WorldWideScience

Sample records for indole alkaloids corynantheine

  1. Conformational Analysis of Indole Alkaloids Corynantheine and Dihydrocorynantheine by Dynamic 1H NMR Spectroscopy and Computational Methods: Steric Effects of Ethyl vs Vinyl Group

    DEFF Research Database (Denmark)

    Stærk, Dan; Norrby, Per-Ola; Jaroszewski, Jerzy W.

    2001-01-01

    H-1 NMR (400 MHz) spectra of the indole alkaloid dihydrocorynantheine recorded at room temperature show the presence of two conformers near coalescence. Low temperature H-1 NMR allowed characterization of the conformational equilibrium, which involves rotation of the 3-methoxypropenoate side chain...... bulk of the vinyl and the ethyl group. The conformational equilibria involving the side chain rotation as well as inversion of the bridgehead nitrogen in corynantheine and dihydrocorynantheine was studied by force-field (Amber(*) and MMFF) and ab initio (density-functional theory at the B3LYP/6-31G...

  2. RIA for indol alkaloids

    International Nuclear Information System (INIS)

    Arens, H.

    1979-01-01

    The technique of RIAs for indol alkaloids (ajmaline, ergotamine, ergocristine, ergometrine, and lysergic acid) is described, and applications for this RIA and the RIA for raubasine and serpentine are mentioned. The indol alkaloide RIAs are shown to be suitable both for alkaloid distribution measurements in Catharantus and Rauwolfia plants and C. purpurea sclerotia as well as for the selection of high-efficiency strains and the optimisation of cultures of plant tissues and saprophytic fungi. (orig./MG) [de

  3. New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla.

    Science.gov (United States)

    Guo, Qiang; Yang, Hongshuai; Liu, Xinyu; Si, Xiali; Liang, Hong; Tu, Pengfei; Zhang, Qingying

    2018-01-31

    Four new zwitterionic monoterpene indole alkaloids, rhynchophyllioniums A-D (1-4), together with eight known alkaloids (5-12), were isolated from the hook-bearing stems of Uncaria rhynchophylla. Their structures were elucidated by extensive spectroscopic data analysis of MS, 1D and 2D NMR, and ECD, and the zwitterionic forms and absolute configurations of 1 and 2 were unambiguously confirmed by single crystal X-ray diffraction analysis. All the isolates, including the monoterpene indole alkaloids with free C-22 carboxyl group and those with C-22 carboxyl methyl ester, were proved to be naturally coexisting in the herb by LC-MS analysis. This is the first report of monoterpene indole alkaloids that exist in the form of zwitterion. Additionally, the cytotoxic activities of all isolates against A549, HepG2, and MCF-7 cell lines are reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Indole alkaloids from leaves and twigs of Rauvolfia verticillata.

    Science.gov (United States)

    Zhang, Bing-Jie; Peng, Lei; Wu, Zhi-Kun; Bao, Mei-Fen; Liu, Ya-Ping; Cheng, Gui-Guang; Luo, Xiao-Dong; Cai, Xiang-Hai

    2013-01-01

    Seven new indole alkaloids, rauverines A-G (1-7), and 19 known indole alkaloids were isolated from the leaves and twigs of Rauvolfia verticillata. All compounds showed no cytotoxicity against five human cancer cell lines, human myeloid leukemia (HL-60), hepatocellular carcinoma (SMMC-7721), lung cancer (A-549), breast cancer (MCF-7), and colon cancer (SW480) cells.

  5. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    Science.gov (United States)

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Analysis of several irdoid and indole precursors of terpenoid indole alkaloids with a single HPLC run

    DEFF Research Database (Denmark)

    Dagnino, Denise; Schripsema, Jan; Verpoorte, Robert

    1996-01-01

    An isocratic HPLC system is described which allows the separation of the iridoid and indole precursors of terpenoid indole alkaloids, which are present in a single crude extract. The system consists of a column of LiChrospher 60 RP select B 5 my, 250x4 mm (Merck) with an eluent of 1 % formic acid...

  7. Indole alkaloids from Rauvolfia bahiensis A.DC. (Apocynaceae).

    Science.gov (United States)

    Kato, Lucilia; Marques Braga, Raquel; Koch, Ingrid; Sumiko Kinoshita, Luiza

    2002-06-01

    Four indole alkaloids, 12-methoxy-N(a)-methyl-vellosimine, demethoxypurpeline, 12-methoxyaffinisine, and 12-methoxy-vellosimine, in addition to picrinine, vinorine, raucaffrinoline, normacusine B, norseredamine, seredamine, 10-methoxynormacusine B, norpurpeline and purpeline, were isolated from the bark or leaf extracts of Rauvolfia bahiensis.

  8. Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and Biology.

    Science.gov (United States)

    Lunagariya, Jignesh; Bhadja, Poonam; Zhong, Shenghui; Vekariya, Rohit; Xu, Shihai

    2017-09-27

    Marine bis-indole alkaloids comprise a large and increasingly growing class of secondary metabolites, and continue to deliver a great variety of structural templates. The alkaloids derived from marine resources play a crucial role in medicinal chemistry and as chemical agents. In particular, bis-indole alkaloid caulerpin isolated from marine green algae Caulerpa and a red algae Chondria armata at various places around the world, and tested against several therapeutic areas such as anti-diabetic, antinociceptive, anti-inflammatory, anti-tumor, anti-larvicidal, anti-herpes, anti-tubercular, anti-microbial and immunostimulating activity as well as means of other chemical agents. Herein, we summarized discovery of caulerpin, and its potential medicinal and chemical applications in chronological order with various aspects. Additionally, synthesis of caulerpin, its functional analogues, and structural isomer have also been reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria.

    Science.gov (United States)

    Zeng, Jun; Zhang, Dong-Bo; Zhou, Pan-Pan; Zhang, Qi-Li; Zhao, Lei; Chen, Jian-Jun; Gao, Kun

    2017-08-04

    Two unusual normonoterpenoid indole alkaloids rauvomine A (1) and rauvomine B (2), together with two known compounds peraksine (3) and alstoyunine A (4), were isolated from the aerial parts of Rauvolfia vomitoria. The structures with absolute configurations of 1 and 2 were elucidated by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compound 2 is a novel C 18 normonoterpenoid indole alkaloid with a substituted cyclopropane ring that forms an unusual 6/5/6/6/3/5 hexcyclic rearranged ring system. The plausible biogenetic pathways of 1 and 2 were proposed. Compound 2 exhibited significant anti-inflammatory activity.

  10. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole

    DEFF Research Database (Denmark)

    Payne, Richard; Xu, Deyang; Foureau, Emilien

    2017-01-01

    Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimal......Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine...

  11. Hexacyclic monoterpenoid indole alkaloids from Rauvolfia verticillata.

    Science.gov (United States)

    Gao, Yuan; Yu, Ai-Lin; Li, Gen-Tao; Hai, Ping; Li, Yan; Liu, Ji-Kai; Wang, Fei

    2015-12-01

    Five new hexacyclic monoterpenoid indole alkaloids, rauvovertine A (1), 17-epi-rauvovertine A (2), rauvovertine B (3), 17-epi-rauvovertine B (4), and rauvovertine C (5) together with 17 known analogues were isolated from the stems of Rauvolfia verticillata. Compounds 1/2 and 3/4 were obtained as C-17 epimeric mixtures due to rapid hemiacetal tautomerism in solution. The structures of 1-5 were established by spectroscopic analysis and with the aid of molecular modeling. The new alkaloids were evaluated for their cytotoxicity in vitro against human tumor HL-60, SMMC-7721, A-549, MCF-7, and SW-480 cell lines. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Isolation and structure elucidation of a new indole alkaloid from Rauvolfia serpentina hairy root culture: the first naturally occurring alkaloid of the raumacline group.

    Science.gov (United States)

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-05-01

    A new monoterpenoid indole alkaloid, 10-hydroxy- N(alpha)-demethyl-19,20-dehydroraumacline ( 1), was isolated as a mixture of E- and Z-isomers from hairy root culture of Rauvolfia serpentina Benth. ex Kurz (Apocynaceae) and the structure was determined by 1D and 2D NMR analyses. The new indole alkaloid represents the first naturally occurring alkaloid of the raumacline group and its putative biosynthetical pathway is discussed.

  13. Indole alkaloids and other constituents of Rauwolfia serpentina.

    Science.gov (United States)

    Itoh, Atsuko; Kumashiro, Tomoko; Yamaguchi, Machiko; Nagakura, Naotaka; Mizushina, Yoshiyuki; Nishi, Toyoyuki; Tanahashi, Takao

    2005-06-01

    From the dried roots of Rauwolfia serpentina were isolated five new indole alkaloids, N(b)-methylajmaline (1), N(b)-methylisoajmaline (2), 3-hydroxysarpagine (3), yohimbinic acid (4), isorauhimbinic acid (5), a new iridoid glucoside, 7-epiloganin (6), and a new sucrose derivative, 6'-O-(3,4,5-trimethoxybenzoyl)glomeratose A (7), together with 20 known compounds. The structures of the new compounds were determined by spectroscopic and chemical means. The inhibitory activities of the selected alkaloids on topoisomerase I and II and their cytotoxicity against the human promyelocytic leukemia (HL-60) cell lines were assessed.

  14. Indole Alkaloids Inhibiting Neural Stem Cell from Uncaria rhynchophylla

    OpenAIRE

    Wei, Xin; Jiang, Li-Ping; Guo, Ying; Khan, Afsar; Liu, Ya-Ping; Yu, Hao-Fei; Wang, Bei; Ding, Cai-Feng; Zhu, Pei-Feng; Chen, Ying-Ying; Zhao, Yun-Li; Chen, Yong-Bing; Wang, Yi-Fen; Luo, Xiao-Dong

    2017-01-01

    Uncaria rhynchophylla is commonly recognized as a traditional treatment for dizziness, cerebrovascular diseases, and nervous disorders in China. Previously, the neuro-protective activities of the alkaloids from U. rhynchophylla were intensively reported. In current work, three new indole alkaloids (1–3), identified as geissoschizic acid (1), geissoschizic acid N 4-oxide (2), and 3β-sitsirikine N 4-oxide (3), as well as 26 known analogues were isolated from U. rhynchophylla. However, in the ne...

  15. Hybrid Monoterpenoid Indole Alkaloids Obtained as Artifacts from Rauvolfia tetraphylla.

    Science.gov (United States)

    Gao, Yuan; Zhou, Dong-Sheng; Hai, Ping; Li, Yan; Wang, Fei

    2015-10-01

    Five new hybrid monoterpenoid indole alkaloids bearing an unusual 2,2-dimethyl-4-oxopiperidin-6-yl moiety, namely rauvotetraphyllines F-H (1, 3, 4), 17-epi-rauvotetraphylline F (2) and 21-epi-rauvotetraphylline H (5), were isolated from the aerial parts of Rauvolfia tetraphylla. Their structures were established by extensive spectroscopic analysis. The new alkaloids were evaluated for their cytotoxicity in vitro against five human cancer cell lines.

  16. Hybrid Monoterpenoid Indole Alkaloids Obtained as Artifacts from Rauvolfia tetraphylla

    OpenAIRE

    Gao, Yuan; Zhou, Dong-Sheng; Hai, Ping; Li, Yan; Wang, Fei

    2015-01-01

    Abstract Five new hybrid monoterpenoid indole alkaloids bearing an unusual 2,2-dimethyl-4-oxopiperidin-6-yl moiety, namely rauvotetraphyllines F–H (1, 3, 4), 17-epi-rauvotetraphylline F (2) and 21-epi-rauvotetraphylline H (5), were isolated from the aerial parts of Rauvolfia tetraphylla. Their structures were established by extensive spectroscopic analysis. The new alkaloids were evaluated for their cytotoxicity in vitro against five human cancer cell lines. Graphical Abstract Electronic supp...

  17. A review on indole alkaloids isolated from Uncaria rhynchophylla and their pharmacological studies.

    Science.gov (United States)

    Ndagijimana, Andre; Wang, Xiaoming; Pan, Guixiang; Zhang, Fan; Feng, Hong; Olaleye, Olajide

    2013-04-01

    Uncaria rhynchophylla (Miq.) Jacks, Rubiaceae, is one of the original plants of the important Chinese crude drug, Gou-teng, mainly used for the treatment of convulsion, hypertension, epilepsy, eclampsia, and cerebral diseases. The pharmacological activities of this plant are related to the presence of active compounds predominantly indole alkaloids. In this article, we have reviewed some reports about the pharmacological activities of the main indole alkaloids isolated from U. rhynchophylla. This review paper will contribute to the studies on the chemistry, safety and quality control of medicinal preparations containing Uncaria species. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Indole alkaloids and terpenoids from Tabernaemontana markgrafiana

    DEFF Research Database (Denmark)

    Nielsen, H.B.; Hazell, A.; Hazell, R.

    1994-01-01

    The bark of Tabernaemontana markgrafiana yielded five acetylated pentacyclic triterpenes and 24 monoterpene indole alkaloids. The major triterpene was baurenyl acetate, which constituted ca 6% of the crude petrol extract. An X-ray study of iso-ursenyl acetate was carried out for the first time...

  19. Five new indole alkaloids from the leaves of Rauvolfia yunnanensis.

    Science.gov (United States)

    Geng, Chang-An; Liu, Xi-Kui

    2013-09-01

    Five new indole alkaloids, rauvoloids A-E (1-5), together with two known ones, raucaffrinoline (6) and perakine (7) were isolated from the leaves of Rauvolfia yunnanensis. Their structures were elucidated by extensive spectroscopic methods. Structurally, rauvoloids A (1), B-C (2-3) and D (4) with unusual substitution patterns (no substitution, Cl and (1E)-3-oxo-butenyl, respectively) at C-20, are the first examples of perakine-type alkaloids with C18 and C22 skeletons. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Rauvotetraphyllines A-E, new indole alkaloids from Rauvolfia tetraphylla

    OpenAIRE

    Gao, Yuan; Zhou, Dong-Sheng; Kong, Ling-Mei; Hai, Ping; Li, Yan; Wang, Fei; Liu, Ji-Kai

    2012-01-01

    Five new indole alkaloids rauvotetraphyllines A–E (1–5), together with eight known analogues, were isolated from the aerial parts of Rauvolfia tetraphylla. The structures were established by means of spectroscopic methods. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13659-012-0012-5 and is accessible for authorized users.

  1. Strategies for the capillary electrophoretic separation of indole alkaloids in Psilocybe semilanceata.

    Science.gov (United States)

    Pedersen-Bjergaard, S; Rasmussen, K E; Sannes, E

    1998-01-01

    While the hallucinogenic mushrooms Psilocybe semilanceata have previously been analyzed for the indole alkaloids psilocybin and baeocystin by capillary zone electrophoresis (CZE) at pH 11.5, the present work focused on the development of an alternative and complementary capillary electrophoretic method for their identification. Owing to their structural similarity and zwitterionic nature, the compounds were difficult to resolve based on different interactions with cationic or anionic micelles. However, while the attempts with micellar electrokinetic chromatography (MEKC) were unsuccessful, rapid derivatization with propyl chloroformate and reanalysis by CZE at pH 11.5 was effective to support identification of the two indole alkaloids. Psilocin was difficult to analyze by CZE at pH 11.5 owing to comigration with the electroosmotic flow. For this compound, the pH of the running buffer was reduced to 7.2 to effectively enhance the electrophoretic mobility.

  2. Tetracyclic indole alkaloids with antinematode activity from Uncaria rhynchophylla.

    Science.gov (United States)

    Kong, Fandong; Ma, Qingyun; Huang, Shengzhuo; Yang, Shuang; Fu, Linran; Zhou, Liman; Dai, Haofu; Yu, Zhifang; Zhao, Youxing

    2017-06-01

    A new tetracyclic indole alkaloid, 17-O-methyl-3,4,5,6-tetradehydrogeissoschizine, together with seven known ones, were isolated from the aerial part of Uncaria rhynchophylla. Their structures were unambiguously elucidated by spectroscopic methods and comparing with the literature data. Among them, compounds 1, 3, 4 and 6-8 showed potent to moderate antinematode activities against Panagrellus redivevus at a concentration of 250 μg/mL.

  3. Tulongicin, an Antibacterial Tri-Indole Alkaloid from a Deep-Water Topsentia sp. Sponge.

    Science.gov (United States)

    Liu, Hong-Bing; Lauro, Gianluigi; O'Connor, Robert D; Lohith, Katheryn; Kelly, Michelle; Colin, Patrick; Bifulco, Giuseppe; Bewley, Carole A

    2017-09-22

    Antibacterial-guided fractionation of an extract of a deep-water Topsentia sp. marine sponge led to the isolation of two new indole alkaloids, tulongicin A (1) and dihydrospongotine C (2), along with two known analogues, spongotine C (3) and dibromodeoxytopsentin (4). Their planar structures were determined by NMR spectroscopy. Their absolute configurations were determined through a combination of experimental and computational analyses. Tulongicin (1) is the first natural product to contain a di(6-Br-1H-indol-3-yl)methyl group linked to an imidazole core. The coexistence of tri-indole 1 and bis-indole alcohol 2 suggests a possible route to 1. All of the compounds showed strong antimicrobial activity against Staphylococcus aureus.

  4. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sun, Jianghao; Baker, Andrew; Chen, Pei

    2011-09-30

    An ultra-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine or ajmalicine core structure, plus methylated, oxidized and reduced species, were characterized. Common fragments and mass differences are described. It was shown that the use of IMS could provide another molecular descriptor, i.e. molecular shape by rotationally averaged collision cross-section; this is of great value for identification of constituents when reference materials are usually not available. Using the combination of high resolution (~40000) accurate mass measurement with time-aligned parallel (TAP) fragmentation, MS(E) (where E represents collision energy), ion mobility mass spectrometry (IMS) and UPLC chromatography, a total 55 indole alkaloids were characterized and a few new indole alkaloids are reported for the first time. Published in 2011 by John Wiley & Sons, Ltd.

  5. An integrated strategy for the systematic characterization and discovery of new indole alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ-Orbitrap-MS.

    Science.gov (United States)

    Pan, Huiqin; Yang, Wenzhi; Zhang, Yibei; Yang, Min; Feng, Ruihong; Wu, Wanying; Guo, Dean

    2015-08-01

    The exploration of new chemical entities from herbal medicines may provide candidates for the in silico screening of drug leads. However, this significant work is hindered by the presence of multiple classes of plant metabolites and many re-discovered structures. This study presents an integrated strategy that uses ultrahigh-performance liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) coupled with in-house library data for the systematic characterization and discovery of new potentially bioactive molecules. Exploration of the indole alkaloids from Uncaria rhynchophylla (UR) is presented as a model study. Initially, the primary characterization of alkaloids was achieved using mass defect filtering and neutral loss filtering. Subsequently, phytochemical isolation obtained 14 alkaloid compounds as reference standards, including a new one identified as 16,17-dihydro-O-demethylhirsuteine by NMR analyses. The direct-infusion fragmentation behaviors of these isolated alkaloids were studied to provide diagnostic structural information facilitating the rapid differentiation and characterization of four different alkaloid subtypes. Ultimately, after combining the experimental results with a survey of an in-house library containing 129 alkaloids isolated from the Uncaria genus, a total of 92 alkaloids (60 free alkaloids and 32 alkaloid O-glycosides) were identified or tentatively characterized, 56 of which are potential new alkaloids for the Uncaria genus. Hydroxylation on ring A, broad variations in the C-15 side chain, new N-oxides, and numerous O-glycosides, represent the novel features of the newly discovered indole alkaloid structures. These results greatly expand our knowledge of UR chemistry and are useful for the computational screening of potentially bioactive molecules from indole alkaloids. Graphical Abstract A four-step integrated strategy for the systematic characterization and efficient discovery of new indole

  6. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    Science.gov (United States)

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  7. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    Science.gov (United States)

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  8. Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404)

    DEFF Research Database (Denmark)

    Kagiyama, Ippei; Kato, Hikaru; Nehira, Tatsuo

    2016-01-01

    Seven new prenylated indole alkaloids, taichunamides A–G, were isolated from the fungus Aspergillus taichungensis (IBT 19404). Taichunamides A and B contained an azetidine and 4‐pyridone units, respectively, and are likely biosynthesized from notoamide S via (+)‐6‐epi‐stephacidin A. Taichunamides...... these cores within the three species likely arise from an intramolecular hetero Diels–Alder reaction....

  9. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.

    Science.gov (United States)

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  10. Indole Alkaloids Inhibiting Neural Stem Cell from Uncaria rhynchophylla.

    Science.gov (United States)

    Wei, Xin; Jiang, Li-Ping; Guo, Ying; Khan, Afsar; Liu, Ya-Ping; Yu, Hao-Fei; Wang, Bei; Ding, Cai-Feng; Zhu, Pei-Feng; Chen, Ying-Ying; Zhao, Yun-Li; Chen, Yong-Bing; Wang, Yi-Fen; Luo, Xiao-Dong

    2017-10-01

    Uncaria rhynchophylla is commonly recognized as a traditional treatment for dizziness, cerebrovascular diseases, and nervous disorders in China. Previously, the neuro-protective activities of the alkaloids from U. rhynchophylla were intensively reported. In current work, three new indole alkaloids (1-3), identified as geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), and 3β-sitsirikine N 4 -oxide (3), as well as 26 known analogues were isolated from U. rhynchophylla. However, in the neural stem cells (NSCs) proliferation assay for all isolated compounds, geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), isocorynoxeine (6), isorhynchophylline (7), (4S)-akuammigine N-oxide (8), and (4S)-rhynchophylline N-oxide (10) showed unexpected inhibitory activities at 10 μM. Unlike previous neuro-protective reports, as a warning or caution, our finding showcased a clue for possible NSCs toxicity and the neural lesions risk of U. rhynchophylla, while the structure-activity relationships of the isolated compounds were discussed also.

  11. Further brominated bis- and tris-indole alkaloids from the deep-water New Caledonian marine sponge Orina Sp.

    Science.gov (United States)

    Bifulco, G; Bruno, I; Riccio, R; Lavayre, J; Bourdy, G

    1995-08-01

    Two tris-indole alkaloids, (+/-) gelliusines A and B [1], have been isolated for the first time from a marine source, the New Caledonian sponge, Orina sp. (or Gellius sp.), along with five further indole constituents [2-6]. Compound 6 has been identified as 2,2-bis-(6'-bromo-3'-indolyl(-ethylamine, previously isolated from the tunicate Didemnum candidum, but the remaining four indoles [2-5] are novel compounds. These showed anti-serotonin activity and a strong affinity for somatostatin and neuropeptide Y receptors in receptor-binding assays.

  12. Bioactive alkaloids from marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.

    lines while kuanoniamine C was less potent but showed high selectivity toward the estrogen dependent breast cancer cell line (Kijjoa et. al., 2007). Recently, Davis’s and coworkers, reported two new cytotoxici- ty peridoacridine alkaloids viz... 10 sponge, Trachycladus laevispirulifer. Excitingly, it displayed promising selective cytotoxicity against a panel of human cancer cell lines. 12.3.1. BISINDOLE ALKALOIDS Bis-indole alkaloids, consisting of two indole moieties...

  13. Hamacanthins A and B, new antifungal bis indole alkaloids from the deep-water marine sponge, Hamacantha sp.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Kelly-Borges, M

    1994-10-01

    Hamacanthin A [1] and hamacanthin B [2] are two bioactive dihydropyrazinonediylbis(indole) alkaloids isolated from a new species of deep-water marine sponge, Hamacantha sp. The hamacanthins are growth inhibitors of Candida albicans and Cryptococcus neoformans. Isolation and structure elucidation of 1 and 2 by nmr spectroscopy are described.

  14. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Mehran Fadaeinasab

    2015-11-01

    Full Text Available Background/Aims: Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1 and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2, along with five known, macusine B (3, vinorine (4, undulifoline (5, isoresrpiline (6 and rescinnamine (7 were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE and butyrylcholinesterase (BChE. Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Conclusion: Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations.

  15. New Indole Alkaloids from the Bark of Rauvolfia Reflexa and their Cholinesterase Inhibitory Activity.

    Science.gov (United States)

    Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran

    2015-01-01

    Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.

  16. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites.

    Science.gov (United States)

    Wright, Amy E; Killday, K Brian; Chakrabarti, Debopam; Guzmán, Esther A; Harmody, Dedra; McCarthy, Peter J; Pitts, Tara; Pomponi, Shirley A; Reed, John K; Roberts, Bracken F; Rodrigues Felix, Carolina; Rohde, Kyle H

    2017-01-11

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya . Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N -(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus , Mycobacterium tuberculosis , Plasmodium falciparum, and a panel of pancreatic cancer cell lines.

  17. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites

    Directory of Open Access Journals (Sweden)

    Amy E. Wright

    2017-01-01

    Full Text Available A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines.

  18. 3-oxo-rhazinilam: a new indole alkaloid from Rauvolfia serpentina x Rhazya stricta hybrid plant cell cultures.

    Science.gov (United States)

    Gerasimenko, I; Sheludko, Y; Stöckigt, J

    2001-01-01

    A new monoterpenoid indole alkaloid, 3-oxo-rhazinilam (1), was isolated from intergeneric somatic hybrid cell cultures of Rauvolfia serpentina and Rhazya stricta, and the structure was determined by detailed 1D and 2D NMR analysis. It was also proved that 3-oxo-rhazinilam (1) is a natural constituent of the hybrid cells.

  19. Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family[W

    Science.gov (United States)

    Barleben, Leif; Panjikar, Santosh; Ruppert, Martin; Koepke, Juergen; Stöckigt, Joachim

    2007-01-01

    Strictosidine β-d-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of ∼2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases. PMID:17890378

  20. Assessment of the in vitro and in vivo genotoxicity of extracts and indole monoterpene alkaloid from the roots of Galianthe thalictroides (Rubiaceae).

    Science.gov (United States)

    Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R

    2013-09-01

    Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment.

    Science.gov (United States)

    Wang, Yan-Qiu; Li, Hong-Xiang; Liu, Xiao-Chun; Zhao, Jin-Shuang; Liu, Rong-Qiang; Huai, Wen-Ying; Ding, Wei-Jun; Zhang, Tian-E; Deng, Yun

    2018-05-31

    One known bis-indole alkaloid-voacamine was isolated from Voacanga africana Stapf and Surface Plasmon Resonance imaging (SPRi) exprement showed that this alkaloid could be combine with Protein Tyrosine Phosphatase1B (PTP1B). Then the PTP1B activity inhibition experiment display that the compound showed an outstanding promoting activity to PTP1B.

  2. Isolation, Characterization, and Bioactivity Evaluation of 3-((6-Methylpyrazin-2-ylmethyl-1H-indole, a New Alkaloid from a Deep-Sea-Derived Actinomycete Serinicoccus profundi sp. nov.

    Directory of Open Access Journals (Sweden)

    Yong-Hong Liu

    2012-12-01

    Full Text Available One new alkaloid, 3-((6-methylpyrazin-2-ylmethyl-1H-indole (1 was obtained from the deep-sea actinomycete Serinicoccus profundi sp. nov., along with five known compounds (2–6. Their structures were determined on the basis of detailed analysis of the 1D and 2D NMR as well as MS data. The new indole alkaloid displayed weak antimicrobial activity against Staphylococcus aureus ATCC 25923 with an MIC value of 96 μg/mL. It showed no cytotoxicity on a normal human liver cell line (BEL7402 and a human liver tumor cell line (HL-7702.

  3. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology.

    Science.gov (United States)

    Kabeshov, Mikhail A; Musio, Biagia; Murray, Philip R D; Browne, Duncan L; Ley, Steven V

    2014-09-05

    An expedient synthesis of the indole alkaloid nazlinine is reported. Judicious choice of flow electrochemistry as an enabling technology has permitted the rapid generation of a small library of unnatural relatives of this biologically active molecule. Furthermore, by conducting the key electrochemical Shono oxidation in a flow cell, the loading of electrolyte can be significantly reduced to 20 mol % while maintaining a stable, broadly applicable process.

  4. Indole-diterpenes and ergot alkaloids in Cynodon dactylon (Bermuda grass) infected with Claviceps cynodontis from an outbreak of tremors in cattle.

    Science.gov (United States)

    Uhlig, Silvio; Botha, Christo J; Vrålstad, Trude; Rolén, Elin; Miles, Christopher O

    2009-12-09

    Tremorgenic syndromes in mammals are commonly associated with indole-diterpenoid alkaloids of fungal origin. Cattle are sometimes affected by tremors (also called "staggers") when they graze on toxic grass pastures, and Bermuda grass ( Cynodon dactylon , kweek) has been known to be associated with tremors for several decades. This study reports the identification of paspalitrems and paspaline-like indole-diterpenes in the seedheads of Claviceps cynodontis -infected Bermuda grass collected from a pasture that had caused a staggers syndrome in cattle in South Africa and thereby links the condition to specific mycotoxins. The highest concentration (about 150 mg/kg) was found for paspalitrem B. Ergonovine and ergine (lysergic acid amide), together with their C-8 epimers, were found to co-occur with the indole-diterpenes at concentrations of about 10 microg/kg. The indole-diterpene profile of the extract from the ergotized Bermuda grass was similar to that of Claviceps paspali sclerotia. However, the C. paspali sclerotia contained in addition agroclavine and elymoclavine. This is the first study linking tremors associated with grazing of Bermuda grass to specific tremorgenic indole-diterpenoid mycotoxins.

  5. Mass defect filtering-oriented classification and precursor ions list-triggered high-resolution mass spectrometry analysis for the discovery of indole alkaloids from Uncaria sinensis.

    Science.gov (United States)

    Pan, Huiqin; Yang, Wenzhi; Yao, Changliang; Shen, Yao; Zhang, Yibei; Shi, Xiaojian; Yao, Shuai; Wu, Wanying; Guo, Dean

    2017-09-22

    Discovery of new natural compounds is becoming increasingly challenging because of the interference from those known and abundant components. The aim of this study is to report a dereplication strategy, by integrating mass defect filtering (MDF)-oriented novelty classification and precursor ions list (PIL)-triggered high-resolution mass spectrometry analysis, and to validate it by discovering new indole alkaloids from the medicinal herb Uncaria sinensis. Rapid chromatographic separation was achieved on a Kinetex ® EVO C18 column (<16min). An in-house MDF algorithm, developed based on the informed phytochemistry information and molecular design, could more exactly screen the target alkaloids and divide them into three novelty levels: Known (KN), Unknown-but-Predicted (UP), and Unexpected (UN). A hybrid data acquisition method, namely PIL-triggered collision-induced dissociation-MS 2 and high-energy C-trap dissociation-MS 3 with dynamic exclusion on a linear ion trap/Orbitrap mass spectrometer, facilitated the acquisition of diverse product ions sufficient for the structural elucidation of both indole alkaloids and the N-oxides. Ultimately, 158 potentially new alkaloids, including 10 UP and 108 UN, were rapidly characterized from the stem, leaf, and flower of U. sinensis. Two new alkaloid compounds thereof were successfully isolated and identified by 1D and 2D NMR analyses. The varied ring E and novel alkaloid-acylquinic acid conjugates were first reported from the whole Uncaria genus. Conclusively, it is a practical chemical dereplication strategy that can enhance the efficiency and has the potential to be a routine approach for the discovery of new natural compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Selective reduction of peptidic ergot alkaloids

    Czech Academy of Sciences Publication Activity Database

    Cvak, L.; Stuchlík, J.; Schreiberová, M.; Sedmera, Petr; Havlíček, Vladimír; Flieger, Miroslav; Čejka, J.; Kratochvíl, B.; Jegorov, A.

    2000-01-01

    Roč. 65, - (2000), s. 1762-1776 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z5020903 Keywords : indole alkaloids * ergot alkaloids * ergopeptides Subject RIV: EE - Microbiology, Virology Impact factor: 0.960, year: 2000

  7. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view.

    Science.gov (United States)

    Chadha, Navriti; Silakari, Om

    2017-07-07

    Indoles constitute extensively explored heterocyclic ring systems with wide range of applications in pathophysiological conditions that is, cancer, microbial and viral infections, inflammation, depression, migraine, emesis, hypertension, etc. Presence of indole nucleus in amino acid tryptophan makes it prominent in phytoconstituents such as perfumes, neurotransmitters, auxins (plant hormones), indole alkaloids etc. The interesting molecular architecture of indole makes them suitable candidates for the drug development. This review article provides an overview of the chemistry, biology, and toxicology of indoles focusing on their application as drugs. Our effort is to corroborate the information available on the natural indole alkaloids, indole based FDA approved drugs and clinical trial candidates having diverse therapeutic implementations. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Synthesis of quinolino[2 ,3 :8,7]cyclooct[ b]indole

    Indian Academy of Sciences (India)

    Among the nitrogen heterocycles, indole is an impor- tant structural components in alkaloids and many phar- maceutical agents. Indole exhibits a high degree of biological activities including antifungal, antibacterial, antitumour, anti-HIV and DNA interactions. Substi- tuted indoles have been referred to as 'privileged struc-.

  9. A new natural auaternary indole slkaloid isolated from Tabernaemontana laeta Mart. (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Medeiros Walter L. B.

    2001-01-01

    Full Text Available A new natural quaternary alkaloid, Nb-methylvoachalotine (1, was obtained from the root bark of Tabernaemontana laeta together with three dimeric indole alkaloids, conodurine (2, voacamine (3 and tabernamine (4, and the monomeric indole alkaloids 19S-heyneanine (5, coronaridine (6 and voacangine (7. The known triterpenes alpha-amyrin acetate, beta-amyrin acetate, lupeol acetate and taraxasterol acetate and the phytosterol beta-sitosterol and its 3-O-beta-D-glucoside were also identified. The structures of the compounds were elucidated based on spectroscopic studies.

  10. Indole alkaloids from the Marquesan plant Rauvolfia nukuhivensis and their effects on ion channels.

    Science.gov (United States)

    Martin, Nicolas J; Ferreiro, Sara F; Barbault, Florent; Nicolas, Mael; Lecellier, Gaël; Paetz, Christian; Gaysinski, Marc; Alonso, Eva; Thomas, Olivier P; Botana, Luis M; Raharivelomanana, Phila

    2015-01-01

    In addition to the already reported nukuhivensiums 1 and 2, 11 indole alkaloids were isolated from the bark of the plant Rauvolfia nukuhivensis, growing in the Marquesas archipelago. The known sandwicine (3), isosandwicine (4), spegatrine (8), lochneram (9), flavopereirine (13) have been found in this plant together with the norsandwicine (5), isonorsandwicine (6), Nb-methylisosandwicine (7), 10-methoxypanarine (10), nortueiaoine (11), tueiaoine (12). The structure elucidation was performed on the basis of a deep exploration of the NMR and HRESIMS data as well as comparison with literature data for similar compounds. Norsandwicine, 10-methoxypanarine, tueiaoine, and more importantly nukuhivensiums, were shown to significantly induce a reduction of IKr amplitude (HERG current). Molecular modelling through docking was performed in order to illustrate this result. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway

    NARCIS (Netherlands)

    Ritala, A.; Dong, L.; Imseng, N.; Seppanen-Laakso, T.; Vasilev, N.; Krol, van der A.R.; Rischer, H.; Maaheimo, H.; Virkki, A.; Brandli, J.; Schillberg, S.; Eibl, R.; Bouwmeester, H.J.; Oksman-Caldentey, K.M.

    2014-01-01

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their

  12. (+/-)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water new caledonian marine sponge (Gellius or Orina sp.).

    Science.gov (United States)

    Bifulco, G; Bruno, I; Minale, L; Riccio, R; Calignano, A; Debitus, C

    1994-09-01

    Two new diastereomeric brominated tris-indole alkaloids occurring as enantiomeric pairs, (+/-)-gelliusines A [1] and B [2], have been isolated from a deep water New Caledonian sponge (Gellius or Orina sp.), whose crude extract exhibited cytotoxicity against KB cells. Their structures were elucidated by spectroscopic methods including one- and two-dimensional nmr spectroscopy. The major compound, (+/-) gelliusine A [1], which showed very weak cytotoxicity, proved to be active at the serotonin receptor.

  13. Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids.

    Science.gov (United States)

    Gerasimenko, Irina; Sheludko, Yuri; Ma, Xueyan; Stöckigt, Joachim

    2002-04-01

    Strictosidine glucosidase (SG) is an enzyme that catalyses the second step in the biosynthesis of various classes of monoterpenoid indole alkaloids. Based on the comparison of cDNA sequences of SG from Catharanthus roseus and raucaffricine glucosidase (RG) from Rauvolfia serpentina, primers for RT-PCR were designed and the cDNA encoding SG was cloned from R. serpentina cell suspension cultures. The active enzyme was expressed in Escherichia coli and purified to homogeneity. Analysis of its deduced amino-acid sequence assigned the SG from R. serpentina to family 1 of glycosyl hydrolases. In contrast to the SG from C. roseus, the enzyme from R. serpentina is predicted to lack an uncleavable N-terminal signal sequence, which is believed to direct proteins to the endoplasmic reticulum. The temperature and pH optimum, enzyme kinetic parameters and substrate specificity of the heterologously expressed SG were studied and compared to those of the C. roseus enzyme, revealing some differences between the two glucosidases. In vitro deglucosylation of strictosidine by R. serpentina SG proceeds by the same mechanism as has been shown for the C. roseus enzyme preparation. The reaction gives rise to the end product cathenamine and involves 4,21-dehydrocorynantheine aldehyde as an intermediate. The enzymatic hydrolysis of dolichantoside (Nbeta-methylstrictosidine) leads to several products. One of them was identified as a new compound, 3-isocorreantine A. From the data it can be concluded that the divergence of the biosynthetic pathways leading to different classes of indole alkaloids formed in R. serpentina and C. roseus cell suspension cultures occurs at a later stage than strictosidine deglucosylation.

  14. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Directory of Open Access Journals (Sweden)

    Ryo eNakabayashi

    2015-12-01

    Full Text Available In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis. To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs. The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis.

  15. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    Science.gov (United States)

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  16. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    Science.gov (United States)

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.

    Science.gov (United States)

    Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.

  18. Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

    Directory of Open Access Journals (Sweden)

    Christopher L. Schardl

    2013-06-01

    Full Text Available The epichloae (Epichloë and Neotyphodium species, a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae. Most epichloae are vertically transmitted in seeds (endophytes, and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens, which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS, indole-diterpenes (IDT, and lolines (LOL in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.

  19. Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

    Science.gov (United States)

    Schardl, Christopher L.; Young, Carolyn A.; Pan, Juan; Florea, Simona; Takach, Johanna E.; Panaccione, Daniel G.; Farman, Mark L.; Webb, Jennifer S.; Jaromczyk, Jolanta; Charlton, Nikki D.; Nagabhyru, Padmaja; Chen, Li; Shi, Chong; Leuchtmann, Adrian

    2013-01-01

    The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed. PMID:23744053

  20. Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae.

    Science.gov (United States)

    Schardl, Christopher L; Young, Carolyn A; Pan, Juan; Florea, Simona; Takach, Johanna E; Panaccione, Daniel G; Farman, Mark L; Webb, Jennifer S; Jaromczyk, Jolanta; Charlton, Nikki D; Nagabhyru, Padmaja; Chen, Li; Shi, Chong; Leuchtmann, Adrian

    2013-06-06

    The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.

  1. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root culture.

    Science.gov (United States)

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-07-01

    Three new monoterpenoid indole alkaloids, 19(S),20(R)-dihydroperaksine (1), 19(S),20(R)-dihydroperaksine-17-al (2), and 10-hydroxy-19(S),20(R)-dihydroperaksine (3), along with 16 known alkaloids 4-19 were isolated from hairy root culture of Rauvolfia serpentina, and their structures were elucidated by 1D and 2D NMR analyses. Taking into account the stereochemistry of the new alkaloids and results of preliminary enzymatical studies, the putative biosynthetical relationships between the novel alkaloids are discussed.

  3. Transcriptional profiling of three key genes of terpenoid indole ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... indole alkaloid pathway in Catharanthus roseus under different tissue culture .... R 5'-GCA GCA GAC ACT CAA AAT CTC CTC C-3'. 62. CYP72A1 ... generated using both the software programs, and Microsoft Excel. The ΔΔCT ...

  4. Biosynthetic Pathways of Ergot Alkaloids

    Directory of Open Access Journals (Sweden)

    Nina Gerhards

    2014-12-01

    Full Text Available Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines. All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine. Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  5. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    Science.gov (United States)

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  7. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    Science.gov (United States)

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  8. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle

    Directory of Open Access Journals (Sweden)

    Takayuki Hishiki

    2017-08-01

    Full Text Available Dengue virus (DENV is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines. In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound and 100 μg/mL (extract, and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

  9. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle.

    Science.gov (United States)

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla , was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

  10. Simple syntheses of 3-substituted indoles and their application for high yield 14C-labelling

    International Nuclear Information System (INIS)

    Schallenberg, J.; Meyer, E.

    1983-01-01

    Methods are described which allow the synthesis of several plant indole alkaloids and their metabolites at different scales. Compounds synthesized include gramine (1) (3-dimethylaminomethylindole) which is directly derived from indole, while its biosynthetic precursors 3-aminomethylindole (3) and 3-methylaminomethylindole (2) as well as indole3-carboxylic acid (7) are synthesized via indole-3-aldehyde (6). Slight changes of the experimental conditions allow syntheses with high yields not only at the molar but also at the μmolar level. This is extremely useful when isotope labelled compounds of high specific radioactivity are required for studies of plant metabolism. (orig.)

  11. Antiprotozoal alkaloids from Psychotria prunifolia (Kunth) Steyerm

    International Nuclear Information System (INIS)

    Kato, Lucilia; Oliveira, Cecilia M.A. de; Faria, Emiret O.; Ribeiro, Laryssa C.; Carvalho, Brenda G.; Silva, Cleuza C. da; Santin, Silvana M.O.; Schuque, Ivania T.A.; Nakamura, Celso V.; Britta, Elisandra A.; Miranda, Nathielle; Iglesias, Amadeu H.; Delprete, Piero G.

    2012-01-01

    The continuity of the phyto chemical study of crude extracts of P. prunifolia's roots and branches led to the isolation of five indole-β-carboline alkaloids. Among them, the 10-hydroxy-iso-deppeaninol and N-oxide-10-hydroxy-antirhine derivatives are described here for the first time. The structures were achieved through 1D and 2D NMR, IR and HRMS analyses. The branches and roots crude extracts and the alkaloids 14-oxoprunifoleine and strictosamide showed selective activity against L. amazonensis, with IC 50 values of 16.0 and 40.7 μg per mL, respectively. (author)

  12. The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Yi-Nan Zhang

    2017-11-01

    Full Text Available Uncariae Ramulus Cum Uncis (URCU is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp were calculated. Among the six alkaloids, isorhynchophylline (2, isocorynoxeine (4, hirsutine (5 and hirsuteine (6 showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1 and corynoxeine (3, they showed moderate permeability, with Papp values from the apical (AP side to the basolateral (BL side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.

  13. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  14. Determination of indole alkaloids and highly volatile compounds in Rauvolfia verticillata by HPLC-UV and GC-MS.

    Science.gov (United States)

    Hong, Bo; Li, Wenjing; Song, Aihua; Zhao, Chunjie

    2013-01-01

    Rauvolfia verticillata (Lour.) Baill. (also called Luofumu in Chinese) is commonly used in traditional Chinese medicine for lowering blood pressure. In this study, a high-performance liquid chromatography assay using ultraviolet detection is described for the simultaneous measurement of the five bioactive indole alkaloids (sarpagine, yohimbine, ajmaline, ajmalicine and reserpine) in Rauvolfia. The detection of all five compounds was conducted at 280 nm. In quantitative analysis, the five compounds showed good regressions (R(2) > 0.9988) within the test ranges, and the recovery of the method was in the range of 90.4-101.4%. In addition, a simple gas chromatography mass method using a DB-1 silica capillary column (30 m × 0.25 mm i.d., 0.25 µm) is described for the identification of the highly volatile compounds in Rauvolfia. In qualitative analysis, more than 39 compounds were assayed and identified using the mass function and the National Institute of Standards and Technology database search system. The results demonstrated that the combination of quantitative and qualitative analyses offered an efficient way to evaluate the quality and consistency of Rauvolfia verticillata.

  15. Prenylindole alkaloids from Raputia praetermissa (Rutaceae) and their chemosystematic significance

    Energy Technology Data Exchange (ETDEWEB)

    Rosas, Lisandra V.; Veiga, Thiago Andre M.; Fernandes, Joao B.; Vieira, Paulo C.; Silva, M. Fatima das G.F. da, E-mail: dmfs@power.ufscar.b [Universidade Federal de Sao Carlos (DQ/UFSCar), SP (Brazil). Dept. de Quimica

    2011-07-01

    The dichloromethane extract from the stems of Raputia praetermissa afforded four new compounds, 4-deoxyraputindole C (1), raputimonoindole A-B (2, 3), and hexadecanyl 2-hydroxy- 4-methoxy-cinnamate (5), besides the alkaloids 5-(4-methoxymethylfuran-2-yl)-1H-indole (raputimonoindole C), furoquinolines maculosidine, robustine, evolitrine and dictamnine. The hexane extract yielded N-methyl-4-methoxyquinoline-2(1H)-one, skimmianine, cycloartenone, sitosterol, stigmasterol and sitostenone. The anthranilate alkaloid content indicates that the genus is strongly related to those included in Cusparieae tribe, but differs from Neoraputia by the absence of prenylindole alkaloids in the late, whose species have previously been placed in Raputia. (author)

  16. Metabolism of indole alkaloid tumor promoter, (-)-indolactam V, which has the fundamental structure of teleocidins, by rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, N.; Irie, K.; Tokuda, H.; Koshimizu, K.

    1987-07-01

    Metabolic activation and/or deactivation of indole alkaloid tumor promoter, (-)-indolactam V (ILV), was examined using rat liver microsomes. Reaction of ILV with the microsomes supplemented with NADPH and MgCl/sub 2/ gave three major metabolites, which were identified as (-)-N13-desmethylindolactam V and two diastereomers of (-)-2-oxyindolactam V at C-3. The tumor-promoting activities of these metabolites were evaluated by induction of Epstein-Barr virus early antigen and inhibition of specific binding of (/sup 3/H)-12-O-tetradecanoylphorbol-13-acetate to a mouse epidermal particulate fraction, and proved to be conspicuously lower than that of ILV. These results demonstrate that the metabolism of ILV results in detoxification, and that it itself is the tumor-promoting entity. Studies on the enzymes concerned with this metabolism suggested the involvement of cytochrome P-450-containing mixed-function oxidases. Similar deactivation seems to be possible by skin, where the mixed-function oxidases are known to exist.

  17. Ultrasound/microwave-assisted extraction and comparative analysis of bioactive/toxic indole alkaloids in different medicinal parts of Gelsemium elegans Benth by ultra-high performance liquid chromatography with MS/MS.

    Science.gov (United States)

    Li, Yu; Zeng, Rong-Jie; Lu, Qing; Wu, Shui-Sheng; Chen, Jian-Zhong

    2014-02-01

    Indole alkaloids are the main bioactive/toxic components in Gelsemium elegans Benth. To determine the distribution and contents of indole alkaloids in its different medicinal parts, a novel and rapid method using ultra-high performance LC (UPLC) with MS/MS has been established and validated with an optimized ultrasound/microwave-assisted extraction method. Four constituents, namely, humantenidine, humantenmine, gelsemine, and koumine, were simultaneously determined in 6 min. Chromatographic separation was achieved on an ultra-high performance LC BEH C18 column with a gradient mobile phase consisting of methanol and water (containing 0.1% formic acid both in methanol and water) at a flow rate of 0.3 mL/min. The detection was performed on a triple quadrupole electrospray MS/MS by positive ion multiple-reaction monitoring mode. All the analytes showed good linearity (r ≥ 0.9934) within a concentration range from 0.1-25 μg/mL with a LOQ of 25-50 ng/mL. The overall intra- and intervariations of four components were <4.7% with an accuracy of 97.3-101.3%. The analysis results showed that there were remarkable differences in the distribution and contents of four chemical markers in the roots, stems, and leaves of G. elegans Benth. The findings can provide necessary and meaningful information for the rational utilization of its resources. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel).

    Science.gov (United States)

    Zhang, Wen-Bo; Chen, Chang-Xun; Sim, Si-Mui; Kwan, Chiu-Yin

    2004-02-01

    Rhynchophylline (Rhy) and isorhynchophylline (Isorhy), indole alkaloids from Uncaria hooks, reportedly exert hypotensive and vasodilatory effects, but the mechanism of action is unclear. We therefore investigated the relaxant effects of these two isomeric alkaloids in rat arteries in vitro, in particular in respect of the various functional Ca2+ pathways. Both Rhy and Isorhy relaxed aortic rings precontracted with phenylephrine (PE, 1 microM) in a dose-dependent manner (3-300 microM). Removal of endothelium and preincubation with L-NAME (300 microM) slightly inhibited but did not prevent the relaxant response. These results indicate that Rhy and Isorhy act largely in an endothelium-independent manner. Unlike nicardipine, both alkaloids not only inhibited the contraction induced by 60 mM KCl (IC50 20-30 microM), but also that induced by PE and U46619, albeit to a lesser extent (IC50 100 and 200 microM, respectively). These results suggest that Rhy and Isorhy may act via multiple Ca2+ pathways. In contrast to their inhibitory effects on KCl-induced and receptor-mediated contractions, where both isomers were comparably potent, Rhy was more potent than Isorhy at higher concentrations (>100 microM) in inhibiting both caffeine (25 mM)- and cyclopiazonic acid (CPA, 30 microM)-induced contractions. Similar results observed with caffeine in Ca2+-containing medium were also observed in Ca2+-free medium. However, 0.1-0.3 microM nicardipine (which completely inhibited KCl-induced contraction) had no significant inhibitory effect on CPA-induced contractions. Taken together, these results indicate discrimination between these two isomers with respect to Ca2+-induced Ca2+ release and non-L-type Ca2+ channel, but not for IP3-induced Ca2+ release and L-type Ca2+ channels. Similar relaxant responses to KCl- and caffeine-induced contractions were seen when these two alkaloids were tested on the smaller mesenteric and renal arteries. In conclusion, the vasodilatory effects of Rhy and

  19. Eurotiumins A–E, Five New Alkaloids from the Marine-Derived Fungus Eurotium sp. SCSIO F452

    Directory of Open Access Journals (Sweden)

    Wei-Mao Zhong

    2018-04-01

    Full Text Available Three new prenylated indole 2,5-diketopiperazine alkaloids (1–3 with nine known ones (5–13, one new indole alkaloid (4, and one new bis-benzyl pyrimidine derivative (14 were isolated and characterized from the marine-derived fungus Eurotium sp. SCSIO F452. 1 and 2, occurring as a pair of diastereomers, both presented a hexahydropyrrolo[2,3-b]indole skeleton. Their chemical structures, including absolute configurations, were elucidated by 1D and 2D NMR, HRESIMS, quantum chemical calculations of electronic circular dichroism, and single crystal X-ray diffraction experiments. Most isolated compounds were screened for antioxidative potency. Compounds 3, 5, 6, 7, 9, 10, and 12 showed significant radical scavenging activities against DPPH with IC50 values of 13, 19, 4, 3, 24, 13, and 18 µM, respectively. Five new compounds were evaluated for cytotoxic activities.

