WorldWideScience

Sample records for individuals previously immunized

  1. No Genetic Tradeoffs between Hygienic Behaviour and Individual Innate Immunity in the Honey Bee, Apis mellifera

    OpenAIRE

    Harpur, Brock A.; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no stu...

  2. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Science.gov (United States)

    Harpur, Brock A; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  3. No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Brock A Harpur

    Full Text Available Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no study of genetic tradeoffs involving these traits. There is strong evidence that some genes influence both innate immunity and behaviour in social insects--a prerequisite for genetic tradeoffs. Quantifying genetic tradeoffs is critical for understanding the evolution of immunity in social insects and for devising effective strategies for breeding disease-resistant pollinator populations. We conducted two experiments to test the hypothesis of a genetic tradeoff between social and individual immunity in the honey bee, Apis mellifera. First, we estimated the relative contribution of genetics to individual variation in innate immunity of honey bee workers, as only heritable traits can experience genetic tradeoffs. Second, we examined if worker bees with hygienic sisters have reduced individual innate immune response. We genotyped several hundred workers from two colonies and found that patriline genotype does not significantly influence the antimicrobial activity of a worker's hemolymph. Further, we did not find a negative correlation between hygienic behaviour and the average antimicrobial activity of a worker's hemolymph across 30 honey bee colonies. Taken together, our work indicates no genetic tradeoffs between hygienic behaviour and innate immunity in honey bees. Our work suggests that using artificial selection to increase hygienic behaviour of honey bee colonies is not expected to concurrently compromise individual innate immunity of worker bees.

  4. Previous encapsulation response enhances within individual protection against fungal parasite in the mealworm beetle Tenebrio molitor.

    Science.gov (United States)

    Krams, Indrikis; Daukste, Janina; Kivleniece, Inese; Krama, Tatjana; Rantala, Markus J

    2013-12-01

    Immune defenses of insects show either broad reactions or specificity and durability of induced protection against attacking parasites and pathogens. In this study, we tested whether encapsulation response against nylon monofilament increases between two attempts of activation of immune system in mealworm beetles Tenebrio molitor, and whether previous exposure to nylon monofilament may also increase protection against an entomopathogenic fungus. We found that survival of beetles subjected to immune activation by nylon implant and subsequent fungal exposure a week later was significantly higher than survival of beetles which had been subjected to fungal infection only. This result suggests that previous immune activation by the nylon implant may be considered as broad spectrum "immune priming" which helps to fight not only the same intruder but also other parasites. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  5. Hepatitis A and B immunization for individuals with inherited bleeding disorders.

    Science.gov (United States)

    Steele, M; Cochrane, A; Wakefield, C; Stain, A-M; Ling, S; Blanchette, V; Gold, R; Ford-Jones, L

    2009-03-01

    Hepatitis A and B vaccines are highly effective tools that can greatly reduce infection risk in the bleeding disorder population. Although hepatitis A and B immunization for individuals with bleeding disorders is universally recommended, various advisory bodies often differ with respect to many practical aspects of vaccination. To review the published literature and guidelines and form a practical, comprehensive and consistent approach to hepatitis A and B immunization for individuals with bleeding disorders. We reviewed published immunization guidelines from North American immunization advisory bodies and published statements from North American and international haemophilia advisory bodies. A search of the MEDLINE database was performed to find original published literature pertaining to hepatitis A or B immunization of patients with haemophilia or bleeding disorder patients that provided supporting or refuting evidence for advisory body guidelines. Various advisory bodies' immunization guidelines regarding individuals with bleeding disorders have contradictory statements and often did not clarify issues (e.g. post vaccination surveillance). Published literature addressing immunization in bleeding disorder patients is sparse and mostly examines route of vaccine administration, complications and corresponding antibody response. Although the risk of hepatitis A and B infection is low, the use of simple measures such as vaccination is reasonable and advocated by haemophilia advisory bodies. Following our review of the available literature and North American guidelines, we have developed comprehensive and practical recommendations addressing hepatitis A and B immunization for the bleeding disorder population that may be applicable in Bleeding Disorder clinics.

  6. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients

    NARCIS (Netherlands)

    Wieten, R. W.; Goorhuis, A.; Jonker, E. F. F.; de Bree, G. J.; de Visser, A. W.; van Genderen, P. J. J.; Remmerswaal, E. B. M.; ten Berge, I. J. M.; Visser, L. G.; Grobusch, M. P.; van Leeuwen, E. M. M.

    2016-01-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen

  7. CANNABIS USE BY INDIVIDUALS WITH MULTIPLE SCLEROSIS: EFFECTS ON SPECIFIC IMMUNE PARAMETERS

    Science.gov (United States)

    Sexton, Michelle; Cudaback, Eiron; Abdullah, Rehab A.; Finnell, John; Mischley, Laurie K; Rozga, Mary; Lichtman, Aron H.; Stella, Nephi

    2014-01-01

    Cannabinoids affect immune responses in ways that may be beneficial for autoimmune diseases. We sought to determine whether chronic Cannabis use differentially modulates a select number of immune parameters in healthy controls and individuals with multiple sclerosis (MS cases). Subjects were enrolled and consented to a single blood draw, matched for age and BMI. We measured monocyte migration isolated from each subject, as well as plasma levels of endocannabinoids and cytokines. Cases met definition of MS by international diagnostic criteria. Monocyte cell migration measured in control subjects and individuals with MS were similarly inhibited by a set ratio of phytocannabinoids. The plasma levels of CCL2 and IL17 were reduced in non-naïve cannabis users irrespective of the cohorts. We detected a significant increase in the endocannabinoid arachidonoylethanolamine (AEA) in serum from individuals with MS compared to control subjects, and no significant difference in levels of other endocannabinoids and signaling lipids irrespective of Cannabis use. Chronic Cannabis use may affect the immune response to similar extent in individuals with MS and control subjects through the ability of phytocannabinoids to reduce both monocyte migration and cytokine levels in serum. From a panel of signaling lipids, only the levels of AEA are increased in individuals with MS, irrespective from Cannabis use or not. Our results suggest that both MS cases and controls respond similarly to chronic Cannabis use with respect to the immune parameters measured in this study. PMID:25135301

  8. Migration and child immunization in Nigeria: individual- and community-level contexts

    Directory of Open Access Journals (Sweden)

    Antai Diddy

    2010-03-01

    Full Text Available Abstract Background Vaccine-preventable diseases are responsible for severe rates of morbidity and mortality in Africa. Despite the availability of appropriate vaccines for routine use on infants, vaccine-preventable diseases are highly endemic throughout sub-Saharan Africa. Widespread disparities in the coverage of immunization programmes persist between and within rural and urban areas, regions and communities in Nigeria. This study assessed the individual- and community-level explanatory factors associated with child immunization differentials between migrant and non-migrant groups. Methods The proportion of children that received each of the eight vaccines in the routine immunization schedule in Nigeria was estimated. Multilevel multivariable regression analysis was performed using a nationally representative sample of 6029 children from 2735 mothers aged 15-49 years and nested within 365 communities. Odds ratios with 95% confidence intervals were used to express measures of association between the characteristics. Variance partition coefficients and Wald statistic i.e. the ratio of the estimate to its standard error were used to express measures of variation. Results Individual- and community contexts are strongly associated with the likelihood of receiving full immunization among migrant groups. The likelihood of full immunization was higher for children of rural non-migrant mothers compared to children of rural-urban migrant mothers. Findings provide support for the traditional migration perspectives, and show that individual-level characteristics, such as, migrant disruption (migration itself, selectivity (demographic and socio-economic characteristics, and adaptation (health care utilization, as well as community-level characteristics (region of residence, and proportion of mothers who had hospital delivery are important in explaining the differentials in full immunization among the children. Conclusion Migration is an important

  9. Sm29, but not Sm22.6 retains its ability to induce a protective immune response in mice previously exposed to a Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Clarice Carvalho Alves

    2015-02-01

    Full Text Available BACKGROUND: A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice. METHODOLOGY/PRINCIPALS FINDINGS: In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%-48%. Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection. CONCLUSION/SIGNIFICANCE: Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate.

  10. Apps for immunization: Leveraging mobile devices to place the individual at the center of care.

    Science.gov (United States)

    Wilson, Kumanan; Atkinson, Katherine M; Westeinde, Jacqueline

    2015-01-01

    Mobile technology and applications (apps) have disrupted several industries including healthcare. The advantage of apps, being personally focused and permitting bidirectional communication, make them well suited to address many immunization challenges. As of April 25, 2015 searching the Android app store with the words 'immunize app' and 'immunization app' in Canada yielded 225 apps. On the Apple App Store a similar search produced 98 results. These include apps that provide immunization related information, permit vaccine tracking both for individuals and for animals, assist with the creation of customized schedules and identification of vaccine clinics and serve as sources of education. The diverse functionality of mobile apps creates the potential for transformation of immunization practice both at a personal level and a system level. For individuals, mobile apps offer the opportunity for better record keeping, assistance with the logistics of vaccination, and novel ways of communicating with and receiving information from public health officials. For the system, mobile apps offer the potential to improve the quality of information residing in immunization information systems and program evaluation, facilitate harmonization of immunization information between individuals, health care providers and public health as well as reduce vaccine hesitancy. As mobile technology continues to rapidly evolve there will emerge new ways in which apps can enhance immunization practice.

  11. Use of the nonavalent HPV vaccine in individuals previously fully or partially vaccinated with bivalent or quadrivalent HPV vaccines

    DEFF Research Database (Denmark)

    Van Damme, Pierre; Bonanni, Paolo; Bosch, F Xavier

    2016-01-01

    With the availability of the nonavalent human papillomavirus (HPV) vaccine, vaccinees, parents and healthcare providers need guidance on how to complete an immunization course started with the bi- or quadrivalent vaccine and whether to revaccinate individuals who have completed a full immunization...

  12. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  13. Inbred decorated crickets exhibit higher measures of macroparasitic immunity than outbred individuals.

    Science.gov (United States)

    Gershman, S N; Barnett, C A; Pettinger, A M; Weddle, C B; Hunt, J; Sakaluk, S K

    2010-09-01

    Inbreeding is assumed to have negative effects on fitness, including the reduced ability to withstand immune challenges. We examined the immunological consequences of inbreeding in decorated crickets, Gryllodes sigillatus, by comparing lytic activity, phenoloxidase (PO) activity, and encapsulation ability of crickets from eight inbred lines with that of crickets from the outbred founder population. Surprisingly, crickets from inbred lines had a greater encapsulation ability compared with crickets from the outbred population. We suggest that because inbred crickets have reduced reproductive effort, they may, therefore, have the option of devoting more resources to this form of immunity than outbred individuals. We also found that both inbred and outbred females had higher immunity than males in PO activity and implant darkness. This result supports the hypothesis that females should devote more effort to somatic maintenance and immunity than males. PO activity and implant darkness were heritable in both males and females, but lytic activity was only heritable in females. Males and females differed in the heritability of, and genetic correlations among, immune traits, suggesting that differences in selective pressures on males and females may have resulted in a sexual conflict over optimal immune trait values.

  14. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients.

    Science.gov (United States)

    Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M

    2016-06-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  15. Incomplete childhood immunization in Nigeria: a multilevel analysis of individual and contextual factors

    Directory of Open Access Journals (Sweden)

    Sulaimon T. Adedokun

    2017-03-01

    Full Text Available Abstract Background Under-five mortality remains high in sub-Saharan Africa despite global decline. One quarter of these deaths are preventable through interventions such as immunization. The aim of this study was to examine the independent effects of individual-, community- and state-level factors on incomplete childhood immunization in Nigeria, which is one of the 10 countries where most of the incompletely immunised children in the world live. Methods The study was based on secondary analyses of cross-sectional data from the 2013 Nigeria Demographic and Health Survey (DHS. Multilevel multivariable logistic regression models were applied to the data on 5,754 children aged 12–23 months who were fully immunized or not (level 1, nested within 896 communities (level 2 from 37 states (level 3. Results More than three-quarter of the children (76.3% were not completely immunized. About 83% of children of young mothers (15–24 years and 94% of those whose mothers are illiterate did not receive full immunization. In the fully adjusted model, the chances of not being fully immunized reduced for children whose mothers attended antenatal clinic (adjusted odds ratio [aOR] = 0.49; 95% credible interval [CrI] = 0.39–0.60, delivered in health facility (aOR = 0.62; 95% CrI = 0.51–0.74 and lived in urban area (aOR = 0.66; 95% CrI = 0.50–0.82. Children whose mothers had difficulty getting to health facility (aOR = 1.28; 95% CrI = 1.02–1.57 and lived in socioeconomically disadvantaged communities (aOR = 2.93; 95% CrI = 1.60–4.71 and states (aOR = 2.69; 955 CrI =1.37–4.73 were more likely to be incompletely immunized. Conclusions This study has revealed that the risk of children being incompletely immunized in Nigeria was influenced by not only individual factors but also community- and state-level factors. Interventions to improve child immunization uptake should take into consideration these contextual

  16. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review.

    Science.gov (United States)

    Ried, Karin

    2016-02-01

    Garlic has been shown to have cardiovascular protective and immunomodulatory properties. We updated a previous meta-analysis on the effect of garlic on blood pressure and reviewed the effect of garlic on cholesterol and immunity. We searched the Medline database for randomized controlled trials (RCTs) published between 1955 and December 2013 on the effect of garlic preparations on blood pressure. In addition, we reviewed the effect of garlic on cholesterol and immunity. Our updated meta-analysis on the effect of garlic on blood pressure, which included 20 trials with 970 participants, showed a mean ± SE decrease in systolic blood pressure (SBP) of 5.1 ± 2.2 mm Hg (P garlic on blood lipids, which included 39 primary RCTs and 2300 adults treated for a minimum of 2 wk, suggested garlic to be effective in reducing total and LDL cholesterol by 10% if taken for >2 mo by individuals with slightly elevated concentrations [e.g., total cholesterol >200 mg/dL (>5.5 mmol/L)]. Garlic has immunomodulating effects by increasing macrophage activity, natural killer cells, and the production of T and B cells. Clinical trials have shown garlic to significantly reduce the number, duration, and severity of upper respiratory infections. Our review suggests that garlic supplements have the potential to lower blood pressure in hypertensive individuals, to regulate slightly elevated cholesterol concentrations, and to stimulate the immune system. Garlic supplements are highly tolerated and may be considered as a complementary treatment option for hypertension, slightly elevated cholesterol, and stimulation of immunity. Future long-term trials are needed to elucidate the effect of garlic on cardiovascular morbidity and mortality. © 2016 American Society for Nutrition.

  17. Individual trajectories in stress covary with immunity during recovery from cancer diagnosis and treatments☆

    OpenAIRE

    Thornton, Lisa M.; Andersen, Barbara L.; Crespin, Timothy R.; Carson, William E.

    2006-01-01

    Research connects stressful events with altered immune regulation, but the role of subjective stress is uncertain. Using a longitudinal design, we provide a statistically powerful test of the relationship between subjective stress (perceived stress, emotional distress) and immunity (T cell blastogenesis, natural killer cell cytotoxicity, [NKCC]) as individuals adjust to a severe stressor, a cancer diagnosis and its treatments. Women with regional breast cancer (N = 113) were assessed at diagn...

  18. Effectiveness of Mental Immunization Program Training on Social Competency and Personality Traits of Individuals With Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Mohammad Ashoori

    2017-07-01

    Conclusion The results of the present research indicated a significant increase in social competency in adolescents with cerebral palsy. Also, desirable changes were found to be developed in the personality traits of these adolescents. In other words, there was a decreased level of neuroticism and significant increase in positive traits such as extroversion, agreeableness and conscientiousness. The overall results of the present research indicated that mental immunization program training led to improvement in social competency and personality traits of individuals with cerebral palsy. Therefore, paying attention to the mental immunization program training is essential, and planning for providing of psychological immunization program training is of particular importance. Cerebral palsy affects all aspect of an individual’s life and implementing the mental immunization program training has been associated with effective outcomes. Therefore, instructional interventions such as mental immunization program training are required . While a lot of research works have been conducted with regard to the effectiveness of mental immunization program training on social competency and personality traits of normal students, only a few investigations have been carried out for the same in relation to individuals with cerebral palsy. As far as present study used experimental method, could be cautioned in generalization of results . Another limitation of this study is the use of self-reporting questionnaires, wherein individuals do not feel the responsibility to answer correctly and honestly in order to avoid stigma or rejection by the community. It is recommended that the psychological immunization program training, which is very helpful in the instruction  of teenagers with cerebral palsy, be used in primary schools and among various categories of exceptional students.

  19. Effect of lead exposure on the immune response of some occupationally exposed individuals

    International Nuclear Information System (INIS)

    Mishra, Kamla Prasad; Singh, Vijay Kumar; Rani, Reena; Yadav, Virendra Singh; Chandran, Vinod; Srivastava, Satya Prakash; Seth, Prahlad Kishore

    2003-01-01

    Lead is a ubiquitous pollutant in the industrial environment, which poses serious threats to human health. In the past 20 years increasing attention has been paid to the effects of lead exposure on health. This toxic metal alters the immune response of animals as well as humans. To study the immunological effects of occupational exposure to lead, we examined lymphocyte proliferation, natural killer (NK) cell cytotoxicity and interferon-γ production with peripheral blood mononuclear cells (PBMCs) of individuals occupationally exposed to lead. We selected three different groups of individuals exposed to lead: three-wheeler drivers (30), battery workers (34) and silver jewelery makers (20); and unexposed healthy volunteers (30) as control for comparison. Our results indicate that though lymphocyte proliferation to phytohaemagglutinin (PHA) is inhibited in lead exposed individuals as compared with unexposed volunteers, there is no correlation between inhibition of lymphocyte proliferation and blood lead level. NK cell cytotoxicity remains unaffected in individuals exposed to lead as compared with controls. On the other hand, we observed that interferon-γ (IFN-γ) was significantly elevated in T cell mitogen, PHA, stimulated PBMCs culture supernatant of lead exposed individuals. We found significant positive correlation between blood lead levels and IFN-γ produced in culture supernatant on stimulation with PHA. In brief, this study demonstrates that lead can affect the immune response of the occupationally exposed individuals such as three-wheeler drivers, battery reconditioning workers and silver jewelery makers

  20. Sources of variation in innate immunity in great tit nestlings living along a metal pollution gradient: An individual-based approach

    International Nuclear Information System (INIS)

    Vermeulen, Anke; Müller, Wendt; Matson, Kevin D.; Irene Tieleman, B.; Bervoets, Lieven; Eens, Marcel

    2015-01-01

    Excessive deposition of metals in the environment is a well-known example of pollution worldwide. Chronic exposure of organisms to metals can have a detrimental effect on reproduction, behavior, health and survival, due to the negative effects on components of the immune system. However, little is known about the effects of chronic sublethal metal exposure on immunity, especially for wildlife. In our study, we examined the constitutive innate immunity of great tit (Parus major) nestlings (N = 234) living in four populations along a metal pollution gradient. For each nestling, we determined the individual metal concentrations (lead, cadmium, arsenic) present in the red blood cells and measured four different innate immune parameters (agglutination, lysis, haptoglobin concentrations and nitric oxide concentrations) to investigate the relationship between metal exposure and immunological condition. While we found significant differences in endogenous metal concentrations among populations with the highest concentrations closest to the pollution source, we did not observe corresponding patterns in our immune measures. However, when evaluating relationships between metal concentrations and immune parameters at the individual level, we found negative effects of lead and, to a lesser extent, arsenic and cadmium on lysis. In addition, high arsenic concentrations appear to elicit inflammation, as reflected by elevated haptoglobin concentrations. Thus despite the lack of a geographic association between pollution and immunity, this type of association was present at the individual level at a very early life stage. The high variation in metal concentrations and immune measures observed within populations indicates a high level of heterogeneity along an existing pollution gradient. Interestingly, we also found substantial within nest variation, for which the sources remain unclear, and which highlights the need of an individual-based approach. - Highlights: • Innate immunity

  1. Sources of variation in innate immunity in great tit nestlings living along a metal pollution gradient: An individual-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Anke, E-mail: anke.vermeulen@uantwerpen.be [Department of Biology — Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Müller, Wendt, E-mail: wendt.mueller@uantwerpen.be [Department of Biology — Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Matson, Kevin D., E-mail: k.d.matson@rug.nl [Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC Groningen (Netherlands); The Resource Ecology Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen (Netherlands); Irene Tieleman, B., E-mail: b.i.tieleman@rug.nl [Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC Groningen (Netherlands); Bervoets, Lieven, E-mail: lieven.bervoets@uantwerpen.be [Department of Biology — SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Eens, Marcel, E-mail: marcel.eens@uantwerpen.be [Department of Biology — Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2015-03-01

    Excessive deposition of metals in the environment is a well-known example of pollution worldwide. Chronic exposure of organisms to metals can have a detrimental effect on reproduction, behavior, health and survival, due to the negative effects on components of the immune system. However, little is known about the effects of chronic sublethal metal exposure on immunity, especially for wildlife. In our study, we examined the constitutive innate immunity of great tit (Parus major) nestlings (N = 234) living in four populations along a metal pollution gradient. For each nestling, we determined the individual metal concentrations (lead, cadmium, arsenic) present in the red blood cells and measured four different innate immune parameters (agglutination, lysis, haptoglobin concentrations and nitric oxide concentrations) to investigate the relationship between metal exposure and immunological condition. While we found significant differences in endogenous metal concentrations among populations with the highest concentrations closest to the pollution source, we did not observe corresponding patterns in our immune measures. However, when evaluating relationships between metal concentrations and immune parameters at the individual level, we found negative effects of lead and, to a lesser extent, arsenic and cadmium on lysis. In addition, high arsenic concentrations appear to elicit inflammation, as reflected by elevated haptoglobin concentrations. Thus despite the lack of a geographic association between pollution and immunity, this type of association was present at the individual level at a very early life stage. The high variation in metal concentrations and immune measures observed within populations indicates a high level of heterogeneity along an existing pollution gradient. Interestingly, we also found substantial within nest variation, for which the sources remain unclear, and which highlights the need of an individual-based approach. - Highlights: • Innate immunity

  2. CHRONOVAC VOYAGEUR: A study of the immune response to yellow fever vaccine among infants previously immunized against measles.

    Science.gov (United States)

    Goujon, Catherine; Gougeon, Marie-Lise; Tondeur, Laura; Poirier, Béatrice; Seffer, Valérie; Desprès, Philippe; Consigny, Paul-Henri; Vray, Muriel

    2017-10-27

    For administration of multiple live attenuated vaccines, the Advisory Committee on Immunization Practices recommends either simultaneous immunization or period of at least 28days between vaccines, due to a possible reduction in the immune response to either vaccine. The main objective of this study was to compare the immune response to measles (alone or combined with mumps and rubella) and yellow fever vaccines among infants aged 6-24months living in a yellow fever non-endemic country who had receivedmeasles and yellow fever vaccines before travelling to a yellow fever endemic area. A retrospective, multicenter case-control study was carried out in 7 travel clinics in the Paris area from February 1st 2011 to march 31, 2015. Cases were defined as infants immunized with the yellow fever vaccine and with the measles vaccine, either alone or in combination with mumps and rubella vaccine, with a period of 1-27days between each immunization. For each case, two controls were matched based on sex and age: a first control group (control 1) was defined as infants having received the measles vaccine and the yellow fever vaccine simultaneously; a second control group (control 2) was defined as infants who had a period of more than 27days between receiving the measles vaccine and yellow fever vaccine. The primary endpoint of the study was the percentage of infants with protective immunity against yellow fever, measured by the titer of neutralizing antibodies in a venous blood sample. One hundred and thirty-one infants were included in the study (62 cases, 50 infants in control 1 and 19 infants in control 2). Of these, 127 (96%) were shown to have a protective titer of yellow fever antibodies. All 4 infants without a protective titer of yellow fever antibodies were part of control group 1. The measles vaccine, alone or combined with mumps and rubella vaccines, appears to have no influence on humoral immune response to the yellow fever vaccine when administered between 1 and 27

  3. Collectivism/individualism and its relationship to behavioral and physiological immunity.

    Science.gov (United States)

    Brown, Susan G; Ikeuchi, Ryan K M; Lucas, Daniel Reed

    2014-01-01

    The interaction between the behavioral and physiological immune systems provides fertile ground for research. Here, we examine the interactions between fear of disease, collectivism/individualism, disgust, visual perception and salivary IgA. First, we parsed collectivism/individualism into ancestry and psychological processes and examined their relationships to fear of disease. Both ancestral and psychological collectivists scored higher on a test of hypochondria than individualists. Additionally, in two studies we exposed participants to slides of diseased, injured or healthy individuals. Diseased and injured stimuli were rated as equally disgusting, while diseased stimuli were rated as more disgusting than healthy stimuli. We measured salivary IgA in participants before and after they viewed the stimuli. Participants provided information on their ancestral collectivism or individualism. Salivary IgA levels increased after participants viewed images of diseased or injured individuals. Participants with collectivist ancestry tended to react to the diseased and injured images with an increase in IgA, while levels of IgA remained the same or decreased in individualists in one study but we failed to replicate the effect in the second study. An increased salivary IgA response to potentially diseased individuals is adaptive, because salivary IgA plays an important role in protecting individuals from contracting an infection. The response may be related to increased preoccupation with disease states.

  4. Beryllium-specific immune response in primary cells from healthy individuals

    International Nuclear Information System (INIS)

    Chaudhary, Anu; Sauer, Nancy N.; Gupta, Goutam

    2004-01-01

    The effect of beryllium (Be) exposure has been extensively studied in patients with chronic beryllium disease (CBD). CBD patients carry mutated MHC class II alleles and show a hyperproliferation of T cells upon Be exposure. The exact mechanism of Be-induced T-cell proliferation in these patients is not clearly understood. It is also not known how the inflammatory and suppressive cytokines maintain a balance in healthy individuals and how this balance is lost in CBD patients. To address these issues, we have initiated cellular and biochemical studies to identify Be-responsive cytokines and other cellular markers that help maintain a balance in healthy individuals. We have established an immune cell model derived from a mixture of peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs). In this article, we demonstrate that pro-inflammatory cytokine IL6 shows decreased release whereas suppressive cytokine IL10 shows enhanced release after 5-10 h of Be treatment. Furthermore, the Be-specific pattern of IL6 and IL10 release is dependent upon induction of threonine phosphorylation of a 45 kDa cytosolic protein (p45), as early as 90 min after Be treatment. Pharmacological inhibition of phosphatidylinositol 3' kinase (PI3'K) by wortmannin and p38 mitogen-activated protein kinase (MAPK) by SB203580 reveal that PI3'K mediates Be-specific p45 phosphorylation and IL6 release, whereas p38 MAPK regulates the release of IL6 and IL10 and the phosphorylation of p45 independent of metal-salt treatment. While the IL10 and IL6 release pathways are uncoupled in these cells, they are linked to phosphorylation of p45. These findings suggest that the balance between IL10 and IL6 release and the correlated p45 phosphorylation are important components of the Be-mediated immune response in healthy individuals

  5. Individual trajectories in stress covary with immunity during recovery from cancer diagnosis and treatments.

    Science.gov (United States)

    Thornton, Lisa M; Andersen, Barbara L; Crespin, Timothy R; Carson, William E

    2007-02-01

    Research connects stressful events with altered immune regulation, but the role of subjective stress is uncertain. Using a longitudinal design, we provide a statistically powerful test of the relationship between subjective stress (perceived stress, emotional distress) and immunity (T cell blastogenesis, natural killer cell cytotoxicity, [NKCC]) as individuals adjust to a severe stressor, a cancer diagnosis and its treatments. Women with regional breast cancer (N=113) were assessed at diagnosis/surgery and reassessed 4, 8, 12, and 18 months later. Latent growth curve analysis tested two hypotheses: (1) initial levels of subjective stress will correlate inversely with initial levels of immunity, and (2) rate of change in subjective stress will correlate inversely with rate of change in immunity. As predicted by Hypothesis 1, participants with high initial subjective stress showed poor initial blastogenesis. As predicted by Hypothesis 2, participants exhibiting an early, rapid decline in subjective stress also showed rapid improvement in NKCC. Follow-up analyses revealed perceived stress to be strongly related to immune function, while emotional distress was not. This is the first study to investigate trajectories in stress and immunity during recovery from a major stressor. Results imply that NK and T cells are sensitive to different aspects of the stress response. While T cell blastogenesis correlated with initial (peak) subjective stress, NKCC correlated with change (improvement) in subjective stress. These data highlight the importance of subjective stress, particularly stress appraisals, in the immune response to a major stressor.

  6. Nutritional strategies to boost immunity and prevent infection in elderly individuals.

    Science.gov (United States)

    High, K P

    2001-12-01

    Older adults are at risk for malnutrition, which may contribute to their increased risk of infection. Nutritional supplementation strategies can reduce this risk and reverse some of the immune dysfunction associated with advanced age. This review discusses nutritional interventions that have been examined in clinical trials of older adults. The data support use of a daily multivitamin or trace-mineral supplement that includes zinc (elemental zinc, >20 mg/day) and selenium (100 microg/day), with additional vitamin E, to achieve a daily dosage of 200 mg/day. Specific syndromes may also be addressed by nutritional interventions (for example, cranberry juice consumption to reduce urinary tract infections) and may reduce antibiotic use in older adults, particularly those living in long-term care facilities. Drug-nutrient interactions are common in elderly individuals, and care providers should be aware of these interactions. Future research should evaluate important clinical end points rather than merely surrogate markers of immunity.

  7. Previous 60-Co radiation from Paratrygon aiereba mucus induces the production of highly responsive antibodies and a better immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thomazi, Gabriela Ortega Coelho; Alves, Glaucie Jussilane; Turíbio, Thompson de Oliveira; Rocha, André Moreira; Aires, Raquel da Silva; Jácome, Larissa Barros Silvestre; Spencer, Patrick Jack, E-mail: gabiortegacoelho@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil). Centro de Biotecnologia; Costa, Andrea da; Rodrigues, Jaqueline Pollizeli; Galisteo Júnior, Andrés Jimenez; Andrade Júnior, Heitor Franco de, E-mail: hfandrad@usp.br, E-mail: raquelaires@itpacporto.com.br [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Laboratório de Protozoologia; Seibert, Carla Simone, E-mail: seibertcs@uft.edu.br [Universidade Federal do Tocantins (UFT), Porto Nacional, TO (Brazil)

    2017-07-01

    Wounds from stinging freshwater stingrays are painful, difficult to heal and cause extensive necrosis and systemic phenomena. The treatment is symptomatic, of low efficiency and there is no therapy, which causes more suffering to the injured. This study aimed to evaluate the immune response induced by the native or irradiated by 60-Co gamma from Paratrygon aiereba mucus. IPEN’s Committee on Ethics in the Use of Animals (n.º126/2013) and lanes captured under license from the Chico Mendes Institute for Biodiversity Conservation (n.º6781-1/2014) approved this research. For the assays, sera from Swiss mice previously immunized against native or irradiated mucus were used. The proliferation of splenic B cells in response to mucus was evaluated by the In Vitro Induced Antibody Production method and serum and splenic cytokines were also quantified. Our data demonstrate that the irradiated mucus of P. aiereba induces greater production of antibodies and more immunological memory in the mice. Spleen cells from animals immunized against irradiated mucus produced IFN-γ, TNF-α and IL-10, and serum TNF-α (immunized group against irradiated mucus) and IL-6 and IL-17 (immunized group against native mucus). The results corroborate the use of ionizing radiation, with production of highly responsive antibodies and better immune response, besides proving that Paratrygon aiereba mucus is capable of stimulating cellular and humoral adaptive immune response, contributing to the continuity of associated investigations. (author)

  8. Previous 60-Co radiation from Paratrygon aiereba mucus induces the production of highly responsive antibodies and a better immune response in mice

    International Nuclear Information System (INIS)

    Thomazi, Gabriela Ortega Coelho; Alves, Glaucie Jussilane; Turíbio, Thompson de Oliveira; Rocha, André Moreira; Aires, Raquel da Silva; Jácome, Larissa Barros Silvestre; Spencer, Patrick Jack

    2017-01-01

    Wounds from stinging freshwater stingrays are painful, difficult to heal and cause extensive necrosis and systemic phenomena. The treatment is symptomatic, of low efficiency and there is no therapy, which causes more suffering to the injured. This study aimed to evaluate the immune response induced by the native or irradiated by 60-Co gamma from Paratrygon aiereba mucus. IPEN’s Committee on Ethics in the Use of Animals (n.º126/2013) and lanes captured under license from the Chico Mendes Institute for Biodiversity Conservation (n.º6781-1/2014) approved this research. For the assays, sera from Swiss mice previously immunized against native or irradiated mucus were used. The proliferation of splenic B cells in response to mucus was evaluated by the In Vitro Induced Antibody Production method and serum and splenic cytokines were also quantified. Our data demonstrate that the irradiated mucus of P. aiereba induces greater production of antibodies and more immunological memory in the mice. Spleen cells from animals immunized against irradiated mucus produced IFN-γ, TNF-α and IL-10, and serum TNF-α (immunized group against irradiated mucus) and IL-6 and IL-17 (immunized group against native mucus). The results corroborate the use of ionizing radiation, with production of highly responsive antibodies and better immune response, besides proving that Paratrygon aiereba mucus is capable of stimulating cellular and humoral adaptive immune response, contributing to the continuity of associated investigations. (author)

  9. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dustin Cooper

    2017-05-01

    Full Text Available The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a “loitering” innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  10. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  11. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    International Nuclear Information System (INIS)

    Skiadopoulos, Mario H.; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-01-01

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen

  12. Mentoring to develop research selfefficacy, with particular reference to previously disadvantaged individuals

    OpenAIRE

    S. Schulze

    2010-01-01

    The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET) – an aspect of the social cognitive theory (SCT). Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basi...

  13. Individual differences in maternal response to immune challenge predict offspring behavior: Contribution of environmental factors

    Science.gov (United States)

    Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.

    2011-01-01

    Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612

  14. Use of exposure history to identify patterns of immunity to pneumonia in bighorn sheep (Ovis canadensis).

    Science.gov (United States)

    Plowright, Raina K; Manlove, Kezia; Cassirer, E Frances; Cross, Paul C; Besser, Thomas E; Hudson, Peter J

    2013-01-01

    Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis) following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating naïve healthy animals into or near populations infected with pneumonia pathogens.

  15. The critical proportion of immune individuals needed to control hepatitis B

    Science.gov (United States)

    Ospina, Juan; Hincapié-Palacio, Doracelly

    2016-05-01

    We estimate the critical proportion of immunity (Pc) to control hepatitis B in Medellin - Colombia, based on a random population survey of 2077 individuals of 6-64 years of age. The force of infection (Fi) was estimated according to empirical data of susceptibility by age S(a), assuming a quadratic expression. Parameters were estimated by adjusting data to a nonlinear regression. Fi was defined by -(ds(a)/da)/s(a) and according to the form of the empirical curve S(a) we assume a quadratic expression given by S(a)= Ea2+Ba+C. Then we have the explicit expression for the accumulated Fi by age given by F(a) = -a(Ea+B)/c. The expression of average infection age A is obtained as A = L + EL3/(3C)+BL2/(2C) and the basic reproductive number R0 is obtained as R0 = 1 + 6C/(6C+2EL2+3BL). From the las result we obtain the Pc given by Pc= 6C/(12C+2EL2+3BL). Numerical simulations were performed with the age-susceptibility proportion and initial values (a=0.02, b=20, c=100), obtaining an adjusted coefficient of multiple determination of 64.83%. According to the best estimate, the algebraic expressions for S(a) and the Fi were derived. Using the result of Fi, we obtain A = 30, L =85; R0 CI 95%: 1.42 - 1.64 and Pc: 0-0.29. These results indicate that at the worst case, to maintain control of the disease should be immunes at least 30% of susceptible individuals. Similar results were obtained by sex and residential area.

  16. Use of exposure history to identify patterns of immunity to pneumonia in bighorn sheep (Ovis canadensis.

    Directory of Open Access Journals (Sweden)

    Raina K Plowright

    Full Text Available Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating naïve healthy animals into or near populations infected with pneumonia pathogens.

  17. PERIPHERAL IMMUNE SYSTEM SUPPRESSION IN EARLY ABSTINENT ALCOHOL DEPENDENT INDIVIDUALS: LINKS TO STRESS AND CUE-RELATED CRAVING

    Science.gov (United States)

    Fox, Helen C; Milivojevic, Verica; Angarita, Gustavo A; Stowe, Raymond; Sinha, Rajita

    2017-01-01

    Background Peripheral immune system cytokines may play an integral role in underlying sensitized stress response and alcohol craving during early withdrawal. To date, the nature of these immune changes during early abstinence have not been examined. Methods Thirty-nine early abstinent, treatment-seeking alcohol dependent individuals and 46 socially drinking controls were exposed to three guided imageries: stress, alcohol cue and neutral. These were presented randomly across consecutive days. Plasma measures of tumor necrosis factor alpha (TNFα), tumor necrosis factor receptor 1 (TNFR1), interleukin-6 (IL-6), and interleukin-10 (IL-10), were collected at baseline, immediately after imagery and at various recovery time-points. Ratings of alcohol craving, negative mood and anxiety were also obtained at the same time-points. Results The alcohol group demonstrated decreased basal IL-10 compared with controls particularly following exposure to alcohol cue. They also showed a dampened TNFα and TNFR1 response to stress and cue, respectively, and a generalized suppression of IL-6. In the alcohol group, these immune system adaptations occurred alongside significant elevations in anxiety, negative mood and alcohol craving. Conclusions Findings demonstrate that broad immuno-suppression is still observed in alcohol dependent individuals after three weeks of abstinence and may be linked to motivation for alcohol. PMID:28675117

  18. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  19. Construction of High-Quality Camel Immune Antibody Libraries.

    Science.gov (United States)

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  20. Paradoxical immune reconstitution inflammatory syndrome associated with previous Cryptococcus neoformans infection in an HIV-positive patient requiring neurosurgical intervention.

    Science.gov (United States)

    Biagetti, Carlo; Nicola, Monica; Borderi, Marco; Pavoni, Michele; Tampellini, Livia; Verucchi, Gabriella; Chiodo, Francesco

    2009-04-01

    Immune reconstitution inflammatory syndrome (IRIS) in HIV-1-infected patients is associated with an exaggerated inflammatory response against an opportunistic infection during highly active antiretroviral therapy. The only review on IRIS associated with Criptococcus neoformans reported 21 episodes including lymphadenitis, necrotizing pneumonitis, breast and cutaneous abscess, and cryptococcomas. To our knowledge this is the first report of IRIS associated with previous meningeal criptococcal infection which required neurosurgical intervention with placement of a ventriculo-peritoneal shunt to drain a CSF cyst formed by exclusion of the temporal horn of the right lateral ventricle. We demonstrate that this procedure is possible without complications such as cryptococcal dissemination into the peritoneum.

  1. Previous success and current body condition determine breeding propensity in Lesser Scaup: evidence for the individual heterogeneity hypothesis

    Science.gov (United States)

    Warren, Jeffrey M.; Cutting, Kyle A.; Takekawa, John Y.; De La Cruz, Susan E. W.; Williams, Tony D.; Koons, David N.

