≈16–32 km and ≈10–32 km. In this altitude range, the increase of ClO concentration levels during sunrise has been recorded with a temporal resolution of one minute. During the daytime equilibrium, a maximum ClO level of 2.1 ± 0.3 ppbv has been observed at an altitude of 23.5 km. This equilibrium profile is validated against the ClO profile by the satellite instrument Microwave Limb Sounder (MLS aboard EOS Aura. HCl profiles have been determined from two different isotopes – H35Cl and H37Cl – and are also validated against MLS. The precision of all profiles is well below 0.01 ppbv and the overall accuracy is therefore governed by systematic effects. The total uncertainty of these effects is estimated to be maximal 0.3 ppbv for ClO around its peak value at 23.5 km during the daytime equilibrium, and for HCl it ranges from 0.05 to 0.4 ppbv, depending on altitude. In both cases the main uncertainty stems from a largely unknown non-linear response in the detector.

  15. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  16. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  17. Characteristic gene expression profiles in the progression from liver cirrhosis to carcinoma induced by diethylnitrosamine in a rat model

    Directory of Open Access Journals (Sweden)

    Zhu Jin

    2009-07-01

    Full Text Available Abstract Background Liver cancr is a heterogeneous disease in terms of etiology, biologic and clinical behavior. Very little is known about how many genes concur at the molecular level of tumor development, progression and aggressiveness. To explore the key genes involved in the development of liver cancer, we established a rat model induced by diethylnitrosamine to investigate the gene expression profiles of liver tissues during the transition to cirrhosis and carcinoma. Methods A rat model of liver cancer induced by diethylnitrosamine was established. The cirrhotic tissue, the dysplasia nodules, the early cancerous nodules and the cancerous nodules from the rats with lung metastasis were chosen to compare with liver tissue of normal rats to investigate the differential expression genes between them. Affymetrix GeneChip Rat 230 2.0 arrays were used throughout. The real-time quantity PCR was used to verify the expression of some differential expression genes in tissues. Results The pathological changes that occurred in the livers of diethylnitrosamine-treated rats included non-specific injury, fibrosis and cirrhosis, dysplastic nodules, early cancerous nodules and metastasis. There are 349 upregulated and 345 downregulated genes sharing among the above chosen tissues when compared with liver tissue of normal rats. The deregulated genes play various roles in diverse processes such as metabolism, transport, cell proliferation, apoptosis, cell adhesion, angiogenesis and so on. Among which, 41 upregulated and 27 downregulated genes are associated with inflammatory response, immune response and oxidative stress. Twenty-four genes associated with glutathione metabolism majorly participating oxidative stress were deregulated in the development of liver cancer. There were 19 members belong to CYP450 family downregulated, except CYP2C40 upregulated. Conclusion In this study, we provide the global gene expression profiles during the development and

  18. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    2010-12-01

    Full Text Available Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by

  19. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  20. Macroscopic tunneling, decoherence and noise-induced activation

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Fernando C; Monteoliva, Diana; Villar, Paula I [Departamento de Fisica Juan Jose Giambiagi, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2007-05-15

    We study the effects of the environment at zero temperature on tunneling in an open system described by a static double-well potential. We show that the evolution of the system in an initial Schroedinger cat state, can be summarized in terms of three main physical phenomena, namely decoherence, quantum tunneling and noise-induced activation. Using large-scale numerical simulations, we obtain a detailed picture of the main stages of the evolution and of the relevant dynamical processes.

  1. Profile of Antiemetic Activity of Netupitant Alone or in Combination with Palonosetron and Dexamethasone in Ferrets and Suncus murinus (house musk shrew

    Directory of Open Access Journals (Sweden)