  20. Metabolites of hirsuteine and hirsutine, the major indole alkaloids of Uncaria rhynchophylla, in rats.

    Science.gov (United States)

    Nakazawa, Takahiro; Banba, Koh-ichi; Hata, Kazumasa; Nihei, Yutaka; Hoshikawa, Ayumi; Ohsawa, Keisuke

    2006-08-01

    The metabolic fate of hirsuteine (HT) and hirsutine (HS), the major indole alkaloids of Uncaria rhynchophylla, was investigated using rats. On HPLC analysis, urine from rats orally administered HT were found to contain two metabolites (HT1 and HT2) together with unchanged HT. Similarly HS also was metabolized to two compounds (HS1 and HS2). Metabolite structures were determined to be 11-hydroxyhirsuteine-11-O-beta-D-glucuronide (HT1), 11-hydroxyhirsuteine (HT2), 11-hydroxyhirsutine-11-O-beta-D-glucuronide (HS1) and 11-hydroxyhirsutine (HS2), based on spectroscopic and chemical data. HT1 and HS1 were also detected in bile from rats administered HT and HS, respectively. Total cumulative urinary excretion within 72 h of oral administration was approximately 14% and 26% of the HT and HS doses, respectively, while total cumulative biliary excretion was 35% and 46%, respectively. HT and HS 11-hydroxylation were catalyzed by rat liver microsomes. This 11-hydroxylation activity was inhibited by addition of SKF-525A (a nonselective CYP inhibitor) or cimetidine (a CYP2C inhibitor). These results indicate that orally administered HT and HS are converted to 11-hydroxy metabolites in rats, and that the metabolites are predominantly excreted in bile rather than urine following glucuronidation. Furthermore, the results suggest that CYP2C enzymes are involved, at least in part, in the specific 11-hydroxylation of HT and HS.

  1. Crystal structure of indoline alkaloids kopsinilam, kopsinine, and the salts of the latter

    DEFF Research Database (Denmark)

    Adizov, Sh. M.; Tashkhodzhaev, B.; Kunafiev, R. Zh.

    2016-01-01

    N1 in the bases and the salts. Tetrahedral hybridization of the atom N1 in indoline alkaloids favors the formation of their double salts, what is unlikely for indole and indolinine alkaloids. In the halogen double salts there is an intramolecular Н bond between one of the protons of the NH2 group......Indoline alkaloids kopsinilam and kopsinine extracted from the plant Vinca erecta have been studied by X-ray crystallography; mono and double salts of the latter alkaloid also have been examined. Experimentally determined positions of Н atoms suggest sp3 hybridization of the indoline nitrogen atom...... and the oxygen of the methoxycarbonyl group, that is absent in the mono salts and pure bases....

  2. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe).

    Science.gov (United States)

    Lee, JungIn; Lee, Wonhwa; Kim, Mi-Ae; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2017-06-01

    Protaetia brevitarsis seulensis (Kolbe) has been temporarily registered as a food material by the Ministry of Food and Drug Safety of Korea (MFDS). The current study aimed to discover small antithrombotic molecules from this edible insect. Five indole alkaloids, 5-hydroxyindolin-2-one (1), (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (2), (1S,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (3), (3S)-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (4) and L-tryptophan (5), were isolated from the insect. Among them, compounds 1 and 2 prolonged aPTT and PT and impaired thrombin and FXa generation on HUVEC surface. Moreover, these compounds inhibited platelet aggregation. Antithrombotic effects of compounds 1 and 2 were further confirmed in pre-clinical models of pulmonary embolism and arterial thrombosis. Collectively, these results demonstrated that compounds 1 and 2 could be effective antithrombotic agents and serve as new scaffolds for the development of antithrombotic drug. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta.

    Science.gov (United States)

    Horie, S; Yano, S; Aimi, N; Sakai, S; Watanabe, K

    1992-01-01

    The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.

  4. A novel cinnamyl alcohol dehydrogenase (CAD)-like reductase contributes to the structural diversity of monoterpenoid indole alkaloids in Rauvolfia.

    Science.gov (United States)

    Geissler, Marcus; Burghard, Marie; Volk, Jascha; Staniek, Agata; Warzecha, Heribert

    2016-03-01

    Based on findings described herein, we contend that the reduction of vomilenine en route to antiarrhythmic ajmaline in planta might proceed via an alternative, novel sequence of biosynthetic steps. In the genus Rauvolfia, monoterpenoid indole alkaloids (MIAs) are formed via complex biosynthetic sequences. Despite the wealth of information about the biochemistry and molecular genetics underlying these processes, many reaction steps involving oxygenases and oxidoreductases are still elusive. Here, we describe molecular cloning and characterization of three cinnamyl alcohol dehydrogenase (CAD)-like reductases from Rauvolfia serpentina cell culture and R. tetraphylla roots. Functional analysis of the recombinant proteins, with a set of MIAs as potential substrates, led to identification of one of the enzymes as a CAD, putatively involved in lignin formation. The two remaining reductases comprise isoenzymes derived from orthologous genes of the investigated alternative Rauvolfia species. Their catalytic activity consists of specific conversion of vomilenine to 19,20-dihydrovomilenine, thus proving their exclusive involvement in MIA biosynthesis. The obtained data suggest the existence of a previously unknown bypass in the biosynthetic route to ajmaline further expanding structural diversity within the MIA family of specialized plant metabolites.

  5. Crystal structure of rac-3-[2,3-bis(phenylsulfanyl-3H-indol-3-yl]propanoic acid

    Directory of Open Access Journals (Sweden)

    Wayland E. Noland

    2015-11-01

    Full Text Available The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an intermediate for a substituent-effect study on ergot alkaloids. This is the first report of a 1H-indole monothioating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carboxy conformation and forms centrosymmetric O—H...N hydrogen-bonded dimers with the indole N atom of an inversion-related molecule. Together with a weak C—H...O hydrogen bond involving the carbonyl O atom, chains are formed along [100].

  6. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.

    Science.gov (United States)

    Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim

    2008-07-01

    Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.

  7. Synthesis and Antimicrobial Characterization of Half-Calycanthaceous Alkaloid Derivatives

    Directory of Open Access Journals (Sweden)

    Shaojun Zheng

    2016-09-01

    Full Text Available A total of 29 novel tetrahydropyrroloindol-based calycanthaceous alkaloid derivatives were synthesized from indole-3-acetonitrile in good yields. The synthesized compounds were evaluated against nine strains of bacteria and a wide range of plant pathogen fungi. Bioassay results revealed that majority of the compounds displayed similar or higher in vitro antimicrobial activities than the positive control. The biological activities also indicated that substituents at R4 and R5 significantly affect the activities. Notably, compound c4 was found to be most active among the tested calycanthaceous analogues and might be a novel potential leading compound for further development as an antifungal agent. The results could pave the way for further design and structural modification of calycanthaceous alkaloids as antimicrobial agents.

  8. Mass Spectrometric Characteristics of Prenylated Indole Derivatives from Marine-Derived Penicillium sp. NH-SL.

    Science.gov (United States)

    Ding, Hui; Ding, Wanjing; Ma, Zhongjun

    2017-03-22

    Two prenylated indole alkaloids were isolated from the ethyl acetate extracts of a marine-derived fungus Penicillium sp. NH-SL and one of them exhibited potent cytotoxic activity against mouse hepa 1c1c7 cells. In order to detect other bioactive analogs, we used liquid chromatogram tandem mass spectrometry (LC-MS/MS) to analyze the mass spectrometric characteristics of the isolated compounds as well as the crude extracts. As a result, three other analogs were detected, and their structures were deduced according to the similar fragmentation patterns. This is the first systematic report on the mass spectrometric characteristics of prenylated indole derivatives.

  9. A Facile Synthesis of Deaza-Analogues of the Bisindole Marine Alkaloid Topsentin

    Directory of Open Access Journals (Sweden)

    Gianfranco Favi

    2013-02-01

    Full Text Available A series of substituted ethyl 1-[(tert-butoxycarbonylamino]-2-methyl-5- (1-methyl-1H-indol-3-yl-4-[(1-methyl-1H-indol-3-ylcarbonyl]-1H-pyrrole-3-carboxylates were prepared in excellent yields (82-98% by one-pot reactions between β-dicarbonyl compounds 12a–e and 1,2-diaza-1,3-diene (DD 13. Derivatives 10a,c–e, deazaanalogues of the bis-indole alkaloid topsentin, screened by the National Cancer Institute (Bethesda, MD, USA in the in vitro one dose primary anticancer assay against a panel of about 60 human tumor cell lines, showed no significant activity, with the exception of compound 9e, which showed moderate activity against the HOP-92 cell line of the non small cell lung cancer sub-panel and the SNB-75 cell line of the CNS sub-panel.

  10. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine.

    Science.gov (United States)

    Paciaroni, Nicholas G; Ratnayake, Ranjala; Matthews, James H; Norwood, Verrill M; Arnold, Austin C; Dang, Long H; Luesch, Hendrik; Huigens, Robert W

    2017-03-28

    High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp 3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A synthetic entry to the tetra cyclic ABDE core of akuammiline alkaloids

    Energy Technology Data Exchange (ETDEWEB)

    Amat, M.; Hadida, S.; Bosch, J. [Laboratory of Organic Chemistry, faculty of Pharmacy, University of Barcelona, Barcelona (Spain)

    1996-08-01

    3-(2-Pyridyl)indole 3a, prepared by Pd(0=-catalyzed cross-coupling of the 3-indolylzinc derivative 1 with halo pyridine 2a), was converted to tetracycle 8.a substructure of akuammiline alkaloids, by a sequence involving the skeletal rearrangement of an intermediate spiroindolenine generated from 1-acyl-2-(3-indolyl)-4-piperidinemethanol mesylate 7 as the crucial step. (Author) 10 refs.

  12. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    OpenAIRE

    Leech Mark; Palacios-Rojas Natalia

    2004-01-01

    Terpenoid indole alkaloids (TIA) are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limit...

  13. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation.

    Science.gov (United States)

    Kittakoop, Prasat; Mahidol, Chulabhorn; Ruchirawat, Somsak

    2014-01-01

    Alkaloid molecules can act, depending on a type of amine functionality present in alkalods, as either hydrogenacceptor or hydrogen-donor for hydrogen bonding that is critically important for the interaction (binding) between targets (enzymes, proteins and receptors) and drugs (ligands). Because of this unique property, alkaloid scaffolds are therefore present in several drugs and lead compounds. This review highlights alkaloid scaffolds in drugs, particularly those recently approved in 2012; it also covers the scaffolds in leads and drug candidates which are in clinical trials and preclinical pipeline. The review focuses on three therapeutic areas including treatments of cancer, tuberculosis, and tobacco cessation. Alkaloid scaffolds in drugs and leads are inspired by those of naturally occurring alkaloids, and these scaffolds include pyridine, piperidine, quinoline, quinolinone, quinazoline, isoquinoline, indole, indolinone, isoindole, isoxazole, imidazole, indazole, thiazole, pyrazole, oxazolidinone, oxadiazole, and benzazepine. In addition to medicinal chemistry aspects, natural products possessing an individual alkaloid scaffold, as well as the mechanism of action of drugs and leads, are also discussed in this review.

  14. Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae.

    Science.gov (United States)

    Mikkola, Raimo; Andersson, Maria A; Hautaniemi, Maria; Salkinoja-Salonen, Mirja S

    2015-06-01

    Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

    Science.gov (United States)

    Abdelfatah, Sara A A; Efferth, Thomas

    2015-02-15

    The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild

  16. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras

    DEFF Research Database (Denmark)

    Staerk, D; Lemmich, E; Christensen, J

    2000-01-01

    -NMR resonances by COSY and NOESY experiments. These and related alkaloids showed pronounced activity against Leishmania major promastigotes (IC50 at the micromolar level) but no significant in vitro antiplasmodial activity (against chloroquine-sensitive Plasmodium falciparum). Cytotoxicity assessed with drug...

  17. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Martin [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Panjikar, Santosh [European Molecular Biology Laboratory Hamburg, Outstation Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22603 Hamburg (Germany); Barleben, Leif [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); Stöckigt, Joachim [Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg-University Mainz, Staudinger Weg 5, D-55099 Mainz (Germany); College of Pharmaceutical Sciences, Zhejiang University, 353 Yan An Road, 310031 Hangzhou (China)

    2006-03-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å.

  18. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    International Nuclear Information System (INIS)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase, an enzyme involved in the biosynthesis of monoterpenoid indole alkaloids in the plant Rauvolfia serpentina, was crystallized by the hanging-drop vapour-diffusion method using PEG4000 as precipitant. The crystals diffract to 2.3 Å resolution and belong to space group I222. Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å

  19. On the mechanism for the formation of indole alkalois in Penicillium concavo-rugulosum

    International Nuclear Information System (INIS)

    Ohmomo, Sadahiro; Miyazaki, Kenji; Ohashi, Tsutomu; Abe, Matazo

    1977-01-01

    Experiments on the biosynthesis and microbiological conversion of indole alkaloids in Penicillium concavo-rugulosum were carried out with the growing and resting mycelia, respectively, of a selected strain of the same mold. The former experiments were performed by the use of DL-tryptophan-3- 14 C or DL-mevalonic acid-2- 14 C-lactone as a precursor, while the latter experiments by the use of rugulovasine A- 3 H, dihydrorugulovasine A- 3 H, 4-[γ,γ-dimethylallyl]-tryptophan- 3 H, chanoclavine-[I]- 3 H or the other tritiated ergoline alkaloids. The results of these experiments suggested that in the Penicillium mold employed there exist the following biosynthetic route: tryptophan+mevalonic acid → 4-[γ,γ-dimethylallyl]-tryptophan → rugulovasine A → dihydrorugulovasine A → dihydrorugulovasine A-lactam. (auth.)

  20. Patterns of indole alkaloids synthesis in response to heat shock, 5-azacytidine and Na-butyrate treatment of cultured catharanthus roseus mesophyll protoplasts

    International Nuclear Information System (INIS)

    Saleem, M.; Cutler, A.J.

    1986-01-01

    Alkaloids of C. roseus are in high demand for therapeutic and other reasons. Cultured Catharanthus cells can produce limited quantities of these alkaloids. The authors have found that cultured mesophyll protoplasts in the presence of 14 C-Tryptamine are capable of synthesizing alkaloids. The pattern of alkaloids synthesis changes when protoplasts are subjected to a heat shock at 37 0 C. The heat shocked protoplasts incorporated 33% more 14 C-Tryptamine and produced 3 new types of alkaloids. Treatment of protoplasts with 5-azacytidine, a DNA hypomethylating agent and Na-butyrate which induces hyperacetylation of histones produced qualitative and quantitative changes in the alkaloid pattern. Four new alkaloids following the above treatments were detected by TLC and HPLC of the extracts. It is suggested that the alkaloid pattern of the cultured protoplasts can be altered by treatment with compounds known as regulators of gene expression. Work is in progress to isolate and identify these new alkaloids

  1. The Spatial Distribution of Alkaloids in Psychotria prunifolia (Kunth) Steyerm and Palicourea coriacea (Cham.) K. Schum Leaves Analysed by Desorption Electrospray Ionisation Mass Spectrometry Imaging

    DEFF Research Database (Denmark)

    Kato, Lucilia; Moraes, Aline Pereira; de Oliveira, Cecília Maria Alves

    2018-01-01

    INTRODUCTION: Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) has become...... analyses. METHODOLOGY: Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI-MSI via tissue imprints on a porous Teflon surface....... Relative quantitation of the four alkaloids was obtained by HPLC-MS/MS analysis performed using multiple-reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer. RESULTS: Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10...

  2. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species.

    Directory of Open Access Journals (Sweden)

    Elsa Góngora-Castillo

    Full Text Available The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs, includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin, hypertension (reserpine, ajmalicine, malaria (quinine, and as analgesics (7-hydroxymitragynine. Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource

  3. Development of Transcriptomic Resources for Interrogating the Biosynthesis of Monoterpene Indole Alkaloids in Medicinal Plant Species

    Science.gov (United States)

    Góngora-Castillo, Elsa; Childs, Kevin L.; Fedewa, Greg; Hamilton, John P.; Liscombe, David K.; Magallanes-Lundback, Maria; Mandadi, Kranthi K.; Nims, Ezekiel; Runguphan, Weerawat; Vaillancourt, Brieanne; Varbanova-Herde, Marina; DellaPenna, Dean; McKnight, Thomas D.; O’Connor, Sarah; Buell, C. Robin

    2012-01-01

    The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for

  4. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    Science.gov (United States)

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  5. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Dall'Acqua S

    2013-01-01

    Full Text Available Stefano Dall'AcquaDepartment of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, ItalyAbstract: The inhibition of acetylcholinesterase (AChE has been one of the most used strategies for the treatment of Alzheimer's disease (AD. The AChE inhibitors (AChE-I produce not only short-term symptomatic effects, but can also play a role in other pathological mechanisms of the disease (eg, formation of amyloid-β plaques, which has renewed interest in the discovery of such inhibitors. Four of the five currently prescribed treatments for AD are AChE-I. Natural alkaloids such as galantamine or alkaloid-related synthetic compounds (such as rivastigmine are considered beneficial for patients with mild-to-moderate AD. However, there is a need for the discovery of more effective compounds and for this reason, plants can still be a potential source of new AChE-I. Findings and advances in knowledge about natural alkaloids as potential new drugs acting as AChE-I will be summarized in this paper.Keywords: quinolizidine, steroidal, indole, isoquinoline

  6. Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora

    Science.gov (United States)

    Cancelieri, Náuvia Maria; Ferreira, Thiago Resende; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Piló-Veloso, Dorila; Alcântara, Antônio Flávio de Carvalho

    2015-10-01

    Darcyribeirine (1) is a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. Stereochemistry of 1 was previously proposed based on 1D (coupling constant data) and 2D (NOESY correlations) NMR techniques, having been established a configuration 3R, 15S, and 20R (isomer 1a). Stereoisomers of 1 (i.e., 1a-1h) can be grouped into four sets of enantiomers. Carbon chemical shifts and hydrogen coupling constants were calculated using BLYP/6-31G* theory level for the eight isomers of 1. Calculated NMR data of 1a-1h were correlated with the corresponding experimental data of 1. The best correlations between theoretical and experimental carbon chemical shift data were obtained for the set of enantiomers 1e/1f to structures in the gaseous phase and considering solvent effects (using PCM and explicit models). Similar results were obtained when the same procedure was performed to correlations between theoretical and experimental coupling constant data. Finally, optical rotation calculations indicate 1e as its absolute stereochemistry. Orbital population analysis indicates that the hydrogen bonding between N-H of 1e and DMSO is due to contributions of its frontier unoccupied molecular orbitals, mainly LUMO+1, LUMO+2, and LUMO+3.

  7. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants.

    Science.gov (United States)

    Bauer, Julia I; Gross, Madeleine; Cramer, Benedikt; Humpf, Hans-Ulrich; Hamscher, Gerd; Usleber, Ewald

    2018-01-10

    Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.

  8. Alkaloids from the leaves of Uncaria rhynchophylla and their inhibitory activity on NO production in lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Yuan, Dan; Ma, Bin; Wu, Chunfu; Yang, Jingyu; Zhang, Lijia; Liu, Suiku; Wu, Lijun; Kano, Yoshihiro

    2008-07-01

    Two new isomeric alkaloids, 18,19-dehydrocorynoxinic acid B (1) and 18,19-dehydrocorynoxinic acid (2), were isolated from the CHCl3 extract of the leaves of Uncaria rhynchophylla, together with four known rhynchophylline-type alkaloids, corynoxeine (3), isocorynoxeine (4), rhynchophylline (5), and isorhynchophylline (6), and an indole alkaloid glucoside, vincoside lactam (7). The structures of compounds 1 and 2 were elucidated by spectroscopic methods including UV, IR, HREIMS, 1D and 2D NMR, and CD experiments. The activity assay showed that compounds 3-6, with a C-16 carboxylic ester group, and 7 exhibited inhibitory activity on lipopolysaccharide (LPS)-induced NO release in primary cultured rat cortical microglia (IC 50: 13.7-19.0 microM). However, only weak inhibitory activity was observed for compounds 1 and 2, with a C-16 carboxylic acid group (IC 50: >100 microM).

  9. Synthesis and Bioactivity of Secondary Metabolites from Marine Sponges Containing Dibrominated Indolic Systems

    Directory of Open Access Journals (Sweden)

    Azzurra Stefanucci

    2012-05-01

    Full Text Available Marine sponges. (e.g., Hyrtios sp., Dragmacidin sp., Aglophenia pleuma, Aplidium cyaneum, Aplidium meridianum. produce bioactive secondary metabolites involved in their defence mechanisms. Recently it was demonstrated that several of those compounds show a large variety of biological activities against different human diseases with possible applications in medicinal chemistry and in pharmaceutical fields, especially related to the new drug development process. Researchers have focused their attention principally on secondary metabolites with anti-cancer and cytotoxic activities. A common target for these molecules is the cytoskeleton, which has a central role in cellular proliferation, motility, and profusion involved in the metastatic process associate with tumors. In particular, many substances containing brominated indolic rings such as 5,6-dibromotryptamine, 5,6-dibromo-N-methyltryptamine, 5,6-dibromo-N-methyltryptophan (dibromoabrine, 5,6-dibromo-N,N-dimethyltryptamine and 5,6-dibromo-L-hypaphorine isolated from different marine sources, have shown anti-cancer activity, as well as antibiotic and anti-inflammatory properties. Considering the structural correlation between endogenous monoamine serotonin with marine indolic alkaloids 5,6-dibromoabrine and 5,6-dibromotryptamine, a potential use of some dibrominated indolic metabolites in the treatment of depression-related pathologies has also been hypothesized. Due to the potential applications in the treatment of various diseases and the increasing demand of these compounds for biological assays and the difficult of their isolation from marine sources, we report in this review a series of recent syntheses of marine dibrominated indole-containing products.

  10. Anticancer effects of brominated indole alkaloid Eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa).

    Science.gov (United States)

    Rajesh, Rajaian Pushpabai; Annappan, Murugan

    2015-01-01

    Marine invertebrates called ascidians are prolific producers of bioactive substances. The ascidian Eudistoma viride, distributed along the Southeast coast of India, was investigated for its in vitro cytotoxic activity against human cervical carcinoma (HeLa) cells by the MTT assay. The crude methanolic extract of E. viride, with an IC50 of 53 μg/ml, was dose-dependently cytotoxic. It was more potent at 100 μg/ml than cyclohexamide (1 μg/ml), reducing cell viability to 9.2%. Among nine fractions separated by chromatography, ECF-8 exhibited prominent cytoxic activity at 10 μg/ml. The HPLC fraction EHF-21 of ECF-8 was remarkably dose- and time-dependently cytotoxic, with 39.8% viable cells at 1 μg/ml compared to 51% in cyclohexamide-treated cells at the same concentration; the IC50 was 0.49 μg/ml. Hoechst staining of HeLa cells treated with EHF-21 at 0.5 μg/ml revealed apoptotic events such an cell shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies. Cell size and granularity study showed changes in light scatter, indicating the characteristic feature of cells dying by apoptosis. The cell-cycle analysis of HeLa cells treated with fraction EHF-21 at 1 μg/ml showed the marked arrest of cells in G0/G1, S and G2/M phases and an increase in the sub G0/G1 population indicated an increase in the apoptotic cell population. The statistical analysis of the sub-G1 region showed a dose-dependent induction of apoptosis. DNA fragmentation was also observed in HeLa cells treated with EHF-21. The active EHF-21 fraction, a brominated indole alkaloid Eudistomin H, led to apoptotic death of HeLa cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    Sunil Kumar; Awantika Singh; Vikas Bajpai; Mukesh Srivastava; Bhim Pratap Singh; Brijesh Kumar

    2016-01-01

    Rauwolfia species (Apocynaceae) are medicinal plants well known worldwide due to its potent bioactive monoterpene indole alkaloids (MIAs) such as reserpine, ajmalicine, ajmaline, serpentine and yohimbine. Reserpine, ajmalicine and ajmaline are powerful antihypertensive, tranquilizing agents used in hypertension. Yohimbine is an aphrodisiac used in dietary supplements. As there is no report on the comparative and comprehensive phytochemical investigation of the roots of Rauwolfia species, we have developed an efficient and reliable liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for ethanolic root extract of Rauwolfia species to elucidate the fragmentation pathways for dereplication of bioactive MIAs using high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC–ESI–QTOF–MS/MS) in positive ion mode. We identified and established diagnostic fragment ions and fragmentation pathways using reserpine, ajmalicine, ajmaline, serpentine and yohimbine. The MS/MS spectra of reserpine, ajmalicine, and ajmaline showed C-ring-cleavage whereas E-ring cleavage was observed in serpentine via Retro Diels Alder (RDA). A total of 47 bioactive MIAs were identified and characterized on the basis of their molecular formula, exact mass measurements and MS/MS analysis. Reserpine, ajmalicine, ajmaline, serpentine and yohimbine were unambiguously identified by comparison with their authentic standards and other 42 MIAs were tentatively identified and characterized from the roots of Rauwolfia hookeri, Rauwolfia micrantha, Rauwolfia serpentina, Rauwolfia verticillata, Rauwolfia tetraphylla and Rauwolfia vomitoria. Application of LC–MS followed by principal component analysis (PCA) has been successfully used to discriminate among six Rauwolfia species.

  12. Dereplication-guided isolation of a new indole alkaloid triglycoside from the hooks of Uncaria rhynchophylla by LC with ion trap time-of-flight MS.

    Science.gov (United States)

    Zhang, Jian-Gang; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun; Geng, Chang-An

    2018-04-01

    Uncaria rhynchophylla (Gou-Teng) as the monarch herb of many formulae (Fufang), e.g. "Tian-Ma-Gou-Teng-Yin," "Ling-Jiao-Gou-Teng-Yin," and "Yi-Gan-San", is a famous traditional Chinese medicine documented in the Chinese pharmacopoeia for mental and cardiovascular diseases. In the traditional Chinese medicine system, only the hook-bearing stems are used as the crude materials for Gou-Teng, and the hooks are always considered more effective than the stems. Focusing on the mono-herb and its active constituents from combinatorial formulae is the core idea of reductionism of traditional Chinese medicine theory. Detailed liquid chromatography with mass spectrometry analysis on the hooks of U. rhynchophylla was performed to profile the chemical constituents based on tandem mass spectrometry fragmentation and UV absorption. Under the guidance of liquid chromatography with ion trap/time-of-flight mass spectrometry, one new indole alkaloid triglycoside (1), together with five known compounds 2-6 as the main constituents, were isolated from the hooks of U. rhynchophylla by various column chromatography methods. Compound 1 showed moderate activity on MT 1 and MT 2 melatonin receptors with agonistic rates of 79.6 and 46.3% at the concentration of 1 mM. This dereplication strategy can be equally applicable to rapidly disclose the active constituents of other Chinese herbs through targeted purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 3-Substituted 2-phenyl-indoles

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Jørgensen, T.B.; Gloriam, D.E.

    2013-01-01

    -indoles with a variety of substituents at the indole 3-position. Herein we describe the development of optimised and efficient synthetic routes to a series of new 2-phenyl-indole building blocks 3 to 9 and show that these can be used to generate a broad variety of 3-substituted 2-phenyl-indoles of interest to medicinal...

  14. Antioxidative properties of harmane and beta-carboline alkaloids.

    Science.gov (United States)

    Tse, S Y; Mak, I T; Dickens, B F

    1991-07-15

    beta-Carboline alkaloids are derived as a result of condensation between indoleamine (e.g. tryptamine) and short-chain carboxylic acid (e.g. pyruvic acid) or aldehyde (e.g. acetaldehyde), a reaction that occurs readily at room temperature. These compounds have been found endogenously in human and animal tissues and may be formed as a byproduct of secondary metabolism: their endogenous functions however, are not well understood. Indoles and tryptophan derivatives exhibit antioxidative actions by scavenging free radicals and forming resonance stabilized indolyl radicals. Harmane and related compounds exhibited concentration-dependent inhibition of lipid peroxidation (measured as thiobarbiturate reactive products) in a hepatic microsomal preparation incubated with either enzymatic dependent (Fe3+ ADP/NADPH) or non-enzymatic dependent (Fe3+ ADP/dihydroxyfumarate) oxygen radical producing systems. Alkaloids with hydroxyl substitution and a partially desaturated pyridyl ring were found to have the highest antioxidative potencies. Substitution of a hydroxyl group by a methoxyl group at the 6-position resulted in a decrease of greater than 10-fold in the antioxidative activities. Harmane showed high efficacy in an enzymatic system but low efficacy in a non-enzymatic system. The antioxidative effects of harmane in the former system may be attributed to its ability to inhibit oxidative enzymes in the microsomal system. These results suggest that beta-carbolines may also serve as endogenous antioxidants.

  15. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): an emerging animal health concern in Ireland?

    Science.gov (United States)

    Canty, Mary J; Fogarty, Ursula; Sheridan, Michael K; Ensley, Steve M; Schrunk, Dwayne E; More, Simon J

    2014-01-01

    Four primary mycotoxicosis have been reported in livestock caused by fungal infections of grasses or cereals by members of the Clavicipitaceae family. Ergotism (generally associated with grasses, rye, triticale and other grains) and fescue toxicosis (associated with tall fescue grass, Festuca arundinacea) are both caused by ergot alkaloids, and referred to as 'ergot alkaloid intoxication'. Ryegrass staggers (associated with perennial ryegrass Lolium perenne) is due to intoxication with an indole-diperpene, Lolitrem B, and metabolites. Fescue-associated oedema, recently described in Australia, may be associated with a pyrrolizidine alkaloid, N-acetyl norloline. Ergotism, caused by the fungus Claviceps purpurea, is visible and infects the outside of the plant seed. Fescue toxicosis and ryegrass staggers are caused by Neotyphodium coenophalium and N. lolii, respectively. Fescue-associated oedema has been associated with tall fescue varieties infected with a specific strain of N. coenophialum (AR542, Max P or Max Q). The name Neotyphodium refers to asexual derivatives of Epichloë spp., which have collectively been termed the epichloë fungi. These fungi exist symbiotically within the grass and are invisible to the naked eye. The primary toxicological effect of ergot alkaloid involves vasoconstriction and/or hypoprolactinaemia. Ingestion of ergot alkaloid by livestock can cause a range of effects, including poor weight gain, reduced fertility, hyperthermia, convulsions, gangrene of the extremities, and death. To date there are no published reports, either internationally or nationally, reporting ergot alkaloid intoxication specifically associated with perennial ryegrass endophytes. However, unpublished reports from the Irish Equine Centre have identified a potential emerging problem of ergot alkaloid intoxication with respect to equines and bovines, on primarily perennial ryegrass-based diets. Ergovaline has been isolated in varying concentrations in the herbage of a

  16. Molecular docking study of Papaver alkaloids to some alkaloid receptors

    Directory of Open Access Journals (Sweden)

    A. Nofallah

    2017-11-01

    Full Text Available Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides like mu, delta, and kappa receptors. Therefore, studying the effects of these alkaloids on different receptors is essential. Methods: Molecular docking is a well-known method in exploring the protein-ligand interactions. In this research, five important alkaloids were docked to crystal structure of human mu opioid receptor (4DKL, human delta opioid receptor (4EJ4 and human kappa opioid receptor (4DJH which were retrieved from protein databank. The 3D-structures of alkaloids were drawn by chembiooffice2010 and minimized with hyperchem package and submitted to molecular docking utilizing autodock-vina. Flexibility of the proteins was considered. The docking studies were performed to compare the affinity of these five alkaloids to the mentioned receptors. Results: We computationally docked each alkaloid compound onto each receptor structure and estimated their binding affinity based on dock scores. Dock score is a criteria including binding energy which utilized here for prediction and comparison of the binding affinities. Binding interactions of the docked alkaloids in receptor pockets were also visually inspected and compared. Conclusion: In this approach, using docking study as a computational method provided a valuable insight of opioid receptor pocket structures which would be essential to design more efficient drugs in pain managements and addiction treatments.

  17. Alkaloids from Delphinium pentagynum.

    Science.gov (United States)

    Díaz, Jesús G; Ruiz, Juan García; Herz, Werner

    2004-07-01

    Aerial parts of a collection of Delphinium pentagynum Lam. from Niebla, Southern Spain, furnished one diterpene alkaloid, 2-dehydrodeacetylheterophylloidine, two norditerpene alkaloids, 14-demethyl-14-isobutyrylanhweidelphinine and 14-demethyl-14-acetylanhweidelphinine, the known alkaloids 14-deacetylnudicauline, methyllycaconitine, 14-deacetyl-14-isobutyrylnudicauline, 14-acetylbrowniine, browniine, delcosine, lycoctonine, 18-methoxygadesine, neoline, karakoline and the aporphine alkaloid magnoflorine. Structures of the alkaloids were established by MS, 1D and 2-D NMR techniques.

  18. Monoterpenoid indole alkaloids and phenols are required antioxidants in glutathione depleted Uncaria tomentosa root cultures

    Directory of Open Access Journals (Sweden)

    Ileana eVera-Reyes

    2015-04-01

    Full Text Available Plants cells sense their environment through oxidative signaling responses and make appropriate adjustments to gene expression, physiology and metabolic defense. Root cultures of Uncaria tomentosa, a native plant of the Amazon rainforest, were exposed to stressful conditions by combined addition of the glutathione inhibitor, buthionine sulfoximine (0.8 mM and 0.2 mM jasmonic acid. This procedure induced a synchronized two-fold increase of hydrogen peroxide and guaiacol peroxidases, while the glutathione content and glutathione reductase activity were reduced. Likewise in elicited cultures, production of the antioxidant secondary metabolites, monoterpenoid oxindole and glucoindole alkaloids, were 2.1 and 5.5-fold stimulated (704.0 ± 14.9 and 845.5 ± 13.0 µg/g DW, respectively after 12 h after, while phenols were three times increased. Upon elicitation, the activities and mRNA transcript levels of two enzymes involved in the alkaloid biosynthesis, strictosidine synthase and strictosidine β-glucosidase, were also enhanced. Differential proteome analysis performed by two-dimensional polyacrylamide gel electrophoresis of elicited and control root cultures showed that, after elicitation, several new protein spots appeared. Two of them were identified as thiol-related enzymes, namely cysteine synthase and methionine synthase. Proteins associated with antioxidant and stress responses, including two strictosidine synthase isoforms, were identified as well, together with others as caffeic acid O-methyltransferase. Our results propose that in U. tomentosa roots a signaling network involving hydrogen peroxide and jasmonate derivatives coordinately regulates the antioxidant response and secondary metabolic defense via transcriptional and protein activation.

  19. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids1[OPEN

    Science.gov (United States)

    Levac, Dylan; Cázares, Paulo; Yu, Fang

    2016-01-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  20. Synthesis of New Functionalized Indoles Based on Ethyl Indol-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Ahmed T. A. Boraei

    2016-03-01

    Full Text Available Successful alkylations of the nitrogen of ethyl indol-2-carboxylate were carried out using aq. KOH in acetone. The respective N-alkylated acids could be obtained without separating the N-alkylated esters by increasing the amount of KOH and water. The use of NaOMe in methanol led to transesterification instead of the alkylation, while the use of NaOEt led to low yields of the N-alkylated acids. Hydrazinolysis of the ester gave indol-2-carbohydrazide which then was allowed to react with different aromatic aldehydes and ketones in ethanol catalyzed by acetic acid. Indol-2-thiosemicarbazide was used in a heterocyclization reaction to form thiazoles. The new structures were confirmed using NMR, mass spectrometry and X-ray single crystal analysis.

  1. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    Science.gov (United States)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  2. Visual identification of alkaloids in some medicinal plants: common alkaloid reagents versus bromocresol green

    Directory of Open Access Journals (Sweden)

    Shamsa F, Esfahani HR, Gamooshi RA

    2008-07-01

    Full Text Available "n Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Background: Alkaloids are a group of nitrogenous compounds with potential effects on the physiological behavior of human and animals. Some of these compounds are considered important drugs in modern medicine, such as atropine and morphine. Plants are considered the most important source of alkaloids. Therefore, investigating the presence of alkaloids in different plants is very important. Usually, alkaloids in plants are identified by methods such as those of Dragendorf, Wagner and Meyer, among others, which require milligrams of alkaloids for identification. In the present study, a fast and sensitive procedure for detecting of alkaloids in plants is presented.   "n"nMethods: Twelve dried plants samples were investigated for the presence alkaloids. After extracting the total alkaloid into methanol using a Soxhlet extractor, a few milligrams of the extract was transferred to a separatory funnel, buffered to pH 4.7, the bromocresol green (BCG solution (10-4 M was added, mixed and extracted with CHCl3 until a yellow color was observed in the CHCl3 layer, indicating the presence of the alkaloid. The crude extracts were also investigated by the standard methods of Dragendorf, Wagner and Meyer for the presence of alkaloids.   "n"nResults: Investigation of the 12 plant samples for the presence of alkaloids by the standard reagents of Dragendorf, Wagner, and Meyer showed that only Camelia sinensis (flowers, Echium amoenum Fisch & Mey (flowers, and Stachys (aerial parts are devoid

  3. Rhodium-Catalyzed Denitrogenative [3+2] Cycloaddition: Access to Functionalized Hydroindolones and the Framework of Montanine-Type Amaryllidaceae Alkaloids.

    Science.gov (United States)

    Yang, Hongjian; Hou, Shengtai; Tao, Cheng; Liu, Zhao; Wang, Chao; Cheng, Bin; Li, Yun; Zhai, Hongbin

    2017-09-18

    Rhodium-catalyzed denitrogenative [3+2] cycloaddition of 1-sulfonyl-1,2,3-triazoles with cyclic silyl dienol ethers has been developed for the synthesis of functionalized hydroindolones or their corresponding silyl ethers. The present method has been employed to construct synthetically valuable bicyclo[3.3.1]alkenone derivatives and pyrrolidine-ring-containing bicyclic indole compounds. As a further synthetic application, a stereoselective synthesis of 5,11-methanomorphanthridin-3-one, which shares a key skeleton with montanine-type Amaryllidaceae alkaloids has been achieved by using this chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Vasodilative effects of indole alkaloids obtained from domestic plants, Uncaria rhynchophylla Miq. and Amsonia elliptica Roem. et Schult].

    Science.gov (United States)

    Ozaki, Y

    1990-02-01

    Vasodilative effects of hirsutine (HS) and hirsuteine (HST) which were isolated from the domestic plant Uncaria rhynchophylla Miq. and beta-yohimbine (beta-Y) which was isolated from the domestic plant Amsonia elliptica Roem. et Schult. were carried out. In the hind-limb artery of anesthetized dogs, intra-arterial administration of HS, HST and beta-Y caused a vasodilatation. The vasodilative potency of HS was somewhat stronger than that of HST, and the potency of both alkaloids was approximately equal to that of papaverine. The vasodilative effect of beta-Y was similar to that of yohimbine, which is considered to be derived from its alpha-adrenoceptor blocking effect, and the potency of both alkaloids was approximately the same, while the effect of beta-Y was stronger than that of papaverine. In the coronary artery, HS showed a vasodilatation and its potency was weaker than that of papaverine. Also, HS showed the same effect in the cerebral artery, and the potency of HS was approximately the same as that of papaverine. These results suggest that the mode of the vasodilative effect induced by HS may partly differ from that of papaverine.

  5. The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae.

    Science.gov (United States)

    Sabir, Jamal S M; Jansen, Robert K; Arasappan, Dhivya; Calderon, Virginie; Noutahi, Emmanuel; Zheng, Chunfang; Park, Seongjun; Sabir, Meshaal J; Baeshen, Mohammed N; Hajrah, Nahid H; Khiyami, Mohammad A; Baeshen, Nabih A; Obaid, Abdullah Y; Al-Malki, Abdulrahman L; Sankoff, David; El-Mabrouk, Nadia; Ruhlman, Tracey A

    2016-09-22

    Alkaloid accumulation in plants is activated in response to stress, is limited in distribution and specific alkaloid repertoires are variable across taxa. Rauvolfioideae (Apocynaceae, Gentianales) represents a major center of structural expansion in the monoterpenoid indole alkaloids (MIAs) yielding thousands of unique molecules including highly valuable chemotherapeutics. The paucity of genome-level data for Apocynaceae precludes a deeper understanding of MIA pathway evolution hindering the elucidation of remaining pathway enzymes and the improvement of MIA availability in planta or in vitro. We sequenced the nuclear genome of Rhazya stricta (Apocynaceae, Rauvolfioideae) and present this high quality assembly in comparison with that of coffee (Rubiaceae, Coffea canephora, Gentianales) and others to investigate the evolution of genome-scale features. The annotated Rhazya genome was used to develop the community resource, RhaCyc, a metabolic pathway database. Gene family trees were constructed to identify homologs of MIA pathway genes and to examine their evolutionary history. We found that, unlike Coffea, the Rhazya lineage has experienced many structural rearrangements. Gene tree analyses suggest recent, lineage-specific expansion and diversification among homologs encoding MIA pathway genes in Gentianales and provide candidate sequences with the potential to close gaps in characterized pathways and support prospecting for new MIA production avenues.

  6. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis.

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-03-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 A, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 A.

  7. Envisaging the Regulation of Alkaloid Biosynthesis and Associated Growth Kinetics in Hairy Roots of Vinca minor Through the Function of Artificial Neural Network.

    Science.gov (United States)

    Verma, Priyanka; Anjum, Shahin; Khan, Shamshad Ahmad; Roy, Sudeep; Odstrcilik, Jan; Mathur, Ajay Kumar

    2016-03-01

    Artificial neural network based modeling is a generic approach to understand and correlate different complex parameters of biological systems for improving the desired output. In addition, some new inferences can also be predicted in a shorter time with less cost and labor. As terpenoid indole alkaloid pathway in Vinca minor is very less investigated or elucidated, a strategy of elicitation with hydroxylase and acetyltransferase along with incorporation of various precursors from primary shikimate and secoiridoid pools via simultaneous employment of cyclooxygenase inhibitor was performed in the hairy roots of V. minor. This led to the increment in biomass accumulation, total alkaloid concentration, and vincamine production in selected treatments. The resultant experimental values were correlated with algorithm approaches of artificial neural network that assisted in finding the yield of vincamine, alkaloids, and growth kinetics using number of elicits. The inputs were the hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from shikimate and secoiridoid pools and the outputs were growth index (GI), alkaloids, and vincamine. The approach incorporates two MATLAB codes; GRNN and FFBPNN. Growth kinetic studies revealed that shikimate and tryptophan supplementation triggers biomass accumulation (GI = 440.2 to 540.5); while maximum alkaloid (3.7 % dry wt.) and vincamine production (0.017 ± 0.001 % dry wt.) was obtained on supplementation of secologanin along with tryptophan, naproxen, hydrogen peroxide, and acetic anhydride. The study shows that experimental and predicted values strongly correlate each other. The correlation coefficient for growth index (GI), alkaloids, and vincamine was found to be 0.9997, 0.9980, 0.9511 in GRNN and 0.9725, 0.9444, 0.9422 in FFBPNN, respectively. GRNN provided greater similarity between the target and predicted dataset in comparison to FFBPNN. The findings can provide future

  8. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Directory of Open Access Journals (Sweden)

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  9. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca.

    Science.gov (United States)

    Riba, Jordi; McIlhenny, Ethan H; Valle, Marta; Bouso, José Carlos; Barker, Steven A

    2012-01-01

    Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT(2A/1A/2C) agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Accumulation of Monoterpenoid Indole Alkaloids in Periwinkle Seedlings ("Catharanthus roseus") as a Model for the Study of Plant-Environment Interactions

    Science.gov (United States)

    Miranda-Ham, Maria de Lourdes; Islas-Flores, Ignacio; Vazquez-Flota, Felipe

    2007-01-01

    Alkaloids are part of the chemical arsenal designed to protect plants against an adverse environment. Therefore, their synthesis and accumulation are frequently induced in response to certain environmental conditions and are mediated by chemical signals, which are formed as the first responses to the external stimulus. A set of experiments using…

  11. Photomonomerization of pyrimidine dimers by indoles and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Huang, C.W.; Hinman, L.; Gordon, M.P.; Deranleau, D.A.

    1976-01-01

    Model systems for the study of photoreactivation have been developed that utilize a variety of indole derivatives. These systems can split uracil cis-syn cyclobutadipyrimidine, either free or in RNA, when irradiated at wavelengths absorbed only by the indole moiety. The ability of indole compounds to split dimers is closely related to their electronic properties. Those of high electron-donor capacity such as indole, 3-methylindole, indole-3-acetic acid, 5-hydroxytryptophan and tryptophan are good photosensitizers, with efficacy in that order. Indoles with electron-withdrawing substituents such as indole-3-carboxylic acid, indole-3-aldehyde and oxindole are inactive in the monomerization reaction. These findings support the proposed mechanism that the photosensitized monomerization occurs as a result of electron transfer from the excited indole molecules to the pyrimidine bases. Proteins containing fully exposed tryptophan residues (chicken egg white lysozyme and bovine diisopropylphosphoryltrypsin) also cause the splitting of the /sup 14/C-labeled dimers under the same conditions. In the case of lysozyme the quantum yield of monomerization is similar to that of free tryptophan. Much of the monomerization ability of lysozyme was lost after the solvent-available tryptophan had been oxidized by treatment with N-bromosuccinimide. Bovine pancreatic ribonuclease A, a protein devoid of tryptophan, failed to exhibit photosensitized monomerization of uracil dimers. The biological implication of these reactions involving a protein with an exposed tryptophan residue is discussed. Although indoles are able to split the dimers in RNA, they fail to photoreactivate uv-damaged TMV-RNA. Indole-3-acetic acid, 3-methylindole and 5-hydroxytryptophan rapidly inactive viral RNA when irradiated at 313 nm, possibly because of side reactions.

  12. Gas chromatographic analysis of dimethyltryptamine and beta-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage.

    Science.gov (United States)

    Pires, Ana Paula Salum; De Oliveira, Carolina Dizioli Rodrigues; Moura, Sidnei; Dörr, Felipe Augusto; Silva, Wagner Abreu E; Yonamine, Mauricio

    2009-01-01

    Ayahuasca is obtained by infusing the pounded stems of Banisteriopsis caapi in combination with the leaves of Psychotria viridis. P. viridis is rich in the psychedelic indole N,N-dimethyltryptamine, whereas B. caapi contains substantial amounts of beta-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine, which are monoamine-oxidase inhibitors. Because of differences in composition in ayahuasca preparations, a method to measure their main active constituents is needed. To develop a gas chromatographic method for the simultaneous determination of dimethyltryptamine and the main beta-carbolines found in ayahuasca preparations. The alkaloids were extracted by means of solid phase extraction (C(18)) and detected by gas chromatography with nitrogen/phosphorous detector. The lower limit of quantification (LLOQ) was 0.02 mg/mL for all analytes. The calibration curves were linear over a concentration range of 0.02-4.0 mg/mL (r(2 )> 0.99). The method was also precise (RSD ayahuasca was developed and validated. The method can be useful to estimate administered doses in animals and humans for further pharmacological and toxicological investigations of ayahuasca. Copyright (c) 2009 John Wiley & Sons, Ltd.

  13. A Simplified Procedure for Indole Alkaloid Extraction from Catharanthus roseus Combined with a Semi-synthetic Production Process for Vinblastine

    Directory of Open Access Journals (Sweden)

    Marja-Liisa Riekkola

    2007-07-01

    Full Text Available Dried leaves of Catharanthus roseus were extracted with aqueous acidic 0.1 M solution of HCl. Alkaloid-embonate complexes were obtained as precipitates by treating the extract with an alkaline (NaOH solution of embonic acid (4,4-methylene-bis-3-hydroxynaphtalenecarboxylic acid. The precipitate mainly consisted of catharanthine and vindoline embonates and it was directly used as the starting material for a semi-synthesis of the anti-cancer bisindole alkaloid vinblastine. The coupling reaction involved oxidation of catharanthine in aqueous acidic medium by singlet oxygen (1O2, continuously produced in situ by the reaction between H2O2 with NaClO. An excess of NaBH4 was used for the reduction step. Analysis of the reaction mixture indicated a maximum yield of 20% for vinblastine at pH 8.3, based on the initial amount of catharanthine concentration. Direct-injection electrospray ionization mass spectrometry in positive ion mode was used for the identification of vinblastine. The mass spectra of vinblastine were dominated by the corresponding protonated molecular ion [M+H]+ at m/z 811 and the characteristic fragment ions matched with those of the standard compound.

  14. Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space.

    Science.gov (United States)

    Ibrahim, Mohamed A; El-Alfy, Abir T; Ezel, Kelly; Radwan, Mohamed O; Shilabin, Abbas G; Kochanowska-Karamyan, Anna J; Abd-Alla, Howaida I; Otsuka, Masami; Hamann, Mark T

    2017-08-09

    In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo- N , N -dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1 H -indol-3-yl)- N , N -dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1a ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1d ), 2-(1 H -indol-3-yl)- N , N -dimethylethanamine ( 2a ), 2-(5-chloro-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2c ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2d ), and 2-(5-iodo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2e ) have been shown to possess significant antidepressant-like action, while compounds 2c , 2d , and 2e exhibited potent sedative activity. Compounds 2a , 2c , 2d , and 2e showed nanomolar affinities to serotonin receptors 5-HT 1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.

  15. Novel indole-based inhibitors of IMPDH: introduction of hydrogen bond acceptors at indole C-3.

    Science.gov (United States)

    Watterson, Scott H; Dhar, T G Murali; Ballentine, Shelley K; Shen, Zhongqi; Barrish, Joel C; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-04-07

    The development of a series of novel indole-based inhibitors of 5'-inosine monophosphate dehydrogenase (IMPDH) is described. Various hydrogen bond acceptors at C-3 of the indole were explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are outlined.

  16. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    Science.gov (United States)

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  17. Inhibitive action of alkaloids and non alkaloid fractions of the ...

    African Journals Online (AJOL)

    The corrosion inhibition of mild steel in 2.0 MHCl solution by non-alkaloidal and alkaloidal fractions of the extracts of Phyllanthus amarus (NAEPA and AEPA respectively) was studied using gravimetric and gasometric techniques at 303 and 323 K. The results revealed that the extracts functioned as good corrosion inhibitors.