    2014-01-01

    The decision to breed influences an individual's current and future reproduction, and the proportion of individuals that breed is an important determinant of population dynamics. Age, experience, individual quality, and environmental conditions have all been demonstrated to influence breeding propensity. To elucidate which of these factors exerts the greatest influence on breeding propensity in a temperate waterfowl, we studied female Lesser Scaup (Aythya affinis) breeding in southwestern Montana. Females were captured during the breeding seasons of 2007–2009, and breeding status was determined on the basis of (1) presence of an egg in the oviduct or (2) blood plasma vitellogenin (VTG) levels. Presence on the study site in the previous year, a proxy for adult female success, was determined with stable isotope signatures of a primary feather collected at capture. Overall, 57% of females had evidence of breeding at the time of capture; this increased to 86% for females captured on or after peak nest initiation. Capture date and size-adjusted body condition positively influenced breeding propensity, with a declining body-condition threshold through the breeding season. We did not detect an influence of age on breeding propensity. Drought conditions negatively affected breeding propensity, reducing the proportion of breeding females to 0.85 (SE = 0.05) from 0.94 (SE = 0.03) during normal-water years. A female that was present in the previous breeding season was 5% more likely to breed than a female that was not present then. The positive correlation between age and experience makes it difficult to differentiate the roles of age, experience, and individual quality in reproductive success in vertebrates. Our results indicate that individual quality, as expressed by previous success and current body condition, may be among the most important determinants of breeding propensity in female Lesser Scaup, providing further support for the individual heterogeneity hypothesis.

  2. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    Science.gov (United States)

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Mansonella perstans microfilaremic individuals are characterized by enhanced type 2 helper T and regulatory T and B cell subsets and dampened systemic innate and adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Manuel Ritter

    2018-01-01

    Full Text Available The filarial nematode Mansonella perstans is endemic throughout Africa, northern South America and the Caribbean. Interestingly, M. perstans-infected individuals present no distinct clinical picture associated with certain pathology. Due to its relatively silent nature, research on this tropical disease has been neglected, especially M. perstans-driven immune responses. A hindrance in obtaining data on M. perstans-specific responses has been the inability to obtain adult worms since their habitats in serous cavities are difficult to access. Thus, in this study, for the first time, we used Mansonella perstans worm antigen extract as stimulant to obtain filarial-specific recall and immunoglobulin responses from M. perstans microfilaremic individuals (Mp MF+ from Cameroon. Moreover, systemic immune profiles in sera and immune cell composition in peripheral blood from Mp MF+ and amicrofilaremic individuals (Mp MF- were obtained. Our data reveal that Mp MF+ individuals showed significantly reduced cytokine (IL-4, IL-6 and IL-12p70 and chemokine levels (IL-8 and RANTES, but significantly higher MIP-1β as well as increased M. perstans-specific IgG4 levels compared to Mp MF- individuals. In contrast, upon re-stimulation with worm antigen extract, IFN-γ, IL-13, IL-10 and IL-17A secretion was enhanced in cell cultures from Mp MF+ individuals when compared to those from cultures of healthy European individuals. Moreover, analysis of immune cell composition in peripheral blood from Mp MF+ individuals revealed increased type 2 helper T (Th2, natural killer (NK, regulatory B and T cell (Breg and Treg subsets but decreased type 1 regulatory T (Tr1 cells. In summary, this study deciphers for the first time, M. perstans-specific immune responses using worm antigen extract and shows that patent M. perstans infections have distinct Th2, Breg and Treg subsets accompanied with reduced systemic innate and adaptive immune responses and dominant filarial-specific Ig

  4. Reaching Hard-to-Reach Individuals: Nonselective Versus Targeted Outbreak Response Vaccination for Measles

    Science.gov (United States)

    Minetti, Andrea; Hurtado, Northan; Grais, Rebecca F.; Ferrari, Matthew

    2014-01-01

    Current mass vaccination campaigns in measles outbreak response are nonselective with respect to the immune status of individuals. However, the heterogeneity in immunity, due to previous vaccination coverage or infection, may lead to potential bias of such campaigns toward those with previous high access to vaccination and may result in a lower-than-expected effective impact. During the 2010 measles outbreak in Malawi, only 3 of the 8 districts where vaccination occurred achieved a measureable effective campaign impact (i.e., a reduction in measles cases in the targeted age groups greater than that observed in nonvaccinated districts). Simulation models suggest that selective campaigns targeting hard-to-reach individuals are of greater benefit, particularly in highly vaccinated populations, even for low target coverage and with late implementation. However, the choice between targeted and nonselective campaigns should be context specific, achieving a reasonable balance of feasibility, cost, and expected impact. In addition, it is critical to develop operational strategies to identify and target hard-to-reach individuals. PMID:24131555

  5. Immune Serum From Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses.

    Science.gov (United States)

    Sun, Mingbo; Li, Changgui; Xu, Wenbo; Liao, Guoyang; Li, Rongcheng; Zhou, Jian; Li, Yanping; Cai, Wei; Yan, Dongmei; Che, Yanchun; Ying, Zhifang; Wang, Jianfeng; Yang, Huijuan; Ma, Yan; Ma, Lei; Ji, Guang; Shi, Li; Jiang, Shude; Li, Qihan

    2017-05-15

    A Sabin strain-based inactivated poliomyelitis vaccine (Sabin-IPV) is the rational option for completely eradicating poliovirus transmission. The neutralizing capacity of Sabin-IPV immune serum to different strains of poliovirus is a key indicator of the clinical protective efficacy of this vaccine. Sera collected from 500 infants enrolled in a randomized, blinded, positive control, phase 2 clinical trial were randomly divided into 5 groups: Groups A, B, and C received high, medium, and low doses, respectively, of Sabin-IPV, while groups D and E received trivalent oral polio vaccine and Salk strain-based IPV, respectively, all on the same schedule. Immune sera were collected after the third dose of primary immunization, and tested in cross-neutralization assays against 19 poliovirus strains of all 3 types. All immune sera from all 5 groups interacted with the 19 poliovirus strains with various titers and in a dose-dependent manner. One type 2 immunodeficiency-associated vaccine-derived poliovirus strain was not recognized by these immune sera. Sabin-IPV vaccine can induce protective antibodies against currently circulating and reference wild poliovirus strains and most vaccine-derived poliovirus strains, with rare exceptions. NCT01056705. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Recurrent severe invasive pneumococcal disease in an adult with previously unknown hyposplenia

    DEFF Research Database (Denmark)

    Ballegaard, Vibe C; Schejbel, Lone; Hoffmann, Steen

    2015-01-01

    was found. Despite immunization against S. pneumoniae and measurement of what was interpreted as protective levels of serotype-specific IgG antibodies after vaccination, the patient suffered from a third episode of IPD. CONCLUSIONS: Individuals with predisposing medical conditions or a history of severe......BACKGROUND: The risk of life-threatening and invasive infections with encapsulated bacteria is increased in patients with hyposplenia or asplenia. We report a case of recurrent invasive pneumococcal meningitis in a woman with previous unknown hyposplenia. She was vaccinated after the first episode...... of meningitis and developed sufficient levels of pneumococcal antibodies. The pneumococcal strains isolated were serotype 7 F and 17 F. To our knowledge, there has been no previously reported case of recurrent invasive pneumococcal disease in a pneumococcal vaccinated adult with hyposplenia and apparently...

  7. Next-Generation Immune Repertoire Sequencing as a Clue to Elucidate the Landscape of Immune Modulation by Host–Gut Microbiome Interactions

    Directory of Open Access Journals (Sweden)

    Tatsuo Ichinohe

    2018-04-01

    Full Text Available The human immune system is a fine network consisted of the innumerable numbers of functional cells that balance the immunity and tolerance against various endogenous and environmental challenges. Although advances in modern immunology have revealed a role of many unique immune cell subsets, technologies that enable us to capture the whole landscape of immune responses against specific antigens have been not available to date. Acquired immunity against various microorganisms including host microbiome is principally founded on T cell and B cell populations, each of which expresses antigen-specific receptors that define a unique clonotype. Over the past several years, high-throughput next-generation sequencing has been developed as a powerful tool to profile T- and B-cell receptor repertoires in a given individual at the single-cell level. Sophisticated immuno-bioinformatic analyses by use of this innovative methodology have been already implemented in clinical development of antibody engineering, vaccine design, and cellular immunotherapy. In this article, we aim to discuss the possible application of high-throughput immune receptor sequencing in the field of nutritional and intestinal immunology. Although there are still unsolved caveats, this emerging technology combined with single-cell transcriptomics/proteomics provides a critical tool to unveil the previously unrecognized principle of host–microbiome immune homeostasis. Accumulation of such knowledge will lead to the development of effective ways for personalized immune modulation through deeper understanding of the mechanisms by which the intestinal environment affects our immune ecosystem.

  8. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  9. Validation of HAV biomarker 2A for differential diagnostic of hepatitis A infected and vaccinated individuals using multiplex serology.

    Science.gov (United States)

    Bohm, Katrin; Filomena, Angela; Schneiderhan-Marra, Nicole; Krause, Gérard; Sievers, Claudia

    2017-10-13

    Worldwide about 1.5 million clinical cases of hepatitis A virus (HAV) infections occur every year and increasingly countries are introducing HAV vaccination into the childhood immunization schedule with a single dose instead of the originally licenced two dose regimen. Diagnosis of acute HAV infection is determined serologically by anti-HAV-IgM detection using ELISA. Additionally anti-HAV-IgG can become positive during the early phase of symptoms, but remains detectable after infection and also after vaccination against HAV. Currently no serological marker allows the differentiation of HAV vaccinated individuals and those with a past infection with HAV. Such differentiation would greatly improve evaluation of vaccination campaigns and risk assessment of HAV outbreaks. Here we tested the HAV non-structural protein 2A, important for the capsid assembly, as a biomarker for the differentiation of the immune status in previously infected and vaccinated individuals. HAV antigens were recombinantly expressed as glutathione-S-transferase (GST) fusion proteins. Using glutathione tagged, magnetic fluorescent beads (Luminex®), the proteins were affinity purified and used in a multiplex serological assay. The multiplex HAV assay was validated using 381 reference sera in which the immune status HAV negative, vaccinated or infected was established using the Abbott ARCHITECT® HAVAb-IgM or IgG, the commercial HAV ELISA from Abnova and documentation in vaccination cards. HAV multiplex serology showed a sensitivity of 99% and specificity of 95% to detect anti-HAV IgG/IgM positive individuals. HAV biomarker 2A allowed the differentiation between previously infected and vaccinated individuals. HAV vaccinated individuals and previously infected individuals could be identified with 92% accuracy. HAV biomarker 2A can be used to differentiate between previously HAV-vaccinated and naturally infected individuals. Within a multiplex serological approach this assay can provide valuable

  10. The Association Between Post-traumatic Stress Disorder and Markers of Inflammation and Immune Activation in HIV-Infected Individuals With Controlled Viremia.

    Science.gov (United States)

    Siyahhan Julnes, Peter; Auh, Sungyoung; Krakora, Rebecca; Withers, Keenan; Nora, Diana; Matthews, Lindsay; Steinbach, Sally; Snow, Joseph; Smith, Bryan; Nath, Avindra; Morse, Caryn; Kapetanovic, Suad

    2016-01-01

    Post-traumatic stress disorder (PTSD) may be associated with chronic immune dysregulation and a proinflammatory state. Among HIV-infected individuals, PTSD is associated with greater morbidity and mortality, but the association with immune dysfunction has not been evaluated. This study explores the association between PTSD and selected markers of inflammation and immune activation in a cohort of HIV-infected, virally-suppressed individuals. HIV-infected adults who were virologically controlled on antiretroviral medications were recruited through a screening protocol for studies of HIV-related neurocognitive disorders. Each participant underwent blood draws, urine toxicology screen, and completed the Client Diagnostic Questionnaire, a semistructured psychiatric interview. Of 114 eligible volunteers, 72 (63%) were male, 77 (68%) African American, and 34 (30%) participants met criteria for PTSD. Participants with PTSD were more likely to be current smokers (79%) than those without (60%) (p = 0.05). The PTSD cohort had significantly higher total white blood cell counts (5318 and 6404 cells/uL, p = 0.03), absolute neutrophil count (2767 and 3577 cells/uL, p = 0.02), CD8% (43 and 48, p = 0.05), and memory CD8% (70 and 78%, p = 0.04); lower naïve CD8% (30 and 22%, p = 0.04) and higher rate of high-sensitivity C-reactive protein >3mg/L (29 and 20, p = 0.03). A high prevalence of PTSD was identified in this cohort of HIV-infected adults who were virally suppressed. These results suggest that PTSD may be associated with immune dysregulation even among antiretroviral therapy-adherent HIV-infected individuals. Published by Elsevier Inc.

  11. Pulmonary Immune-Compartment-Specific Interferon Gamma Responses in HIV-Infected Individuals with Active Tuberculosis (TB in an Area of High TB Prevalence

    Directory of Open Access Journals (Sweden)

    S. Buldeo

    2012-01-01

    Full Text Available There is a paucity of data on the pulmonary immune-compartment interferon gamma (IFNγ response to M. tuberculosis, particularly in settings of high tuberculosis (TB prevalence and in HIV-coinfected individuals. This data is necessary to understand the diagnostic potential of commercially available interferon gamma release assays (IGRAs in both the pulmonary immune-compartment and peripheral blood. We used intracellular cytokine staining by flow cytometry to assess the IFNγ response to purified protein derivative (PPD and early secretory antigen 6 (ESAT6 in induced sputa (ISp and blood samples from HIV-infected, smear-negative, TB suspects. We found that individuals with active TB disease produced significantly less IFNγ in response to PPD in their induced sputa samples than individuals with non-active TB (control group. This difference was not reflected in the peripheral blood, even within the CD27− CD4+ memory T lymphocyte population. These findings suggest that progression to active TB disease may be associated with the loss of IFNγ secretion at the site of primary infection. Our findings highlight the importance of studying pulmonary immune-compartment M. tuberculosis specific responses to elucidate IFNγ secretion across the spectrum of TB disease.

  12. Impaired immune function in children and adults with Fanconi anemia.

    Science.gov (United States)

    Myers, Kasiani C; Sauter, Sharon; Zhang, Xue; Bleesing, Jacob J; Davies, Stella M; Wells, Susanne I; Mehta, Parinda A; Kumar, Ashish; Marmer, Daniel; Marsh, Rebecca; Brown, Darron; Butsch Kovacic, Melinda

    2017-11-01

    Fanconi anemia (FA) is a rare genetic disorder characterized by genome instability, bone marrow failure, and cancer predisposition. Previously, small studies have reported heterogeneous immune dysfunction in FA. We performed a detailed immunologic assessment in a large FA cohort who have not undergone bone marrow transplantation or developed malignancies. Comprehensive quantitative and functional immunologic assessment of 29 FA individuals was compared to healthy age-matched controls. Compared to non-FA persons of similar ages, FA individuals showed lower absolute total B cells (P candida (P = 0.019), were diminished in FA. Phytohemagglutinin responses and plasma cytokines were normal. Within FA subjects, adults and older children (≥10 years) exhibited higher CD8 + T cells than younger children (P = 0.004). Documented atypical infections were infrequent, although oral human papilloma virus (HPV) prevalence was higher (31% positive) in FA. Overall, these results demonstrate a high rate of significant humoral and cellular immune dysfunction. Continued longitudinal study of immune function is critical to understand evolution with age, bone marrow failure, and cancer development. © 2017 Wiley Periodicals, Inc.

  13. Immune Evasion, Immunopathology and the Regulation of the Immune System

    Directory of Open Access Journals (Sweden)

    Bruno Faivre

    2013-02-01

    Full Text Available Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  14. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    Science.gov (United States)

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  15. Immune defense in leaf-cutting ants

    DEFF Research Database (Denmark)

    Armitage, Sophie A O; Broch, Jens F; Marín, Hermogenes Fernández

    2011-01-01

    To ameliorate the impact of disease, social insects combine individual innate immune defenses with collective social defenses. This implies that there are different levels of selection acting on investment in immunity, each with their own trade-offs. We present the results of a cross......-fostering experiment designed to address the influences of genotype and social rearing environment upon individual and social immune defenses. We used a multiply mating leaf-cutting ant, enabling us to test for patriline effects within a colony, as well as cross-colony matriline effects. The worker's father influenced...... both individual innate immunity (constitutive antibacterial activity) and the size of the metapleural gland, which secretes antimicrobial compounds and functions in individual and social defense, indicating multiple mating could have important consequences for both defense types. However, the primarily...

  16. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    2010-11-01

    Full Text Available Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite

  17. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  18. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress.

    Science.gov (United States)

    Hodes, Georgia E; Pfau, Madeline L; Leboeuf, Marylene; Golden, Sam A; Christoffel, Daniel J; Bregman, Dana; Rebusi, Nicole; Heshmati, Mitra; Aleyasin, Hossein; Warren, Brandon L; Lebonté, Benoit; Horn, Sarah; Lapidus, Kyle A; Stelzhammer, Viktoria; Wong, Erik H F; Bahn, Sabine; Krishnan, Vaishnav; Bolaños-Guzman, Carlos A; Murrough, James W; Merad, Miriam; Russo, Scott J

    2014-11-11

    Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.

  19. Correlates of previous couples’ HIV counseling and testing uptake among married individuals in three HIV prevalence strata in Rakai, Uganda

    Directory of Open Access Journals (Sweden)

    Joseph K. B. Matovu

    2015-06-01

    Full Text Available Background: Studies show that uptake of couples’ HIV counseling and testing (couples’ HCT can be affected by individual, relationship, and socioeconomic factors. However, while couples’ HCT uptake can also be affected by background HIV prevalence and awareness of the existence of couples’ HCT services, this is yet to be documented. We explored the correlates of previous couples’ HCT uptake among married individuals in a rural Ugandan district with differing HIV prevalence levels. Design: This was a cross-sectional study conducted among 2,135 married individuals resident in the three HIV prevalence strata (low HIV prevalence: 9.7–11.2%; middle HIV prevalence: 11.4–16.4%; and high HIV prevalence: 20.5–43% in Rakai district, southwestern Uganda, between November 2013 and February 2014. Data were collected on sociodemographic and behavioral characteristics, including previous receipt of couples’ HCT. HIV testing data were obtained from the Rakai Community Cohort Study. We conducted multivariable logistic regression analysis to identify correlates that are independently associated with previous receipt of couples’ HCT. Data analysis was conducted using STATA (statistical software, version 11.2. Results: Of the 2,135 married individuals enrolled, the majority (n=1,783, 83.5% had been married for five or more years while (n=1,460, 66% were in the first-order of marriage. Ever receipt of HCT was almost universal (n=2,020, 95%; of those ever tested, (n=846, 41.9% reported that they had ever received couples’ HCT. There was no significant difference in previous receipt of couples’ HCT between low (n=309, 43.9%, middle (n=295, 41.7%, and high (n=242, 39.7% HIV prevalence settings (p=0.61. Marital order was not significantly associated with previous receipt of couples’ HCT. However, marital duration [five or more years vis-à-vis 1–2 years: adjusted odds ratio (aOR: 1.06; 95% confidence interval (95% CI: 1.04–1.08] and

  20. Mycobacterial growth inhibition is associated with trained innate immunity.

    Science.gov (United States)

    Joosten, Simone A; van Meijgaarden, Krista E; Arend, Sandra M; Prins, Corine; Oftung, Fredrik; Korsvold, Gro Ellen; Kik, Sandra V; Arts, Rob Jw; van Crevel, Reinout; Netea, Mihai G; Ottenhoff, Tom Hm

    2018-05-01

    The lack of defined correlates of protection hampers development of vaccines against tuberculosis (TB). In vitro mycobacterial outgrowth assays are thought to better capture the complexity of the human host/Mycobacterium tuberculosis (Mtb) interaction. Here, we used a mycobacterial growth inhibition assay (MGIA) based on peripheral blood mononuclear cells to investigate the capacity to control outgrowth of bacille Calmette-Guérin (BCG). Interestingly, strong control of BCG outgrowth was observed almost exclusively in individuals with recent exposure to Mtb, but not in (long-term) latent TB infection, and only modestly in BCG vaccinees. Mechanistically, control of mycobacterial outgrowth strongly correlated with the presence of a CD14dim monocyte population, but also required the presence of T cells. The nonclassical monocytes produced CXCL10, and CXCR3 receptor blockade inhibited the capacity to control BCG outgrowth. Expression of CXCR3 splice variants was altered in recently Mtb-exposed individuals. Cytokines previously associated with trained immunity were detected in MGIA supernatants, and CXCL9, CXCL10, and CXCL11 represent new markers of trained immunity. These data indicate that CXCR3 ligands are associated with trained immunity and are critical factors in controlling mycobacterial outgrowth. In conclusion, control of mycobacterial outgrowth early after exposure to Mtb is the result of trained immunity mediated by a CXCL10-producing nonclassical CD14dim monocyte subset.

  1. Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells.

    Science.gov (United States)

    Macfarlane, Fiona R; Lorenzi, Tommaso; Chaplain, Mark A J

    2018-06-01

    A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour-immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.

  2. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  3. Immunizations for adult women.

    Science.gov (United States)

    Faubion, Stephanie S; Larkin, Lisa C

    2016-12-01

    Immunizations protect individual persons and contribute to public health by reducing morbidity and mortality associated with common infectious diseases. In this Practice Pearl, we review guidelines for adult immunizations and recent and potential changes in vaccines.

  4. Short-course TLR9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals with HIV infection

    DEFF Research Database (Denmark)

    Vibholm, Line; Schleimann, Mariane H; Højen, Jesper F

    2017-01-01

    Background.: Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized...... that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. Methods.: We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN.......: In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P

  5. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  6. Individual freedoms versus collective responsibility: immunization decision-making in the face of occasionally competing values

    Directory of Open Access Journals (Sweden)

    Salmon Daniel A

    2006-09-01

    Full Text Available Abstract Modern public health strives for maximizing benefits for the highest number of people while protecting individual rights. Restrictions on individual rights are justified for two reasons-for the benefit of the individual or the benefit of the community. In extreme situations there may be a need to protect the health of an individual and particularly a child; even by overriding individual/parental autonomy. However, The American Academy of Pediatrics recently concluded that "Continued (vaccine refusal after adequate discussion should be respected unless the child is put at significant risk of serious harm (as, for example, might be the case during an epidemic. Only then should state agencies be involved to override parental discretion on the basis of medical neglect". Many countries have compulsory immunization requirements. These laws curtail individual autonomy in order to protect the community from infectious diseases because unvaccinated individuals pose risk to the community – including vaccinated individuals (since vaccines are not 100% efficacious, children too young to be vaccinated, and persons who have medical vaccine contraindications. There are situations where there can be a real or perceived divergence between individual and community benefits of vaccination. This divergence may occasionally be based upon current scientific evidence and may exemplify the need for overriding individual autonomy. A divergence between individual and community benefits may also exist when there are ideological beliefs incongruent with vaccination or individuals are unaware of or do not accept available scientific evidence. When the state curtails individual freedoms for the collective good, it should address several issues including the magnitude of the individual and community risk, the strength of the individual's conviction, wider and long-term consequences of restricting individual autonomy, effective risk communication, best available

  7. Induction of human immunodeficiency virus (HIV-1 envelope specific cell-mediated immunity by a non-homologous synthetic peptide.

    Directory of Open Access Journals (Sweden)

    Ammar Achour

    2007-11-01

    Full Text Available Cell mediated immunity, including efficient CTL response, is required to prevent HIV-1 from cell-to-cell transmission. In previous investigations, we have shown that B1 peptide derived by Fourier transformation of HIV-1 primary structures and sharing no sequence homology with the parent proteins was able to generate antiserum which recognizes envelope and Tat proteins. Here we have investigated cellular immune response towards a novel non-homologous peptide, referred to as cA1 peptide.The 20 amino acid sequence of cA1 peptide was predicted using the notion of peptide hydropathic properties; the peptide is encoded by the complementary anti-sense DNA strand to the sense strand of previously described non-homologous A1 peptide. In this report we demonstrate that the cA1 peptide can be a target for major histocompatibility complex (MHC class I-restricted cytotoxic T lymphocytes in HIV-1-infected or envelope-immunized individuals. The cA1 peptide is recognized in association with different MHC class I allotypes and could prime in vitro CTLs, derived from gp160-immunized individuals capable to recognize virus variants.For the first time a theoretically designed immunogen involved in broad-based cell-immune memory activation is described. Our findings may thus contribute to the advance in vaccine research by describing a novel strategy to develop a synthetic AIDS vaccine.

  8. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  9. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    Directory of Open Access Journals (Sweden)

    Annette Pachnio

    Full Text Available Cytomegalovirus (CMV infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  10. High rate of complete responses to immune checkpoint inhibitors in patients with relapsed or refractory Hodgkin lymphoma previously exposed to epigenetic therapy

    Directory of Open Access Journals (Sweden)

    Lorenzo Falchi

    2016-11-01

    Full Text Available Abstract Options for patients with relapsed or refractory (R/R classical Hodgkin lymphoma (cHL after brentuximab vedotin (Bv and autologous stem cell transplantation (ASCT are limited. Immune checkpoint inhibitors (ICI are active in this population but rarely induce complete response (CR. Ten patients with R/R cHL after ASCT and Bv received pembrolizumab (n = 8 or nivolumab (n = 2. Five had been previously exposed to 5-azacitidine on a phase 1 study. Among nine evaluable patients, seven (78% achieved CR, one partial response, and one reduction of tumor burden. All five patients who had received 5-azacitidine prior to ICI achieved CR, while only two of four who did not receive prior 5-azacitidine achieved CR. At a median follow-up of 9.9 months [0.5–14.3], eight patients are alive and five are still receiving treatment. We documented an unprecedented CR rate after ICI in patients with R/R cHL. We hypothesize that hypomethylating agents might have an immune priming effect and enhance the efficacy of ICI.

  11. Senescence in immune priming and attractiveness in a beetle.

    Science.gov (United States)

    Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Krams, I

    2012-07-01

    Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  12. Interaction Between 2 Nutraceutical Treatments and Host Immune Status in the Pediatric Critical Illness Stress-Induced Immune Suppression Comparative Effectiveness Trial.

    Science.gov (United States)

    Carcillo, Joseph A; Dean, J Michael; Holubkov, Richard; Berger, John; Meert, Kathleen L; Anand, Kanwaljeet J S; Zimmerman, Jerry J; Newth, Christopher J L; Harrison, Rick; Burr, Jeri; Willson, Douglas F; Nicholson, Carol; Bell, Michael J; Berg, Robert A; Shanley, Thomas P; Heidemann, Sabrina M; Dalton, Heidi; Jenkins, Tammara L; Doctor, Allan; Webster, Angie; Tamburro, Robert F

    2017-11-01

    The pediatric Critical Illness Stress-induced Immune Suppression (CRISIS) trial compared the effectiveness of 2 nutraceutical supplementation strategies and found no difference in the development of nosocomial infection and sepsis in the overall population. We performed an exploratory post hoc analysis of interaction between nutraceutical treatments and host immune status related to the development of nosocomial infection/sepsis. Children from the CRISIS trial were analyzed according to 3 admission immune status categories marked by decreasing immune competence: immune competent without lymphopenia, immune competent with lymphopenia, and previously immunocompromised. The comparative effectiveness of the 2 treatments was analyzed for interaction with immune status category. There were 134 immune-competent children without lymphopenia, 79 previously immune-competent children with lymphopenia, and 27 immunocompromised children who received 1 of the 2 treatments. A significant interaction was found between treatment arms and immune status on the time to development of nosocomial infection and sepsis ( P patient characteristic.

  13. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  14. Interpreting "Personality" Taxonomies: Why Previous Models Cannot Capture Individual-Specific Experiencing, Behaviour, Functioning and Development. Major Taxonomic Tasks Still Lay Ahead.

    Science.gov (United States)

    Uher, Jana

    2015-12-01

    As science seeks to make generalisations, a science of individual peculiarities encounters intricate challenges. This article explores these challenges by applying the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) and by exploring taxonomic "personality" research as an example. Analyses of researchers' interpretations of the taxonomic "personality" models, constructs and data that have been generated in the field reveal widespread erroneous assumptions about the abilities of previous methodologies to appropriately represent individual-specificity in the targeted phenomena. These assumptions, rooted in everyday thinking, fail to consider that individual-specificity and others' minds cannot be directly perceived, that abstract descriptions cannot serve as causal explanations, that between-individual structures cannot be isomorphic to within-individual structures, and that knowledge of compositional structures cannot explain the process structures of their functioning and development. These erroneous assumptions and serious methodological deficiencies in widely used standardised questionnaires have effectively prevented psychologists from establishing taxonomies that can comprehensively model individual-specificity in most of the kinds of phenomena explored as "personality", especially in experiencing and behaviour and in individuals' functioning and development. Contrary to previous assumptions, it is not universal models but rather different kinds of taxonomic models that are required for each of the different kinds of phenomena, variations and structures that are commonly conceived of as "personality". Consequently, to comprehensively explore individual-specificity, researchers have to apply a portfolio of complementary methodologies and develop different kinds of taxonomies, most of which have yet to be developed. Closing, the article derives some meta-desiderata for future research on individuals' "personality".

  15. [Stress and auto-immunity].

    Science.gov (United States)

    Delévaux, I; Chamoux, A; Aumaître, O

    2013-08-01

    The etiology of auto-immune disorders is multifactorial. Stress is probably a participating factor. Indeed, a high proportion of patients with auto-immune diseases report uncommon stress before disease onset or disease flare. The biological consequences of stress are increasingly well understood. Glucocorticoids and catecholamines released by hypothalamic-pituitary-adrenal axis during stress will alter the balance Th1/Th2 and the balance Th17/Treg. Stress impairs cellular immunity, decreases immune tolerance and stimulates humoral immunity exposing individuals to autoimmune disease among others. The treatment for autoimmune disease should include stress management. Copyright © 2012 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  16. Inverse targeting —An effective immunization strategy

    Science.gov (United States)

    Schneider, C. M.; Mihaljev, T.; Herrmann, H. J.

    2012-05-01

    We propose a new method to immunize populations or computer networks against epidemics which is more efficient than any continuous immunization method considered before. The novelty of our method resides in the way of determining the immunization targets. First we identify those individuals or computers that contribute the least to the disease spreading measured through their contribution to the size of the largest connected cluster in the social or a computer network. The immunization process follows the list of identified individuals or computers in inverse order, immunizing first those which are most relevant for the epidemic spreading. We have applied our immunization strategy to several model networks and two real networks, the Internet and the collaboration network of high-energy physicists. We find that our new immunization strategy is in the case of model networks up to 14%, and for real networks up to 33% more efficient than immunizing dynamically the most connected nodes in a network. Our strategy is also numerically efficient and can therefore be applied to large systems.

  17. Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.

    Science.gov (United States)

    Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne

    2017-02-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  19. Modulation of Immune Functions by Foods

    Directory of Open Access Journals (Sweden)

    Shuichi Kaminogawa

    2004-01-01

    Full Text Available Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i studies examining the effect of foods in healthy individuals; (ii studies analyzing the effect of foods on patients with hypersensitivity; and (iii studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity or acquired immunity (T cell response, antibody production. Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity.

  20. Adaptive immunity to rhinoviruses: sex and age matter

    Directory of Open Access Journals (Sweden)

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  1. DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs

    Science.gov (United States)

    Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.

    2017-01-01

    ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337

  2. Intestinal commensal microbes as immune modulators.

    Science.gov (United States)

    Ivanov, Ivaylo I; Honda, Kenya

    2012-10-18

    Commensal bacteria are necessary for the development and maintenance of a healthy immune system. Harnessing the ability of microbiota to affect host immunity is considered an important therapeutic strategy for many mucosal and nonmucosal immune-related conditions, such as inflammatory bowel diseases (IBDs), celiac disease, metabolic syndrome, diabetes, and microbial infections. In addition to well-established immunostimulatory effects of the microbiota, the presence of individual mutualistic commensal bacteria with immunomodulatory effects has been described. These organisms are permanent members of the commensal microbiota and affect host immune homeostasis in specific ways. Identification of individual examples of such immunomodulatory commensals and understanding their mechanisms of interaction with the host will be invaluable in designing therapeutic strategies to reverse intestinal dysbiosis and recover immunological homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal.

    Directory of Open Access Journals (Sweden)

    Patrick M Brock

    Full Text Available Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on

  4. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  5. Studies on immune responses to Epstein-Barr virus among A-bomb survivors

    International Nuclear Information System (INIS)

    Kusunoki, Y.; Kyoizumi, S.; Ozaki, K.; Cologne, J.B.; Akiyama, M.

    1992-01-01

    Previous studies revealed that reactivity of T-lymphocytes to phytohemag-glutinin and allo-antigens as well as the number of mature CD5 + T cells are decreased among atomic bomb survivors. Possible radiation effects were suggested for impairment of antibody production to certain type A influenza viruses and for an increased prevalence rate of hepatitis B virus surface antigen in sera among survivors. These findings lead to research of effects of A-bomb radiation on immune responses to certain ubiquitous viruses such as Epstein-Barr Virus. Reactivation of EBV induced by depression of immune competence might be reflected by changes in serum titers of these antibodies. Significant increases in titers of antiviral capsed antigen IgC or anti-early antigen (EA) IgC and frequent absence o.r low levels of anti- EBV-associated nuclear antigen antibodies were observed in immunologically compromised individuals. Without regard to diseases, occurrence of significant titers of anti-EA IgC in healthy sero-positive individuals has been ascribed to reactivation of the viral carrier stage. This study examines serum titers of these anti-EBV antibodies to investigate whether any alteration of immune competence to the virus was detectable in relation to the previous A-bomb radiation exposure. Also, an attempt was made to evaluated T-cell responses to EBV in A-bomb survivors for the purpose of understanding involvement of T-cell function in reactivation of the virus, using the precursor frequency analysis of cytotoxic lymphocytes against autologous B cell transformed in vitro with EBV. (author). 13 refs., 2 figs., 1 tab

  6. Immune System Dysfunction in the Elderly.

    Science.gov (United States)

    Fuentes, Eduardo; Fuentes, Manuel; Alarcón, Marcelo; Palomo, Iván

    2017-01-01

    Human aging is characterized by both physical and physiological frailty that profoundly affects the immune system. In this context aging is associated with declines in adaptive and innate immunity established as immunosenescence. Immunosenescence is a new concept that reflects the age-associated restructuring changes of innate and adaptive immune functions. Thus elderly individuals usually present chronic low-level inflammation, higher infection rates and chronic diseases. A study of alterations in the immune system during aging could provide a potentially useful biomarker for the evaluation of immune senescence treatment. The immune system is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this function is unclear. In this article the function of the immune system during aging is explored.

  7. 45 CFR 61.16 - Immunity.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Immunity. 61.16 Section 61.16 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION HEALTHCARE INTEGRITY AND PROTECTION DATA BANK... Information by the Healthcare Integrity and Protection Data Bank § 61.16 Immunity. Individuals, entities or...

  8. An Immunization Strategy Based on Propagation Mechanism

    Directory of Open Access Journals (Sweden)

    Yixin Zhu

    2014-01-01

    Full Text Available With the ubiquity of smart phones, wearable equipment, and wireless sensors, the topologies of networks composed by them change along with time. The immunization strategies in which network immune nodes are chosen by analyzing the static aggregation network topologies have been challenged. The studies about interaction propagations between two pathogens show that the interaction can change propagation threshold and the final epidemic size of each other, which provides a new thinking of immunization method. The eradication or inhibition of the virus can be achieved through the spread of its opposite party. Here, we put forward an immunization strategy whose implementation does not depend on the analysis of network topology. The immunization agents are randomly placed on a few of individuals of network and spread out from these individuals on network in a propagation method. The immunization agents prevent virus infecting their habitat nodes with certain immune success rate. The analysis and simulation of evolution equation of the model show that immune propagation has a significant impact on the spread threshold and steady-state density of virus on a finite size of BA networks. Simulations on some real-world networks also suggest that the immunization strategy is feasible and effective.

  9. Evaluation of lung immunity in chimpanzees

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Muggenburg, B.A.; Bowen, J.A.

    1980-01-01

    The effects of inhaled pollutants on the immune defenses in the lung can be studied in several animal species. To assure that the data obtained can be extrapolated to man, it is essential that the development of lung immunity is similar in the experimental animal selected and in humans. Because of the similarity of immune responses in chimpanzees and in humans, the development of immunity in the chimpanzee after lung immunization was evaluated. The results from the chimpanzees were qualitatively the same as those from previous studies in which single lung lobes of dogs were immunized. It was concluded that immunotoxicology data obtained in dogs can be used to estimate the effects of inhaled pollutants on the immune defense mechanism in the human lung

  10. MenB-FHbp Meningococcal Group B Vaccine (Trumenba®): A Review in Active Immunization in Individuals Aged ≥ 10 Years.

    Science.gov (United States)

    Shirley, Matt; Taha, Muhamed-Kheir

    2018-02-01

    MenB-FHbp (bivalent rLP2086; Trumenba ® ) is a recombinant protein-based vaccine targeting Neisseria meningitidis serogroup B (MenB), which has recently been licensed in the EU for active immunization to prevent invasive disease caused by MenB in individuals ≥ 10 years of age. The vaccine, which contains a variant from each of the two identified subfamilies of the meningococcal surface protein factor H-binding protein (fHBP), has been licensed in the USA for active immunization in individuals 10-25 years of age since 2014. This article reviews the immunogenicity, reactogenicity and tolerability of MenB-FHbp, with a focus on the EU label and the European setting. As demonstrated in an extensive program of clinical trials in adolescents and young adults, a two-dose or three-dose series of MenB-FHbp elicits a strong immune response against a range of MenB test strains selected to be representative of strains prevalent in Europe and the USA. Follow-up studies investigating the persistence of the MenB-FHbp immune response and the effect of a booster dose of the vaccine indicate that a booster dose should be considered (following a primary vaccine series) in individuals at continued risk of invasive meningococcal disease. MenB-FHbp vaccine appears to be moderately reactogenic but, overall, is generally well tolerated, with most adverse reactions being mild to moderate in severity. Although post-marketing, population-based data will be required to establish the true effectiveness of the vaccine, currently available data indicate that MenB-FHbp, in a two-dose or three-dose series, is likely to provide broad protection against MenB strains circulating in Europe.

  11. Theoretical analysis of the evolution of immune memory

    Directory of Open Access Journals (Sweden)

    Magnus Carsten

    2010-12-01

    Full Text Available Abstract Background The ability of an immune system to remember pathogens improves the chance of the host to survive a second exposure to the same pathogen. This immunological memory has evolved in response to the pathogen environment of the hosts. In vertebrates, the memory of previous infection is physiologically accomplished by the development of memory T and B cells. Many questions concerning the generation and maintenance of immunological memory are still debated. Is there a limit to how many memory cells a host can generate and maintain? If there is a limit, how should new cells be incorporated into a filled memory compartment? And how many different pathogens should the immune system remember? Results In this study, we examine how memory traits evolve as a response to different pathogen environments using an individual-based model. We find that even without a cost related to the maintenance of a memory pool, the positive effect of bigger memory pool sizes saturates. The optimal diversity of a limited memory pool is determined by the probability of re-infection, rather than by the prevalence of a pathogen in the environment, or the frequency of exposure. Conclusions Relating immune memory traits to the pathogen environment of the hosts, our population biological framework sheds light on the evolutionary determinants of immune memory.

  12. Immunization registries in the EMR Era

    Science.gov (United States)

    Stevens, Lindsay A.; Palma, Jonathan P.; Pandher, Kiran K.; Longhurst, Christopher A.