    John A Rudd

    2016-08-01

    Full Text Available Background and Aims: Chemotherapy-induced acute and delayed emesis involves the activation of multiple pathways, with 5-hydroxytryptamine (5-HT; serotonin playing a major role in the initial response. Substance P tachykinin NK1 receptor antagonists can reduce emesis induced by disparate emetic challenges and therefore have a clinical utility as broad inhibitory anti-emetic drugs. In the present studies, we investigate the broad inhibitory anti-emetic profile of a relatively new NK1 receptor antagonist, netupitant, alone or in combination with the long acting 5-HT3 receptor antagonist, palonosetron, for a potential to reduce emesis in ferrets and shrews.Materials and Methods: Ferrets were pretreated with netupitant and/or palonosetron, or their combination, and then administered apomorphine (0.125 mg/kg, s.c., morphine (0.5 mg/kg, s.c., ipecacuanha (1.2 mg/kg, p.o., copper sulphate (100 mg/kg, intragastric, or cisplatin (5-10 mg/kg, i.p.; in other studies netupitant was administered to Suncus murinus before motion (4 cm horizontal displacement, 2 Hz for 10 min.Results: Netupitant (3 mg/kg, p.o. abolished apomorphine-, morphine-, ipecacuanha- and copper sulphate-induced emesis. Lower doses of netupitant (0.03-0.3 mg/kg, p.o. dose-dependently reduced cisplatin (10 mg/kg, i.p.-induced emesis in an acute (8 h model, and motion-induced emesis in Suncus murinus. In a ferret cisplatin (5 mg/kg, i.p.-induced acute and delayed emesis model, netupitant administered once at 3 mg/kg, p.o., abolished the first 24 h response and reduced the 24-72 h response by 94.6 %; the reduction was markedly superior to the effect of a three times per day administration of ondansetron (1 mg/kg, i.p.. A single administration of netupitant (1 mg/kg, p.o. plus palonosetron (0.1 mg/kg, p.o. combined with dexamethasone (1 mg/kg, i.p., once per day, also significantly antagonized cisplatin-induced acute and delayed emesis and was comparable with a once-daily regimen of

  2. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  3. FUNCTIONAL PROFILE OF ACTIVE OLDER ADULTS WITH LOW BACK PAIN, ACCORDING TO THE ICF

    Directory of Open Access Journals (Sweden)

    Andersom Ricardo Fréz

    Full Text Available ABSTRACT Introduction: The International Classification of Functioning, Disability and Health (ICF considers multiples aspects of functionality. It is believed that this tool can help to classify the functionality of older adults with low back pain (LBP . Objectives: To describe the functionality of active older adults with LBP according to the ICF. Methods: A transversal study was conducted using the brief ICF core set for low back pain, to establish functional profiles of 40 older adults. The ICF categories were considered valid when ≥20% of participants showed some disability. Results: Thirty-two of the 35 categories of the brief ICF core set could be considered representative of the sample. Conclusion: The brief ICF core set for LBP results demonstrated that this classification system is representative for describing the functional profile of the sample.

  4. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor -1α in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zhang, Lin; Feng, Xiaobin; Dong, Jiahong; Qian, Cheng; Huang, Gang; Li, Xiaowu; Zhang, Yujun; Jiang, Yan; Shen, Junjie; Liu, Jia; Wang, Qingliang; Zhu, Jin

    2013-01-01

    High invasion and metastasis are the primary factors causing poor prognosis of patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying these biological behaviors have not been completely elucidated. In this study, we investigate the molecular mechanism by which hypoxia promotes HCC invasion and metastasis through inducing epithelial-mesenchymal transition (EMT). The expression of EMT markers was analyzed by immunohistochemistry. Effect of hypoxia on induction of EMT and ability of cell migration and invasion were performed. Luciferase reporter system was used for evaluation of Snail regulation by hypoxia-inducible factor -1α (HIF-1α). We found that overexpression of HIF-1α was observed in HCC liver tissues and was related to poor prognosis of HCC patients. HIF-1α expression profile was correlated with the expression levels of SNAI1, E-cadherin, N-cadherin and Vimentin. Hypoxia was able to induce EMT and enhance ability of invasion and migration in HCC cells. The same phenomena were also observed in CoCl2-treated cells. The shRNA-mediated HIF-1α suppression abrogated CoCl2-induced EMT and reduced ability of migration and invasion in HCC cells. Luciferase assay showed that HIF-1α transcriptional regulated the expression of SNAI1 based on two hypoxia response elements (HREs) in SNAI1 promoter. We demonstrated that hypoxia-stabilized HIF1α promoted EMT through increasing SNAI1 transcription in HCC cells. This data provided a potential therapeutic target for HCC treatment

  5. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Wada, Hiromichi; Abe, Mitsuru; Ono, Koh; Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide; Satoh, Noriko; Fujita, Masatoshi; Kita, Toru; Shimatsu, Akira; Hasegawa, Koji

    2008-01-01

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 μM of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-α-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 μM), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs

  6. Statins activate GATA-6 and induce differentiated vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Hiromichi [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Abe, Mitsuru; Ono, Koh [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morimoto, Tatsuya; Kawamura, Teruhisa; Takaya, Tomohide [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan); Satoh, Noriko [Division of Metabolic Research, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Fujita, Masatoshi [Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Kita, Toru [Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Shimatsu, Akira [Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto (Japan); Hasegawa, Koji [Division of Translational Research, National Hospital Organization Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555 (Japan)