  18. Heterologous expression, purification, crystallization and preliminary X-ray analysis of raucaffricine glucosidase, a plant enzyme specifically involved in Rauvolfia alkaloid biosynthesis

    Science.gov (United States)

    Ruppert, Martin; Panjikar, Santosh; Barleben, Leif; Stöckigt, Joachim

    2006-01-01

    Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 Å, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 Å. PMID:16511316

  19. Indole-3-thiouronium nitrate

    Directory of Open Access Journals (Sweden)

    Martin Lutz

    2008-01-01

    Full Text Available In the title compound, C9H10N3S+·NO3−, the indole ring system and the thiouronium group are nearly perpendicular, with a dihedral angle of 88.62 (6°. Hydrogen bonding generates two-dimensional networks which are linked to each other via π stacking interactions of the indole groups [average inter-planar ring–ring distance of 3.449 (2 Å].

  20. Catharanthus alkaloids XXXII: isolation of alkaloids from Catharanthus trichophyllus roots and structure elucidation of cathaphylline.

    Science.gov (United States)

    Cordell, G A; Farnsworth, N R

    1976-03-01

    Further examination of the cytotoxic alkaloid fractions of Catharanthus trichophyllus roots afforded nine alkaloids. Two of these alkaloids, lochnericine and horhammericine, are responsible for part of the cytotoxic activity. The structure elucidation of cathaphylline, a new beta-anilino acrylate derivative, is described.

  1. Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae).

    Science.gov (United States)

    Hantak, Maggie M; Grant, Taran; Reinsch, Sherri; McGinnity, Dale; Loring, Marjorie; Toyooka, Naoki; Saporito, Ralph A

    2013-12-01

    Several lineages of brightly colored anurans independently evolved the ability to secrete alkaloid-containing defensive chemicals from granular glands in the skin. These species, collectively referred to as 'poison frogs,' form a polyphyletic assemblage that includes some species of Dendrobatidae, Mantellidae, Myobatrachidae, Bufonidae, and Eleutherodactylidae. The ability to sequester alkaloids from dietary arthropods has been demonstrated experimentally in most poison frog lineages but not in bufonid or eleutherodactylid poison frogs. As with other poison frogs, species of the genus Melanophryniscus (Bufonidae) consume large numbers of mites and ants, suggesting they might also sequester defensive alkaloids from dietary sources. To test this hypothesis, fruit flies dusted with alkaloid/nutritional supplement powder were fed to individual Melanophryniscus stelzneri in two experiments. In the first experiment, the alkaloids 5,8-disubstituted indolizidine 235B' and decahydroquinoline were administered to three individuals for 104 days. In the second experiment, the alkaloids 3,5-disubstituted indolizidine 239Q and decahydroquinoline were given to three frogs for 153 days. Control frogs were fed fruit flies dusted only with nutritional supplement. Gas chromatography/mass spectrometry analyses revealed that skin secretions of all experimental frogs contained alkaloids, whereas those of all control frogs lacked alkaloids. Uptake of decahydroquinoline was greater than uptake of 5,8-disubstituted indolizidine, and uptake of 3,5-disubstituted indolizidine was greater than uptake of decahydroquinoline, suggesting greater uptake efficiency of certain alkaloids. Frogs in the second experiment accumulated a greater amount of alkaloid, which corresponds to the longer duration and greater number of alkaloid-dusted fruit flies that were consumed. These findings provide the first experimental evidence that bufonid poison frogs sequester alkaloid-based defenses from dietary

  2. DNA minor groove binding of small molecules: Experimental and ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Eight indole derivatives were studied for their DNA binding ability using fluorescence quenching and molecular docking methods. These indole compounds have structural moieties similar as in few indole alkaloids. Experimental and theoretical studies have suggested that indole derivatives bind in the minor ...

  3. Oligomerization of Indole Derivatives with Incorporation of Thiols

    Directory of Open Access Journals (Sweden)

    Jarl E.S. Wikberg

    2008-08-01

    Full Text Available Abstract: Two molecules of indole derivative, e.g. indole-5-carboxylic acid, reacted with one molecule of thiol, e.g. 1,2-ethanedithiol, in the presence of trifluoroacetic acid to yield adducts such as 3-[2-(2-amino-5-carboxyphenyl-1-(2-mercaptoethylthioethyl]-1Hindole-5-carboxylic acid. Parallel formation of dimers, such as 2,3-dihydro-1H,1'H-2,3'-biindole-5,5'-dicarboxylic acid and trimers, such as 3,3'-[2-(2-amino-5-carboxyphenyl ethane-1,1-diyl]bis(1H-indole-5-carboxylic acid of the indole derivatives was also observed. Reaction of a mixture of indole and indole-5-carboxylic acid with 2-phenylethanethiol proceeded in a regioselective way, affording 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-1H-indole-5-carboxylic acid. An additional product of this reaction was 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-2,3-dihydro-1H,1'H-2,3'-biindole-5'-carboxylic acid, which upon standing in DMSO-d6 solution gave 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-1H,1'H-2,3'-biindole-5'-carboxylic acid. Structures of all compounds were elucidated by NMR, and a mechanism for their formation was suggested.

  4. Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues.

    Science.gov (United States)

    Van Baelen, Gitte; Hostyn, Steven; Dhooghe, Liene; Tapolcsányi, Pál; Mátyus, Péter; Lemière, Guy; Dommisse, Roger; Kaiser, Marcel; Brun, Reto; Cos, Paul; Maes, Louis; Hajós, György; Riedl, Zsuzsanna; Nagy, Ildikó; Maes, Bert U W; Pieters, Luc

    2009-10-15

    Based on the indoloquinoline alkaloids cryptolepine (1), neocryptolepine (2), isocryptolepine (3) and isoneocryptolepine (4), used as lead compounds for new antimalarial agents, a series of tricyclic and bicyclic analogues, including carbolines, azaindoles, pyrroloquinolines and pyrroloisoquinolines was synthesized and biologically evaluated. None of the bicyclic compounds was significantly active against the chloroquine-resistant strain Plasmodium falciparum K1, in contrast to the tricyclic derivatives. The tricyclic compound 2-methyl-2H-pyrido[3,4-b]indole (9), or 2-methyl-beta-carboline, showed the best in vitro activity, with an IC(50) value of 0.45 microM against P. falciparum K1, without apparent cytotoxicity against L6 cells (SI>1000). However, this compound was not active in the Plasmodium berghei mouse model. Structure-activity relationships are discussed and compared with related naturally occurring compounds.

  5. Electrochemical Behavior of Biologically Important Indole Derivatives

    Directory of Open Access Journals (Sweden)

    Cigdem Karaaslan

    2011-01-01

    Full Text Available Voltammetric techniques are most suitable to investigate the redox properties of a new drug. Use of electrochemistry is an important approach in drug discovery and research as well as quality control, drug stability, and determination of physiological activity. The indole nucleus is an essential element of a number of natural and synthetic products with significant biological activity. Indole derivatives are the well-known electroactive compounds that are readily oxidized at carbon-based electrodes, and thus analytical procedures, such as electrochemical detection and voltammetry, have been developed for the determination of biologically important indoles. This paper explains some of the relevant and recent achievements in the electrochemistry processes and parameters mainly related to biologically important indole derivatives in view of drug discovery and analysis.

  6. Stable and High Ajmalicine or Serpentine Production of Gamma Radiation Induction Mutant Catharantus Roseus

    International Nuclear Information System (INIS)

    Sumaryati Syukur

    2004-01-01

    Catharantus roseus Mutant have been selected by gamma irradiation with 20 krad doses of radiation and characterized as biochemical mutant with anti-feed back inhibition mechanism of tritophan decarboxylase (TDR) enzyme in biosynthetic path way of indole alkaloid. Production of indole alkaloid mainly ajmalicine with high economical values as a pharmaceutical drug for heart attack have been studied by using cell suspension cultures with several variation of medium, elicitors and stress osmosis. This treatment produced variation of indole alkaloid ajmalicine and serpentine. Several induction methods using Murashige and Skoog (MS) medium and polyethylene glycol PEG (6000) 1 to 7%, with hormones concentration of 2,4-D and kinetin as (10 : 1), showed optimal results of ajmalicine range between 20 and 50 nmol/gFW, and serpentine 10 to 60 nmol/gFW. This production increases ten time in mutant (20 Krad) by stress osmotic condition and performed long term stability in culture without subculture. In this paper explanation in detail about the selection methods, stability of mutant and the production of indole alkaloid ajmalicine and serpentine during growth phase, such as adaptation, log, and stationar in suspention culture of mutan cells. (author)

  7. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    Science.gov (United States)

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ergot alkaloid transport across ruminant gastric tissues.

    Science.gov (United States)

    Hill, N S; Thompson, F N; Stuedemann, J A; Rottinghaus, G W; Ju, H J; Dawe, D L; Hiatt, E E

    2001-02-01

    Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal

  9. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain.

    Science.gov (United States)

    Qu, Yuanyuan; Ma, Qiao; Liu, Ziyan; Wang, Weiwei; Tang, Hongzhi; Zhou, Jiti; Xu, Ping

    2017-12-01

    Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies. © 2017 John Wiley & Sons Ltd.

  10. Simultaneous Determination of Bioactive Monoterpene Indole Alkaloids in Ethanolic Extract of Seven Rauvolfia Species using UHPLC with Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometry.

    Science.gov (United States)

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Srivastava, Mukesh; Singh, Bhim Pratap; Ojha, Sanjeev; Kumar, Brijesh

    2016-09-01

    Rauvolfia serpentina is an endangered plant species due to its over-exploitation. It has highly commercial and economic importance due to the presence of bioactive monoterpene indole alkaloids (MIAs) such as ajmaline, yohimbine, ajmalicine, serpentine and reserpine. To develop a validated, rapid, sensitive and selective ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry (UHPLC-QqQLIT -MS/MS) method in the multiple reaction monitoring (MRM) mode for simultaneous determination of bioactive MIAs in ethanolic extract of seven Rauvolfia species and herbal formulations. The separation of MIAs was achieved on an ACQUITY UPLC BEH™ C18 column (1.7 μm, 2.1 mm × 50 mm) using a gradient mobile phase (0.1% aqueous formic acid and acetonitrile) at flow rate 0.3 μL/min in 7 min. The validated method showed good linearity (r(2)  ≥ 0.9999), limit of detection (LOD) (0.06-0.15 ng/mL), limit of quantitation (LOQ) (0.18-0.44 ng/mL), precisions [intraday: relative standard deviation (RSD) ≤ 2.24%, interday: RSD ≤ 2.74%], stability (RSD ≤ 1.53%) and overall recovery (RSD ≤ 2.23%). The validated method was applied to quantitate MIAs. Root of Rauvolfia vomitoria showed a high content of ajmaline (48.43 mg/g), serpentine (87.77 mg/g) whereas high quantities of yohimbine (100.21 mg/g) and ajmalicine (120.51 mg/g) were detected in R. tetraphylla. High content of reserpine was detected in R. micrantha (35.18 mg/g) and R. serpentina (32.38 mg/g). The encouraging results of this study may lead to easy selection of suitable Rauvolfia species according to the abundance of MIAs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Indole: An evolutionarily conserved influencer of behavior across kingdoms.

    Science.gov (United States)

    Tomberlin, Jeffery K; Crippen, Tawni L; Wu, Guoyao; Griffin, Ashleigh S; Wood, Thomas K; Kilner, Rebecca M

    2017-02-01

    Indole is a key environmental cue that is used by many organisms. Based on its biochemistry, we suggest indole is used so universally, and by such different organisms, because it derives from the metabolism of tryptophan, a resource essential for many species yet rare in nature. These properties make it a valuable, environmental cue for resources almost universally important for promoting fitness. We then describe how indole is used to coordinate actions within organisms, to influence the behavior of conspecifics and can even be used to change the behavior of species that belong to other kingdoms. Drawing on the evolutionary framework that has been developed for understanding animal communication, we show how this is diversely achieved by indole acting as a cue, a manipulative signal, and an honest signal, as well as how indole can be used synergistically to amplify information conveyed by other molecules. Clarifying these distinct functions of indole identifies patterns that transcend different kingdoms of organisms. © 2016 WILEY Periodicals, Inc.

  12. Effects of Supplementation of Alkaloid and Non Alkaloid from Sauropus androgynus Leaves on Egg Production and Lipid Profil in Layer Chicken

    Directory of Open Access Journals (Sweden)

    U Santoso

    2010-09-01

    Full Text Available The present study was conducted to evaluate effects of supplementation of alkaloid or non alkaloid from Sauropus androgynus leaves on productive performance and the contents of lipid fractions in layer chickens. Forty two layer chickens aged 30 weeks were distributed to seven treatment groups. Each treatment group contained six layer chickens maintained in an individual cage, respectively. The present experiment used completely randomized experimental design. The seven treatment groups were as follows: 1 Control, layer chickens were fed diet without supplementation of alkaloid or non alkaloid extracted from Sauropus androgynus (P0; 2 Layer chickens were fed diet contained 30 mg non alkaloid/kg diet (P1; 3 Layer chickens were fed diet contained 60 mg non alkaloid/kg diet (P2; 4 Layer chickens were fed diet contained 90 mg non alkaloid/kg diet (P3; 5 Layer chickens were fed diet contained 30 mg alkaloid/kg diet (P4; 6 Layer chickens were fed diet contained 60 mg alkaloid/kg diet (P5; 7 Layer chickens were fed diet contained 90 mg alkaloid/kg diet (P6. Layer chickens were fed experimental diet with 2,750 kcal/kg Metabolizable Energy (ME and 16.0% protein. Diet and drinking water were fed ad libitum. Experimental results showed that supplementation of alkaloid or non alkaloid from Sauropus androgynus leaves significantly affected productive performance in layer chickens. It appear that non alkaloid supplementation had no advantage in improving productive performance, whereas supplementation of 30 mg alkaloid/kg diet might have advantages in improving productive performance as indicated by better egg production and lower feed conversion ratio. Treatment had no effect on glucose and triglyceride concentration in serum, but it affected total cholesterol, HDL-cholesterol, LDL+VLDL-cholesterol and atherogenic index in serum. Cholesterol concentration in serum was significantly increased in P4 and P6, whereas HDL-cholesterol concentration was

  13. Genotoxic effect of alkaloids

    Directory of Open Access Journals (Sweden)

    J. A. P. Henriques

    1991-01-01

    Full Text Available Because of the increase use of alkaloids in general medical practice in recent years, it is of interest to determine genotoxic, mutagenic and recombinogenic response to different groups of alkaloids in prokaryotic and eucaryotic organisms. Reserpine, boldine and chelerythrine did not show genotoxicity response in the SOS-Chromotest whereas skimmianine showed genotixicity in the presence of a metabolic activation mixture. Voacristine isolated fromthe leaves of Ervatamia coronaria shows in vivo cytostatic and mutagenic effects in Saccharomyces cerevisiae hapioids cells. The Rauwolfia alkaloid (reserpine was not able to induce reverse mutation and recombinational mitotic events (crossing-over and gene conversion in yeast diploid strain XS2316.

  14. Alkaloids from Mongolian species Berberis sibirica Pall

    International Nuclear Information System (INIS)

    Istatkova, R.; Philipov, S.; Tuleva, P.; Amgalan, A.; Samdan, J.; Dangaa, S.

    2007-01-01

    From the aerial parts of Berberis sibirica Pall. 6 isoquinoline alkaloids of protoberberine, protopine, benzphenanthridine and proaporphine type were isolated. The known alkaloids (-)-tetrahydropseudocoptisine, pseudoprotopine, (+)-chelidonine and (+)-glaziovine are new for the family Berberidaceae. From the roots of B. sibirica 10 isoquinoline alkaloids of protoberberine, benzylisoquinoline, bisbenzylisoquinoline, aporphine-benzylisoquinoline and proaporphine-benzylisoquinoline type were isolated. 1,10-Di-O-methylpakistanine has been reported for the first time as a natural alkaloid. The known alkaloids (-)-isothalidezine and (+)-armepavine have been found for the first time in the family Berberidaceae. All structures were determined by physical and spectral data. (authors)

  15. Pyrrolizidine alkaloid-derived DNA adducts as a common biological biomarker of pyrrolizidine alkaloid-induced tumorigenicity.

    Science.gov (United States)

    Xia, Qingsu; Zhao, Yuewei; Von Tungeln, Linda S; Doerge, Daniel R; Lin, Ge; Cai, Lining; Fu, Peter P

    2013-09-16

    Pyrrolizidine alkaloid-containing plants are the most common poisonous plants affecting livestock, wildlife, and humans. The U.S. National Toxicology Program (NTP) classified riddelliine, a tumorigenic pyrrolizidine alkaloid, as "reasonably anticipated to be a human carcinogen" in the NTP 12th Report on Carcinogens in 2011. We previously determined that four DNA adducts were formed in rats dosed with riddelliine. The structures of the four DNA adducts were elucidated as (i) a pair of epimers of 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine adducts (termed as DHP-dG-3 and DHP-dG-4) as the predominant adducts; and (ii) a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl)dehydrosupinidine adducts (termed as DHP-dA-3 and DHP-dA-4 adducts). In this study, we selected a nontumorigenic pyrrolizidine alkaloid, platyphylliine, a pyrrolizidine alkaloid N-oxide, riddelliine N-oxide, and nine tumorigenic pyrrolizidine alkaloids (riddelliine, retrorsine, monocrotaline, lycopsamine, retronecine, lasiocarpine, heliotrine, clivorine, and senkirkine) for study in animals. Seven of the nine tumorigenic pyrrolizidine alkaloids, with the exception of lycopsamine and retronecine, are liver carcinogens. At 8-10 weeks of age, female F344 rats were orally gavaged for 3 consecutive days with 4.5 and 24 μmol/kg body weight test article in 0.5 mL of 10% DMSO in water. Twenty-four hours after the last dose, the rats were sacrificed, livers were removed, and liver DNA was isolated for DNA adduct analysis. DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts were formed in the liver of rats treated with the individual seven hepatocarcinogenic pyrrolizidine alkaloids and riddelliine N-oxide. These DNA adducts were not formed in the liver of rats administered retronecine, the nontumorigenic pyrrolizidine alkaloid, platyphylliine, or vehicle control. These results indicate that this set of DNA adducts, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, is a common biological biomarker of

  16. Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari.

    Science.gov (United States)

    Chen, Yan; Xie, Xing-Guang; Ren, Cheng-Gang; Dai, Chuan-Chao

    2013-02-01

    A broad-spectrum endophytic Phomopsis liquidambari, was used to degrade environmental pollutant indole. In the condition of using indole as sole carbon and nitrogen source, the optimum concentration of indole supplied was determined to be 100 mg L(-1), with 41.7% ratio of indole degradation within 120 h. Exogenous addition of plant litter significantly increased indole degradation to 99.1% within 60 h. Indole oxidation to oxindole and isatin were the key steps limiting indole degradation. Plant litter addition induced fungus to produce laccase and LiP to non-specific oxidize indole. The results of fungal metabolites pathway through HPLC-MS and NMR analysis showed that indole was firstly oxidized to oxindole and isatin, and deoxidated to indolenie-2-dione, then hydroxylated to 2-dioxindole, which pyridine ring were cleaved through C-N position and changed to 2-aminobenzoic acid. Such metabolic pathway was similar with bacterial degradation of indole-3-acetic acid in plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Indole and 3-indolylacetonitrile inhibit spore maturation in Paenibacillus alvei

    Directory of Open Access Journals (Sweden)

    Cho Moo

    2011-05-01

    Full Text Available Abstract Background Bacteria use diverse signaling molecules to ensure the survival of the species in environmental niches. A variety of both Gram-positive and Gram-negative bacteria produce large quantities of indole that functions as an intercellular signal controlling diverse aspects of bacterial physiology. Results In this study, we sought a novel role of indole in a Gram-positive bacteria Paenibacillus alvei that can produce extracellular indole at a concentration of up to 300 μM in the stationary phase in Luria-Bertani medium. Unlike previous studies, our data show that the production of indole in P. alvei is strictly controlled by catabolite repression since the addition of glucose and glycerol completely turns off the indole production. The addition of exogenous indole markedly inhibits the heat resistance of P. alvei without affecting cell growth. Observation of cell morphology with electron microscopy shows that indole inhibits the development of spore coats and cortex in P. alvei. As a result of the immature spore formation of P. alvei, indole also decreases P. alvei survival when exposed to antibiotics, low pH, and ethanol. Additionally, indole derivatives also influence the heat resistance; for example, a plant auxin, 3-indolylacetonitrile dramatically (2900-fold decreased the heat resistance of P. alvei, while another auxin 3-indoleacetic acid had a less significant influence on the heat resistance of P. alvei. Conclusions Together, our results demonstrate that indole and plant auxin 3-indolylacetonitrile inhibit spore maturation of P. alvei and that 3-indolylacetonitrile presents an opportunity for the control of heat and antimicrobial resistant spores of Gram-positive bacteria.

  18. ALKALOIDAL COMPOSITION AND TOXICITY STUDIES OF THREE ...

    African Journals Online (AJOL)

    Mattock's test for unsaturated pyrrolizidine alkaloids (hepatotoxic) revealed that only C. retusa contained these alkaloids amongst the three species. This indicated that this is a potentially toxic specie. The alkaloids of C. retusa were toxic to albino (Wistar) rats. Marked microscopic lesions were found, principally in the liver.

  19. Alkaloids in the pharmaceutical industry: Structure, isolation and application

    Directory of Open Access Journals (Sweden)

    Nikolić Milan

    2003-01-01

    Full Text Available By the end of the 18th and the beginning of the 19th century a new era began in medicine, pharmaceutics and chemistry that was strongly connected with alkaloids and alkaloid drugs. Even before that it was known that certain drugs administered in limited doses were medicines, and toxic if taken in larger doses (opium, coke leaves, belladonna roots, monkshood tubers crocus or hemlock seeds. However, the identification, isolation and structural characterization of the active ingredients of the alkaloid drugs was only possible in the mid 20th century by the use of modern extraction equipment and instrumental methods (NMR, X-ray diffraction and others.In spite of continuing use over a long time, there is still great interest in investigating new drugs, potential raw materials for the pharmaceutical industry, as well as the more detailed investigation and definition of bio-active components and the indication of their activity range, and the partial synthesis of new alkaloid molecules based on natural alkaloids. The scope of these investigations, especially in the field of semi-synthesis is to make better use of the bio-active ingredients of alkaloid drugs, i.e. to improve the pharmacological effect (stronger and prolonged effect of the medicine, decreased toxicity and side effects, or to extend or change the applications. A combined classification of alkaloids was used, based on the chemical structure and origin, i.e. the source of their isolation to study alkaloid structure. For practical reasons, the following classification of alkaloids was used: ergot alkaloids, poppy alkaloids, tropanic alkaloids purine derivative alkaloids, carbon-cyclic alkaloids, and other alkaloids. The second part of this report presents a table of general procedures for alkaloid isolation from plant drugs (extraction by water non-miscible solvents, extraction by water-miscible solvents and extraction by diluted acid solutions. Also, methods for obtaining chelidonine and

  20. Construction of Pyrrolo[1,2-a]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Base-Promoted Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Fan, Zili; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-09-16

    A cobalt(III)-catalyzed cross-coupling reaction of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. The prepared 2-enaminylated indoles could be conveniently converted into pyrrolo[1,2-a]indoles, which are an important class of compounds in medicinal chemistry.

  1. Piperidine alkaloids: human and food animal teratogens.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Brown, David R

    2012-06-01

    Piperidine alkaloids are acutely toxic to adult livestock species and produce musculoskeletal deformities in neonatal animals. These teratogenic effects include multiple congenital contracture (MCC) deformities and cleft palate in cattle, pigs, sheep, and goats. Poisonous plants containing teratogenic piperidine alkaloids include poison hemlock (Conium maculatum), lupine (Lupinus spp.), and tobacco (Nicotiana tabacum) [including wild tree tobacco (Nicotiana glauca)]. There is abundant epidemiological evidence in humans that link maternal tobacco use with a high incidence of oral clefting in newborns; this association may be partly attributable to the presence of piperidine alkaloids in tobacco products. In this review, we summarize the evidence for piperidine alkaloids that act as teratogens in livestock, piperidine alkaloid structure-activity relationships and their potential implications for human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A turn-on indole-based sensor for hydrogen sulfate ion.

    Science.gov (United States)

    Wan, Chin-Feng; Yang, Shih-Tse; Lin, Hsiang-Yi; Chang, Ya-Ju; Wu, An-Tai

    2014-08-01

    A simple indole-based receptor 1 was prepared by a simple Schiff-base reaction of 1H-indole-3-carbaldehyde with ethane 1,2-diamine and its fluoroionophoric properties toward anions were investigated. Indole-based receptor 1 acts as a selective turn-on fluorescent sensor for HSO4(-) in methanol among a series of tested anions. Fluorescence spectroscopy, ultraviolet and nuclear magnetic resonance imaging support that the HSO4(-) indeed interacted with imine nitrogen and the proton of nitrogen in indole ring. Copyright © 2013 John Wiley & Sons, Ltd.

  3. The TosMIC approach to 3-(oxazol-5-yl) indoles: application to the synthesis of indole-based IMPDH inhibitors.

    Science.gov (United States)

    Dhar, T G Murali; Shen, Zhongqi; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-11-18

    A modified approach to the synthesis of 3-(oxazolyl-5-yl) indoles is reported. This method was applied to the synthesis of series of novel indole based inhibitors of inosine monophosphate dehydrogenase (IMPDH). The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  4. Small molecule n-(alpha-peroxy) indole compounds and methods of use

    KAUST Repository

    Wang, Xinbo; Lai, Zhiping; Pan, Yupeng; Huang, Kuo-Wei; Wang, Zhigang

    2017-01-01

    The invention relates to novel N-(α-peroxy)indole compounds of Formula I and methods for use. (I) The N-(α-peroxy)indole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)indole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy )indole compounds.

  5. Small molecule n-(alpha-peroxy) indole compounds and methods of use

    KAUST Repository

    Wang, Xinbo

    2017-11-16

    The invention relates to novel N-(α-peroxy)indole compounds of Formula I and methods for use. (I) The N-(α-peroxy)indole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)indole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy )indole compounds.

  6. Four alkaloids from Annona cherimola.

    Science.gov (United States)

    Chen, C Y; Chang, F R; Pan, W B; Wu, Y C

    2001-04-01

    Four alkaloids, annocherine A, annocherine B, cherianoine, and romucosine H, along with one known alkaloid, artabonatine B, were isolated from the MeOH extract of the stems of Annona cherimola. Their structures were identified on the basis of both analysis of their spectral data and from chemical evidence.

  7. Ethylene-enhanced catabolism of [14C]indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues

    International Nuclear Information System (INIS)

    Sagee, O.; Riov, J.; Goren, J.

    1990-01-01

    Exogenous [ 14 C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [ 14 C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels

  8. New pathway for the biodegradation of indole in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, A.; Vaidyanathan, C.S. (Indiana Institute of Science, Bangalore (India))

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  9. Monoterpene bisindole alkaloids, from the African medicinal plant Tabernaemontana elegans, induce apoptosis in HCT116 human colon carcinoma cells.

    Science.gov (United States)

    Mansoor, Tayyab A; Borralho, Pedro M; Dewanjee, Saikat; Mulhovo, Silva; Rodrigues, Cecília M P; Ferreira, Maria-José U

    2013-09-16

    Tabernaemontana elegans is a medicinal plant used in African traditional medicine to treat several ailments including cancer. The aims of the present study were to identify anti-cancer compounds, namely apoptosis inducers, from Tabernaemontana elegans, and hence to validate its usage in traditional medicine. Six alkaloids, including four monomeric indole (1-3, and 6) and two bisindole (4 and 5) alkaloids, were isolated from the methanolic extract of Tabernaemontana elegans roots. The structures of these compounds were characterized by 1D and 2D NMR spectroscopic and mass spectrometric data. Compounds 1-6 along with compound 7, previously isolated from the leaves of the same species, were evaluated for in vitro cytotoxicity against HCT116 human colon carcinoma cells by the MTS metabolism assay. The cytotoxicity of the most promising compounds was corroborated by Guava-ViaCount flow cytometry assays. Selected compounds were next studied for apoptosis induction activity in HCT116 cells, by evaluation of nuclear morphology following Hoechst staining, and by caspase-3 like activity assays. Among the tested compounds (1-7), the bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were found to be cytotoxic to HCT116 cells at 20 µM, with compound 5 being more cytotoxic than the positive control 5-Fluorouracil (5-FU), at a similar dose. In fact, even at 0.5 µM, compound 5 was more potent than 5-FU. Compounds 4 and 5 induced characteristic patterns of apoptosis in HCT116 cancer cells including, cell shrinkage, condensation, fragmentation of the nucleus, blebbing of the plasma membrane and chromatin condensation. Further, general caspase-3-like activity was increased in cells exposed to compounds 4 and 5, corroborating the nuclear morphology evaluation assays. Bisindole alkaloids tabernaelegantine C (4) and tabernaelegantinine B (5) were characterized as potent apoptosis inducers in HCT116 human colon carcinoma cells and as possible lead/scaffolds for

  10. Pyrrolizidine alkaloids.

    Science.gov (United States)

    Robertson, Jeremy; Stevens, Kiri

    2014-12-01

    This review covers pyrrolizidine alkaloids isolated from natural sources. Topics include: aspects of structure, isolation, and biological/pharmacological studies; total syntheses of necic acids, necine bases and closely-related non-natural analogues.

  11. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.

    Science.gov (United States)

    Ciska, Ewa; Honke, Joanna

    2012-04-11

    The aim of the study was to investigate the effect of the pasteurization process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Pasteurization was run at a temperature of 80 °C for 5-30 min. Significant changes were only observed in contents of ascorbigen and 3,3'-diindolylmethane. The total content of the compounds analyzed in cabbage pasteurized for 10-30 min was found to be decreased by ca. 20%, and the losses were due to thermal degradation of the predominating ascorbigen. Pasteurization was found not to exert any considerable effect on contents of indole-3-acetonitrile and indole-3-carbinol in cabbage nor did it affect contents of the compounds analyzed in juice.

  12. Alkaloids from Isopyrum thalictroides L.

    Science.gov (United States)

    Istatkova, Ralitsa; Philipov, Stefan

    2004-06-01

    Two new aporphine-benzylisoquinoline alkaloids thaliphine and isothaliphine with a new type of ether bridge were isolated from the roots and rhyzomes of Isopyrum thalictroides L. (Ranunculaceae). Their structures were established by physical and spectral analysis. The known alkaloid N-methylglaucine was isolated for the first time from a plant of the family Ranunculaceae.

  13. Transcriptional regulation of genes involved in terpenoid índole alkaloid production in Catharanthus roseus seedlings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rocha

    2002-07-01

    Full Text Available Catharanthus roseus (L. G Don is a medicinal plant that produces a variety of terpenoid indole alkaloids (TIAs, some of which display pharmacological activity. C. roseus plants and cell cultures have been used to elucidate the TIAs biosynthetic pathway. A considerable number or enzymes have also been characterised, and their respective genes cloned. TIAs production in C. roseus plant and cell cultures is highly regulated at transcriptional-, develop-mental-, and environmental-level. Studies into TIAs biosynthetic gene regulation have been carried out using cell cultures. However, regulation in plants is almost unknown. Here, biosynthetic genes idc, strl, d4h and dat expres-sion levels are qualitatively examined in a developmental series of C. roseus seedlings. The effect of water- and light-stress and methyl jasmonate (MeJa and acetyl salicylic acid (ASA elicitation is also examined. Comparison between seedlings and cell cultures strongly suggests that TIAs biosynthetic gene transcriptional regulation is different in C.roseus plants and cell cultures.

  14. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    Science.gov (United States)

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  15. TOXIC PYRROLIZIDINE ALKALOIDS OF ECHIUM AMOENUM FISCH. & MEY.

    Directory of Open Access Journals (Sweden)

    MITRA MEHRABANI

    2006-06-01

    Full Text Available Toxic pyrrolizidine alkaloids are present in some species of Echium (Boraginaceae. In this study petals of Echium amoenum Fisch. & Mey. (Gol-e-Gavzaban as a popular herbal medicine in Iran, were investigated for pyrrolizidine alkaloids (PAs. The alkaloids were separated and purified by preparative TLC and characterized by IR, one and two dimensional 1H and 13C-NMR and Mass spectroscopy. Four toxic alkaloids namely: echimidine I, echimidine isomer II, 7-angeloyl retronecine III and 7-tigloyl retronecine IV were identified.

  16. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): An unexpected variability in alkaloid profiles and a profusion of new structures.

    Science.gov (United States)

    Garraffo, H Martin; Andriamaharavo, Nirina R; Vaira, Marcos; Quiroga, María F; Heit, Cecilia; Spande, Thomas F

    2012-12-01

    GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, whether known or new to us, in only one of the ten skins sampled, despite two skins being obtained from each breeding site of the five populations. Many of the alkaloids are of classes known to have structures with branched-chains (e.g. pumiliotoxins and tricyclic structures) that are considered to derive from dietary mites. A large number of previously reported and new alkaloids are also of unclassified structures. Only a very few 3,5-disubstituted-indolizidine or -pyrrolizidine alkaloids are observed that have a straight-chain carbon skeleton and are likely derived from ant prey. The possible relationship of these collections made during the toad's brief breeding episodes to sequestration of dietary arthropods and individual alkaloid profiles is discussed.

  17. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): An unexpected variability in alkaloid profiles and a profusion of new structures

    OpenAIRE

    Garraffo, H Martin; Andriamaharavo, Nirina R; Vaira, Marcos; Quiroga, Mar?a F; Heit, Cecilia; Spande, Thomas F

    2012-01-01

    GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, w...

  18. [Chemical constituents of Rauvolfia verticillata].

    Science.gov (United States)

    Hong, Bo; Li, Wen-Jing; Zhao, Chun-Jie

    2012-06-01

    The study on the Rauvolfia verticillata (Lour.) Baill., which belongs to Apocynaceae, was carried out to look for its chemical constituents and pharmacological activity. The isolation and purification were performed by chromatography on silica gel, Sephadex LH-20 and ODS (octadecyl silane) open column. The structures of obtained compounds were elucidated on the basis of physicochemical properties and spectral analysis. Three indole alkaloids and one acridone alkaloid were isolated from chloroform layer extract and identified as ajmalicine B (1), sandwicine (2), raunescine (3) and 7-hydroxynoracronycine (4) separately. Ajmalicine B (1) is a new compound belonging to indole alkaloid. Compound 4 as an acridone alkaloid was a new type compound isolated from Rauvolfia genus for the first time. We also did some biological activity research on the new type compound (4) to explore other pharmacological activities in addition to antihypertensive activity.

  19. Effect of an alkaloidal fraction of Tabernaemontana elegans (Stapf.) on selected micro-organisms.

    Science.gov (United States)

    Pallant, C A; Cromarty, A D; Steenkamp, V

    2012-03-27

    Bacterial infections remain a significant threat to human health. Due to the emergence of widespread antibiotic resistance, development of novel antibiotics is required in order to ensure that effective treatment remains available. There are several reports on the ethnomedical use of Tabernaemontana elegans pertaining to antibacterial activity. The aim of this study was to isolate and identify the fraction responsible for the antimicrobial activity in Tabernaemontana elegans (Stapf.) root extracts. The active fraction was characterized by thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). Antibacterial activity was determined using the broth micro-dilution assay and antimycobacterial activity using the BACTEC radiometric assay. Cytotoxicity of the crude extract and fractions was assessed against primary cell cultures; lymphocytes and fibroblasts; as well as a hepatocarcinoma (HepG2) and macrophage (THP-1) cell line using the Neutral Red uptake and MTT assays. The crude root extracts were found to contain a high concentration of alkaloids (1.2%, w/w). GC-MS analysis identified the indole alkaloids, voacangine and dregamine, as major components. Antibacterial activity was limited to the Gram-positive bacteria and Mycobacterium species, with MIC values in the range of 64-256μg/ml. When combined with antibiotics, additive antibacterial effects were observed. Marked cytotoxicity to all cell lines tested was evident in the MTT and Neutral Red uptake assays, with IC(50) values <9.81μg/ml. This study confirms the antibacterial activity of Tabernaemontana elegans and supports its potential for being investigated further for the development of a novel antibacterial compound. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Comparison of a specific HPLC determination of toxic aconite alkaloids in processed Radix aconiti with a titration method of total alkaloids.

    Science.gov (United States)

    Csupor, Dezso; Borcsa, Botond; Heydel, Barbara; Hohmann, Judit; Zupkó, István; Ma, Yan; Widowitz, Ute; Bauer, Rudolf

    2011-10-01

    In traditional Chinese medicine, Aconitum (Ranunculaceae) roots are only applied after processing. Nevertheless, several cases of poisoning by improperly processed aconite roots have been reported. The aim of this study was to develop a reliable analytical method to assess the amount of toxic aconite alkaloids in commercial aconite roots, and to compare this method with the commonly used total alkaloid content determination by titration. The content of mesaconitine, aconitine, and hypaconitine in 16 commercial samples of processed aconite roots was determined by an HPLC method and the total alkaloid content by indirect titration. Five samples were selected for in vivo toxicological investigation. In most of the commercial samples, toxic alkaloids were not detectable, or only traces were found. In four samples, we could detect >0.04% toxic aconite alkaloids, the highest with a content of 0.16%. The results of HPLC analysis were compared with the results obtained by titration, and no correlation was found between the two methods. The in vivo results reassured the validity of the HPLC determination. Samples with mesaconitine, aconitine, and hypaconitine content below the HPLC detection limit still contained up to 0.2% alkaloids determined by titration. Since titration of alkaloids gives no information selectively on the aconitine-type alkaloid content and toxicity of aconite roots this method is not appropriate for safety assessment. The HPLC method developed by us provides a quick and reliable assessment of toxicity and should be considered as a purity test in pharmacopoeia monographs.

  1. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)]. E-mail: cht12mm@amu.ac.in

    2005-04-11

    Heterogeneous photocatalysed degradation of two selected pesticide derivatives such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) has been investigated in aqueous suspensions of titanium dioxide by monitoring the change in substrate concentration employing UV spectroscopic analysis technique and depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, types of TiO{sub 2,} substrate and catalyst concentration, and in the presence of electron acceptor such as hydrogen peroxide (H{sub 2}O{sub 2}) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 showed comparatively highest photocatalytics. The pesticide derivative, indole-3-acetic acid was found to degrade slightly faster than indole-3-butyric acid.

  2. Possible Interactions between the Biosynthetic Pathways of Indole Glucosinolate and Auxin

    Directory of Open Access Journals (Sweden)

    Siva K. Malka

    2017-12-01

    Full Text Available Glucosinolates (GLS are a group of plant secondary metabolites mainly found in Cruciferous plants, share a core structure consisting of a β-thioglucose moiety and a sulfonated oxime, but differ by a variable side chain derived from one of the several amino acids. These compounds are hydrolyzed upon cell damage by thioglucosidase (myrosinase, and the resulting degradation products are toxic to many pathogens and herbivores. Human beings use these compounds as flavor compounds, anti-carcinogens, and bio-pesticides. GLS metabolism is complexly linked to auxin homeostasis. Indole GLS contributes to auxin biosynthesis via metabolic intermediates indole-3-acetaldoxime (IAOx and indole-3-acetonitrile (IAN. IAOx is proposed to be a metabolic branch point for biosynthesis of indole GLS, IAA, and camalexin. Interruption of metabolic channeling of IAOx into indole GLS leads to high-auxin production in GLS mutants. IAN is also produced as a hydrolyzed product of indole GLS and metabolized to IAA by nitrilases. In this review, we will discuss current knowledge on involvement of GLS in auxin homeostasis.

  3. Tropane alkaloids in food: poisoning incidents

    NARCIS (Netherlands)

    Adamse, P.; Egmond, van H.P.; Noordam, M.Y.; Mulder, P.P.J.; Nijs, de W.C.M.

    2014-01-01

    A large number of wild and cultured plants produce secondary metabolites that can be toxic to humans and animals. The present study aims to provide insight into the routes of (un)intentional poisonings of humans by tropane alkaloids. Poisonings of humans by tropane alkaloids occur as unintended

  4. Pyrrolizidine alkaloids of Senecio sp from Peru

    International Nuclear Information System (INIS)

    Ruiz Vasquez, Liliana; Reina Artiles, Matias; Gonzalez Coloma, Azucena; Cabrera Perez, Raimundo; Ruiz Mesia, Lastenia

    2011-01-01

    Six pyrrolizidine alkaloids (PAs) (two saturated macrocyclic, three unsaturated macrocyclic and one unsaturated seco-macrocyclic) were isolated from native Peruvian Senecio species. The structures of these alkaloids were established by a complete NMR spectroscopic analysis, chemical transformations and comparison of their NMR data with those published for similar alkaloids. Three PAs were then tested for antifungal activity against Fusarium moniliforme, F. (Sheldon), F. oxysporum fs. lycopersici (Scheldt) and F. solani (Mart), no significant activity being observed. (author)

  5. Pyrrolizidine alkaloids of Senecio sp from Peru

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Vasquez, Liliana; Reina Artiles, Matias [Instituto de Productos Naturales y Agrobiologia, CSIC, Tenerife (Spain); Gonzalez Coloma, Azucena [Instituto de Ciencias Agrarias (ICA), CSIC, Madrid (Spain); Cabrera Perez, Raimundo [Universidad de La Laguna (ULL), Tenerife (Spain). Unidad de Fitopatologia, Facultad de Biologia; Ruiz Mesia, Lastenia [Universidad Nacional de la Amazonia Peruana (LIPNAA-UNAP), AA.HH. Nuevo San Lorenzo, San Juan, Iquitos (Peru). Lab. de Investigacion en Productos Naturales Antiparasitarios de la Amazonia

    2011-07-01

    Six pyrrolizidine alkaloids (PAs) (two saturated macrocyclic, three unsaturated macrocyclic and one unsaturated seco-macrocyclic) were isolated from native Peruvian Senecio species. The structures of these alkaloids were established by a complete NMR spectroscopic analysis, chemical transformations and comparison of their NMR data with those published for similar alkaloids. Three PAs were then tested for antifungal activity against Fusarium moniliforme, F. (Sheldon), F. oxysporum fs. lycopersici (Scheldt) and F. solani (Mart), no significant activity being observed. (author)

  6. Pyrrolizidine alkaloids of senecio sp from Peru

    Directory of Open Access Journals (Sweden)

    Liliana Ruiz Vásquez and Matías Reina Artiles

    2011-01-01

    Full Text Available Six pyrrolizidine alkaloids (PAs (two saturated macrocyclic, three unsaturated macrocyclic and one unsaturated seco-macrocyclic were isolated from native Peruvian Senecio species. The structures of these alkaloids were established by a complete NMR spectroscopic analysis, chemical transformations and comparison of their NMR data with those published for similar alkaloids. Three PAs were then tested for antifungal activity against Fusarium moniliforme, F. (Sheldon, F. oxysporum fs. lycopersici (Scheldt and F. solani (Mart, no significant activity being observed.

  7. Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200.

    Science.gov (United States)

    Doukyu, N; Aono, R

    1997-05-01

    Pseudomonas sp. strain ST-200 grew on indole as a sole carbon source. The minimal inhibitory concentration of indole was 0.3 mg/ml for ST-200. However, ST-200 grew in a persolvent fermentation system containing a large amount of indole (a medium containing 20% by vol. diphenylmethane and 4 mg/ml indole), because most of the indole was partitioned in the organic solvent layer. When the organism was grown in the medium containing indole at 1 mg/ml in the presence of diphenylmethane, more than 98% of the indole was consumed after 48h. Isatic acid (0.4 mg/ml) and isatin (0.03 mg/ml) were produced as the metabolites in the aqueous medium layer.

  8. 2-(2,3-Dihydro-1H-indol-3-yl)ethanol

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Sommer, Michael Bech; Heckmann, Dieter

    2004-01-01

    The first direct resolution of racemic 2-(2,3-dihydro-lH-indol-3-yl)ethanol-prepared by catalytic hydrogenation of 2-(lH-indol-3-yl)ethanol-has been accomplished by chiral simulated moving bed (SMB) chromatography. The single enantiomers were isolated as their dihydrogen phosphate salts. Single......-crystal X-ray analyses were successful, revealing that the (+)-enantiomer of 2-(2,3-dihydro-lH-indol-3-yl)ethanol has the (S) configuration. Chirality 16:126-130, 2004....

  9. Aporphine alkaloids from Ocotea macrophylla (Lauraceae)

    International Nuclear Information System (INIS)

    Pabon, Ludy Cristina; Cuca, Luis Enrique

    2010-01-01

    Four aporphine alkaloids from the wood of Ocotea macrophylla (Lauraceae) were isolated and characterized as (S)-3-methoxy-nordomesticine (1), (S)-N-ethoxycarbonyl-3-methoxy-nordomesticine (2), (S)-N-formyl-3-methoxy-nordomesticine (3) and (S)-N-methoxycarbonyl-3-methoxy-nordomesticine (4); alkaloids 2-4 are being report for the first time. The structure the isolated compounds were determined based on their spectral data and by comparison of their spectral data with values described in literature. The alkaloid fraction and compound 1 showed antifungal activity against Fusarium oxysporum f. sp. lycopersici and also compound 1 showed antimicrobial activity towards Staphylococcus aureus, Enterococcus faecalis as well. (author)

  10. Aporphine alkaloids from Ocotea macrophylla (Lauraceae)

    Energy Technology Data Exchange (ETDEWEB)

    Pabon, Ludy Cristina; Cuca, Luis Enrique, E-mail: lcpabonb@unal.edu.c [Universidad Nacional de Bogota (Colombia). Facultad de Ciencias. Dept. de Quimica

    2010-07-01

    Four aporphine alkaloids from the wood of Ocotea macrophylla (Lauraceae) were isolated and characterized as (S)-3-methoxy-nordomesticine (1), (S)-N-ethoxycarbonyl-3-methoxy-nordomesticine (2), (S)-N-formyl-3-methoxy-nordomesticine (3) and (S)-N-methoxycarbonyl-3-methoxy-nordomesticine (4); alkaloids 2-4 are being report for the first time. The structure the isolated compounds were determined based on their spectral data and by comparison of their spectral data with values described in literature. The alkaloid fraction and compound 1 showed antifungal activity against Fusarium oxysporum f. sp. lycopersici and also compound 1 showed antimicrobial activity towards Staphylococcus aureus, Enterococcus faecalis as well. (author)

  11. Aporphine alkaloids from Ocotea macrophylla (Lauraceae

    Directory of Open Access Journals (Sweden)

    Ludy Cristina Pabon

    2010-01-01

    Full Text Available Four aporphine alkaloids from the wood of Ocotea macrophylla (Lauraceae were isolated and characterized as (S-3-methoxy-nordomesticine (1, (S-N-ethoxycarbonyl-3-methoxy-nordomesticine (2, (S-N-formyl-3-methoxy-nordomesticine (3 and (S-N-methoxycarbonyl-3-methoxy-nordomesticine (4; alkaloids 2-4 are being report for the first time. The structure the isolated compounds were determined based on their spectral data and by comparison of their spectral data with values described in literature. The alkaloid fraction and compound 1 showed antifungal activity against Fusarium oxysporum f. sp. lycopersici and also compound 1 showed antimicrobial activity towards Staphylococcus aureus, Enterococcus faecalis as well.

  12. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer.

    Science.gov (United States)

    Ajanal, Manjunath; Gundkalle, Mahadev B; Nayak, Shradda U

    2012-04-01

    Herbal formulation standardization by adopting newer technique is need of the hour in the field of Ayurvedic pharmaceutical industry. As very few reports exist. These kind of studies would certainly widen the herbal research area. Chitrakadivati is one such popular herbal formulation used in Ayurveda. Many of its ingredients are known for presence of alkaloids. Presence of alkaloid was tested qualitatively by Dragondroff's method then subjected to quantitative estimation by UV-Spectrophotometer. This method is based on the reaction between alkaloid and bromocresol green (BCG). Study discloses that out of 16 ingredients, 9 contain alkaloid. Chitrakadivati has shown 0.16% of concentration of alkaloid and which is significantly higher than it's individual ingredients.

  13. Prognostic Assessment in Patients with Indolent B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Luca Arcaini

    2012-01-01

    Full Text Available Follicular lymphoma (FL is an indolent lymphoma with long median survival. Many studies have been performed to build up prognostic scores potentially useful to identify patients with poorer outcome. In 2004, an international consortium coordinated by the International Follicular Lymphoma Prognostic Factor project was established and a new prognostic study was launched (FLIPI2 using progression-free survival (PFS as main endpoint and integrating all the modern parameters prospectively collected. Low-grade non-Hodgkin lymphomas were once considered as a heterogenous group of lymphomas characterized by an indolent clinical course. Each entity is characterized by unique clinicobiologic features. Some studies have been focused on prognostic factors in single lymphoma subtypes, with the development of specific-entity scores based on retrospective series, for instance splenic marginal zone lymphoma (SMZL. A widely accepted prognostic tool for clinical usage for indolent non-follicular B-cell lymphomas is largely awaited. In this paper we summarized the current evidence regarding prognostic assessment of indolent follicular and non-follicular lymphomas.

  14. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    Science.gov (United States)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  15. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Directory of Open Access Journals (Sweden)

    Carolyn A. Young

    2015-04-01

    Full Text Available The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization. The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.

  16. Design and synthesis of an indol derivative as antibacterial agent against Staphylococcus aureus.

    Science.gov (United States)

    Lenin, Hau-Heredia; Lauro, Figueroa-Valverde; Marcela, Rosas-Nexticapa; Socorro, Herrera-Meza; Maria, López-Ramos; Francisco, Díaz-Cedillo; Elodia, García-Cervera; Eduardo, Pool-Gómez; Josefa, Paat-Estrella; Regina, Cauich-Carrillo; Saidy, Euan-Hau

    2017-10-01

    Several indole derivatives with antibacterial activity have been prepared using different protocols; however, some require special reagents and conditions. The aim of this study involved the synthesis of some indole derivatives using estrone and OTBS-estrone as chemical tools. The synthesis of the indole derivatives involves reactions such as follows: (1) synthesis of two indol derivatives ( 4 or 5 ) by reaction of estrone or OTBS-estrone with phenylhydrazine in medium acid; (2) reaction of 4 or 5 with 6-cloro-1-hexyne in medium basic to form two hexynyl-indol ( 7 or 8 ); (3) preparation of indol-propargylic alcohol derivatives ( 10 or 11 ) by reaction of benzaldehyde with 7 or 8 in medium basic; (4) synthesis of indol-aldehydes ( 12 or 13 ) via oxidation of 10 or 11 with DMSO; (5) synthesis of indeno-indol-carbaldehyde ( 15 or 16 ) via alkynylation/cyclization of 12 or 13 with hexyne in presence of copper(II); (6) preparation indeno-indol-carbaldehyde complex ( 19 or 20 ) via alkynylation/cyclization of 12 or 13 with 1-(hex-5-yn-1-yl)-2-phenyl-1 H -imidazole. The antibacterial effect exerted by the indol-steroid derivatives against Streptococcus pneumoniae and Staphylococcus aureus bacteria was evaluated using dilution method and the minimum inhibitory concentration (MIC). The results showed that only the compound 19 inhibit the growth bacterial of S. aureus . In conclusion, these data indicate that antibacterial activity of 19 can be due mainly to functional groups involved in the chemical structure in comparison with the compounds studied.