    2013-01-01

    Background: The CDC established a national objective to create population-based tracking of immunizations through regional and statewide registries nearly 2 decades ago, and these registries have increased coverage rates and reduced duplicate immunizations. With increased adoption of commercial electronic medical records (EMR), some institutions have used unidirectional links to send immunization data to designated registries. However, access to these registries within a vendor EMR has not been previously reported. Purpose: To develop a visually integrated interface between an EMR and a statewide immunization registry at a previously non-reporting hospital, and to assess subsequent changes in provider use and satisfaction. Methods: A group of healthcare providers were surveyed before and after implementation of the new interface. The surveys addressed access of the California Immunization Registry (CAIR), and satisfaction with the availability of immunization information. Information Technology (IT) teams developed a “smart-link” within the electronic patient chart that provides a single-click interface for visual integration of data within the CAIR database. Results: Use of the tool has increased in the months since its initiation, and over 20,000 new immunizations have been exported successfully to CAIR since the hospital began sharing data with the registry. Survey data suggest that providers find this tool improves workflow and overall satisfaction with availability of immunization data. (p=0.009). Conclusions: Visual integration of external registries into a vendor EMR system is feasible and improves provider satisfaction and registry reporting. PMID:23923096

  13. Mentoring to develop research selfefficacy, with particular reference to previously disadvantaged individuals

    Directory of Open Access Journals (Sweden)

    S. Schulze

    2010-07-01

    Full Text Available The development of inexperienced researchers is crucial. In response to the lack of research self-efficacy of many previously disadvantaged individuals, the article examines how mentoring can enhance the research self-efficacy of mentees. The study is grounded in the self-efficacy theory (SET – an aspect of the social cognitive theory (SCT. Insights were gained from an in-depth study of SCT, SET and mentoring, and from a completed mentoring project. This led to the formulation of three basic principles. Firstly, institutions need to provide supportive environmental conditions that facilitate research selfefficacy. This implies a supportive and efficient collective system. The possible effects of performance ratings and reward systems at the institution also need to be considered. Secondly, mentoring needs to create opportunities for young researchers to experience successful learning as a result of appropriate action. To this end, mentees need to be involved in actual research projects in small groups. At the same time the mentor needs to facilitate skills development by coaching and encouragement. Thirdly, mentors need to encourage mentees to believe in their ability to successfully complete research projects. This implies encouraging positive emotional states, stimulating self-reflection and self-comparison with others in the group, giving positive evaluative feedback and being an intentional role model.

  14. Mucosal and systemic immune modulation by Trichuris trichiura in a self-infected individual

    DEFF Research Database (Denmark)

    Dige, Anders Kirch; Rasmussen, Tue Kruse; Nejsum, Peter

    2017-01-01

    Helminthic therapy of immune-mediated diseases has gained attention in recent years, but we know little of how helminths modulate human immunity. In this study, we investigated how self-infection with Trichuris (T.) trichiura in an adult man without intestinal disease affected mucosal and systemic...

  15. Immune Regulation by Self-Recognition

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2015-01-01

    Circulating T cells that specifically target normal self-proteins expressed by regulatory immune cells were first described in patients with cancer, but can also be detected in healthy individuals. The adaptive immune system is distinguished for its ability to differentiate between self......-antigens and foreign antigens. Thus, it was remarkable to discover T cells that apparently lacked tolerance to important self-proteins, eg, IDO, PD-L1, and FoxP3, expressed in regulatory immune cells. The ability of self-reactive T cells to react to and eliminate regulatory immune cells can influence general immune...... reactions. This suggests that they may be involved in immune homeostasis. It is here proposed that these T cells should be termed antiregulatory T cells (anti-Tregs). The role of anti-Tregs in immune-regulatory networks may be diverse. For example, pro-inflammatory self-reactive T cells that react...

  16. Varicella-zoster virus immunity in dermatological patients on systemic immunosuppressant treatment.

    LENUS (Irish Health Repository)

    Hackett, C B

    2012-02-01

    BACKGROUND: Primary varicella infection is caused by varicella-zoster virus (VZV). It is a common childhood infection, which is usually benign but can occasionally cause morbidity and mortality. In immunosuppressed adults, atypical presentation and disseminated disease can occur with significant morbidity and mortality. A VZV vaccine is available. OBJECTIVES: This study was designed to measure the prevalence of immunity to VZV and to determine the predictive value of a self-reported history of varicella infection in a population of dermatological patients receiving systemic immunosuppressant therapy. We sought to assess the need for routine serological testing for varicella-zoster immunity in this cohort. METHODS: Serological testing for VZV immunity was done on 228 patients receiving systemic immunosuppressive treatment for a dermatological condition. Information regarding a history of previous primary VZV infection was obtained from each patient. RESULTS: Two hundred and twenty-eight patients had VZV serology performed. The mean age of the patients was 49.6 years. The prevalence of VZV seropositivity in this cohort was 98.7%. One hundred and two patients (44.7%) reported having a definite history of primary VZV. The sensitivity of a self-reported history of VZV infection was 45.3% with a specificity of 100%. The positive and negative predictive values of a self-reported history of VZV for serologically confirmed immunity were 100% and 2.3%, respectively. CONCLUSIONS: The prevalence of VZV IgG antibodies in our cohort of Irish dermatology patients receiving immunosuppressive therapy is 98.7%. A recalled history of varicella infection is a good predictor of serological immunity. This study has shown that there are VZV-susceptible individuals within our cohort. These patients did not have a clear history of previous infection. We recommend serological testing of patients without a clear history of infection prior to the commencement of immunosuppressive therapy and

  17. Active and passive immunity, vaccine types, excipients and licensing.

    Science.gov (United States)

    Baxter, David

    2007-12-01

    Abstract Immunity is the state of protection against infectious disease conferred either through an immune response generated by immunization or previous infection or by other non-immunological factors. This article reviews active and passive immunity and the differences between them: it also describes the four different commercially available vaccine types (live attenuated, killed/inactivated, subunit and toxoid): it also looks at how these different vaccines generate an adaptive immune response.

  18. Achieving population-level immunity to rabies in free-roaming dogs in Africa and Asia.

    Directory of Open Access Journals (Sweden)

    Michelle K Morters

    Full Text Available Canine rabies can be effectively controlled by vaccination with readily available, high-quality vaccines. These vaccines should provide protection from challenge in healthy dogs, for the claimed period, for duration of immunity, which is often two or three years. It has been suggested that, in free-roaming dog populations where rabies is endemic, vaccine-induced protection may be compromised by immuno-suppression through malnutrition, infection and other stressors. This may reduce the proportion of dogs that seroconvert to the vaccine during vaccination campaigns and the duration of immunity of those dogs that seroconvert. Vaccination coverage may also be limited through insufficient vaccine delivery during vaccination campaigns and the loss of vaccinated individuals from populations through demographic processes. This is the first longitudinal study to evaluate temporal variations in rabies vaccine-induced serological responses, and factors associated with these variations, at the individual level in previously unvaccinated free-roaming dog populations. Individual-level serological and health-based data were collected from three cohorts of dogs in regions where rabies is endemic, one in South Africa and two in Indonesia. We found that the vast majority of dogs seroconverted to the vaccine; however, there was considerable variation in titres, partly attributable to illness and lactation at the time of vaccination. Furthermore, >70% of the dogs were vaccinated through community engagement and door-to-door vaccine delivery, even in Indonesia where the majority of the dogs needed to be caught by net on successive occasions for repeat blood sampling and vaccination. This demonstrates the feasibility of achieving population-level immunity in free-roaming dog populations in rabies-endemic regions. However, attrition of immune individuals through demographic processes and waning immunity necessitates repeat vaccination of populations within at least

  19. Graves' Disease as a Manifestation of Immune Reconstitution in HIV-Infected Individuals after Initiation of Highly Active Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Samad Rasul

    2011-01-01

    Full Text Available Graves' disease after the initiation of highly active antiretroviral therapy (HAART in certain HIV-1-infected individuals has been described as an immune reconstitution inflammatory syndrome (IRIS. This phenomenon should be suspected in individuals who present with clinical deterioration and a presentation suggestive of hyperthyroidism despite good virological and immunological response to HAART. Signs and symptoms of hyperthyroidism may be discrete or overt and typically develop 8–33 months after initiating therapy. One to two percent of HIV-infected patients can present with overt thyroid disease. Relatively few cases of Graves' IRIS have been reported in the literature to date. We describe four cases of Graves' IRIS in HIV-infected patients who were started on HAART therapy.

  20. Studies on cross-immunity among syngeneic tumors by immunization with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Ito, Izumi

    1977-01-01

    In order to clarify whether cross-immunity among 3-methyl-cholanthrene (MCA)-induced sarcomas in C3H/He mice can be established or not, transplantations of syngeneic tumors were carried out in mice immunized with gamma-irradiated (13,000 rad 60 Co) tumor cells and in those immunized with living tumor cells thereafter. The following results were obtained. By using immunizing procedure with only gamma-irradiated tumor cells, a pair of tumors originating from one and the same mouse showed cross-resistance to each other. However, no such evidence was seen among tumors originating from different mice. Cross-immunity among syngeneic tumors originating from different mice could be clearly observed, when immunizing procedure using living tumor cells was added after the treatment with gamma-irradiated tumor cells. It was considered that common antigenicity among MCA-induced sarcoma cells was decreased by gamma-irradiation and that individual differences of tumor antigenecity were shown distinctly under such conditions. (auth.)

  1. The metabolic cost of mounting an immune response in male brown anoles (Anolis sagrei).

    Science.gov (United States)

    Cox, Christian L; Peaden, Robert T; Cox, Robert M

    2015-09-09

    The tradeoff between reproduction and survival is central to life-history theory and is thought to reflect underlying energetic tradeoffs between reproduction and self-maintenance. Immune responses to parasites and pathogens are important components of self-maintenance in many species, but whether these defenses impose significant energetic costs has only been tested in a handful of organisms. We tested for a metabolic cost of mounting an immune response in the male brown anole (Anolis sagrei), a lizard in which we have previously shown that reproduction causes a marked reduction in immune response to the novel antigen phytohaemagglutinin (PHA). We treated captive male anoles with a subcutaneous injection of either PHA, which induces an immune response that manifests as localized swelling, or saline vehicle as a control. Prior to injection and at 24, 48, and 72 hr post-injection, we measured swelling at the site of injection and whole-animal resting metabolic rate (RMR) using stop-flow respirometry. Although we detected a robust swelling response to PHA at 24, 48, and 72 hr post-injection, mean RMR did not differ between treatments at any of these time points. However, within the PHA treatment group, RMR increased with the extent of swelling, suggesting a variable metabolic cost that scales with the magnitude of the induced immune response. Although individual anoles varied considerably in the extent to which they responded to PHA challenge, our results suggest that an immune response can impose a substantial metabolic cost (potentially as much as 63% above baseline RMR) for individuals that do respond maximally. J. Exp. Zool. 9999A:XX-XX, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. No long-term evidence of hyporesponsiveness after use of pneumococcal conjugate vaccine in children previously immunized with pneumococcal polysaccharide vaccine.

    Science.gov (United States)

    Licciardi, Paul V; Toh, Zheng Quan; Clutterbuck, Elizabeth A; Balloch, Anne; Marimla, Rachel A; Tikkanen, Leena; Lamb, Karen E; Bright, Kathryn J; Rabuatoka, Uraia; Tikoduadua, Lisi; Boelsen, Laura K; Dunne, Eileen M; Satzke, Catherine; Cheung, Yin Bun; Pollard, Andrew J; Russell, Fiona M; Mulholland, Edward K

    2016-06-01

    A randomized controlled trial in Fiji examined the immunogenicity and effect on nasopharyngeal carriage after 0, 1, 2, or 3 doses of 7-valent pneumococcal conjugate vaccine (PCV7; Prevnar) in infancy followed by 23-valent pneumococcal polysaccharide vaccine (23vPPV; Pneumovax) at 12 months of age. At 18 months of age, children given 23vPPV exhibited immune hyporesponsiveness to a micro-23vPPV (20%) challenge dose in terms of serotype-specific IgG and opsonophagocytosis, while 23vPPV had no effect on vaccine-type carriage. This follow-up study examined the long-term effect of the 12-month 23vPPV dose by evaluating the immune response to 13-valent pneumococcal conjugate vaccine (PCV13) administration 4 to 5 years later. Blood samples from 194 children (now 5-7 years old) were taken before and 28 days after PCV13 booster immunization. Nasopharyngeal swabs were taken before PCV13 immunization. We measured levels of serotype-specific IgG to all 13 vaccine serotypes, opsonophagocytosis for 8 vaccine serotypes, and memory B-cell responses for 18 serotypes before and after PCV13 immunization. Paired samples were obtained from 185 children. There were no significant differences in the serotype-specific IgG, opsonophagocytosis, or memory B-cell response at either time point between children who did or did not receive 23vPPV at 12 months of age. Nasopharyngeal carriage of PCV7 and 23vPPV serotypes was similar among the groups. Priming with 1, 2, or 3 PCV7 doses during infancy did not affect serotype-specific immunity or carriage. Immune hyporesponsiveness induced by 23vPPV in toddlers does not appear to be sustained among preschool children in this context and does not affect the pneumococcal carriage rate in this age group. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Impact of aging on neurocognitive performance in previously antiretroviral-naive HIV-infected individuals on their first suppressive regimen.

    Science.gov (United States)

    Coban, Hamza; Robertson, Kevin; Smurzynski, Marlene; Krishnan, Supriya; Wu, Kunling; Bosch, Ronald J; Collier, Ann C; Ellis, Ronald J

    2017-07-17

    Despite treatment with virologically suppressive antiretroviral therapy (ART), neurocognitive impairment may persist or develop de novo in aging HIV-infected individuals. We evaluated advancing age as a predictor of neurocognitive impairment in a large cohort of previously ART-naive individuals on long-term ART. The AIDS Clinical Trials Group Longitudinal Linked Randomized Trials was a prospective cohort study of HIV-infected individuals originally enrolled in randomized ART trials. This analysis examined neurocognitive outcomes at least 2 years after ART initiation. All participants underwent annual neurocognitive testing consisting of Trail making A and B, the wechsler adult intelligence scale-revised Digit Symbol and Hopkins Verbal Learning Tests. Uni and multivariable repeated measures regression models evaluated factors associated with neurocognitive performance. Predictors at parent study entry (ART naive) included entry demographics, smoking, injection drug use, hepatitis B surface antigen, hepatitis C virus serostatus, history of stroke, ART regimen type, pre-ART nadir CD4 cell count, and plasma viral load and as well as time-updated plasma viral load and CD4 cell count. The cohort comprised 3313 individuals with median pre-ART age of 38 years, 20% women; 36% Black, non-Hispanic; 22% Hispanic. Virologic suppression was maintained at 91% of follow-up visits. Neurocognitive performance improved with years of ART. After adjusting for the expected effects of age using norms from HIV-negative individuals, the odds of neurocognitive impairment at follow-up visits among the HIV infected increased by nearly 20% for each decade of advancing age. Despite continued virologic suppression and neurocognitive improvement in the cohort as a whole, older individuals were more likely to have neurocognitive impairment than younger individuals.

  4. Complex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild.

    Science.gov (United States)

    Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M

    2013-01-01

    The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.

  5. A Comparative Study of Peripheral Immune Responses to Taenia solium in Individuals with Parenchymal and Subarachnoid Neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Iskra Tuero

    2015-10-01

    Full Text Available The ability of Taenia solium to modulate the immune system likely contributes to their longevity in the human host. We tested the hypothesis that the nature of the immune response is related to the location of parasite and clinical manifestations of infection.Peripheral blood mononuclear cells (PBMC were obtained from untreated patients with neurocysticercosis (NCC, categorized as having parenchymal or subarachnoid infection by the presence of cysts exclusively within the parenchyma or in subarachnoid spaces of the brain, and from uninfected (control individuals matched by age and gender to each patient. Using multiplex detection technology, sera from NCC patients and controls and cytokine production by PBMC after T. solium antigen (TsAg stimulation were assayed for levels of inflammatory and regulatory cytokines. PBMC were phenotyped by flow cytometry ex vivo and following in vitro stimulation with TsAg.Sera from patients with parenchymal NCC demonstrated significantly higher Th1 (IFN-γ/IL-12 and Th2 (IL-4/IL-13 cytokine responses and trends towards higher levels of IL-1β/IL-8/IL-5 than those obtained from patients with subarachnoid NCC. Also higher in vitro antigen-driven TNF-β secretion was detected in PBMC supernatants from parenchymal than in subarachnoid NCC. In contrast, there was a significantly higher IL-10 response to TsAg stimulation in patients with subarachnoid NCC compared to parenchymal NCC. Although no differences in regulatory T cells (Tregs frequencies were found ex vivo, there was a trend towards greater expansion of Tregs upon TsAg stimulation in subarachnoid than in parenchymal NCC when data were normalized for the corresponding controls.T. solium infection of the subarachnoid space is associated with an enhanced regulatory immune response compared to infection in the parenchyma. The resulting anti-inflammatory milieu may represent a parasite strategy to maintain a permissive environment in the host or diminish

  6. Universal immunity to influenza must outwit immune evasion

    Directory of Open Access Journals (Sweden)

    Sergio Manuel Quinones-Parra

    2014-06-01

    Full Text Available Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody responses to the surface haemagglutinin (HA and neuraminidase (NA proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a need for cross-protective or universal influenza vaccines to overcome the necessity for annual immunisation against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1 and H7N9. The key to generating universal influenza immunity via vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive antibody responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8+ T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and antibodies, the mechanisms of immune evasion in influenza, and how to counteract commonly occurring

  7. Season of birth shapes neonatal immune function

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Rasmussen, Morten Arendt; Kreiner-Møller, Eskil

    2016-01-01

    Birth season has been reported to be a risk factor for several immune-mediated diseases. We hypothesized that this association is mediated by differential changes in neonatal immune phenotype and function with birth season. We sought to investigate the influence of season of birth on cord blood...... immune cell subsets and inflammatory mediators in neonatal airways. Cord blood was phenotyped for 26 different immune cell subsets, and at 1 month of age, 20 cytokines and chemokines were quantified in airway mucosal lining fluid. Multivariate partial least squares discriminant analyses were applied...... to determine whether certain immune profiles dominate by birth season, and correlations between individual cord blood immune cells and early airway immune mediators were defined. We found a birth season-related fluctuation in neonatal immune cell subsets and in early-life airway mucosal immune function...

  8. Immune epitope database analysis resource (IEDB-AR)

    DEFF Research Database (Denmark)

    Zhang, Qing; Wang, Peng; Kim, Yohan

    2008-01-01

    We present a new release of the immune epitope database analysis resource (IEDB-AR, http://tools.immuneepitope.org), a repository of web-based tools for the prediction and analysis of immune epitopes. New functionalities have been added to most of the previously implemented tools, and a total...

  9. Improving vaccine registries through mobile technologies: a vision for mobile enhanced Immunization information systems.

    Science.gov (United States)

    Wilson, Kumanan; Atkinson, Katherine M; Deeks, Shelley L; Crowcroft, Natasha S

    2016-01-01

    Immunization registries or information systems are critical to improving the quality and evaluating the ongoing success of immunization programs. However, the completeness of these systems is challenged by a myriad of factors including the fragmentation of vaccine administration, increasing mobility of individuals, new vaccine development, use of multiple products, and increasingly frequent changes in recommendations. Mobile technologies could offer a solution, which mitigates some of these challenges. Engaging individuals to have more control of their own immunization information using their mobile devices could improve the timeliness and accuracy of data in central immunization information systems. Other opportunities presented by mobile technologies that could be exploited to improve immunization information systems include mobile reporting of adverse events following immunization, the capacity to scan 2D barcodes, and enabling bidirectional communication between individuals and public health officials. Challenges to utilizing mobile solutions include ensuring privacy of data, access, and equity concerns, obtaining consent and ensuring adoption of technology at sufficiently high rates. By empowering individuals with their own health information, mobile technologies can also serve as a mechanism to transfer immunization information as individuals cross local, regional, and national borders. Ultimately, mobile enhanced immunization information systems can help realize the goal of the individual, the healthcare provider, and public health officials always having access to the same immunization information. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    Science.gov (United States)

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  11. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  12. The fight-or-flight response is associated with PBMC expression profiles related to immune defence and recovery in swine.

    Directory of Open Access Journals (Sweden)

    Michael Oster

    Full Text Available Defining phenotypes according to molecular features would promote the knowledge of functional traits like behaviour in both human and animal research. Beside physiological states or environmental factors, an innate predisposition of individual coping strategies was discussed, including the proactive and reactive pattern. According to backtest reactivity, animals assigned as high-resisting (proactive and low-resisting (reactive were immune challenged with tetanus toxoid in a time course experiment. Using the Affymetrix platform and qPCR, individual coping characteristics were reflected as gene expression signatures in porcine peripheral blood mononuclear cells (PBMC at naïve state (day 0 and in response to the model antigen (day 14, day 28, and day 140. Further, the blood cell count was analysed at all stages. On the transcriptional level, processes acting on cell communication, vasculogenesis, and blood coagulation were highlighted in high-resisting animals at naïve state (day 0, temporarily blurred due to immune challenge (day 14 but subsequently restored and intensified (day 28. Notably, similar amounts of white and red blood cells, platelets and haematocrit between high-resisting and low-resisting samples suggest coping-specific expression patterns rather than alterations in blood cell distribution. Taken together, the gene expression patterns indicate that proactive pigs might favour molecular pathways enabling an effective strategy for defence and recovery. This corroborates the previously suggested belief, that proactive animals are prone to an increased number of injuries as an evolutionary inherited mechanism. In contrast to previous assumptions, coping-specific immunity in pigs lacks inherited shifts between cellular and humoral immune responses.

  13. Vaccinia-based influenza vaccine overcomes previously induced immunodominance hierarchy for heterosubtypic protection.

    Science.gov (United States)

    Kwon, Ji-Sun; Yoon, Jungsoon; Kim, Yeon-Jung; Kang, Kyuho; Woo, Sunje; Jung, Dea-Im; Song, Man Ki; Kim, Eun-Ha; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jihye; Lee, Jeewon; Yoon, Yeup; Shin, Eui-Cheol; Youn, Jin-Won

    2014-08-01

    Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation.

    Science.gov (United States)

    Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  15. Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome.

    Science.gov (United States)

    Hanevik, Kurt; Kristoffersen, Einar; Mørch, Kristine; Rye, Kristin Paulsen; Sørnes, Steinar; Svärd, Staffan; Bruserud, Øystein; Langeland, Nina

    2017-01-28

    The role of pathogen specific cellular immune responses against the eliciting pathogen in development of post-infectious chronic fatigue syndrome (PI-CFS) is not known and such studies are difficult to perform. The aim of this study was to evaluate specific anti-Giardia cellular immunity in cases that developed CFS after Giardia infection compared to cases that recovered well. Patients reporting chronic fatigue in a questionnaire study three years after a Giardia outbreak were clinically evaluated five years after the outbreak and grouped according to Fukuda criteria for CFS and idiopathic chronic fatigue. Giardia specific immune responses were evaluated in 39 of these patients by proliferation assay, T cell activation and cytokine release analysis. 20 Giardia exposed non-fatigued individuals and 10 healthy unexposed individuals were recruited as controls. Patients were clinically classified into CFS (n = 15), idiopathic chronic fatigue (n = 5), fatigue from other causes (n = 9) and recovered from fatigue (n = 10). There were statistically significant antigen specific differences between these Giardia exposed groups and unexposed controls. However, we did not find differences between the Giardia exposed fatigue classification groups with regard to CD4 T cell activation, proliferation or cytokine levels in 6 days cultured PBMCs. Interestingly, sCD40L was increased in patients with PI-CFS and other persons with fatigue after Giardia infection compared to the non-fatigued group, and correlated well with fatigue levels at the time of sampling. Our data show antigen specific cellular immune responses in the groups previously exposed to Giardia and increased sCD40L in fatigued patients.

  16. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    Science.gov (United States)

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  17. Centrality measures for immunization of weighted networks

    Directory of Open Access Journals (Sweden)

    Mohammad Khansari

    2016-03-01

    Full Text Available Effective immunization of individual communities with minimal cost in vaccination has made great discussion surrounding the realm of complex networks. Meanwhile, proper realization of relationship among people in society and applying it to social networks brings about substantial improvements in immunization. Accordingly, weighted graph in which link weights represent the intensity and intimacy of relationships is an acceptable approach. In this work we employ weighted graphs and a wide variety of weighted centrality measures to distinguish important individuals in contagion of diseases. Furthermore, we propose new centrality measures for weighted networks. Our experimental results show that Radiality-Degree centrality is satisfying for weighted BA networks. Additionally, PageRank-Degree and Radiality-Degree centralities showmoreacceptable performance in targeted immunization of weighted networks.

  18. Immunogenicity and Safety of the HZ/su Adjuvanted Herpes Zoster Subunit Vaccine in Adults Previously Vaccinated With a Live Attenuated Herpes Zoster Vaccine.

    Science.gov (United States)

    Grupping, Katrijn; Campora, Laura; Douha, Martine; Heineman, Thomas C; Klein, Nicola P; Lal, Himal; Peterson, James; Vastiau, Ilse; Oostvogels, Lidia

    2017-12-12

    Protection against herpes zoster (HZ) induced by the live attenuated zoster vaccine Zostavax (ZVL) wanes within 3-7 years. Revaccination may renew protection. We assessed whether (re)vaccination with the adjuvanted HZ subunit vaccine candidate (HZ/su) induced comparable immune responses in previous ZVL recipients and ZVL-naive individuals (HZ-NonVac). In an open-label, multicenter study, adults ≥65 years of age, vaccinated with ZVL ≥5 years previously (HZ-PreVac), were matched to ZVL-naive adults (HZ-NonVac). Participants received 2 doses of HZ/su 2 months apart. The primary objective of noninferiority of the humoral immune response 1 month post-dose 2 was considered demonstrated if the upper limit of the 95% confidence interval (CI) of the adjusted anti-glycoprotein E geometric mean concentration (GMC) ratio of HZ-NonVac over HZ-PreVac was <1.5. HZ/su cellular immunogenicity, reactogenicity, and safety were also assessed. In 430 participants, humoral immune response to HZ/su was noninferior in HZ-PreVac compared with HZ-NonVac (adjusted GMC ratio, 1.04 [95% CI, .92-1.17]). Cellular immunogenicity, reactogenicity, and safety appeared to be comparable between groups. HZ/su was well-tolerated, with no safety concerns raised within 1 month post-dose 2. HZ/su induces a strong immune response irrespective of prior vaccination with ZVL, and may be an attractive option to revaccinate prior ZVL recipients. NCT02581410. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Epstein-Barr Virus-Specific Humoral Immune Responses in Health and Disease.

    Science.gov (United States)

    Middeldorp, Jaap M

    2015-01-01

    Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.

  20. Immunizing Children: A Qualitative Analysis of Future Parental Decision Making.

    Science.gov (United States)

    Espeleta, Hannah C; Beasley, Lana O; Ridings, Leigh E; Smith, Tyler J; Shields, Jennifer D

    2017-10-01

    Vaccinations are considered one of public health's greatest accomplishments. Despite evidence for vaccine effectiveness, uptake levels are still well below the Centers for Disease Control and Prevention's guidelines. The immunization decision-making process for parents is complex and depends on factors associated with knowledge and experiences. This qualitative study sought to expand on a previous decision-making model for immunizations by examining how individuals receive vaccination information, determining the role of experience in influencing decisions, and understanding how young adults might locate vaccination information in the future. Three focus groups were conducted with 29 undergraduate students without children. Results suggest that young adults exhibit an awareness of information regarding vaccine use and effectiveness, value doctor opinions and recommendations, and desire more robust research on vaccinations. Implications of these results include the importance of (1) disseminating vaccination education to young adults, (2) enhancing consistency/trust between medical professionals and youth, and (3) expanding public policy to increase vaccine uptake.

  1. Efforts to monitor Global progress on individual and community demand for immunization: Development of definitions and indicators for the Global Vaccine Action Plan Strategic Objective 2.

    Science.gov (United States)

    Hickler, Benjamin; MacDonald, Noni E; Senouci, Kamel; Schuh, Holly B

    2017-06-16

    The Second Strategic Objective of the Global Vaccine Action Plan, "individuals and communities understand the value of vaccines and demand immunization as both their right and responsibility", differs from the other five in that it does not focus on supply-side aspects of immunization programs but rather on public demand for vaccines and immunization services. This commentary summarizes the work (literature review, consultations with experts, and with potential users) and findings of the UNICEF/World Health Organization Strategic Objective 2 informal Working Group on Vaccine Demand, which developed a definition for demand and indicators related to Strategic Objective 2. Demand for vaccines and vaccination is a complex concept that is not external to supply systems but rather encompasses the interaction between human behaviors and system structure and dynamics. Copyright © 2017. Published by Elsevier Ltd.

  2. Coupling aging immunity with a sedentary lifestyle: has the damage already been done?--a mini-review.

    Science.gov (United States)

    Simpson, Richard J; Guy, Keith

    2010-01-01

    The elderly population is at an unprecedented risk of infectious diseases and malignancy due to apparently inevitable age-related declines in immunity. The 'immune risk profile' (IRP) is an array of biomarkers that has been used to predict morbidity and mortality in older adults. As it is generally accepted that middle-aged and elderly individuals who habitually participate in moderate-intensity exercise are less likely to incur an infection than their sedentary counterparts, this review addresses current knowledge on the effects of regular exercise on aspects of adaptive immunity as they relate to the IRP. Findings from cross-sectional studies mostly show enhanced immunity in physically active compared to sedentary older adults. These include greater T-cell responsiveness to mitogens in vitro, a reduced frequency of antigen-experienced and senescent T-cells (i.e. CD45RO+/KLRG1+/CD57+/CD28-), enhanced IL-2 production and T-lymphocyte expression of the IL-2 receptor, longer chromosome telomere lengths in blood leukocytes and in vivo immune responses to vaccines and recall antigens. In contrast, the evidence from the available longitudinal studies that have used an exercise training intervention in previously sedentary elderly to improve similar immune responses is less compelling. Although this might indicate that exercise has limited immune restorative properties in previously sedentary elderly, there are still relatively few studies that have addressed specific IRP criteria and the large variation in experimental design among the longitudinal studies complicates the juxtaposition of these results. It is clear that a more substantial and focused research approach is required before physical exercise can be used in earnest as an effective immune restorative strategy in the elderly. This mini-review summarizes the major findings of these studies and proposes future avenues of research to investigate the effects of regular exercise on aspects of adaptive immunity in

  3. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation

    Directory of Open Access Journals (Sweden)

    Heitor A. Paula Neto

    2017-11-01

    Full Text Available Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  4. Adult Immunization

    Directory of Open Access Journals (Sweden)

    Omer Coskun

    2008-04-01

    Full Text Available Despite the many advances in modern medicine, each year thousands of people in the world die from diseases that are easily prevented by safe and effective vaccines. Few measures in preventive medicine are of such proven value and as easy to implement as routine immunization against infectious diseases. Prevention of infection by immunization is a lifelong process. There are a number of vaccines that all adults (¡I18 years require. There are also other vaccines that need to be tailored to meet individual variations in risk resulting from occupation, foreign travel, underlying illness, lifestyle and age. In this study, we tried to review this important subject. [TAF Prev Med Bull 2008; 7(2.000: 159-166

  5. Human recombinant antibodies against Plasmodium falciparum merozoite surface protein 3 cloned from peripheral blood leukocytes of individuals with immunity to malaria demonstrate antiparasitic properties

    DEFF Research Database (Denmark)

    Lundquist, Rasmus; Nielsen, Leif Kofoed; Jafarshad, Ali

    2006-01-01

    against MSP-3 residues 194 to 257 (MSP-3(194-257)) on the molecular level. mRNA from peripheral blood leukocytes from clinically immune individuals was used as a source of Fab (fragment antibody) genes. A Fab-phage display library was made, and three distinct antibodies designated RAM1, RAM2, and RAM3...

  6. Competing spreading processes and immunization in multiplex networks

    International Nuclear Information System (INIS)

    Gao, Bo; Deng, Zhenghong; Zhao, Dawei

    2016-01-01

    Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of which follow the SIR process, in a two-layer networks based on microscopic Markov chain approach and numerical simulations. We find that strong capacities of awareness diffusion and self-protection of individuals could lead to a much higher epidemic threshold and a smaller outbreak size. However, the self-awareness of individuals has no obvious effect on the epidemic threshold and outbreak size. In addition, the immunization of the physical contact network under the interplay between of epidemic and awareness spreading is also investigated. The targeted immunization is found performs much better than random immunization, and the awareness diffusion could reduce the immunization threshold for both type of random and targeted immunization significantly.

  7. High-dimensional analysis of the aging immune system: verification of age-associated differences in immune signaling responses in healthy donors.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Ptacek, Jason; Friedland, Greg; Evensen, Erik; Putta, Santosh; Atallah, Michelle; Spellmeyer, David; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Schaeffer, Andrea; Lukac, Suzanne; Railkar, Radha; Beals, Chan R; Cesano, Alessandra; Carayannopoulos, Leonidas N; Hawtin, Rachael E

    2014-06-21

    Single-cell network profiling (SCNP) is a multiparametric flow cytometry-based approach that simultaneously measures evoked signaling in multiple cell subsets. Previously, using the SCNP approach, age-associated immune signaling responses were identified in a cohort of 60 healthy donors. In the current study, a high-dimensional analysis of intracellular signaling was performed by measuring 24 signaling nodes in 7 distinct immune cell subsets within PBMCs in an independent cohort of 174 healthy donors [144 elderly (>65 yrs); 30 young (25-40 yrs)]. Associations between age and 9 immune signaling responses identified in the previously published 60 donor cohort were confirmed in the current study. Furthermore, within the current study cohort, 48 additional immune signaling responses differed significantly between young and elderly donors. These associations spanned all profiled modulators and immune cell subsets. These results demonstrate that SCNP, a systems-based approach, can capture the complexity of the cellular mechanisms underlying immunological aging. Further, the confirmation of age associations in an independent donor cohort supports the use of SCNP as a tool for identifying reproducible predictive biomarkers in areas such as vaccine response and response to cancer immunotherapies.

  8. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV.

    Science.gov (United States)

    Liu, Guangliang; Zhang, Fangfang; Wang, Ruixue; London, Lucille; London, Steven D

    2014-04-01

    Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.

  9. Immunization strategy for epidemic spreading on multilayer networks

    Science.gov (United States)

    Buono, C.; Braunstein, L. A.

    2015-01-01

    In many real-world complex systems, individuals have many kinds of interactions among them, suggesting that it is necessary to consider a layered-structure framework to model systems such as social interactions. This structure can be captured by multilayer networks and can have major effects on the spreading of process that occurs over them, such as epidemics. In this letter we study a targeted immunization strategy for epidemic spreading over a multilayer network. We apply the strategy in one of the layers and study its effect in all layers of the network disregarding degree-degree correlation among layers. We found that the targeted strategy is not as efficient as in isolated networks, due to the fact that in order to stop the spreading of the disease it is necessary to immunize more than 80% of the individuals. However, the size of the epidemic is drastically reduced in the layer where the immunization strategy is applied compared to the case with no mitigation strategy. Thus, the immunization strategy has a major effect on the layer were it is applied, but does not efficiently protect the individuals of other layers.

  10. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults.

    Science.gov (United States)

    Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng

    2016-05-01

    Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.

  11. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  12. Helminths as governors of immune-mediated inflammation.

    Science.gov (United States)

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  13. Direct and Electronic Health Record Access to the Clinical Decision Support for Immunizations in the Minnesota Immunization Information System.

    Science.gov (United States)

    Rajamani, Sripriya; Bieringer, Aaron; Wallerius, Stephanie; Jensen, Daniel; Winden, Tamara; Muscoplat, Miriam Halstead

    2016-01-01

    Immunization information systems (IIS) are population-based and confidential computerized systems maintained by public health agencies containing individual data on immunizations from participating health care providers. IIS hold comprehensive vaccination histories given across providers and over time. An important aspect to IIS is the clinical decision support for immunizations (CDSi), consisting of vaccine forecasting algorithms to determine needed immunizations. The study objective was to analyze the CDSi presentation by IIS in Minnesota (Minnesota Immunization Information Connection [MIIC]) through direct access by IIS interface and by access through electronic health records (EHRs) to outline similarities and differences. The immunization data presented were similar across the three systems examined, but with varying ability to integrate data across MIIC and EHR, which impacts immunization data reconciliation. Study findings will lead to better understanding of immunization data display, clinical decision support, and user functionalities with the ultimate goal of promoting IIS CDSi to improve vaccination rates.

  14. Hepatitis B immunity in Australia: a comparison of national and prisoner population serosurveys.

    Science.gov (United States)

    Gidding, H F; Mahajan, D; Reekie, J; Lloyd, A R; Dwyer, D E; Butler, T

    2015-10-01

    In Australia, hepatitis B (HBV) vaccination is recommended for injecting drug users (IDUs), Indigenous adults and prisoners. We compared immunity to HBV in prisoners and the general population obtained from national serosurveys in 2007. Individuals with HBV surface antibody (HBsAb) positive sera were considered immune from past infection [HBV core antibody (HBcAb) positive] or from vaccination (HBcAb negative). Male prisoners aged 18-58 years had a higher HBsAb seroprevalence than the general population (46·4% vs. 39·4%, P = 0·061). Comparison of HBcAb results was possible for males aged 18-29 years. In this group, higher HBsAb seroprevalence was due to past infection (12·9% vs. 3·0%, P heritage or those with a previous episode of imprisonment had higher levels of immunity from past infection than the general population (19·3%, 33·0%, 17·1%, respectively, vs. 3·0%, P transmission in the prison setting and protect vulnerable members of the community who are at high risk of both infection and entering the prison system.

  15. PPARγ Agonists in Adaptive Immunity: What Do Immune Disorders and Their Models Have to Tell Us?

    Directory of Open Access Journals (Sweden)

    Laurindo Ferreira da Rocha Junior

    2013-01-01

    Full Text Available Adaptive immunity has evolved as a very powerful and highly specialized tool of host defense. Its classical protagonists are lymphocytes of the T- and B-cell lineage. Cytokines and chemokines play a key role as effector mechanisms of the adaptive immunity. Some autoimmune and inflammatory diseases are caused by disturbance of the adaptive immune system. Recent advances in understanding the pathogenesis of autoimmune diseases have led to research on new molecular and therapeutic targets. PPARγ are members of the nuclear receptor superfamily and are transcription factors involved in lipid metabolism as well as innate and adaptive immunity. PPARγ is activated by synthetic and endogenous ligands. Previous studies have shown that PPAR agonists regulate T-cell survival, activation and T helper cell differentiation into effector subsets: Th1, Th2, Th17, and Tregs. PPARγ has also been associated with B cells. The present review addresses these issues by placing PPARγ agonists in the context of adaptive immune responses and the relation of the activation of these receptors with the expression of cytokines involved in adaptive immunity.

  16. Eosinophils mediate protective immunity against secondary nematode infection.

    Science.gov (United States)

    Huang, Lu; Gebreselassie, Nebiat G; Gagliardo, Lucille F; Ruyechan, Maura C; Luber, Kierstin L; Lee, Nancy A; Lee, James J; Appleton, Judith A

    2015-01-01

    Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. Immune responses to mumps vaccine in adults who were vaccinated in childhood.

    Science.gov (United States)

    Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A

    2008-06-15

    In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.