    2008-10-03

    The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) beyond cholesterol lowering involve their direct actions on vascular smooth muscle cells (VSMCs). However, the effects of statins on phenotypic modulation of VSMCs are unknown. We herein show that simvastatin (Sm) and atorvastatin (At) inhibited DNA synthesis in human aortic VSMCs dose-dependently, while cell toxicity was not observed below the concentration of 1 {mu}M of Sm or 100 nM of At. Stimulating proliferative VSMCs with Sm or At induced the expression of SM-{alpha}-actin and SM-MHC, highly specific markers of differentiated phenotype. Sm up-regulated the binding activity of GATA-6 to SM-MHC GATA site and activated the transfected SM-MHC promoter in proliferative VSMCs, while mutating the GATA-6 binding site abolished this activation. Geranylgeranylpyrophosphate (10 {mu}M), an inhibitor of Rho family proteins, abolished the statin-mediated induction of the differentiated phenotype in VSMCs. These findings suggest that statins activate GATA-6 and induce differentiated VSMCs.

  7. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    International Nuclear Information System (INIS)

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-01-01

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI

  8. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  9. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    International Nuclear Information System (INIS)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-01-01

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca 2+ -dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  10. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  11. Inhaled ozone (O{sub 3})-induces changes in serum metabolomic and liver transcriptomic profiles in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, NC (United States); Karoly, Edward D.; Jones, Jan C. [Metabolon Incorporation, Durham, NC (United States); Ward, William O.; Vallanat, Beena D.; Andrews, Debora L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Schladweiler, Mette C.; Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Bass, Virginia L. [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (United States); Richards, Judy E.; Ghio, Andrew J.; Cascio, Wayne E.; Ledbetter, Allen D. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2015-07-15

    Air pollution has been linked to increased incidence of diabetes. Recently, we showed that ozone (O{sub 3}) induces glucose intolerance, and increases serum leptin and epinephrine in Brown Norway rats. In this study, we hypothesized that O{sub 3} exposure will cause systemic changes in metabolic homeostasis and that serum metabolomic and liver transcriptomic profiling will provide mechanistic insights. In the first experiment, male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or O{sub 3} at 0.25, 0.50, or 1.0 ppm, 6 h/day for two days to establish concentration-related effects on glucose tolerance and lung injury. In a second experiment, rats were exposed to FA or 1.0 ppm O{sub 3}, 6 h/day for either one or two consecutive days, and systemic metabolic responses were determined immediately after or 18 h post-exposure. O{sub 3} increased serum glucose and leptin on day 1. Glucose intolerance persisted through two days of exposure but reversed 18 h-post second exposure. O{sub 3} increased circulating metabolites of glycolysis, long-chain free fatty acids, branched-chain amino acids and cholesterol, while 1,5-anhydroglucitol, bile acids and metabolites of TCA cycle were decreased, indicating impaired glycemic control, proteolysis and lipolysis. Liver gene expression increased for markers of glycolysis, TCA cycle and gluconeogenesis, and decreased for markers of steroid and fat biosynthesis. Genes involved in apoptosis and mitochondrial function were also impacted by O{sub 3}. In conclusion, short-term O{sub 3} exposure induces global metabolic derangement involving glucose, lipid, and amino acid metabolism, typical of a stress–response. It remains to be examined if these alterations contribute to insulin resistance upon chronic exposure. - Highlights: • Ozone, an ubiquitous air pollutant induces acute systemic metabolic derangement. • Serum metabolomic approach provides novel insights in ozone-induced changes. • Ozone exposure induces leptinemia

  12. Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles

    Science.gov (United States)

    Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe

    2013-01-01

    Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930

  13. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  14. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease.

    Science.gov (United States)

    Lecommandeur, Emmanuelle; Baker, David; Cox, Timothy M; Nicholls, Andrew W; Griffin, Julian L

    2017-07-01

    Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  15. Activity-Based Protein Profiling Reveals Mitochondrial Oxidative Enzyme Impairment and Restoration in Diet-Induced Obese Mice

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Angel, Thomas E.; Lewis, Michael P.; Pederson, Leeanna M.; Chauvigne-Hines, Lacie M.; Wiedner, Susan D.; Zink, Erika M.; Smith, Richard D.; Wright, Aaron T.