  17. Terbium(III) ions as sensitizers of oxidation of indole and its derivatives in Fenton system

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl; Staninski, Krzysztof

    2017-03-15

    Oxidation of indole and its derivatives in the Fenton system as a source of oxidising agents, in the presence of terbium(III) ions was studied by chemiluminescence methods to get the kinetic curves of emission decay and spectral distributions of chemiluminescence. Terbium(III) ions acted as a sensitizer of the mixtures Tb(III)-Fe(II)/Fe(III)-H{sub 2}O{sub 2}-indole or its derivative (tryptophan, tryptamine, indole-3-acetic acid and indole-3-acetyl aspartic acid). For the above indolic compounds, linear dependencies of integrated intensity of chemiluminescence on concentration of indolic compound in water and in water-acetonitrile solution were obtained. The limits of detection (LOD) and quantification (LOQ) of the indolic compounds studied were found to be by one or two orders of magnitude lower in the system with terbium(III) ions than without them. - Highlights: • Chemiluminescence emitted on oxidation of indolic compounds in Fenton system. • Tb (III) ions as sensitizers of indolic compounds oxidation in solutions. • Linear relations between CL intensity and indolic compound concentration.

  18. Pyrrolizidine alkaloids from Heliotropium indicum

    International Nuclear Information System (INIS)

    Souza, Joao Sammy N.; Machado, Luciana L.; Pessoa, Otilia D.L.; Lemos, Telma L.G.; Braz-Filho, Raimundo; Overk, Cassia R.; Ping Yao; Cordell, Geoffrey A.

    2005-01-01

    Helindicine (1), a new pyrrolizidine alkaloid with unusual structural features, together with the known lycopsamine (2), were isolated from the roots of Heliotropium indicum (Boraginaceae). The structures were established by a combination of 1D and 2D NMR methods (COSY, HMQC, HMBC, and NOESY) and HREIMS. This is the first report of a lactone pyrrolizidine alkaloid in the genus Heliotropium. Compounds 1 and 2 were assayed for antioxidant activity and showed moderate activity. (author)

  19. Pyrrolizidine alkaloids from Heliotropium indicum

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Joao Sammy N.; Machado, Luciana L.; Pessoa, Otilia D.L.; Lemos, Telma L.G. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: tlemos@dqoi.ufc.br; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais; Overk, Cassia R.; Ping Yao; Cordell, Geoffrey A. [University of Illinois at Chicago, IL (United States). College of Pharmacy. Dept. of Medicinal Chemistry and Pharmacognosy

    2005-11-15

    ndicine (1), a new pyrrolizidine alkaloid with unusual structural features, together with the known lycopsamine (2), were isolated from the roots of Heliotropium indicum (Boraginaceae). The structures were established by a combination of 1D and 2D NMR methods (COSY, HMQC, HMBC, and NOESY) and HREIMS. This is the first report of a lactone pyrrolizidine alkaloid in the genus Heliotropium. Compounds 1 and 2 were assayed for antioxidant activity and showed moderate activity. (author)

  20. New pyrrolizidine alkaloids from Heliotropium crassifolium.

    Science.gov (United States)

    Farsam, H; Yassa, N; Sarkhail, P; Shafiee, A

    2000-05-01

    Heliotropium crassifolium Boiss, (Boraginaceae) from a population of Ilam, western region of Iran was studied for pyrrolizidine alklaoids (PAs). Four alkaloids have been identified: europine 1, europine N-oxide 2 and a new pyrrolizidine alkaloids ilamine 3 and its N-oxide 4, respectively. Their structures were elucidated by IR, 1H-NMR and EIMS data.

  1. Bioactive alkaloids produced by fungi. I. Updates on alkaloids from the species of the genera Boletus, Fusarium and psilocybe.

    Science.gov (United States)

    Mahmood, Zafar Alam; Ahmed, Syed Waseemuddin; Azhar, Iqbal; Sualeh, Mohammad; Baig, Mirza Tasawer; Zoha, Sms

    2010-07-01

    Fungi, in particular, are able in common with the higher plants and bacteria, to produce metabolites, including alkaloids. Alkaloids, along with other metabolites are the most important fungal metabolites from pharmaceutical and industrial point of view. Based on this observation, the authors of this review article have tried to provide an information on the alkaloids produced by the species of genera: Boletus, Fusarium and Psilocybef from 1981-2009. Thus the review would be helpful and provides valuable information for the researchers of the same field.

  2. Alkaloids with Activity against the Zika Virus Vector Aedes aegypti (L.—Crinsarnine and Sarniensinol, Two New Crinine and Mesembrine Type Alkaloids Isolated from the South African Plant Nerine sarniensis

    Directory of Open Access Journals (Sweden)

    Marco Masi

    2016-10-01

    Full Text Available Two new Amaryllidaceae alkaloids, belonging to the mesembrine- and crinine-types, named crinsarnine (1 and sarniensinol (2, were isolated from the dried bulbs of Nerine sarniensis together with bowdensine (3, sarniensine (4, hippadine (5 and 1-O-acetyl-lycorine (6. Crinsarnine (1 and sarniensinol (2 were characterized using spectroscopic and chiroptical methods as (1S,2S,4aR,10bS-2,7-dimethoxy-1,2,3,4,4a,6-hexahydro-5,11b-ethano[1,3]dioxolo-[4,5-j]phenanthridin-1-yl acetate and (6-(3aR,4Z,6S,7aS-6-methoxy-1-methyl-2,3,3a,6,7,7a-hexa-hydro-1H-indol-3a-ylbenzo[d][1,3]dioxol-5-ylmethanol, respectively. Furthermore, the complete spectroscopic characterization of bowdensine (3 is reported for the first time. Compounds 1–6 were evaluated against the Orlando reference strain of Aedes aegypti. None of compounds showed mortality against 1st instar Ae. aegypti larvae at the concentrations tested. In adult topical bioassays, only 1 displayed adulticidal activity with an LD50 = 2.29 ± 0.049 μg/mosquito. As regards the structure-activity relationship, the pretazettine and crinine scaffold in 2 and 4 and in 1 and 3 respectively, proved to be important for their activity, while the pyrrole[de]phenanthridine scaffold present in 5 and 6 was important for their reactivity. Among the pretazettine group compounds, opening of the B ring or the presence of a B ring lactone as well as the trans-stereochemistry of the A/B ring junction, appears to be important for activity, while in crinine-type alkaloids, the substituent at C-2 seems to play a role in their activity.

  3. Studies of interaction between two alkaloids and double helix DNA

    International Nuclear Information System (INIS)

    Sun, Yantao; Peng, Tingting; Zhao, Lei; Jiang, Dayu; Cui, Yuncheng

    2014-01-01

    This article presents the study on the interaction of two alkaloids (matrine and evodiamine) and hs-DNA by absorption, fluorescence, circular dichroism (CD), DNA melting and viscosity experiments. The spectroscopic studies suggested that two alkaloids can bind to DNA through an intercalative mode. The viscosity measurement and thermal denaturation also indicated that two alkaloids can intercalate to DNA. The binding constants (K A ) and the number of binding sites (n) were determined. At the same time, some significant thermodynamic parameters of the binding of the alkaloids to DNA were obtained. Competitive binding studies revealed that alkaloids had an effect on ethidium bromide (EB) bound DNA. In addition, it was also proved that the fluorescence quenching was influenced by ionic strength. - Highlights: • Interaction between two alkaloids and DNA is studied by spectral methods. • The binding constant and the binding sites between two alkaloids and DNA are obtained. • There are a classical intercalative mode between alkaloids and DNA. • The binding of matrine with DNA is weaker than that of evodiamine. • It is important for us to understand the alkaloids–DNA interactions at a molecular level

  4. Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings

    Science.gov (United States)

    Lachkar, David; Denizot, Natacha; Bernadat, Guillaume; Ahamada, Kadiria; Beniddir, Mehdi A.; Dumontet, Vincent; Gallard, Jean-François; Guillot, Régis; Leblanc, Karine; N'nang, Elvis Otogo; Turpin, Victor; Kouklovsky, Cyrille; Poupon, Erwan; Evanno, Laurent; Vincent, Guillaume

    2017-08-01

    Bipleiophylline is a highly complex monoterpene indole alkaloid composed of two pleiocarpamine units anchored on an aromatic spacer platform. The synthesis of bipleiophylline is considered as a mountain to climb by the organic chemistry community. Here, a unified oxidative coupling protocol between indole derivatives and 2,3-dihydroxybenzoic acid, mediated by silver oxide, has been developed to produce the core of bipleiophylline. This method also allows the independent preparation of benzofuro[2,3-b]indolenine and isochromano[3,4-b]indolenine scaffolds, depending only on the nature of the aromatic platform used. The procedure has been applied to simple indole derivatives and to more challenging monoterpene indole alkaloids, thereby furnishing natural-product-like structures. The use of scarce pleiocarpamine as the starting indole allows the first syntheses of bipleiophylline and of its biosynthetic precursor, voacalgine A. The structure of the latter has been reassigned in the course of our investigations by 2D NMR and displays an isochromano[3,4-b]indolenine motif instead of a benzofuro[2,3-b]indolenine.

  5. Pyrrolizidine alkaloids from Heliotropium indicum

    OpenAIRE

    Souza,João Sammy N.; Machado,Luciana L.; Pessoa,Otília D. L.; Braz-Filho,Raimundo; Overk,Cassia R.; Yao,Ping; Cordell,Geoffrey A.; Lemos,Telma L. G.

    2005-01-01

    Helindicine (1), a new pyrrolizidine alkaloid with unusual structural features, together with the known lycopsamine (2), were isolated from the roots of Heliotropium indicum (Boraginaceae). The structures were established by a combination of 1D and 2D NMR methods (COSY, HMQC, HMBC, and NOESY) and HREIMS. This is the first report of a lactone pyrrolizidine alkaloid in the genus Heliotropium. Compounds 1 and 2 were assayed for antioxidant activity and showed moderate activity. Um novo alcaló...

  6. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    International Nuclear Information System (INIS)

    Komoszynski, M.; Bandurski, R.S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3 H in the indole and 14 C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [ 3 H]indole-3-acetyl-myo-inositol and [ 3 H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumptions concerning the equilibration of applied [ 3 H]indole-3-acetyl-myo-inositol-[U- 14 C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indoleacetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C] galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [ 3 H]indole-3-acetyl-myo-inositol-[ 14 C]galactose supplies appreciable amounts of 14 C to the shoot and both 14 C and 3 H to an uncharacterized insoluble fraction of the endosperm

  7. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    Directory of Open Access Journals (Sweden)

    Mohammed Mujahid

    Full Text Available Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA and indole 3-aldehyde (IAld, the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  8. Racemic alkaloids from the fungus Ganoderma cochlear.

    Science.gov (United States)

    Wang, Xin-Long; Dou, Man; Luo, Qi; Cheng, Li-Zhi; Yan, Yong-Ming; Li, Rong-Tao; Cheng, Yong-Xian

    2017-01-01

    Seven pairs of new alkaloid enantiomers, ganocochlearines C-I (1, 3-8), and three pairs of known alkaloids were isolated from the fruiting bodies of Ganoderma cochlear. The chemical structures of new compounds were elucidated on the basis of 1D and 2D NMR data. The absolute configurations of compounds 1, 3-10 were assigned by ECD calculations. Biological activities of these isolates against renal fibrosis were accessed in rat normal or diseased renal interstitial fibroblast cells. Importantly, the plausible biosynthetic pathway for this class of alkaloids was originally proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hemlock alkaloids from Socrates to poison aloes.

    Science.gov (United States)

    Reynolds, Tom

    2005-06-01

    Hemlock (Conium maculatum L. Umbelliferae) has long been known as a poisonous plant. Toxicity is due to a group of piperidine alkaloids of which the representative members are coniine and gamma-coniceine. The latter is the more toxic and is the first formed biosynthetically. Its levels in relation to coniine vary widely according to environmental conditions and to provenance of the plants. Surprisingly, these piperidine alkaloids have turned up in quite unrelated species in the monocotyledons as well as the dicotyledons. Aloes, for instance, important medicinal plants, are not regarded as poisonous although some species are very bitter. Nevertheless a small number of mostly local species contain the alkaloids, especially gamma-coniceine and there have been records of human poisoning. The compounds are recognized by their characteristic mousy smell. Both acute and chronic symptoms have been described. The compounds are neurotoxins and death results from respiratory failure, recalling the effects of curare. Chronic non-lethal ingestion by pregnant livestock leads to foetal malformation. Both acute and chronic toxicity are seen with stock in damp meadows and have been recorded as problems especially in North America. The alkaloids derive biosynthetically from acetate units via the polyketide pathway in contrast to other piperidine alkaloids which derive from lysine.

  10. Alkaloids in the human food chain--natural occurrence and possible adverse effects.

    Science.gov (United States)

    Koleva, Irina I; van Beek, Teris A; Soffers, Ans E M F; Dusemund, Birgit; Rietjens, Ivonne M C M

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids

    Directory of Open Access Journals (Sweden)

    Alois Plodek

    2016-01-01

    Full Text Available Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids. This review summarizes the progress in the chemistry of pyridoacridine alkaloids that was made in the last one-and-a-half decades.

  12. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    Science.gov (United States)

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of

  13. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study.

    Science.gov (United States)

    Gerson, Elizabeth A; Kelsey, Rick G; St Clair, J Bradley

    2009-02-01

    Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19.4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41.8 % of the variation. Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid secondary metabolism in ponderosa pine. The theoretical

  14. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    Directory of Open Access Journals (Sweden)

    Gonzalo J. Diaz

    2015-12-01

    Full Text Available Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia.

  15. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    Science.gov (United States)

    Diaz, Gonzalo J.

    2015-01-01

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia. PMID:26690479

  16. An unexpected reaction pathway in the synthesis of the ABCE framework of strychnine-type alkaloids - A multidisciplinary study

    Science.gov (United States)

    Šoral, Michal; Markus, Jozef; Doháňošová, Jana; Šoralová, Stanislava; Dvoranová, Dana; Chyba, Andrej; Moncol, Ján; Berkeš, Dušan; Liptaj, Tibor

    2017-01-01

    Acid-catalyzed cyclization of spirocyclic 1‧-benzyl-2‧-(prop-2-en-1-yl)spiro[indole-3,3‧-pyrrolidine]-5‧-one (1) was performed. The pentacyclic product of Povarov-like imino-Diels-Alder reaction was isolated in high yield instead of expected tetracyclic aza-Prins intermediate. The unusual exotic alkaloid-type structure of the resulting molecule 2 was unambiguously confirmed by a detailed NMR analysis using a set of 2D NMR spectra including an INADEQUATE experiment. The relative configuration of 2 was predicted from the synthesis mechanism and DFT geometry calculations and independently confirmed using NOESY and residual dipolar coupling (RDC) assisted NMR analysis in stretched crosslinked polystyrene gels. The reversibility of the cycloaddition in aprotic solvents was observed. A new reaction pathway yielding a rare 6-5-5-5 tetracyclic spiroindoline 3 was suggested. The relative configuration within the tetracyclic framework was ultimately proved using Single-crystal X-ray diffraction analysis of compound 4.

  17. Analysis, separation, and bioassay of pyrrolizidine alkaloids from comfrey (Symphytum officinale).

    Science.gov (United States)

    Couet, C E; Crews, C; Hanley, A B

    1996-01-01

    Pyrrolizidine alkaloids have been linked to liver and lung cancers and a range of other deleterious effects. As with many natural toxicants, major problems arise in determining the effects of the different members of the class and the importance of various forms of ingestion. In this study we have investigated the levels of pyrrolizidine alkaloids in comfrey (Symphytum officinale), determined the levels in different parts of the plant and in herbal remedies, separated the alkaloids into two main groups--the principal parent alkaloids and the corresponding N-oxides--and, finally, carried out a simple bioassay based upon the mutagenic capability of the separated compounds in a human cell line. We conclude that the part of the plant ingested is important in terms of alkaloid challenge and that the effect of two of the major groups of alkaloids individually is different from that of alkaloids in the whole plant extract.

  18. Initial Studies on Alkaloids from Lombok Medicinal Plants

    Directory of Open Access Journals (Sweden)

    John B. Bremner

    2001-01-01

    Full Text Available Initial investigation of medicinal plants from Lombok has resulted in the collection of 100 plant species predicted to have antimicrobial, including antimalarial, properties according to local medicinal uses. These plants represent 49 families and 80 genera; 23% of the plants tested positively for alkaloids. Among the plants testing positive, five have been selected for further investigation involving structure elucidation and antimicrobial testing on the extracted alkaloids. Initial work on structural elucidation of some of the alkaloids is reported briefly.

  19. Diversification of indoles via microwave-assisted ligand-free copper-catalyzed N-arylation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Kwan; Lee, Jin Hee; Kim, Tae Sung; Yum, Eul Kgun [Dept. of Chemistry, Chu ngnam National University, Daejon (Korea, Republic of); Park, Jee Jung [Western Seoul Center Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    A simple, efficient Cu{sub 2}O catalyst system under microwave irradiation was developed for N-arylation of various indoles without ligands and additives. Diverse N-heteroarylated indoles were prepared by coupling indoles with various heteroaryl halides within 1 h. The selective reactivity of bromoindole with aryl iodide provided N-aryl bromoindoles, which could be useful intermediates for palladium-catalyzed Heck and Suzuki coupling reactions.

  20. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  1. 2-(4-Methoxy-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yong-Hong Lu

    2012-01-01

    Full Text Available In the title compound, C11H10N2O, the cyanide group is twisted away from the indole-ring plane [Ccy—Cme—Car—Car = 70.7 (2°; cy = cyanide, me = methylene, ar = aromatic], whereas the methoxy C atom is almost coplanar with the ring system [displacement = 0.014 (5 Å]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in [100].

  2. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  3. Synthesis of 8-phenyl-10H-pyrido[1,2-α]indole salts from 2,3,3-trimethyl-3H-indole chlorides with cinnamaldehyde

    International Nuclear Information System (INIS)

    Shachkus, A.A.; Degutis, Yu.A.

    1987-01-01

    Reaction of 2,3,3-trimethyl-3H-indole chloride with cinnamic and 4-dimethylaminocinnamic aldehydes led to salts of 8-phenyl and 8-(4-dimethylaminophenyl)-10,10-dimethyl-10H-pyrido[1,2-α]indole. PMR spectra were recorded on a Tesla BS-487C (80 MHz) instrument (internal standard HMDS) and IR spectra on a UR-20 spectrometer (KBr pellets)

  4. Effect of processing on the alkaloids in Aconitum tubers by HPLC-TOF/MS

    Directory of Open Access Journals (Sweden)

    Min Liu

    2017-06-01

    Full Text Available According to the Chinese Pharmacopoeia 2015, only processed Aconitum tubers can be clinically applied, and the effect of processing is unclear. This research aimed to explore the effect of processing on cardiac efficacy of alkaloids in Aconitum tubers. First, the chemical ingredients in unprocessed and processed Aconitum tubers were identified and compared by using high performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS and multivariate pattern recognition methods. Then the representative alkaloids in Aconitum tubers, aconitine, benzoylaconine, and aconine, which belong to diester-diterpenoid alkaloids, monoester-diterpenoid alkaloids, and amine-diterpenoid alkaloids, respectively, were selected for further validation of attenuated mechanism. Subsequent pharmacological experiments with aconitine, benzoylaconine, and aconine in SD rats were used for validate the effect of processing on cardiac functions. After processing the Aconitum tubers, it was found that the contents of diester-diterpenoid alkaloids were reduced, and those of monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids were increased, suggesting that diester-diterpenoid alkaloids were transformed into monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids. Through further decocting the aconitine in boiling water, it was confirmed that the three alkaloids could be progressively transformed. Pharmacological experiments with aconitine, benzoylaconine, and aconine in SD rats showed that aconitine at a dose of 0.01 mg/kg and aconine at a dose of 10 mg/kg enhanced the cardiac function, while benzoylaconine at a dose of 2 mg/kg weakened the cardiac function. The effect of processing is attributed to the transformation of the most toxic diester-diterpenoid alkaloids into less toxic monoester-diterpenoid alkaloids and amine-diterpenoid alkaloids.

  5. New extraction technique for alkaloids

    Directory of Open Access Journals (Sweden)

    Djilani Abdelouaheb

    2006-01-01

    Full Text Available A method of extraction of natural products has been developed. Compared with existing methods, the new technique is rapid, more efficient and consumes less solvent. Extraction of alkaloids from natural products such as Hyoscyamus muticus, Datura stramonium and Ruta graveolens consists of the use of a sonicated solution containing a surfactant as extracting agent. The alkaloids are precipitated by Mayer reagent, dissolved in an alkaline solution, and then extracted with chloroform. This article compares the results obtained with other methods showing clearly the advantages of the new method.

  6. Electric Dipole Transition Moments and Solvent-Dependent Interactions of Fluorescent Boron-Nitrogen Substituted Indole Derivatives.

    Science.gov (United States)

    Saif, Mari; Widom, Julia R; Xu, Senmiao; Abbey, Eric R; Liu, Shih-Yuan; Marcus, Andrew H

    2015-06-25

    Fluorescent analogues of the indole side chain of tryptophan can be useful spectroscopic probes of protein-protein and protein-DNA interactions. Here we present linear dichroism and solvent-dependent spectroscopic studies of two fluorescent analogues of indole, in which the organic C═C unit is substituted with the isosteric inorganic B-N unit. We studied the so-called "external" BN indole, which has C2v symmetry, and the "fused" BN indole with Cs symmetry. We performed a combination of absorption and fluorescence spectroscopy, ultraviolet linear dichroism (UV-LD) in stretched poly(ethylene) (PE) films, and quantum chemical calculations on both BN indole compounds. Our measurements allowed us to characterize the degree of alignment for both molecules in stretched PE films. We thus determined the orientations and magnitudes of the two lowest energy electric dipole transition moments (EDTMs) for external BN indole, and the two lowest energy EDTMs for fused BN indole within the 30 000-45 000 cm(-1) spectral range. We compared our experimental results to those of quantum chemical calculations using standard density functional theory (DFT). Our theoretical predictions for the low-energy EDTMs are in good agreement with our experimental data. The absorption and fluorescence spectra of the external and the fused BN indoles are sensitive to solvent polarity. Our results indicate that the fused BN indole experiences much greater solvation interactions with polar solvents than does the external BN indole.

  7. Two New Acridone Alkaloids from Glycosmis macrantha

    Directory of Open Access Journals (Sweden)

    Abdah Md Akim

    2011-05-01

    Full Text Available Extraction and chromatographic separation of the extracts of dried stem barks of Glycosmis macrantha lead to isolation of two new acridone alkaloids, macranthanine (1 and 7-hydroxynoracronycine (2, and a known acridone, atalaphyllidine (3. The structures of these alkaloids were determined by detailed spectral analysis and also by comparison with reported data.

  8. β-Carboline Alkaloids and Essential Tremor: Exploring the Environmental Determinants of One of the Most Prevalent Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Elan D. Louis

    2010-01-01

    Full Text Available Essential tremor (ET is among the most prevalent neurological diseases, yet its etiology is not well understood. Susceptibility genotypes undoubtedly underlie many ET cases, although no genes have been identified thus far. Environmental factors are also likely to contribute to the etiology of ET. Harmane (1-methyl-9H-pyrido[3,4-β]indole is a potent, tremor-producing β-carboline alkaloid, and emerging literature has provided initial links between this neurotoxin and ET. In this report, we review this literature. Two studies, both in New York, have demonstrated higher blood harmane levels in ET cases than controls and, in one study, especially high levels in familial ET cases. Replication studies of populations outside of New York and studies of brain harmane levels in ET have yet to be undertaken. A small number of studies have explored several of the biological correlates of exposure to harmane in ET patients. Studies of the mechanisms of this putative elevation of harmane in ET have explored the role of increased dietary consumption, finding weak evidence of increased exogenous intake in male ET cases, and other studies have found initial evidence that the elevated harmane in ET might be due to a hereditarily reduced capacity to metabolize harmane to harmine (7-methoxy-1-methyl-9H-pyrido[3,4-β]-indole. Studies of harmane and its possible association with ET have been intriguing. Additional studies are needed to establish more definitively whether these toxic exposures are associated with ET and are of etiological importance.

  9. Development of a solid-phase extraction method with simple MEKC-UV analysis for simultaneous detection of indole metabolites in human urine after administration of indole dietary supplement.

    Science.gov (United States)

    Phonchai, Apichai; Wilairat, Prapin; Chantiwas, Rattikan

    2017-11-01

    This work presents the development of a solid phase extraction method with simple MEKC-UV analysis for the simultaneous determination of indole-3-carbinol (I3C) and its metabolites (3, 3'-diindolylmethane (DIM), indole-3-carboxaldehyde (I3CAL), indole-3-acetonitrile (I3A)) in human urine after oral administration of an indole dietary supplement. Solid phase extraction (SPE) method was applied for the first time for simultaneous analysis of these indole metabolites. The MEKC separation method was developed in a previous work. Three commercial SPE cartridges, each with different sorbent materials, were investigated: Sep-Pak ® C18, Oasis ® HLB and Oasis ® WCX. The Sep-Pak ® C18 material provided the highest extraction recovery of 88-113% (n = 9), for the four target indole metabolites (I3C, DIM, I3CAL and I3A). The optimal washing and elution solutions were 40% methanol/water (v/v) and 100% methanol, respectively, and optimal elution volume was 2.0mL. The specificity of the proposed SPE method was evaluated with negative control urine samples (n = 10) from healthy volunteers who had not taken the dietary supplement or vegetables known to contain indole compounds. Linear calibration curves were in the range of 0.2-25μgmL -1 (r 2 > 0.998) using diphenylamine (DPA) as the internal standard. Intra-day and inter-day precisions were 3.5-12.3%RSD and 2.7-14.1%RSD, respectively. Limits of detection and quantification were 0.05-0.10μgmL -1 and 0.10-0.50μgmL -1 , respectively. The four target indole compounds were separated within only 5min by MEKC-UV analysis. Urine from 5 subjects who had taken a dietary supplement containing I3C and DIM were found to contain only the DIM metabolite at concentrations ranging from 0.10 to 0.35µgmL -1 . Accuracy of the proposed method based on the percentage recovery of spiked urine samples were 70-108%, 82-116%, 82-132% and 80-100% for I3C, I3CAL, I3A and DIM, respectively. The Sep-Pak ® C18 cartridge was highly effective in

  10. Molecular cloning and characterization of strictosidine synthase, a ...

    African Journals Online (AJOL)

    Mitragynine is one of the most dominant indole alkaloids present in the leaves of Mitragyna speciosa, a species of Rubiaceae. This alkaloid is believed to be synthesized via condensation of the amino acid derivative, tryptamine and secologanine by the action of strictosidine synthase (STR). The cDNA clone encoding STR ...

  11. Wounding of Arabidopsis leaves induces indole-3-carbinol-dependent autophagy in roots of Arabidopsis thaliana.

    Science.gov (United States)

    Katz, Ella; Chamovitz, Daniel A

    2017-09-01

    In cruciferous plants insect attack or physical damage induce the synthesis of the glucosinolate breakdown product indole-3-carbinol, which plays a key role in the defense against attackers. Indole-3-carbinol also affects plant growth and development, acting as an auxin antagonist by binding to the TIR1 auxin receptor. Other potential functions of indole-3-carbinol and the underlying mechanisms in plant biology are unknown. Here we show that an indole-3-carbinol-dependent signal induces specific autophagy in root cells. Leaf treatment with exogenous indole-3-carbinol or leaf-wounding induced autophagy and inhibited auxin response in the root. This induction is lost in glucosinolate-defective mutants, indicating that the effect of indole-3-carbinol is transported in the plants. Thus, indole-3-carbinol is not only a defensive metabolite that repels insects, but is also involved in long-distance communication regulating growth and development in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    Science.gov (United States)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  13. [Ibogaine--the substance for treatment of toxicomania. Neurochemical and pharmacological action].

    Science.gov (United States)

    Kazlauskas, Saulius; Kontrimaviciūte, Violeta; Sveikata, Audrius

    2004-01-01

    The review of scientific literature, concerning the indol alkaloid Ibogaine, which is extracted from the bush Tabernanthe Iboga, is presented in this article. Used as a stimulating factor for hundred of years in non-traditional medicine, this alkaloid could be important for modern pharmacology because of potential anti-addictive properties. The mechanism of action of this alkaloid is closely related to different neurotransmitting systems. Studies with animals allow concluding that Ibogaine or medicines based on this alkaloid can be used for treatment of drug dependencies.

  14. New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids ?

    OpenAIRE

    Plodek, Alois; Bracher, Franz

    2016-01-01

    Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids...

  15. Thermodynamic properties of alkyl 1H-indole carboxylate derivatives: A combined experimental and computational study

    International Nuclear Information System (INIS)

    Carvalho, Tânia M.T.; Amaral, Luísa M.P.F.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.

    2016-01-01

    Highlights: • Combustion of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate by static bomb calorimetry. • The Knudsen mass-loss effusion technique was used to measure the vapour pressures of compounds at different temperatures. • Enthalpies of sublimation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate. • Gas-phase enthalpies of formation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate have been derived. • Gas-phase enthalpies of formation estimated from G3(MP2) calculations. - Abstract: The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, at T = 298.15 K, were derived from measurements of the standard massic energies of combustion using a static bomb combustion calorimeter. The Knudsen effusion technique was used to measure the vapour pressures as a function of the temperature, which allowed determining the standard molar enthalpies of sublimation of these compounds. The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding −(207.6 ± 3.6) kJ·mol"−"1 and −(234.4 ± 2.4) kJ·mol"−"1, for methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, respectively. Quantum chemical studies were also conducted, in order to complement the experimental study. The gas-phase enthalpies of formation were estimated from high level ab initio molecular orbital calculations, at the G3(MP2) level, for the compounds studied experimentally, extending the study to the methyl 1H-indole-2-carboxylate and ethyl 1H-indole-3-carboxylate. The results obtained were compared with the experimental data and were also analysed in terms of structural enthalpic group contributions.

  16. Steroidal glyco alkaloids and molluscicidal activity of Solanum asperum Rich. fruits

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tania M.S. [Instituto Multidisciplinar em Saude, Vitoria da Conquista, BA (Brazil). Campus Avancado Anisio Teixeira]. E-mail: sarmento@pesquisador.cnpq.br; Camara, Celso A. [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Quimica; Freire, Kristerson R.L.; Silva, Thiago G. da; Agra, Maria de F.; Bhattacharyya, Jnanabrata [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica

    2008-07-01

    Bioassay-guided fractionation of the alkaloidal extract of the green fruits of Solanum asperum afforded a new compound, solanandaine along with solasonine and solamargine. The total crude alkaloids as well as the isolated pure alkaloids exhibited significant molluscicidal activity. (author)

  17. Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves

    Science.gov (United States)

    Salamah, N.; Ningsih, D. S.

    2017-11-01

    Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.

  18. Alkaloids in bufonid toads (melanophryniscus): temporal and geographic determinants for two argentinian species.

    Science.gov (United States)

    Daly, J W; Wilham, J M; Spande, T F; Garraffo, H M; Gil, R R; Silva, G L; Vaira, M

    2007-04-01

    Bufonid toads of the genus Melanophryniscus represent one of several lineages of anurans with the ability to sequester alkaloids from dietary arthropods for chemical defense. The alkaloid profile for Melanophryniscus stelzneri from a location in the province of Córdoba, Argentina, changed significantly over a 10-year period, probably indicating changes in availability of alkaloid-containing arthropods. A total of 29 alkaloids were identified in two collections of this population. Eight alkaloids were identified in M. stelzneri from another location in the province of Córdoba. The alkaloid profiles of Melanophryniscus rubriventris collected from four locations in the provinces of Salta and Jujuy, Argentina, contained 44 compounds and differed considerably between locations. Furthermore, alkaloid profiles of M. stelzneri and M. rubriventris strongly differed, probably reflecting differences in the ecosystem and hence in availability of alkaloid-containing arthropods.

  19. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria.

    Science.gov (United States)

    Zhang, Qian; Zhao, Jiao Jiao; Xu, Jian; Feng, Feng; Qu, Wei

    2015-09-15

    The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented. The literature study of this review is based on various databases search (SCIFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Medalink, Google scholar, ACS, Tropicos, Council of Heads of Australasian Herbaria, The New York Botanical Garden, African Plants Database at Genera Botanical Garden, The Plant List and SEINet) and library search for Biological Abstract and some local books on ethnopharmacology. 19 species of the genus Uncaria are found to be important folk medicines in China, Malaysia, Phillippines, Africa and Southeast America, etc, and have been served for the treatment of asthma, rheumatism, hyperpyrexia, hypertension and headaches, etc. More than 200 compounds have been isolated from Uncaria, including indole alkaloids, triterpenes, flavonoids, phenols, phenylpropanoids, etc. As characteristic constituents, indole alkaloids have been considered as main efficacy component for hypertension, epilepsy, depressant, Parkinson's disease and Alzheimer's disease. In addition, pharmacokinetic and metabolism investigation reveal that the indole alkaloids are likely to be absorbed, metabolized and excreted at early time points. Moreover, the specific inhibition of CYP isozymes can regulate their hydroxylation metabolites

  20. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    Science.gov (United States)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  1. NOVEL ALKALOID FROM Rauvolfia capixabae(APOCYNACEAE

    Directory of Open Access Journals (Sweden)

    Lanamar Almeida Carlos

    2016-02-01

    Full Text Available A new sarpagine-type alkaloid, Na-methylrauflorine (1, was isolated from Rauvolfia capixabaetogether with isoreserpiline (2,Nb-oxide-isoreserpiline (3, ajmalicine (4, perakine (5 and vinorine (6 alkaloids. These compounds were characterized based on their spectral data basis, mainly one- (1H, 13C, APT and two-dimensional(1H-1H-COSY, 1H-1H-NOESY, HMQC and HMBC NMR, and mass spectra, also involving comparison with data from the literature.

  2. Antimicrobial potential of alkaloids and flavonoids extracted from ...

    African Journals Online (AJOL)

    Background: Alkaloids and flavonoids are secondary metabolites extracted from different medicinal plants. Tamarix aphylla a traditionally valuable medicinal plant; was used for the extraction of alkaloids and flavonoids in order to evaluate their antibacterial activity. Methodology: The leaves of the plant were collected from ...

  3. Indole compounds in some culinary-medicinal higher basidiomycetes from Poland.

    Science.gov (United States)

    Muszynska, Bozena; Sutkowska-Ziaja, Katarzyna; Ekiert, Halina

    2011-01-01

    Methanolic extracts of two species collected from natural habitats in Poland, Boletus edulis and Suillus luteus, and one species from a commercial source, Pleurotus ostreatus, were analyzed for the presence of non-hallucinogenic indole compounds. The contents of indole compounds in these species were both qualitatively and quantitatively diverse, ranging from 0.01 to 34.11 mg/100 g d.w. Two of 11 tested indole compounds, 5-hydroxytryptophan (0.18, 2.08, 1.63 mg/100 g d.w.) and serotonin (6.52, 10.14, 34.11 mg/100 g d.w.), were present in all three species under study. B. edulis and S. luteus were found to contain L-tryptophan (0.39 and 2.61 mg/100g d.w.) and melatonin (0.68 and 0.71 mg/100 g d.w.). Tryptamine was present in two species, i.e., B. edulis (1.17 mg/100 g d.w.) and in P. ostreatus (0.91 mg/100 g d.w.), in which slight amounts of indole acetonitrile (0.04 and 0.01 mg/100 g d.w., respectively) were also identified. Indoleacetic acid was a common metabolite for P. ostreatus and S. luteus and its contents amounted to 0.21 and 0.04 mg/100 g d.w., respectively. Indole compounds degradation products kynurenic acid (2.63 mg/100 g d.w.) and kynurenine sulfate were (19.57 mg/100 g d.w.) were observed only in S. luteus.

  4. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    International Nuclear Information System (INIS)

    Ahmad, Aamir; Sakr, Wael A.; Rahman, KM Wahidur

    2011-01-01

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics

  5. Novel Euglenoid Derived Alkaloid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Disclosed herein is a purified toxin isolated from Euglena sanguinea. More specifically the toxin, termed euglenophycin, is an alkaloid having herbicidal and...

  6. Two New Alkaloids from Narcissus serotinus L.

    Directory of Open Access Journals (Sweden)

    Francesc Viladomat

    2010-10-01

    Full Text Available The Amaryllidaceae family is well known for the presence of an exclusive group of alkaloids with a wide range of biological activities. Narcissus serotinus L. is a plant belonging to this family and its geographical distribution is mainly located along the Mediterranean coast. In the present work, specimens collected near Casablanca (Morocco were used to study the alkaloid content of this species. Starting with 350 g of the whole plant we used standard extraction and purification procedures to obtain fractions and compounds for GC-MS and NMR analysis. As well as five known alkaloids, we isolated two new compounds: 1-O-(3´-acetoxybutanoyllycorine and narseronine. The latter has been previously published, but with an erroneous structure.

  7. Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones.

    Science.gov (United States)

    Li, Shuai-Shuai; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2015-01-28

    In this paper, a simple and highly efficient ruthenium-catalyzed direct C3 alkylation of indoles with various α,β-unsaturated ketones without chelation assistance has been developed. This novel C-H activation methodology exhibits a broad substrate scope such as different substituted indoles, pyrroles, and other azoles. Further synthetic applications of the alkylation products can lead to more attractive 3,4-fused tricyclic indoles.

  8. Alkaloid analysis by high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Ebild, S.J.; Christensen, S.B.

    2012-01-01

    %) as methanol-d containing 5% aqueous NHOH (30%) as eluents were successful, even though elution of alkaloids with pK of the corresponding acid above 10 proved difficult. Alkaloid extracts of Huperzia selago containing complex aliphatic alkaloids and Triclisia patens containing bisbenzylisoquinoline alkaloids...

  9. Determinación espectrofluorimétrica de fitohormonas derivadas del indol y del naftaleno

    OpenAIRE

    Blanc García, María del Rosario

    2014-01-01

    Se realiza el estudio de las propiedades fluorescentes y la puesta a punto de metodología espectrofluorimétrica en disolución y en fase sólida para la determinación en aguas, suelos y formulaciones comerciales de las fitohormonas derivadas del indol: acido indol-3-acetico. acido indol-3-butirico, acido indol-3-propinoico y acido 5-hidroxiindol-3-acetico; y del naftaleno: acido 1-naftilacetico y 1-naftilacetamida. se lleva a cabo la determinación individual de cada una de las fitohormonas as...

  10. Effects of motherwort alkaloids on rat ear acne

    Directory of Open Access Journals (Sweden)

    Miao Mingsan

    2016-04-01

    Full Text Available The aim of this study was to explore the effects of motherwort alkaloids on rat ear acne. The rats that were administered high, medium, and low doses of motherwort alkaloids, tanshinone capsules, a model and a control group. Each group of rats was subjected to gavage once daily for 14 consecutive days. On the first day of testing, the control and model groups were administered an intradermal auricle injection of sterilized saline solution and the remaining groups were administered an intradermal auricle injection of Staphylococcus epidermidis in addition to the gavage. The thicknesses of the rats’ auricles were measured for five consecutive days following the injections. Anticoagulated blood was used for erythrocyte rheology index measurement. In addition, the entire ear of each rat was removed for morphological examination. Compared to the model group, the group administered motherwort alkaloids exhibited significantly reduced swelling, improved localized auricle proliferation, and reduced blood viscosity. This result suggests motherwort alkaloids are effective in rat ear acne.

  11. [Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].

    Science.gov (United States)

    Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai

    2014-12-01

    To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.

  12. Studies on the Alkaloids of the Calycanthaceae and Their Syntheses

    Directory of Open Access Journals (Sweden)

    Jin-Biao Xu

    2015-04-01

    Full Text Available Plants of the Calycanthaceae family, which possesses four genera and about 15 species, are mainly distributed in China, North America and Australia. Chemical studies on the Calycanthaceae have led to the discovery of about 14 alkaloids of different skeletons, including dimeric piperidinoquinoline, dimeric pyrrolidinoindoline and/or trimeric pyrrolidinoindolines, which exhibit significant anti-convulsant, anti-fungal, anti-viral analgesic, anti-tumor, and anti-melanogenesis activities. As some of complex tryptamine-derived alkaloids exhibit promising biological activities, the syntheses of these alkaloids have also been a topic of interest in synthetic chemistry during the last decades. This review will focus on the structures and total syntheses of these alkaloids.

  13. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    Directory of Open Access Journals (Sweden)

    Mathilde Jaglin

    2018-04-01

    Full Text Available Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional

  14. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    Science.gov (United States)

    Jaglin, Mathilde; Rhimi, Moez; Philippe, Catherine; Pons, Nicolas; Bruneau, Aurélia; Goustard, Bénédicte; Daugé, Valérie; Maguin, Emmanuelle; Naudon, Laurent; Rabot, Sylvie

    2018-01-01

    Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings

  15. New derivatives of alkaloids peganine, vazicinone and garmine

    International Nuclear Information System (INIS)

    Agedilova, M.T.; Turmukhambetov, A.Zh.; Kazantsev, A.V.; Shul'ts, E.E.

    2005-01-01

    It was studied the chemical modification of chinazolin alkaloids peganine and vasicinone and indolin alkaloid garmine. The corresponding halogen-, alkyl-, cetyl and hydrazone derivatives and its salts were obtained. The structure of synthesized compounds was definite by following spectral methods: IR, UV, 1 H, 13 C and 11 B NMR spectroscopy

  16. A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone

    Directory of Open Access Journals (Sweden)

    Al-Wabli Reem I.

    2017-11-01

    Full Text Available (5-Methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone (MIMIM is a bis-indolic derivative that can be used as a precursor to a variety of melatonin receptor ligands. In this work, the energetic and spectroscopic profiles of MIMIM were studied by a combined DFT and experimental approach. The IR, Raman, UV-Vis, 1H NMR and 13C NMR spectra were calculated by PBEPBE and B3LYP methods, and compared with experimental ones. Results showed good agreement between theoretical and experimental values. Mulliken population and natural bond orbital analysis were also performed by time-dependent DFT approach to evaluate the electronic properties of the title molecule.

  17. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  18. Detection and quantification of pyrrolizidine alkaloids in antibacterial medical honeys.

    Science.gov (United States)

    Cramer, Luise; Beuerle, Till

    2012-12-01

    In recent years, there has been an increasing interest in antibacterial honey for wound care ranging from minor abrasions and burns to leg ulcers and surgical wounds. On the other hand, several recent studies demonstrated that honey for human consumption was contaminated with natural occurring, plant derived pyrrolizidine alkaloids.1,2-Unsaturated pyrrolizidine alkaloids are a group of secondary plant metabolites that show developmental, hepato-, and geno-toxicity as well as carcinogenic effects in animal models and in in vitro test systems. Hence, it was of particular interest to analyze the pyrrolizidine alkaloid content of medical honeys intended for wound care.19 different medical honey samples and/or batches were analyzed by applying a recently established pyrrolizidine alkaloid sum parameter method. 1,2-Unsaturated pyrrolizidine alkaloids were converted into the common necin backbone structures and were analyzed and quantified by GC-MS in the selected ion monitoring mode.All but one medical honey analyzed were pyrrolizidine alkaloid positive. The results ranged from 10.6 µg retronecine equivalents per kg to 494.5 µg retronecine equivalents/kg medical honey. The average pyrrolizidine alkaloid content of all positive samples was 83.6 µg retronecine equivalents/kg medical honey (average of all samples was 79.3 µg retronecine equivalents/kg medical honey). The limit of detection was 2.0 µg retronecine equivalents/kg medical honey, while the limit of quantification was 6.0 µg retronecine equivalents/kg medical honey (S/N > 7/1).Based on the data presented here and considering the fact that medical honeys can be applied to open wounds, it seems reasonable to discuss the monitoring of 1,2-unsaturated pyrrolizidine alkaloids in honey intended for wound treatment. Georg Thieme Verlag KG Stuttgart · New York.

  19. Importance of Pyrrolizidine Alkaloids in Bee Products

    OpenAIRE

    OZANSOY, GÖRKEM; KÜPLÜLÜ, ÖZLEM

    2017-01-01

    Pyrrolizidinealkaloids are one of the groups of harmful chemicals of plants, which arenatural toxins. Pyrrolizidine alkaloids found in about 3% of all floweringplants of widespread geographical distribution are known as one of thecomponents of the hepatotoxic group of plant origin and referred as hepatotoxicpyrrolizidine alkaloids. According to researches, bee products is regarded asone of the main food sources in the exposure of people to pyrrolizidinealkaloids. Consumption of pyrrolizidine ...

  20. Nerinine and homolycorine, amaryllidaceae alkaloids from the bulbs of Galanthus transcaucasicus Fomin

    Directory of Open Access Journals (Sweden)

    M. Babashpour-Asl

    2017-01-01

    Full Text Available Background and objectives: Many members of the Amaryllidaceae are regarded as toxic. The toxic constituents that occur in the whole family are referred to as the Amaryllidaceae alkaloids. The main aim of this study was the identification of alkaloid compounds from Galanthus transcaucasicus Fomin, a medicinal plant from Amaryllidaceae. Methods: Planar and column chromatography techniques were used for isolation of alkaloid components. GC/MS analysis was carried out for the identification of alkaloid compounds. Results: Silica gel column chromatography of the alkaloidal extract of G. transcaucasicus bulbs afforded seven fractions. Preparative thin layer chromatography of these fractions led to the isolation of compounds 1 (nerinineand 2 (homolycorine. Galantamine was not detected in any of these fractions. Conclusion: Our findings showed that G. transcaucasicus could be a new source of bioactive alkaloids for possible applications in pharmaceutical industries.

  1. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae).

    Science.gov (United States)

    Boppré, Michael; Colegate, Steven M

    2015-01-01

    The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plant's invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic

  2. Simultaneous determination of the content of isoquinoline alkaloids in Dicranostigma leptopodum (Maxim) Fedde and the effective fractionation of the alkaloids by high-performance liquid chromatography with diode array detection.

    Science.gov (United States)

    Chen, Yali; Li, Min; Liu, Jianjun; Yan, Qian; Zhong, Mei; Liu, Junxi; Di, Duolong; Liu, Jinxia

    2015-01-01

    A simple and efficient method was developed for the simultaneous determination of eight isoquinoline alkaloids in methanol extracts of Dicranostigma leptopodum (Maxim) Fedde and the effective fractionation of the alkaloids of D. leptopodum by high-performance liquid chromatography with diode array detection. The chromatographic conditions were optimized on a SinoChrom ODS-BP column to obtain a good separation of the four types of alkaloid analytes, including two aporphines (isocorydine, corydine), two protopines (protopine and allocryptopine), a morphine (sinoacutine), and three quaternary protoberberine alkaloids (berberrubine, 5-hydroxycoptisine, and berberine). The separation of these alkaloids was significantly affected by the composition of the mobile phase, and particularly by its pH value. Acetonitrile (A) and 0.2% phosphoric acid solution adjusted to pH 6.32 with triethylamine (B) were selected as the mobile phase with a gradient elution. With this method, a new quaternary protoberberine alkaloid was isolated and the two structural isomers (isocorydine and corydine) were baseline separated. The appropriate harvest period for D. leptopodum was also recommended based on our analysis. The method for the effective fraction of the alkaloids of D. leptopodum was optimized under this method with regard to the varying significant pharmacological activities of the alkaloids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Aspidosperma species as sources of antimalarials. Part III. A review of traditional use and antimalarial activity.

    Science.gov (United States)

    de Paula, Renata Cristina; Dolabela, Maria Fâni; de Oliveira, Alaíde Braga

    2014-03-01

    Several plant species belonging to the genus Aspidosperma are traditionally used in Brazil and other Meso- and South American countries for the treatment of malaria and fevers. These traditional uses were motivation for this review. A literature survey completed for this review has identified scientific bibliographical references to the use of 24 Aspidosperma species to treat malaria/fevers and to 19 species that have had their extracts and/or alkaloids evaluated, with good results, for in vitro and/or in vivo antimalarial activity. Indole alkaloids are typical constituents of Aspidosperma species. However, only 20 out of more than 200 known indole alkaloids isolated from this genus have been assayed for antimalarial activity. These data support the potential of Aspidosperma species as sources of antimalarials and the importance of research aimed at validating their use in the treatment of human malaria. Georg Thieme Verlag KG Stuttgart · New York.

  4. Heterosis and heritability estimates of purine alkaloids and ...

    African Journals Online (AJOL)

    Dry cocoa beans displayed high content of purine alkaloids (2.1 and 8.8 mg g-1 for caffein and theobromine, respectively), and polyphenols (25 and 2978 μg g-1 for catechin and epicatechin, respectively). Among the five cocoa clones, SNK16 was the highest in purine alkaloid (caffein and theobromin) and flavanol ...

  5. Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides

    Directory of Open Access Journals (Sweden)

    Cristiane F. Bosi

    2013-06-01

    Full Text Available It is now widely-recognized that the view that herbal remedies have no adverse effects and/or toxicity is incorrect; some traditionally-used plants can present toxicity. The well-established popular use of Ageratum conyzoides has led to its inclusion in a category of medicinal crude drugs created by the Brazilian Health Surveillance Agency. Ageratum belongs to the Eupatorieae tribe, Asteraceae, and is described as containing toxic pyrrolizidine alkaloids. Aqueous extracts of Ageratum conyzoides L. harvested in Brazil (commercial, flowering and non-flowering samples were prepared according to the prescribed method and analyzed by HPLC-HRMS. The pyrrolizidine alkaloids lycopsamine, dihydrolycopsamine, and acetyl-lycopsamine and their N-oxides, were detected in the analyzed extracts, lycopsamine and its N-oxide being known hepatotoxins and tumorigens. Together with the pyrrolizidine alkaloids identified by HPLC-HRMS, thirteen phenolic compounds were identified, notably, methoxylated flavonoids and chromenes. Toxicological studies on A. conyzoides are necessary, as is monitoring of its clinical use. To date, there are no established safety guidelines on pyrrolizidine alkaloids-containing plants, and their use in Brazil.