  18. Sovereign immunity: Principles and application in medical malpractice.

    Science.gov (United States)

    Suk, Michael

    2012-05-01

    Tort law seeks accountability when parties engage in negligent conduct, and aims to compensate the victims of such conduct. An exception to this general rule governing medical negligence is the doctrine of sovereign immunity. Historically, individuals acting under the authority of the government or other sovereign entity had almost complete protection against tort liability. This article addressed the following: (1) the development of sovereign immunity in law, (2) the lasting impact of the Federal Tort Claims Act on sovereign immunity, and (3) the contemporary application of sovereign immunity to medical malpractice, using case examples from Virginia and Florida. I performed an Internet search to identify sources that addressed the concept of sovereign immunity, followed by a focused search for relevant articles in PubMed and LexisNexis, literature databases for medical and legal professionals, respectively. Historically, sovereign liability conferred absolute immunity from lawsuits in favor of the sovereign (ie, the government). Practical considerations in our democratic system have contributed to an evolution of this doctrine. Understanding sovereign immunity and its contemporary application are of value for any physician interested in the debate concerning medical malpractice in the United States. Under certain circumstances, physicians working as employees of the federal or state government may be protected against individual liability if the government is substituted as the defendant.

  19. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  20. Adaptive Immunity to Cryptococcus neoformans Infections

    Directory of Open Access Journals (Sweden)

    Liliane Mukaremera

    2017-11-01

    Full Text Available The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease.

  1. Immune defense of wild-caught Norway rats is characterized by increased levels of basal activity but reduced capability to respond to further immune stimulation.

    Science.gov (United States)

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Subota, Vesna; Kataranovski, Dragan; Kataranovski, Milena

    2018-03-01

    Studies of wild animals' immunity often use comparison with laboratory-raised individuals. Using such an approach, various data were obtained concerning wild Norway rat's immunity. Lower or higher potential of immune system cells to respond to activation stimuli were shown, because of analysis of disparate parameters and/ or small number of analyzed individuals. Inconsistent differences between laboratory and wild rats were shown too, owing to great response variability in wild rats. We hypothesized that wild rats will express more intense immune activity compared to their laboratory counterparts which live in a less demanding environment. To test this, we analyzed the circulating levels of inflammatory cytokine interleukin-6 (IL-6), a mediator which has a central role in host immune defense. In addition, we examined the activity of the central immune organ, the spleen, including cell proliferation and production of pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17), which are major effectors of cellular adaptive immune response. In order to obtain reasonable insight into the immunity of wild Norway rats, analysis was conducted on a much larger number of individuals compared to other studies. Higher levels of plasma IL-6, higher spleen mass, cellularity and basal IFN-γ production concomitantly with lower basal production of anti-inflammatory cytokine interleukin-10 (IL-10) revealed more intense immune activity in the wild compared to laboratory rats. However, lower responsiveness of their spleen cells' proinflammatory cytokine production to concanavalin A (ConA) stimulation, along with preserved capacity of IL-10 response, might be perceived as an indication of wild rats' reduced capability to cope with incoming environmental stimuli, but also as a means to limit tissue damage. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  2. The Concordance of Parent and Child Immunization.

    Science.gov (United States)

    Robison, Steve G; Osborn, Andrew W

    2017-05-01

    A substantial body of work has related survey-based parental vaccine hesitancy to noncompliant childhood immunization. However little attention has been paid to the connection between parents' own immunization behavior and the immunizations their children receive. Using the Oregon ALERT Immunization Information System, we identified adult caregiver-child pairs for children between 9 months and 17 years of age. The likelihood of adult-child concordance of influenza immunization per influenza season from 2010-2011 through 2014-2015 was assessed. The utility of adult immunization as a predictor was also assessed for other, noninfluenza recommended immunizations for children and adolescents. A total of 450 687 matched adult caregiver-child pairs were included in the study. The children of immunizing adults were 2.77 times more likely to also be immunized for seasonal influenza across all seasons (95% confidence interval, 2.74-2.79), with similar results applying within each season. Adult immunization status was also significantly associated with the likelihood of children and adolescents getting other noninfluenza immunizations, such as the human papillomavirus vaccine (HPV). When adults improved their own behavior from nonimmunizing to immunizing across influenza seasons, their children if not immunized in the previous season were 5.44 times (95% confidence interval, 5.35-5.53) more likely to become immunized for influenza. Children's likelihood of following immunization recommendations is associated with the immunization behavior of their parents. Encouraging parental immunization is a potential tool for increasing children's immunization rates. Copyright © 2017 by the American Academy of Pediatrics.

  3. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  4. Immune Repertoire after Immunization As Seen by Next-Generation Sequencing and Proteomics

    Directory of Open Access Journals (Sweden)

    Martijn M. VanDuijn

    2017-10-01

    Full Text Available The immune system produces a diverse repertoire of immunoglobulins in response to foreign antigens. During B-cell development, VDJ recombination and somatic mutations generate diversity, whereas selection processes remove it. Using both proteomic and NGS approaches, we characterized the immune repertoires in groups of rats after immunization with purified antigens. Proteomics and NGS data on the repertoire are in qualitative agreement, but did show quantitative differences that may relate to differences between the biological niches that were sampled for these approaches. Both methods contributed complementary information in the characterization of the immune repertoire. It was found that the immune repertoires resulting from each antigen had many similarities that allowed samples to cluster together, and that mutated immunoglobulin peptides were shared among animals with a response to the same antigen significantly more than for different antigens. However, the number of shared sequences decreased in a log-linear fashion relative to the number of animals that share them, which may affect future applications. A phylogenetic analysis on the NGS reads showed that reads from different individuals immunized with the same antigen populated distinct branches of the phylogram, an indication that the repertoire had converged. Also, similar mutation patterns were found in branches of the phylogenetic tree that were associated with antigen-specific immunoglobulins through proteomics data. Thus, data from different analysis methods and different experimental platforms show that the immunoglobulin repertoires of immunized animals have overlapping and converging features. With additional research, this may enable interesting applications in biotechnology and clinical diagnostics.

  5. Rapid emergence of free-riding behavior in new pediatric immunization programs.

    Directory of Open Access Journals (Sweden)

    Chris T Bauch

    Full Text Available BACKGROUND: Mathematical models have formalized how free-rider effects can threaten the stability of high vaccine coverage levels under established voluntary vaccination programs. However, little research has addressed the question of when free-riding begins to develop when a new vaccine is first introduced in a population. METHODOLOGY/PRINCIPAL FINDINGS: Here, we combine a game theoretical model of vaccinating behavior with an age-structured compartmental model to analyze rational vaccinating behavior in the first years of a universal immunization program, where a new vaccine is free to all children of a specified age. The model captures how successive birth cohorts face different epidemiological landscapes that have been shaped by the vaccinating decisions of previous birth cohorts, resulting in a strategic interaction between individuals in different birth cohorts. The model predicts a Nash equilibrium coverage level of for the first few birth cohorts under the new program. However, free-riding behavior emerges very quickly, with the Nash equilibrium vaccine coverage dropping significantly within 2-5 years after program initiation. Subsequently, a rich set of coupled dynamics between infection prevalence and vaccinating behaviors is possible, ranging from relatively stable (but reduced coverage in later birth cohorts to wide fluctuations in vaccine coverage from one birth cohort to the next. Individual tolerance for vaccine risk also starts out at relatively high levels before dropping significantly within a few years. CONCLUSIONS/SIGNIFICANCE: These results suggest that even relatively new immunization programs can be vulnerable to drops in vaccine coverage caused by vaccine scares and exacerbated by herd immunity effects, necessitating vigilance from the start.

  6. RNA-Binding Proteins in Plant Immunity

    Directory of Open Access Journals (Sweden)

    Virginia Woloshen

    2011-01-01

    Full Text Available Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.

  7. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription

    Science.gov (United States)

    Tschan, Serena; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Kremsner, Peter; Frank, Matthias

    2016-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections. PMID:27907004

  8. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  9. Personality and innate immune defenses in a wild bird

    NARCIS (Netherlands)

    Jacques-Hamilton, Rowan; Hall, Michelle L.; Buttemer, William A.; Matson, Kevin D.; Gonçalves da Silva, Anders; Mulder, Raoul A.; Peters, Anne

    2017-01-01

    We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In

  10. Signatures of T cells as correlates of immunity to Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Kjell Eneslätt

    Full Text Available Tularemia or vaccination with the live vaccine strain (LVS of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4(+ and/or CD8(+ T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naïve. Significant differences were detected between either of the immune donor groups and naïve individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, MCP-1, and MIP-1β. Expression of IFN-γ, MIP-1β, and CD107a by CD4(+CD45RO(+ or CD8(+CD45RO(+ T cells correlated to antigen concentrations. In particular, IFN-γ and MIP-1β strongly discriminated between immune and naïve individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-α-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.

  11. Stress thallium-201 myocardial scintigraphy for the detection of individual coronary arterial lesions in patients with and without previous myocardial infarction

    International Nuclear Information System (INIS)

    Rigo, P.; Bailey, I.K.; Griffith, L.S.; Pitt, B.; Wagner, H.N. Jr.; Becker, L.C.

    1981-01-01

    The value of stress thallium-201 scintigraphy for detecting individual coronary arterial stenoses was analyzed in 141 patients with angiographically proved coronary artery disease, 101 with and 40 without a previous myocardial infarction. In patients without infarction, the sensitivity for detecting greater than 50 percent narrowing in the left anterior descending, the right and the left circumflex coronary artery was 66, 53 and 24 percent, respectively. In those with a previous infarction, the sensitivity for demonstrating disease in the artery corresponding to the site of infarction was 100 percent for the left anterior descending, 79 percent for the right and 63 percent for the left circumflex coronary artery. In patients with a prior anterior infarction, concomitant right or left circumflex coronary arterial lesions were detected in only 1 of 12 cases, whereas in those with previous inferior or inferolateral infarction, the sensitivity for left anterior descending coronary artery disease was 69 percent. Because of the reasonably high sensitivity for detecting left anterior descending arterial disease, irrespective of the presence and location of previous infarction, myocardial scintigraphy was useful in identifying multivessel disease in patients with a previous inferior infarction. However, because of its relative insensitivity for right or left circumflex coronary artery disease, scintigraphy proved to be a poor predictor of multivessel disease in patients with a prior anterior infarction and in patients without previous myocardial infarction

  12. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  13. Photoperiod history differentially impacts reproduction and immune function in adult Siberian hamsters.

    Science.gov (United States)

    Prendergast, Brian J; Pyter, Leah M

    2009-12-01

    Seasonal changes in numerous aspects of mammalian immune function arise as a result of the annual variation in environmental day length (photoperiod), but it is not known if absolute photoperiod or relative change in photoperiod drives these changes. This experiment tested the hypothesis that an individual's history of exposure to day length determines immune responses to ambiguous, intermediate-duration day lengths. Immunological (blood leukocytes, delayed-type hypersensitivity reactions [DTH]), reproductive, and adrenocortical responses were assessed in adult Siberian hamsters (Phodopus sungorus) that had been raised initially in categorically long (15-h light/day; 15L) or short (9L) photoperiods and were subsequently transferred to 1 of 7 cardinal experimental photoperiods between 9L and 15L, inclusive. Initial photoperiod history interacted with contemporary experimental photoperiods to determine reproductive responses: 11L, 12L, and 13L caused gonadal regression in hamsters previously exposed to 15L, but elicited growth in hamsters previously in 9L. In hamsters with a 15L photoperiod history, photoperiods history, DTH responses were largely unaffected by increases in day length. Enhancement and suppression of blood leukocyte concentrations occurred at 13L in hamsters with photoperiod histories of 15L and 9L, respectively; however, prior exposure to 9L imparted marked hysteresis effects, which suppressed baseline leukocyte concentrations. Cortisol concentrations were only enhanced in 15L hamsters transferred to 9L and, in common with DTH, were unaffected by photoperiod treatments in hamsters with a 9L photoperiod history. Photoperiod history acquired in adulthood impacts immune responses to photoperiod, but manifests in a markedly dissimilar fashion as compared to the reproductive system. Prior photoperiod exposure has an enduring impact on the ability of the immune system to respond to subsequent changes in day length.

  14. Use of Exposure History to Identify Patterns of Immunity to Pneumonia in Bighorn Sheep (Ovis canadensis)

    OpenAIRE

    Plowright, Raina K.; Manlove, Kezia; Cassirer, E. Frances; Cross, Paul C.; Besser, Thomas E.; Hudson, Peter J.

    2013-01-01

    Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumoni...

  15. The serological response to heartwater immunization in cattle is an indicator of protective immunity

    DEFF Research Database (Denmark)

    Lawrence, J A; Tjørnehøj, Kirsten; Whiteland, A P

    1995-01-01

    A significant correlation was demonstrated in Friesian-cross steers between the serological response to previous vaccination with the Ball 3 strain of Cowdria ruminantium and the development of protective immunity against the Kalota isolate from Malawi. Of 10 animals which seroconverted after vac...

  16. Host immunity to Mycobacterium tuberculosis and risk of tuberculosis

    DEFF Research Database (Denmark)

    Michelsen, Sascha Wilk; Soborg, Bolette; Agger, Else-Marie

    2016-01-01

    BACKGROUND: Human immune responses to latent Mycobacterium tuberculosis (Mtb) infection (LTBI) may enable individuals to control Mtb infection and halt progression to tuberculosis (TB), a hypothesis applied in several novel TB vaccines. We aimed to evaluate whether immune responses to selected LTBI...

  17. Histone deacetylases as regulators of inflammation and immunity.

    Science.gov (United States)

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Immune intervention in type 1 diabetes.

    Science.gov (United States)

    Michels, Aaron W; Eisenbarth, George S

    2011-06-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results in the specific immune destruction of insulin producing beta cells. Currently there is no cure for T1D and treatment for the disease consists of lifelong administration of insulin. Immunotherapies aimed at preventing beta cell destruction in T1D patients with residual c-peptide or in individuals developing T1D are being evaluated. Networks of researchers such as TrialNet and the Immune Tolerance Network in the U.S. and similar networks in Europe have been established to evaluate such immunotherapies. This review focuses on immune intervention for the prevention and amelioration of human T1D with a focus on potential immune suppressive, antigen specific and environmental therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Evolution of transgenerational immunity in invertebrates.

    Science.gov (United States)

    Pigeault, R; Garnier, R; Rivero, A; Gandon, S

    2016-09-28

    Over a decade ago, the discovery of transgenerational immunity in invertebrates shifted existing paradigms on the lack of sophistication of their immune system. Nonetheless, the prevalence of this trait and the ecological factors driving its evolution in invertebrates remain poorly understood. Here, we develop a theoretical host-parasite model and predict that long lifespan and low dispersal should promote the evolution of transgenerational immunity. We also predict that in species that produce both philopatric and dispersing individuals, it may pay to have a plastic allocation strategy with a higher transgenerational immunity investment in philopatric offspring because they are more likely to encounter locally adapted pathogens. We review all experimental studies published to date, comprising 21 invertebrate species in nine different orders, and we show that, as expected, longevity and dispersal correlate with the transfer of immunity to offspring. The validity of our prediction regarding the plasticity of investment in transgenerational immunity remains to be tested in invertebrates, but also in vertebrate species. We discuss the implications of our work for the study of the evolution of immunity, and we suggest further avenues of research to expand our knowledge of the impact of transgenerational immune protection in host-parasite interactions. © 2016 The Author(s).

  20. Three randomized trials of maternal influenza immunization in Mali, Nepal, and South Africa: Methods and expectations.

    Science.gov (United States)

    Omer, Saad B; Richards, Jennifer L; Madhi, Shabir A; Tapia, Milagritos D; Steinhoff, Mark C; Aqil, Anushka R; Wairagkar, Niteen

    2015-07-31

    Influenza infection in pregnancy can have adverse impacts on maternal, fetal, and infant outcomes. Influenza vaccination in pregnancy is an appealing strategy to protect pregnant women and their infants. The Bill & Melinda Gates Foundation is supporting three large, randomized trials in Nepal, Mali, and South Africa evaluating the efficacy and safety of maternal immunization to prevent influenza disease in pregnant women and their infants <6 months of age. Results from these individual studies are expected in 2014 and 2015. While the results from the three maternal immunization trials are likely to strengthen the evidence base regarding the impact of influenza immunization in pregnancy, expectations for these results should be realistic. For example, evidence from previous influenza vaccine studies - conducted in general, non-pregnant populations - suggests substantial geographic and year-to-year variability in influenza incidence and vaccine efficacy/effectiveness. Since the evidence generated from the three maternal influenza immunization trials will be complementary, in this paper we present a side-by-side description of the three studies as well as the similarities and differences between these trials in terms of study location, design, outcome evaluation, and laboratory and epidemiological methods. We also describe the likely remaining knowledge gap after the results from these trials become available along with a description of the analyses that will be conducted when the results from these individual data are pooled. Moreover, we highlight that additional research on logistics of seasonal influenza vaccine supply, surveillance and strain matching, and optimal delivery strategies for pregnant women will be important for informing global policy related to maternal influenza immunization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment.

    Science.gov (United States)

    Hablützel, Pascal I; Brown, Martha; Friberg, Ida M; Jackson, Joseph A

    2016-09-01

    The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to

  2. Natural selection on immune defense: A field experiment.

    Science.gov (United States)

    Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto

    2017-02-01

    Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. Deworming and the immune status of HIV positive pre-antiretroviral therapy individuals in Arba Minch, Chencha and Gidole hospitals, Southern Ethiopia.

    Science.gov (United States)

    Abossie, Ashenafi; Petros, Beyene

    2015-09-28

    Helminths/HIV co-infections are very common in developing countries, especially in Africa. The effect of overlapping distribution of HIV and helminths becomes important because concomitant infection may exacerbate disease outcome of HIV infection. The study aimed at determining the effect of deworming on the immune status of helminth/HIV coinfected Pre-ART HIV patients attending three health institutions in Southern Ethiopia. 97 HIV-positive Pre-ART individuals were observed into 2 groups on the basis of helminth co-infection and no infection. Out of these, 66 study participants were helminths/HIV co-infected and the remaining 31 study participants were helminths (-)/HIV (+) control. Helminth/HIV co-infected participants CD4+ T-cell count was done at baseline, after 15 weeks and 6 months after antihelminthics treatment. Data were analyzed using SPSS version 16. Ascaris lumbricoides was the highest prevalent soil transmitted helminths in Pre-ART individuals in this study. CD4+ T-cell count in the Ascaris lumricoides/HIV co-infected was significantly higher (P = 0.05) and (P intestinal helminth parasites detected in the study. In conclusion, this finding on Ascaris lumbricoides-specific nature of immune interaction in helminth/HIV co-infection may partly explain the inconsistent reports on the role of intestinal helminths on progression of HIV infection to AIDS. Therefore, a well-designed longitudinal study on helminth species-specific HIV/helminth co-infection will be needed to fully establish the possible benefits of deworming in intestinal helminth/HIV co-infection.

  4. Adoptive transfer of immune enhancement of experimental ulcerative colitis.

    OpenAIRE

    Onderdonk, A B; Steeves, R M; Cisneros, R L; Bronson, R T

    1984-01-01

    Previous experiments with the carrageenan model for ulcerative colitis have shown that the inflammatory response in guinea pigs can be enhanced by immunization with and subsequent feeding of Bacteroides vulgatus to experimental animals. The present studies showed that only certain strains of B. vulgatus are capable of provoking immune enhancement of ulcerative colitis. Animals were fed carrageenan and various strains of viable B. vulgatus after immunization with a strain of B. vulgatus isolat...

  5. Reproduction Alters Hydration State but Does Not Impact the Positive Effects of Dehydration on Innate Immune Function in Children's Pythons (Antaresia childreni).

    Science.gov (United States)

    Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F

    Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.

  6. Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal.

    Directory of Open Access Journals (Sweden)

    Christopher Beirne

    Full Text Available Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes ('immune cells', stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles. Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.

  7. Low-level radiation effects on immune cells

    International Nuclear Information System (INIS)

    Makinodan, T.

    1995-01-01

    The purpose of this study was to characterize the effects of chronic low-dose ionizing radiation (LDR) on murine immune cells. Previously, it had been reported that LDR enhances the proliferative activity of T cells in vitro and delays the growth of transplantable immunogenic tumors in vivo. This suggests that LDR eliminates immune suppressor cells, which downregulates immune response and/or adoptively upregulates the responsiveness of immune effector cells. It had also been reported that human lymphocytes become refractive to high dose radiation-induced chromosomal aberrations by pretreating mitotically active lymphocytes in vitro with very low doses of ionizing radiation, and the adaptive effect can be abrogated by cycloheximide. This suggests that protein synthesis is required for lymphocytes to respond adoptively to LDR

  8. Immunization history of children with inflammatory bowel disease.

    Science.gov (United States)

    Soon, Ing Shian; deBruyn, Jennifer C C; Wrobel, Iwona

    2013-04-01

    Protection against vaccine-preventable diseases is important in children with inflammatory bowel disease (IBD) due to frequent immunosuppressive therapy use. The chronic relapsing nature and treatment regimen of IBD may necessitate modified timing of immunizations. To evaluate the completeness of immunizations in children with IBD. Immunization records of all children with IBD followed at the Alberta Children's Hospital (Calgary, Alberta) were reviewed. For children with incomplete immunization according to the province of Alberta schedule, the reasons for such were clarified. Demographic data and age at diagnosis were also collected. Immunization records were obtained from 145 (79%) children with IBD. Fifteen children had incomplete routine childhood immunizations, including two with no previous immunizations. The most common incomplete immunizations included hepatitis B (n=9), diphtheria, tetanus, acellular pertussis at 14 to 16 years of age (n=7), and diphtheria, tetanus, acellular pertussis, inactivated polio at four to six years of age (n=6). The reasons for incomplete immunization included use of immunosuppressive therapy at time of scheduled immunization; IBD-related symptoms at time of scheduled immunization; parental refusal; recent move from elsewhere with different immunization schedule; unawareness of routine immunization; and needle phobia. Although the majority of children with IBD had complete childhood immunizations, suboptimal immunizations were present in 10%. With increasing use of immunosuppressive therapy in IBD, physicians caring for children with IBD must periodically evaluate immunization status and ensure the completeness of childhood immunizations.

  9. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.

    Science.gov (United States)

    Timmis, J; Ismail, A R; Bjerknes, J D; Winfield, A F T

    2016-08-01

    Swarm robotics is concerned with the decentralised coordination of multiple robots having only limited communication and interaction abilities. Although fault tolerance and robustness to individual robot failures have often been used to justify the use of swarm robotic systems, recent studies have shown that swarm robotic systems are susceptible to certain types of failure. In this paper we propose an approach to self-healing swarm robotic systems and take inspiration from the process of granuloma formation, a process of containment and repair found in the immune system. We use a case study of a swarm performing team work where previous works have demonstrated that partially failed robots have the most detrimental effect on overall swarm behaviour. We have developed an immune inspired approach that permits the recovery from certain failure modes during operation of the swarm, overcoming issues that effect swarm behaviour associated with partially failed robots. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Natural Immunity to HIV: A Delicate Balance between Strength and Control

    Directory of Open Access Journals (Sweden)

    Johanne Poudrier

    2012-01-01

    Full Text Available Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host’s capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.

  11. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  12. Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood

    Directory of Open Access Journals (Sweden)

    Maria T. E. Prauße

    2018-03-01

    Full Text Available Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be

  13. Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood.

    Science.gov (United States)

    Prauße, Maria T E; Lehnert, Teresa; Timme, Sandra; Hünniger, Kerstin; Leonhardt, Ines; Kurzai, Oliver; Figge, Marc Thilo

    2018-01-01

    Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata . However, differences between the immune-evasion models could be observed for the

  14. Comparative immune phenotypic analysis of cutaneous Squamous Cell Carcinoma and Intraepidermal Carcinoma in immune-competent individuals: proportional representation of CD8+ T-cells but not FoxP3+ Regulatory T-cells is associated with disease stage.

    Directory of Open Access Journals (Sweden)

    Andrew Freeman

    Full Text Available Squamous Cell Carcinoma (SCC is a type of non-melanoma skin cancer prevalent in immune-suppressed transplant recipients and older individuals with a history of chronic sun-exposure. SCC itself is believed to be a late-stage manifestation that can develop from premalignant lesions including Intraepidermal Carcinoma (IEC. Notably, while SCC regression is rare, IEC typically regresses in response to immune modifying topical treatments, however the underlying immunological reasons for these differential responses remain unclear. This study aimed to define whether IEC and SCC are associated with distinct immune profiles. We investigated the immune cell infiltrate of photo-damaged skin, IEC, and SCC tissue using 10-colour flow cytometry following fresh lesion digest. We found that IEC lesions contain higher percentages of CD3+ T-cells than photo-damaged skin, however, the abundance of CD3-CD56+ Natural Killer (NK cells, CD11c+HLA-DR+ conventional Dendritic Cells (cDC, BDCA-2+HLA-DR+ plasmacytoid DC (pDC, FoxP3+ Regulatory T-cells (T-reg, Vα24+Vβ11+ invariant NKT-cells, and γδ Tcells did not alter with disease stage. Within the total T-cell population, high percentages of CD4+ T-cells were associated with SCC, yet CD8+ T-cells were less abundant in SCC compared with IEC. Our study demonstrates that while IEC lesions contain a higher proportion of T-cells than SCC lesions in general, SCC lesions specifically display a lower abundance of CD8+ T-cells than IEC. We propose that differences in CD8+ T-cell abundance contribute critically to the different capacity of SCC and IEC to regress in response to immune modifying topical treatments. Our study also suggests that a high ratio of CD4+ T-cells to CD8+ T-cells may be a immunological diagnostic indicator of late-stage SCC development in immune-competent patients.

  15. Immunization of C57BL/6 Mice with GRA2 Combined with MPL Conferred Partial Immune Protection against Toxoplasma gondii

    Science.gov (United States)

    Babaie, Jalal; Amiri, Samira; Homayoun, Robab; Azimi, Ebrahim; Mohabati, Reyhaneh; Berizi, Mahboobe; Sadaie, M. Reza; Golkar, Majid

    2018-01-01

    We have previously reported that immunization with GRA2 antigen of Toxoplasma gondii induces protective immunity in CBA/J (H2k) and BALB/c mice (H2d). We aimed to examine whether immunization of a distinct strain of rodent with recombinant dense granule antigens (GRA2) combined with monophosphorryl lipid A (MPL) adjuvant elicits protective immune response against T. gondii. C57BL/6 (H2b haplotype) mice were immunized with GRA2, formulated in MPL adjuvant. Strong humoral response, predominantly of IgG1 subclass and cellular response, IFN-γ, was detected at three weeks post immunization. Mice immunized with GRA2 had significantly (p < 0.01) fewer brain cysts than those in the adjuvant group, upon challenge infection. Despite the production of a strong antibody response, IFN-γ production and brain cyst reduction were not significant when the immunized mice were infected four months after the immunization. We can conclude that GRA2 immunization partially protects against T. gondii infection in C57BL/6 mice, though the potency and longevity of this antigen as a standalone vaccine may vary in distinct genetic backgrounds. This observation further emphasizes the utility of GRA2 for incorporation into a multi-antigenic vaccine against T. gondii.

  16. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    Science.gov (United States)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up

  17. Mental resilience, perceived immune functioning, and health

    Directory of Open Access Journals (Sweden)

    Van Schrojenstein Lantman M

    2017-03-01

    Full Text Available Marith Van Schrojenstein Lantman,1 Marlou Mackus,1 Leila S Otten,1 Deborah de Kruijff,1 Aurora JAE van de Loo,1,2 Aletta D Kraneveld,1,2 Johan Garssen,1,3 Joris C Verster1,2,4 1Division of Pharmacology, Utrecht University, Utrecht, the Netherlands; 2Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; 3Nutricia Research, Utrecht, the Netherlands; 4Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia Background: Mental resilience can be seen as a trait that enables an individual to recover from stress and to face the next stressor with optimism. People with resilient traits are considered to have a better mental and physical health. However, there are limited data available assessing the relationship between resilient individuals and their perspective of their health and immune status. Therefore, this study was conducted to examine the relationship between mental resilience, perceived health, and perceived immune status. Methods: A total of 779 participants recruited at Utrecht University completed a questionnaire consisting of demographic characteristics, the brief resilience scale for the assessment of mental resilience, the immune function questionnaire (IFQ, and questions regarding their perceived health and immune status. Results: When correcting for gender, age, height, weight, smoker status, amount of cigarettes smoked per week, alcohol consumption status, amount of drinks consumed per week, drug use, and frequency of past year drug use, mental resilience was significantly correlated with perceived health (r=0.233, p=0.0001, perceived immune functioning (r=0.124, p=0.002, and IFQ score (r=−0.185, p=0.0001. Conclusion: A significant, albeit modest, relationship was found between mental resilience and perceived immune functioning and health. Keywords: mental resilience, immune functioning, health, vitality, quality of life

  18. Aberrant cellular immune responses in humans infected persistently with parvovirus B19

    DEFF Research Database (Denmark)

    Isa, Adiba; Norbeck, Oscar; Hirbod, Taha

    2006-01-01

    A subset of parvovirus B19 (B19) infected patients retains the infection for years, as defined by detection of B19 DNA in bone marrow. Thus far, analysis of B19-specific humoral immune responses and viral genome variations has not revealed a mechanism for the absent viral clearance. In this study......, ex-vivo cellular immune responses were assessed by enzyme linked immunospot assay mounted against the majority of the translated viral genome. Compared to seropositive healthy individuals, individuals with B19 persistence (2-8 years) showed larger number of responses to the structural proteins (P = 0.......0022), whereas responses to the non-structural protein were of lower magnitude (P = 0.012). These observations provide the first findings of immunological discrepancies between individuals with B19 persistence and healthy individuals, findings that may reflect both failed immunity and antigenic exhaustion....

  19. Innate Immunity and Saliva in Candida albicans–mediated Oral Diseases

    Science.gov (United States)

    Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M.

    2016-01-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  20. Early-life inflammation, immune response and ageing.

    Science.gov (United States)

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  1. Immune Control of Burkholderia pseudomallei––Common, High-Frequency T-Cell Responses to a Broad Repertoire of Immunoprevalent Epitopes

    Directory of Open Access Journals (Sweden)

    Arnone Nithichanon

    2018-03-01

    Full Text Available Burkholderia pseudomallei (Bp is an environmental bacterial pathogen that causes potentially lethal sepsis in susceptible individuals and is considered a Category B, Tier-1 biothreat agent. As such, it is crucial to gain an improved understanding of protective immunity and potential vaccine candidates. The nature of immune correlates dictating why most exposed individuals in endemic regions undergo asymptomatic seroconversion while others succumb to life-threatening sepsis is largely uncharted. Bp seroreactive, immunogenic proteins have previously been identified by antigen microarray. We here set out to conduct an analysis of T-cell recognition of the Bp immunome using serodominant antigens represented in the original antigen microarray, examining immune correlates of disease in healthy seropositive individuals and those with acute disease or in convalescence. By screening a library of 739 overlapping peptides representing the sequences of 20 different Bp antigens, we aimed to define immune correlates of protection at the level of immunoprevalent T-cell epitopes. Responses to a large number of epitopes were common in healthy seropositive individuals: we found remarkably broad responsiveness to Bp epitopes, with 235 of 739 peptides recognized by ≥80% of all tested donors. The cumulative response to Bp epitopes in healthy, seropositive, donors from this endemic region were of the order of thousands of spot forming cells per million cells, making Bp recognition a significant component of the T-cell repertoire. Noteworthy among our findings, analysis revealed 10 highly immunoprevalent T-cell epitopes, able to induce Bp-specific IFNγ responses that were high in responding T-cell frequency within the repertoire, and also common across individuals with different human leukocyte antigen types. Acute melioidosis patients showed poor T-cell responses to the immunoprevalent epitopes, but acquired responsiveness following recovery from infection. Our

  2. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  3. Social immunity and the evolution of group living in insects.

    Science.gov (United States)

    Meunier, Joël

    2015-05-26

    The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Mechanism of immune evasion in breast cancer

    Science.gov (United States)

    Wang, Mozhi; Zhang, Changwang; Song, Yongxi; Wang, Zhenning; Wang, Yaojia; Luo, Fang; Xu, Yujie; Zhao, Yi; Wu, Zhonghua; Xu, Yingying

    2017-01-01

    Breast cancer (BC) is the most common malignant tumor among women, with high morbidity and mortality. Its onset, development, metastasis, and prognosis vary among individuals due to the interactions between tumors and host immunity. Many diverse mechanisms have been associated with BC, with immune evasion being the most widely studied to date. Tumor cells can escape from the body’s immune response, which targets abnormal components and foreign bodies, using different approaches including modification of surface antigens and modulation of the surrounding environment. In this review, we summarize the mechanisms and factors that impact the immunoediting process and analyze their functions in detail. PMID:28352189

  5. Effectiveness of a citywide patient immunization navigator program on improving adolescent immunizations and preventive care visit rates.

    Science.gov (United States)

    Szilagyi, Peter G; Humiston, Sharon G; Gallivan, Sarah; Albertin, Christina; Sandler, Martha; Blumkin, Aaron

    2011-06-01

    To assess the impact of a tiered patient immunization navigator intervention (immunization tracking, reminder/recall, and outreach) on improving immunization and preventive care visit rates in urban adolescents. Randomized clinical trial allocating adolescents (aged 11-15 years) to intervention vs standard of care control. Eight primary care practices. Population-based sample of adolescents (N = 7546). Immunization navigators at each practice implemented a tiered protocol: immunization tracking, telephone or mail reminder/recall, and home visits if participants remained unimmunized or behind on preventive care visits. Immunization rates at study end. Secondary outcomes were preventive care visit rates during the previous 12 months and costs. The intervention and control groups were similar at baseline for demographics (mean age, 13.5 years; 63% black, 14% white, and 23% Hispanic adolescents; and 74% receiving Medicaid), immunization rates, and preventive care visit rates. Immunization rates at the end of the study were 44.7% for the intervention group and 32.4% for the control group (adjusted risk ratio, 1.4; 95% confidence interval, 1.3-1.5); preventive care visit rates were 68.0% for the intervention group and 55.2% for the control group (1.2; 1.2-1.3). Findings were similar across practices, sexes, ages, and insurance providers. The number needed to treat for immunizations and preventive care visits was 9. The intervention cost was $3.81 per adolescent per month; the cost per additional adolescent fully vaccinated was $465, and the cost per additional adolescent receiving a preventive care visit was $417. A tiered tracking, reminder/recall, and outreach intervention improved immunization and preventive care visit rates in urban adolescents. clinicaltrials.gov Identifier: NCT00581347.

  6. Correlation between obesity, adipokines and the immune system

    Directory of Open Access Journals (Sweden)

    Marcos Regini Silveira

    2009-09-01

    Full Text Available Obesity is a worldwide health problem and the increase in its incidence, risks and consequences are a matter of growing concern. Obesity is characterized by the accumulation of fat in the body. Many studies are currently investigating obesity and associated comorbidities in an attempt to clarify the mechanisms involved. Fat tissue is a dynamic organ that secretes several factors, including adipokines. Adipokines are bioactive peptides secreted by fat cells, which are important for energy regulation and inflammatory and immune responses. Leptin, adiponectin and resistin are the most studied adipokines. The aim of this review was to gather information about these adipokines (leptin, adiponectin and resistin and their relationship with the immune response in obese individuals, as well as the susceptibility of these patients to infections. The results of the literature review permit some observations. The circulating levels of these adipokines are directly involved in the degree of obesity of the patient. High or low circulating concentrations of these adipokines may have beneficial or negative effects on immune competence, with obese patients being more susceptible to infection and inflammation than eutrophic individuals.Key words: Obesity; Adipokines; Leptin; Adiponectin; Resistin; Immune system.

  7. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    Science.gov (United States)

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort

    Directory of Open Access Journals (Sweden)

    Colebunders Robert

    2011-02-01

    Full Text Available Abstract Background Antiretroviral therapy (ART partially corrects immune dysfunction associated with HIV infection. The levels of T-cell immune activation and exhaustion after long-term, suppressive ART and their correlation with CD4 T-cell count reconstitution among ART-treated patients in African cohorts have not been extensively evaluated. Methods T-cell activation (CD38+HLA-DR+ and immune exhaustion (PD-1+ were measured in a prospective cohort of patients initiated on ART; 128 patient samples were evaluated and subcategorized by CD4 reconstitution after long-term suppressive treatment: Suboptimal [median CD4 count increase 129 (-43-199 cells/μl], N = 34 ], optimal [282 (200-415 cells/μl, N = 64] and super-optimal [528 (416-878 cells/μl, N = 30]. Results Both CD4+ and CD8 T-cell activation was significantly higher among suboptimal CD4 T-cell responders compared to super-optimal responders. In a multivariate model, CD4+CD38+HLADR+ T-cells were associated with suboptimal CD4 reconstitution [AOR, 5.7 (95% CI, 1.4-23, P = 0.014]. T-cell exhaustion (CD4+PD1+ and CD8+PD1+ was higher among suboptimal relative to optimal (P P = 0.022]. Conclusion T-cell activation and exhaustion persist among HIV-infected patients despite long-term, sustained HIV-RNA viral suppression. These immune abnormalities were associated with suboptimal CD4 reconstitution and their regulation may modify immune recovery among suboptimal responders to ART.

  9. Individual- and regional-level determinants of human papillomavirus (HPV) vaccine refusal: the Ontario Grade 8 HPV vaccine cohort study.

    Science.gov (United States)

    Remes, Olivia; Smith, Leah M; Alvarado-Llano, Beatriz E; Colley, Lindsey; Lévesque, Linda E

    2014-10-08

    Studies on the determinants of human papillomavirus (HPV) vaccine use have generally focused on individual-level characteristics, despite the potentially important influence of regional-level characteristics. Therefore, we undertook a population-based, retrospective cohort study to identify individual- and regional-level determinants of HPV vaccine refusal (non-receipt) in Ontario's (Canada) Grade 8 HPV Immunization Program. Ontario's administrative health and immunization databases were used to identify girls eligible for free HPV vaccination in 2007-2011 and to ascertain individual-level characteristics of cohort members (socio-demographics, vaccination history, health care utilization, medical history). The social and material characteristics of the girl's region (health unit) were derived from the 2006 Canadian Census. Generalized estimating equations (binomial distribution, logit link) were used to estimate the population-average effects of individual- and regional-level characteristics on HPV vaccine refusal. Our cohort consisted of 144,047 girls, 49.3% of whom refused HPV vaccination. Factors associated with refusal included a previous diagnosis of Down's syndrome (OR = 1.37, 95% CI 1.16-1.63) or autism (OR = 1.60, 95% CI 1.34-1.90), few physician visits (OR = 1.45, 95% CI 1.35-1.55), and previous refusal of mandatory (OR = 2.23, 95% CI 2.07-2.40) and optional (OR = 3.96, 95% CI 3.87-4.05) vaccines. Refusal was highest among the lowest and highest income levels. Finally, a previous diagnosis of obesity and living in an area of high deprivation were associated with lower refusal (OR = 0.87, 95% CI 0.83-0.92 and OR = 0.82 95%, CI 0.79-0.86, respectively). Studies on HPV vaccine determinants should consider regional-level factors. Efforts to increase HPV vaccine acceptance should include vulnerable populations (such as girls of low income) and girls with limited contact with the healthcare system.