    2012-10-24

    High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD or if the mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar or elevated relative to standard diet (SD) mice, thereby IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.

  16. Analysis of microRNA Expression Profiles Induced by Yiqifumai Injection in Rats with Chronic Heart Failure

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2018-02-01

    Full Text Available Background: Yiqifumai Injection (YQFM is clinically used to treat various cardiovascular diseases including chronic heart failure (CHF. The efficacy of YQFM for treating heart failure has been suggested, but the mechanism of action for pharmacological effects of YQFM is unclear.Methods: Echocardiography detection, left ventricular intubation evaluation, histopathology and immunohistochemical examination were performed in CHF rats to evaluate the cardioprotective effect of YQFM. Rat miRNA microarray and bioinformatics analysis were employed to investigate the differentially expressed microRNAs. In vitro models of AngII-induced hypertrophy and t-BHP induced oxidative stress in H9c2 myocardial cells were used to validate the anti-hypertrophy and anti-apoptosis effects of YQFM. Measurement of cell surface area, ATP content and cell viability, Real-time PCR and Western blot were performed.Results: YQFM significantly improved the cardiac function of CHF rats by increasing left ventricular ejection fraction and fractional shortening, decreasing left ventricular internal diameter and enhancing cardiac output. Seven microRNAs which have a reversible regulation by YQFM treatment were found. Among them, miR-21-3p and miR-542-3p are related to myocardial hypertrophy and cell proliferation, respectively and were further verified by RT-PCR. Target gene network was established and potential related signaling pathways were predicted. YQFM could significantly alleviate AngII induced hypertrophy in cellular model. It also significantly increased cell viabilities and ATP content in t-BHP induced apoptotic cell model. Western blot analysis showed that YQFM could increase the phosphorylation of Akt.Conclusion: Our findings provided scientific evidence to uncover the mechanism of action of YQFM on miRNAs regulation against CHF by miRNA expression profile technology. The results indicated that YQFM has a potential effect on alleviate cardiac hypertrophy and apoptosis

  17. Linear response approach to active Brownian particles in time-varying activity fields

    Science.gov (United States)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  18. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Science.gov (United States)

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  19. HPLC profiling, antioxidant and in vivo anti-inflammatory activity of the ethanol extract of Syzygium jambos available in Bangladesh.

    Science.gov (United States)

    Hossain, Hemayet; Rahman, Shaikh Emdadur; Akbar, Proity Nayeeb; Khan, Tanzir Ahmed; Rahman, Md Mahfuzur; Jahan, Ismet Ara

    2016-03-28

    Syzygium jambos has been used as a traditional medicine for the treatment of inflammatory diseases in Bangladesh. The study investigates the high performance liquid chromatography (HPLC) profiling of phenolic compounds, and evaluates the antioxidant and anti-inflammatory activities of ethanol extract of S. jambos available in Bangladesh. The extract was subjected to HPLC for the identification and quantification of the major bioactive polyphenols present in S. jambos. Antioxidant activity was determined using 2, 2'-azino bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging, reducing power assay, total antioxidant capacity, total phenolic and flavonoid content. Furthermore, the anti-inflammatory effect of the extract in rats for two different test models: carrageenan and histamine-induced paw edema was inspected. High levels of catechin hydrate and rutin hydrate (99.00 and 79.20 mg/100 g extract, respectively) and moderate amounts of ellagic acid and quercetin (59.40 and 69.30 mg/100 g extract, respectively) were quantified in HPLC. Catechin hydrate from this plant extract was determined for the first time through HPLC. For ABTS scavenging assay, the median inhibition concentration (IC50) value of S. jambos was 57.80 µg/ml, which was significant to that of ascorbic acid (12.01 µg/ml). The maximum absorbance for reducing power assay was found to be 0.4934. The total antioxidant capacity, phenolic and flavonoid contents were calculated to be 628.50 mg/g of ascorbic acid, 230.82 mg/g of gallic acid and 11.84 mg/g of quercetin equivalent, respectively. At a dose of 400 mg/kg, a significant acute anti-inflammatory activity (P antioxidant activities of S. jambos.

  20. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    International Nuclear Information System (INIS)

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-01-01

    Highlights: ► Metformin induces differentiation in NB4 and primary APL cells. ► Metformin induces activation of the MEK/ERK signaling pathway in APL cells. ► Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. ► Metformin induces the relocalization and degradation of the PML-RARα fusion protein. ► The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RARα and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.