  6. Pyrrolizidine alkaloids in medicinal tea of Ageratum conyzoides

    Directory of Open Access Journals (Sweden)

    Cristiane F. Bosi

    2013-03-01

    Full Text Available It is now widely-recognized that the view that herbal remedies have no adverse effects and/or toxicity is incorrect; some traditionally-used plants can present toxicity. The well-established popular use of Ageratum conyzoides has led to its inclusion in a category of medicinal crude drugs created by the Brazilian Health Surveillance Agency. Ageratum belongs to the Eupatorieae tribe, Asteraceae, and is described as containing toxic pyrrolizidine alkaloids. Aqueous extracts of Ageratum conyzoides L. harvested in Brazil (commercial, flowering and non-flowering samples were prepared according to the prescribed method and analyzed by HPLC-HRMS. The pyrrolizidine alkaloids lycopsamine, dihydrolycopsamine, and acetyl-lycopsamine and their N-oxides, were detected in the analyzed extracts, lycopsamine and its N-oxide being known hepatotoxins and tumorigens. Together with the pyrrolizidine alkaloids identified by HPLC-HRMS, thirteen phenolic compounds were identified, notably, methoxylated flavonoids and chromenes. Toxicological studies on A. conyzoides are necessary, as is monitoring of its clinical use. To date, there are no established safety guidelines on pyrrolizidine alkaloids-containing plants, and their use in Brazil.

  7. 2-tert-Butyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole

    Directory of Open Access Journals (Sweden)

    Janina Wobbe

    2011-09-01

    Full Text Available 2-tert-Butyl-5,6,7,8,9,10-hexahydrocyclohepta[b]indole was synthesized by reaction of cycloheptanone and (4-tert-butylphenylhydrazine hydrochloride in the presence of sodium acetate and sulfuric acid in glacial acetic acid via Fischer indole synthesis.

  8. Calcium, membranes and accumulation of alkaloids in plants

    International Nuclear Information System (INIS)

    Lovkova, M.Ya.; Buzuk, G.N.; Grinkevich, N.I.

    1983-01-01

    Ca 2+ effect upon metabolism of aporphines and protopines has been studied in Glaucium flavun, which alkaloids are of an essential interest for the medicine practice. It has been shown that calcium produces the inhibiting effect both on catabolitic splitting and metabolism of glaucine and protopine. It has been anticipated that calcuium introduced into an expert plant stabilizes membranes of intracellular structures and prevents 14 C alkaloid entering from an environment to metabolically active cell compartments, which contain ferments realizing transformations of the above compounds. The level of membrane permeability is probably the main mechanism, through which a control of metabolism processes occurs, and hence, a control of alkaloid accumulation processes under in vivo conditions

  9. S-Alkylated/aralkylated 2-(1H-indol-3-yl-methyl)-1,3,4- oxadiazole-5 ...

    African Journals Online (AJOL)

    ylmethyl)-1,3,4- oxadiazole-5-thiol derivatives. Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of sulfuric acid to form ethyl 2-(1H-indol-3-yl)acetate (2) which was transformed to 2-(1H-indol-3- ...

  10. 1H-indol-3-yl-methyl

    African Journals Online (AJOL)

    Methods: 2-(1H-indol-3-yl)acetic acid (1) was reacted with absolute ethanol and catalytic amount of ... dehydration in the same pot with CBr4 and Ph3P. [6]. ... and used after distillation. ... distilled water or by solvent extraction depending.

  11. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants.

    Science.gov (United States)

    Ishida, Mariko; Kitao, Naoko; Mizuno, Kouichi; Tanikawa, Natsu; Kato, Misako

    2009-02-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-(14)C]adenine and [8-(14)C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue.

  12. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development.

    Science.gov (United States)

    Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf

    2005-06-01

    Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption.

  13. Study on the synthesis of the cyclopenta[f]indole core of raputindole A

    Directory of Open Access Journals (Sweden)

    Nils Marsch

    2016-02-01

    Full Text Available The raputindoles from the rutaceous tree Raputia simulans share a cyclopenta[f]indole partial structure the synthesis of which is subject of this investigation. An efficient route to a series of 1,5-di(indol-6-ylpentenones was developed via Mo/Au-catalyzed Meyer–Schuster rearrangement of tertiary propargylic alcohol precursors. However, none of the enones underwent the desired Nazarov cyclization to a cyclopenta[f]indole. More suitable were 6-hydroxyallylated indolines which gave good yields of cyclopenta[f]indolines after treatment with SnCl4, as soon as sterically demanding β-cyclocitral adducts were reacted. Most successful were Pt(II and Au(I-catalyzed cyclizations of N-TIPS-protected indolin-6-yl-substituted propargylacetates which provided the hydrogenated tricyclic cyclopenta[f]indole core system in high yield.

  14. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    Science.gov (United States)

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  15. Alkaloids in the human food chain - Natural occurrence and possible adverse effects

    NARCIS (Netherlands)

    Koleva, I.; Beek, van T.A.; Soffers, A.E.M.F.; Dusemund, B.; Rietjens, I.

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their

  16. Pyrrolizidine alkaloids from seven wild-growing Senecio species in Serbia and Montenegro

    Directory of Open Access Journals (Sweden)

    BORIS M. MANDIC

    2009-01-01

    Full Text Available The genus Senecio (family Asteraceae is one of the largest in the world. It comprises about 1100 species which are the rich source of pyrrolizidine alkaloids. Plants containing pyrrolizidine alkaloids are among the most important sources of human and animal exposure to plant toxins and carcinogens. The pyrrolizidine alkaloids of seven Senecio species (S. erucifolius, S. othonnae, S. wagneri, S. subalpinus, S. carpathicus, S. paludosus and S. rupestris were studied. Fourteen alkaloids were isolated and their structures determined from spectroscopic data (1H- and 13C-NMR, IR and MS. Five of them were identified in S. erucifolius, four in S. othonnae, two in S. wagneri, four in S. subalpinus, two in S. carpathicus, three in S. paludosus and three in S. rupestris. Seven pyrrolizidine alkaloids were found for the first time in particular species. The results have chemotaxonomic importance. The cytotoxic activity and antimicrobial activity of some alkaloids were also studied.

  17. Distribution of indole in tissues of dairy cattle, swine, and laying pullets

    International Nuclear Information System (INIS)

    Eisele, G.R.

    1986-01-01

    Indole is a colorless crystalline solid which has been isolated from coal tar fractionation. High concentrations of indole (which is a major ruminal fermentation product of L-tryptophan) in blood of cattle causes hemolysis, hemoglobinuria, and renal necrosis. An end product of anaerobic metabolism of the colonic flora, indole has also been examined as a marker in patients with unresected large bowel cancer or polyps. With the increased release of numerous chemical substances into the biosphere, careful assessment of the health effects of chronic exposure to pollutants must be made. Much of the body burden of animals will come from ingested feed and water, with the primary route of human exposure being the consumption of the contaminated meat, milk, and eggs. The purpose of this study was to obtain baseline data on the uptake and distribution of 14 C-indole in dairy cattle, swine, and laying pullets and the retention of this chemical in consumable products such as milk, meat, and eggs

  18. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode.

    Science.gov (United States)

    Jin, Mingchao; Zhang, Xiaoqing; Zhen, Qianna; He, Yifan; Chen, Xiao; Lyu, Wenjing; Han, Runchuan; Ding, Min

    2017-12-15

    Indole is an essential metabolite in intestinal tract. The dysregulation of plasma indole concentration occurred in various diseases. In this study, the indole in plasma was determined directly using electrochemical sensor with multiwall carbon nanotubes-chitosan (MWCNTs-CS) modified screen-printed carbon electrode (SPCE). The electrochemical behavior of indole was elucidated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) on the MWCNTs-CS composites modified SPCE (MWCNTs-CS/SPCE). The results showed that the current responses of indole improved greatly due to the high catalytic activity and electron transfer reaction of nano-composites. Under the optimized conditions, the linear range of indole was from 5 to 100μgL -1 with the detection limit of 0.5μgL -1 (S/N = 3). This novel electrochemical sensor exhibited acceptable accuracies and precisions with the variations less than 7.3% and 9.0%, respectively. Furthermore, high performance liquid chromatography (HPLC) method was utilized to compare with the established electrochemical method for the determination of indole in plasma. The results showed a high correlation between the two methods. At last, the electrochemical sensor was successfully applied to detect the level of indole in plasma samples with satisfactory selectivity and sensitivity. The concentrations of plasma indole in healthy pregnant women and gestational diabetes mellitus (GDM) patients were 5.3 (4.1-7.0)μgL -1 and 7.2 (4.5-9.4)μgL -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline.

    Science.gov (United States)

    Shi, Jing-Shan; Yu, Jun-Xian; Chen, Xiu-Ping; Xu, Rui-Xia

    2003-02-01

    The pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline extracted from Uncaria rhynchophylla Miq Jacks were reviewed. The alkaloids mainly act on cardiovascular system and central nervous system including the hypotension, brachycardia, antiarrhythmia, and protection of cerebral ischemia and sedation. The active mechanisms were related to blocking of calcium channel, opening of potassium channel, and regulating of nerve transmitters transport and metabolism, etc.

  20. Aspidosperma (Apocynaceae plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth used as a remedy to treat fever and malaria in the Amazon

    Directory of Open Access Journals (Sweden)

    Julia Penna Coutinho

    2013-12-01

    Full Text Available Infusions of Aspidosperma nitidum (Apocynaceae wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  1. Pro-toxic dehydropyrrolizidine alkaloids in the traditional Andean herbal medicine “asmachilca”

    Science.gov (United States)

    Colegate, Steven M.; Boppré, Michael; Monzón, Julio; Betz, Joseph M.

    2015-01-01

    Ethnopharmacological relevance Asmachilca is a Peruvian medicinal herb preparation ostensibly derived from Eupatorium gayanum Wedd. = Aristeguietia gayana (Wedd.) R.M. King & H. Rob. (Asteraceae: Eupatorieae). Decoctions of the plant have a reported bronchodilation effect that is purported to be useful in the treatment of respiratory allergies, common cold and bronchial asthma. However, its attractiveness to pyrrolizidine alkaloid-pharmacophagous insects indicated a potential for toxicity for human consumers. Aim of the study To determine if commercial asmachilca samples, including fully processed herbal teas, contain potentially toxic 1,2-dehydropyrrolizidine alkaloids. Materials and methods Two brands of “Asmachilca” herbal tea bags and four other commercial samples of botanical materials for preparing asmachilca medicine were extracted and analyzed using HPLC-esi(+)MS and MS/MS for the characteristic retention times and mass spectra of known dehydropyrrolizidine alkaloids. Other suspected dehydropyrrolizidine alkaloids were tentatively identified based on MS/MS profiles and high resolution molecular weight determinations. Further structure elucidation of isolated alkaloids was based on 1D and 2D NMR spectroscopy. Results Asmachilca attracted many species of moths which are known to pharmacophagously gather dehydropyrrolizidine alkaloids. Analysis of 5 of the asmachilca samples revealed the major presence of the dehydropyrrolizidine alkaloid monoesters rinderine and supinine, and their N-oxides. The 6th sample was very similar but did not contain supinine or its N-oxide. Small quantities of other dehydropyrrolizidine alkaloid monoesters, including echinatine and intermedine, were also detected. In addition, two major metabolites, previously undescribed, were isolated and identified as dehydropyrrolizidine alkaloid monoesters with two “head-to-tail” linked viridifloric and/or trachelanthic acids. Estimates of total pyrrolizidine alkaloid and N

  2. [Recent results on the pharmacodynamics of Strychnos malgaches alkaloids].

    Science.gov (United States)

    Rasoanaivo, P; Ratsimamanga-Urverg, S; Frappier, F

    1996-01-01

    Investigation of Strychnos (Loganiaceae) shrubs and trees was initiated by their traditional uses of their inherent poisons on arrows: this led to the discovery of strychnine and curare alkaloids. Subsequently, phytochemical investigation of several Strychnos species has shown great structural diversity of the alkaloid constituent which also display various biological effects, i.e. convulsive and relaxant effects on muscles, and antimicrobial, antitumor and antihypertensive properties. Ethnobotanical field work conducted in different regions of Madagascar revealed that infusion of three Strychnos species, S. mostueoides, S. myrtoides and S. diplotricha, is used in association with subcurative doses of chloroquine to treat chronic malaria. Bioassayfractionation led to the isolation of two major bioactive components, strychnobrasiline and malagashanine. Whereas strychnobrasiline is a previously known chemical compound, malagashanine is the first in a series of a new subtype of Strychnos alkaloids. These two alkaloids are devoid of intrinsic antimalarial effects, both in vitro (IC50 = 73.0 micrograms/ml for strychnobrasiline and 69.1 micrograms/ml for malagashanine) and in vivo (10 mg/kg conferred a 5% suppression of parasitemia). When these alkaloids are combined with chloroquine at doses much lower than required for antiplasmodial effects, they greatly enhance the chloroquine action in a dose dependent manner as seen by the isobologram method. Several minor alkaloids structurally related to malagashanine were also isolated from Madagascan Strychnos. They all enhance, to greater or lesser degrees, the chloroquine effectiveness. Interestingly, there is a positive correlation between the ethnomedical use of the three Strychnos species as chloroquine adjuvants and the chloroquine-potentiating effects of malagashanine and strychnobrasiline isolated from them. After preliminary toxicological studies, infusion of stem barks of S. myrtoides in association with chloroquine

  3. The expanding universe of alkaloid biosynthesis.

    Science.gov (United States)

    De Luca, V; Laflamme, P

    2001-06-01

    Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.

  4. Serum glutathione transferase does not respond to indole-3-carbinol: A pilot study

    Directory of Open Access Journals (Sweden)

    Daniel R McGrath

    2010-05-01

    Full Text Available Daniel R McGrath1, Hamid Frydoonfar2, Joshua J Hunt3, Chris J Dunkley3, Allan D Spigelman41Ipswich Hospital, Ipswich, UK; 2Hunter Pathology Service, New South Wales; 3Royal Newcastle Centre, Newcastle; 4St Vincent’s Clinical School, Sydney, AustraliaBackground: Despite the well recognized protective effect of cruciferous vegetables against various cancers, including human colorectal cancers, little is known about how this effect is conferred. It is thought that some phytochemicals found only in these vegetables confer the protection. These compounds include the glucosinolates, of which indole-3-carbinol is one. They are known to induce carcinogen-metabolizing (phase II enzymes, including the glutathione S-transferase (GST family. Other effects in humans are not well documented. We wished to assess the effect of indole-3-carbinol on GST enzymes.Methods: We carried out a placebo-controlled human volunteer study. All patients were given 400 mg daily of indole-3-carbinol for three months, followed by placebo. Serum samples were tested for the GSTM1 genotype by polymerase chain reaction. Serum GST levels were assessed using enzyme-linked immunosorbent assay and Western Blot methodologies.Results: Forty-nine volunteers completed the study. GSTM1 genotypes were obtained for all but two volunteers. A slightly greater proportion of volunteers were GSTM1-positive, in keeping with the general population. GST was detected in all patients. Total GST level was not affected by indole-3-carbinol dosing compared with placebo. Although not statistically significant, the GSTM1 genotype affected the serum GST level response to indole-3-carbinol.Conclusion: Indole-3-carbinol does not alter total serum GST levels during prolonged dosing.Keywords: pilot study, colorectal cancer, glutathione transferase, human, indole-3-carbinol

  5. Analytical chemical study of alkaloid fraction of methanolic extract of Croton baillonianus (AUBL) leaves

    International Nuclear Information System (INIS)

    Fuertes R, Cesar M.; Benavides, Angelyne; Pizza, Cosimo; Napolitano, Asunta; Basarello, Carla; Piacente, Sonia; Carbone Virginia

    2012-01-01

    The objective of the present study has been to extract and isolate the alkaloids from leaves of Croton baillonianus, corresponding to the methanolic extract by exclusion chromatography with Sephadex LH-20 followed by a purification by high performance liquid chromatography, obtaining six alkaloids. Two low polarity alkaloid and two glycoside alkaloids were analyzed by Electronic System impact mass spectrometry; these alkaloids belong to bencylisoquinolinic type; the study has connection to the determination of its antioxidant, antiulcerose and cytotoxic properties. (author).

  6. A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids.

    Science.gov (United States)

    Schumann, B; Erge, D; Maier, W; Gröger, D

    1982-05-01

    A new strain of Claviceps was isolated from a blokked mutant of Claviceps purpurea. This strain accumulates substantial amounts of clavine alkaloids (2 g/l). The alkaloid fraction is composed of chanoclavine-I ( approximately 10%) and a mixture of agroclavine/elymoclavine (90%). Most suitable for alkaloid production in submerged culture is an ammoncitrate/sucrose medium. The genealogy of the new strain, designated Pepty 695/ch-I is the following one: Pepty 695/S (ergotoxine producer) --> Pepty 695/ch (secoergoline producer) --> Pepty 695/ch-I (tetracyclic clavine producer).

  7. An experimental study of radioprotective effect of ginseng alkaloid fraction on cellular damage

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Yul; Cho, Chul Koo; Kim, Mi Sook; Yoo, Hyung Jun; Kim, Seong Ho; Kim, Tae Hwan [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-09-01

    This paper is to assess the effect of Adaptagen as a radioprotector in which main component is alkaloid fraction of ginseng. Evaluation was made in vitro and in vivo study with NIGP(S) mouse by the measurement of regeneration of jejunal crypt cell and micronucleus assay to analyze radioprotective effect of ginseng alkaloid fraction in comparison with that of water fraction after whole body irradiation. The results were as follows, 1. The degree of radiation damage of mouse jejunal crypt cell was diminished in both of alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group. 2. Regeneration of mouse jejunal crypt cell was higher both in alkaloid and water fraction groups than control group. 3. In vitro study, frequency of micronucleus was diminished in tendency for the treated groups than control group but statistically insignificant. 4. In vitro study, frequency of micronucleus was diminished in both alkaloid and water fraction groups compared to control group but more in alkaloid fraction group than water fraction group.

  8. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Science.gov (United States)

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  9. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Directory of Open Access Journals (Sweden)

    Vartika Rai

    2014-01-01

    Full Text Available Catharanthus roseus (L. G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr level in order to investigate the plant’s protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress.

  10. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    OpenAIRE

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward ...

  11. Mass-spectrometry-directed analysis and purification of pyrrolizidine alkaloid cis/trans isomers in Gynura japonica.

    Science.gov (United States)

    Fang, Lianxiang; Xiong, Aizhen; Yang, Xiao; Cheng, Wenzhi; Yang, Li; Wang, Zhengtao

    2014-08-01

    Pyrrolizidine alkaloids are highly hepatotoxic natural chemicals that produce irreversible chronic and acute hepatotoxic effects on human beings. Purification of large amounts of pyrrolizidine alkaloids is necessary for toxicity studies. In this study, an efficient method for targeted analysis and purification of pyrrolizidine alkaloid cis/trans isomers from herbal materials was developed for the first time. Targeted analysis of the hepatotoxic pyrrolizidine alkaloids was performed by liquid chromatography with tandem mass spectrometry (precursor ion scan and daughter ion scan), and the purification of pyrrolizidine alkaloids was achieved with a mass-directed auto purification system. The extraction and preparative liquid chromatography conditions were optimized. The developed method was applied to analysis of Gynura japonica (Thunb.) Juel., a herbal medicine traditionally used for detumescence and relieving pain but is potentially hepatotoxic as it contains pyrrolizidine alkaloids. Twelve pyrrolizidine alkaloids (six cis/trans isomer pairs) were identified with reference compounds or characterized by liquid chromatography with tandem mass spectrometry, and five individual pyrrolizidine alkaloids, including (E)-seneciphylline, seneciphylline, integerrimine, senecionine, and seneciphyllinine, were prepared from G. japonica roots with high efficiency. The results of this work provide a new technique for the preparation of large amounts of pyrrolizidine alkaloid reference substances, which will also benefit toxicological studies of pyrrolizidine alkaloids and treatments for pyrrolizidine alkaloid-induced toxicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Histrionicotoxin alkaloids finally detected in an ant

    DEFF Research Database (Denmark)

    Jones, Tappey H.; Adams, Rachelle Martha Marie; Spande, Thomas F.

    2012-01-01

    Workers of the ant Carebarella bicolor collected in Panama were found to have two major poison-frog alkaloids, cis- and trans-fused decahydroquinolines (DHQs) of the 269AB type, four minor 269AB isomers, two minor 269B isomers, and three isomers of DHQ 271D. For the first time in an ant, however......) sp., were found to have a very similar DHQ complex but failed to show HTXs. Several new DHQ alkaloids of MW 271 (named in the frog as 271G) are reported from the above ants that have both m/z 202 and 204 as major fragment ions, unlike the spectrum seen for the poison-frog alkaloid 271D, which has...... only an m/z 204 base peak. Found also for the first time in skin extracts from the comparison frog Oophaga granulifera of Costa Rica is a trace DHQ of MW 273. It is coded as 273F in the frog; a different isomer is found in the ant....

  13. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Welch, Kevin D; Cook, Daniel; Pfister, James A; Kem, William R

    2010-01-01

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine>(+)-anabasine>(-)-anabasine > (+/-)-anabasine>anagyrine>(-)-coniine > (+/-)-coniine>(+)-coniine>(+/-)-ammodendrine>(+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine>(+)-anabasine>(-)-coniine>(+)-coniine>(+)-ammodendrine>anagyrine>(-)-anabasine>(+/-)-coniine>(+/-)-anabasine>(-)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.

  14. Quinolizidine alkaloids from the curare adjuvant Clathrotropis glaucophylla.

    Science.gov (United States)

    Sagen, Anne Lise; Gertsch, Jürg; Becker, Rita; Heilmann, Jörg; Sticher, Otto

    2002-12-01

    The bark of Clathrotropis glaucophylla (Fabaceae) is used as admixture of curare arrow poison by the Yanomami; Amerindians in Venezuela. A new quinolizidine alkaloid (QA), (-)-13alpha-hydroxy-15alpha-(1-hydroxyethyl)-anagyrine [(-)-clathrotropine], was isolated from the alkaloid extract of C. glaucophylla bark, together with eleven known QAs: (-)-anagyrine, (-)-thermopsine, (-)-baptifoline, (-)-epibaptifoline, (-)-rhombifoline, (-)-tinctorine, (-)-cytisine, (-)-N-methylcytisine, (-)-lupanine, (-)-6alpha-hydroxylupanine and (+)-5,6-dehydrolupanine. The isolation and structure elucidation were performed with the aid of chromatographic (TLC, HPLC and CC) and spectroscopic (UV and 1D/2D NMR) methods, and mass spectrometry. To our knowledge, this is the first time quinolizidine alkaloids have been isolated from an arrow poison ingredient. It is also the first report on Clathrotropis species being used for preparation of arrow poison.

  15. Indolopyridoquinazoline alkaloids from Esenbeckia grandiflora mart. (Rutaceae); Alkaloides {beta}-indolopiridoquinazolinicos de Esenbeckia grandiflora mart. (Rutaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Januario, Ana Helena; Vieira, Paulo Cezar; Silva, Maria Fatima das Gracas Fernandes da; Fernandes, Joao Batista [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica], e-mail: anahjanuario@unifran.br; Silva, Jorge Jose de Brito; Conserva, Lucia Maria [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Inst. de Quimica e Biotecnologia

    2009-07-01

    The chemical composition of two specimens of Esenbeckia grandiflora, collected in the south and northeast regions of Brazil, was investigated. In this study, three b-indolopyridoquinazoline alkaloids from the leaves (rutaecarpine, 1-hydroxyrutaecarpine) and roots (euxylophoricine D) were isolated for the first time in this genus. In addition, the triterpenes {alpha}-amyrin, {beta}-amyrin, {alpha}-amyrenonol, {beta}-amyrenonol, 3{alpha}-hydroxy-ursan-12-one, and 3{alpha}-hydroxy-12,13-epoxy-oleanane, the coumarins auraptene, umbelliferone, pimpinelin, and xanthotoxin, the furoquinoline alkaloids delbine and kokusaginine, and the phytosteroids sitosterol, stigmasterol, campesterol and 3{beta}-O-{beta}-D-glucopyranosylsitosterol were also isolated from the leaves, twigs, roots and stems of this species. Structures of these compounds were established by spectral analysis. (author)

  16. Synthesis of Lycodine-Type Lycopodium Alkaloids Using C-H Functionalization Tactics

    OpenAIRE

    Newton, James

    2015-01-01

    This dissertation describes our syntheses of several lycodine-type Lycopodium alkaloids by the late-stage C-H functionalization of lycodine derivatives. Lycodine-type alkaloids are well-known for their neurological activity. For example, huperzine A is a potent acetylcholinesterase inhibitor and the complanadine family of molecules has been shown to induce the secretion of Nerve Growth Factor. Due to these properties, lycodine-type alkaloids serve as interesting lead compounds for the deve...

  17. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    Science.gov (United States)

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of benzylisoquinoline alkaloids on the larvae of polyphagous Lepidoptera.

    Science.gov (United States)

    Miller, James S; Feeny, Paul

    1983-06-01

    Six benzylisoquinoline alkaloids were fed to the larvae of three polyphagous Lepidoptera species: Hyphantria cunea, Spodoptera eridania, and Lymantria dispar. Exposure of last instar larvae to alkaloid-containing diets over a 24-h period resulted in reduced feeding rates and reduced growth efficiencies. Lymantria dispar larvae reared from eggs on alkaloid diets took longer to reach the fifth instar, attained lower larval weights, and showed reduced survivorship. The benzylisoquinolines tested were not equally effective as toxins or feeding inhibitors. Some produced dramatic effects while others produced no effects. The relative responses of the three caterpillar species to the six alkaloids were similar. Those benzylisoquinolines with a methylene-dioxyphenyl (1,3-benzodioxole) group were consistently the most toxic or repellent while laudanosine, a relatively simple benzylisoquinoline, was generally innocuous. Available host records indicate that benzylisoquinoline-containing plants are avoided by the larvae of these moth species.

  19. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    International Nuclear Information System (INIS)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D.

    1989-01-01

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the α-glucosidase amyloglucosidase (50% inhibition at 5.8 μM), but it did not inhibit β-glucosidase, α- or β-mannosidase, or α- or β-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc 3 Man 7-9 (GlcNAc) 2 -oligosaccharides

  20. Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio

    Directory of Open Access Journals (Sweden)

    NADEZHDA KOSTOVA

    2006-12-01

    Full Text Available Nine Bulgarian species from the genus Senecio were studied phytochemically and/or by GC-MS analysis. Senecivernine-N-oxide was isolated and identified by spectral data for the first time. Different types of pyrrolizidine alkaloids were tested for cytotoxicity on murine lymphocytes. At a concentration of 100 µg/ml, the alkaloid retroisosenine showed immunosuppressive effect.

  1. Sequestered Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio Provide Variable Protection from Microbial Pathogens.

    Science.gov (United States)

    Hovey, Kyle J; Seiter, Emily M; Johnson, Erin E; Saporito, Ralph A

    2018-03-01

    Most amphibians produce their own defensive chemicals; however, poison frogs sequester their alkaloid-based defenses from dietary arthropods. Alkaloids function as a defense against predators, and certain types appear to inhibit microbial growth. Alkaloid defenses vary considerably among populations of poison frogs, reflecting geographic differences in availability of dietary arthropods. Consequently, environmentally driven differences in frog defenses may have significant implications regarding their protection against pathogens. While natural alkaloid mixtures in dendrobatid poison frogs have recently been shown to inhibit growth of non-pathogenic microbes, no studies have examined the effectiveness of alkaloids against microbes that infect these frogs. Herein, we examined how alkaloid defenses in the dendrobatid poison frog, Oophaga pumilio, affect growth of the known anuran pathogens Aeromonas hydrophila and Klebsiella pneumoniae. Frogs were collected from five locations throughout Costa Rica that are known to vary in their alkaloid profiles. Alkaloids were isolated from individual skins, and extracts were assayed against both pathogens. Microbe subcultures were inoculated with extracted alkaloids to create dose-response curves. Subsequent spectrophotometry and cell counting assays were used to assess growth inhibition. GC-MS was used to characterize and quantify alkaloids in frog extracts, and our results suggest that variation in alkaloid defenses lead to differences in inhibition of these pathogens. The present study provides the first evidence that alkaloid variation in a dendrobatid poison frog is associated with differences in inhibition of anuran pathogens, and offers further support that alkaloid defenses in poison frogs confer protection against both pathogens and predators.

  2. Neurochemical binding profiles of novel indole and benzofuran MDMA analogues.

    OpenAIRE

    Shimshoni, JA; Winkler, I; Golan, E; Nutt, D

    2016-01-01

    3,4-Methylenedioxy-N-methylamphetamine (MDMA) has been shown to be effective in the treatment of post-traumatic stress disorder (PTSD) in numerous clinical trials. In the present study, we have characterized the neurochemical binding profiles of three MDMA-benzofuran analogues (1-(benzofuran-5-yl)-propan-2-amine, 5-APB; 1-(benzofuran-6-yl)-N-methylpropan-2-amine, 6-MAPB; 1-(benzofuran-5-yl)-N-methylpropan-2-amine, 5-MAPB) and one MDMA-indole analogue (1-(1H-indol-5-yl)-2-methylamino-propan-1-...

  3. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli.

    Science.gov (United States)

    Kokotou, Maroula G; Revelou, Panagiota-Kyriaki; Pappas, Christos; Constantinou-Kokotou, Violetta

    2017-12-15

    Broccoli is a rich source of bioactive compounds. Among them, sulforaphane and indole-3-carbinol have attracted a lot of attention, since their consumption is associated with reduced risk of cancer. In this work, the development of an efficient and direct method for the simultaneous determination of sulforaphane and indole-3-carbinol in broccoli using UPLC-HRMS/MS is described. The correlation coefficient, and limits of detection (LOD) and quantification (LOQ) were 0.993, 0.77mg/L and 2.35mg/L for sulforaphane and 0.997, 0.42mg/L, 1.29mg/L for indole-3-carbinol, respectively. The content of sulforaphane and indole-3-carbinol varied between 72±9-304±2mg and 77±1-117±3mg per 100g of fresh florets, respectively. Taking into consideration the differences in cultivar, geography, season and environmental factors, the results agreed with values published in the literature using other techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gold-catalyzed Bicyclization of Diaryl Alkynes: Synthesis of Polycyclic Fused Indole and Spirooxindole Derivatives.

    Science.gov (United States)

    Cai, Ju; Wu, Bing; Rong, Guangwei; Zhang, Cheng; Qiu, Lihua; Xu, Xinfang

    2018-04-13

    An unprecedented gold-catalyzed bicyclization reaction of diaryl alkynes has been developed for the synthesis of indoles in good to high yields. Mechanistically, this alkyne bifunctionalization transformation was terminated by a stepwise formal X-H insertion reaction to furnish the corresponding polycyclic-frameworks with structural diversity, and the key intermediate 3 H-indole was isolated and characterized for the first time. In addition, further transformation of these generated tetracyclic-indoles with PCC as the oxidant provided straightforward access to the spirooxindoles in high yields.

  5. Studies on the Red Sea Sponge Haliclona sp. for its Chemical and Cytotoxic Properties.

    Science.gov (United States)

    Al-Massarani, Shaza Mohamed; El-Gamal, Ali Ali; Al-Said, Mansour Sulaiman; Abdel-Kader, Maged S; Ashour, Abdelkader E; Kumar, Ashok; Abdel-Mageed, Wael M; Al-Rehaily, Adnan Jathlan; Ghabbour, Hazem A; Fun, Hoong-Kun

    2016-01-01

    A great number of novel compounds with rich chemical diversity and significant bioactivity have been reported from Red Sea sponges. To isolate, identify, and evaluate the cytotoxic activity of the chemical constituents of a sponge belonging to genus Haliclona collected from the Eastern coast of the Red Sea. The total ethanolic extract of the titled sponge was subjected to intensive chromatographic fractionation and purification guided by cytotoxic bioassay toward various cancer cell lines. The structures of the isolated compounds were elucidated using spectroscopic techniques including one-dimension and two-dimension nuclear magnetic resonance, mass spectrometry, ultraviolet, and infrared data, as well as comparison with the reported spectral data for the known compounds. X-ray single-crystal structure determination was performed to determine the absolute configuration of compound 4. The screening of antiproliferative activity of the compounds was carried on three tumor cell lines, namely the human cervical cancer (HeLa), human hepatocellular carcinoma (HepG2), and human medulloblastoma (Daoy) cells using MTT assay. This investigation resulted in the isolation of a new indole alkaloid, 1-(1H-indol-3-yloxy) propan-2-ol (1), with the previously synthesized pyrrolidine alkaloid, (2R, 3S, 4R, 5R) pyrrolidine-(1-hydroxyethyl)-3,4-diol hydrochloride (4), isolated here from a natural source for the first time. In addition, six known compounds tetillapyrone (2), nortetillapyrone (3), 2-methyl maleimide-5-oxime (5), maleimide-5-oxime (6), 5-(hydroxymethyl) dihydrofuran-2 (3H)-one (7), and ergosta-5,24 (28)-dien-3-ol (8) were also identified. Most of the isolated compounds exhibited weak cytotoxic activity against HepG-2, Daoy, and HeLa cancer cell lines. This is the first report of the occurrence of the indole and pyrrolidine alkaloids, 1-(1H-indol-2-yloxy) propan-2-ol (1), and the - (1-hydroxyethyl)-3,4-diol hydrochloride (4), in the Red Sea Haliclona sp. From the Red Sea

  6. Diversity of Pyrrolizidine Alkaloids in the Boraginaceae Structures, Distribution, and Biological Properties

    Directory of Open Access Journals (Sweden)

    Assem El-Shazly

    2014-04-01

    Full Text Available Among the diversity of secondary metabolites which are produced by plants as means of defence against herbivores and microbes, pyrrolizidine alkaloids (PAs are common in Boraginaceae, Asteraceae and some other plant families. Pyrrolizidine alkaloids are infamous as toxic compounds which can alkylate DNA und thus cause mutations and even cancer in herbivores and humans. Almost all genera of the family Boraginaceae synthesize and store this type of alkaloids. This review reports the available information on the present status (literature up to early 2014 of the pyrrolizidine alkaloids in the Boraginaceae and summarizes the topics structure, distribution, chemistry, chemotaxonomic significance, and biological properties.

  7. Alkaloids in Solanum torvum Sw (Solanaceae): (With 2 Tables & 1 Figure)

    OpenAIRE

    Pérez-Amador, MC; Muñoz Ocotero, V; García Castañeda, JM; González Esquinca, AR

    2007-01-01

    A comparison was made between plants of Solanum torvum Sw that grow in Chiapas, Mexico, and plants of the same species originating from India. This was effected to establish either similarities or differences between these plants in total alkaloid contents and presence of solasodine, an important alkaloid for the partial synthesis of steroids. The total alkaloid content (0.12%) of the plants coming from Chiapas and India was the same. However, solasodine was found only in the plants of Chiapa...

  8. Distinct sesquiterpene pyridine alkaloids from in Salvadoran and Peruvian Celastraceae species.

    Science.gov (United States)

    Callies, Oliver; Núñez, Marvin J; Perestelo, Nayra R; Reyes, Carolina P; Torres-Romero, David; Jiménez, Ignacio A; Bazzocchi, Isabel L

    2017-10-01

    As part of a bioprospecting program aimed at the discovery of undescribed natural products from Salvadoran and Peruvian flora, the phytochemical investigations of four Celastraceae species, Celastrus vulcanicola, Maytenus segoviarum, Maytenus jeslkii, and Maytenus cuzcoina, were performed. The current study reports the isolation and structural characterization of five previously undescribed macrolide sesquiterpene pyridine alkaloids, named vulcanicoline-A, cuzcoinine, vulcanicoline-B, jelskiine, and vulcanicoline-C, along with sixteen known alkaloids. The structures of the alkaloids were established by spectrometric and extensive 1D and 2D NMR spectroscopic analysis, including COSY, HSQC, HMBC, and ROESY experiments. The absolute configurations of alkaloids were proposed based on optical rotation sign, and biogenetic considerations. This study represents the first phytochemical analysis of Maytenus segoviarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows.

    Science.gov (United States)

    Hoogenboom, L A P; Mulder, P P J; Zeilmaker, M J; van den Top, H J; Remmelink, G J; Brandon, E F A; Klijnstra, M; Meijer, G A L; Schothorst, R; Van Egmond, H P

    2011-03-01

    Pyrrolizidine alkaloids are toxins present in many plants belonging to the families of Asteraceae, Boraginaceae and Fabaceae. Particularly notorious are pyrrolizidine alkaloids present in ragwort species (Senecio), which are held responsible for hepatic disease in horses and cows and may lead to the death of the affected animals. In addition, these compounds may be transferred to edible products of animal origin and as such be a threat for the health of consumers. To investigate the possible transfer of pyrrolizidine alkaloids from contaminated feed to milk, cows were put on a ration for 3 weeks with increasing amounts (50-200 g day(-1)) of dried ragwort. Milk was collected and sampled twice a day; faeces and urine twice a week. For milk, a dose-related appearance of pyrrolizidine alkaloids was found. Jacoline was the major component in milk despite being a minor component in the ragwort material. Practically no N-oxides were observed in milk, notwithstanding the fact that they constituted over 80% of the pyrrolizidine alkaloids in ragwort. The overall carry-over of the pyrrolizidine alkaloids was estimated to be only around 0.1%, but for jacoline 4%. Notwithstanding the low overall carry-over, this may be relevant for consumer health considering the genotoxic and carcinogenic properties demonstrated for some of these compounds. Analysis of the faeces and urine samples indicated that substantial metabolism of pyrrolizidine alkaloids is taking place. The toxicity and potential transfer of metabolites to milk is unknown and remains to be investigated.

  10. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  11. Determination of pyrrolizidine alkaloids in commercial comfrey products (Symphytum sp.).

    Science.gov (United States)

    Betz, J M; Eppley, R M; Taylor, W C; Andrzejewski, D

    1994-05-01

    The presence of hepatotoxic pyrrolizidine alkaloids in comfrey (Symphytum sp.) and the widespread use of decoctions of this plant as a beverage (herbal tea) are of increasing concern. A method for the extraction and solid-phase concentration and capillary gas chromatographic determination of these alkaloids and their N-oxides in botanical materials has been developed and was applied to eleven comfrey-containing products purchased from retail health-food outlets in the Washington, DC, area during May-June 1989. Nine of the 11 products were found to contain measurable quantities of one or more of the alkaloids, in ranges from 0.1 to 400.0 ppm. Products containing comfrey leaf in combination with one or more other ingredients were found to contain the lowest alkaloid levels. Highest levels were found in bulk comfrey root, followed by bulk comfrey leaf. The species of the bulk material was verified by thin-layer chromatography and other means.

  12. Bulletin of the Chemical Society of Ethiopia - Vol 16, No 2 (2002)

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia. ... Picranitine, a new indole alkaloid from picralima nitida (APOCYNACEAE) · EMAIL FREE FULL TEXT ... Reaction of propargyltrimethylsilane magnesium bromide with aldimines: synthesis of ...

  13. POSSIBILITY FOR APPLICATION OF LIQUEFIED GASES FOR PURIFICATION OF BARBERRY ALKALOIDS

    Directory of Open Access Journals (Sweden)

    Demyanenko D.V.

    2016-06-01

    Full Text Available Introduction. Biologically active substances (BAS of barberry roots represented by alkaloids of isoquinoline group are perspective substances for development of preparations with multiple pharmacological activities. However, now manufacture of them in Ukraine is stopped. One of the reasons of this is out-of-date production technologies of alkaloids involving use of toxic and/or flammable solvents. In the article possibility for application of liquefied gases in technology of obtaining of alkaloids from barberry roots has been studied. Materials and methods. Initial raw herb drug were barberry (Berberis vulgaris roots harvested in spring on the territory of Southern Ukraine. Their moisture content was 11%, comminuting degree was 0,5-1,4 mm. At the first stage purification of raw herb drug from lipophilic impurities (defatting was made with use of some liquefied gases: tetrafluoroethane, isobutane, difluorochloromethane and difluoromethane. Extraction of the alkaloid sum was made with difluoromethane mixed with various quantities of liquid ammonia or diethylamine as alkaline agent. Crude extracts were exposed to two-level liquefied-gas purification. At first the alkaloid bases were transformed into saline forms with aqueous solutions of acids and purified from ballast impurities with liquefied freon-22. Then alkaloid salts were reextracted from aqueous phase in the base form with liquefied mixture of difluoromethane and ammonia. Mixing of liquid phases was provided by creation of alternate gradients of temperatures and, as consequence, pressures between separators feeding alternately cool water into jacket of one of them, and warm water – into jacket of another one. Quantity of lipophilic ballast impurities and also weight of extractives were determined gravimetrically. Quantitative analysis of the alkaloid sum was made by titrimetric method after sedimentation of alkaloids with volumetric solution of phosphomolybdic acid. Results and discussion

  14. Drug development against tuberculosis: Impact of alkaloids.

    Science.gov (United States)

    Mishra, Shardendu K; Tripathi, Garima; Kishore, Navneet; Singh, Rakesh K; Singh, Archana; Tiwari, Vinod K

    2017-09-08

    Despite of the advances made in the treatment and management, tuberculosis (TB) still remains one of main public health problem. The contrary effects of first and second-line anti-tuberculosis drugs have generated extended research interest in natural products in the hope of devising new antitubercular leads. Interestingly, plethoras of natural products have been discovered to exhibit activity towards various resistant strains of M. tuberculosis. Extensive applications of alkaloids in the field of therapeutics is well-established and nowday's researches being pursued to develop new potent drugs from natural sources for tuberculosis. Alkaloids are categorized in quite a few groups according to their structures and isolation from both terrestrial and marine sources. These new drugs might be a watershed in the battle against tuberculosis. This review summarizes alkaloids, which were found active against Mycobacteria since last ten years with special attention on the study of structure-activity relationship (SAR) and mode of action with their impact in drug discovery and development against tuberculosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. ALKALOIDS OF SOME EUROPEAN AND MACARONESIAN SEDOIDEAE AND SEMPERVIVOIDEAE (CRASSULACEAE)

    NARCIS (Netherlands)

    STEVENS, JF; THART, H; HENDRIKS, H; MALINGRE, TM

    1992-01-01

    Some 22 pyrrolidine and piperdine alkaloids were detected in the leafy parts of Sedum acre, S. aetnense, S. anglicum, S. brissemoreti, S. farinosum, S. fusiforme, S. lancerottense, S. melanantherum, and S. nudum. In addition to the alkaloids known from S. acre, 1-(2-pyrrolidyl)-propan-2-one and

  16. 1-(1H-indol-3-yl)ethanamine derivatives as potent Staphylococcus aureus NorA efflux pump inhibitors.

    Science.gov (United States)

    Hequet, Arnaud; Burchak, Olga N; Jeanty, Matthieu; Guinchard, Xavier; Le Pihive, Emmanuelle; Maigre, Laure; Bouhours, Pascale; Schneider, Dominique; Maurin, Max; Paris, Jean-Marc; Denis, Jean-Noël; Jolivalt, Claude

    2014-07-01

    The synthesis of 37 1-(1H-indol-3-yl)ethanamine derivatives, including 12 new compounds, was achieved through a series of simple and efficient chemical modifications. These indole derivatives displayed modest or no intrinsic anti-staphylococcal activity. By contrast, several of the compounds restored, in a concentration-dependent manner, the antibacterial activity of ciprofloxacin against Staphylococcus aureus strains that were resistant to fluoroquinolones due to overexpression of the NorA efflux pump. Structure-activity relationships studies revealed that the indolic aldonitrones halogenated at position 5 of the indole core were the most efficient inhibitors of the S. aureus NorA efflux pump. Among the compounds, (Z)-N-benzylidene-2-(tert-butoxycarbonylamino)-1-(5-iodo-1H-indol-3-yl)ethanamine oxide led to a fourfold decrease of the ciprofloxacin minimum inhibitory concentration against the SA-1199B strain when used at a concentration of 0.5 mg L(-1) . To the best of our knowledge, this activity is the highest reported to date for an indolic NorA inhibitor. In addition, a new antibacterial compound, tert-butyl (2-(3-hydroxyureido)-2-(1H-indol-3-yl)ethyl)carbamate, which is not toxic for human cells, was also found. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Aptamer-Based Molecular Recognition of Lysergamine, Metergoline and Small Ergot Alkaloids

    Directory of Open Access Journals (Sweden)

    Johan Robbens

    2012-12-01

    Full Text Available Ergot alkaloids are mycotoxins produced by fungi of the genus Claviceps, which infect cereal crops and grasses. The uptake of ergot alkaloid contaminated cereal products can be lethal to humans and animals. For food safety assessment, analytical techniques are currently used to determine the presence of ergot alkaloids in food and feed samples. However, the number of samples which can be analyzed is limited, due to the cost of the equipment and the need for skilled personnel. In order to compensate for the lack of rapid tests for the detection of ergot alkaloids, the aim of this study was to develop a specific recognition element for ergot alkaloids, which could be further applied to produce a colorimetric reaction in the presence of these toxins. As recognition elements, single-stranded DNA ligands were selected by using an iterative selection procedure named SELEX, i.e., Systematic Evolution of Ligands by EXponential enrichment. After several selection cycles, the resulting aptamers were cloned and sequenced. A surface plasmon resonance analysis enabled determination of the dissociation constants of the complexes of aptamers and lysergamine. Dissociation constants in the nanomolar range were obtained with three selected aptamers. One of the selected aptamers, having a dissociation constant of 44 nM, was linked to gold nanoparticles and it was possible to produce a colorimetric reaction in the presence of lysergamine. This system could also be applied to small ergot alkaloids in an ergot contaminated flour sample.

  18. Scientific investigation of crude alkaloids from medicinal plants for the management of pain.

    Science.gov (United States)

    Shoaib, Mohammad; Shah, Syed Wadood Ali; Ali, Niaz; Shah, Ismail; Ullah, Shafi; Ghias, Mehreen; Tahir, Muhammad Nawaz; Gul, Farah; Akhtar, Sohail; Ullah, Abd; Akbar, Wajid; Ullah, Asad

    2016-06-13

    Tissue damage is associated with pain, which is an alarming sign. Aspirin and morphine have been widely used in recent decades for management of pain. Medicinal herbs have been in use for treatment of different diseases for centuries. Many of these herbs possess analgesic activity with relatively less incidences of adverse effects. The strong positive correlation of alkaloids in medicinal plants for analgesic activity persuades an intention to determine possible analgesic activity of total alkaloids extracted from the selected medicinal plants using animal models to answer its possible mechanisms. Crude alkaloids from selected medicinal plants (Woodfordia fruticosa, Adhatoda vasica, Chenopodium ambrosioides, Vitex negundo, Peganum harmala and Broussonetia papyrifera) were extracted as per reported literature. The test crude alkaloids were screened foracute toxicity study. Writhings induced by acetic acid, tail immersion method and formalin-induced nociception assay procedures were used for possible analgesic effects of the crude alkaloids. Crude alkaloids were safe up to dose of 1250 mg/kg body weight in mice. The alkaloids significantly reduced the abdominal constrictions, and increased the time for paw licking response in both phases with a significant raise in latency time in nociception models (P ≤ 0.05). Moreover, the antinociceptive response was significantly attenuated by pretreatment with naloxone suggesting involvement of the opioid receptors for possible antinociceptive action. Crude alkaloids of Woodfordia fruticosa and Peganum harmala showed prominent analgesic potentials through inhibition of peripheral as well as central nervous system mechanisms. Further work is required for isolation of the pharmacologically active constituents.

  19. Cinchona alkaloids in asymmetric organocatalysis

    NARCIS (Netherlands)

    Marcelli, T.; Hiemstra, H.

    2010-01-01

    This article reviews the applications of cinchona alkaloids as asymmetric catalysts. In the last few years, characterized by the resurgence of interest in asymmetric organocatalysis, cinchona derivatives have been shown to catalyze an outstanding array of chemical reactions, often with remarkable

  20. Pyrrolizidine alkaloids from Heliotropium megalanthum.

    Science.gov (United States)

    Reina, M; Gonzalez-Coloma, A; Gutierrez, C; Cabrera, R; Henriquez, J; Villarroel, L

    1998-11-01

    Two pyrrolizidine alkaloids, megalanthonine (1) and lycopsamine (2), have been isolated from Heliotropium megalanthum. The structure of the novel compound 1 was determined by spectroscopic methods. The insecticidal, antifeedant, and antifungal effects of compounds 1 and 2 have been evaluated.

  1. Síndrome alucinógeno, indoles alucinógenos

    OpenAIRE

    Serés García, L.

    2016-01-01

    Hallucinogenic syndrome and hallucinogenic indoles This work summarizes the information about the hallucinogenic mushrooms: history, active components, toxicity, clinical studies, diagnosis, treatment and legal aspects.

  2. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    Science.gov (United States)

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  3. Pyrrole alkaloids from the fruits of Morus alba.

    Science.gov (United States)

    Kim, Seon Beom; Chang, Bo Yoon; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2014-12-15

    Phytochemical investigation of the fruits of Morus alba afforded seventeen pyrrole alkaloids including five new compounds. The structures of five new pyrrole alkaloids, named morroles B-F (4, 5, 7, 16 and 17), were determined on the basis of spectroscopic interpretations. 4-[Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]butanoate (2) was synthesized by chemical reaction but first isolated from nature. Among isolated compounds, compounds 6 and 14 significantly inhibited pancreatic lipase activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The role of bendamustine in the treatment of indolent non-Hodgkin lymphoma

    International Nuclear Information System (INIS)

    Aldoss, Ibrahim T; Blumel, Susan M; Bierman, Philip J

    2009-01-01

    There is no consensus on recommendations for the treatment of relapsed and refractory indolent non-Hodgkin lymphoma (NHL). Bendamustine hydrochloride (bendamustine) has recently been approved for treatment of these patients. Bendamustine is a uniquely structured alkylating agent that lacks cross-resistance with other alkylators. This agent has a high degree of activity against a variety of tumor cell lines. Clinically, bendamustine has demonstrated activity against indolent NHL, chronic lymphocytic lymphoma, multiple myeloma and mantle cell lymphoma. Moreover, studies have validated its activity in patients with indolent NHL who are resistant to purine analogs and rituximab. The cytotoxic activity of bendamustine has been shown to be synergistic with rituximab in hematological malignancies. The incidence of alopecia is significantly less than with other alkylating agents. Myelosuppression is the major toxicity associated with bendamustine

  5. Bendamustine HCL for the treatment of relapsed indolent non-Hodgkin’s lymphoma

    Directory of Open Access Journals (Sweden)

    Rudolf Weide

    2008-09-01

    Full Text Available Rudolf WeidePraxisklinik für Hämatologie und Onkologie, Koblenz, GermanyAbstract: Bendamustine is an alkylating agent which also shows properties of a purine analog. Because of its unique mechanism of action it shows activity in relapsed indolent lymphomas which are resistant to alkylating agents, purine analogs, and rituximab. Bendamustine has a favorable toxicity profile causing no alopecia and only a moderate hematotoxicity and gastrointestinal toxicity. Combinations of bendamustine with mitoxantrone and rituximab and with rituximab alone have been shown to be highly active in relapsed/refractory indolent lymphomas and mantle cell lymphomas achieving long lasting complete remissions. Because of only moderate toxicity these combinations can be applied safely in elderly patients who can be treated in an outpatient setting.Keywords: bendamustine, relapsed-indolent, non-Hodgkin’s lymphoma

  6. Biological activity of the alkaloids of Erythroxylum coca and Erythroxylum novogranatense

    NARCIS (Netherlands)

    Salemink, C.A.; Novák, M.; Khan, I.