  10. Immune phenotypes predict survival in patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Haouraa Mostafa

    2016-09-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM, a common primary malignant brain tumor, rarely disseminates beyond the central nervous system and has a very bad prognosis. The current study aimed at the analysis of immunological control in individual patients with GBM. Methods Immune phenotypes and plasma biomarkers of GBM patients were determined at the time of diagnosis using flow cytometry and ELISA, respectively. Results Using descriptive statistics, we found that immune anomalies were distinct in individual patients. Defined marker profiles proved highly relevant for survival. A remarkable relation between activated NK cells and improved survival in GBM patients was in contrast to increased CD39 and IL-10 in patients with a detrimental course and very short survival. Recursive partitioning analysis (RPA and Cox proportional hazards models substantiated the relevance of absolute numbers of CD8 cells and low numbers of CD39 cells for better survival. Conclusions Defined alterations of the immune system may guide the course of disease in patients with GBM and may be prognostically valuable for longitudinal studies or can be applied for immune intervention.

  11. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects

    Energy Technology Data Exchange (ETDEWEB)

    Fedorka, K. M. [Univ. of Central Florida, Orlando, FL (United States); Copeland, E. K. [Univ. of Central Florida, Orlando, FL (United States); Winterhalter, W. E. [Univ. of Central Florida, Orlando, FL (United States)

    2013-07-18

    To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade, a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius, where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (because of flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Individuals reared under fall-like conditions exhibited darker cuticles, greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.

  12. Immunization against Rabies with Plant-Derived Antigen

    Science.gov (United States)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  13. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

    Science.gov (United States)

    van Baarlen, Peter; Wells, Jerry M; Kleerebezem, Michiel

    2013-05-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  15. Organizational culture influences health care workers' influenza immunization behavior.

    Science.gov (United States)

    Isaacson, Nicole; Roemheld-Hamm, Beatrix; Crosson, Jesse C; Dicicco-Bloom, Barbara; Winston, Carla A

    2009-03-01

    Low rates of influenza immunization among health care workers (HCWs) pose a potential health risk to patients in primary care practices. Despite previous educational efforts and programs to reduce financial barriers, HCW influenza immunization rates remain low. Variation in practice-level organizational culture may affect immunization rates. To explore this relationship, we examined organizational cultures and HCWs' influenza immunization behaviors in three family medicine practices. We used a multi-method comparative case study. A field researcher used participant observation, in-depth interviews, and key informant interviews to collect data in each practice in November-December 2003. A diverse team used grounded theory to analyze text data. Organizational culture varied among practices and differing HCW immunization rates were observed. The most structured and business-like practice achieved immunization of all HCWs, while the other two practices exhibited greater variation in HCW immunization rates. Physicians in the practices characterized as chaotic/disorganized or divided were immunized at higher rates than other members of the practices. In these practices, organizational culture was associated with varying rates of influenza immunization for HCWs, especially among nonphysicians. Addressing elements of organizational culture such as beliefs regarding influenza immunization and office policies may facilitate the immunization of all staff members.

  16. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  17. Protective Immunity against Hepatitis C: Many Shades of Grey

    Directory of Open Access Journals (Sweden)

    Mohamed S Abdel-Hakeem

    2014-06-01

    Full Text Available The majority of individuals who become acutely infected with hepatitis C virus (HCV develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals (DAAs, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users (IDUs who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon re-exposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.

  18. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-gamma)-producing CD8(+) T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode...

  19. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  20. Immune tolerance in radiation chimeras

    International Nuclear Information System (INIS)

    Awaya, Kazuhiko; Kuniki, Hiromichi; Neki, Miyuki

    1978-01-01

    Establishment of immune tolerance in radiation chimeras and the mechanism of maintaining it were discussed from certain points. Semiallogeneic radiation chimeras are mostly of long-living, and the hematopoietic organ of this individual consists mainly of the cells derived from the marrow donor, i. e., F 1 -type cells. F 1 -type lymphocytes can distinguish parental strain cells from themselves. In these chimeras, a F 1 -skin graft maintains to be fresh as long as the host is alive, showing immune tolerance effective through its life. In establishment and maintenance of this immune tolerance, the suppressing mechanism of host-type or F 1 -type seems to be involved. The allogeneic radiation chimera has very poor long-survival rate compared with that of the semiallogeneic radiation chimera. To raise this survival rate, efforts are now being made from the immunological point of view. (Ueda, J.)

  1. Malaria in immuno-suppressed individuals on antiretroviral therapy ...

    African Journals Online (AJOL)

    Malaria in immuno-suppressed individuals on antiretroviral therapy (ART) in north-central Nigeria. C.R. Pam, B.T. Abubakar, G.O. Inwang, G.A. Amuga. Abstract. The immune deficiency caused by HIV infection reduces the immune response to malaria parasitaemia and therefore leads to an increased frequency of clinical ...

  2. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  3. Age-dependent trade-offs between immunity and male, but not female, reproduction.

    Science.gov (United States)

    McNamara, Kathryn B; van Lieshout, Emile; Jones, Therésa M; Simmons, Leigh W

    2013-01-01

    Immune function is costly and must be traded off against other life-history traits, such as gamete production. Studies of immune trade-offs typically focus on adult individuals, yet the juvenile stage can be a highly protracted period when reproductive resources are acquired and immune challenges are ubiquitous. Trade-offs during development are likely to be important, yet no studies have considered changes in adult responses to immune challenges imposed at different stages of juvenile development. By manipulating the timing of a bacterial immune challenge to the larvae of the cotton bollworm moth, we examined potential trade-offs between investment into immunity at different stages of juvenile development (early or late) and subsequent adult reproductive investment into sperm or egg production. Our data reveal an age-dependent trade-off between juvenile immune function and adult male reproductive investment. Activation of the immune response during late development resulted in a reduced allocation of resources to eupyrene (fertilizing) sperm production. Immune activation from the injection procedure itself (irrespective of whether individuals were injected with an immune elicitor or a control solution) also caused reproductive trade-offs; males injected early in development produced fewer apyrene (nonfertilizing) sperm. Contrary to many other studies, our study demonstrates these immune trade-offs under ad libitum nutritional conditions. No trade-offs were observed between female immune activation and adult reproductive investment. We suggest the differences in trade-offs observed between male sperm types and the absence of reproductive trade-offs in females may be the result of ontogenetic differences in gamete production in this species. Our data reveal developmental windows when trade-offs between immune function and gametic investment are made, and highlight the importance of considering multiple developmental periods when making inferences regarding the

  4. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes.

    Science.gov (United States)

    Awasthi, Sita; Huang, Jialing; Shaw, Carolyn; Friedman, Harvey M

    2014-08-01

    Herpes simplex virus 2 (HSV-2) subunit antigen vaccines targeting virus entry molecules have failed to prevent genital herpes in human trials. Our approach is to include a virus entry molecule and add antigens that block HSV-2 immune evasion. HSV-2 glycoprotein C (gC2) is an immune evasion molecule that inhibits complement. We previously reported that adding gC2 to gD2 improved vaccine efficacy compared to the efficacy of either antigen alone in mice and guinea pigs. Here we demonstrate that HSV-2 glycoprotein E (gE2) functions as an immune evasion molecule by binding the IgG Fc domain. HSV-2 gE2 is synergistic with gC2 in protecting the virus from antibody and complement neutralization. Antibodies produced by immunization with gE2 blocked gE2-mediated IgG Fc binding and cell-to-cell spread. Mice immunized with gE2 were only partially protected against HSV-2 vaginal challenge in mice; however, when gE2 was added to gC2/gD2 to form a trivalent vaccine, neutralizing antibody titers with and without complement were significantly higher than those produced by gD2 alone. Importantly, the trivalent vaccine protected the dorsal root ganglia (DRG) of 32/33 (97%) mice between days 2 and 7 postchallenge, compared with 27/33 (82%) in the gD2 group. The HSV-2 DNA copy number was significantly lower in mice immunized with the trivalent vaccine than in those immunized with gD2 alone. The extent of DRG protection using the trivalent vaccine was better than what we previously reported for gC2/gD2 immunization. Therefore, gE2 is a candidate antigen for inclusion in a multivalent subunit vaccine that attempts to block HSV-2 immune evasion. Herpes simplex virus is the most common cause of genital ulcer disease worldwide. Infection results in emotional distress for infected individuals and their partners, is life threatening for infants exposed to herpes during childbirth, and greatly increases the risk of individuals acquiring and transmitting HIV infection. A vaccine that prevents

  5. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows.

    Science.gov (United States)

    Zhao, Yuliang; Li, Mo; Sun, Yanfeng; Wu, Wei; Kou, Guanqun; Guo, Lingling; Xing, Danning; Wu, Yuefeng; Li, Dongming; Zhao, Baohua

    2017-08-01

    In free-living animals, recent evidence indicates that innate, and acquired, immunity varies with annual variation in the demand for, and availability of, food resources. However, little is known about how animals adjust the relationships between immunity and body condition, and between innate and acquired immunity to optimize survival over winter and reproductive success during the breeding stage. Here, we measured indices of body condition (size-corrected mass [SCM], and hematocrit [Hct]), constitutive innate immunity (plasma total complement hemolysis activity [CH 50 ]) and acquired immunity (plasma immunoglobulin A [IgA]), plus heterophil/lymphocyte (H/L) ratios, in male Eurasian tree sparrows (Passer montanus) during the wintering and the breeding stages. We found that birds during the wintering stage had higher IgA levels than those from the breeding stage. Two indices of body condition were both negatively correlated with plasma CH 50 activities, and positively with IgA levels in wintering birds, but this was not the case in the breeding birds. However, there was no correlation between CH 50 activities and IgA levels in both stages. These results suggest that the relationships between body condition and immunity can vary across life-history stage, and there are no correlations between innate and acquired immunity independent of life-history stage, in male Eurasian tree sparrows. Therefore, body condition indices predict immunological state, especially during the non-breeding stage, which can be useful indicators of individual immunocompetences for understanding the variations in innate and acquired immunity in free-living animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nutritional support to maintain proper immune status during intense training.

    Science.gov (United States)

    Gleeson, Michael

    2013-01-01

    Prolonged exercise and heavy training are associated with depressed immune function which can increase the risk of picking up minor infections. To maintain robust immunity, athletes should eat a well-balanced diet sufficient to meet their energy, carbohydrate, protein, and micronutrient requirements. Dietary deficiencies of protein and specific micronutrients have long been associated with immune dysfunction and an adequate intake of iron, zinc, and vitamins A, D, E, B6 and B12 is particularly important in the maintenance of immune function. Consuming carbohydrate during prolonged strenuous exercise attenuates rises in stress hormones and appears to limit the degree of exercise-induced immune depression. Similar effects can be seen with daily ingestion of high-dose antioxidant vitamin supplements, though concerns have been expressed that excessive antioxidant intake may impair exercise training adaptations. It is safe to say with reasonable confidence that individual amino acids, colostrum, Echinacea, and zinc are unlikely to boost immunity or reduce infection risk in athletes. The ingestion of carbohydrate during exercise and daily consumption of probiotic and plant polyphenol (e.g. quercetin)-containing supplements or foodstuffs (e.g. non-alcoholic beer) currently offer the best chance of success. This approach is likely to be most effective for individuals who are particularly prone to illness. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. Circumvention of Immunity to the Adenovirus Major Coat Protein Hexon

    Science.gov (United States)

    Roy, Soumitra; Shirley, Pamela S.; McClelland, Alan; Kaleko, Michael

    1998-01-01

    Immunity to adenoviruses is an important hurdle to be overcome for successful gene therapy. The presence of antibodies to the capsid proteins prevents efficacious adenovirus vector administration in vivo. We tested whether immunity to a particular serotype of adenovirus (Ad5) may be overcome with a vector that encodes the hexon sequences from a different adenovirus serotype (Ad12). We successfully constructed an adenovirus vector with a chimeric Ad5-Ad12 hexon which was not neutralized by plasma from C57BL/6 mice immunized with Ad5. The vector was also capable of transducing the livers of C57BL/6 mice previously immunized with Ad5. PMID:9658137

  8. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

    Directory of Open Access Journals (Sweden)

    Karen L Wozniak

    2009-09-01

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-gamma-producing C. neoformans strain, H99gamma, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99gamma compared to mice immunized with heat-killed C. neoformans (HKC.n.. Mice immunized with C. neoformans strain H99gamma had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL-4 receptor, IL-12p40, IL-12p35, IFN-gamma, T cell and B cell deficient mice with C. neoformans strain H99gamma demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99gamma-mediated protective immune responses against pulmonary C. neoformans infection. CD4(+ T cells, CD11c(+ cells, and Gr-1(+ cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-gamma or TNF-alpha in lungs of protected mice. In conclusion, immunization with C

  9. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity

    NARCIS (Netherlands)

    Roberts, Diane M.; Nanda, Anjali; Havenga, Menzo J. E.; Abbink, Peter; Lynch, Diana M.; Ewald, Bonnie A.; Liu, Jinyan; Thorner, Anna R.; Swanson, Patricia E.; Gorgone, Darci A.; Lifton, Michelle A.; Lemckert, Angelique A. C.; Holterman, Lennart; Chen, Bing; Dilraj, Athmanundh; Carville, Angela; Mansfield, Keith G.; Goudsmit, Jaap; Barouch, Dan H.

    2006-01-01

    A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of

  10. Effect of fasting on 24-h blood pressure values of individuals with no previous history of hypertension.

    Science.gov (United States)

    Seker, Ayse; Demirci, Hakan; Ocakoglu, Gokhan; Aydin, Ufuk; Ucar, Hakan; Yildiz, Gursel; Yaman, Ozen

    2017-10-01

    We aimed to analyze the difference in 24-h blood pressure values during Ramadan of fasting and nonfasting individuals with no previous history of hypertension. This study was planned as a multicenter research study in the cities of Izmit, Zonguldak, Sivas, and Adana. The percentage changes in the blood pressure of the patients were calculated from their blood pressure measurements at 0 h while they were resting. A Food Frequency Questionnaire was filled out by all participants. Forty patients were included in the fasting group and 55 patients were included in the nonfasting group in the study. There was a difference between the two groups in percent changes of systolic measurements performed at the 4th (5% difference and P=0.020), 13th (6% difference and P=0.015), 14th (10% difference and P=0.017), 18th (9% difference and P=0.027), 19th (9% difference and P=0.020), and 20th (6% difference and P=0.014) hours with respect to the baseline measurement at the 0 h. There was a difference between the fasting and nonfasting groups in the Fasting Food Questionnaire results. Meat consumption was significantly higher in the fasting group. A systolic blood pressure increase in fasting patients was observed in measurements at 18:00, 19:00, and 20:00 h. We believe that an increase of more than 10% in blood pressure at the time of iftar is an important result of our study in terms of the meal preferences of the individuals under risk.

  11. MicroRNA regulation of immune events at conception.

    Science.gov (United States)

    Robertson, Sarah A; Zhang, Bihong; Chan, Honyueng; Sharkey, David J; Barry, Simon C; Fullston, Tod; Schjenken, John E

    2017-09-01

    The reproductive tract environment at conception programs the developmental trajectory of the embryo, sets the course of pregnancy, and impacts offspring phenotype and health. Despite the fundamental importance of this stage of reproduction, the rate-limiting regulatory mechanisms operating locally to control fertility and fecundity are incompletely understood. Emerging studies highlight roles for microRNAs (miRNAs) in regulating reproductive and developmental processes and in modulating the quality and strength of the female immune response. Since endometrial receptivity and robust placentation require specific adaptation of the immune response, we hypothesize that miRNAs participate in establishing pregnancy through effects on key gene networks in immune cells. Our recent studies investigated miRNAs that are induced in the peri-conception environment, focusing on miRNAs that have immune-regulatory roles-particularly miR-223, miR-155, and miR-146a. Genetic mouse models deficient in individual miRNAs are proving informative in defining roles for these miRNAs in the generation and stabilization of regulatory T cells (Treg cells) that confer adaptive immune tolerance. Overlapping and redundant functions between miRNAs that target multiple genes, combined with multiple miRNAs targeting individual genes, indicate complex and sensitive regulatory networks. Although to date most data on miRNA regulation of reproductive events are from mice, conserved functions of miRNAs across species imply similar biological pathways operate in all mammals. Understanding the regulation and roles of miRNAs in the peri-conception immune response will advance our knowledge of how environmental determinants act at conception, and could have practical applications for animal breeding as well as human fertility. © 2017 Wiley Periodicals, Inc.

  12. Timely immunization completion among children in Vietnam from 2000 to 2011: a multilevel analysis of individual and contextual factors

    Directory of Open Access Journals (Sweden)

    Dao Thi Minh An

    2016-02-01

    Full Text Available Background: Since the beginning of 2014, there have been nearly 6,000 confirmed measles cases in northern Vietnam. Of these, more than 86% had neither been immunized nor was their vaccination status confirmed. Objective: To establish the likelihood that children under five in Vietnam had ‘timely immunization completion’ (2000–2011 and identify factors that account for variations in timely immunization completion. Design: Secondary data from the Multiple Indicator Cluster Survey (MICS, which sampled women aged 15–49 from the 1999 Vietnamese Population and Housing Census frame, were analyzed. Multilevel analysis using Poisson regression was undertaken. Results: Proportions of children under five who had timely immunization completion were low, especially for HBV dose 2 and HBV dose 3, which decreased between 2000 and 2011. Among seven vaccines used in the National Expanded Program of Immunization (EPI in 2000, 2006, and 2011, measles dose 1 had the highest timely immunization completion at 65.3%, 66.7%, and 73.6%, respectively, and hepatitis B dose 1 had the lowest at 17.5%, 19.3%, and 45.5%, respectively. Timely immunization completion was less common among children whose mothers had relatively less household wealth, were from ethnic minorities, lived in rural areas, and had less education. At the community level, the child's region of residence was the main predictor of timely immunization completion, and the availability of hospital delivery and community prenatal care in the local community were also determinants. Conclusion: The EPI should include ‘timely immunization completion’ as a quality indicator. There should also be greater focus and targeting in rural areas, and among women who have relatively low education, belong to minority groups, and have less household wealth. Further research on this topic using multilevel analysis is needed to better understand how these factors interact.

  13. Trauma equals danger—damage control by the immune system

    Science.gov (United States)

    Stoecklein, Veit M.; Osuka, Akinori; Lederer, James A.

    2012-01-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis. PMID:22654121

  14. Cancer Control Related to Stimulation of Immunity by Low-Dose Radiation

    OpenAIRE

    Liu, Shu-Zheng

    2006-01-01

    Previous studies showed that low dose radiation (LDR) could stimulate the immune system in both animal and human populations. This paper reviews the present status of relevant research as support to the use of LDR in clinical practice for cancer prevention and treatment. It has been demonstrated that radiation-induced changes in immune activity follows an inverse J-shaped curve, i.e., low dose stimulation and high dose suppression. The stimulation of immunity by LDR concerns most anticancer p...

  15. Demonstration of the feasibility of emergency department immunization against influenza and pneumococcus.

    Science.gov (United States)

    Slobodkin, D; Zielske, P G; Kitlas, J L; McDermott, M F; Miller, S; Rydman, R

    1998-11-01

    To demonstrate the feasibility of systematic immunization against influenza and pneumococcus in a public emergency department. This was a demonstration project conducted from October 21, 1996, through December 2, 1996, at Cook County Hospital, an inner-city hospital with a 1996 adult ED census of 120,449. Seventy-eight percent of patients are uninsured; 92% are people of color; 73% deny having a primary physician. Only 15% have emergency complaints. Nurses received standing orders that all nonemergency adult patients meeting Centers for Disease Control and Prevention criteria for high risk should be offered immunization against influenza and pneumococcus at triage. Cash prizes were offered to nurses appropriately immunizing the most patients. The date of immunization was entered into the computerized patient registration system, available to all providers within the county system. From November 4 through November 18, an extra nurse was assigned to triage to test for improvement in immunization rates. A time-motion study determined the time required per immunization on the basis of a convenience sample of 8 nurses drawn from all 3 shifts. Only 3% of identified high-risk patients reported previous pneumococcal immunization. Despite extreme variation in nurse performance, 2,631 patients (24% of patients triaged) were screened, and 716 high-risk patients were identified (27% of patients screened). A total of 1234 patients were immunized against influenza, and 241 patients were appropriately immunized against pneumococcus. Sixty-one percent of high-risk patients with no contraindication to influenza immunization were immunized against influenza. Thirty-five percent of high-risk patients not previously immunized against pneumococcus were immunized against pneumococcus. Immunizations per shift per triage nurse varied from 0 to 24. Median time for all activities related to immunization was 4 minutes (range, 2 to 10 minutes). There was no increase in immunization rates with

  16. Progressive Hypertrophic Genital Herpes in an HIV-Infected Woman despite Immune Recovery on Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Mark H. Yudin

    2008-01-01

    Full Text Available Most HIV-infected individuals are coinfected by Herpes simplex virus type 2 (HSV-2. HSV-2 reactivates more frequently in HIV-coinfected individuals with advanced immunosuppression, and may have very unusual clinical presentations, including hypertrophic genital lesions. We report the case of a progressive, hypertrophic HSV-2 lesion in an HIV-coinfected woman, despite near-complete immune restoration on antiretroviral therapy for up to three years. In this case, there was prompt response to topical imiquimod. The immunopathogenesis and clinical presentation of HSV-2 disease in HIV-coinfected individuals are reviewed, with a focus on potential mechanisms for persistent disease despite apparent immune reconstitution. HIV-infected individuals and their care providers should be aware that HSV-2 may cause atypical disease even in the context of near-comlpete immune reconstitution on HAART.

  17. The seroprevalence of human papillomavirus by immune status and by ethnicity in London

    Directory of Open Access Journals (Sweden)

    Harwood Catherine

    2009-09-01

    Full Text Available Abstract Background The natural history of cutaneous HPV is unclear and in particular, seroprevalence among individuals with different levels of immune function and ethnicity is unknown. As part of a study of cutaneous squamous cell carcinoma (SCC and HPV among organ transplant recipients (OTR from London, we investigated the seroprevalence and risk factors for 34 HPV types (detected using Luminex technology among 409 OTR patients without skin cancer (243 Caucasians and 166 non-Caucasians, 367 individuals with end stage renal failure on dialysis (222 Caucasians and 145 non-Caucasians and 152 immunocompetent (IC individuals without skin cancer (102 Caucasians and 50 non-Caucasians to compare the HPV seroprevalence in patients with differing immune status and ethnicity. In total, seroprevalence data from 928 individuals, all from London, was available. Results Overall, no difference between HPV seroprevalence by immune status was observed (P = 0.3 among Caucasian or among non-Caucasian individuals, with seroprevalence varying from 87% to 94% across different immune status and ethnic groups. Those individuals seropositive to multiple types of one genus were more likely to be seroreactive to multiple types of another genus, independent of immune status or ethnicity. Lower seroprevalence for gammaHPV 4, and to a lesser extent gammaHPV 48, were observed among OTR compared to IC and dialysis patients. Higher seroprevalence against antibodies to betaHPV 93 were detected more frequently in non-Caucasians than Caucasians whereas muHPV 1 and, to a lesser extent, gammaHPV 4 were found more frequently among Caucasians - these findings were independent of immune status. Within non-Caucasian subgroups, the seroprevalence of 8 HPV (alpha-mucosal HPV16 and 13, alpha-cutaneous HPV7 and 2, betaHPV8, 17, 23 and 38 was significantly (P Conclusion We did not observe major disturbance in antibody response between immunocompetent, dialysis and OTR individuals, but

  18. Inviting free-riders or appealing to prosocial behavior? game-theoretical reflections on communicating herd immunity in vaccine advocacy.

    Science.gov (United States)

    Betsch, Cornelia; Böhm, Robert; Korn, Lars

    2013-09-01

    Vaccination yields a direct effect by reducing infection, but also has the indirect effect of herd immunity: If many individuals are vaccinated, the immune population will protect unvaccinated individuals (social benefit). However, due to a vaccination's costs and risks, individual incentives to free-ride on others' protection also increase with the number of individuals who are already vaccinated (individual benefit). The objective was to assess the consequences of communicating the social and/or individual benefits of herd immunity on vaccination intentions. We assume that if social benefits are salient, vaccination intentions increase (prosocial behavior), whereas salience of individual benefits might decrease vaccination intentions (free-riding). In an online-experiment (N = 342) the definition of herd immunity was provided with one sentence summarizing the gist of the message, either making the individual or social benefit salient or both. A control group received no information about herd immunity. As a moderator, we tested the costs of vaccination (effort in obtaining the vaccine). The dependent measure was intention to vaccinate. When a message emphasized individual benefit, vaccination intentions decreased (free-riding). Communication of social benefit reduced free-riding and increased vaccination intentions when costs to vaccinate were low. Communicating the social benefit of vaccination may prevent free-riding and should thus be explicitly communicated if individual decisions are meant to consider public health benefits. Especially when vaccination is not the individually (but instead collectively) optimal solution, vaccinations should be easily accessible in order to reach high coverage. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Circumvention of MHC class II restriction by genetic immunization.

    Science.gov (United States)

    Schuler, K; Lu, C; Chang, H D; Croft, M; Zanetti, M; Gerloni, M

    2001-11-12

    The fate of T cell responses to peptide-based vaccination is subject to constraints by the major histocompatibility complex (MHC), MHC restriction. Using as a model system of T and B cell epitopes from the circumsporozoite protein of Plasmodium falciparum malaria parasite, we show that vaccination by somatic transgene immunization readily primes Balb/c mice (H-2(d)) a strain previously reported to be non-responder to immunization with a synthetic peptide vaccine encompassing these epitopes. Following genetic vaccination Balb/c mice developed a primary T cell response comparable to that of the responder strain C57Bl/6 (H-2(b)). Following booster immunization on day 45 Balb/c mice responded with a typical T cell memory response. Priming induced the formation of specific antibodies, which rose sharply after booster immunization. These findings suggests that genetic immunization can circumvent MHC class II restriction.

  20. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant.

    Science.gov (United States)

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B; Hettinga, Kasper

    2016-09-16

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after delivery were analyzed by filter aided sample preparation and dimethyl labeling combined with liquid chromatography tandem mass spectrometry. A total of 247 and 200 milk serum proteins were identified and quantified, respectively. The milk serum proteome showed a high similarity (80% overlap) on the qualitative level between women and over lactation. The quantitative changes in milk serum proteins were mainly caused by three groups of proteins, enzymes, and transport and immunity proteins. Of these 21 significantly changed proteins, 30% were transport proteins, such as serum albumin and fatty acid binding protein, which are both involved in transporting nutrients to the infant. The decrease of the enzyme bile salt-activated lipase as well as the immunity proteins immunoglobulins and lactoferrin coincide with the gradual maturation of the digestive and immune system of infants. The human milk serum proteome didn't differ qualitatively but it did quantitatively, both between mothers and as lactation advanced. The changes of the breast milk serum proteome over lactation corresponded with the development of the digestive and immune system of infants. Breast milk proteins provide nutrition, but also contribute to healthy development of infants. Despite the previously reported large number of identified breast milk proteins and their changes over lactation, less is known on the changes of these proteins in individual mothers. This study is the first to determine the qualitative and quantitative changes of milk proteome over lactation between individual mothers. The results indicate that the differences in the milk proteome between individual mothers are more related to the

  1. Oxidant trade-offs in immunity: an experimental test in a lizard.

    Directory of Open Access Journals (Sweden)

    Michael Tobler

    Full Text Available Immune system functioning and maintenance entails costs which may limit investment into other processes such as reproduction. Yet, the proximate mechanisms and 'currencies' mediating the costs of immune responses remain elusive. In vertebrates, up-regulation of the innate immune system is associated with rapid phagocytic production of pro-oxidant molecules (so-called 'oxidative burst' responses. Oxidative burst responses are intended to eliminate pathogens but may also constitute an immunopathological risk as they may induce oxidative damage to self cells. To minimize the risk of infection and, at the same time, damage to self, oxidative burst activity must be carefully balanced. The current levels of pro- and antioxidants (i.e. the individual oxidative state is likely to be a critical factor affecting this balance, but this has not yet been evaluated. Here, we perform an experiment on wild-caught painted dragon lizards (Ctenophorus pictus to examine how the strength of immune-stimulated oxidative burst responses of phagocytes in whole blood relates to individual oxidative status under control conditions and during an in vivo immune challenge with Escherichia coli lipopolysaccharide (LPS. Under control conditions, oxidative burst responses were not predicted by the oxidative status of the lizards. LPS-injected individuals showed a strong increase in pro-oxidant levels and a strong decrease in antioxidant levels compared to control individuals demonstrating a shift in the pro-/antioxidant balance. Oxidative burst responses in LPS-injected lizards were positively related to post-challenge extracellular pro-oxidants (reflecting the level of cell activation and negatively related to pre-challenge levels of mitochondrial superoxide (suggesting an immunoregulatory effect of this pro-oxidant. LPS-challenged males had higher oxidative burst responses than females, and in females oxidative burst responses seemed to depend more strongly on antioxidant

  2. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities.

    Science.gov (United States)

    Huang, Zhi; Rose, Aaron H; Hoffmann, Peter R

    2012-04-01

    Dietary selenium (]Se), mainly through its incorporation into selenoproteins, plays an important role in inflammation and immunity. Adequate levels of Se are important for initiating immunity, but they are also involved in regulating excessive immune responses and chronic inflammation. Evidence has emerged regarding roles for individual selenoproteins in regulating inflammation and immunity, and this has provided important insight into mechanisms by which Se influences these processes. Se deficiency has long been recognized to negatively impact immune cells during activation, differentiation, and proliferation. This is related to increased oxidative stress, but additional functions such as protein folding and calcium flux may also be impaired in immune cells under Se deficient conditions. Supplementing diets with above-adequate levels of Se can also impinge on immune cell function, with some types of inflammation and immunity particularly affected and sexually dimorphic effects of Se levels in some cases. In this comprehensive article, the roles of Se and individual selenoproteins in regulating immune cell signaling and function are discussed. Particular emphasis is given to how Se and selenoproteins are linked to redox signaling, oxidative burst, calcium flux, and the subsequent effector functions of immune cells. Data obtained from cell culture and animal models are reviewed and compared with those involving human physiology and pathophysiology, including the effects of Se levels on inflammatory or immune-related diseases including anti-viral immunity, autoimmunity, sepsis, allergic asthma, and chronic inflammatory disorders. Finally, the benefits and potential adverse effects of intervention with Se supplementation for various inflammatory or immune disorders are discussed.

  3. Population-expression models of immune response

    International Nuclear Information System (INIS)

    Stromberg, Sean P; Antia, Rustom; Nemenman, Ilya

    2013-01-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable. (paper)

  4. Transgenerational Social Stress, Immune Factors, Hormones, and Social Behavior

    Directory of Open Access Journals (Sweden)

    Christopher Anthony Murgatroyd

    2016-01-01

    Full Text Available A social signal transduction theory of depression has been proposed that states that exposure to social adversity alters the immune response and these changes mediate symptoms of depression such as anhedonia and impairments in social behavior. The exposure of maternal rats to the chronic social stress (CSS of a male intruder depresses maternal care and impairs social behavior in the F1 and F2 offspring of these dams. The objective of the present study was to characterize basal peripheral levels of several immune factors and related hormone levels in the adult F2 offspring of CSS exposed dams and assess whether changes in these factors are associated with previously reported deficits in allogrooming behavior. CSS decreased acid glycoprotein (α1AGP and intercellular adhesion molecule-1 (ICAM-1 in F2 females, and increased granulocyte macrophage-colony stimulating factor (GM-CSF in F2 males. There were also sex dependent changes in IL-18, tissue inhibitors of metalloproteinases 1 (TIMP-1, and vascular endothelial growth factor (VEGF. Progesterone was decreased and alpha melanocyte stimulating hormone (α-MSH was increased in F2 males, and brain-derived neurotrophic factor (BDNF was decreased in F2 females. Changes in α1AGP, GM-CSF, progesterone and α-MSH were correlated with decreased allogrooming in the F2 offspring of stressed dams. These results support the hypothesis that transgenerational social stress affects both the immune system and social behavior, and also support previous studies on the adverse effects of early life stress on immune functioning and stress associated immunological disorders, including the increasing prevalence of asthma. The immune system may represent an important transgenerational etiological factor in disorders which involve social and/or early life stress associated changes in social behavior, such as depression, anxiety, and autism, as well as comorbid immune disorders. Future studies involving immune and

  5. "The Impact of Mycobacterium tuberculosis Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" - Meeting report.

    Science.gov (United States)

    Boggiano, Cesar; Eichelberg, Katrin; Ramachandra, Lakshmi; Shea, Jaqueline; Ramakrishnan, Lalita; Behar, Samuel; Ernst, Joel D; Porcelli, Steven A; Maeurer, Markus; Kornfeld, Hardy

    2017-06-14

    Tuberculosis (TB) is the major cause of death from infectious diseases around the world, particularly in HIV infected individuals. TB vaccine design and development have been focused on improving Bacille Calmette-Guérin (BCG) and evaluating recombinant and viral vector expressed Mycobacterium tuberculosis (Mtb) proteins, for boosting BCG-primed immunity, but these approaches have not yet yielded significant improvements over the modest effects of BCG in protecting against infection or disease. On March 7-8, 2016, the National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on "The Impact of Mtb Immune Evasion on Protective Immunity: Implications for TB Vaccine Design" with the goal of defining immune mechanisms that could be targeted through novel research approaches, to inform vaccine design and immune therapeutic interventions for prevention of TB. The workshop addressed early infection events, the impact of Mtb evolution on the development and maintenance of an adaptive immune response, and the factors that influence protection against and progression to active disease. Scientific gaps and areas of study to revitalize and accelerate TB vaccine design were discussed and prioritized. These included a comprehensive evaluation of innate and Mtb-specific adaptive immune responses in the lung at different stages of disease; determining the role of B cells and antibodies (Abs) during Mtb infection; development of better assays to measure Mtb burden following exposure, infection, during latency and after treatment, and approaches to improving current animal models to study Mtb immunogenicity, TB disease and transmission. Copyright © 2017.

  6. Chimera states in multi-strain epidemic models with temporary immunity

    Science.gov (United States)

    Bauer, Larissa; Bassett, Jason; Hövel, Philipp; Kyrychko, Yuliya N.; Blyuss, Konstantin B.

    2017-11-01

    We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity. In the absence of cross-immunity between strains, dynamics of each individual strain exhibit emergence and annihilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a saddle-node bifurcation of limit cycles depending on the time delay associated with duration of temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically investigated by means of numerical simulations, and they suggest that cross-immunity is able to induce a diverse range of complex dynamical behaviors and synchronization patterns, including discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are observed for narrower cross-immunity kernels, which can have profound implications for understanding the dynamics of multi-strain diseases.

  7. [Evaluation of immunogenicity and safety of 2 immunizations with allantoic intranasal live influenza vaccine Ultragrivac].

    Science.gov (United States)

    Shishkina, L N; Mazurkova, N A; Ternovoĭ, V A; Bulychev, L E; Tumanov, Iu V; Skarnovich, M O; Kabanov, A S; Ryndiuk, N N; Kuzubov, V I; Mironov, A N; Stavskiĭ, E A; Drozdov, I G

    2011-01-01

    Evaluate reactogenicity, safety and immunogenicity in phase 2 clinical trials of 2 immunization schedules with Ultragrivac--an allantoic intranasal life influenza vaccine based on A/17/ duck/Potsdam/86/92 [17/H5] reassortant strain. 4 groups of volunteers participated in the study: group 1--40 individuals were vaccinated twice with a 10 day interval; group 2--40 individuals were vaccinated twice with a 21 day interval; group 3 (control)--10 individuals received placebo twice with a 10 day interval; group 4 (control)--10 individuals received placebo twice with a 21 day interval. Local (secretory IgA), cellular and humoral immune response were evaluated. Humoral immunity was evaluated by the intensity of increase of geometric mean antibody titers against 2 influenza virus strains A/17/duck/Potsdam/86/92 [17/H5] and A/chicken/Suzdalka/Nov-1 1/2005 (H5N1), and by the level of significant (4 times or more) antibody seroconversions after the vaccination. After the use of Ultragrivac the level of secretory IgA in the nasal cavity of vaccinated volunteers in the groups with revaccination intervals of 10 and 21 days increased significantly. The second immunization with 10 or 21 day intervals significantly increased postvaccinal humoral immune response. Humoral immune response induction after 2 vaccinations with 10 day interval was no less effective than with 21 day interval. Ultragrivac allantoic intranasal live influenza vaccine is areactogenic, harmless for vaccinated individuals, safe for those around, and has immunogenic properties against not only homologous virus A(H5N2), but also against influenza strain A(H5N1).

  8. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites

    Science.gov (United States)

    Honey bees (Apis mellifera) have a number of traits that effectively reduce the spread of pathogens and parasites throughout the colony. These mechanisms of social immunity are often analogous to the individual immune system. As such social immune defences function to protect the colony or superorga...

  10. Whole blood assay to access T cell-immune responses to Mycobacterium tuberculosis antigens in healthy Brazilian individuals

    Directory of Open Access Journals (Sweden)

    Paulo RZ Antas

    2004-02-01

    Full Text Available The production of interferon gamma (IFNgamma guarantees effective T cell-mediated immunity against Mycobacterium tuberculosis infection. In the present study, we simply compare the in vitro immune responses to Mycobacterium antigens in terms of IFNg production in a total of 10 healthy Brazilian volunteers. Whole blood and mononuclear cells were cultivated in parallel with PPD, Ag85B, and M. bovis hsp65, and five-days supernatants were harvested for cytokine detection by ELISA. The inter-assay result was that the overall profile of agreement in response to antigens was highly correlated (r² = 0.9266; p = 0.0102. Potential analysis is in current progress to dictate the usefulness of this method to access the immune responses also in tuberculosis patients and its contacts.

  11. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Triozzi, Pierre L.; Fernandez, Anthony P.

    2013-01-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  12. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  13. Dammarane triterpenes from the leaves of Panax ginseng enhance cellular immunity

    DEFF Research Database (Denmark)

    Tran, Tien-Lam; Kim, Young-Ran; Yang, Jun-Li

    2014-01-01

    In our search for immune stimulating materials from natural source, bioassay-guided fractionation of a methanol extract of Panax ginseng leaves led to the isolation of three dammarane triterpenes (1-3), including two previously unknown compounds 27-demethyl-(E,E)-20(22),23-dien-3β,6α,12β-trihydro......In our search for immune stimulating materials from natural source, bioassay-guided fractionation of a methanol extract of Panax ginseng leaves led to the isolation of three dammarane triterpenes (1-3), including two previously unknown compounds 27-demethyl-(E,E)-20(22),23-dien-3β,6α,12β...

  14. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  15. ACTIVATION OF GENES CONTROLLING THE IMMUNE SIGNALING PATHWAYS: DIFFERENTIAL INDIVIDUAL SENSITIVITY OF HUMAN BLOOD CELLS FOR INTERFERON PREPARATIONS AND IFN INDUCERS

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2015-01-01

    Full Text Available We have studied dose effects of several Interferon (IFN inducers, i.e., Genfaxon (beta-1 IFN, Cycloferon and Immunomax upon expression of six genes controlling the signaling in immune pathways (TLR3, TLR4, RIG1, IRF3, IPS, B2M, by means of real-time RT-PCR, being tested with blood cells from three humans. It is revealed that individual cell samples showed different sensitivity to these drugs, probably, due to constitutive levels of TLR3 and TLR4 gene expression and possible connections with their immune pathology. Genfaxon at a dose of 104 ME produced potent stimulation of TLR3, TLR4, IRF3 and B2M genes in two persons. Immunomax, at a dose 0,5 unit, exhibited same effect in one case only (with Epstein-Barr virus infection. Cycloferon stimulated gene expression at much lower levels than Genfaxon in any cases. We have shown a reverse correlation between sensitivity of the cells to Immunomax, and constitutive TLR3 and TLR4 expression. The stimulatory effects of Immunomax were maximal in a person with very low TLR3/4 gene expression. Immunomax boosted the genes from several signaling pathways, including TLR3, TLR4, but genes of RIG/IPS pathway showed higher activation. Cycloferon induced gene transcription of IRF3 and B2M-receptor to higher degree, than expression of TLR3 and TLR4 genes. Hence, our data concerning Genfaxon, Immunomax and Cycloferon confirm their IFN-inducing effects upon human blood cells. The RT-PCR-based evaluation of gene expression related to signaling immune pathways in blood cell populations will enable rapid and highly specific quantitation of IFN and IFN-inducer drugs activities, thus avoiding their biological testing in long-term cell cultures. 

  16. Cheetahs have a stronger constitutive innate immunity than leopards.

    Science.gov (United States)

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  17. Transplantational and specific antitumor immunity in retrospective view: new models based on transgenesis of individual chains of T-cell receptor

    Directory of Open Access Journals (Sweden)

    D. B. Kazanskiy

    2016-01-01

    Full Text Available Findings in experimental oncology in beginning of last century and subsequent achievements of genetics of tissue compatibility resulted in divergence of transplantational immunology and oncoimmunology. However, central achievements of both scientific fields are based on unified phenomenon of interaction between T-cell receptor (TCR and histocompatibility molecules. In this review we describe the history of ideas, achievements and unique experience of the team of the Laboratory of Regulatory Mechanisms in Immunity at Scientific Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center for all time of existence. This experience shows that efficiency of immunological defense including immunological surveillance are critically influenced by T-cell receptor repertoire. Transgenesis of individual chains of TCR is one of possible means to manage T-cell repertoire. Functional outcomes of transgenesis may be different due to diverse extent of dependence of α- and β-chains expression on the rules of allelic exclusion. Expression of transgenic β-chains results in the expansion of TCR repertoire diversity. Expression of β-chains is under strong control by allelic exclusion, resulting in formation of repertoire bearing mainly invariant transgenic β-chain pared with different α-chains and overall narrowing of repertoire. Earlier, we cloned genes encoding α- and β-chains of TCR of CD8+ memory cells specific to histocompatibility molecule H-2Kb . After introduction them in zigotes we have obtained transgenic mouse strains, which could be used for modeling of interactions between tumor cells and immune system of recipient. Normally, B10. D2 (R101 mice reject lymphoma EL4 cells in 12–14 days after transplantation, in spite of the fact, that allogeneic difference between B10. D2 (R101 (Kd Id Db mice and lymphoma EL4 (H-2b cells is only in one product of MHC, the H-2Kb molecule. Transgenics carrying β-chains of TCR displayed

  18. The Hayflick Limit and Age-Related Adaptive Immune Deficiency.

    Science.gov (United States)

    Gill, Zoe; Nieuwoudt, Martin; Ndifon, Wilfred

    2018-01-01

    The adaptive immune system (AIS) acquires significant deficiency during chronological ageing, making older individuals more susceptible to infections and less responsive to vaccines compared to younger individuals. At the cellular level, one of the most striking features of this ageing-related immune deficiency is the dramatic loss of T-cell diversity that occurs in elderly humans. After the age of 70 years, there is a sharp decline in the diversity of naïve T cells, including a >10-fold decrease in the CD4+ compartment and a >100-fold decrease in the CD8+ compartment. Such changes are detrimental because the AIS relies on a diverse naïve T-cell pool to respond to novel pathogens. Recent work suggests that this collapse of naïve T-cell diversity results from T cells reaching the Hayflick limit and being eliminated through both antigen-dependent and -independent pathways. The progressive attrition of telomeres is the molecular mechanism that underlies this Hayflick limit. Therefore, we propose that by measuring the telomere lengths of T cells with high resolution, it is possible to develop a unique biomarker of immune deficiency, potentially much better correlated with individual susceptibility to diseases compared to chronological age alone. © 2017 S. Karger AG, Basel.

  19. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients Not Detected in Analysis of Standard Immune Cell Types

    Directory of Open Access Journals (Sweden)

    Lauren M. Lepone

    2016-03-01

    Full Text Available Recent advances in human immunology have led to the identification of novel immune cell subsets and the biological function of many of these subsets has now been identified. The recent US Food and Drug Administration approval of several immunotherapeutics for the treatment of a variety of cancer types and the results of ongoing immunotherapy clinical studies requires a more thorough interrogation of the immune system. We report here the use of flow cytometry-based analyses to identify 123 immune cell subsets of peripheral blood mononuclear cells. The use of these panels defines multiple differences in younger (< 40 years vs. older (≥ 40 years individuals and between aged-matched apparently healthy individuals and metastatic cancer patients, aspects not seen in the analysis of the following standard immune cell types: CD8, CD4, natural killer, natural killer-T, regulatory T, myeloid derived suppressor cells, conventional dendritic cells (DCs, plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identification of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.

  20. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model.

    Science.gov (United States)

    Platteel, Anouk C M; Nieuwenhuizen, Natalie E; Domaszewska, Teresa; Schürer, Stefanie; Zedler, Ulrike; Brinkmann, Volker; Sijts, Alice J A M; Kaufmann, Stefan H E

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8 + T cell responses in vivo . As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4 + and CD8 + T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4 + T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4 + and CD8 + T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4 + T cells responding to Ag85B- and ESAT-6

  1. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A.; Thörn, Karolina; Cairns, Tina M.; Wegmann, Frank; Sattentau, Quentin J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes. PMID:28082979

  2. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs.

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A; Thörn, Karolina; Cairns, Tina M; Wegmann, Frank; Sattentau, Quentin J; Eisenberg, Roselyn J; Cohen, Gary H; Harandi, Ali M

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.

  3. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  4. Stromal infrastructure of the lymph node and coordination of immunity.

    Science.gov (United States)

    Chang, Jonathan E; Turley, Shannon J

    2015-01-01

    The initiation of adaptive immune responses depends upon the careful maneuvering of lymphocytes and antigen into and within strategically placed lymph nodes (LNs). Non-hematopoietic stromal cells form the cellular infrastructure that directs this process. Once regarded as merely structural features of lymphoid tissues, these cells are now appreciated as essential regulators of immune cell trafficking, fluid flow, and LN homeostasis. Recent advances in the identification and in vivo targeting of specific stromal populations have resulted in striking new insights to the function of stromal cells and reveal a level of complexity previously unrealized. We discuss here recent discoveries that highlight the pivotal role that stromal cells play in orchestrating immune cell homeostasis and adaptive immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The immune system in children with malnutrition - a systematic review

    DEFF Research Database (Denmark)

    Rytter, Maren Johanne Heilskov; Kolte, Lilian; Briend, André

    2014-01-01

    BACKGROUND: Malnourished children have increased risk of dying, with most deaths caused by infectious diseases. One mechanism behind this may be impaired immune function. However, this immune deficiency of malnutrition has not previously been systematically reviewed. OBJECTIVES: To review...... the scientific literature about immune function in children with malnutrition. METHODS: A systematic literature search was done in PubMed, and additional articles identified in reference lists and by correspondence with experts in the field. The inclusion criteria were studies investigating immune parameters...... in children aged 1-60 months, in relation to malnutrition, defined as wasting, underweight, stunting, or oedematous malnutrition. RESULTS: The literature search yielded 3402 articles, of which 245 met the inclusion criteria. Most were published between 1970 and 1990, and only 33 after 2003. Malnutrition...

  6. Immunization against Small Ruminant Lentiviruses

    Directory of Open Access Journals (Sweden)

    Beatriz Amorena

    2013-08-01

    Full Text Available Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease.

  7. Bartonella Endocarditis and Pauci-Immune Glomerulonephritis

    Science.gov (United States)

    Raybould, Jillian E.; Raybould, Alison L.; Morales, Megan K.; Zaheer, Misbah; Lipkowitz, Michael S.; Timpone, Joseph G.; Kumar, Princy N.

    2016-01-01

    Abstract Among culture-negative endocarditis in the United States, Bartonella species are the most common cause, with Bartonella henselae and Bartonella quintana comprising the majority of cases. Kidney manifestations, particularly glomerulonephritis, are common sequelae of infectious endocarditis, with nearly half of all Bartonella patients demonstrating renal involvement. Although a pauci-immune pattern is a frequent finding in infectious endocarditis–associated glomerulonephritis, it is rarely reported in Bartonella endocarditis. Anti–neutrophil cytoplasmic antibody (ANCA) positivity can be seen with many pathogens causing endocarditis and has been previously reported with Bartonella species. In addition, ANCA-associated vasculitis can also present with renal and cardiac involvement, including noninfectious valvular vegetations and pauci-immune glomerulonephritis. Given the overlap in their clinical presentation, it is difficult to differentiate between Bartonella endocarditis and ANCA-associated vasculitis but imperative to do so to guide management decisions. We present a case of ANCA-positive Bartonella endocarditis with associated pauci-immune glomerulonephritis that was successfully treated with medical management alone. PMID:27885316

  8. Parental care improves immunity in the seahorse (Hippocampus erectus).

    Science.gov (United States)

    Lin, Tingting; Zhang, Dong; Liu, Xin; Xiao, Dongxue

    2016-11-01

    In the present study, the sexual dimorphism in immune response in the seahorse Hippocampus erectus in which males compete for mates and invest heavily in parental care was assessed. Variability in immunocompetence in virginal seahorses with differing levels of sexual maturity (i.e., immaturity, early maturity and maturity) and with different mating statuses (i.e., virginal, experienced mating failure and experienced mating success) were analyzed by evaluating immune parameters in the plasma. Additionally, ultrastructural characteristics of the inner epithelium of the brood pouch were compared between males that had experienced mating failure and those that had succeeded. Generally, immunity in sexually mature virgin males was greater than in females, and mating competition significantly reduced males' immunity. However, parental care gave males stronger immune and metabolic abilities and resulted in their immunity significantly rebounding after a successful mating. The present study quantitatively clarifies, for the first time, how parental care and mating competition jointly affect immunity. Moreover, previous findings that females display more efficient immune defenses than males in conventional species (i.e., males are as competitor and females as care giver) and that males' immunity is higher than females' in the pipefish (i.e., females are as competitor and males as care giver) in combination with the present results indicate that parental care is a key factor for sexual dimorphism in immunity. The care-giving sex has strong immunity regardless of the sex in charge of mating competition or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Skin Immunization Obviates Alcohol-Related Immune Dysfunction

    Directory of Open Access Journals (Sweden)

    Rhonda M. Brand

    2015-11-01

    Full Text Available Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD and liver-sparing Meadows-Cook (MC diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM, directly to liver (hydrodynamic, or cutaneously (biolistic, ID. We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg, and myeloid-derived suppressor cell (MDSC populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH, antigen-specific cytotoxic T lymphocyte (CTL, and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.

  10. Late effects of radiation on immune system; a review

    International Nuclear Information System (INIS)

    Sado, T.

    1979-01-01

    Lymphocytes are divided into 2 major classes: T and B lymphocytes (or cells). T cells are responsible for cell-mediated immune response, and B cells for humoral immune response or antibody formation. The possible immunological complications that might develop as the late manifestation of radiation effects include: lymphoid neoplasms, immune complex diseases, auto-aggressive immune reactions, and other degenerative diseases of immunological nature. The development of lymphoid neoplasma following the exposure to radiation was extensively studied with mice. Radiation-induced immunological compications would not contribute significantly to the life-shortening of exposed individuals. The extensive health survey of adult A-bomb survivors revealed little evidence of immunological complications such as rheumatoid arthritis, kidney diseases, paraproteinemia, etc. The young healthy adults who had received thymic irradiation during infancy for the treatment of enlarged thymus manifested higher incidence of illness with abnormal immunological features. Immune complex diseases, particularly the inter-capillary glomerulosclerosis of kidneys, develop as a result of earlier exposure to high dose of radiation. (Yamashita, S.)

  11. The impact of strain-specific immunity on Lyme disease incidence is spatially heterogeneous.

    Science.gov (United States)

    Khatchikian, Camilo E; Nadelman, Robert B; Nowakowski, John; Schwartz, Ira; Wormser, Gary P; Brisson, Dustin

    2017-12-01

    Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne infection in the US. Recent studies have demonstrated that the incidence of human Lyme disease would have been even greater were it not for the presence of strain-specific immunity, which protects previously infected patients against subsequent infections by the same B. burgdorferi strain. Here, spatial heterogeneity is incorporated into epidemiological models to accurately estimate the impact of strain-specific immunity on human Lyme disease incidence. The estimated reduction in the number of Lyme disease cases is greater in epidemiologic models that explicitly include the spatial distribution of Lyme disease cases reported at the county level than those that utilize nationwide data. strain-specific immunity has the greatest epidemiologic impact in geographic areas with the highest Lyme disease incidence due to the greater proportion of people that have been previously infected and have developed strain-specific immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  13. U.S. Immunization program adult immunization activities and resources

    Science.gov (United States)

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  14. Construction of an integrated gene regulatory network link to stress-related immune system in cattle.

    Science.gov (United States)

    Behdani, Elham; Bakhtiarizadeh, Mohammad Reza

    2017-10-01

    The immune system is an important biological system that is negatively impacted by stress. This study constructed an integrated regulatory network to enhance our understanding of the regulatory gene network used in the stress-related immune system. Module inference was used to construct modules of co-expressed genes with bovine leukocyte RNA-Seq data. Transcription factors (TFs) were then assigned to these modules using Lemon-Tree algorithms. In addition, the TFs assigned to each module were confirmed using the promoter analysis and protein-protein interactions data. Therefore, our integrated method identified three TFs which include one TF that is previously known to be involved in immune response (MYBL2) and two TFs (E2F8 and FOXS1) that had not been recognized previously and were identified for the first time in this study as novel regulatory candidates in immune response. This study provides valuable insights on the regulatory programs of genes involved in the stress-related immune system.

  15. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  16. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  17. Induction of Boosted Immune Response in Mice by Leptospiral Surface Proteins Expressed in Fusion with DnaK

    Directory of Open Access Journals (Sweden)

    Marina V. Atzingen

    2014-01-01

    Full Text Available Leptospirosis is an important global disease of human and veterinary concern. Caused by pathogenic Leptospira, the illness was recently classified as an emerging infectious disease. Currently available veterinarian vaccines do not induce long-term protection against infection and do not provide cross-protective immunity. Several studies have suggested the use of DnaK as an antigen in vaccine formulation, due to an exceptional degree of immunogenicity. We focused on four surface proteins: rLIC10368 (Lsa21, rLIC10494, rLIC12690 (Lp95, and rLIC12730, previously shown to be involved in host-pathogen interactions. Our goal was to evaluate the immunogenicity of the proteins genetically fused with DnaK in animal model. The chosen genes were amplified by PCR methodology and cloned into pAE, an E. coli vector. The recombinant proteins were expressed alone or in fusion with DnaK at the N-terminus. Our results demonstrate that leptospiral proteins fused with DnaK have elicited an enhanced immune response in mice when compared to the effect promoted by the individual proteins. The boosted immune effect was demonstrated by the production of total IgG, lymphocyte proliferation, and significant amounts of IL-10 in supernatant of splenocyte cell cultures. We believe that this approach could be employed in vaccines to enhance presentation of antigens of Leptospira to professional immune cells.

  18. Inflamed by the flames? The impact of terrorism and war on immunity.

    Science.gov (United States)

    Canetti, Daphna; Russ, Eric; Luborsky, Judith; Gerhart, James I; Hobfoll, Stevan E

    2014-06-01

    The physiological impact on citizens of prolonged exposure to violence and conflict is a crucial, yet underexplored, issue within the political science and biology literature. We examined the effect of high levels of exposure to rocket and terrorist attacks on biological markers of immunity and inflammation in a sample of 92 Israelis. A stratified random sample of individuals was drawn from a pool of subjects in Israel who had previously been interviewed regarding their stress exposure and psychological distress during a period of active rocket and terrorist attacks. These individuals were reinterviewed and blood samples were collected to assess antibodies to cytomegalovirus (CMV antibodies) and C-reactive protein (CRP). Posttraumatic stress disorder (PTSD) was significantly related to CRP, β = .33, p = .034, with body mass index, depression, and exposure to terrorism included in the model. Depression scores were not significantly associated with CRP or CMV antibody levels. In contrast to the established convention that psychological distress is the sole outcome of terrorism exposure, these findings reveal that individuals exposed to terrorism experience higher levels of both PTSD/depression, and inflammation. This study has important ramifications for how policy makers and medical health professionals should formulate public health policies and medically treat individuals living in conflict zones. Copyright © 2014 International Society for Traumatic Stress Studies.

  19. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  20. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  1. Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination

    Directory of Open Access Journals (Sweden)

    Richard Kennedy

    2016-11-01

    Full Text Available The goal of annual influenza vaccination is to reduce mortality and morbidity associated with this disease through the generation of protective immune responses. The objective of the current study was to examine markers of immunosenescence and identify immunosenescence-related differences in gene expression, gene regulation, cytokine secretion, and immunologic changes in an older study population receiving seasonal influenza A/H1N1 vaccination. Surprisingly, prior studies in this cohort revealed weak correlations between immunosenescence markers and humoral immune response to vaccination. In this report we further examined the relationship of each immunosenescence marker (age, T cell receptor excision circle frequency, telomerase expression, percentage of CD28- CD4+ T cells, percentage of CD28- CD8+ T cells, and the CD4/CD8 T cell ratio with additional markers of immune response (serum cytokine and chemokine expression and measures of gene expression and/or regulation. Many of the immunosenescence markers indeed correlated with distinct sets of individual DNA methylation sites, miRNA expression levels, mRNA expression levels, serum cytokines, and leukocyte subsets. However, when the individual immunosenescence markers were grouped by pathways or functional terms, several shared biological functions were identified: antigen processing and presentation pathways, MAPK, mTOR, TCR, BCR, and calcium signaling pathways, as well as key cellular metabolic, proliferation and survival activities. Furthermore, the percent of CD4+ and/or CD8+ T cells lacking CD28 expression also correlated with miRNAs regulating clusters of genes known to be involved in viral infection. Integrated (DNA methylation, mRNA, miRNA, and protein levels network biology analysis of immunosenescence-related pathways and genesets identified both known pathways (e.g., chemokine signaling, CTL and NK cell activity, as well as a gene expression module not previously annotated with a

  2. A Method for Individualizing the Prediction of Immunogenicity of Protein Vaccines and Biologic Therapeutics: Individualized T Cell Epitope Measure (iTEM

    Directory of Open Access Journals (Sweden)

    Tobias Cohen

    2010-01-01

    Full Text Available The promise of pharmacogenomics depends on advancing predictive medicine. To address this need in the area of immunology, we developed the individualized T cell epitope measure (iTEM tool to estimate an individual's T cell response to a protein antigen based on HLA binding predictions. In this study, we validated prospective iTEM predictions using data from in vitro and in vivo studies. We used a mathematical formula that converts DRB1∗ allele binding predictions generated by EpiMatrix, an epitope-mapping tool, into an allele-specific scoring system. We then demonstrated that iTEM can be used to define an HLA binding threshold above which immune response is likely and below which immune response is likely to be absent. iTEM's predictive power was strongest when the immune response is focused, such as in subunit vaccination and administration of protein therapeutics. iTEM may be a useful tool for clinical trial design and preclinical evaluation of vaccines and protein therapeutics.

  3. Basic study of cancer immunity and radiotherapy

    International Nuclear Information System (INIS)

    Shimosato, Yukio; Nagai, Kanji; Ikeuchi, Toshiyuki.

    1978-01-01

    With respect to anti-tumor effect of radiation, antigenicity and involvement of immunity of an individual with cancer were evaluated under both conditions of natural and insufficient immunity. In animal experiments, it is clear that immunity of the host, especially the function of T-cells, has much to do with the curability of cancer by radiotherapy. In some type of human cancer, not only the histological findings in its healing process following x-ray irradiation but a number of clinical and in vitro experimental results strongly suggest the presence of antigenicity of the T-cells, although it is quite little. The experiments made in a combination of human cancer and nude mice showed a possibility of non-T cells being involved in this mechanism irrespective of whether it is specific, non-specific or not having such an important role as T-cells. There are many problems left unsolved. However, radiotherapy of cancer should be undertaken by maintaining or further improving the immunity of the body in order to obtain good results. (Ueda, J.)

  4. Immunization Information System and Informatics to Promote Immunizations: Perspective From Minnesota Immunization Information Connection.

    Science.gov (United States)

    Muscoplat, Miriam Halstead; Rajamani, Sripriya

    2017-01-01

    The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.

  5. Could information about herd immunity help us achieve herd immunity? Evidence from a population representative survey experiment.

    Science.gov (United States)

    Arnesen, Sveinung; Bærøe, Kristine; Cappelen, Cornelius; Carlsen, Benedicte

    2018-05-01

    Immunisation causes dramatic reductions in morbidity and mortality from infectious diseases; however, resistance to vaccination is nonetheless widespread. An understudied issue - explored here - is whether appeals to collective as opposed to individual benefits of vaccination encourage people to vaccinate. Knowledge of this is important not least with respect to the design of public health campaigns, which often lack information about the collective benefits of vaccination. Using a between-subjects experimental survey design, we test whether information about the effects of herd immunity influences people's decision to vaccinate. A representative sample of Norwegians was confronted with a hypothetical scenario in which a new and infectious disease is on its way to Norway. The sample was split in three - a control group and two treatment groups. The one treatment group was provided information about collective benefits of vaccination; the other was provided information about the individual benefits of vaccination. Both treatments positively affect people's decision to vaccinate; however, informing about the collective benefits has an even stronger effect than informing about the individual benefits. Our results suggest that people's decision about whether to vaccinate and thus contribute to herd immunity is influenced by concern for others. Thus, stressing the collective benefits of vaccination could increase the effectiveness of health campaigns.

  6. Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    2011-02-01

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  7. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yundan Wang

    2013-01-01

    Full Text Available The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae, was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to

  8. Defending the hive: social mechanisms complement individual immunity in honey bees

    Science.gov (United States)

    Honey bees live in large colonies (~50,000 individuals), but sociality has both costs and benefits. In some ways, social life enables individuals within colonies to better fend off pathogens and parasites than if they were solitary. However, an environment with many genetically related individuals i...

  9. The effect of ionizing radiation on immune system

    International Nuclear Information System (INIS)

    Gyuleva, I.

    1999-01-01

    Delayed radiation effects of irradiation at relatively high doses - 0.52- 2 Gy in result of severe accidents are discussed. The immune response of lymphocyte populations manifested in formation of different kind of mutant cells at Hiroshima-A-bombing and Chernobyl accident are presented. It is of great interest the hypothesis presented launched by RERF (Japanese Foundation for Radiation Effect Research, Hiroshima) for radiation induced predominant of T H2 -lymphocytes in comparison to T H1 as delayed immune response at the Hiroshima-A-bomb survivors. The aspect of immune status is quite different at low doses irradiation (0.02 - 0.2 Gy). There is some stimulation in immune response known as hormesis effect. It is suggested that T-cell activation has key role in immune system stimulation at doses under 0.2 Gy. There is also activation of DNA-reparation mechanisms. Suppression of the hypothalamus-hypophysis-suprarenal axis brings to enhancing of immune potential. Chinese people living in a region with three-times higher background radiation, X-ray examined patients as well as occupationally exposed personnel have been investigated. Radioprotective effect of some cytokines and their influence on the individual radiosensitivity are also discussed.The investigations have to be continued because of some inconsistent results

  10. Factors associated with therapeutic success in HIV-positive individuals in southern Brazil.

    Science.gov (United States)

    Silveira, M P T; Maurer, P; Guttier, M C; Moreira, L B

    2015-04-01

    Therapeutic success is characterized by undetectable viral load, immune reconstitution confirmed by CD4+ T-cell count and no clinical manifestations of disease. High treatment adherence is a major determinant of therapeutic success that needs prevention of viral replication, allowing immune reconstitution. Adherence to treatment minimum wage (IQR 1·0-2·3). Therapeutic success was achieved by 90% (122 patients), and it was associated with previously undetectable viral load (PR = 1·30; 95% CI = 1·13-1·49) and treatment adherence prior to study entry (PR = 1·34; 95% CI = 1·07-1·69), independently of sex, age and previous immune status. When undetectable viral load, CD4+ cell count ≥200 cells/mm(3) and treatment adherence above 95% are included in the definition of therapeutic success, the rate was elevated (90%) and the factors associated were previous history of adherence to HAART and previous undetectable viral load. © 2014 John Wiley & Sons Ltd.

  11. Methods used for immunization coverage assessment in Canada, a Canadian Immunization Research Network (CIRN) study.

    Science.gov (United States)

    Wilson, Sarah E; Quach, Susan; MacDonald, Shannon E; Naus, Monika; Deeks, Shelley L; Crowcroft, Natasha S; Mahmud, Salaheddin M; Tran, Dat; Kwong, Jeff; Tu, Karen; Gilbert, Nicolas L; Johnson, Caitlin; Desai, Shalini

    2017-08-03

    Accurate and complete immunization data are necessary to assess vaccine coverage, safety and effectiveness. Across Canada, different methods and data sources are used to assess vaccine coverage, but these have not been systematically described. Our primary objective was to examine and describe the methods used to determine immunization coverage in Canada. The secondary objective was to compare routine infant and childhood coverage estimates derived from the Canadian 2013 Childhood National Immunization Coverage Survey (cNICS) with estimates collected from provinces and territories (P/Ts). We collected information from key informants regarding their provincial, territorial or federal methods for assessing immunization coverage. We also collected P/T coverage estimates for select antigens and birth cohorts to determine absolute differences between these and estimates from cNICS. Twenty-six individuals across 16 public health organizations participated between April and August 2015. Coverage surveys are conducted regularly for toddlers in Quebec and in one health authority in British Columbia. Across P/Ts, different methodologies for measuring coverage are used (e.g., valid doses, grace periods). Most P/Ts, except Ontario, measure up-to-date (UTD) coverage and 4 P/Ts also assess on-time coverage. The degree of concordance between P/T and cNICS coverage estimates varied by jurisdiction, antigen and age group. In addition to differences in the data sources and processes used for coverage assessment, there are also differences between Canadian P/Ts in the methods used for calculating immunization coverage. Comparisons between P/T and cNICS estimates leave remaining questions about the proportion of children fully vaccinated in Canada.

  12. A Recombinant Measles Vaccine with Enhanced Resistance to Passive Immunity.

    Science.gov (United States)

    Julik, Emily; Reyes-Del Valle, Jorge

    2017-09-21

    Current measles vaccines suffer from poor effectiveness in young infants due primarily to the inhibitory effect of residual maternal immunity on vaccine responses. The development of a measles vaccine that resists such passive immunity would strongly contribute to the stalled effort toward measles eradication. In this concise communication, we show that a measles virus (MV) with enhanced hemagglutinin (H) expression and incorporation, termed MVvac2-H2, retained its enhanced immunogenicity, previously established in older mice, when administered to very young, genetically modified, MV-susceptible mice in the presence of passive anti-measles immunity. This immunity level mimics the sub-neutralizing immunity prevalent in infants too young to be vaccinated. Additionally, toward a more physiological small animal model of maternal anti-measles immunity interference, we document vertical transfer of passive anti-MV immunity in genetically-modified, MV susceptible mice and show in this physiological model a better MVvac2-H2 immunogenic profile than that of the parental vaccine strain. In sum, these data support the notion that enhancing MV hemagglutinin incorporation can circumvent in vivo neutralization. This strategy merits additional exploration as an alternative pediatric measles vaccine.

  13. Altered Immune Regulation in Type 1 Diabetes

    Science.gov (United States)

    Zóka, András; Műzes, Györgyi; Somogyi, Anikó; Varga, Tímea; Szémán, Barbara; Al-Aissa, Zahra; Hadarits, Orsolya; Firneisz, Gábor

    2013-01-01

    Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β-cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development. PMID:24285974

  14. Altered Immune Regulation in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    András Zóka

    2013-01-01

    Full Text Available Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β-cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development.

  15. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Science.gov (United States)

    Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E

    2012-01-01

    Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  17. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Directory of Open Access Journals (Sweden)

    David Gurarie

    Full Text Available BACKGROUND: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. CONCLUSIONS/SIGNIFICANCE: Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  18. Reactions to small pox vaccine in naïve and previously-vaccinated individuals.

    Science.gov (United States)

    Auckland, Cressida; Cowlishaw, Alexandra; Morgan, Dilys; Miller, Elizabeth

    2005-07-14

    Two hundred health care workers in England and Wales were vaccinated with the Lister/Elstree strain of the vaccinia virus, and completed health diaries for 21 days or until the lesion had scabbed over. Pain and temperature were measured daily, and all other symptoms recorded freehand by the vaccinee. One hundred and forty two (71%) vaccinees reported pain, of which 25% considered it to be moderate or severe; 32 vaccinees (16%) recorded a temperature of >37.7 degrees C, two of which exceeded 39 degrees C. Other, mainly trivial, adverse events were common; itch was reported in 72%, erythema in 27%, axillary pain or lymphadenopathy in 38%, malaise or flu-like symptoms in 40% and headache in 23%. The incidences of minor adverse events were lower in re-vaccinees, compared with naïve vaccine recipients, significantly so in the case of erythema and general malaise (p=0.001 and 0.006, respectively), perhaps reflecting pre-existing immunity. Major adverse events occurred in two vaccinees (hospital admission, one with cellulitis and one with headache and possible encephalitis), and a further five were treated with antibiotics for local cellulitis. This is the first study to report results derived from active follow-up by diaries in recipients of the Lister/Elstree strain of vaccinia, and to document reductions in trivial adverse events in re-vaccinees.

  19. Immunization with Live Attenuated Leishmania donovani Centrin−/− Parasites Is Efficacious in Asymptomatic Infection

    Directory of Open Access Journals (Sweden)

    Nevien Ismail

    2017-12-01

    Full Text Available Currently, there is no vaccine against visceral leishmaniasis (VL. Toward developing an effective vaccine, we have reported extensively on the immunogenicity of live attenuated LdCentrin−/− mutants in naive animal models. In VL endemic areas, asymptomatic carriers outnumber symptomatic cases of VL and are considered to be a reservoir of infection. Vaccination of asymptomatic cases represents a viable strategy to eliminate VL. Immunological correlates of protection thus derived might have limited applicability in conditions where the immunized host has prior exposure to virulent infection. To examine whether LdCen−/− parasites can induce protective immunity in experimental hosts that have low-level parasitemia from a previous exposure mimicking an asymptomatic condition, we infected C57Bl/6 mice with wild-type Leishmania donovani parasites expressing LLO epitope (LdWTLLO 103, i.v.. After 3 weeks, the mice with low levels of parasitemia were immunized with LdCen−/− parasites expressing 2W epitope (LdCen−/−2W 3 × 106 i.v. to characterize the immune responses in the same host. Antigen experienced CD4+ T cells from the asymptomatic (LdWTLLO infected LdCen−/−2W immunized, and other control groups were enriched using LLO- and 2W-specific tetramers, followed by Flow cytometric analysis. Our analysis showed that comparable CD4+ T cell proliferation and CD4+ memory T cell responses (TCM represented by CD62Lhi, CCR7+, and IL-7R+ T cell populations were induced with LdCen−/−2W in both asymptomatic and naive animals that received LdCen−/− immunization. Upon restimulation with peptide, TCM cells differentiated into effector T cells and there was no significant difference in the recall response in animals with asymptomatic infection. Following virulent challenge, comparable reduction in splenic parasite burden was observed in both asymptomatic and naive LdCen−/− immunized animals concomitant with the development of

  20. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  1. Signaling pathways and immune evasion mechanisms in classical Hodgkin lymphoma.

    Science.gov (United States)

    Liu, W Robert; Shipp, Margaret A

    2017-11-23

    Classical Hodgkin lymphoma (cHL) is an unusual B-cell-derived malignancy in which rare malignant Hodgkin and Reed-Sternberg (HRS) cells are surrounded by an extensive but ineffective inflammatory/immune cell infiltrate. This striking feature suggests that malignant HRS cells escape immunosurveillance and interact with immune cells in the cancer microenvironment for survival and growth. We previously found that cHLs have a genetic basis for immune evasion: near-uniform copy number alterations of chromosome 9p24.1 and the associated PD-1 ligand loci, CD274/PD-L1 and PDCD1LG2/PD-L2, and copy number-dependent increased expression of these ligands. HRS cells expressing PD-1 ligands are thought to engage PD-1 receptor-positive immune effectors in the tumor microenvironment and induce PD-1 signaling and associated immune evasion. The genetic bases of enhanced PD-1 signaling in cHL make these tumors uniquely sensitive to PD-1 blockade. © 2017 by The American Society of Hematology.

  2. Effects of Banana Plantation Pesticides on the Immune Response of Lepidopteran Larvae and Their Parasitoid Natural Enemies

    Directory of Open Access Journals (Sweden)

    Angela M. Smilanich

    2012-06-01

    Full Text Available Basic research on the insect immune response has progressed dramatically within the last two decades, showing that immunity is one of the most effective defenses against foreign invaders. As such, it is important to understand the causes of variation in this response. Here, we investigate the effects of pesticides used in Costa Rican banana plantations on the immune response of the lepidopteran larva, Caligo memnon (Brassolinae. In addition, we performed a parasitism survey of the banana plantations and surrounding forests to provide a broader assessment of pesticide effects on parasitoid populations. All caterpillars for the immune assay were collected from two banana plantations and brought to La Selva Biology Station for immune challenge. Individuals were fed leaves from the plantations (pesticide or leaves from La Selva (pesticide-free, then immune challenged with injected sephadex beads. We found that individuals feeding on pesticide leaves had significantly lower bead melanization compared to individuals feeding on pesticide-free leaves. Nonetheless, the parasitism survey showed that caterpillars from the banana plantations had lower parasitism rates compared to caterpillars from the La Selva forest. This study adds to the growing body of evidence documenting negative effects of pesticides on the insect immune response and on adult parasitoids, and underscores the need for more research at the intersection between ecological entomology and immunology.

  3. [State of collective immunity against poliomyelitis in some regions of Russia].

    Science.gov (United States)

    Seĭbil', V B; Malyshkina, L P; Khishtova, S N; Lesnikova, M V; Baryshnikova, A S; Konopleva, T N; Mnozhina, E G; Agafonova, T V; Vladimirova, L A

    2013-01-01

    Study the state of collective immunity against poliomyelitis in 7 regions of Russia in the last 3 years. 2579 sera were studied for antibodies against poliomyelitis virus. Antibodies (AT) against 3 types of viruses were determined in neutralization reaction in RD cell culture, the state of collective immunity in the examined individuals was evaluated by the percent of individuals with AT against a type of poliovirus and geometric mean AT titer. The circulation of wild polioviruses was judged by the presence of strain specific AT against wild and vaccine viruses in the examined children (311 sera were studied). The indicators of collective immunity against poliomyelitis in both select examined regions and select age groups were generally high. The data obtained allow to make a conclusion that the quality of vaccine prophylaxis in the examined regions is good. Introduction of wild poliovirus type 1 from Tajikistan in 2010 caused disease in 7 residents of Russia whereas an epidemic that had affected more than 700 individuals emerged in Tajikistan. The studies carried out confirmed the necessity to continue qualitative poliomyelitis vaccine prophylaxis in the country despite the lack of circulation of wild polioviruses that can be introduced at any time.

  4. The immune cellular effectors of terrestrial isopod Armadillidium vulgare: meeting with their invaders, Wolbachia.

    Directory of Open Access Journals (Sweden)

    Frédéric Chevalier

    2011-04-01

    Full Text Available Most of crustacean immune responses are well described for the aquatic forms whereas almost nothing is known for the isopods that evolved a terrestrial lifestyle. The latter are also infected at a high prevalence with Wolbachia, an endosymbiotic bacterium which affects the host immune system, possibly to improve its transmission. In contrast with insect models, the isopod Armadillidium vulgare is known to harbor Wolbachia inside the haemocytes.In A. vulgare we characterized three haemocyte types (TEM, flow cytometry: the hyaline and semi-granular haemocytes were phagocytes, while semi-granular and granular haemocytes performed encapsulation. They were produced in the haematopoietic organs, from central stem cells, maturing as they moved toward the edge (TEM. In infected individuals, live Wolbachia (FISH colonized 38% of the haemocytes but with low, variable densities (6.45±0.46 Wolbachia on average. So far they were not found in hyaline haemocytes (TEM. The haematopoietic organs contained 7.6±0.7×10(3Wolbachia, both in stem cells and differentiating cells (FISH. While infected and uninfected one-year-old individuals had the same haemocyte density, in infected animals the proportion of granular haemocytes in particular decreased by one third (flow cytometry, Pearson's test = 12 822.98, df = 2, p<0.001.The characteristics of the isopod immune system fell within the range of those known from aquatic crustaceans. The colonization of the haemocytes by Wolbachia seemed to stand from the haematopoietic organs, which may act as a reservoir to discharge Wolbachia in the haemolymph, a known route for horizontal transfer. Wolbachia infection did not affect the haemocyte density, but the quantity of granular haemocytes decreased by one third. This may account for the reduced prophenoloxidase activity observed previously in these animals.

  5. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.

    Science.gov (United States)

    Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar

    2017-12-24

    In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  6. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Immunizing Children

    Directory of Open Access Journals (Sweden)

    Geraldine Jody Macdonald

    2014-11-01

    Full Text Available This article addresses the complex contexts within which Canadian health professionals engage in immunizing children and focuses on the Canadian practice guidelines and current scientific evidence that direct Canadian health professional competencies. The article begins by presenting two current global vaccine initiatives and links these to immunization in Canada. A selected literature review identifies current best immunization practices. With the purpose of promoting quality improvement, three key Canadian immunization competencies for health professional are highlighted: communication with parents, including those who are experiencing vaccine hesitancy; administration of immunizing agents; and documentation of immunizations. Health professionals are encouraged to reflect on immunization competencies and ensure evidence-based practices underpin vaccine delivery in their primary care settings.

  8. An immune response in the bumblebee, Bombus terrestris leads to increased food consumption

    Directory of Open Access Journals (Sweden)

    Mallon Eamonn B

    2006-07-01

    Full Text Available Abstract Background The concept of a costly immune system that must be traded off against other important physiological systems is fundamental to the burgeoning field of ecological immunity. Bumblebees have become one of the central models in this field. Although previous work has demonstrated costs of immunity in numerous life history traits, estimates of the more direct costs of bumblebee immunity have yet to be made. Results Here we show a 7.5% increase in energy consumption in response to non-pathogenic immune stimulation. Conclusion This increase in energy consumption along with other results suggests that immunity is one of the most important physiological systems, with other systems being sacrificed for its continuing efficiency. This increased consumption and maintained activity contrasts with the sickness-induced anorexia and reduced activity found in vertebrates.