    1984-01-01

    The cultivated Erythroxylum varieties E. coca var. coca, E. coca var. ipadu, E. novogranatense var. novogranatense and E. novogranatense var. truxillense contain 18 alkaloids, identified so far, belonging to the tropanes, pyrrolidines and pyridines, with cocaine as the main alkaloid. The biological

  7. Induction of Biofilm Formation in the Betaproteobacterium Burkholderia unamae CK43B Exposed to Exogenous Indole and Gallic Acid

    Science.gov (United States)

    Kim, Dongyeop; Sitepu, Irnayuli R.

    2013-01-01

    Burkholderia unamae CK43B, a member of the Betaproteobacteria that was isolated from the rhizosphere of a Shorea balangeran sapling in a tropical peat swamp forest, produces neither indole nor extracellular polymeric substances associated with biofilm formation. When cultured in a modified Winogradsky's medium supplemented with up to 1.7 mM indole, B. unamae CK43B maintains its planktonic state by cell swelling and effectively degrades exogenous indole. However, in medium supplemented with 1.7 mM exogenous indole and 1.0 mM gallic acid, B. unamae CK43B produced extracellular polymeric substances and formed a biofilm. The concentration indicated above of gallic acid alone had no effect on either the growth or the differentiation of B. unamae CK43B cells above a certain concentration threshold, whereas it inhibited indole degradation by B. unamae CK43B to 3-hydroxyindoxyl. In addition, coculture of B. unamae CK43B with indole-producing Escherichia coli in nutrient-rich Luria-Bertani medium supplemented with 1.0 mM gallic acid led to the formation of mixed cell aggregates. The viability and active growth of B. unamae CK43B cells in a coculture system with Escherichia coli were evidenced by fluorescence in situ hybridization. Our data thus suggest that indole facilitates intergenus communication between indole-producing gammaproteobacteria and some indole-degrading bacteria, particularly in gallic acid-rich environments. PMID:23747701

  8. Protein and alkaloid patterns of the floral nectar in some solanaceous species.

    Science.gov (United States)

    Kerchner, András; Darók, Judit; Bacskay, Ivett; Felinger, Attila; Jakab, Gábor; Farkas, Ágnes

    2015-09-01

    The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.

  9. [Effects of Total Alkaloids of Harmaline on Learning and Memory in Vascular Dementia Rats].

    Science.gov (United States)

    Zhang, Xiao-shuang; Sun, Jian-ning; Yu, Hui-ling

    2015-11-01

    To investigate the effects of total alkaloids of harmaline on learning and memory in vascular dementia rats, and its mechanism. The model rats of vascular dementia were established with bilateral carotid artery ligation. After 30 days, the model rats were randomly divided into six groups: sham group, model group, nicergoline tablets 7 mg/kg group, and 25, 12.5 and 6.25 mg/kg dose groups of total alkaloids of harmaline, the rats were given medicine for 30 days. Learning and memory abilities were tested by Morris water maze, histomorphology in hippocampal CA1 area were observed by HE staining, BAX and BCL-2 protein expression in hippocampal CA1 area were detected by immunohistochemistry. Compared with model group, 25 mg/kg group of total alkaloids of harmaline shortened the incubation period in the third and fourth day significantly, 12.5 mg/kg group of total alkaloids of harmaline shortened the incubation period in the fourth day. 25 and 12.5 mg/kg groups of total alkaloids of harmaline significantly increased the times crossing the target. Total alkaloids of harmaline improved the neurons pathological changes of rat in the hippocampus CA1 area, 25 and 12.5 mg/kg of total alkaloids of harmaline downregulated the expression of apoptosis proteins BAX, upregulated the protein expression of BCL-2. Total alkaloids of harmaline can improve the learning and memory abilities in vascular dementia rats, which probably is related to inhibiting apoptosis of hippocampus cell.

  10. Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners

    Science.gov (United States)

    Mukai, Ken; de Sant'ana, Danilo Pereira; Hirooka, Yasuo; Mercado-Marin, Eduardo V.; Stephens, David E.; Kou, Kevin G. M.; Richter, Sven C.; Kelley, Naomi; Sarpong, Richmond

    2018-01-01

    Stephacidin A and its congeners are a collection of secondary metabolites that possess intriguing structural motifs. They stem from unusual biosynthetic sequences that lead to the incorporation of a prenyl or reverse-prenyl group into a bicyclo[2.2.2]diazaoctane framework, a chromene unit or the vestige thereof. To complement biosynthetic studies, which normally play a significant role in unveiling the biosynthetic pathways of natural products, here we demonstrate that chemical synthesis can provide important insights into biosynthesis. We identify a short total synthesis of congeners in the reverse-prenylated indole alkaloid family related to stephacidin A by taking advantage of a direct indole C6 halogenation of the related ketopremalbrancheamide. This novel strategic approach has now made possible the syntheses of several natural products, including malbrancheamides B and C, notoamides F, I and R, aspergamide B, and waikialoid A, which is a heterodimer of avrainvillamide and aspergamide B. Our approach to the preparation of these prenylated and reverse-prenylated indole alkaloids is bioinspired, and may also inform the as-yet undetermined biosynthesis of several congeners.

  11. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    Science.gov (United States)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  12. Interactions between β-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach

    International Nuclear Information System (INIS)

    Nafisi, Shohreh; Panahyab, Ataollah; Bagheri Sadeghi, Golshan

    2012-01-01

    β-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of β-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR and UV–Vis spectroscopic methods were used to analyze the binding modes of β-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that β-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the –NH groups, with overall binding constants of K harmine–BSA =2.04×10 4 M −1 , K tryptoline–BSA =1.2×10 4 M −1 , K harmaline–BSA =5.04×10 3 M −1 , K harmane–BSA =1.41×10 3 M −1 and K harmalol–BSA =1.01×10 3 M −1 , assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of α-helix from 64% (free protein) to 59% (BSA–harmane), 56% (BSA–harmaline and BSA–harmine), 55% (BSA–tryptoline), 54% (BSA–harmalol) and β-sheet from 15% (free protein) to 6–8% upon β-carboline alkaloids complexation, inducing a partial protein destabilization. - Highlights: ► We model the binding of β-carboline alkaloids to BSA by using the spectroscopic methods. ► We investigate the effects of drug complexation on BSA stability and conformation. ► A partial protein destabilization occurred at high alkaloids concentration. ► Alkaloids bind BSA via hydrophobic interactions and H-bonding with the ---NH groups. ► BSA can be considered as a good carrier for transportation of β-carboline alkaloids.

  13. Analysis of Alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR.

    Science.gov (United States)

    Kubwabo, C; Rollmann, B; Tilquin, B

    1993-04-01

    The alkaloid composition of the aerial parts and roots of PHYSALIS PERUVIANA was analysed by capillary GC (GC (2)), GC (2)-MS and GC (2)-FTIR. Eight alkaloids were identified, three of those alkaloids are 3beta-acetoxytropane and two N-methylpyrrolidinylhygrine isomers, which were not previously found in the genus PHYSALIS. A reproduction of the identification of alkaloids detected in the plant by the use of retention indices has been proposed.

  14. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    Science.gov (United States)

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

  15. AMT (3-(2-aminopropyl)indole) and 5-IT (5-(2-aminopropyl)indole): an analytical challenge and implications for forensic analysis.

    Science.gov (United States)

    Elliott, Simon P; Brandt, Simon D; Freeman, Sally; Archer, Roland P

    2013-03-01

    5-(2-Aminopropyl)indole (5-IT) and 3-(2-aminopropyl)indole (α-methyltryptamine, AMT) are isomeric substances and their differentiation can be a challenge under routine analytical conditions, especially when reference material is unavailable. 5-IT represents a very recent addition to the battery of new psychoactive substances that are commercially available from online retailers. This report illustrates how subtle differences observed under mass spectral and UV conditions can help to facilitate the differentiation between the two isomers. Analyses included (1)  H and (13) C NMR, GC-EI/CI ion trap MS, applications of several U/HPLC-DAD and HPLC-MS methods. Investigations currently underway also highlight the confirmation that AMT was detected in a number of fatal intoxications. These findings also demonstrate that there is a potential risk of misidentification when dealing with both substances. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Isolation, biosynthesis and biological activity of alkaloids of Tylophora asthmatica, a versatile medicinal plant

    International Nuclear Information System (INIS)

    Mulchandani, N.B.

    1987-01-01

    Tylophorine and related new alkaloids have been isolated from Tylophora asthmatics, Pergularia pallida and Ficus hispida plants. Biosynthesis of this group of alkaloids has been carried out using various labelled precursors for the first time and from the systematic degradation of the isolated radiolabelled tylophorine, it has been concluded that these alkaloids arise from one molecule each of tyrosine, phenylalanine and ornithine. The interactions of Tylophora alkaloids particularly tylophorinidine with biomolecules such as lysozyme and bovine serum albumin have also been studied and binding characteristics determined. It was found that Tylophora alkaloid extract possesses antianaphylactic activity as observed in passive peritoneal anaphylaxis in rats. The drug also possessed mild antihistaminic and anticholinergic activities. Studies of the extract on the bronchial smooth muscle both in vivo and in vitro did not reveal bronchiodilator potential of the drug. In addition, the distribution and metabolism of the drug was studied in vivo using 14 C radiolabelled alkaloids prepared by biosynthetic method. This study further revealed its usefulness since the drug is absorbed by vital organs and also it is not metabolised into fragments which could cause some other damage. Tylophora alkaloids have also been found to be anti-mutagenic. 10 tables, 5 figures, 24 refs. (author)

  17. The synthesis of [3H]-indole-3-carbinol, a natural anti-carcinogen from cruciferous vegetables

    International Nuclear Information System (INIS)

    Dashwood, R.H.; Uyetake, Lyle; Fong, A.T.; Hendricks, J.D.; Bailey, G.S.

    1989-01-01

    Indole-3-carbinol is a natural anti-carcinogen found as a glucosinolate in cruciferous vegetables such as cabbage, cauliflower and broccoli. A complete understanding of the mechanisms of anti-carcinogenesis by this dietary inhibitor requires improved insight into the disposition and metabolic fate of indole-3-carbinol in vivo. Such metabolic studies have been hampered by the lack of a commercial source of radiolabelled compound. This provided the main impetus for the work reported here, the synthesis of 5-[ 3 H]-indole-3-carbinol from 5-bromoindole. (author)

  18. Antiparasitic activities of acridone alkaloids from Swinglea glutinosa (Bl.) Merr

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Djalma A.P. dos; Vieira, Paulo C; Silva, M. Fatima das G.F. da; Fernandes, Joao B [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica; Rattray, Lauren; Croft, Simon L [London School of Hygiene and Tropical Medicine, London (United Kingdom). Dept. of Infectious and Tropical Diseases

    2009-07-01

    Eleven acridone alkaloids isolated from Swinglea glutinosa (Bl.) Merr. were examined for in vitro activity against chloroquine-sensitive Plasmodium falciparum 3D7, Trypanosoma brucei rhodesiense STIB900 and Leishmania donovani L82. An assay with KB cells was developed in order to compare in vitro toxicity of alkaloids with the selective action on the parasites. Nine of the compounds had IC{sub 50} values ranging from 0.3 to 11.6 {mu}M against P. falciparum. In contrast, a small number of compounds showed significant activity against T. brucei rhodesiense and none had activity against L. donovani. Among the alkaloids three had IC{sub 50} < 1.0 {mu}M against P. falciparum, whereas against T. b. rhodesiense five had IC{sub 50} < 10 {mu}M. The characterization of the acridone alkaloids, 1,3,5-trihydroxy-4-methoxy-10-methyl-2,8-bis(3-methylbut-2-enyl)acridin-9 (10H)-one (1), 2,3-dihydro-4,9-dihydroxy-2-(2-hydroxypropan-2-yl)-11-methoxy-10-methylfuro [3,2-b] acridin-5(10H)-one (2) and 3,4-dihydro-3,5,8-trihydroxy-6-methoxy-2,2,7-trimethyl-2Hpyrano[ 2,3-a]acridin-12(7H)-one (3), is discussed, as well as the structure-activity relationship of all compounds assayed. Isolation and spectral data of alkaloids 1-3 are described for the first time although their cytotoxicities to cancer cells have been described before. (author)

  19. Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.

    Science.gov (United States)

    Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.

  20. [Synthetic Studies of Bioactive Heterocyclic Natural Products and Fused Heterocyclic Compounds Based on the Thermal Electrocyclic or Azaelectocyclic Reaction of 6π-Electron or Aza-6π-electron Systems].

    Science.gov (United States)

    Hibino, Satoshi

    2016-01-01

    Since 1979, synthetic studies of bioactive heterocyclic natural products and condensed heteroaromatic compounds based on the thermal electrocyclic reaction of 6π-electron or aza-6π-electron systems incorporating the double bond of the principal aromatic or heteroaromatic ring have been conducted by our research group. In this review, five types of electrocyclic and azaelectrocyclic reaction are described: 1) the synthesis of the carbazole alkaloids hyellazole and 6-chlorohyellazole through the electrocyclic reaction of 2,3-bisalkenylindoles; 2) synthetic studies of the pyridocarbazole alkaloids ellipticine and olivacine through the electrocyclic reactions of the indole-2,3- and pyridine-3,4-quinodimethane intermediates; 3) synthetic studies of polysubstituted carbazole alkaloids through the allene-mediated electrocyclic reactions involving the indole 2,3-bond; 4) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 1-aza-6π-electron system using the oxime or oxime ether; and 5) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 2-aza-6π-electron system using a carbodiimide or isocyanate.

  1. Biosistematik species Annona muricata Annona squamosa dan Annona reticulata dengan pendekatan alkaloid

    Directory of Open Access Journals (Sweden)

    Hamidah Hamidah

    2013-03-01

    Full Text Available This research aimed to explore kinship Annona muricata, Annona squamosa and Annona reticulata on the basis alkaloid content. Study phenotype Annona muricata, Annona squamosa and Annona reticulata based alkaloid content. Data alkaloid obtained are thenprocessed by a computer program SPSS version 14. The results of this study indicate that the presence of variations in the characterof the three types of Annona of species alkaloid. From the data analysis it can be seen that there are differences in the variations that occur in Annona muricata, Annona squamosa and Annona reticulata by different habitats and is a variation of phenotypic variation.Dendrogram grouping results suggest that Annona squamosa and Annona reticulata fenetic ties closer, so clumped into one large group while Annona muricata split away from the other groups.

  2. Rh(III-Catalyzed, Highly Selectively Direct C–H Alkylation of Indoles with Diazo Compounds

    Directory of Open Access Journals (Sweden)

    Kang Wan

    2016-06-01

    Full Text Available Rh(III-catalyzed regioselective alkylation of indoles with diazo compounds as a highly efficient and atom-economic protocol for the synthesis of alkyl substituted indoles has been developed. The reaction could proceed under mild conditions and afford a series of desired products in good to excellent yields.

  3. Effects of antibacterial agents on in vitro ovine ruminal biotransformation of the hepatotoxic pyrrolizidine alkaloid jacobine.

    OpenAIRE

    Wachenheim, D E; Blythe, L L; Craig, A M

    1992-01-01

    Ingestion of pyrrolizidine alkaloids, naturally occurring plant toxins, causes illness and death in a number of animal species. Senecio jacobaea pyrrolizidine alkaloids cause significant economic losses due to livestock poisoning, particularly in the Pacific Northwest. Some sheep are resistant to pyrrolizidine alkaloid poisoning, because ovine ruminal biotransformation detoxifies free pyrrolizidine alkaloids in digesta. Antibacterial agents modify ruminal fermentation. Pretreatment with antib...

  4. OVIPOSITION AND OVICIDAL ACTIVITIES OF ALKALOIDAL ...

    African Journals Online (AJOL)

    1000 ppm concentration and ovicidal activity at 25-100 ppm concentration against Culex quinquefasciatus and Culex tritaeniorhynchus. Water treated with alkaloidal extract at 1000ppm received significantly more egg rafts of vector mosquitoes ...

  5. Alternative extraction of alkaloid anticarcinogens from Brazilian "vinca rosea" using Ion exchange chromatography

    Directory of Open Access Journals (Sweden)

    Sérgio Freire de Carvalhaes

    Full Text Available Extracts in ethanol and ethanol-ammonia of dried leaves from Catharanthus roseus, gathered at Rio de Janeiro state, were adsorbed in a strongly acidic cation exchange resin with sulfonic acid group, using the finite bath method, resulting in an alkaloid retained fraction and an acidic and neutral unretained fraction. High Performance Liquid Chromatography showed the isolation of the alkaloid fraction to be highly selective and with good performance, with an absence of alkaloids in the unretained fraction, while the retained fraction presented 1,54-6,35 mg/g of vindoline and 0,12-0,91 mg/g of vinblastine, common for an alkaloid-rich concentrate, usually obtained by classic extraction with several steps using solvents.

  6. Alkaloid-Containing Plants Poisonous to Cattle and Horses in Europe.

    Science.gov (United States)

    Cortinovis, Cristina; Caloni, Francesca

    2015-12-08

    Alkaloids, nitrogen-containing secondary plant metabolites, are of major interest to veterinary toxicology because of their occurrence in plant species commonly involved in animal poisoning. Based on epidemiological data, the poisoning of cattle and horses by alkaloid-containing plants is a relatively common occurrence in Europe. Poisoning may occur when the plants contaminate hay or silage or when forage alternatives are unavailable. Cattle and horses are particularly at risk of poisoning by Colchicum autumnale (meadow saffron), Conium maculatum (poison hemlock), Datura stramonium (jimson weed), Equisetum palustre (marsh horsetail), Senecio spp. (ragwort and groundsel) and Taxus baccata (European yew). This review of poisonous alkaloid-containing plants describes the distribution of these plants, conditions under which poisoning occurs, active toxic principles involved and subsequent clinical signs observed.

  7. A new alkaloid from the fruit of Nandina domestica Thunb.

    Science.gov (United States)

    Peng, Cai-Ying; Liu, Jian-Qun; Zhang, Rui; Shu, Ji-Cheng

    2014-01-01

    A new steroidal alkaloid, (20S,22R,24R)-24-ethyl-3-oxocholest-4-en-22-amino, named as nandsterine (1), together with 10 known alkaloids, palmatine (2), O-methylbulbocapnine (3), nantenine (4), dehydronantenine (5), glaucine (6), didehydroglaucine (7), dehydrocorydaline (8), jatrorrhizine (9), magnoflorine (10) and berberine (11), was isolated from the fruit of Nandina domestica Thunb. Their structures were elucidated by using spectroscopic methods as well as by comparing with the published data. Compound 1 was a new class of steroidal alkaloid isolated from the family Berberidaceae, meanwhile compounds 2, 3, 6-8 and 10 were obtained from N. domestica for the first time. Compound 1 exhibited cytotoxicity against HL-60 cells (human leukaemia) with IC50 values of 52.1 μM.

  8. [Effect of different parts, harvesting time and processing technologies on alkaloids content of Coptis chinensis adventitious root].

    Science.gov (United States)

    Pang, Jie; Wang, De-Zhen; Zou, Zong-Yao; Wang, Yan-Zhi; Gao, Qian; Li, Xue-Gang

    2014-03-01

    To investigate the effect of different parts, harvesting time and processing technologies on alkaloids content of Coptis chinensis adventitious root. The content of alkaloids were analyzed by HPLC. The content of total alkaloids in adventitious root harvested in different time was ranged from 2.5% to 2.9%, in which that of berberine and coptisine were the highest, reaching to 1%, and that of palmatine was only 0.1%. It suggested there was no significant difference of total alkaloids at different harvesting time. Nevertheless, the difference of the alkaloids content from different parts was much significant. The content of total alkaloid of adventitious root near to rhizome was about 4%, 2 times higher than that away from rhizome (only 2%). In addition, different processing technologies would affect alkaloids content obviously. There was hardly loss of alkaloids when the fresh adventitious root was washed with water, but it would decrease alkaloids content when the dried adventitious root was washed. Medicine value of Coptis chinensis adventitious root near to rhizome is higher than that away from rhizome. And fresh Coptis chinensis adventitious root can be washed with water.

  9. Indole – the scent of a healthy ‘inner soil’

    Directory of Open Access Journals (Sweden)

    Arnold Berstad

    2015-08-01

    Full Text Available Tryptophan is an essential amino acid with an indole nucleus. Humans cannot produce this amino acid themselves, but must obtain it through their diet. Much attention is currently paid to the wide physiological and clinical implications of the tryptophan-derived substances, serotonin and kynurenines, generated by human enzymes following the intestinal absorption of tryptophan. However, even before being absorbed, several microbial metabolites of tryptophan are formed, mainly from ‘malabsorbed’ (incompletely digested proteins within the colon. The normal smell of human faeces is largely due to indole, one of the major metabolites. Recent studies indicate that this foul-smelling substance is also of utmost importance for our health.

  10. Molekulare Identifizierung und Charakterisierung der Flavin-abhängigen Monooxygenasen in verschiedenen Pyrrolizidin-Alkaloid-adaptierten Insekten

    OpenAIRE

    Wang, Linzhu

    2013-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respect...

  11. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  12. Lycopodium alkaloids from Palhinhaea cernua

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fu-Wei [Graduate University of Chinese Academy of Sciences, Beijing (China); Luo, Ji-Feng; Wang, Yue-Hu, E-mail: wangyuehu@mail.kib.ac.cn [Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (China); Sun, Qian-Yun; Yang, Fu-Mei [Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences (China); Liu, Fang [College of Landscape and Horticulture, Yunnan Agricultural University (China); Long, Chun-Lin, E-mail: long@mail.kib.ac.cn [College of Life and Environmental Sciences, Minzu University of China, Beijing, (China)

    2012-07-01

    Two new Lycopodium alkaloids, acetyllycoposerramine M and palcernine A were isolated from whole plant extracts of Palhinhaea cernua L. together with ten previously identified compounds. The structures of the new compounds were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses using the Flack parameter. (author)

  13. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase.

    Science.gov (United States)

    Jackson, R G; Lim, E K; Li, Y; Kowalczyk, M; Sandberg, G; Hoggett, J; Ashford, D A; Bowles, D J

    2001-02-09

    Biochemical characterization of recombinant gene products following a phylogenetic analysis of the UDP-glucosyltransferase (UGT) multigene family of Arabidopsis has identified one enzyme (UGT84B1) with high activity toward the plant hormone indole-3-acetic acid (IAA) and three related enzymes (UGT84B2, UGT75B1, and UGT75B2) with trace activities. The identity of the IAA conjugate has been confirmed to be 1-O-indole acetyl glucose ester. A sequence annotated as a UDP-glucose:IAA glucosyltransferase (IAA-UGT) in the Arabidopsis genome and expressed sequence tag data bases given its similarity to the maize iaglu gene sequence showed no activity toward IAA. This study describes the first biochemical analysis of a recombinant IAA-UGT and provides the foundation for future genetic approaches to understand the role of 1-O-indole acetyl glucose ester in Arabidopsis.

  14. Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.).

    Science.gov (United States)

    Elliott, M C; Stowe, B B

    1971-03-01

    Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins.

  15. Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.

    Science.gov (United States)

    Ghandi, Mehdi; Taheri, Abuzar

    2009-03-05

    The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  16. Dynamic Modeling of Indole Glucosinolate Hydrolysis and Its Impact on Auxin Signaling

    Directory of Open Access Journals (Sweden)

    Daniel Vik

    2018-04-01

    Full Text Available Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G, which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and indole-3-acetoisothiocyanate. The highly unstable isothiocyanate rapidly reacts with other molecules. One of the products, indole-3-carbinol, was reported to inhibit auxin signaling through binding to the TIR1 auxin receptor. On the contrary, the nitrile product of I3G hydrolysis can be converted by nitrilase enzymes to form the primary auxin molecule, indole-3-acetic acid, which activates TIR1. This suggests that auxin signaling is subject to both antagonistic and protagonistic effects of I3G hydrolysis upon attack. We hypothesize that I3G hydrolysis and auxin signaling form an incoherent feedforward loop and we build a mathematical model to examine the regulatory network dynamics. We use molecular docking to investigate the possible antagonistic properties of different I3G hydrolysis products by competitive binding to the TIR1 receptor. Our simulations reveal an uncoupling of auxin concentration and signaling, and we determine that enzyme activity and antagonist binding affinity are key parameters for this uncoupling. The molecular docking predicts that several I3G hydrolysis products strongly antagonize auxin signaling. By comparing a tissue disrupting attack – e.g., by chewing insects or necrotrophic pathogens that causes rapid release of I3G hydrolysis products – to sustained cell-autonomous I3G hydrolysis, e.g., upon infection by biotrophic pathogens, we find that each scenario gives rise to distinct auxin signaling dynamics. This suggests that plants have different defense versus growth strategies depending on the nature of the attack.

  17. Alkaloids and acetogenins in Annonaceae development: biological considerations

    Directory of Open Access Journals (Sweden)

    Alma Rosa González-Esquinca

    2014-01-01

    Full Text Available Chemical studies of the plant family Annonaceae have intensified in the last several decades due to the discovery of annonaceous molecules with medicinal potential (e.g., benzylisoquinoline alkaloids and acetogenins. Approximately 500 alkaloids have been identified in 138 Annonaceae species in 43 genera. In addition, until 2004, 593 annonaceous acetogenins (ACGs had been identified, from 51 species in 13 genera.This suggests that plants from this family allocate important resources to the biosynthesis of these compounds. Despite the diversity of these molecules, their biological roles, including their physiological and/or ecological functions, are not well understood. In this study, it was provided new data describing the variety and distribution of certain alkaloids and ACGs in annonaceous plants in distinct stages of development. The potential relationships among some of these compounds and the seasonally climatic changes occurring in the plant habitat are also discussed. These data will improve our understanding of the secondary metabolism of these pharmacologically important molecules and their expression patterns during development, which will help to determine the optimal growth conditions and harvest times for their production.

  18. Components of Stem Barks of Winchia calophylla A. DC. and Their Bronchodilator Activities

    Institute of Scientific and Technical Information of China (English)

    Wei-Ming ZHU; Hong-Ping HE; Li-Ming FAN; Yue-Mao SHEN; Jun ZHOU; Xiao-Jiang HAO

    2005-01-01

    The Dai medicinal plant Winchia calophylla A. DC. (Apocynaceae) has efficacy as an anticough and anti-asthmatic medication. In order to investigate its relative bioactive components, we studied the chemical constituents of this plant. Using repeated column chromatography, 28 compounds, including loganin, six phenolic compounds, 17 indole alkaloids, three pyridine alkaloids, and a quinoline alkaloid,were isolated from the stem barks of W. calophylla. Loganin, paeonol, N (4)-methyl akuammicine, and cantleyine exhibited a moderate relaxation effect on isolated smooth muscles of guinea-pig tracheal spirals and lung strips and may be the bioactive components responsible for the bronchodilation produced by W. calophylla.

  19. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    Kerschgens, I. P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and

  20. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Directory of Open Access Journals (Sweden)

    Linzhu Wang

    Full Text Available Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  1. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    Science.gov (United States)

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  2. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2

    DEFF Research Database (Denmark)

    Mikkelsen, M.D.; Fuller, V.L.; Hansen, Bjarne Gram

    2009-01-01

    Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze......OH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising...

  3. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol-1H Indole.

    Directory of Open Access Journals (Sweden)

    Qasem Asgari

    2015-06-01

    Full Text Available This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio-1H-indole.Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio-1H-indole (25-800 μM for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS. To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice.The LD50 of 2-(naphthalene-2-ylthio-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite.Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines.

  4. Retrospective study on clinical management of indolent ulcers in Boxer dogs

    Directory of Open Access Journals (Sweden)

    Ana Paula Hvenegaard

    2011-10-01

    Full Text Available Indolent ulcers are superficial corneal ulcers secondary to several changes on the corneal surface. They are frequently observed in middle-aged Boxer dogs, cause pain of acute onset and requires appropriate treatment. Aiming to evaluate the efficacy of clinical managements on the rate of healing of indolent ulcers, a retrospective study was conducted (1997-2008. Results demonstrated that proteinase inhibitors were the most often prescribed medication, and its administration did not interfere on the healing rate, as well as observed in dogs that received 1% atropine, antibiotics and anti-inflammatory drugs. Healing was delayed in dogs administered orally with vitamin C, but the healing process was faster on those dogs that went through corneal debridement/cauterization. In conclusion, to know the various types of treatments seems to be fundamental for the rapid resolution of the disease. It is suggested that debridement/cauterization, administration of proteinase inhibitor eye drops, prophylactic topical antibiotics and oral vitamin C, should be considered as an effective clinical management for indolent ulcers in Boxer dogs.

  5. Application of electron ionization mass spectrometry for mulungu alkaloid analysis

    International Nuclear Information System (INIS)

    Feitosa, Luis Guilherme Pereira; Guaratini, Thais; Lopes, Joao Luis Callegari; Lopes, Norberto Peporine; Bizaro, Aline Cavalli; Silva, Denise Brentan da

    2012-01-01

    Erythrina verna is a medicinal plant used to calm agitation popularly known as mulungu. We purchased the barks of E. verna from a commercial producer and analyzed the alkaloid fraction of the bark by CG-MS and HRESI-MS. Five erythrinian alkaloids were identified: erysotrine, erythratidine, erythratidinone, epimer, and 11-hydroxyeritratidinone. Here we report the compound 11-hydroxyeritratidinone for the first time as a natural product. (author)

  6. Uso del 3-(2-isotiocianatoetil)-5-metoxi-1H-indol para el tratamiento de enfermedades neurodegenerativas

    OpenAIRE

    León Martínez, Rafael; Egea Maiquez, Javier; Buendía Abaitua, Izaskun; Parada, Esther; Navarro, Elisa

    2013-01-01

    La presente invención se refiere al uso del 3-(2- isotiocianatoetil)-5-metoxi-1H-indol o de una composición que comprende el 3-(2-isotiocianatoetil)- 5-metoxi-1H-indol para el tratamiento de enfermedades que cursan con declive de la capacidad cognitiva o motoras secundarias a degeneración neuronal. La presente invención también se refiere al uso del 3-(2-isotiocianatoetil)-5- metoxi-1H-indol para el tratamiento de otras enfermedades neurodegenerativas que c...

  7. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...

  8. Interactions between {beta}-carboline alkaloids and bovine serum albumin: Investigation by spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Nafisi, Shohreh, E-mail: drshnafisi@gmail.com [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Panahyab, Ataollah [Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran (Iran, Islamic Republic of); Bagheri Sadeghi, Golshan [Department of Biology, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2012-09-15

    {beta}-Carboline alkaloids are present in medicinal plants such as Peganum harmala L. that have been used as folk medicine in anticancer therapy. BSA is the major soluble protein constituent of the circulatory system, and has many physiological functions including the transport of a variety of compounds. This study is the first attempt to investigate the binding of {beta}-carboline alkaloids to BSA by using a constant protein concentration and varying drug concentrations at pH 7.2. FTIR and UV-Vis spectroscopic methods were used to analyze the binding modes of {beta}-carboline alkaloids, the binding constants and the effects of drug complexation on BSA stability and conformation. Spectroscopic evidence showed that {beta}-carboline alkaloids bind BSA via hydrophobic interaction and van der Waals contacts along with H-bonding with the -NH groups, with overall binding constants of K{sub harmine-BSA}=2.04 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub tryptoline-BSA}=1.2 Multiplication-Sign 10{sup 4} M{sup -1}, K{sub harmaline-BSA}=5.04 Multiplication-Sign 10{sup 3} M{sup -1}, K{sub harmane-BSA}=1.41 Multiplication-Sign 10{sup 3} M{sup -1} and K{sub harmalol-BSA}=1.01 Multiplication-Sign 10{sup 3} M{sup -1}, assuming that there is one drug molecule per protein. The BSA secondary structure was altered with a major decrease of {alpha}-helix from 64% (free protein) to 59% (BSA-harmane), 56% (BSA-harmaline and BSA-harmine), 55% (BSA-tryptoline), 54% (BSA-harmalol) and {beta}-sheet from 15% (free protein) to 6-8% upon {beta}-carboline alkaloids complexation, inducing a partial protein destabilization. - Highlights: Black-Right-Pointing-Pointer We model the binding of {beta}-carboline alkaloids to BSA by using the spectroscopic methods. Black-Right-Pointing-Pointer We investigate the effects of drug complexation on BSA stability and conformation. Black-Right-Pointing-Pointer A partial protein destabilization occurred at high alkaloids concentration. Black

  9. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever.

    Science.gov (United States)

    Powers, Chelsea N; Setzer, William N

    2016-01-01

    A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.

  10. Efficient One-Pot Synthesis of Indol-3-yl-Glycines via Uncatalyzed Friedel-Crafts Reaction in Water

    Directory of Open Access Journals (Sweden)

    Mehdi Ghandi

    2009-03-01

    Full Text Available The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.

  11. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum.

    Science.gov (United States)

    Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A

    2017-03-20

    Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.

  12. Peculiarities of tropane alkaloids determination in Datura Stramonium L. leaves

    Directory of Open Access Journals (Sweden)

    Володимир Анатолійович Міщенко

    2015-12-01

    Full Text Available The questions of the search, pharmacological activity and standardization of natural extracts are appropriate and important for national pharmaceutical science and practice. Since 2000, one of the key points of the Action Plan to ensure the integration of Ukraine into the European Union is development of the State Pharmacopoeia of Ukraine harmonized with the European Pharmacopoeia (PhEur.Aim: A comparative analysis of herbal material according to the methods for tropane group alkaloids determination, as described in the PhEur and in the 11th Edition of USSR Pharmacopoeia Monographs «Stramonium leaf».Methods: Datura leaves samples have been harvested during 2010-2012 in different regions of Ukraine for experimental research. Identification of tropane group alkaloids was carried out by the method of thin-layer chromatography (TLC and by Vitali-Morin colour reaction. According to the PhEur method, firstly Dragendorff reagent and then Sodium nitrite solutions were used for the TLC plates spraying. Alkaloids assay was carried out by alkalimetry method with indicator determination of equivalence point.Results: Datura leaves qualitative features, defined by PhEur and the 11th Edition of USSR Pharmacopoeia Monographs «Stramonium leaf», as well as their rationing have been analyzed. Certain differences concerning regulated quality parameters of herbal material have been determined. A comparative analysis of the natural extracts by described in the given normative documents methods for determination of tropane group alkaloids content has been done. After spraying the TLC plates with Sodium nitrite solution, red-brown zones corresponding Hyoscyamine were determined. Hyoscine zones were characterized by less intense color. As a result of quantitative determination it was determined that the alkaloids content in analyzed Datura leaves samples was within the limits regulated by the PhEur and the 11th Edition of USSR Pharmacopoeia – more than 0

  13. Aleuria aurantia - indole metabolites of fruit bodies, mycelial culture and culture medium

    Directory of Open Access Journals (Sweden)

    Janina Węgiel

    2014-08-01

    Full Text Available The aim of present study was to investigate and compare indole metabolites of fruit bodies, mycelium cultivated in vitro and culture medium of the fungus Aleuria aurantia (Fr. Fuck. By use of a number of chromatographic and spectroscopic methods several indole metabolites have been detected and identified among other the 3-indolebutyric acid was produced and extracted to the culture medium. Furthermore 3-indoleatonitrile and tryptophane degradative products have been found both in fruit bodies and mycelium.

  14. Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products.

    Science.gov (United States)

    Bryła, Marcin; Szymczyk, Krystyna; Jędrzejczak, Renata; Roszko, Marek

    2015-03-01

    A liquid chromatography/ion trap mass spectrometry-based method to determine six ergot alkaloids and their isomers is presented. The samples were cleaned on neutral alumina-based solid-phase extraction cartridges. The following method parameters were obtained (depending on the analyte and spiking level): method recovery from 63.0 to 104.6%, relative standard deviation below 18%, linear range from 1 to 325 µg/kg, linear correlation coefficient not less than 0.98. The developed analytical procedure was applied to determine the levels of ergot alkaloids in 65 samples of selected rye-based food products (flour - 34 samples, bran - 12 samples, rye - 18 samples, flakes - 1 sample). Measurable levels of alkaloids were found in majority of the analysed samples, particularly in rye flour. Additionally, alkaloids were determined in ergot sclerotia isolated from rye grains. Total content was nearly 0.01% (97.9 mg/kg). However, the alkaloid profile was dominated by ergocristine at 45.6% (44.7 mg/kg), an alkaloid not commonly found in the tested food products. Ergocorninine at 0.2% (0.2 mg/kg) was the least abundant alkaloid.

  15. Alkaloid-Containing Plants Poisonous to Cattle and Horses in Europe

    Directory of Open Access Journals (Sweden)

    Cristina Cortinovis

    2015-12-01

    Full Text Available Alkaloids, nitrogen-containing secondary plant metabolites, are of major interest to veterinary toxicology because of their occurrence in plant species commonly involved in animal poisoning. Based on epidemiological data, the poisoning of cattle and horses by alkaloid-containing plants is a relatively common occurrence in Europe. Poisoning may occur when the plants contaminate hay or silage or when forage alternatives are unavailable. Cattle and horses are particularly at risk of poisoning by Colchicum autumnale (meadow saffron, Conium maculatum (poison hemlock, Datura stramonium (jimson weed, Equisetum palustre (marsh horsetail, Senecio spp. (ragwort and groundsel and Taxus baccata (European yew. This review of poisonous alkaloid-containing plants describes the distribution of these plants, conditions under which poisoning occurs, active toxic principles involved and subsequent clinical signs observed.

  16. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid

    International Nuclear Information System (INIS)

    Chen Changbao; Chen Yanjun; Zhou Jie; Wu Chunhui

    2006-01-01

    9-Vinyladenine was synthesized as a novel functional monomer for molecular imprinting techniques and its structure was established with elemental analysis and 1 H NMR spectroscopy. The binding mechanism between this functional monomer 9-vinyladenine and the plant hormone 1 H-indole-3-acetic acid in acetonitrile was studied with UV-vis spectrophotometry. Based on this study, using 1 H-indole-3-acetic acid as a template molecule, a specific 9-vinyladenine-based molecularly imprinted polymeric membrane was prepared. Then, the resultant polymeric membrane morphologies were visualized with scanning electron microscopy, and the membrane permselectivity for 1 H-indole-3-acetic acid, 1 H-indole-3-butyric acid and kinetin was tested with separate experiments and competitive diffusion experiments. These results showed that the imprinted polymeric membrane prepared with 9-vinyladenine exhibited higher transport selectivity for the template molecule 1 H-indole-3-acetic acid than 1 H-indole-3-butyric acid or kinetin. The membrane prepared with 9-vinyladenine also took on higher permselectivity for 1 H-indole-3-acetic acid in comparison with the imprinted membrane made with methacrylic acid. It is predicted that the 9-vinyladenine-based molecularly imprinted membrane may be applicable to the assay of 1 H-indole-3-acetic acid or for the preparation of a molecularly imprinted polymer sensor for the analysis of 1 H-indole-3-acetic acid in plant samples

  17. Classification of Opium by UPLC-Q-TOF Analysis of Principal and Minor Alkaloids.

    Science.gov (United States)

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping

    2016-11-01

    Opium is the raw material for the production of heroin, and the characterization of opium seizures through laboratory analysis is a valuable tool for law enforcement agencies to trace clandestine opium production and trafficking. In this work, a method for opium profiling based on the relative content of five principal and 14 minor opium alkaloids was developed and validated. UPLC-Q-TOF was adopted in alkaloid analysis for its high selectivity and sensitivity, which facilitated the sample preparation and testing. The authentic sample set consisted of 100 "Myanmar" and 45 "Afghanistan" opium seizures; based on the data set of the 19 alkaloid variables in them, a partial least squares discriminant analysis classification model was successfully achieved. Minor alkaloids were found to be vitally important for opium profiling, although combined use of both principal and minor alkaloids resulted in the best geographical classification result. The developed method realized a simple and accurate way to differentiate opium from Myanmar and Afghanistan, which may find wide application in forensic laboratories. © 2016 American Academy of Forensic Sciences.

  18. Analysis of Amaryllidaceae alkaloids from Zephyranthes grandiflora by GC/MS and their cholinesterase activity

    Directory of Open Access Journals (Sweden)

    Lucie Cahlíková

    2011-05-01

    Full Text Available Amaryllidaceae are known as ornamental plants, furthermore some species of this family contain galanthamine, an acetylcholinesterase inhibitor approved for the treatment of Alzheimer's disease, and other alkaloids with interesting pharmacological activity. The chemical composition of alkaloids from Zephyranthes grandiflora Lindl. was analyzed by GC/MS. Seven known compounds, belonging to five structural types of Amaryllidaceae alkaloids, were identified. The alkaloid extract from the bulbs showed promising cholinesterase inhibitory activities against human blood acetylcholinesterase (HuAChE; IC50 39.2±3.0 µg/mL and human plasma butyrylcholinesterase (HuBuChE; IC50 356±9.3 µg/mL.

  19. Analysis of Amaryllidaceae alkaloids from Zephyranthes grandiflora by GC/MS and their cholinesterase activity

    Directory of Open Access Journals (Sweden)

    Lucie Cahlíková

    2011-08-01

    Full Text Available Amaryllidaceae are known as ornamental plants, furthermore some species of this family contain galanthamine, an acetylcholinesterase inhibitor approved for the treatment of Alzheimer's disease, and other alkaloids with interesting pharmacological activity. The chemical composition of alkaloids from Zephyranthes grandiflora Lindl. was analyzed by GC/MS. Seven known compounds, belonging to five structural types of Amaryllidaceae alkaloids, were identified. The alkaloid extract from the bulbs showed promising cholinesterase inhibitory activities against human blood acetylcholinesterase (HuAChE; IC50 39.2±3.0 µg/mL and human plasma butyrylcholinesterase (HuBuChE; IC50 356±9.3 µg/mL.

  20. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium.

    Science.gov (United States)

    Faeth, Stanley H; Gardner, Dale R; Hayes, Cinnamon J; Jani, Andrea; Wittlinger, Sally K; Jones, Thomas A

    2006-02-01

    The native North American perennial grass Achnatherum robustum (Vasey) Barkworth [= Stipa robusta (Vasey) Scribn.] or sleepygrass is toxic and narcotic to livestock. The causative agents are alkaloidal mycotoxins produced from infections by a systemic and asexual Neotyphodium endophyte. Recent studies suggest that toxicity is limited across the range of sleepygrass in the Southwest USA. We sampled 17 populations of sleepygrass with varying distance from one focal population known for its high toxicity levels near Cloudcroft, NM, USA. For some, we sampled individual plants twice within the same growing season and over successive years (2001-2004). We also determined infection levels in each population. In general, all populations were highly infected, but infection levels were more variable near the focal population. Only infected plants within populations near the Cloudcroft area produced alkaloids. The ergot alkaloid, ergonovine, comprised the bulk of the alkaloids, with lesser amounts of lysergic and isolysergic acid amides and ergonovinine alkaloids. Levels of all alkaloids were positively correlated among individual plants within and between growing seasons. Infected plants that produced no alkaloids in 1 yr did not produce any alkaloids within the same growing season or in other years. Levels of alkaloids in sleepygrass populations declined with distance from the Cloudcroft population, although infection levels increased. Infected plants in populations in northern New Mexico and southern Colorado produced no alkaloids at all despite 100% infectivity. Our results suggest that only specific Neotyphodium haplotypes or specific Neotyphodium-grass combinations produce ergot alkaloids in sleepygrass. The Neotyphodium haplotype or host-endophyte combination that produces toxic levels of alkaloids appears restricted to one locality across the range of sleepygrass. Because of the wide variation in alkaloid levels among populations, interactions between the endophyte

  1. Methylome-wide Sequencing Detects DNA Hypermethylation Distinguishing Indolent from Aggressive Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Bhasin

    2015-12-01

    Full Text Available A critical need in understanding the biology of prostate cancer is characterizing the molecular differences between indolent and aggressive cases. Because DNA methylation can capture the regulatory state of tumors, we analyzed differential methylation patterns genome-wide among benign prostatic tissue and low-grade and high-grade prostate cancer and found extensive, focal hypermethylation regions unique to high-grade disease. These hypermethylation regions occurred not only in the promoters of genes but also in gene bodies and at intergenic regions that are enriched for DNA-protein binding sites. Integration with existing RNA-sequencing (RNA-seq and survival data revealed regions where DNA methylation correlates with reduced gene expression associated with poor outcome. Regions specific to aggressive disease are proximal to genes with distinct functions from regions shared by indolent and aggressive disease. Our compendium of methylation changes reveals crucial molecular distinctions between indolent and aggressive prostate cancer.

  2. A photoelectron imaging and quantum chemistry study of the deprotonated indole anion.

    Science.gov (United States)

    Parkes, Michael A; Crellin, Jonathan; Henley, Alice; Fielding, Helen H

    2018-05-29

    Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.

  3. The synthesis of ( sup 3 H)-indole-3-carbinol, a natural anti-carcinogen from cruciferous vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Dashwood, R H; Uyetake, Lyle; Fong, A T; Hendricks, J D; Bailey, G S [Oregon State Univ., Corvallis, OR (USA). Dept. of Food Science and Technology

    1989-08-01

    Indole-3-carbinol is a natural anti-carcinogen found as a glucosinolate in cruciferous vegetables such as cabbage, cauliflower and broccoli. A complete understanding of the mechanisms of anti-carcinogenesis by this dietary inhibitor requires improved insight into the disposition and metabolic fate of indole-3-carbinol in vivo. Such metabolic studies have been hampered by the lack of a commercial source of radiolabelled compound. This provided the main impetus for the work reported here, the synthesis of 5-({sup 3}H)-indole-3-carbinol from 5-bromoindole. (author).

  4. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer.

    Science.gov (United States)

    Zhang, Ying; Yang, Shao-Hui; Guo, Xiu-Li

    2017-12-01

    Nowadays, lung cancer, as a health problem in worldwide, has high mortality both in men and women. Despite advances in diagnosis and surgical techniques of lung cancer in recent decades, chemotherapy is still a fundamentally and extensively useful strategy. Vinca alkaloids are a class of important and widely used drugs in the treatment of lung cancer, targeting on the Vinca binding site at the exterior of microtubule plus ends. Either intrinsic or acquired resistance to chemotherapy of Vinca alkaloids has been a major obstacle to the treatment of lung cancer, which arose great interests in studies of understanding and overcoming resistance. In this review, we focused on the application and resistance mechanisms of the Vinca alkaloids such as vinblastine, vincristine, vinorelbine and vinflunine in lung cancer. We reviewed characteristic resistance mechanisms in lung cancer including over-expression of ATP-binding cassette (ABC) transporters P-glycoprotein and structural, functional or expression alterations of β-tubulin (βII, βIII, βIV) which may devote to the development of acquired resistance to the Vinca alkaloids; multidrug-resistance proteins (MRP1, MRP2, MRP3) and RLIP76 protein have also been identified that probably play a significant role in intrinsic resistance. Lung resistance-related protein (LRP) is contributed to lung cancer therapy resistance, but is not deal with the Vinca alkaloids resistance in lung cancer. Understanding the principle of the Vinca alkaloids in clinical application and mechanisms of drug resistance will support individualized lung cancer therapy and improve future therapies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity

    Directory of Open Access Journals (Sweden)

    Ming W. Chou

    2002-09-01

    Full Text Available Abstract: Plants that contain pyrrolizidine alkaloids are widely distributed in the world. Although pyrrolizidine alkaloids have been shown to be genotoxic and tumorigenic in experimental animals, the mechanisms of actions have not been fully understood. The results of our recent mechanistic studies suggest that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine (DHP-derived DNA adduct formation. This mechanism may be general to most carcinogenic pyrrolizidine alkaloids, including the retronecine-, heliotridine-, and otonecinetype pyrrolizidine alkaloids. It is hypothesized that these DHP-derived DNA adducts are potential biomarkers of pyrrolizidine alkaloid tumorigenicity. The mechanisms that involve the formation of DNA cross-linking and endogenous DNA adducts are also discussed.

  6. Novel β-Carboline Alkaloid from Peganum Harmala As Antibacterial Agent

    International Nuclear Information System (INIS)

    Abdel Aziz, H.G.; Abdel Kader, S.M.; El-Sayed, M.M.; EL-Malt, E.A.; Shaker, E.S.

    2011-01-01

    A novel β-carboline alkaloid isolated from the aerial parts of Peganum harmala L. (Gen: Phyeophylaceae) have been characterized as l-thioformyl-8-β-D-glucopyranoside-bis-2,3-dihydro-isopyridinopyrrol. It is one of β-carboline alkaloids derivatives. The chemical structure was elucidated on the basis of elementary analysis and spectroscopic studies (UV, IR, 1 H-NMR and MS). The isolated compound showed significant antibacterial activity against Streptococcus pyogenus.

  7. Novel {beta}-Carboline Alkaloid from Peganum Harmala As Antibacterial Agent

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Aziz, H G; Abdel Kader, S M; El-Sayed, M M; EL-Malt, E A; Shaker, E S [Chem. Dept., Fac. Agric., Minia Univ., Minia (Egypt)

    2011-07-01

    A novel {beta}-carboline alkaloid isolated from the aerial parts of Peganum harmala L. (Gen: Phyeophylaceae) have been characterized as l-thioformyl-8-{beta}-D-glucopyranoside-bis-2,3-dihydro-isopyridinopyrrol. It is one of {beta}-carboline alkaloids derivatives. The chemical structure was elucidated on the basis of elementary analysis and spectroscopic studies (UV, IR, {sup 1}H-NMR and MS). The isolated compound showed significant antibacterial activity against Streptococcus pyogenus.

  8. Dehydropyrrolizidine alkaloid toxicity, cytotoxicity, and carcinogenicity

    Science.gov (United States)

    Dehyro-pyrrolizidine alkaloid (PA)-containing plants compose about 5% of the world’s flowering plants and they commonly poison livestock, wildlife and humans. Previous work has produced considerable understanding of PA toxicity, species susceptibility, conditions and routes of exposure, toxin metab...

  9. Anti-inflammatory Activity of Pyrrolizidine Alkaloids from the Leaves of Madhuca pasquieri (Dubard).

    Science.gov (United States)

    Hoang, Le Son; Tran, Manh Hung; Lee, Joo Sang; To, Dao Cuong; Nguyen, Van Thu; Kim, Jeong Ah; Lee, Jeong Hyung; Woo, Mi Hee; Min, Byung Sun

    2015-01-01

    A novel pyrrolizidine alkaloids, madhumidine A (1), and two known alkaloids, lindelofidine benzoic acid ester (2) and minalobine B (3) were isolated from the leaves of Madhuca pasquieri (Dubard) H. J. LAM. The chemical structures of these alkaloids were established mainly by NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against lipopolysaccharide-induced nitric oxide production in macrophage RAW264.7 cell. In addition, the cytotoxic activity of all isolated compounds was tested against a panel of cancer cell lines.