  9. Social network architecture of human immune cells unveiled by quantitative proteomics.

    Science.gov (United States)

    Rieckmann, Jan C; Geiger, Roger; Hornburg, Daniel; Wolf, Tobias; Kveler, Ksenya; Jarrossay, David; Sallusto, Federica; Shen-Orr, Shai S; Lanzavecchia, Antonio; Mann, Matthias; Meissner, Felix

    2017-05-01

    The immune system is unique in its dynamic interplay between numerous cell types. However, a system-wide view of how immune cells communicate to protect against disease has not yet been established. We applied high-resolution mass-spectrometry-based proteomics to characterize 28 primary human hematopoietic cell populations in steady and activated states at a depth of >10,000 proteins in total. Protein copy numbers revealed a specialization of immune cells for ligand and receptor expression, thereby connecting distinct immune functions. By integrating total and secreted proteomes, we discovered fundamental intercellular communication structures and previously unknown connections between cell types. Our publicly accessible (http://www.immprot.org/) proteomic resource provides a framework for the orchestration of cellular interplay and a reference for altered communication associated with pathology.

  10. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  11. Comparative study of lymphocytes from individuals that were vaccinated and unvaccinated against the pandemic 2009-2011 H1N1 influenza virus in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Deise Nascimento de Freitas

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:While no single factor is sufficient to guarantee the success of influenza vaccine programs, knowledge of the levels of immunity in local populations is critical. Here, we analyzed influenza immunity in a population from Southern Brazil, a region with weather conditions that are distinct from those in the rest of country, where influenza infections are endemic, and where greater than 50% of the population is vaccinated annually.METHODS:Peripheral blood mononuclear cells were isolated from 40 individuals. Of these, 20 had received the H1N1 vaccine, while the remaining 20 were unvaccinated against the disease. Cells were stimulated in vitro with the trivalent post-pandemic influenza vaccine or with conserved major histocompatibility complex I (MHC I peptides derived from hemagglutinin and neuraminidase. Cell viability was then analyzed by [3-(4,5-dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide]-based colorimetric assay (MTT, and culture supernatants were assayed for helper T type 1 (Th1 and Th2-specific cytokine levels.RESULTS:Peripheral blood lymphocytes from vaccinated, but not unvaccinated, individuals exhibited significant proliferation in vitro in the presence of a cognate influenza antigen. After culturing with vaccine antigens, cells from vaccinated individuals produced similar levels of interleukin (IL-10 and interferon (IFN-γ, while those from unvaccinated individuals produced higher levels of IFN-γ than of IL-10.CONCLUSIONS:Our data indicate that peripheral blood lymphocytes from vaccinated individuals are stimulated upon encountering a cognate antigen, but did not support the hypothesis that cross-reactive responses related to previous infections can ameliorate the immune response. Moreover, monitoring IL-10 production in vaccinated individuals could comprise a valuable tool for predicting disease evolution.

  12. An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon

    Science.gov (United States)

    Sousa, Alexandra O.; Salem, Julia I.; Lee, Francis K.; Verçosa, Maria C.; Cruaud, Philippe; Bloom, Barry R.; Lagrange, Philippe H.; David, Hugo L.

    1997-01-01

    A survey of an emerging tuberculosis epidemic among the Yanomami Indians of the Amazonian rain forest provided a unique opportunity to study the impact of tuberculosis on a population isolated from contact with the tubercle bacillus for millennia until the mid-1960s. Within the Yanomami population, an extraordinary high prevalence of active tuberculosis (6.4% of 625 individuals clinically examined) was observed, indicating a high susceptibility to disease, even among bacille Calmette–Guérin-vaccinated individuals. Observational studies on cell-mediated and humoral immune responses of the Yanomami Indians compared with contemporary residents of the region suggest profound differences in immunological responsiveness to Mycobacterium tuberculosis infection. Among the Yanomami, a very high prevalence of tuberculin skin test anergy was found. Of patients with active tuberculosis, 46% had purified protein derivative of tuberculosis reactions Yanomami also had higher titers of antibodies against M. tuberculosis glycolipid antigens (>70%) than the control subjects comprised of Brazilians of European descent (14%). The antibodies were mostly of the IgM isotype. Among the tuberculosis patients who also produced IgG antibodies, the titers of IgG4 were significantly higher among the Yanomami than in the control population. Although it was not possible to analyze T-cell responses or patterns of lymphokine production in vitro because of the remoteness of the villages from laboratory facilities, the results suggest that the first encounter of the Yanomami Indian population with tuberculosis engenders a diminished cell-mediated immune response and an increased production antibody responses, relative to other populations with extensive previous contact with the pathogen. These findings suggest that tuberculosis may represent a powerful selective pressure on human evolution that over centuries has shaped the nature of human immune responses to infection. PMID:9371828

  13. An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon.

    Science.gov (United States)

    Sousa, A O; Salem, J I; Lee, F K; Verçosa, M C; Cruaud, P; Bloom, B R; Lagrange, P H; David, H L

    1997-11-25

    A survey of an emerging tuberculosis epidemic among the Yanomami Indians of the Amazonian rain forest provided a unique opportunity to study the impact of tuberculosis on a population isolated from contact with the tubercle bacillus for millennia until the mid-1960s. Within the Yanomami population, an extraordinary high prevalence of active tuberculosis (6.4% of 625 individuals clinically examined) was observed, indicating a high susceptibility to disease, even among bacille Calmette-Guérin-vaccinated individuals. Observational studies on cell-mediated and humoral immune responses of the Yanomami Indians compared with contemporary residents of the region suggest profound differences in immunological responsiveness to Mycobacterium tuberculosis infection. Among the Yanomami, a very high prevalence of tuberculin skin test anergy was found. Of patients with active tuberculosis, 46% had purified protein derivative of tuberculosis reactions Yanomami also had higher titers of antibodies against M. tuberculosis glycolipid antigens (>70%) than the control subjects comprised of Brazilians of European descent (14%). The antibodies were mostly of the IgM isotype. Among the tuberculosis patients who also produced IgG antibodies, the titers of IgG4 were significantly higher among the Yanomami than in the control population. Although it was not possible to analyze T-cell responses or patterns of lymphokine production in vitro because of the remoteness of the villages from laboratory facilities, the results suggest that the first encounter of the Yanomami Indian population with tuberculosis engenders a diminished cell-mediated immune response and an increased production antibody responses, relative to other populations with extensive previous contact with the pathogen. These findings suggest that tuberculosis may represent a powerful selective pressure on human evolution that over centuries has shaped the nature of human immune responses to infection.

  14. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    International Nuclear Information System (INIS)

    Tawfik, A.F.; Colley, D.G.

    1986-01-01

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations

  16. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  17. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    OpenAIRE

    Ciss?, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to eit...

  18. Study Design to Test the Hypothesis That Long-Term Space Travel Harms the Human and Animal Immune Systems

    Science.gov (United States)

    Shearer, William T.; Lugg, Desmond J.; Ochs, H. D.; Pierson, Duane L.; Reuben, James M.; Rosenblatt, Howard M.; Sams, Clarence; Smith, C. Wayne; Smith, E. Obrian; Smolen, James E.

    1999-01-01

    The potential threat of immunosuppression and abnormal inflammatory responses in long-term space travel, leading to unusual predilection for opportunistic infections, malignancy, and death, is of ma or concern to the National Aeronautics and Space Administration (NASA) Program. This application has been devised to seek answers to questions of altered immunity in space travel raised by previous investigations spanning 30-plus years. We propose to do this with the help of knowledge gained by the discovery of the molecular basis of many primary and secondary immunodeficiency diseases and by application of molecular and genetic technology not previously available. Two areas of immunity that previously received little attention in space travel research will be emphasized: specific antibody responses and non-specific inflammation and adhesion. Both of these areas of research will not only add to the growing body of information on the potential effects of space travel on the immune system, but be able to delineate any functional alterations in systems important for antigen presentation, specific immune memory, and cell:cell and cell:endothelium interactions. By more precisely defining molecular dysfunction of components of the immune system, it is hoped that targeted methods of prevention of immune damage in space could be devised.

  19. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  20. Loss of renal function causes premature aging of the immune system.

    Science.gov (United States)

    Betjes, Michiel G H; Meijers, Ruud W J; Litjens, Nicolle H R

    2013-01-01

    Uremia-associated immune deficiency is a well-known complication of loss of renal function and contributes significantly to the overall mortality and morbidity of patients with end-stage renal disease. Chronic inflammation and increased oxidative stress are underlying the uremia-associated immune deficiency. In this review, the differential impact of uremia on the cellular immune system is summarized. Virtually all immune cells studied show a combination of an activated status and loss of function. However, uremia preferentially decreases the number and function of lymphoid cells while myeloid cells show normal and/or elevated cell numbers with increased production of inflammatory cytokines and reactive oxygen species. These particular changes are compatible with immunological aging, which is characterized by loss of thymic function, attrition of telomeres and an expanded memory T cell population. Similar to aging in healthy individuals, the proinflammatory and potential cardiotoxic subsets of CD28(null) T cells and CD16(+) monocytes are increased. Epigenetically changed hematopoietic stem cells may be involved in immunological aging as specific DNA regions become hypermethylated. Proinflammatory T cells and monocytes persist after kidney transplantation, which constitutes a persistent cardiovascular risk factor. Possible therapeutic options to reverse or halt uremia-associated immunological aging are discussed. Premature aging of the immune system is a dominant feature in patients with end-stage renal failure, which corresponds to immunological aging in elderly healthy individuals, which is characterized by preferential loss of cells belonging to the lymphoid cell lineage, inflammation and expansion of proinflammatory immune cells. © 2013 S. Karger AG, Basel.

  1. Markers of immunity and bacterial translocation in cirrhosis

    DEFF Research Database (Denmark)

    Mortensen, Christian

    2015-01-01

    to be correlated to portal hypertension, a clinically relevant haemodynamic alteration, and appeared to be associated with increased mortality. To assess the consequences of BT on immunity, we developed an assay for the detection of bacterial DNA (bDNA), a novel marker of BT. Using the assay in the second study......Bacterial translocation (BT), the migration of enteric bacteria to extraintestinal sites, is related to immune stimulation and haemodynamic changes in experimental cirrhosis. These changes may be highly relevant to patients with cirrhosis, where changes in the circulation cause serious......, in 38 patients with ascites, we found no association between bDNA and immunity, in contrast to some previous findings. In the final paper, exploring one possible translocation route, we hypothesized a difference in bDNA levels between the blood from the veins draining the gut on one hand and the liver...

  2. Immune-modulating effects in mouse dendritic cells of lactobacilli and bifidobacteria isolated from individuals following omnivorous, vegetarian and vegan diets.

    Science.gov (United States)

    Luongo, Diomira; Treppiccione, Lucia; Sorrentino, Alida; Ferrocino, Ilario; Turroni, Silvia; Gatti, Monica; Di Cagno, Raffaella; Sanz, Yolanda; Rossi, Mauro

    2017-09-01

    Lactobacilli and bifidobacteria play a primary role in modulation of gut immunity. By considering that microbiota composition depends on various factors, including diet, we asked whether functional differences could characterize faecal populations of lactobacilli and bifidobacteria isolated from individuals with different dietary habits. 155 healthy volunteers who followed omnivorous, ovo-lacto-vegetarian or vegan diets were recruited at four Italian centres (Turin, Parma, Bologna and Bari). Faecal samples were collected; lactobacilli and bifidobacteria were isolated on selective media and their immunomodulatory activity was tested in mouse dendritic cells (DCs). Pre-incubation with lactobacilli increased LPS-induced expression of the maturation markers CD80 and CD86, whereas pre-incubation with bifidobacteria decreased such expression. Analysis of the cytokine profile indicated that strains of both genera induced down-regulation of IL-12 and up-regulation of IL-10, whereas expression of TNF-α was not modulated. Notably, analysis of anti-inflammatory potential (IL-10/IL-12 ratio) showed that lactobacilli evoked a greater anti-inflammatory effect than did bifidobacteria in the omnivorous group (P<0.05). We also found significantly reduced anti-inflammatory potential in the bacterial strains isolated from Bari's volunteers in comparison with those from the cognate groups from the other centres. In conclusion, lactobacilli and bifidobacteria showed a genus-specific ability of modulating in vitro innate immunity associated with a specific dietary habit. Furthermore, the geographical area had a significant impact on the anti-inflammatory potential of some components of faecal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  4. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  5. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Minjoo Kim

    2017-11-01

    Full Text Available The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72 or metabolically unhealthy overweight (MUO, n = 45. The immune response was measured by circulating levels of natural killer (NK cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant and 41% lower interleukin (IL-12 levels (significant. The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05 than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities.

  6. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis

    DEFF Research Database (Denmark)

    Kain, R.; Exner, M.; Brandes, R.

    2008-01-01

    develop antibodies to rat and human LAMP-2. Finally, we show that infections with fimbriated pathogens are common before the onset of FNGN. Thus, FimH-triggered autoimmunity to LAMP-2 provides a previously undescribed clinically relevant molecular mechanism for the development of pauci-immune FNGN....

  7. Flow cytometric analysis of platelet cyclooxygenase-1 and -2 and surface glycoproteins in patients with immune thrombocytopenia and healthy individuals.

    Science.gov (United States)

    Rubak, Peter; Kristensen, Steen D; Hvas, Anne-Mette

    2017-06-01

    Immature platelets may contain more platelet enzymes such as cyclooxygenase (COX)-1 and COX-2 than mature platelets. Patients with immune thrombocytopenia (ITP) have a higher fraction of immature platelets and can therefore be utilized as a biological model for investigating COX-1 and COX-2 platelet expression. The aims were to develop flow cytometric assays for platelet COX-1 and COX-2 and to investigate the COX-1 and COX-2 platelet expression, platelet turnover, and platelet glycoproteins in ITP patients (n = 10) compared with healthy individuals (n = 30). Platelet count and platelet turnover parameters (mean platelet volume (MPV), immature platelet fraction (IPF), and immature platelet count (IPC)) were measured by flow cytometry (Sysmex XE-5000). Platelet COX-1, COX-2, and the glycoproteins (GP)IIb, IX, Ib, Ia, and IIIa were all analyzed by flow cytometry (Navios) and expressed as median fluorescence intensity. COX analyses were performed in both whole blood and platelet rich plasma (PRP), whereas platelet glycoproteins were analyzed in whole blood only. ITP patients had significantly lower platelet count (55 × 10 9 /L) than healthy individuals (240 × 10 9 /L, p platelet count and IPC (both p-values Platelet COX-1 expression was higher in ITP patients than healthy individuals using whole blood (p COX-1 platelet turnover and COX-1 expression (all p-values platelet turnover and COX-1 and COX-2 expressions (all p-values platelet turnover in ITP patients (all p-values 0.14, rho = 0.11-0.28). In conclusion, ITP patients expressed higher COX-1 and platelet glycoprotein levels than healthy individuals. COX-1 and platelet glycoproteins demonstrated positive correlations with platelet turnover in ITP patients. In healthy individuals, COX-1 and COX-2 expression correlated positively with platelet turnover. PRP was more sensitive compared with whole blood as regards determination of COX. Therefore, PRP is the recommended matrix for investigating COX-1 and COX-2 in

  8. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1-Mediated Immunity.

    Directory of Open Access Journals (Sweden)

    Mawsheng Chern

    2016-05-01

    Full Text Available Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10, complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression.

  9. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection.

    Science.gov (United States)

    Vibholm, Line; Schleimann, Mariane H; Højen, Jesper F; Benfield, Thomas; Offersen, Rasmus; Rasmussen, Katrine; Olesen, Rikke; Dige, Anders; Agnholt, Jørgen; Grau, Judith; Buzon, Maria; Wittig, Burghardt; Lichterfeld, Mathias; Petersen, Andreas Munk; Deng, Xutao; Abdel-Mohsen, Mohamed; Pillai, Satish K; Rutsaert, Sofie; Trypsteen, Wim; De Spiegelaere, Ward; Vandekerchove, Linos; Østergaard, Lars; Rasmussen, Thomas A; Denton, Paul W; Tolstrup, Martin; Søgaard, Ole S

    2017-06-15

    Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN1703 subcutaneously twice weekly for 4 weeks. We characterized plasmacytoid dendritic cell, natural killer (NK), and T-cell activation using flow cytometry on baseline and after 4 weeks of treatment. HIV-1 transcription was quantified by measuring plasma HIV-1 RNA during MGN1703 administration. In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P 1500 copies/mL (range, 21-1571 copies/mL) during treatment. TLR9 agonist treatment in HIV infection has a dual potential by increasing HIV-1 transcription and enhancing cytotoxic NK cell activation, both of which are key outcomes in HIV-1 eradication therapy. NCT02443935. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  10. Impact of pharmacists providing immunizations on adolescent influenza immunization.

    Science.gov (United States)

    Robison, Steve G

    2016-01-01

    To determine if the Oregon law change in 2011 to allow pharmacists to immunize adolescents 11 to 17 years of age increased influenza immunizations or changed existing immunization venues. With the use of Oregon's ALERT Immunization Information System (IIS), 2 measures of impact were developed. First, the change in adolescent age 11-17 influenza immunizations before (2007-2010) and after (2011-2014) the pharmacy law change was evaluated against a reference cohort (aged 7-10) not affected by the law. Community pharmacies were also compared with other types of influenza immunization sites within one of the study influenza seasons (2013-2014). From 2007 to 2014, adolescent influenza immunizations at community pharmacies increased from 36 to 6372 per year. After the 2011 pharmacy law change, adolescents aged 11 to 17 were more likely to receive an influenza immunization compared with the reference population (odds ratio, 1.21; 95% CI, 1.19-1.22). Analysis of the 2013-2014 influenza season suggests that community pharmacies immunized a different population of adolescents than other providers. The 2011 change in Oregon law allowed pharmacists to increase the total of influenza immunizations given to adolescents. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Experimental evolution reveals trade-offs between mating and immunity.

    Science.gov (United States)

    McNamara, Kathryn B; Wedell, Nina; Simmons, Leigh W

    2013-08-23

    Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations.

  12. Genome-wide analysis of immune system genes by EST profiling

    Science.gov (United States)

    Giallourakis, Cosmas; Benita, Yair; Molinie, Benoit; Cao, Zhifang; Despo, Orion; Pratt, Henry E.; Zukerberg, Lawrence R.; Daly, Mark J.; Rioux, John D.; Xavier, Ramnik J.

    2013-01-01

    Profiling studies of mRNA and miRNA, particularly microarray-based studies, have been extensively used to create compendia of genes that are preferentially expressed in the immune system. In some instances, functional studies have been subsequently pursued. Recent efforts such as ENCODE have demonstrated the benefit of coupling RNA-Seq analysis with information from expressed sequence tags (ESTs) for transcriptomic analysis. However, the full characterization and identification of transcripts that function as modulators of human immune responses remains incomplete. In this study, we demonstrate that an integrated analysis of human ESTs provides a robust platform to identify the immune transcriptome. Beyond recovering a reference set of immune-enriched genes and providing large-scale cross-validation of previous microarray studies, we discovered hundreds of novel genes preferentially expressed in the immune system, including non-coding RNAs. As a result, we have established the Immunogene database, representing an integrated EST “road map” of gene expression in human immune cells, which can be used to further investigate the function of coding and non-coding genes in the immune system. Using this approach, we have uncovered a unique metabolic gene signature of human macrophages and identified PRDM15 as a novel overexpressed gene in human lymphomas. Thus we demonstrate the utility of EST profiling as a basis for further deconstruction of physiologic and pathologic immune processes. PMID:23616578

  13. Role of the Immune System in Hypertension.

    Science.gov (United States)

    Rodriguez-Iturbe, Bernardo; Pons, Hector; Johnson, Richard J

    2017-07-01

    High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease. Copyright © 2017 the American Physiological Society.

  14. Evaluation of Rubella Immunity in Women before Marriage and Pregnancy in Isfahan During 1997-2000

    Directory of Open Access Journals (Sweden)

    T Allameh

    2004-04-01

    Full Text Available Background: Congenital Rubella syndrome is a public health problem in many developing countries which has not yet been sufficiently put into account. There is an urgent need for collecting appropriate data to estimate the cost-effectiveness of a potential global Rubella control program. This study was conducted to determine susceptibility to Rubella in women who are going to marry or consult for pregnancy. Methods: This study began in 1997 and ended in 2000. The study was analytic descriptive and prospective. Eight hundred and thirty eight women who referred for premarriage tests or counselling for conception were included. According to antibody levels, test results were reported as immune and non-immune (susceptible for every individual. Results: Among 838 cases, 253 women (30.1% were non-immune (susceptible and 585 women (69.9% were immune. The educational status of the two groups were recorded. Analysis of data showed that the higher the educational level (62.2% for University degree holder, the lower the immunity against Rubella would be (75.2% for unfinished high school individuals. Furthermore, immunity in the younger group was higher (73.9% in <20 years than in the older group(61% in >30 years. Conclusion: More than one third of pre marriage and pre conceptional women were non-immune (susceptible to Rubella, so health providers should be aware of Rubella prevention and control in childbearing age via screening and vaccination. Immunity against Rubella can vary over time and the socioeconomic status is believed to play an important role in the level of immunity. Keywords: Congenital Rubella Syndrome, Rubella immunity, Rubella non-immunity.

  15. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  16. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  17. Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Pathologically elevated immune activation and inflammation contribute to HIV disease progression and immunodeficiency, potentially mediated by elevated levels of prostaglandin E2, which suppress HIV-specific T cell responses. We have previously shown that a high dose of the cyclooxygenase-2 inhibitor celecoxib can reduce HIV-associated immune activation and improve IgG responses to T cell-dependent vaccines. In this follow-up study, we included 56 HIV-infected adults, 28 antiretroviral therapy (ART-naïve and 28 on ART with undetectable plasma viremia but CD4 counts below 500 cells/μL. Patients in each of the two study groups were randomized to receive 90 mg qd of the cyclooxygenase-2 inhibitor etoricoxib for six months, two weeks or to a control arm, respectively. T cell activation status, HIV Gag-specific T cell responses and plasma inflammatory markers, tryptophan metabolism and thrombin generation were analyzed at baseline and after four months. In addition, patients received tetanus toxoid, conjugated pneumococcal and seasonal influenza vaccines, to which IgG responses were determined after four weeks. In ART-naïve patients, etoricoxib reduced the density of the activation marker CD38 in multiple CD8+ T cell subsets, improved Gag-specific T cell responses, and reduced in vitro plasma thrombin generation, while no effects were seen on plasma markers of inflammation or tryptophan metabolism. No significant immunological effects of etoricoxib were observed in ART-treated patients. Patients receiving long-term etoricoxib treatment had poorer tetanus toxoid and conjugated pneumococcal vaccine responses than those receiving short-course etoricoxib. Cyclooxygenase-2 inhibitors may attenuate harmful immune activation in HIV-infected patients without access to ART.

  18. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    OpenAIRE

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fr...

  19. Dose-dependent effects of an immune challenge at both ultimate and proximate levels in Drosophila melanogaster.

    Science.gov (United States)

    Nystrand, M; Dowling, D K

    2014-05-01

    Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales--the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge--but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  20. The impact of an immunization training certificate program on the perceived knowledge, skills and attitudes of pharmacy students toward pharmacy-based immunizations

    Directory of Open Access Journals (Sweden)

    Marcum ZA

    2010-06-01

    Full Text Available Objective: To assess the impact of a national immunization training certificate program on the perceived knowledge, skills and attitudes of pharmacy students toward pharmacy-based immunizations.Methods: The study design utilized a pre- and post-survey administered to pharmacy students before and after the American Pharmacists Association’s (APhA Pharmacy-Based Immunization Delivery program. The primary outcome explored was a change in the perceived knowledge, skills, and attitudes of the pharmacy students. A five-point Likert scale (i.e. strongly agree = 5, strongly disagree = 1 was used for measuring the main outcomes, which was summated by adding the individual item scores in each section to form a composite score for each outcome. Results: The certificate training program resulted in a significant improvement in knowledge (38.5% increase in score, p<0.001 and skills (34.5% increase in score, p<0.001, but not attitudes (1% increase in score, p=0.210.Conclusions: The national immunization training certificate program had a positive impact on the perceived knowledge and skills of pharmacy students. However, no change was observed regarding students’ perceived attitudes toward pharmacy-based immunizations.

  1. The immune self: a selectionist theory of recognition, learning, and remembering within the immune system.

    Science.gov (United States)

    Kradin, R L

    1995-01-01

    In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of

  2. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis

    Directory of Open Access Journals (Sweden)

    Maxime W. Lemieux

    2017-12-01

    Full Text Available In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

  3. Focal cerebral vasculitis associated with circulating immune complexes and brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groothuis, D.R.; Mikhael, M.A.

    1986-06-01

    In this report we describe a patient with a benign glioma treated with surgery and radiation. After a period of stability he developed subacute bacterial endocarditis, and deteriorated neurologically. Computed tomographic scans did not show recurrent tumor. An angiogram showed vasculitis restricted to the previously irradiated area. Secondary to subacute bacterial endocarditis was the presence of high levels of circulating immune complexes. His neurological status was unchanged after antibiotics, but improved after treatment with dexamethasone. We interpret the clinical course as an immune-complex-mediated vasculitis superimposed on a subclinical radiation vasculitis. This case supports the hypothesis that immune mechanisms may be involved in delayed radiation injury to the nervous system.

  4. Focal cerebral vasculitis associated with circulating immune complexes and brain irradiation

    International Nuclear Information System (INIS)

    Groothuis, D.R.; Mikhael, M.A.

    1986-01-01

    In this report we describe a patient with a benign glioma treated with surgery and radiation. After a period of stability he developed subacute bacterial endocarditis, and deteriorated neurologically. Computed tomographic scans did not show recurrent tumor. An angiogram showed vasculitis restricted to the previously irradiated area. Secondary to subacute bacterial endocarditis was the presence of high levels of circulating immune complexes. His neurological status was unchanged after antibiotics, but improved after treatment with dexamethasone. We interpret the clinical course as an immune-complex-mediated vasculitis superimposed on a subclinical radiation vasculitis. This case supports the hypothesis that immune mechanisms may be involved in delayed radiation injury to the nervous system

  5. Human cellular and humoral immune responses to Phlebotomus papatasi salivary gland antigens in endemic areas differing in prevalence of Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Wafa Kammoun-Rebai

    2017-10-01

    Full Text Available Sand fly saliva compounds are able to elicit specific immune responses that have a significant role in Leishmania parasite establishment and disease outcome. Characterizing anti-saliva immune responses in individuals living in well defined leishmaniasis endemic areas would provide valuable insights regarding their effect on parasite transmission and establishment in humans.We explored the cellular and humoral immune responses to Phlebotomus (P. papatasi salivary gland extracts (SGE in individuals living in cutaneous leishmaniasis (CL old or emerging foci (OF, EF. OF was characterized by a higher infection prevalence as assessed by higher proportions of leishmanin skin test (LST positive individuals compared to EF. Subjects were further subdivided into healed, asymptomatic or naïve groups. We showed anti-SGE proliferation in less than 30% of the individuals, regardless of the immune status, in both foci. IFN-γ production was higher in OF and only observed in immune individuals from OF and naïve subjects from EF. Although IL-10 was not detected, addition of anti-human IL-10 antibodies revealed an increase in proliferation and IFN-γ production only in individuals from OF. The percentage of seropositive individuals was similar in immune and naïves groups but was significantly higher in OF. No correlation was observed between anti-saliva immune responses and LST response. High anti-SGE-IgG responses were associated with an increased risk of developing ZCL. No differences were observed for anti-SGE humoral or cellular responses among naïve individuals who converted or not their LST response or developed or not ZCL after the transmission season.These data suggest that individuals living in an old focus characterized by a frequent exposure to sand fly bites and a high prevalence of infection, develop higher anti-saliva IgG responses and IFN-γ levels and a skew towards a Th2-type cellular response, probably in favor of parasite establishment

  6. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  7. Integrated Circuit Immunity

    Science.gov (United States)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  8. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  9. Dual role of delay effects in a tumour-immune system.

    Science.gov (United States)

    Yu, Min; Dong, Yueping; Takeuchi, Yasuhiro

    2017-08-01

    In this paper, a previous tumour-immune interaction model is simplified by neglecting a relatively weak direct immune activation by the tumour cells, which can still keep the essential dynamics properties of the original model. As the immune activation process is not instantaneous, we now incorporate one delay for the activation of the effector cells (ECs) by helper T cells (HTCs) into the model. Furthermore, we investigate the stability and instability regions of the tumour-presence equilibrium state of the delay-induced system with respect to two parameters, the activation rate of ECs by HTCs and the HTCs stimulation rate by the presence of identified tumour antigens. We show the dual role of this delay that can induce stability switches exhibiting destabilization as well as stabilization of the tumour-presence equilibrium. Besides, our results reveal that an appropriate immune activation time delay plays a significant role in control of tumour growth.

  10. A simple method for determining polymeric IgA-containing immune complexes.

    Science.gov (United States)

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  11. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  12. The Phytochemical Bergenin Enhances T Helper 1 Responses and Anti-Mycobacterial Immunity by Activating the MAP Kinase Pathway in Macrophages

    Directory of Open Access Journals (Sweden)

    Debprasad Chattopadhyay

    2017-05-01

    Full Text Available Tuberculosis (TB remains one of the greatest health concerns worldwide, which has hindered socioeconomic development in certain parts of the world for many centuries. Although current TB therapy, “Directly Observed Treatment Short-course,” is effective, it is associated with unwanted side effects and the risk for the generation of drug-resistant organisms. The majority of infected individuals successfully confine the mycobacterial organisms and remain asymptotic unless immune responses are perturbed. Thus, host immunity can protect against TB and immunomodulation is therefore an attractive therapeutic option. Previous studies have shown that TNF-α and Nitric Oxide (NO in conjunction with IFN-γ-producing T helper 1 (Th1 cells play critical roles in host protection against TB. Here, we show that bergenin, a phytochemical isolated from tender leaves of Shorea robusta, activates the MAP kinase and ERK pathways and induces TNF-α, NO and IL-12 production in infected macrophages. We further show that bergenin induces Th1 immune responses and potently inhibits bacillary growth in a murine model of Mycobacterium tuberculosis infection. These findings identify bergenin as a potential adjunct to TB therapy.

  13. Bivalent rLP2086 Vaccine (Trumenba(®)): A Review in Active Immunization Against Invasive Meningococcal Group B Disease in Individuals Aged 10-25 Years.

    Science.gov (United States)

    Shirley, Matt; Dhillon, Sohita

    2015-10-01

    Bivalent rLP2086 vaccine (Trumenba(®)) [hereafter referred to as rLP2086] is a Neisseria meningitidis serogroup B (MenB) vaccine recently licensed in the USA for active immunization to prevent invasive disease caused by MenB in individuals 10-25 years of age. rLP2086, which contains two variants of the meningococcal surface protein factor H-binding protein (fHBP), was approved by the FDA under the accelerated approval pathway after the immunogenicity of the vaccine was demonstrated in several phase II trials. This article reviews the immunogenicity and reactogenicity of rLP2086 as demonstrated in the trials with a focus on the US setting and on use of the vaccine as per FDA-approved labeling. rLP2086 is approved in the USA as a three-dose series administered in a 0-, 2-, and 6-month schedule. In the phase II trials, rLP2086 elicited a robust immune response against a panel of MenB test strains. A strong immune response was evident in a marked proportion of subjects after two vaccine doses, with a further increase after a third dose. The four primary test strains used were selected to be representative of MenB strains prevalent in the USA, with each expressing an fHBP variant heterologous to the vaccine antigens. rLP2086 was generally well tolerated in the trials, with most adverse reactions being mild to moderate in severity. Although some questions remain, including the duration of the protective response, rLP2086 vaccine has the potential to be a valuable tool for the prevention of invasive MenB disease.

  14. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  15. The Role of the Immune System in Metabolic Health and Disease.

    Science.gov (United States)

    Zmora, Niv; Bashiardes, Stavros; Levy, Maayan; Elinav, Eran

    2017-03-07

    In addition to the immune system's traditional roles of conferring anti-infectious and anti-neoplastic protection, it has been recently implicated in the regulation of systemic metabolic homeostasis. This cross-talk between the immune and the metabolic systems is pivotal in promoting "metabolic health" throughout the life of an organism and plays fundamental roles in its adaptation to ever-changing environmental makeups and nutritional availability. Perturbations in this intricate immune-metabolic cross-talk contribute to the tendency to develop altered metabolic states that may culminate in metabolic disorders such as malnutrition, obesity, type 2 diabetes mellitus (T2DM), and other features of the metabolic syndrome. Regulators of immune-metabolic interactions include host genetics, nutritional status, and the intestinal microbiome. In this Perspective, we highlight current understanding of immune-metabolism interactions, illustrate differences among individuals and between populations in this respect, and point toward future avenues of research possibly enabling immune harnessing as means of personalized treatment for common metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Leishmania promastigote surface antigen-2 (PSA-2) is specifically recognised by Th1 cells in humans with naturally acquired immunity to L. major

    DEFF Research Database (Denmark)

    Kemp, M; Handman, E; Kemp, K

    1998-01-01

    The promastigote surface antigen-2 (PSA-2) is a Leishmania parasite antigen, which can induce Th1-mediated protection against murine leishmaniasis when used as a vaccine. To evaluate PSA-2 as a human vaccine candidate the specific T-cell response to PSA-2 was characterised in individuals immune...... to cutaneous leishmaniasis. Peripheral blood mononuclear cells from Sudanese individuals with a past history of self-healing cutaneous leishmaniasis proliferated vigorously in response to PSA-2 isolated from Leishmania major, whereas the antigen did not activate cells from presumably unexposed Danes....... Peripheral blood mononuclear cells from individuals with previous L. major infection had varying proliferative responses to PSA-2 derived from L. donovani promastigotes. Peripheral blood mononuclear cells activated by PSA-2 from L. major produced high amounts of interferon-gamma and tumour necrosis factor...

  17. Immune reactivities against gums.

    Science.gov (United States)

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Different kinds of gums from various sources enjoy an extremely broad range of commercial and industrial use, from food and pharmaceuticals to printing and adhesives. Although generally recognized as safe by the US Food and Drug Administration (FDA), gums have a history of association with sensitive or allergic reactions. In addition, studies have shown that gums have a structural, molecular similarity to a number of common foods. A possibility exists for cross-reactivity. Due to the widespread use of gums in almost every aspect of modern life, the overall goal of the current investigation was to determine the degree of immune reactivity to various gum antigens in the sera of individuals representing the general population. The study was a randomized, controlled trial. 288 sera purchased from a commercial source. The sera was screened for immunoglobulin G (IgG) and immunoglobulin E (IgE) antibodies against extracts of mastic gum, carrageenan, xantham gum, guar gum, gum tragacanth, locust bean gum, and β-glucan, using indirect enzyme-linked immunosorbent assay (ELISA) testing. For each gum antigen, inhibition testing was performed on the 4 sera that showed the highest IgG and IgE immune reactivity against the different gums used in the study. Inhibition testing on these same sera for sesame albumin, lentil, corn, rice, pineapple, peanut, pea protein, shrimp, or kidney bean was used to determine the cross-reactivity of these foods with the gum. Of the 288 samples, 4.2%-27% of the specimens showed a significant elevation in IgG antibodies against various gums. Only 4 of 288, or 1.4%, showed a simultaneous elevation of the IgG antibody against all 7 gum extracts. For the IgE antibody, 15.6%-29.1% of the specimens showed an elevation against the various gums. A significant percentage of the specimens, 12.8%, simultaneously produced IgE antibodies against all 7 tested extracts. Overall, the percentage of elevation in IgE antibodies against different gum extracts, with

  18. Immunity peculiarities of neonates in case of perinatal pathology

    Directory of Open Access Journals (Sweden)

    О. S. Godovanets

    2018-02-01

    Full Text Available The immune system as one of the regulating systems of the body determined peculiarities of child adaptation after birth stipulating physiology of adaptation or perinatal pathology formation. Objective: to study peculiarities of immunological indices in case of neonates’ perinatal pathology to detect their role in pathogenesis and formation of diseases severity. Materials and methods. The group of term infants with clinical signs of perinatal pathology (173 individuals was examined. They were divided into two groups: group A included those with diagnosed severe forms of diseases (121 individuals, and group B included 52 infants with general moderate severity of perinatal pathology. The group of comparison included 82 newborns without substantial adaptive deviations after birth. IL1 and IL6 levels were examined by means of immunofluorescence method “Clonospectr” using the reagents produced by “ProCon”. Absolute and relative amount of СD2+-associated Т and NK-lymphocytes, СD14+-associated monocytes, СD15+-associated neutrophils, СD19+-associated В-lymphocytes and СD54+-associated ІСАМ-1 cells were determined by means of immunofluorescence method “Status” using the set of monoclonal and polyclonal antibodies produced by “Sorbent”. The data obtained were statistically processed with the application of applied programs package used for medical-biological studies “Statgraphics Centurion XVI.I” [2011] on the personal computer Pentium MMX CPU. Results. The results obtained were indicative of considerable changes in the immune system indices in newborns under conditions of birth stress and hypoxia. It has been found that a term newborn has a special different from that of adults biologically mediated state of immune system, that can determine both the development of physiological adaptation and under certain circumstances excessive reactions of systemic inflammation, autoimmune processes and destruction of tissues. One

  19. L-carnitine: a partner between immune response and lipid metabolism ?

    Directory of Open Access Journals (Sweden)

    Giuseppe Famularo

    1993-01-01

    Full Text Available The authors demonstrated that in vivo administered L-carnitine strongly ameliorated the immune response in both healthy individuals receiving Intralipid and ageing subjects with cardiovascular diseases, as shown by the enhancement of mixed lymphocyte reaction. Notably, in the latter group L-carnitine treatment also resulted in a significant reduction of serum levels of both cholesterol and triglycerides. Therefore, the hypothesis is that L-carnitine supplementation could ameliorate both the dysregulated immune response and the abnormal lipid metabolism in several conditions.

  20. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats.

    Science.gov (United States)

    Sundareswaran, Loganathan; Srinivasan, Sakthivel; Wankhar, Wankupar; Sheeladevi, Rathinasamy

    Noise acts as a stressor and is reported to have impact on individual health depending on nature, type, intensity and perception. Modern medicine has no effective drugs or cure to prevent its consequences. Being an environmental stressor noise cannot be avoided; instead minimizing its exposure or consuming anti-stressor and adaptogens from plants can be considered. The present study was carried out to evaluate the anti-stressor, adaptogen and immunostimulatory activity of Scoparia dulcis against noise-induced stress in Wistar rat models. Noise stress in rats was created by broadband white noise generator, 100 dB A/4 h daily/15 days and S. dulcis (200 mg/kg b.w.) was administered orally. 8 groups of rats were used consisting of 6 animals each; 4 groups for unimmunized and 4 groups for immunized. For immunization, sheep red blood cells (5 × 10 9  cells/ml) were injected intraperitoneally. Sub-acute noise exposed rats showed a significant increase in corticosterone and IL-4 levels in both immunized and unimmunized rats whereas lymphocytes, antibody titration, soluble immune complex, IL-4 showed a marked increase with a significant decrease in IL-2, TNF-α, IFN-γ cytokines only in unimmunized rats. Immunized noise exposed rats presented increased leukocyte migration index and decreased foot pad thickness, IL-2, TNF-α, IFN-γ with no changes in the lymphocytes. S. dulcis (SD) has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  1. Immune activation is associated with decreased thymic function in ...

    African Journals Online (AJOL)

    Background: Reduced thymic function causes poor immunological reconstitution in human immunodeficiency virus (HIV)-positive patients on combined antiretroviral therapy (cART). The association between immune activation and thymic function in asymptomatic HIVpositive treatment-naive individuals has thus far not been ...