  10. Soil-borne microorganisms and soil-type affect pyrrolizidine alkaloids in Jacobaea vulgaris

    NARCIS (Netherlands)

    Joosten, L.; Mulder, P.P.J.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2009-01-01

    Secondary metabolites like pyrrolizidine alkaloids (PAs) play a crucial part in plant defense. We studied the effects of soil-borne microorganisms and soil-type on pyrrolizidine alkaloids in roots and shoots of Jacobaea vulgaris. We used clones of two genotypes from a dune area (Meijendel),

  11. Characterization of indole acetic acid endophyte producers in ...

    African Journals Online (AJOL)

    This work contributes to the knowledge of the phytobacteria diversity in aquatic plants, particularly in Lemnaceae species; here the majority of the isolates have been characterized as higher indole acetic acid producers, recommended as candidates for their use as biofertilizers. Key words: Plant growth-promoting bacteria, ...

  12. Incorporation of 2H-labelled cadaverines into the quinolizidine alkaloids in Baptisia australis

    International Nuclear Information System (INIS)

    Robins, D.J.; Sheldrake, G.N.

    1988-01-01

    The incorporation of 2 H-labelled cadaverines into the quinolizidine alkaloids, sparteine and N-methylcytisine, in Baptisia australis has been studied in order to gain more information about the formation of these alkaloids. (author)

  13. Soluble Polymer-supported Synthesis of Indoles via Palladium-mediat -ed Heteroannulation of Terminal Alkynes with o-Iodoanilines

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A soluble polymer-supported synthesis of indoles via palladium-mediated hetero- annulation of terminal alkynes with o-iodoanilines has been described. The protocol provides a useful tool for constructing combinatorial indole libraries.

  14. Potential of plant alkaloids as dengue ns3 protease inhibitors: Molecular docking and simulation approach

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir ul Qamar

    2014-08-01

    Full Text Available Dengue infection has become a worldwide health problem and infection rate is increasing each year. Alkaloids are important phytochemicals of medicinal plant and can be used as vaccine candidates for viruses. Therefore, present study was designed to find potential alkaloids inhibitors against the Dengue virus NS2B/NS3 protease which can inhibit the viral replication inside the host cell. Through molecular docking it was investigated that most of the alkaloids bound deeply in the binding pocket of Dengue virus NS2B/NS3 protease and had potential interactions with catalytic triad. Five alkaloids (6’-desmethylthalifaboramin; 3,5-dihydroxythalifaboramine; Betanin; Reserpic acid and Tubulosine successfully blocked the catalytic triad of NS2B/NS3 protease and these alkaloids can serve as a potential drug candidate to stop viral replication. It can be concluded from this study that these alkaloids could serve as important inhibitors to inhibit the replication of DENV and need further in-vitro investigations to confirm their efficacy and drug ability.

  15. Pyrrolizidine Alkaloids: Potential Role in the Etiology of Cancers, Pulmonary Hypertension, Congenital Anomalies, and Liver Disease.

    Science.gov (United States)

    Edgar, John A; Molyneux, Russell J; Colegate, Steven M

    2015-01-20

    Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute poisoning can also result from deliberate or accidental consumption of 1,2-dehydropyrrolizidine alkaloid-containing herbal medicines, teas, and spices. In recent years, it has been confirmed that there is also significant, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids in many countries due to consumption of common foods such as honey, milk, eggs, salads, and meat. The level of 1,2-dehydropyrrolizidine alkaloids in these foods is generally too low and too intermittent to cause acute toxicity. However, these alkaloids are genotoxic and can cause slowly developing chronic diseases such as pulmonary arterial hypertension, cancers, cirrhosis, and congenital anomalies, conditions unlikely to be easily linked with dietary exposure to 1,2-dehydropyrrolizidine alkaloids, especially if clinicians are unaware that such dietary exposure is occurring. This Perspective provides a comprehensive review of the acute and chronic toxicity of 1,2-dehydropyrrolizidine alkaloids and their potential to initiate certain chronic diseases, and suggests some associative considerations or indicators to assist in recognizing specific cases of diseases that may have resulted from dietary exposure to these hazardous natural substances. If it can be established that low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids is a significant cause of some of these costly and debilitating diseases, then this should lead to initiatives to reduce the level of these alkaloids in the food chain.

  16. [A method for the determination of ergot alkaloids in food].

    Science.gov (United States)

    Klug, C; Baltes, W; Krönert, W; Weber, R

    1988-02-01

    A suitable method has been developed for the routine analysis of the ergot alkaloids ergometrine, ergometrinine, ergosine, ergosinine, ergotamine, ergotaminine, ergocornine, ergocorninine, alpha-ergocryptine, alpha-ergocryptinine, beta-ergocryptine, beta-ergocryptinine, ergocristine and ergocristinine in cereal products. The method consists of food extraction, cleaning of the crude extract by a modified form of the Extrelut method, and identification and quantitative determination of the alkaloids by high pressure liquid chromatography (HPLC). The results are confirmed by thin layer chromatography (TLC) and gas-chromatography/mass spectrometry (GC/MS). Market investigations have shown contaminations in ecological as well as in conventional products, with rye products mainly being contaminated. Within the EEC, a maximum value of 0.05% ergot respectively a total alkaloid content of 1 mg/kg in cereals used for food production is prescribed. This value was not exceeded in any of the investigated samples.

  17. A new spermidine macrocyclic alkaloid isolated from Gymnosporia arenicola leaf.

    Science.gov (United States)

    da Silva, Gustavo; Martinho, Ana; Soengas, Raquel González; Duarte, Ana Paula; Serrano, Rita; Gomes, Elsa Teixeira; Silva, Olga

    2015-10-01

    The isolation and structural elucidation of a macrocyclic alkaloid, characterized by the presence of a 13-membered macrolactam ring containing a spermidine unit N-linked to a benzoyl group is hereby reported. The structure of this previously unknown spermidine alkaloid isolated from Gymnosporia arenicola (Celastraceae) leaves has been elucidated by (1)H and (13)C NMR spectroscopy (including bidimensional analysis) and further characterized by high-resolution mass spectrometry and polarimetry. A route for the biosynthesis of this new bioactive macrocycle is proposed and the cytotoxicity of the compound was evaluated against two ATCC cell lines - one normal-derived (MCF10A) and one cancer-derived cell line (MCF7) - using the MTT assay. The alkaloid revealed to be non-cytotoxic against both cell lines. The IC50 values from the cells were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products

    Directory of Open Access Journals (Sweden)

    Krystyna Szymczyk

    2015-01-01

    Full Text Available A liquid chromatography/ion trap mass spectrometry-based method to determine six ergot alkaloids and their isomers is presented. The samples were cleaned on neutral alumina-based solid-phase extraction cartridges. The following method parameters were obtained (depending on the analyte and spiking level: method recovery from 63.0 to 104.6 %, relative standard deviation below 18 %, linear range from 1 to 325 μg/kg, linear correlation coefficient not less than 0.98. The developed analytical procedure was applied to determine the levels of ergot alkaloids in 65 samples of selected rye-based food products (flour– 34 samples, bran – 12 samples, rye – 18 samples, flakes – 1 sample. Measurable levels of alkaloids were found in majority of the analysed samples, particularly in rye flour. Additionally, alkaloids were determined in ergot sclerotia isolated from rye grains. Total content was nearly 0.01 % (97.9 mg/kg. However, the alkaloid profi le was dominated by ergocristine at 45.6 % (44.7 mg/kg, an alkaloid not commonly found in the tested food products. Ergocorninine at 0.2 % (0.2 mg/kg was the least abundant alkaloid.

  19. Variable Alkaloid Defenses in the Dendrobatid Poison Frog Oophaga pumilio are Perceived as Differences in Palatability to Arthropods.

    Science.gov (United States)

    Bolton, Sarah K; Dickerson, Kelsie; Saporito, Ralph A

    2017-03-01

    Conspicuously colored dendrobatid frogs sequester alkaloid defenses from dietary arthropods, resulting in considerable alkaloid variation among populations; however, little is known about how variation is perceived as a defense against predators. Previous studies have found variable alkaloids in the dendrobatid Oophaga pumilio to be associated with differences in toxicity to laboratory mice, suggesting variable defenses are important. Arthropods are natural predators that use chemoreception to detect prey, including frogs, and may therefore perceive variation in alkaloid profiles as differences in palatability. The goal of the present study is to determine how arthropods respond to variable alkaloid defenses in O. pumilio. Frog alkaloids were sampled from individual O. pumilio from ten geographic locations throughout the Bocas del Toro region of Panama and the Caribbean coast of Costa Rica. Alkaloid extracts were used in feeding bioassays with the vinegar fly Drosophila melanogaster and the ant Ectatomma ruidum. Both species of arthropods fed significantly less on frog alkaloid extracts when compared to controls, and differences in alkaloid palatability were observed among frog populations, as well as between sexes and life stages within a population. Differences in alkaloid quantity, richness, and type were the main predictors of arthropod palatability. Our findings also represent the first direct evidence of a palatability spectrum in a vertebrate that sequesters chemical defenses from dietary sources. Further, the presence of a palatability spectrum suggests that variable alkaloid defenses in O. pumilio are ecologically relevant and play an important role in natural predator-prey interactions, particularly with respect to arthropod predators.

  20. Survival and development of Heliothis virescens (Lepidoptera: Noctuidae) larvae on isogenic tobacco lines with different levels of alkaloids.

    Science.gov (United States)

    Jackson, D Michael; Johnson, A W; Stephenson, M G

    2002-12-01

    Levels of pyridine alkaloids were measured in 18 tobacco, Nicotiana tabacum L., entries from three parental isolines ('NC 95', 'SC 58', and 'Coker 139'), grown at Tifton, GA, Florence, SC, and Oxford, NC, in 1991. Levels of alkaloids in bud leaves (first fully unfolded leaf below the apical leaf bud) were negatively correlated to natural infestation ratings of tobacco budworm larvae, Heliothis virescens (F.), 7 wk after transplanting. For artificially infested bud leaves at Oxford, there was a significant negative correlation between levels of total alkaloids and larval weights after 1 wk of feeding. In 1992, four entries from the 'NC 95' isoline were grown at Oxford, and samples for alkaloid analyses were taken every 2 wk at several leaf positions on each plant. During weeks 4, 8, 12, and 16, second instar tobacco budworms were caged on individual, intact leaves inside perforated plastic bags in the field. The survival and development of tobacco budworm larvae after 1 wk were negatively correlated with levels of alkaloids at the various leaf positions. Larvae survived better and grew faster on the bud leaves of each entry where alkaloid levels were lower than they did on leaves further down the stalk where alkaloid levels were higher. More larvae survived on the lower leaves of the low alkaloid lines than on the lower leaves of the high alkaloid lines. Even moderate increases in pyridine alkaloids had negative effects on tobacco budworm survival and development. Nicotine constituted >97% of the pyridine alkaloids in the 'NC95' isoline each year.

  1. The Effect of Alkaloidal Fraction from Annona squamosa L. against Pathogenic Bacteria with Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Abdulmushin M. Shami

    2017-12-01

    Full Text Available Background: Annona squamosa is used in different places such as India as a general tonic to enrich blood, relieve vomiting, cancer, as a vermicide, for skin complaints and also applied to wounds and ulcers. The purpose of the study was to evaluate the antibacterial and antioxidant properties from of the alkaloidal fraction of A. squamosa. Methods: Well diffusion assay, minimum inhibitory concentration and the minimum bactericidal concentration (MBC were used to evaluate antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus cereus, Pseudomonas aeruginosa, MRSA and Helicobacter pylori. DPPH and SOD assays were used to evaluate antioxidant activity. LC-MS analysis was used to identify alkaloids and scanning electron microscopy studies that revealed mode of action. Results: Alkaloidal fraction of A. squamosa exhibited significant inhibition against the tested bacteria. Extracted alkaloids from the leaves of A. squamosa showed high level of antioxidant activities. LC-MS analyses of alkaloids of the plant were identified as corydine, sanjoinine, norlaureline, norcodeine, oxanalobine and aporphine in the leaves of A. squamosa. SEM analysis of the interaction of these substances with the bacteria showed morphological changes of cell wall and lysis of the targeted bacterial cells. Conclusions: It could be concluded that the alkaloids isolated from A. squamosa showed good antibacterial and antioxidant activity. The results suggest the alkaloids can be a new source of antimicrobial agents against pathogenic bacteria and antioxidant source.

  2. Full structure assignments of pyrrolizidine alkaloid DNA adducts and mechanism of tumor initiation.

    Science.gov (United States)

    Zhao, Yuewei; Xia, Qingsu; Gamboa da Costa, Gonçalo; Yu, Hongtao; Cai, Lining; Fu, Peter P

    2012-09-17

    Pyrrolizidine alkaloid-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and humans. Pyrrolizidine alkaloids are among the first chemical carcinogens identified in plants. Previously, we determined that metabolism of pyrrolizidine alkaloids in vivo and in vitro generated a common set of DNA adducts that are responsible for tumor induction. Using LC-ESI/MS/MS analysis, we previously determined that four DNA adducts (DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4) were formed in rats dosed with riddelliine, a tumorigenic pyrrolizidine alkaloid. Because of the lack of an adequate amount of authentic standards, the structures of DHP-dA-3 and DHP-dA-4 were not elucidated, and the structural assignment for DHP-dG-4 warranted further validation. In this study, we developed an improved synthetic methodology for these DNA adducts, enabling their full structural elucidation by mass spectrometry and NMR spectroscopy. We determined that DHP-dA-3 and DHP-dA-4 are a pair of epimers of 7-hydroxy-9-(deoxyadenosin-N(6)-yl) dehydrosupinidine, while DHP-dG-4 is 7-hydroxy-9-(deoxyguanosin-N(2)-yl)dehydrosupinidine, an epimer of DHP-dG-3. With the structures of these DNA adducts unequivocally elucidated, we conclude that cellular DNA preferentially binds dehydropyrrolizidine alkaloid, for example, dehydroriddelliine, at the C9 position of the necine base, rather than at the C7 position. We also determined that DHP-dA-3 and DHP-dA-4, as well as DHP-dG-3 and DHP-dG-4, are interconvertible. This study represents the first report with detailed structural assignments of the DNA adducts that are responsible for pyrrolizidine alkaloid tumor induction on the molecular level. A mechanism of tumor initiation by pyrrolizidine alkaloids is consequently fully determined.

  3. Differences in Tolerance to Host Cactus Alkaloids in Drosophila koepferae and D. buzzatii

    Science.gov (United States)

    Soto, Ignacio M.; Carreira, Valeria P.; Corio, Cristian; Padró, Julián; Soto, Eduardo M.; Hasson, Esteban

    2014-01-01

    The evolution of cactophily in the genus Drosophila was a major ecological transition involving over a hundred species in the Americas that acquired the capacity to cope with a variety of toxic metabolites evolved as feeding deterrents in Cactaceae. D. buzzatii and D. koepferae are sibling cactophilic species in the D. repleta group. The former is mainly associated with the relatively toxic-free habitat offered by prickly pears (Opuntia sulphurea) and the latter has evolved the ability to use columnar cacti of the genera Trichocereus and Cereus that contain an array of alkaloid secondary compounds. We assessed the effects of cactus alkaloids on fitness-related traits and evaluated the ability of D. buzzatii and D. koepferae to exploit an artificial novel toxic host. Larvae of both species were raised in laboratory culture media to which we added increasing doses of an alkaloid fraction extracted from the columnar cactus T. terschekii. In addition, we evaluated performance on an artificial novel host by rearing larvae in a seminatural medium that combined the nutritional quality of O. sulphurea plus amounts of alkaloids found in fresh T. terschekii. Performance scores in each rearing treatment were calculated using an index that took into account viability, developmental time, and adult body size. Only D. buzzatii suffered the effects of increasing doses of alkaloids and the artificial host impaired viability in D. koepferae, but did not affect performance in D. buzzatii. These results provide the first direct evidence that alkaloids are key determinants of host plant use in these species. However, the results regarding the artificial novel host suggest that the effects of alkaloids on performance are not straightforward as D. koepferae was heavily affected. We discuss these results in the light of patterns of host plan evolution in the Drosophila repleta group. PMID:24520377

  4. [Pyrrolizidine alkaloids and seneciosis in farm animals. Part 1: occurrence, chemistry and toxicology].

    Science.gov (United States)

    Petzinger, E

    2011-01-01

    Pyrrolizidine alkaloids belong to a class of phytotoxins which are present in more than 6000 plant species. The disease seneciosis in farm animals represents the severe poisoning by pyrrolizidine alkaloids from plants of the genus Senecio. This form of poisoning has been known since the end of the 19th century in Germany, the USA, Canada and New Zealand, and is mainly caused by Senecio jacobaea and related Senecio spp. in farm animals, including poultry. Animal poisoning by pyrrolizidine alkaloids is of worldwide importance. In Germany poisoning of horses and cattle by Senecio jacobaea, which was earlier named Schweinsberg disease, is of renewed relevance for veterinary medicine. The disease occurs almost entirely as a consequence of chronic poisoning and in general ends fatally. The ultimate cause is the formation of toxic metabolites of pyrrolizidine alkaloids in the liver, and their covalent binding to nucleic acids and proteins leading to liver cirrhosis. Because many pyrrolizidine alkaloids possess mutagenic, and a few also carcinogenic properties, European and international authorities are concerned about possible residue levels in food of animal origin. The review addresses in its first part several aspects, being the occurrence, the chemistry, and the toxicology of pyrrolizidine alkaloids as well as animal intoxications by poisonous plants. In the second part (46) clinical characteristics of animal seneciosis, the therapeutic interventions, the significant species differences and a critical assessment of so-called nontoxic amounts of Senecio plants in animal fodder with reference to cumulative lethal toxin doses are presented.

  5. Budd-Chiari syndrome secondary to toxic pyrrolizidine alkaloid exposure.

    Science.gov (United States)

    Wu, Janet S W; Poon, W T; Ma, C K; Chen, M L; Pang, K S; Mak, Tony W L; Chan, H B

    2013-12-01

    In this report, we describe a case of pyrrolizidine alkaloid-related Budd-Chiari syndrome in Hong Kong. A 10-month-old boy presented with ascites, right pleural effusion, and hepatomegaly after consumption of herbal drinks for 3 months. His clinical (including imaging) features were compatible with Budd-Chiari syndrome. Budd-Chiari syndrome is a rare disease entity in paediatric patients. In our case, extensive workup performed to look for the underlying cause of Budd-Chiari syndrome was unrevealing, except for toxic pyrrolizidine alkaloid exposure in his herbal drinks.

  6. Ruthenium(II)-catalyzed direct addition of indole/pyrrole C2-H bonds to alkynes.

    Science.gov (United States)

    Liang, Libo; Fu, Shaomin; Lin, Dongen; Zhang, Xiao-Qi; Deng, Yuanfu; Jiang, Huanfeng; Zeng, Wei

    2014-10-17

    A ruthenium-catalyzed C2-hydroindolation of alkynes has been achieved. This protocol provides a rapid and concise access to kinds of 2-alkenyl-substituted N-(2-pyridyl)indoles in which the pyridyl moiety can be easily removed to afford free (N-H) indoles under mild conditions. Various arenes and alkynes, including electron-deficient and electron-rich internal alkynes and terminal alkynes, allow for this transformation.

  7. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    Science.gov (United States)

    Hall, P. J.; Bandurski, R. S.

    1986-01-01

    [3H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 degrees C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as alpha-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected.

  8. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue

    International Nuclear Information System (INIS)

    Hall, P.J.; Bandurski, R.S.

    1986-01-01

    [ 3 H]Indole-3-acetyl-myo-inositol was hydrolyzed by buffered extracts of acetone powders prepared from 4 day shoots of dark grown Zea mays L. seedlings. The hydrolytic activity was proportional to the amount of extract added and was linear for up to 6 hours at 37 0 C. Boiled or alcohol denatured extracts were inactive. Analysis of reaction mixtures by high performance liquid chromatography demonstrated that not all isomers of indole-3-acetyl-myo-inositol were hydrolyzed at the same rate. Buffered extracts of acetone powders were prepared from coleoptiles and mesocotyls. The rates of hydrolysis observed with coleoptile extracts were greater than those observed with mesocotyl extracts. Active extracts also catalyzed the hydrolysis of esterase substrates such as α-naphthyl acetate and the methyl esters of indoleacetic acid and naphthyleneacetic acid. Attempts to purify the indole-3-acetyl-myo-inositol hydrolyzing activity by chromatographic procedures resulted in only slight purification with large losses of activity. Chromatography over hydroxylapatite allowed separation of two enzymically active fractions, one of which catalyzed the hydrolysis of both indole-3-acetyl-myo-inositol and esterase substrates. With the other fraction enzymic hydrolysis of esterase substrates was readily demonstrated, but no hydrolysis of indole-3-acetyl-myo-inositol was ever detected

  9. Indole Compounds Related to Auxins and Goitrogens of Woad (Isatis tinctoria L.) 1

    Science.gov (United States)

    Elliott, Malcolm C.; Stowe, Bruce B.

    1971-01-01

    Five conspicuous indole derivatives are present in leaves and other tissues of woad (Isatis tinctoria L.). They were identified as tryptophan, isatan B, glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate. The latter three indole glucosinolates are present at levels of at least 260, 69, and 200 milligrams per kilogram fresh weight and were isolated as crystalline salts. Comparison of physical and chemical properties, particularly NMR spectral analysis, confirms that the 1-methoxyglucobrassicin structure suggested for neoglucobrassicin is correct, whereas further evidence for the even more unusual sulfonation of the ring nitrogen in glucobrassicin-1-sulfonate was obtained. Glucobrassicin-1-sulfonate has an enzymic degradation pattern identical to that of glucobrassicin. As it too releases thiocyanate, it must be added to the list of known plant goitrogens. These studies and the techniques described establish woad as exceptionally suitable higher plant material for metabolic studies of indoles related to goitrogens and auxins. PMID:16657624

  10. Semisynthetic dimers of antiparkinsonic ergot alkaloids

    Czech Academy of Sciences Publication Activity Database

    Křen, Vladimír; Weignerová, Lenka; Kuzma, Marek; Jegorov, A.; Sedmera, Petr

    2001-01-01

    Roč. 55, č. 6 (2001), s. 1045-1056 ISSN 0385-5414 R&D Projects: GA AV ČR IAA4020901 Institutional research plan: CEZ:AV0Z5020903 Keywords : ergot alkaloids * antiparkinsonic activity Subject RIV: EE - Microbiology, Virology Impact factor: 0.970, year: 2001

  11. Detection of Total Ergot Alkaloids in Cereal Flour and in Bread by a Generic Enzyme Immunoassay Method.

    Science.gov (United States)

    Gross, Madeleine; Curtui, Valeriu; Usleber, Ewald

    2018-05-01

    Four sets of polyclonal antibodies against ergot alkaloids ergometrine, ergotamine, α-ergocryptine, and ergocornine were produced and characterized in a competitive direct or indirect enzyme immunoassay (EIA). Standard curve LODs were 0.03 ng/mL (ergometrine EIA) to 2.0 ng/mL (ergocornine EIA). Three EIAs were highly specific, whereas the ergometrine EIA had a broad specificity pattern and reacted, albeit weakly, with all seven major ergot alkaloids and their epimeric forms. Using the ergometrine EIA, a generic test system was established in which total ergot alkaloids are quantified by a standard curve for a toxin mixture composed of three alkaloids that matched the ergot alkaloid composition in naturally contaminated rye and wheat products. Sample extraction with acetonitrile-phosphate-buffered saline at pH 6.0 without further cleanup was sufficient for EIA analysis. The LODs for total ergot alkaloids were 20 ng/g in rye and wheat flour and 14 ng/g in bread. Recoveries were 85-110% (RSDs of 0.1-11.7%) at a concentration range of 50-1000 ng/g. The total ergot alkaloid EIA was validated by comparison with HPLC-fluorescence detection. Although some under- and overestimation by the total ergot alkaloid EIA was observed, it was suitable for the reliable identification of positive samples at 10-20 ng/g and for the determination of total ergot alkaloids in a concentration range between 100 and 1000 ng/g.

  12. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats.

    Science.gov (United States)

    Li, Yan-Hong; Tai, William Chi-Shing; Khan, Imran; Lu, Cheng; Lu, Yao; Wong, Wing-Yan; Chan, Wood-Yee; Wendy Hsiao, Wen-Luan; Lin, Ge

    2018-04-03

    A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.

  13. Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use

    Directory of Open Access Journals (Sweden)

    Adam M. Takos

    2013-05-01

    Full Text Available The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils and Galanthus (snowdrops, are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer’s disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.

  14. The seco-iridoid pathway from Catharanthus roseus

    NARCIS (Netherlands)

    Miettinen, K.; Dong, L.; Navrot, N.; Burlat, V.; Schneider, T.; Pollier, J.; Woittiez, L.S.; Krol, van der A.R.; Lugan, R.; Llc, T.; Verpoorte, R.; Oksman-Caldentey, K.M.; Martinoia, E.; Bouwmeester, H.J.

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are

  15. Analysis of the Extracts of Isatis tinctoria by New Analytical ...

    African Journals Online (AJOL)

    The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) of Isatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray ...

  16. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae)

    Science.gov (United States)

    Introduction – The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloid...

  17. Aporphine and tetrahydroprotoberberine alkaloids from the leaves of Guatteria friesiana (Annonaceae) and their cytotoxic activities

    International Nuclear Information System (INIS)

    Costa, Emmanoel Vilaca; Cruz, Pedro Ernesto O. da; Marques, Francisco A.; Barison, Andersson; Maia, Beatriz Helena L.N.S.; Pinheiro, Maria Lucia B.; Ruiz, Ana Lucia T.G.; Marchetti, Gabriela M.; Carvalho, Joao Ernesto de

    2013-01-01

    Phytochemical investigation of the leaves of Guatteria friesiana (Annonaceae) afforded three new isoquinoline alkaloids, 13-hydroxy-discretinine, 6,6a-dehydroguatteriopsiscine and 9-dehydroxy-1-methoxy-dihydroguattouregidine. Eight known alkaloids were also isolated, 13-hydroxy-2,3,9,10-tetramethoxyprotoberberine, guatteriopsiscine, lysicamine, liriodenine, atherospermidine, lanuginosine, 7,8-dihydro-8-hydroxypalmatine and palmatine. 13-Hydroxy- 2,3,9,10-tetramethoxyprotoberberine was only obtained by synthesis and is being reported as a natural product for the first time. The structures of the isolated alkaloids were established by extensive analysis of 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometric (MS) data, as well as by comparison with data reported in the literature. The in vitro cytotoxic activity of the major alkaloids was evaluated against tumor and non-tumor cell lines. All of the alkaloids evaluated were determined to be inactive based on National Cancer Institute (NCI/USA) criteria. However, the alkaloid palmatine exhibited a cytostatic effect on MCF-7 (breast) and U251 (glioma) human tumor cell lines, with GI 50 values lower than 20.0 μmol L - 1 (10.5and 16.2μmolL -1 , respectively), suggesting a selective cytotoxic action (author)

  18. POISONING OF CHICKENS AND DUCKS BY PYRROLIZIDINE ALKALOIDS OF HELIOTROPIUM EUROPAEUM.

    Science.gov (United States)

    Pass, D A; Hogg, G G; Russell, R G; Edgar, J A; Tence, I M; Rikard-Bell, L

    1979-05-01

    The disease produced by feeding chickens and ducks a commercial poultry feed containing heliotrine and lasiocarpine, pyrrolizidine alkaloids of Heliotropium europaeum, is described. Illthrift, ascites and degenerative lesions in the liver were the major findings. Similar lesions occurred in chickens fed a diet containing H. europaeum. The source of the alkaloids in commercial poultry feed was probably the seeds of H. europaeum harvested with wheat.

  19. Renieramycins H and I, two novel alkaloids from the sponge Haliclona cribricutis Dendy

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Kamat, S.Y.; Pramanik, B.N.

    The known alkaloid, mimosamycin 1, along with its moon- and di hydroxy derivaties, 4-hydroxy mimosamycin 2 and 1, 4-dihydroxymimosamycin 3 and two new dimeric alkaloids: namely renieramycins H and I 4 and 5 have been isolated from the MeOH extract...

  20. Blood pyrrole-protein adducts as a diagnostic and prognostic index in pyrrolizidine alkaloid-hepatic sinusoidal obstruction syndrome.

    Science.gov (United States)

    Gao, Hong; Ruan, Jianqing Q; Chen, Jie; Li, Na; Ke, Changqiang Q; Ye, Yang; Lin, Ge; Wang, Jiyao Y

    2015-01-01

    The diagnosis of hepatic sinusoidal obstruction syndrome (HSOS) induced by pyrrolizidine alkaloids is mainly based on clinical investigation. There is currently no prognostic index. This study evaluated the quantitative measurement of blood pyrrole-protein adducts (PPAs) as a diagnostic and prognostic index for pyrrolizidine alkaloid-induced HSOS. Suspected drug-induced liver injury patients were prospectively recruited. Blood PPAs were quantitatively measured using ultra-performance liquid chromatography-tandem mass spectrometry. Patients' age, sex, biochemistry test results, and a detailed drug history were recorded. The patients were divided into two groups, ie, those with HSOS induced by pyrrolizidine alkaloid-containing drugs and those with liver injury induced by drugs without pyrrolizidine alkaloids. The relationship between herb administration, clinical outcomes, blood sampling time, and blood PPA concentration in pyrrolizidine alkaloid-associated HSOS patients was analyzed using multiple linear regression analysis. Forty patients met the entry criteria, among whom 23 had pyrrolizidine alkaloid-associated HSOS and 17 had liver injury caused by drugs without pyrrolizidine alkaloids. Among the 23 patients with pyrrolizidine alkaloid-associated HSOS, ten recovered, four developed chronic disease, eight died, and one underwent liver transplantation within 6 months after onset. Blood PPAs were detectable in 24 of 40 patients with concentrations from 0.05 to 74.4 nM. Sensitivity and specificity of the test for diagnosis of pyrrolizidine alkaloid-associated HSOS were 100% (23/23) and 94.1% (23/24), respectively. The positive predictive value was 95.8% and the negative predictive value was 100%, whereas the positive likelihood ratio was 23.81. The level of blood PPAs in the severe group (died or received liver transplantation) was significantly higher than that in the recovery/chronicity group (P=0.004). Blood PPAs measured by ultra-performance liquid

  1. Repellence and attraction of Apis mellifera foragers by nectar alkaloids

    Directory of Open Access Journals (Sweden)

    Hroncová Z.

    2016-03-01

    Full Text Available Plant secondary metabolites present naturally in nectar, such as alkaloids, may change the behavioural responses of floral visitors and affect pollination. Some studies have shown that nectar containing low concentrations of these secondary metabolites is preferred by honey bee foragers over pure nectar. However, it remains unclear whether this is caused by dependence or addictive behaviour, a simple taste preference, or by other conditions such as self-medication. In our choice experiment, free-flying bees were presented with artificial flowers holding 20% sucrose containing 0.5−50 μg ml−1 of one of the naturally occurring nectar alkaloids - caffeine, nicotine, senecionine, and gelsemine. Nectar uptake was determined by weighing each flower and comparing the weight to that of the control flower. Our experimental design minimized memorizing and marking; despite this, caffeine was significantly preferred at concentrations 0.5−2 μg ml−1 over control nectar; this preference was not observed for other alkaloids. All of the compounds tested were repellent at concentrations above 5 μg ml−1. We confirmed previous reports that bees exhibit a preference for caffeine, and hypothesize that this is not due only to addictive behaviour but is at least partially mediated by taste preference. We observed no significant preference for nicotine or any other alkaloid.

  2. Activity of pyrrolizidine alkaloids against biofilm formation and Trichomonas vaginalis.

    Science.gov (United States)

    da Silva Negreiros Neto, Themístocles; Gardner, Dale; Hallwass, Fernando; Leite, Ana Jéssica Matias; de Almeida, Camila Guimarães; Silva, Laura Nunes; de Araújo Roque, Alan; de Bitencourt, Fernanda Gobbi; Barbosa, Euzébio Guimarães; Tasca, Tiana; Macedo, Alexandre José; de Almeida, Mauro Vieira; Giordani, Raquel Brandt

    2016-10-01

    Crotalaria genus belongs to the subfamily Papilionoideae comprising about 600 species spread throughout tropical, neotropical and subtropical regions. In this study, seeds of Crolatalaria pallida were used to the isolation of usaramine, a pyrrolizidine alkaloid. Thus, Pseudomonas aeruginosa and Staphylococcus epidermidis were utilized as strains to test some activities of this alkaloid, such as antibiofilm and antibacterial. Meanwhile, monocrotaline obtained from Crotalaria retusa seeds, was used as the starting material for synthesis of necine base derivatives with anti-Trichomonas vaginalis potential. Alkaloids were characterized by 1D and 2D NMR techniques and GC-MS analysis. Usaramine demonstrated a highlighted antibiofilm activity against S. epidermidis by reducing more than 50% of biofilm formation without killing the bacteria, thus it could be assumed as a prototype for the development of new antibiofilm molecules for pharmaceutical and industrial purposes. Monocrotaline activity against T. vaginalis was evaluated and results indicated inhibition of 80% on parasite growth at 1mg/mL, in addition, neither cytotoxicity against vaginal epithelial cells nor hemolytic activity were observed. On the other hand, retronecine showed no anti-T. vaginalis activity while azido-retronecine was more active than monocrotaline killing 85% of the parasites at 1mg/mL. In conclusion, pyrrolizidine alkaloids are suggested as promising prototypes for new drugs especially for topical use. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    Directory of Open Access Journals (Sweden)

    Christopher L Schardl

    Full Text Available The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species, which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne, and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species, a morning-glory symbiont (Periglandula ipomoeae, and a bamboo pathogen (Aciculosporium take, and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories

  4. Alkaloids from Boophone haemanthoides (Amaryllidaceae)

    Czech Academy of Sciences Publication Activity Database

    Nair, J. J.; Rárová, L.; Strnad, Miroslav; Bastida, J.; van Staden, J.

    2013-01-01

    Roč. 8, č. 12 (2013), s. 1705-1710 ISSN 1934-578X Institutional research plan: CEZ:AV0Z50380511 Keywords : Alkaloid * Amaryllidaceae * Boophone haemanthoides Subject RIV: CE - Biochemistry Impact factor: 0.924, year: 2013 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=CCC&DestLinkType=FullRecord&UT=000328588200011

  5. Variation in the expression of ergot alkaloids between individual tillers of perennial ryegrass

    Science.gov (United States)

    Mace, Wade; Lunn, Kristy; Lloyd-West, Catherine

    2014-11-01

    Epichloë fungal endophytes of cool season grasses are well known to produce a range of alkaloids of benefit to the host. Some of these compounds are advantageous to agriculture due to qualities that promote pasture persistence (e.g. the loline class of alkaloids confer insect protection) while others are detrimental to the wellbeing of grazing livestock. The ergot alkaloids (e.g. ergovaline), produced in ryegrass and tall fescue associations, causes poor animal health in farming regions in many countries around the world and further study is required to improve our knowledge on this class of compounds. Here we present the application of a quantitative LC-MS/MS (liquid chromatography coupled to mass spectrometry) method measuring eight ergot alkaloids (chanoclavine, agroclavine, elymoclavine, lysergol, lysergic acid, ergine, lysergyl alanine, ergovaline) produced by endophyte infected grasses, to monitor levels in individual tillers from multiple plants of a single cultivar of perennial ryegrass (Lolium perenne cv. ‘Grasslands Samson’) infected with a common toxic endophyte strain (Epichloë festucae var. lolii). Monitoring the expression in individual tillers allows an estimation of the variability within a plant (between tillers) as well as between plants. The study showed that there is significant variation in the concentration of the ergot alkaloids between tillers of a single plant, at or exceeding the level of variation observed between individual plants of a population. This result emphasizes the fundamental importance of robust experimental design and sampling procedures when alkaloid expression assessment is required and these need to be rigorously tailored to the hypothesis being tested.

  6. Variation in the expression of ergot alkaloids between individual tillers of perennial ryegrass

    Directory of Open Access Journals (Sweden)

    Wade Jeffray Mace

    2014-11-01

    Full Text Available Epichloë fungal endophytes of cool season grasses are well known to produce a range of alkaloids of benefit to the host. Some of these compounds are advantageous to agriculture due to qualities that promote pasture persistence (e.g. the loline class of alkaloids confer insect protection while others are detrimental to the wellbeing of grazing livestock. The ergot alkaloids (e.g. ergovaline, produced in ryegrass and tall fescue associations, causes poor animal health in farming regions in many countries around the world and further study is required to improve our knowledge on this class of compounds. Here we present the application of a quantitative LC-MS/MS (liquid chromatography coupled to mass spectrometry method measuring eight ergot alkaloids (chanoclavine, agroclavine, elymoclavine, lysergol, lysergic acid, ergine, lysergyl alanine, ergovaline produced by endophyte infected grasses, to monitor levels in individual tillers from multiple plants of a single cultivar of perennial ryegrass (Lolium perenne cv. ‘Grasslands Samson’ infected with a common toxic endophyte strain (Epichloë festucae var. lolii. Monitoring the expression in individual tillers allows an estimation of the variability within a plant (between tillers as well as between plants.The study showed that there is significant variation in the concentration of the ergot alkaloids between tillers of a single plant, at or exceeding the level of variation observed between individual plants of a population. This result emphasizes the fundamental importance of robust experimental design and sampling procedures when alkaloid expression assessment is required and these need to be rigorously tailored to the hypothesis being tested.

  7. Independent Recruitment of a Flavin-Dependent Monooxygenase for Safe Accumulation of Sequestered Pyrrolizidine Alkaloids in Grasshoppers and Moths

    OpenAIRE

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide,...

  8. Isolation of alkaloid stachydrin from capparis spinosa L. and her new derivatives

    International Nuclear Information System (INIS)

    Nurmaganbetov, Zh.S.; Turmukhambetov, A.Zh.; Kazantsev, A.V.; Serperov, K.S.

    2005-01-01

    Phirrolidine alkaloid stachydrin was isolated from capparis spinosa L. New chemical derivatives of this new alkaloid were synthesized by reactions of halogenation (with bromine) and by reactions with methyl iodine and hydrochloric acid. The structures and composition of obtained compounds were determined on the basis of IR, 1 H NMR spectral data and elemental analysis

  9. Biosynthesis of ergot alkaloids from penicillium commune using response surface methodology (RSM)

    International Nuclear Information System (INIS)

    Shahid, M. G.; Cheema, T. A.; Baig, S.; Nadeem, M.; Nelofar, R.

    2017-01-01

    The present study employed the response surface methodology (RSM), a statistical technique, for the identification, screening and optimization of fermentation factors to produce ergot alkaloids under laboratory conditions by Penicillium commune. The static surface culture fermentation technique helped to enhance the production of ergot alkaloids. In the first step Plackett-Burman design (PBD) was used to evaluate the effect of ten factors, including nine ingredients of fermentation medium and one process parameter. It was found that sucrose, yeast extract and FeSO/sub 4/.7H/sub 2/O played the pivotal role in enhancing the yield of ergot alkaloids. In the second step, the effect of concentration levels of sucrose, yeast extract and FeSO/sub 4/.7H/sub 2/O was further optimized using Box-Behnken design (BBD) under the same fermentation conditions. The optimized concentrations of sucrose, yeast extract and FeSO/sub 4/.7H/sub 2/O were 41%, 39% and 0.11% respectively, which significantly enhanced the yield of ergot alkaloids. (author)

  10. Copper catalysed synthesis of indolylquinazolinone alkaloid ...

    Indian Academy of Sciences (India)

    ful reactions using copper catalyst have been reported in literature.9. The reported methods6 for the synthesis of bouchar- datine were reported, either via harsher reactions con- dition or multi-step sequence. Therefore, we are inter- ested in identifying mild reaction conditions for the construction of quinazolinone alkaloids.

  11. Butyrylcholinesterase, lipoxygenase inhibiting and antifungal alkaloids from Isatis tinctoria.

    Science.gov (United States)

    Ahmad, Ijaz; Fatima, Itrat

    2008-06-01

    Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6. Compounds 3, 2 were found to be potent butyrylcholinesterase and lipoxygenase enzymes inhibitors in a concentration-dependent manner with the IC(50) values 16.3 +/- 0.06 and 19.7 +/- 0.03 microM against BChE and 30.6 +/- 0.02 and 33.7 +/- 0.05 microM against LOX, respectively. The compounds (1-6) showed significant antifungal activity against Trichophyton schoen leinii, Aspergillus niger, Candida albicans, Trichophyton simii, and Macrophomina phaseolina.

  12. Urease and serine protease inhibitory alkaloids from Isatis tinctoria.

    Science.gov (United States)

    Ahmad, Ijaz; Fatima, Itrat; Afza, Nighat; Malik, Abdul; Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal

    2008-12-01

    Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3'-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC(50) values 25.63 +/- 0.74, 37.01 +/- 0.41 and 31.72 +/- 0.93, 47.33 +/- 0.31 microM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against alpha-chymotrypsin with IC(50) values of 23.40 +/- 0.21 and 27.45 +/- 0.23 microM, respectively.

  13. Glutarimide alkaloids and a terpenoid benzoquinone from Cordia globifera.

    Science.gov (United States)

    Parks, Joshua; Gyeltshen, Thinley; Prachyawarakorn, Vilailak; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2010-05-28

    Three new compounds, a meroterpene (2) having a cyclopropane moiety named globiferane and glutarimide alkaloids named cordiarimides A (3) and B (4), were isolated from the roots of Cordia globifera. Compounds 2-4 exhibited weak cytotoxic activity. Cordiarimide B (4) exhibited radical scavenging activity, as it inhibited superoxide anion radical formation in the xanthine/xanthine oxidase (XXO) assay, and also suppressed superoxide anion generation in differentiated HL-60 human promyelocytic leukemia cells when induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). This is the first report on the presence of glutarimide alkaloids in the genus Cordia.

  14. Alkaloid-derived molecules in low rank Argonne premium coals.

    Energy Technology Data Exchange (ETDEWEB)

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  15. Antioxidant Potential of Cyclopeptyide Alkaloids Isolated from Zizyphus Oxphylla

    International Nuclear Information System (INIS)

    Kaleem, W.A.; Muhammad, N.; Khan, H.; Rauf, A.; Haq, M.Z.U.; Qayum, M.; Khan, A.Z.; Nisar, M.; Obaidullah, M.

    2015-01-01

    The present study reports on the antioxidant potential of five cyclopeptide alkaloids isolated from Zizyphus oxyphylla including Oxyphylline-D 1, Nummularin-C 2, Nummularin-R 3, Oxyphylline-B 4, Oxyphylline C 5 using DPPH free radical assay, nitric oxide radical assay and reducing power assay. The isolated alkaloids demonstrated marked antioxidant potential in a concentration dependent manner. Among the tested molecules, the compounds, 2 was most potent with IC50 values of 27.23, 32.03 and 22.45 μg/ml in DPPH free radical assay, nitric oxide radical assay and reducing power assay respectively. (author)

  16. How toxic is ibogaine?

    NARCIS (Netherlands)

    Litjens, Ruud P. W.; Brunt, Tibor M.

    2016-01-01

    Ibogaine is a psychoactive indole alkaloid found in the African rainforest shrub Tabernanthe Iboga. It is unlicensed but used in the treatment of drug and alcohol addiction. However, reports of ibogaine's toxicity are cause for concern. To review ibogaine's pharmacokinetics and pharmacodynamics,

  17. Salicylic Acid Alters Antioxidant and Phenolics Metabolism in ...

    African Journals Online (AJOL)

    Key words: Antioxidant enzymes; Catharanthus roseus; indole alkaloids; phenolic metabolism; salicylic acid; salinity stress. Abbreviations: CAT - catalase; Chl - chlorophyll; Car - carotenoids; DTNB - 5,5-dithiobis-2-nitrobenzoic acid; GR - glutathione reductase; GST - Glutathione-S-transferase; H2O2 - hydrogen peroxide; ...

  18. A Scalable Method for Regioselective 3-Acylation of 2-Substituted Indoles under Basic Conditions

    DEFF Research Database (Denmark)

    Johansson, Karl Henrik; Urruticoechea, Andoni; Larsen, Inna

    2015-01-01

    Privileged structures such as 2-arylindoles are recurrent molecular scaffolds in bioactive molecules. We here present an operationally simple, high yielding and scalable method for regioselective 3-acylation of 2-substituted indoles under basic conditions using functionalized acid chlorides. The ....... The method shows good tolerance to both electron-withdrawing and donating substituents on the indole scaffold and gives ready access to a variety of functionalized 3-acylindole building blocks suited for further derivatization....

  19. [Analysis of effect of topographical conditions on content of total alkaloid in Coptidis Rhizoma in Chongqin, China].

    Science.gov (United States)

    Liu, Xin; Huang, He; Yang, Yan-fang; Wu, He-zhen

    2014-12-01

    To study ecology suitability rank dividing of the total alkaloid content of Coptis Rhizoma for selecting artificial planting base and high-quality industrial raw material in Chongqing province. Based on the investigation of PCB and DEM data of Chongqing province, the relationship between the total alkaloid content in Coptis Rhizoma and topographical conditions was analyzed by statistical analysis. The geographic information systems (GIS)-based assessment and landscape ecological principles were applied to assess eco logy suitability areas of Coptis Rhizoma in Chongqing. slope, aspect and altitude are main topographical factors that affect the content of the total alkaloid content in Coptis Rhizoma The total alkaloid content in Coptis Rhizoma is higher in the lower altitude, shady slope and bigger slope areas. The total alkaloid content is higher in the south areas of Chongqing province and lower in the northeast. Terrain conditions of the southern region of Chongqing are most suitable for The accumulated of total alkaloid Coptis Rhizoma content.

  20. Aporphine and tetrahydroprotoberberine alkaloids from the leaves of Guatteria friesiana (Annonaceae) and their cytotoxic activities

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Emmanoel Vilaca; Cruz, Pedro Ernesto O. da, E-mail: emmanoelvc@gmail.com [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Departamento de Quimica; Marques, Francisco A.; Barison, Andersson; Maia, Beatriz Helena L.N.S. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Departamento de Quimica; Pinheiro, Maria Lucia B. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Departamento de Quimica; Ruiz, Ana Lucia T.G.; Marchetti, Gabriela M.; Carvalho, Joao Ernesto de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas. Divisao de Farmacologia e Toxicologia

    2013-05-15

    Phytochemical investigation of the leaves of Guatteria friesiana (Annonaceae) afforded three new isoquinoline alkaloids, 13-hydroxy-discretinine, 6,6a-dehydroguatteriopsiscine and 9-dehydroxy-1-methoxy-dihydroguattouregidine. Eight known alkaloids were also isolated, 13-hydroxy-2,3,9,10-tetramethoxyprotoberberine, guatteriopsiscine, lysicamine, liriodenine, atherospermidine, lanuginosine, 7,8-dihydro-8-hydroxypalmatine and palmatine. 13-Hydroxy- 2,3,9,10-tetramethoxyprotoberberine was only obtained by synthesis and is being reported as a natural product for the first time. The structures of the isolated alkaloids were established by extensive analysis of 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometric (MS) data, as well as by comparison with data reported in the literature. The in vitro cytotoxic activity of the major alkaloids was evaluated against tumor and non-tumor cell lines. All of the alkaloids evaluated were determined to be inactive based on National Cancer Institute (NCI/USA) criteria. However, the alkaloid palmatine exhibited a cytostatic effect on MCF-7 (breast) and U251 (glioma) human tumor cell lines, with GI{sub 50} values lower than 20.0 Greek-Small-Letter-Mu mol L{sup -}1 (10.5and 16.2 Greek-Small-Letter-Mu molL{sup -1}, respectively), suggesting a selective cytotoxic action (author)

  1. Defensive properties of pyrrolizidine alkaloids against microorganisms

    NARCIS (Netherlands)

    Joosten, L.; Van Veen, J.A.

    2011-01-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores

  2. Alkaloid profile, antibacterial and allelopathic activities of Lupinus jaimehintoniana B.L. Turner (Fabaceae

    Directory of Open Access Journals (Sweden)

    Ruiz-González Nancy

    2012-01-01

    Full Text Available Herein we describe some aspects of the ethnobotanical use and the first alkaloid profile of Lupinus jaimehintoniana, the 5 to 8 m high arboreous lupine. Five quinolizidine alkaloids identified as sparteine, 5,6-dehydrolupanine, lupanine, nuttalline, and d-thermopsine, were characterized by the respective elution order according to their electronic impact spectra, lupanine being the most abundant in the four different tissues analyzed. Simultaneously, an antibacterial assessment of the four corresponding crude methanolic extracts, as well as the four semi-purified alkaloids was performed on specific Escherichia coli and Agrobacterium tumefaciens strains. These experiments resulted in MIC ranges of 37-61 µg mL-1 and 130-146 µg mL-1, respectively. for both bacterial species. Finally, the allelopathic activity of these extracts on the germination of Lactuca sativa seeds was demonstrated to be in the range of 50-300 µg mL-1 for both semi-purified alkaloid and methanolic extracts.

  3. Alkaloids of root barks of Zanthoxylum spp

    International Nuclear Information System (INIS)

    Hohlemwerger, Sandra Virginia Alves; Sales, Edijane Matos; Costa, Rafael dos Santos; Velozo, Eudes da Silva; Guedes, Maria Lenise da Silva

    2012-01-01

    In 1959, Gottlieb and Antonaccio published a study reporting the occurrence of lignan sesamin and triterpene lupeol in Zanthoxylum tingoassuiba. In this work we describe the phytochemical study of the root bark of the Z. tingoassuiba which allowed the identification of the lupeol, sesamin, and alkaloids dihydrochelerythrine, chelerythrine, anorttianamide, cis-N-methyl-canadin, predicentine, 2, 3-methylenedioxy-10,11-dimethoxy-tetrahydro protoberberine. The investigation of hexane and methanol extracts of the root bark of Z. rhoifolium and Z. stelligerum also investigated showed the presence of alkaloids dihydrochelerythrine, anorttianamide, cis-N-methyl-canadine, 7,9-dimethoxy-2,3- methylenedioxybenzophen anthridine and angoline. The occurrence of 2,3-methylenedioxy-10,11-dimethoxy-tetrahydro protoberberine is first described in Z. tingoassuiba and Z. stelligerum. This is also the first report of the presence of hesperidin and neohesperidin in roots of Z. stelligerum (author)

  4. Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre

    DEFF Research Database (Denmark)

    Halldórsdóttir, Elsa Steinunn; Jaroszewski, Jerzy W; Olafsdottir, Elin Soffia

    2010-01-01

    The aim of this study was to investigate structures and acetylcholinesterase inhibitory activities of lycopodane-type alkaloids isolated from an Icelandic collection of Lycopodium annotinum ssp. alpestre. Ten alkaloids were isolated, including annotinine, annotine, lycodoline, lycoposerramine M...

  5. 2-(7-Methyl-1H-indol-3-ylacetonitrile

    Directory of Open Access Journals (Sweden)

    Yu-Hua Ge

    2012-01-01

    Full Text Available In the title compound, C11H10N2, the carbonitrile group is twisted away from the indole plane [Ccy—Cme—Car—Car = 66.6 (2°; cy = cyanide, me = methylene and ar = aromatic]. In the crystal, N—H...N hydrogen bonds link the molecules into C(7 chains propagating in the [001] direction.

  6. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    Science.gov (United States)

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  7. New method for the study of Amaryllidaceae alkaloid biosynthesis using biotransformation of deuterium-labeled precursor in tissue cultures

    International Nuclear Information System (INIS)

    Tahchy, A. E.; Boisbrun, M.; Chretien, F.; Henry, M.; Chapleur, Y.; Laurain-Mattar, D.; Ptak, A.; Dupire, F.

    2010-01-01

    Biotransformation of deuterated-4'-O-methylnorbelladine into alkaloids galanthamine and lycorine in tissue cultures of Leucojum aestivum was demonstrated using HPLC coupled to mass spectrometry. GC-MS screening was also carried to investigate other native and deuterated alkaloids. A total of six labeled alkaloids were identified indicating that 4'-O-methyl-d3-norbelladine is incorporated into three different groups of Amaryllidaceae alkaloids that are biosynthesized by three modes of intramolecular oxidative phenol coupling. (authors)

  8. Biooxidation of indole and characteristics of the responsible enzymes

    African Journals Online (AJOL)

    Indole, an electron-rich N-aromatic heterocyclic organic compound, functions as a popular component of fragrances, indicator of some diseases and signal molecule in plant, animal and microorganism, respectively. It also serves as the precursor, core building block and functional group of many important biochemical ...

  9. Coupling Deep Transcriptome Analysis with Untargeted Metabolic Profiling in Ophiorrhiza pumila to Further the Understanding of the Biosynthesis of the Anti-Cancer Alkaloid Camptothecin and Anthraquinones

    Science.gov (United States)

    Yamazaki, Mami; Mochida, Keiichi; Asano, Takashi; Nakabayashi, Ryo; Chiba, Motoaki; Udomson, Nirin; Yamazaki, Yasuyo; Goodenowe, Dayan B.; Sankawa, Ushio; Yoshida, Takuhiro; Toyoda, Atsushi; Totoki, Yasushi; Sakaki, Yoshiyuki; Góngora-Castillo, Elsa; Buell, C. Robin; Sakurai, Tetsuya; Saito, Kazuki

    2013-01-01

    The Rubiaceae species, Ophiorrhiza pumila, accumulates camptothecin, an anti-cancer alkaloid with a potent DNA topoisomerase I inhibitory activity, as well as anthraquinones that are derived from the combination of the isochorismate and hemiterpenoid pathways. The biosynthesis of these secondary products is active in O. pumila hairy roots yet very low in cell suspension culture. Deep transcriptome analysis was conducted in O. pumila hairy roots and cell suspension cultures using the Illumina platform, yielding a total of 2 Gb of sequence for each sample. We generated a hybrid transcriptome assembly of O. pumila using the Illumina-derived short read sequences and conventional Sanger-derived expressed sequence tag clones derived from a full-length cDNA library constructed using RNA from hairy roots. Among 35,608 non-redundant unigenes, 3,649 were preferentially expressed in hairy roots compared with cell suspension culture. Candidate genes involved in the biosynthetic pathway for the monoterpenoid indole alkaloid camptothecin were identified; specifically, genes involved in post-strictosamide biosynthetic events and genes involved in the biosynthesis of anthraquinones and chlorogenic acid. Untargeted metabolomic analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) indicated that most of the proposed intermediates in the camptothecin biosynthetic pathway accumulated in hairy roots in a preferential manner compared with cell suspension culture. In addition, a number of anthraquinones and chlorogenic acid preferentially accumulated in hairy roots compared with cell suspension culture. These results suggest that deep transcriptome and metabolome data sets can facilitate the identification of genes and intermediates involved in the biosynthesis of secondary products including camptothecin in O. pumila. PMID:23503598

  10. Cyclopeptide alkaloids. Synthesis of the ring system and its ion affinity

    International Nuclear Information System (INIS)

    Lagarias, J.C.; Houghten, R.A.; Rapoport, H.

    1978-01-01

    Several examples of the 14-membered, para-bridged ring system of the cyclopeptide alkaloids have been synthesized via an active ester cyclization. The yield of monomeric cyclopeptide varied from 1 to 33% and was affected by the amino acid substitution pattern and amide conformation of the linear peptide precursors. Both the synthetic models and a naturally occurring cyclopeptide alkaloid, ceanothine B, bind monovalent (Li + ) and divalent (Ca 2+ , Mg 2+ ) cations. 4 figures, 1 table

  11. Phosphorylated Derivatives of Alkaloids and Nitrogen-containing Heterocycles — Cholinesterase Inhibitors

    Science.gov (United States)

    Sadykov, Abid S.; Dalimov, D. N.; Godovikov, Nikolai N.

    1983-10-01

    The review deals with the synthesis and anticholinesterase activities of phosphorylated derivatives of certain alkaloids and nitrogen-containing heterocycles. It is shown that the conformational properties of the alkaloid and nitrogen-containing heterocycle residues in the composition of the organophosphorus inhibitor (OPI) molecule play an important role in the inhibition of the catalytic activity of cholinesterases. The type of inhibition of cholinesterases also varies as a function of chemical structure. The bibliography includes 45 references.

  12. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo; Pan, Yupeng; Huang, Kuo-Wei; Lai, Zhiping

    2015-01-01

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction

  13. The electrochemical polymerization of indole with thiophene

    International Nuclear Information System (INIS)

    Sarac, S.

    2004-01-01

    Electropolymerization of indole (IN) in the presence of thiophene (Th) was followed by in situ spectrochemical studies. A correlation between absorbance (390 nm) and charge (at 600 mV) values indicated that oligomeric species were formed in solution, and similar results were found with in situ measurements. The copolymer was characterized by FT-IR, UV-Visible Spectroscopy, Cyclic Voltammetry and four-point probe conductymeter. The increase in conductivity by the incorporation of Th into polyindole was about 60 times for a feed ratio n I N/n T H=1:10 and 19 times for n I N/n T H=1:1. Similar effects were also observed during in situ spectroelectrochemical measurements of copolymer formation. It was also found that the cyclic voltametry peak potentials for the electrogrowth of copolymer films were closely correlated to the conductivities of the corresponding films (measured separately by four-point probe method), thereby allowing us to use the peak potential currents to predict the final copolymer film conductivities during the electrochemical growth process. The ex-situ spectroelectrocopolymerization of indole was also obtained in acetonitril medium.The Tg value of the polymer also increased with the incorporation of Th. The results strongly suggest that IN and Th copolymerize on the electrode surface as well as in solution

  14. Picranitine, a new indole alkaloid from picralima nitida ...

    African Journals Online (AJOL)

    Bulletin of the Chemical Society of Ethiopia. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 16, No 2 (2002) >. Log in or Register to get access to full text downloads.

  15. Outcome determinants for transformed indolent lymphomas treated with or without autologous stem cell transplantation

    DEFF Research Database (Denmark)

    Madsen, Charlotte; Pedersen, Martin Bjerregård; Vase, Maja Ølholm

    2015-01-01

    either simultaneously or after a period of overt indolent disease. We also analyzed, whether prior rituximab treatment during the indolent course of the disease affected outcome after transformation. PATIENTS AND METHODS: Eighty-five patients (≤68 years) with histologically confirmed TIL were included...... at diagnosis (Composite/discordant TIL) and (iii) patients transformed after prolonged prior indolent disease (sequential TIL). RESULTS: Fifty-four patients (64%) received ASCT consolidation and 31 (36%) did not. Within the 'all TIL' cohort, the 5-year OS and PFS for R-chemo + ASCT versus R-chemo alone, were...... 67% versus 48% (P = 0.11) and 60% versus 30% (P = 0.02), respectively. Furthermore, in 'Composite/discordant TIL' R-chemo + ASCT showed no impact on OS (76% versus 67%; P = 0.66) or PFS (71% versus 62%; P = 0.54). Conversely, R-chemo + ASCT improved the outcome of 'sequential TIL' (OS 62% versus 36...

  16. Extractions of isoquinoline alkaloids with butanol and octanol.

    Science.gov (United States)

    Gregorová, Jana; Babica, Jan; Marek, Radek; Paulová, Hana; Táborská, Eva; Dostál, Jirí

    2010-09-01

    Six different isoquinoline alkaloids (sanguinarine, chelerythrine, berberine, coptisine, allocryptopine, and protopine) were extracted by butanol and octanol from aqueous solution, pH 4.5. The samples were analyzed by HPLC. Butanol extraction was non-selective, alkaloids passed into organic phase in 83-98%. Octanol extraction provided more selective yields: sanguinarine 99%, chelerythrine 94%, berberine 18%, coptisine 16%, allocryptopine 7.5%, protopine 7%. Further, we tested octanol treatment of extract from Dicranostigma lactucoides. The octanol extraction yields were also selective: sanguinarine 98%, chelerythrine 92%, chelirubine 92.5%, protopine 6% and allocryptopine 3.5%. 6-Butoxy-5,6-dihydrosanguinarine and 6-butoxy-5,6-dihydrochelerythrine were prepared and their NMR and MS data are reported and discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  18. Crotalaria medicaginea associated with horse deaths in northern Australia: new pyrrolizidine alkaloids.

    Science.gov (United States)

    Fletcher, Mary T; Hayes, Patricia Y; Somerville, Michael J; De Voss, James J

    2011-11-09

    Crotalaria medicaginea has been implicated in horse poisoning in grazing regions of central-west Queensland, which resulted in the deaths of more than 35 horses from hepatotoxicosis in 2010. Liver pathology was suggestive of pyrrolizidine alkaloidosis, and we report here the isolation of two previously uncharacterized pyrrolizidine alkaloids from C. medicaginea plant specimens collected from pastures where the horses died. The first alkaloid was shown by mass spectometric and NMR analyses to be 1β,2β-epoxy-7β-hydroxy-1α-methoxymethyl-8α-pyrrolizidine, which, like other alkaloids previously isolated from C. medicaginea, lacks the requisite functionality for hepatotoxcity. The second alkaloid isolated in this investigation was a new macrocyclic diester of otonecine, which we have named cromedine. The (1)H and (13)C NMR spectra of cromedine were fully assigned by 2D NMR techniques and allowed the constitution of the macrocyclic diester to be assigned unambiguously. C. medicaginea specimens implicated in this investigation do not belong to any of the three recognized Australian varieties (C. medicaginea var. neglecta, C. medicaginea var. medicaginea, and C. medicaginea var. linearis) and appear to be a local variant or form, referred to here as C. medicaginea (chemotype cromedine).

  19. Influence of hydration on ion-biomolecule interactions: M(+)(indole)(H2O)(n) (M = Na, K; n = 3-6).

    Science.gov (United States)

    Ke, Haochen; Lisy, James M

    2015-10-14

    The indole functional group can be found in many biologically relevant molecules, such as neurotransmitters, pineal hormones and medicines. Indole has been used as a tractable model to study the hydration structures of biomolecules as well as the interplay of non-covalent interactions within ion-biomolecule-water complexes, which largely determine their structure and dynamics. With three potential binding sites: above the six- or five-member ring, and the N-H group, the competition between π and hydrogen bond interactions involves multiple locations. Electrostatic interactions from monovalent cations are in direct competition with hydrogen bonding interactions, as structural configurations involving both direct cation-indole interactions and cation-water-indole bridging interactions were observed. The different charge densities of Na(+) and K(+) give rise to different structural conformers at the same level of hydration. Infrared spectra with parallel hybrid functional-based calculations and Gibbs free energy calculations revealed rich structural insights into the Na(+)/K(+)(indole)(H2O)3-6 cluster ion complexes. Isotopic (H/D) analyses were applied to decouple the spectral features originating from the OH and NH stretches. Results showed no evidence of direct interaction between water and the NH group of indole (via a σ-hydrogen bond) at current levels of hydration with the incorporation of cations. Hydrogen bonding to a π-system, however, was ubiquitous at hydration levels between two and five.

  20. Workers and alate queens of Solenopsis geminata share qualitatively similar but quantitatively different venom alkaloid chemistry

    Directory of Open Access Journals (Sweden)

    Qun-Hui eShi

    2015-07-01

    Full Text Available Solenopsis geminata group (Hymenoptera: Formicidae encompasses ant species commonly called fire ants because of their painful sting. The many physiological effects of the venom are caused by 2-methyl-6-alkyl and/or alkenylpiperidine alkaloids. The variation in piperidine alkaloid structures has useful taxonomic characters. The most well studied Solenopsis species is S. invicta, which was accidentally imported into the USA in the 1930s from South America. It quickly spread throughout the southern USA and is now a major invasive pest ant in the USA and in other parts of the world. Interestingly, the invasive S. invicta has largely displaced a native USA fire ant, S. geminata, from the southern USA. We explore the possibility that differences in venom chemistry could be correlated with this displacement. The cis and trans alkaloids from body extracts of workers and alate queens of S. geminata were separated by silica gel chromatography, identified, and quantitated by GC-MS analysis. Both workers and alate queens produce primarily cis- and trans-2-methyl-6-n-undecyl-piperidines, as well as other minor alkaloid components. Imported fire ant, S. invicta, alate queens produce the same alkaloids as S. geminata alate queens, but in contrast S. invicta workers produce piperidine alkaloids with longer side chains, which are purported to be physiologically more effective. These results are discussed in relation to the evolutionary progression of fire ant venom alkaloids and displacement of S. geminata by S. invicta in the USA.

  1. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass.

    Science.gov (United States)

    Chen, Li; Li, Xiuzhang; Li, Chunjie; Swoboda, Ginger A; Young, Carolyn A; Sugawara, Koya; Leuchtmann, Adrian; Schardl, Christopher L

    2015-01-01

    Achnatherum inebrians, colloquially known as drunken horse grass, is associated with livestock toxicity in northern China. Epichloë gansuensis (Eg) was described from endophyte isolates from A. inebrians in Sunan County, Gansu Province, whereas a morphologically distinct variety, E. gansuensis var. inebrians (Ei), was described based on two isolates from A. inebrians seeds collected in Urumqi County, Xinjiang Province. Genome sequencing and alkaloid analyses also distinguish these taxa; the Ei isolates produce neurotropic lysergic acid amides (ergot alkaloids), and an Eg isolate produces paxilline (an indole-diterpene alkaloid). To better elucidate the taxonomic diversity of Epichloë spp. symbiotic with A. inebrians, we surveyed eight populations in Xinjiang, Gansu and Inner Mongolia provinces of China and analyzed their genotypes by multiplex PCR for alkaloid biosynthesis genes and mating-type genes. Genotypes consistent with Ei were present in all eight populations, of which they dominated seven. The Ei isolates were all mating type A and tested positive for the ergot alkaloid gene, dmaW. In contrast Eg isolates were all mating type B and had the indole-diterpene gene, idtG. The genome was sequenced from an Ei isolate from seeds collected in Xiahe County, Gansu, and compared to that of the varietal ex type isolate from Urumqi. Alkaloid genes and four different housekeeping genes were nearly identical between the two sequenced Ei isolates and were distinct from a sequenced Eg isolate. Phylogenetic analysis placed Ei, Eg and Epichloë sibirica into respective subclades of a clade that emanated from the base of the Epichloë phylogeny. Given its chemotypic, genotypic, morphological and phylogenetic distinctiveness, its widespread occurrence in rangelands of northern China, and its importance in livestock toxicity, we propose raising Ei to species rank as Epichloë inebrians. © 2015 by The Mycological Society of America.

  2. [Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia].

    Science.gov (United States)

    Bozhadze, A D; Vachnadze, V Iu; Dzhokhadze, M S; Berashvili, D T; Bakuridze, A Dzh

    2013-04-01

    In present article was studied the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Alkaloids were extracted from medicinal herbal material and separated by liquid extraction, diluents gas and a microfiltration through membrane equipment. The obtained A1, A2, A3 fractions were analyzed by GC/MS method; in all cases separation proceeds by the principle of extraction of the target alkaloids. It was concluded that the A1 is enriched with α and β cryptopins, and protopin, but homochelidonine and chelidonine are in low contents. As accompanying alkaloid is identified dihydrosanguinarine as an artifact; the A2 is enriched with the maximum contents of stylopine and protopin, but the poor contents of chelidonine and homochelidonine; the A3 is enriched with α and β cryptopins and maximum content of chelidonine. Extraction of alkaloids from Chelidonium majus L. proceeds selectively, but depending on a way of separation of the total alkaloids allows varying qualitative and quantitative consistence of the final product.

  3. Sensitive determination of pyrrolizidine alkaloids in Tussilago farfara L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography.

    Science.gov (United States)

    Cao, Kun; Xu, Yi; Mu, Xiuni; Zhang, Qing; Wang, Renjie; Lv, Junjiang

    2016-11-01

    Pyrrolizidine alkaloids are the toxic components in Tussilago farfara L. Due to the lack of standard substances for quantitative analysis and traces of pyrrolizidine alkaloids in total alkaloids, the full quality control of Tussilago farfara L has been limited. In this study, we aimed to solve the difficulty of determination of pyrrolizidine alkaloids and identify more components in the total alkaloids. An on-line preconcentration method has been applied to improve determining sensitivity of pyrrolizidine alkaloids in Tussilago farfara L. in which included field-amplified sample stacking and sweeping in micellar electrokinetic capillary chromatography. The main parameters that affected separation and stacking efficiency were investigated in details. Under the optimal conditions, the sensitivity enhancement factors obtained by the developed method for the analytes were from 15- to 12-fold, the limits of detection of senkirkine and senecionine were 2∼5 μg/L. Senkirkine and senecionine have been detected in alkaloids (c) of Tussilago farfara L, along ferulic acid methyl ester and methyl caffeate. The developed method was also applied to the analysis of acid extraction (a) of Tussilago farfara L, and senkirkine could be detected directly. The results indicated that the developed method is feasible for the analysis of pyrrolizidine alkaloids in Tussilago farfara L with good recoveries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Long-term stability in biomass and production of terpene indole alkaloids by hairy root culture of Rauvolfia serpentina and cost approximation to endorse commercial realism.

    Science.gov (United States)

    Pandey, Pallavi; Kaur, Ranjeet; Singh, Sailendra; Chattopadhyay, Sunil Kumar; Srivastava, Santosh Kumar; Banerjee, Suchitra

    2014-07-01

    The effect of 6 years of cultivation and use of table-sugar (TS) on the biomass/terpene alkaloid productivities and rol gene expression were studied in a hairy root (HR) clone of Rauvolfia serpentina. The media cost could be reduced >94 % by replacing sucrose (SUC) with TS—an unexplored avenue for HR cultivation. The overall productivities increased over long-term cultivation with sugar proving superior to SUC for biomass (24.4 ± 2.11 g/l DW after 40 days to 17.31 % higher) and reserpine (0.094 ± 0.008 % DW after 60 days to 193.8 % more) production. The latter however revealed comparatively better yields concerning ajmaline (0.507 ± 0.048 % DW after 60 days to 61.98 % higher) and yohimbine (0.628 ± 0.062 % DW after 60 days to 38.32 % higher), respectively. PCR amplification of rol genes confirmed long-term expression stability.

  5. Study on synthesis and properties of nanoparticles loaded with amaryllidaceous alkaloids

    Directory of Open Access Journals (Sweden)

    Duan Lihong

    2017-11-01

    Full Text Available Alzheimer’s disease (AD is the most common disease among the elderly people and a major social and medical problem. Amaryllidaceous alkaloids, acting as acetylcholinesterase inhibitors, represent a potential treatment of AD. However, they also have some deficiencies, such as extensive toxicity and widespread side effects. In order to improve the bioavailability and reduce the toxic and side effects, brain targeting of amaryllidaceous alkaloids was enhanced by considering low density lipoprotein (LDL receptors of blood-brain barrier (BBB endothelial cells as therapeutic targets. Amaryllidaceous alkaloids were highly selectively and quantitatively riveted to the surface of low density lipoproteins by using a new method - mild click chemistry. The structure of products has been characterized by NMR, FT-IR, and other methods. In addition, drug loading rate, encapsulation rate, and drug release by the nanoparticles were determined to assess the quality of the nanoparticles.

  6. Determination of tropane alkaloids by heart cutting reversed phase - Strong cation exchange two dimensional liquid chromatography.

    Science.gov (United States)

    Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye

    2018-01-01

    Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright

  7. Biosynthesis, asymmetric synthesis, and pharmacology, including cellular targets, of the pyrrole-2-aminoimidazole marine alkaloids

    Digital Repository Service at National Institute of Oceanography (India)

    Al-Mourabit, A.; Zancanella, M.A.; Tilvi, S.; Romo, D.

    The pyrrole-2-aminoimidazole (P-2-AI) alkaloids are a growing family of marine alkaloids, now numbering well over 150 members, with high topographical and biological information content. Their intriguing structural complexity, rich and compact...

  8. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in pigeon (Columba livia domestica).

    Science.gov (United States)

    Tabari, M A; Youssefi, M R; Moghadamnia, A A

    2017-06-01

    1. This study was designed to evaluate the antitrichomonal effects of P. harmala alkaloid extract against T. gallinae, both in vitro and in vivo, as well as comparing it to that of metronidazole, conventional antitrichomonal medication and harmine and harmaline, the two alkaloids present in P. harmala. 2. T. gallinae were collected by the wet mount method from infected free-living pigeons. The in vitro assay was performed using multi-well plates containing test compounds in final concentrations of 5, 10, 15, 20, 30, 50 or 100 μg/ml. The in vivo assay was done on 60 experimentally infected pigeons dosed with metronidazole at 50 mg/kg body weight (BW) or alkaloids at 25 mg/kg BW. 3. The 24 h minimum inhibitory concentration (MIC) of alkaloid extract was 15 µg/ml while that of metronidazole was 50 µg/ml. Harmine and harmaline revealed 24 h MIC of 30 and 100 µg/ml, respectively. Treatment of infected pigeons with alkaloids led to a full recovery after 3 d but with metronidazole total eradication of trophozoites was not achieved. 4. In conclusion, data of the present study suggested P. harmala is a potent natural anti-trichomonal agent, effective against T. gallinae.

  9. Tandem Mass Spectrometry for Structural Identification of Sesquiterpene Alkaloids from the Stems of Dendrobium nobile Using LC-QToF.

    Science.gov (United States)

    Wang, Yan-Hong; Avula, Bharathi; Abe, Naohito; Wei, Feng; Wang, Mei; Ma, Shuang-Cheng; Ali, Zulfiqar; Elsohly, Mahmoud A; Khan, Ikhlas A

    2016-05-01

    Dendrobium nobile is one of the fundamental herbs in traditional Chinese medicine. Sesquiterpene alkaloids are the main active components in this plant. Due to weak ultraviolet absorption and low content in D. nobile, these sesquiterpene alkaloids have not been extensively studied using chromatographic methods. Herein, tandem mass spectrometry combined with liquid chromatography separation provides a tool for the identification and characterization of the alkaloids from D. nobile. A total of nine sesquiterpene alkaloids were characterized by ultrahigh-performance liquid chromatography tandem mass spectrometry. These alkaloids can be classified into two subgroups that are represented by dendrobine and nobilonine. Tandem mass spectrometric studies revealed the fragmentation pathways of these two subgroup alkaloids that were used for the identification and characterization of other alkaloids in D. nobile. Characterization of these alkaloids using accurate mass and diagnostic fragments provided a reliable methodology for the analysis of D. nobile by ultrahigh-performance liquid chromatography tandem mass spectrometry. The limit of detection was defined as the signal-to-noise ratio equal to 3 : 1. Limits of detection of dendrobine and nobilonine were less than 30 ng/mL. The developed method was applied for the analysis of various Dendrobium species and related dietary supplements. Alkaloids were identified from D. nobile, but not detected from commercial samples including 13 other Dendrobium species and the 7 dietary supplements. Georg Thieme Verlag KG Stuttgart · New York.

  10. Effects of tryptophan derivatives and β-carboline alkaloids on radiation- and peroxide-induced transformations of ethanol

    International Nuclear Information System (INIS)

    Sverdlov, R.L.; Brinkevich, S.D.; Shadyro, O.I.

    2014-01-01

    The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids – harmine, harmane and harmaline – were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with O ·− 2 and HO · 2 , or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids. - Highlights: • Tryptophan, 5-hydroxytryptophane and serotonin can reduce or add α-HER. • β-Carboline alkaloids – harmane, harmine, harmaline – can oxidize α-HER. • Tryptophan and its derivatives can reduce oxygen-centered radicals

  11. Metabolic activation of pyrrolizidine alkaloids leading to phototoxicity and photogenotoxicity in human HaCaT keratinocytes.

    Science.gov (United States)

    Wang, Chia-Chi; Xia, Qingsu; Li, Meng; Wang, Shuguang; Zhao, Yuewei; Tolleson, William H; Yin, Jun-Jie; Fu, Peter P

    2014-01-01

    Pyrrolizidine alkaloids, produced by a large number of poisonous plants with wide global distribution, are associated with genotoxicity, tumorigenicity, and hepatotoxicity in animals and humans. Mammalian metabolism converts pyrrolizidine alkaloids to reactive pyrrolic metabolites (dehydropyrrolizidine alkaloids) that form covalent protein and DNA adducts. Although a mechanistic understanding is currently unclear, pyrrolizidine alkaloids can cause secondary (hepatogenous) photosensitization and induce skin cancer. In this study, the phototoxicity of monocrotaline, riddelliine, dehydromonocrotaline, dehydroriddelliine, and dehydroretronecine (DHR) in human HaCaT keratinocytes under ultraviolet A (UVA) irradiation was determined. UVA irradiation of HaCaT cells treated with dehydromonocrotaline, dehydroriddelline, and DHR resulted in increased release of lactate dehydrogenase and enhanced photocytotoxicity proportional to the UVA doses. UVA-induced photochemical DNA damage also increased proportionally with dehydromonocrotaline and dehydroriddelline. UVA treatment potentiated the formation of 8-hydroxy-2'-deoxyguanosine DNA adducts induced by dehydromonocrotaline in HaCaT skin keratinocytes. Using electron spin resistance trapping, we found that UVA irradiation of dehydromonocrotaline and dehydroriddelliine generates reactive oxygen species (ROS), including hydroxyl radical, singlet oxygen, and superoxide, and electron transfer reactions, indicating that cytotoxicity and genotoxicity of these compounds could be mediated by ROS. Our results suggest that dehydropyrrolizidine alkaloids formed or delivered to the skin cause pyrrolizidine alkaloid-induced secondary photosensitization and possible skin cancer.

  12. Distribution and Variation of Indole Glucosinolates in Woad (Isatis tinctoria L.).

    Science.gov (United States)

    Elliott, M C; Stowe, B B

    1971-10-01

    The exceptionally high levels in woad (Isatis tinctoria L.) of three indolic goitrogens, namely glucobrassicin, neoglucobrassicin, and glucobrassicin-1-sulfonate, permit the facile study of their distribution in the plant and their changes during its development. Woad seeds contain as much as 0.23% fresh weight of glucobrassicin but no other indole glucosinolate, while 1-week-old seedlings also contain substantial amounts of neoglucobrassicin and glucobrassicin-1-sulfonate in their shoots whether grown in the light or dark. The sulfonate is not found in roots, and light depresses neoglucobrassicin levels in shoots. Sterile root cultures synthesize glucobrassicin and neoglucobrassicin, and significant quantities of these were even found to be excreted by the roots of intact sterile seedlings in culture. This may explain the long known deleterious effect of woad and other cruciferous crops on subsequent plantings and the observation could be of ecological importance. Long term changes in levels of all three substances in the plant are similar and are compatible with earlier suggestions that the compounds could be auxin precursors at the time of flower stem elongation. Since sterile seedlings readily incorporate (35)SO(4) (2-) into indole glucosinolates and relative specific radioactivities suggest that glucobrassicin is the precursor of the other two compounds, pathways of goitrogen biosynthesis should be relatively easily determined in this material.

  13. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    Science.gov (United States)

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Retention behavior of selected alkaloids in Reversed Phase micellar chromatographic systems

    Directory of Open Access Journals (Sweden)

    Petruczynik Anna

    2015-06-01

    Full Text Available In this work, the effects of sodium dodecyl sulfate (SDS concentrations on retention, separation selectivity, peak shapes and systems efficiency were investigated. Herein, the retention data for 11 alkaloids were determined on an RP18 silica column with mobile phases containing methanol as organic modifier, with acetate buffer at pH 3.5, and, subsequently, with the addition of sodium dodecyl sulfate (SDS. The results of this study indicate that the retention of alkaloids decreases with the increase of SDS concentration in the mobile phase. The increase of SDS concentration, however, leads to the significantly improvement of peak symmetry and the increase of theoretical plate number in all cases. The best system efficiency for most of the investigated alkaloids was obtained in a mobile phase containing 0.1 M SDS, while most symmetrical peaks were obtained through the addition of 0.3 M of SDS to the mobile phase.

  15. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  16. [Auxin synthesis by the higher fungus Lentinus edodes (Berk.) Sing in the presence of low concentrations of indole compounds].

    Science.gov (United States)

    Tsivileva, O M; Loshchinina, E A; Makarov, O E; Nikitina, V E

    2012-01-01

    The auxin formation in a submerged culture of the xylotrophic basidiomycete Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler) (shiitake) is studied. Biologically active substances of an indole nature are identified, "the effect of small doses" of which lies in not only the stimulation of growth of the mycelium (indole-3-acetic acid, 2 x 10(-7)-2 x 10(-4) g/l), but also in the induction of tryptophan-independent paths of auxin biosynthesis. The above-mentioned path is realized in the presence of exogenous indole (1 x 10(-3)-1 x 10(-4) g/l), as well as while inducing the biosynthesis of indole-3-acetic acid by its microadditives (1 x 10(-5)-1 x 10(-8) g/l), and is accompanied by the formation of anthranilic acid (up to 1.5 mg/l). Induction of the generative development stage ofshiitake by indole derivatives is revealed. It was found that among the studied compounds only indoleacetamide at a concentration of an order of x 10(-4) g/l in the culture fluid of L. edodes had a pronounced stimulatory effect on the formation of shiitake's brown mycelial film.

  17. Cat's claw oxindole alkaloid isomerization induced by common extraction methods

    Directory of Open Access Journals (Sweden)

    Samuel Kaiser

    2013-01-01

    Full Text Available Cat's claw oxindole alkaloids are prone to isomerization in aqueous solution. However, studies on their behavior in extraction processes are scarce. This paper addressed the issue by considering five commonly used extraction processes. Unlike dynamic maceration (DM and ultrasound-assisted extraction, substantial isomerization was induced by static maceration, turbo-extraction and reflux extraction. After heating under reflux in DM, the kinetic order of isomerization was established and equations were fitted successfully using a four-parameter Weibull model (R² > 0.999. Different isomerization rates and equilibrium constants were verified, revealing a possible matrix effect on alkaloid isomerization.

  18. Anticancer and reversing multidrug resistance activities of natural isoquinoline alkaloids and their structure-activity relationship.

    Science.gov (United States)

    Qing, Zhi-Xing; Huang, Jia-Lu; Yang, Xue-Yi; Liu, Jing-Hong; Cao, Hua-Liang; Xiang, Feng; Cheng, Pi; Zeng, Jian-Guo

    2017-09-20

    The severe anticancer situation as well as the emergence of multidrug-resistant (MDR) cancer cells has created an urgent need for the development of novel anticancer drugs with different mechanisms of action. A large number of natural alkaloids, such as paclitaxel, vinblastine and camptothecin have already been successfully developed into chemotherapy agents. Following the success of these natural products, in this review, twenty-six types of isoquinoline alkaloid (a total of 379 alkaloids), including benzyltetrahydroisoquinoline, aporphine, oxoaporphine, isooxoaporphine, dimeric aporphine, bisbenzylisoquinoline, tetrahydroprotoberberine, protoberberine, protopine, dihydrobenzophenanthridine, benzophenanthridine, benzophenanthridine dimer, ipecac, simple isoquinoline, pavine, montanine, erythrina, chelidonine, tropoloisoquinoline, azafluoranthene, phthalideisoquinoline, naphthylisoquinoline, lycorine, crinane, narciclasine, and phenanthridone, were summarized based on their cytotoxic and MDR reversing activities against various cancer cells. Additionally, the structure-activity relationships of different types of isoquinoline alkaloid were also discussed. Interestingly, some aporphine, oxoaporphine, isooxoaporphine, bisbenzylisoquinoline, and protoberberine alkaloids display more potent anticancer activities or anti-MDR effects than positive control against the tested cancer cells and are regarded as attractive targets for discovery new anticancer drugs or lead compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A Submarine Journey: The Pyrrole-Imidazole Alkaloids

    Directory of Open Access Journals (Sweden)

    Alessandra Scolaro

    2009-11-01

    Full Text Available In his most celebrated tale “The Picture of Dorian Gray”, Oscar Wilde stated that “those who go beneath the surface do so at their peril”. This sentence could be a prophetical warning for the practitioner who voluntarily challenges himself with trying to synthesize marine sponge-deriving pyrrole-imidazole alkaloids. This now nearly triple-digit membered community has been growing exponentially in the last 20 years, both in terms of new representatives and topological complexity − from simple, achiral oroidin to the breathtaking 12-ring stylissadines A and B, each possessing 16 stereocenters. While the biosynthesis and the role in the sponge economy of most of these alkaloids still lies in the realm of speculations, significant biological activities for some of them have clearly emerged. This review will account for the progress in achieving the total synthesis of the more biologically enticing members of this class of natural products.

  20. Multiple shoot cultures of Atropa belladonna: Effect of physico-chemical factors on growth and alkaloid formation

    International Nuclear Information System (INIS)

    Benjamin, B.D.; Roja, P.C.; Heble, M.R.; Chandha, M.S.

    1987-01-01

    Multiple shoot cultures were established from shoot tip and axillary meristem of the plant Atropa belladonna. The cultures were initially raised on agar medium and subsequently maintained on liquid medium of Murashige and Skoog (1962) supplemented with BA. These cultures were subjected to different doses of -y-irradiation. Recovery from the radiation effects was observed in tissues subjected to 29 Gy during four successive passages. Plant growth regulators influenced the growth and morphogenetic events of the tissues. The precursors of tropane alkaloids marginally increased the alkaloid synthesis during the stationary phase of growth. Shoot cultures, established from different field grown plants varying in alkaloid content, were morphologically similar and did not exhibit the parental characteristics with respect to alkaloid formation

  1. The killer of Socrates: Coniine and Related Alkaloids in the Plant Kingdom.

    Science.gov (United States)

    Hotti, Hannu; Rischer, Heiko

    2017-11-14

    Coniine, a polyketide-derived alkaloid, is poisonous to humans and animals. It is a nicotinic acetylcholine receptor antagonist, which leads to inhibition of the nervous system, eventually causing death by suffocation in mammals. Coniine's most famous victim is Socrates who was sentenced to death by poison chalice containing poison hemlock in 399 BC. In chemistry, coniine holds two historical records: It is the first alkaloid the chemical structure of which was established (in 1881), and that was chemically synthesized (in 1886). In plants, coniine and twelve closely related alkaloids are known from poison hemlock ( Conium maculatum L.), and several Sarracenia and Aloe species. Recent work confirmed its biosynthetic polyketide origin. Biosynthesis commences by carbon backbone formation from butyryl-CoA and two malonyl-CoA building blocks catalyzed by polyketide synthase. A transamination reaction incorporates nitrogen from l-alanine and non-enzymatic cyclization leads to γ-coniceine, the first hemlock alkaloid in the pathway. Ultimately, reduction of γ-coniceine to coniine is facilitated by NADPH-dependent γ-coniceine reductase. Although coniine is notorious for its toxicity, there is no consensus on its ecological roles, especially in the carnivorous pitcher plants where it occurs. Lately there has been renewed interest in coniine's medical uses particularly for pain relief without an addictive side effect.

  2. Pharmacological and Toxicological Profile of Harmane-β-Carboline Alkaloid: Friend or Foe.

    Science.gov (United States)

    Khan, Haroon; Patel, Seema; Kamal, Mohammad A

    2017-01-01

    The plant secondary metabolites have an outstanding therapeutic potential and success over the years. In fact, it is the foundation of numerous clinically used drugs. Similarly, these is a general perception that these products are inherent safety. However, such products might have toxic/unwanted lethal effects therefore, along with biological relevance, toxicological evaluation is equally important for clinical applications. Therefore, harmane- β-carboline alkaloid was investigated for both therapeutic and toxicological potential. The literature related to the therapeutic/toxicological effects of the alkaloid was searched using various scientific data bases including Google, ScienceDirect, PubMed, SpringerLink, ASC. The peer reviewed articles were only selected. The harmane-β-carboline alkaloid has shown several pharmacological activities such as antianxiety, antidepressant, antiplatelet, antidiabetic, acetylcholinesterase and myeloperoxidase inhibition, antioxidant, antiparasitic, hypotensive, morphine withdrawal syndrome alleviation, and antinociceptive effects. On the other hand, it exhibited tremorogenic effect, for a symptom of Parkinson's disease. Adverse effect of the alkaloid on learning and memory have also been observed. All together, it is, concluded in this review that harmane elicited marked pharmacological effects but simultaneously, it possessed some serious side effects that could be the primary hurdle in the way of its clinical testing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Synthesis and Structural Characterization of 1-[2-(5-Nitro-1H-indol-2-ylphenyl]methylpyridinium Chloride

    Directory of Open Access Journals (Sweden)

    John B. Bremner

    2011-09-01

    Full Text Available In the course of studies on hybrid antibacterials incorporating 2-aryl-5-nitro-1H-indole moieties as potential bacterial NorA efflux pump inhibitors, the compound 1-[2-(5-nitro-1H-indol-2-ylphenyl]methylpyridinium chloride (2 was synthesized and structurally characterized. This pyridinium chloride salt crystallized in the monoclinic space group P21/c with the following unit cell dimensions: a 10.274(3 Å, b 13.101(4 Å, c 13.439(4 Å, b 107.702(7°, V 1723.2(9 Å3, Z (f.u. = 4; R1 = 0.048, and wR2 = 0.13. Of interest in the single crystal X-ray structure is the (intramolecular disposition of the pyridinium plane over the indole heterocyclic residue [interplanar dihedral angle 17.91(4°].

  4. Two bromotyrosine alkaloids from the sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; Parameswaran, P.S.; Naik, C.G.

    , antimicrobial properties etc. Herein is reported isolation and structure determination of two such alkaloids: 16-debromo aplysamine-4 1 and purpuramine 1 2 from the sponge @iP. purpurea@@ collected from Mandapam, Tamil Nadu, India. The structures...

  5. Tolerating Toxins: Grasshoppers that Feast on Pyrrolizidine Alkaloids §.

    Science.gov (United States)

    Housecroft, Catherine E

    2018-03-30

    The elegant grasshopper (Zonocerus elegans) and the variegated grasshopper (Z. variegatus) are among insects that deliberately consume and store pyrrolizidine alkaloids which are subsequently used in defence mechanisms.

  6. Dihydro-β-agarofuran sesquiterpene pyridine alkaloids from the seeds of Euonymus hamiltonianus

    Directory of Open Access Journals (Sweden)

    Mudasir A. Tantry

    2016-09-01

    Full Text Available Plants of the Celastraceae family produce various dihydro-β-agarofuran sesquiterpene pyridine alkaloids. Two dihydro-β-agarofuran sesquitepene pyridine alkaloids (1,2 apart from four known compounds euojaponin C (3, wilforine (4, austronine (5 and O9-benzoyl-O9-deacetylevonine (6, were isolated from the ripe seeds of Euonymus hamiltonianus. Their chemical structures were elucidated mainly by analysis of NMR and MS spectral data. All compounds were evaluated for insecticidal activity.

  7. Extraction-spectrophotometric determination of purine alkaloids in water solutions using aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available For extraction of caffeine, theobromin and theophylline from water solutions are applied aliphatic alcohols С3 – С9. Water concentrates analyzed method UF- spectrophotometry. Factors of distribution and extraction degree are calculated. Influence of length of a hydrocarbonic radical in a solvent and nature olecule salting-out agent on interphase distribution of alkaloids is studied. Dependence of quantitative characteristics extraction from number active groups in structure alkaloids is established.

  8. Clustered Ergot Alkaloids Modulate Cell-mediated Cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Křen, Vladimír; Fišerová, Anna; Weignerová, Lenka; Stibor, I.; Halada, Petr; Přikrylová, Věra; Sedmera, Petr; Pospíšil, Miloslav

    2002-01-01

    Roč. 10, - (2002), s. 415-424 ISSN 0968-0896 R&D Projects: GA AV ČR IAA4020901; GA ČR GA310/98/0347 Institutional research plan: CEZ:AV0Z5020903 Keywords : clustered * ergot * alkaloids Subject RIV: EE - Microbiology, Virology Impact factor: 2.043, year: 2002

  9. New bisbenzylisoquinoline alkaloid from Laureliopsis philippiana

    DEFF Research Database (Denmark)

    Stærk, Dan; Thi, Loi Pham; Rasmussen, Hasse Bonde

    2009-01-01

    Phytochemical investigation of Laureliopsis philippiana resulted in isolation of a new bisbenzylisoquinoline alkaloid (1) named laureliopsine A. The structure was established by spectroscopic methods, including 2D homo- and heteronuclear NMR experiments. This finding of a bisbenzylisoquinoline al...

  10. The Actions of Piperidine Alkaloids at Fetal Muscle-Type and Autonomic-Type Nicotinic Acetylcholine Receptors

    Science.gov (United States)

    Piperidine alkaloids are found in many species of plants including Conium maculatum, Nicotiana spp., and Lupinus spp. A pharmacodynamic comparison was made of the alkaloids ammodendrine, anabasine, anabaseine, and coniine in; SH-SY5Y cells which express autonomic-type nicotinic acetylcholine recept...

  11. Genotoxic Pyrrolizidine Alkaloids — Mechanisms Leading to DNA Adduct Formation and Tumorigenicity

    OpenAIRE

    Ming W. Chou; Ge Lin; Qingsu Xia; Peter P. Fu

    2002-01-01

    Abstract: Plants that contain pyrrolizidine alkaloids are widely distributed in the world. Although pyrrolizidine alkaloids have been shown to be genotoxic and tumorigenic in experimental animals, the mechanisms of actions have not been fully understood. The results of our recent mechanistic studies suggest that pyrrolizidine alkaloids induce tumors via a genotoxic mechanism mediated by 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5Hpyrrolizine (DHP)-derived DNA adduct formation. This mechanism may ...

  12. N,N-Diethyl-1-Tosyl-3-Indoleglyoxylamide as a Dienophile in Diels-Alder Reactions. Hyperbaric vs. Thermal Conditions

    Directory of Open Access Journals (Sweden)

    B. Biolatto

    2000-03-01

    Full Text Available Under high pressure conditions, the Diels-Alder reaction involving N,N-diethyl-1-tosyl-3-indoleglyoxylamide and 1-(N-acetyl-N-propylamino-1,3-butadiene produces a highly functionalized intermediate for the synthesis of Indole Alkaloids, in shorter times and higher yields than under thermal conditions.

  13. Simple synthesis of pyrrolo[3,2-e]indole-1-carbonitriles

    Directory of Open Access Journals (Sweden)

    Adam Trawczyński

    2013-05-01

    Full Text Available Alkylation of 5-nitroindol-4-ylacetonitriles with ethyl chloroacetate, α-halomethyl ketones, and chloroacetonitrile followed by a treatment of the products with chlorotrimethylsilane in the presence of DBU gives 1-cyanopyrrolo[3,2-e]indoles substituted in position 2 with electron-withdrawing groups.

  14. Pyrrolizidine alkaloids in honey: comparison of analytical methods

    NARCIS (Netherlands)

    Kempf, M.; Wittig, M.; Reinhard, A.; Ohe, von der K.; Blacquière, T.; Raezke, K.P.; Michel, R.; Schreier, P.; Beuerle, T.

    2011-01-01

    Pyrrolizidine alkaloids (PAs) are a structurally diverse group of toxicologically relevant secondary plant metabolites. Currently, two analytical methods are used to determine PA content in honey. To achieve reasonably high sensitivity and selectivity, mass spectrometry detection is demanded. One

  15. DISTRIBUTION OF ALKALOIDS AND TANNINS IN THE CRASSULACEAE

    NARCIS (Netherlands)

    STEVENS, JF; THART, H; VANHAM, CHJ; ELEMA, ET; VANDENENT, MMVX; WILDEBOER, M; ZWAVING, JH

    Alkaloid and tannin levels of 36 species of the Crassulaceae were compared. The taxa investigated were Crassula multicava, Echeveria venezuelensis, Pachyphytum compactum, Kalanchoe (two sop.), Bryophyllum daigremontianum, Sedum (23 spp.), Aeonium (four spp.) and Sempervivum (three spp.). Apart from

  16. Sensing properties of pristine boron nitride nanostructures towards alkaloids: A first principles dispersion corrected study

    Science.gov (United States)

    Roondhe, Basant; Dabhi, Shweta D.; Jha, Prafulla K.

    2018-05-01

    To understand the underlying physics behind the interaction of biomolecules with the nanomaterials to use them practically as bio-nanomaterials is very crucial. A first principles calculation under the frame work of density functional theory is executed to investigate the electronic structures and binding properties of alkaloids (Caffeine and Nicotine) over single walled boron nitride nanotube (BNNT) and boron nitride nanoribbon (BNNR) to determine their suitability towards filtration or sensing of these molecules. We have also used GGA-PBE scheme with the inclusion of Van der Waals (vdW) interaction based on DFT-D2. Increase in the accuracy by incorporating the dispersion correction in the calculation is observed for the long range Van der Waals interaction. Binding energy range of BNNT and BNNR with both alkaloids have been found to be -0.35 to -0.76 eV and -0.45 to -0.91 eV respectively which together with the binding distance shows physisorption binding of these molecules to the both nanostructures. The transfer of charge between the BN nanostructures and the adsorbed molecule has also been analysed by using Lowdin charge analysis. The sensitivity of both nanostructures BNNT and BNNR towards both alkaloids is observed through electronic structure calculations, density of states and quantum conductance. The binding of both alkaloids with BNNR is stronger. The analysis of the calculated properties suggests absence of covalent interaction between the considered species (BNNT/BNNR) and alkaloids. The study may be useful in designing the boron nitride nanostructure based sensing device for alkaloids.

  17. Iridium- and ruthenium-catalysed synthesis of 2,3-disubstituted indoles from anilines and vicinal diols

    DEFF Research Database (Denmark)

    Tursky, Matyas; Lorentz-Petersen, Linda Luise Reeh; Olsen, L. B.

    2010-01-01

    A straightforward and atom-economical method is described for the synthesis of 2,3-disubstituted indoles. Anilines and 1,2-diols are condensed under neat conditions with catalytic amounts of either [Cp*IrCl2](2)/MsOH or RuCl3 center dot xH(2)O/phosphine (phosphine = PPh3 or xantphos). The reactio...... the alpha-hydroxyimine which rearranges to the corresponding alpha-aminoketone. Acid-or metal-catalysed electrophilic ring-closure with the release of water then furnishes the indole product....

  18. Complete inhibition of fetal movement in the day 40 pregnant goat model by the piperidine alkaloid anabasine but not related alkaloids

    Science.gov (United States)

    Four chemically similar alkaloids, anabasine, anabaseine, epibatidine and dimethylphenylpiperazinium (DMPP), are potent nicotinic acetylcholine receptor agonists of fetal muscle nicotinic acetylcholine receptors in human TE-671 cells. Based on results with these cells, we hypothesized that these alk...

  19. Riboflavin-mediated photosensitization of Vinca alkaloids distorts drug sensitivity assays.

    Science.gov (United States)

    Granzow, C; Kopun, M; Kröber, T

    1995-11-01

    Poor reproducibility of cytotoxicity tests with Vinca alkaloids has frequently been reported. A commonly presumed light sensitivity of the drugs could not be confirmed. However, we found that they are photosensitized by riboflavin (vitamin B2), an obligatory component of cell culture media. Light of wavelengths below 500 nm triggered rapid photoreactions of riboflavin with vinblastine, vincristine, and vindesine in aqueous solutions. The photoreactions altered the absorption spectra of these alkaloids and yielded degradation products that could be separated by TLC. In cell cultures, both immediate and persisting, riboflavin-mediated photoreactivity could be distinguished. They preclude reliable determinations of sensitivity and resistance to Vinca alkaloids, as exemplified on chemosensitive and multidrug-resistant mouse ascites cells. In experiments involving photosensitization, the 50% inhibitory concentration values of sensitive and resistant cells were overlapping and fluctuated in the ranges from 3 to 30 nM and 15 to 360 nM vinblastine, respectively. Corresponding values from series of experiments protected from photosensitization were 1.02 +/- 0.22 nM and 18.5 +/- 3.42 nM. Hence, riboflavin-mediated photoreactions must be fully prevented in assays of cellular drug sensitivity. Procedures for eliminating immediate as well as persisting photoreactivity were established.

  20. Characterization and quantitation of yohimbine and its analogs in botanicals and dietary supplements using LC/QTOF-MS and LC/QQQ-MS for determination of the presence of bark extract and yohimbine adulteration.

    Science.gov (United States)

    Lucas, Derick; Neal-Kababick, James; Zweigenbaum, Jerry

    2015-01-01

    The compound yohimbine HCl has been restricted in Australia and categorized as a scheduled prescription drug in other parts of the world, including the United States where it is monographed as a drug in the U. S. Pharmacopeia. However, the bark of the yohimbe plant and its extract is considered a botanical that can be used as a dietary supplement in some parts of the world. For these reasons, methods to characterize the indole alkaloids of the bark and quantify yohimbine and its analogs are presented using accurate mass LC/quadrupole time-of-flight (QTOF)-MS and triple quadrupole LC/MS, respectively. Samples were extracted with a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method to characterize and quantify the indole alkaloids. With the LC/QTOF-MS in auto MS/MS mode the indole alkaloids were identified, and the isomeric response of each could be used to determine whether the actual bark or extract was in samples of dietary supplements and not adulteration with yohimbine HCl. Analogs were identified and include yohimbic acid, methyl yohimbine, and hydroxyl yohimbine. Many isomers of each were also detected, but identified only by the number of chromatographic peaks. Quantification of yohimbine and ajmalicine spiked extracts showed recoveries of 99 to 103% with RSD of 3.6% or lower and LODs of less than 100 ppt. Calibration of the two standards gave r(2) = 0.9999 in a range from 0.1 to 100 ppb. Dietary supplements quantified for these two compounds showed a range from not detected to 3x the amounts found in the bark.