  2. Novel roles for immune molecules in neural development: Implications for neurodevelopmental disoders

    Directory of Open Access Journals (Sweden)

    Paula A Garay

    2010-09-01

    Full Text Available Although the brain has classically been considered "immune-privileged," current research suggests extensive communication between the nervous and the immune systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased CNS. Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system—specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of cortical and hippocampal synapses and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD and schizophrenia.

  3. Microbiota and immunity: from preclinical data to clinical practice

    Directory of Open Access Journals (Sweden)

    Eleonora Giannetti

    2015-10-01

    Full Text Available The intestinal microbiota is composed of 1013-1014 microorganisms, with at least 100 times as many genes as our genome, the microbiome. Its composition is specific for each individual, changes among individuals and also shows an intra-individual variability during life. Although the gastrointestinal microbial communities of adults are often believed to be stable, there is evidence that, even though at lower rates than in childhood, they change with time, and effects of this variability on health have not been determined yet. The interaction between microbiota and environment is close and widely demonstrated. Gut flora composition is deeply influenced by a number of factors, including diet, age, medications, illness, stress and lifestyle. Intestinal microflora has protective, metabolic and trophic functions. Commensal microbiota can deeply influence the development of the gut mucosal immune system, modulating the maturation of the gut-associated lymphoid tissue and preventing exogenous pathogen intrusion, by stimulation of the immune system and by direct interaction with pathogenic bacteria. The increasing amount of preclinical studies regarding the interaction between intestinal microbiota and immune system and the multiple observations of altered microbiota in human diseases have paved the way for a number of clinical trials aimed at verifying the potential benefits deriving from the manipulation of the microbial ensemble. Several probiotic bacteria have been assessed for their potential applicability in human diseases, albeit with different levels of success. In conclusion, the gut microbiota codevelops with the immune system beginning at birth. The development of the microbiota and its interactions with the cellular populations of the bowel provide a substantial contribution to shaping the structure and dynamic operations of the innate and adaptive immune systems. Manipulation of the microbiota, particularly through the administration of

  4. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection.

    Science.gov (United States)

    Pereira, Valéria R A; Lorena, Virginia M B; Nakazawa, Mineo; Luna, Carlos F; Silva, Edimilson D; Ferreira, Antonio G P; Krieger, Marco Aurélio; Goldenberg, Samuel; Soares, Milena B P; Coutinho, Eridan M; Correa-Oliveira, Rodrigo; Gomes, Yara M

    2005-06-01

    In previous studies, cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins induced specific humoral and cellular immune responses in susceptible and resistant mice in the absence of Trypanosoma cruzi infection with a significant induction of the Interferon-gamma (IFN-gamma) production in those animals. In this follow-up paper, the immunostimulatory and protective effects of these proteins were evaluated by immunizing with CRA or FRA antigens, BALB/c and C57BL/6 mice and challenging with a T. cruzi (Y strain). Both proteins induced humoral response with high levels of IgG isotypes as well as cellular immunity with high levels of IFN-gamma when compared to controls. However, the lymphocyte proliferative response was minimal. The survival rate at 30 days post-infection was significant in CRA (60%) or FRA (50%)--immunized BALB/c mice and CRA (83.3%)--immunized C57BL/6 mice. Taken as a whole these findings indicate that CRA and FRA are immunogenic and potentially important for protective immunity.

  5. Implementation of pertussis immunization in health-care personnel.

    Science.gov (United States)

    Walther, Kathi; Burckhardt, Marie-Anne; Erb, Thomas; Heininger, Ulrich

    2015-04-21

    Infection with Bordetella pertussis is most severe in young infants who frequently acquire it from adults. Pertussis immunization in adults 25-29 years of age and all adults in close contact with infants vaccination campaign. Between April 2012 and March 2013 we provided information about the campaign to our staff through several channels and offered appointments for counseling and immunization. After checking indications and contraindications of responding health-care personnel (HCP), informed consent for tetanus-diphtheria-acellular pertussis component (Tdap) immunization was obtained. Specific adverse events (AE) were self-assessed by standardized diaries for 7 days. Statistical analyses were performed using a t-test and Mann-Whitney U-tests SPSS (V21). Of 852 HCP eligible for pertussis immunization, 427 (51%) responded. Of these, 72 (17%) had already received Tdap now, 38 (9%) were scheduled for vaccination and 12 (3%) declined. Diaries were returned by 272 (89%) of 304 vaccinees; 56 HCP reported ≥1 local AE, most frequently local swelling (8%), redness (2%), redness and swelling (7%), and fever (5=2%); no serious AE occurred. Comprehensive efforts were needed to achieve pertussis immunization coverage of ≥49% among all HCP in our institution. Good tolerability of the vaccine and continuous and individual information to HCP about the rationale and benefits of pertussis immunization contributed to this partial success, but increased efforts are needed to mobilize non-responding HCP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  7. Costs of an immune challenge and terminal investment in a long-lived bird.

    Science.gov (United States)

    Hanssen, Sveinn Are

    2006-10-01

    An induced immune challenge can have two counteracting effects on an individual's reproductive investment. (1) The resource demand could increase to "fuel" the immunologic reaction, which in turn can lead to an adaptive decrease in investment in resource-costly activities, such as reproduction. One the other hand, (2) the individual could assume that the immune activity it experiences is indicative of a serious infection. The latter can lead to an adaptive increase in reproductive investment in response to the reduced prospects of survival and future reproduction, so called "terminal investment." To measure such life-history-related consequences of increased immune activity, one group of incubating female Common Eiders (Somateria mollissima) was injected with a nonpathogenic antigen (sheep red blood cells, SRBC) while controls were injected with sterile saline. The eider is a long-lived sea-duck. Females, who incubate the eggs and care for young without assistance from the male, engage in facultative anorexia during incubation leading to a large reduction in body mass. Eiders can abandon their young to other females at the cost of reduced young survival. The immune challenge resulted in a larger mass loss, a prolonged incubation period, and reduced return rate, demonstrating both short- and long-term costs of immune challenge. Additionally, in response to what might have been interpreted as reduced survival chances in immune-challenged females, these females more often tended their own brood after hatching, despite having suffered higher costs during incubation.

  8. Differential Gender Effects in the Relationship between Perceived Immune Functioning and Autistic Traits.

    Science.gov (United States)

    Mackus, Marlou; Kruijff, Deborah de; Otten, Leila S; Kraneveld, Aletta D; Garssen, Johan; Verster, Joris C

    2017-04-12

    Altered immune functioning has been demonstrated in individuals with autism spectrum disorder (ASD). The current study explores the relationship between perceived immune functioning and experiencing ASD traits in healthy young adults. N = 410 students from Utrecht University completed a survey on immune functioning and autistic traits. In addition to a 1-item perceived immune functioning rating, the Immune Function Questionnaire (IFQ) was completed to assess perceived immune functioning. The Dutch translation of the Autism-Spectrum Quotient (AQ) was completed to examine variation in autistic traits, including the domains "social insights and behavior", "difficulties with change", "communication", "phantasy and imagination", and "detail orientation". The 1-item perceived immune functioning score did not significantly correlate with the total AQ score. However, a significant negative correlation was found between perceived immune functioning and the AQ subscale "difficulties with change" (r = -0.119, p = 0.019). In women, 1-item perceived immune functioning correlated significantly with the AQ subscales "difficulties with change" (r = -0.149, p = 0.029) and "communication" (r = -0.145, p = 0.032). In men, none of the AQ subscales significantly correlated with 1-item perceived immune functioning. In conclusion, a modest relationship between perceived immune functioning and several autistic traits was found.

  9. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  10. Experimental Ascaris suum infection in the pig: protective memory response after three immunizations and effect of intestinal adult worm population

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Eriksen, Lis; Roepstorff, Allan

    1999-01-01

    The protective immune response to larval migration in pigs, with or without adult intestinal worm populations, 10 weeks after 3 weekly Ascaris suum inoculations, was studied in 45 pigs. Controlled adult worm populations were achieved by oral transfer of 10 adult worms to previously immunized pigs...... after anthelmintic drenching. A significant reduction in larval recovery from lungs on day 7, and small intestine on day 14, was observed in immunized pigs compared with previously uninfected control pigs after challenge inoculation. The strong anamnestic response to larval migration was characterized...

  11. Measuring polio immunity to plan immunization activities.

    Science.gov (United States)

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  13. Immune disorders in anorexia.

    Science.gov (United States)

    Słotwińska, Sylwia Małgorzata; Słotwiński, Robert

    2017-01-01

    Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  14. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    Directory of Open Access Journals (Sweden)

    Ruth Pye

    2018-02-01

    Full Text Available Devil facial tumor disease (DFTD is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33, these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol® and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of

  15. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    Science.gov (United States)

    Pye, Ruth; Patchett, Amanda; McLennan, Elspeth; Thomson, Russell; Carver, Scott; Fox, Samantha; Pemberton, David; Kreiss, Alexandre; Baz Morelli, Adriana; Silva, Anabel; Pearse, Martin J.; Corcoran, Lynn M.; Belov, Katherine; Hogg, Carolyn J.; Woods, Gregory M; Lyons, A. Bruce

    2018-01-01

    Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti

  16. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals.

    Science.gov (United States)

    Elfaki, Tayseer Elamin Mohamed; Arndts, Kathrin; Wiszniewsky, Anna; Ritter, Manuel; Goreish, Ibtisam A; Atti El Mekki, Misk El Yemen A; Arriens, Sandra; Pfarr, Kenneth; Fimmers, Rolf; Doenhoff, Mike; Hoerauf, Achim; Layland, Laura E

    2016-05-01

    In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to

  17. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals.

    Directory of Open Access Journals (Sweden)

    Tayseer Elamin Mohamed Elfaki

    2016-05-01

    Full Text Available In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity.This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+, n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+ and n = 61 people who were infection-free (Sm uninf. Immunoepidemiological findings were further investigated using two binary multivariable regression analysis.Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis.Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers

  18. Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation

    Directory of Open Access Journals (Sweden)

    Sarah A. Budischak

    2018-01-01

    Full Text Available Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition. Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function, but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs, susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity. We experimentally rewilded laboratory mice (strain C57BL/6 in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13 (a primary cytokine coordinating defense against T. muris and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different

  19. Emerging Evidence for Platelets as Immune and Inflammatory Effector Cells

    Directory of Open Access Journals (Sweden)

    Matthew Thomas Rondina

    2014-12-01

    Full Text Available While traditionally recognized for their roles in hemostatic pathways, emerging evidence demonstrates that platelets have previously unrecognized, dynamic roles that span the immune continuum. These newly-recognized platelet functions, including the secretion of immune mediators, interactions with endothelial cells, monocytes, and neutrophils, toll-like receptor (TLR mediated responses, and induction of neutrophil extracellular trap (NET formation, bridge thrombotic and inflammatory pathways and contribute to host defense mechanisms against invading pathogens. In this focused review, we highlight several of these emerging aspects of platelet biology and their implications in clinical infectious syndromes.

  20. Immunizations challenge healthcare personnel and affects immunization rates.

    Science.gov (United States)

    Strohfus, Pamela K; Kim, Susan C; Palma, Sara; Duke, Russell A; Remington, Richard; Roberts, Caleb

    2017-02-01

    This study measured 1. medical office immunization rates and 2. health care personnel competency in managing vaccine practices before and after evidence-based immunization education was provided. This descriptive study compared 32 family medicine and pediatric offices and 178 medical assistants, licensed practical nurses, registered nurses, nurse practitioners, and physicians in knowledge-based testing pre-education, post-education, and 12-months post-education. Immunization rates were assessed before and 18-months post-education. Immunization rates increased 10.3% - 18months post-education; knowledge increased 7.8% - 12months post-education. Family medicine offices, licensed practical nurses, and medical assistants showed significant knowledge deficits before and 12-months post-education. All demographic groups scored less in storage/handling 12-months post-education. This study is one of the first studies to identify competency challenges in effective immunization delivery among medical assistants, licensed practical nurses, and family medicine offices. Formal and continuous education in immunization administration and storage/handling is recommended among these select groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  2. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.

    Science.gov (United States)

    Butler, Mark J; Behringer, Donald C; Dolan, Thomas W; Moss, Jessica; Shields, Jeffrey D

    2015-01-01

    Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics) practiced by Caribbean spiny lobsters (Panulirus argus) when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA) resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.

  3. Behavioral Immunity Suppresses an Epizootic in Caribbean Spiny Lobsters.

    Directory of Open Access Journals (Sweden)

    Mark J Butler

    Full Text Available Sociality has evolved in a wide range of animal taxa but infectious diseases spread rapidly in populations of aggregated individuals, potentially negating the advantages of their social interactions. To disengage from the coevolutionary struggle with pathogens, some hosts have evolved various forms of "behavioral immunity"; yet, the effectiveness of such behaviors in controlling epizootics in the wild is untested. Here we show how one form of behavioral immunity (i.e., the aversion of diseased conspecifics practiced by Caribbean spiny lobsters (Panulirus argus when subject to the socially transmitted PaV1 virus, appears to have prevented an epizootic over a large seascape. We capitalized on a "natural experiment" in which a die-off of sponges in the Florida Keys (USA resulted in a loss of shelters for juvenile lobsters over a ~2500km2 region. Lobsters were thus concentrated in the few remaining shelters, presumably increasing their exposure to the contagious virus. Despite this spatial reorganization of the population, viral prevalence in lobsters remained unchanged after the sponge die-off and for years thereafter. A field experiment in which we introduced either a healthy or PaV1-infected lobster into lobster aggregations in natural dens confirmed that spiny lobsters practice behavioral immunity. Healthy lobsters vacated dens occupied by PaV1-infected lobsters despite the scarcity of alternative shelters and the higher risk of predation they faced when searching for a new den. Simulations from a spatially-explicit, individual-based model confirmed our empirical results, demonstrating the efficacy of behavioral immunity in preventing epizootics in this system.

  4. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis

    Science.gov (United States)

    Zhou, Yun; Zhang, Ying; Moorman, Jonathan P; Yao, Zhi Q; Jia, Zhan S

    2014-01-01

    Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules. PMID:24965611

  5. Immune System and Genetics: A Different Approach to the Diversity of Antibodies

    International Nuclear Information System (INIS)

    Matta Camacho, Nubia Estela

    2011-01-01

    It is common to find in immunology or genetic books a chapter entitled immune system and genetics; this association focuses on how the generation of antibodies broke the paradigm one gene, one protein, since in this case one gene generates millions of proteins. However, the immune system has many more links to genetics and heredity. For example, any substance or compound that an organism produces is a potential antigen, when it is recognized as foreign by the immune system of another organism from the same or different species. The proteins that are potentially antigenic are encoded by the individual's genotype. The ability of the immune system to respond to antigenic proteins, as well as the type and intensity of that response, are also correlated with the organism's genotype. In addition, deficiencies in the immune response may be associated with mutations or genetic polymorphisms, which result in susceptibility to infection diseases.

  6. Immunization in India 1993-1999: wealth, gender, and regional inequalities revisited.

    Science.gov (United States)

    Gaudin, Sylvestre; Yazbeck, Abdo S

    2006-02-01

    Previously published evidence from the 1992-1993 Indian National Family and Health Survey (NFHS) on the state of childhood immunization showed the importance of analyzing immunization outcomes beyond national averages. Reported total system failure (no immunization for all) in some low performance areas suggested that improvements in immunization levels may come with a worsening of the distribution of immunization based on wealth. In this paper, using the second wave of the NFHS (1998-1999), we take a new snapshot of the situation and compare it to 1992-1993, focusing on heterogeneities between states, rural-urban differentials, gender differentials, and more specifically on wealth-related inequalities. To assess whether improvements in overall immunization rates (levels) were accompanied by distributional improvements, or conversely, whether inequalities were reduced at the expense of overall achievement, we use a recently developed methodology to calculate an inequality-adjusted achievement index that captures performance both in terms of efficiency (change in levels) and equity (distribution by wealth quintiles) for each of the 17 largest Indian states. Comparing 1992-1993 to 1998-1999 achievements using different degrees of "inequality aversion" provides no evidence that distributional improvements occur at the expense of overall performance.

  7. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  8. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  9. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  10. Previously Unidentified Single Nucleotide Polymorphisms in HIV/AIDS Cases Associate with Clinical Parameters and Disease Progression

    Directory of Open Access Journals (Sweden)

    Vladimir V. Anokhin

    2016-01-01

    Full Text Available The genetic background of an individual plays an important role in the progression of HIV infection to AIDS. Identifying previously unknown or uncharacterized single nucleotide polymorphisms (SNPs that associate with disease progression may reveal important therapeutic targets and provide a greater understanding of disease pathogenesis. In the present study, we employed ultra-high multiplex PCR on an Ion Torrent next-generation sequencing platform to sequence 23 innate immune genes from 94 individuals with HIV/AIDS. This data was used to identify potential associations of SNPs with clinical parameters and disease progression. SNPs that associated with an increased viral load were identified in the genes for the interleukin 15 receptor (IL15RA, toll-like receptor 7 (TLR7, tripartite motif-containing protein 5 (TRIM5, and two killer-cell immunoglobulin-like receptors (KIR2DL1 and KIR2DL3. Additionally, SNPs that associated with progression from HIV infection to AIDS were identified in two 2′-5′-oligoadenylate synthetase genes (OAS2 and OAS3. In contrast, other SNPs identified in OAS2 and OAS3 genes, as well as in the TRIM5 and KIR2DS4 genes, were associated with a slower progression of disease. Taken together, our data demonstrates the utility of ultra-high multiplex PCR in identifying polymorphisms of potential clinical significance and further,identifies SNPs that may play a role in HIV pathogenesis.

  11. Immune senescence: relative contributions of age and cytomegalovirus infection.

    Directory of Open Access Journals (Sweden)

    Andrea Mekker

    Full Text Available Immune senescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterised by impaired protective immunity and decreased efficacy of vaccines. Recent clinical, epidemiological and immunological studies suggest that Cytomegalovirus (CMV infection may be associated with accelerated immune senescence, possibly by restricting the naïve T cell repertoire. However, direct evidence whether and how CMV-infection is implicated in immune senescence is still lacking. In this study, we have investigated whether latent mouse CMV (MCMV infection with or without thymectomy (Tx alters antiviral immunity of young and aged mice. After infection with lymphocytic choriomeningitis virus (LCMV or Vaccinia virus, specific antiviral T cell responses were significantly reduced in old, old MCMV-infected and/or Tx mice compared to young mice. Importantly, control of LCMV replication was more profoundly impaired in aged MCMV-infected mice compared to age-matched MCMV-naïve or young mice. In addition, latent MCMV infection was associated with slightly reduced vaccination efficacy in old Tx mice. In contrast to the prevailing hypothesis of a CMV-mediated restriction of the naïve T cell repertoire, we found similar naïve T cell numbers in MCMV-infected and non-infected mice, whereas ageing and Tx clearly reduced the naïve T cell pool. Instead, MCMV-infection expanded the total CD8(+ T cell pool by a massive accumulation of effector memory T cells. Based on these results, we propose a new model of increased competition between CMV-specific memory T cells and any 'de novo' immune response in aged individuals. In summary, our results directly demonstrate in a mouse model that latent CMV-infection impairs immunity in old age and propagates immune senescence.

  12. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  13. The Relationship Between Morphological Symmetry and Immune Response in Wild-Caught Adult Bush-Crickets

    Directory of Open Access Journals (Sweden)

    Åsa Berggren

    2009-09-01

    Full Text Available Despite interest in the relationship between fluctuating asymmetry (FA, immune response and ecological factors in insects, little data are available from wild populations. In this study we measured FA and immune response in 370 wild-caught male bush-crickets, Metrioptera roeseli, from 20 experimentally introduced populations in southern-central Sweden. Individuals with more-symmetric wings had a higher immune response as measured by the cellular encapsulation of a surgically-implanted nylon monofilament. However, we found no relationship between measures of FA in other organs (i.e. tibia and maxillary palp and immune response, suggesting that this pattern may reflect differing selection pressures.

  14. Gut microbiota, immunity and disease: a complex relationship

    Directory of Open Access Journals (Sweden)

    Michele M Kosiewicz

    2011-09-01

    Full Text Available Our immune system has evolved to recognize and eradicate pathogenic microbes. However, we have a symbiotic relationship with multiple species of bacteria that occupy the gut and comprise the natural commensal flora or microbiota. The microbiota is critically important for the breakdown of nutrients, and also assists in preventing colonization by potentially pathogenic bacteria. In addition, the gut commensal bacteria appears to be critical for the development of an optimally functioning immune system. Various studies have shown that individual species of the microbiota can induce very different types of immune cells (e.g., Th17 cells, Foxp3+ regulatory T cells and responses, suggesting that the composition of the microbiota can have an important influence on the immune response. Although the microbiota resides in the gut, it appears to have a significant impact on the systemic immune response. Indeed, specific gut commensal bacteria have been shown to affect disease development in organs other than the gut, and depending on the species, have been found to have a wide range of effects on diseases from induction and exacerbation to inhibition and protection. In this review, we will focus on the role that the gut microbiota plays in the development and progression of inflammatory/autoimmune disease, and we will also touch upon its role in allergy and cancer.

  15. Controlling Cytomegalovirus: Helping the Immune System Take the Lead

    Directory of Open Access Journals (Sweden)

    Patrick J. Hanley

    2014-05-01

    Full Text Available Cytomegalovirus, of the Herpesviridae family, has evolved alongside humans for thousands of years with an intricate balance of latency, immune evasion, and transmission. While upwards of 70% of humans have evidence of CMV infection, the majority of healthy people show little to no clinical symptoms of primary infection and CMV disease is rarely observed during persistent infection in immunocompetent hosts. Despite the fact that the majority of infected individuals are asymptomatic, immunologically, CMV hijacks the immune system by infecting and remaining latent in antigen-presenting cells that occasionally reactivate subclinically and present antigen to T cells, eventually causing the inflation of CMV-specific T cells until they can compromise up to 10% of the entire T cell repertoire. Because of this impact on the immune system, as well as its importance in fields such as stem cell and organ transplant, the relationship between CMV and the immune response has been studied in depth. Here we provide a review of many of these studies and insights into how CMV-specific T cells are currently being used therapeutically.

  16. Cross-immunity among allogeneic tumors of rats immunized with solid tumors

    International Nuclear Information System (INIS)

    Ogasawara, Masamichi

    1979-01-01

    Several experiments were done for the study of cross-immunity among allogeneic rat tumors by immunization using gamma-irradiated or non-irradiated solid tumors. Each group of rats which were immunized with gamma-irradiation solid tumor inocula from ascites tumor cell line of tetra-ploid Hirosaki sarcoma, Usubuchi sarcoma or AH 130, showed an apparent resistance against the intraperitoneal challenge with Hirosaki sarcoma. A similar resistance was demonstrated in the case of the challenge with Usubuchi sarcoma into rats immunized with non-irradiated methylcholanthrene (MCA)-induced tumors. In using solid MCA tumors as immunogen and Hirosaki sarcoma as challenge tumor, it was also demonstrated in 2 out of 3 groups immunized with non-irradiated tumors. In the experiment of trying to induce cross-immunity between 2 MCA tumors by immunization with irradiated solid tumor only, the inhibitory effect on the growth was observed in the early stage in the treated groups as compared with the control one. From the above results, it may be considered that the immunization with irradiated solid tumors fromas cites cell lines and non-irradiated solid MCA tumors induced strong cross-immunity in general, but that the immunization with only irradiated solid MCA tumors induced weak cross-immunity commonly. (author)

  17. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom

    Directory of Open Access Journals (Sweden)

    Shu-Zhi Wang

    2018-02-01

    Full Text Available Naja naja atra venom (NNAV is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.

  18. Parasite infection and immune and health-state in wild fish exposed to marine pollution.

    Science.gov (United States)

    Sueiro, María Cruz; Bagnato, Estefanía; Palacios, María Gabriela

    2017-06-15

    Association between parasitism and immunity and health-state was investigated in wild Sebastes oculatus after having determined that pollution exposure is associated with altered immune and health-state parameters. Given the importance of the immune system in antiparasite defense we predicted: (i) parasite infection would be higher in pollution-exposed than in control fish and (ii) fish with lower immune and health-state parameters would show higher parasitism than fish in better condition. Metazoan parasite fauna was compared between pollution-exposed and non-exposed fish and parasitic indices were correlated with integrated measures of immunity and health-state. Results provided little support for the predictions; some parasite taxa increased, some decreased, and some were not affected in pollution-exposed fish despite their altered health and immunity. Furthermore, there was no link between individual immune and health-state parameters and parasitism. These findings highlight the complexity of host-parasite-environment interactions in relation to pollution in natural marine ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immune-mediated animal models of Tourette syndrome

    Science.gov (United States)

    Hornig, Mady; Lipkin, W. Ian

    2014-01-01

    An autoimmune diathesis has been proposed in Tourette syndrome (TS) and related neuropsychiatric disorders such as obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism and anorexia nervosa. Environmental triggers including infection and xenobiotics are hypothesized to lead to the production of brain-directed autoantibodies in a subset of genetically susceptible individuals. Although much work has focused on Group A Streptococcus (GAS), the role of this common childhood infection remains controversial. Animal model studies based on immune and autoantibody findings in TS have demonstrated immunoglobulin (Ig) deposits and stereotypic movements and related behavioral disturbances reminiscent of TS following exposure to GAS and other activators of host anti-microbial responses, soluble immune mediators and anti-GAS or anti-neuronal antibodies. Demonstration of the ability to recreate these abnormalities through passive transfer of serum IgG from GAS-immunized mice into naïve mice and abrogation of this activity through depletion of IgG has provided compelling evidence in support of the autoimmune hypothesis. Immunologically-based animal models of TS are a potent tool for dissecting the pathogenesis of this serious neuropsychiatric syndrome. PMID:23313649

  20. Microbial-immune cross-talk and regulation of the immune system.

    Science.gov (United States)

    Cahenzli, Julia; Balmer, Maria L; McCoy, Kathy D

    2013-01-01

    We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  1. The effect of passive immunization against ghrelin on feed and water intake in turkeys.

    Science.gov (United States)

    Vizcarra, J A; Wright, H; Vizcarra, A

    2012-09-01

    Five-week-old turkeys were used to evaluate the effect of passive immunization against ghrelin on feed and water intake and animal behavior. In experiment 1, females were reared using normal feeding and lighting management recommended by the industry. At 5 wk of age (d 0 of experiment 1), birds (n = 40) were individually caged (0.65 × 0.4 × 0.4 m) with free access to feed and water. Feed and water intake were measured 3 times a day (0800, 1200, and 1700 h) by recording the weight of feed or water offered minus any unconsumed feed or water remaining. After 3 d of adaptation to the cages (d 3), birds were stratified by BW and feed consumption and randomly assigned to a 2 × 5 factorial arrangement of treatment. Starting on d 3, turkeys were given intravenous (iv) injections (0.5, 1.0, 2.0, 4.0, or 8.0 mL) of pooled undiluted plasma obtained from pigs that were previously actively immunized against ghrelin or iv injections (0.5, 1.0, 2.0, 4.0, or 8.0 mL) of pooled undiluted plasma, obtained from nonimmunized pigs (control). In experiment 2, the 2 highest doses (i.e., 4.0 and 8.0 mL; n = 4/treatment) were repeated in a 2 × 2 factorial arrangement as described in experiment 1. A laptop computer with a built-in color camera and appropriate software was used to record birds for 9 consecutive hours, starting 4 h before treatments were applied. Video clips were saved and a human observer watched and annotated bird behavior associated with feeding, drinking, and standing. Passively immunized birds increased feed consumption (P = 0.04) compared with control animals. Water intake was not affected by treatments. There was a tendency for immunized birds to increase the number of pecks per hour and the amount of time devoted for feeding. Our data suggest that in turkeys, the effect of immunization against ghrelin on feed intake is the opposite of that observed in mammalian species.

  2. Our Immune System

    Science.gov (United States)

    Our Immune System A story for children with primary immunodeficiency diseases Written by Sara LeBien IMMUNE DEFICIENCY FOUNDATION A note ... who are immune deficient to better understand their immune system. What is a “ B-cell, ” a “ T-cell, ” ...

  3. Humoral Immune Response Kinetics in Philander opossum and Didelphis marsupialis Infected and Immunized by Trypanosoma cruzi Employing an Immunofluorescence Antibody Test

    Directory of Open Access Journals (Sweden)

    Ana Paula Legey

    1999-05-01

    Full Text Available Philander opossum and Didelphis marsupialis considered the most ancient mammals and an evolutionary success, maintain parasitism by Trypanosoma cruzi without developing any apparent disease or important tissue lesion. In order to elucidate this well-balanced interaction, we decided to compare the humoral immune response kinetics of the two didelphids naturally and experimentally infected with T. cruzi and immunized by different schedules of parasite antigens, employing an indirect fluorescence antibody test (IFAT. Both didelphids responded with high serological titers to different immunization routes, while the earliest response occurred with the intradermic route. Serological titers of naturally infected P. opossum showed a significant individual variation, while those of D. marsupialis remained stable during the entire follow-up period. The serological titers of the experimentally infected animals varied according to the inoculated strain. Our data suggest that (1 IFAT was sensitive for follow-up of P. opossum in natural and experimental T. cruzi infections; (2 both P. opossum and D. marsupialis are able to mount an efficient humoral immune response as compared to placental mammals; (3 experimentally infected P. opossum and D. marsupialis present distinct patterns of infection, depending on the subpopulation of T. cruzi, (4 the differences observed in the humoral immune responses between P. opossum and D. marsupialis, probably, reflect distinct strategies selected by these animals during their coevolution with T. cruzi.

  4. AVIDITY EVALUATION OF LOCAL IgA ANTIBODIES IN PERSONS IMMUNIZED WITH LIVE INFLUENZA VACCINE

    Directory of Open Access Journals (Sweden)

    S. A. Donina

    2008-01-01

    Full Text Available Abstract. At present, immunogenicity evaluation of influenza vaccines is performed by quantitative assessment of increased serum antibodies. It was, however, shown that the degree of human defense against influenza is mostly related to their qualitative characteristics, i.e., avidity (functional activity. Leading role of local immunity is demonstrated in protection against influenza. Such immunity is mediated by IgA antibodies from mucosal airways. Meanwhile, the avidity issues for local antibodies still remain open.In present study, an attempt was undertaken to evaluate post-vaccination local immunological memory for influenza A virus, according to IgA antibodies from upper respiratory secretions. Two techniques were used to evaluate antibody avidity, that were previously applied for studying this phenomenon with serum imunoglobulins, i.e., a dynamic test (measurement of antigen-antibody reaction rates, and a test with urea, a chaotropic agent (avidity is determined as a strength of antigen-antibody complex. A total of 202 persons (18 to 20 years old were enrolled into the study.With both tests, a broad range of individual avidity values was observed for the antibodies. A significant cohort (up to 30 per cent of persons immunized with live influenza vaccine, showed sharply increased avidity of secretory IgA antibodies by both methods, along with accumulation of these immunoglobulins after vaccination. A reverse relationship is revealed between avidity levels of these antibodies before vaccination, and increase of this parameter post-immunization. The data present convincing arguments for specific renewal of local humoral immunological memory, as induced by live influenza vaccine. The study substantiates a necessity for application of the both tests in parallel, when determining avidity of secretory IgA antibodies. (Med. Immunol., vol. 10, N 4-5, pp 423-430.

  5. Dominant male song performance reflects current immune state in a cooperatively breeding songbird

    NARCIS (Netherlands)

    York, Jenny E.; Radford, Andrew N.; Groothuis, Ton G.; Young, Andrew J.

    Conspicuous displays are thought to have evolved as signals of individual quality, though precisely what they encode remains a focus of debate. While high quality signals may be produced by high quality individuals due to good genes or favourable early-life conditions, whether current immune state

  6. Patient reminder and recall interventions to improve immunization rates.

    Science.gov (United States)

    Jacobson Vann, Julie C; Jacobson, Robert M; Coyne-Beasley, Tamera; Asafu-Adjei, Josephine K; Szilagyi, Peter G

    2018-01-18

    Immunization rates for children and adults are rising, but coverage levels have not reached optimal goals. As a result, vaccine-preventable diseases still occur. In an era of increasing complexity of immunization schedules, rising expectations about the performance of primary care, and large demands on primary care providers, it is important to understand and promote interventions that work in primary care settings to increase immunization coverage. One common theme across immunization programs in many nations involves the challenge of implementing a population-based approach and identifying all eligible recipients, for example the children who should receive the measles vaccine. However, this issue is gradually being addressed through the availability of immunization registries and electronic health records. A second common theme is identifying the best strategies to promote high vaccination rates. Three types of strategies have been studied: (1) patient-oriented interventions, such as patient reminder or recall, (2) provider interventions, and (3) system interventions, such as school laws. One of the most prominent intervention strategies, and perhaps best studied, involves patient reminder or recall systems. This is an update of a previously published review. To evaluate and compare the effectiveness of various types of patient reminder and recall interventions to improve receipt of immunizations. We searched CENTRAL, MEDLINE, Embase and CINAHL to January 2017. We also searched grey literature and trial registers to January 2017. We included randomized trials, controlled before and after studies, and interrupted time series evaluating immunization-focused patient reminder or recall interventions in children, adolescents, and adults who receive immunizations in any setting. We included no-intervention control groups, standard practice activities that did not include immunization patient reminder or recall, media-based activities aimed at promoting immunizations

  7. Decision making under explicit risk is impaired in individuals with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Fujiwara, Esther; Tomlinson, Sara E; Purdon, Scot E; Gill, M John; Power, Christopher

    2015-01-01

    Human immunodeficiency virus (HIV) can affect the frontal-striatal brain regions, which are known to subserve decision-making functions. Previous studies have reported impaired decision making among HIV+ individuals using the Iowa Gambling Task, a task that assesses decision making under ambiguity. Previous study populations often had significant comorbidities such as past or present substance use disorders and/or hepatitis C virus coinfection, complicating conclusions about the unique contributions of HIV-infection to decision making. Decision making under explicit risk has very rarely been examined in HIV+ individuals and was tested here using the Game of Dice Task (GDT). We examined decision making under explicit risk in the GDT in 20 HIV+ individuals without substance use disorder or HCV coinfection, including a demographically matched healthy control group (n = 20). Groups were characterized on a standard neuropsychological test battery. For the HIV+ group, several disease-related parameters (viral load, current and nadir CD4 T-cell count) were included. Analyses focused on the GDT and spanned between-group (t-tests; analysis of covariance, ANCOVA) as well as within-group comparisons (Pearson/Spearman correlations). HIV+ individuals were impaired in the GDT, compared to healthy controls (p = .02). Their decision-making impairments were characterized by less advantageous choices and more random choice strategies, especially towards the end of the task. Deficits in the GDT in the HIV+ group were related to executive dysfunctions, slowed processing/motor speed, and current immune system status (CD4+ T-cell levels, ps Decision making under explicit risk in the GDT can occur in HIV-infected individuals without comorbidities. The correlational patterns may point to underlying fronto-subcortical dysfunctions in HIV+ individuals. The GDT provides a useful measure to assess risky decision making in this population and should be tested in larger studies.

  8. How does ionizing irradiation contribute to the induction of anti-tumor immunity?

    Directory of Open Access Journals (Sweden)

    Yvonne eRubner

    2012-07-01

    Full Text Available Radiotherapy (RT with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.

  9. How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    International Nuclear Information System (INIS)

    Rubner, Yvonne; Wunderlich, Roland; Rühle, Paul-Friedrich; Kulzer, Lorenz; Werthmöller, Nina; Frey, Benjamin; Weiss, Eva-Maria; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S.

    2012-01-01

    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.

  10. Modeling evolution and immune system by cellular automata

    International Nuclear Information System (INIS)

    Bezzi, M.

    2001-01-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section

  11. A Strong Immune Response in Young Adult Honeybees Masks Their Increased Susceptibility to Infection Compared to Older Bees

    Science.gov (United States)

    Bull, James C.; Ryabov, Eugene V.; Prince, Gill; Mead, Andrew; Zhang, Cunjin; Baxter, Laura A.; Pell, Judith K.; Osborne, Juliet L.; Chandler, Dave

    2012-01-01

    Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease

  12. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets.

    Science.gov (United States)

    McCutcheon, Krista M; Gray, Julia; Chen, Natalie Y; Liu, Keyi; Park, Minha; Ellsworth, Stote; Tripp, Ralph A; Tompkins, S Mark; Johnson, Scott K; Samet, Shelly; Pereira, Lenore; Kauvar, Lawrence M

    2014-01-01

    Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.

  13. Immunization Coverage

    Science.gov (United States)

    ... room/fact-sheets/detail/immunization-coverage","@context":"http://schema.org","@type":"Article"}; العربية 中文 français русский español ... Plan Global Health Observatory (GHO) data - Immunization More information on vaccines and immunization News 1 in 10 ...

  14. Allergies and Asthma: Do Atopic Disorders Result from Inadequate Immune Homeostasis arising from Infant Gut Dysbiosis?

    Science.gov (United States)

    Johnson, Christine C; Ownby, Dennis R

    2016-01-01

    Our global hypothesis is that atopic conditions and asthma develop because an individual's immune system is not able to appropriately resolve inflammation resulting from allergen exposures. We propose that the failure to appropriately down-regulate inflammation and produce a toleragenic state results primarily from less robust immune homeostatic processes rather than from a tendency to over-respond to allergenic stimuli. An individual with lower immune homeostatic capacity is unable to rapidly and completely terminate, on average over time, immune responses to innocuous allergens, increasing risk of allergic disease. A lack of robust homeostasis also increases the risk of other inflammatory conditions, such as prolonged respiratory viral infections and obesity, leading to the common co-occurrence of these conditions. Further, we posit that the development of vigorous immune homeostatic mechanisms is an evolutionary adaptation strongly influenced by both 1) exposure to a diverse maternal microbiota through the prenatal period, labor and delivery, and, 2) an orderly assemblage process of the infant's gut microbiota ecosystem shaped by breastfeeding and early exposure to a wide variety of ingested foods and environmental microbes. This early succession of microbial communities together with early allergen exposures orchestrate the development of an immune system with a robust ability to optimally control inflammatory responses and a lowered risk for atopic disorders.

  15. The job satisfaction of principals of previously disadvantaged schools

    African Journals Online (AJOL)

    The aim of this study was to identify influences on the job satisfaction of previously disadvantaged ..... I am still riding the cloud … I hope it lasts. .... as a way of creating a climate and culture in schools where individuals are willing to explore.

  16. Hyperthyroidism caused by acquired immune deficiency syndrome.

    Science.gov (United States)

    Wang, J-J; Zhou, J-J; Yuan, X-L; Li, C-Y; Sheng, H; Su, B; Sheng, C-J; Qu, S; Li, H

    2014-01-01

    Acquired immune deficiency syndrome (AIDS) is an immune deficiency disease. The etiology of hyperthyroidism, which can also be immune-related, is usually divided into six classical categories, including hypophyseal, hypothalamic, thyroid, neoplastic, autoimmune and inflammatory hyperthyroidism. Hyperthyroidism is a rare complication of highly active antimicrobial therapy (HAART) for human immunodeficiency virus (HIV). Hyperthyroidism caused directly by AIDS has not been previously reported. A 29-year-old man who complained of dyspnea and asthenia for 1 month, recurrent fever for more than 20 days, and breathlessness for 1 week was admitted to our hospital. The thyroid function test showed that the level of free thyroxine (FT4) was higher than normal and that the level of thyroid-stimulating hormone (TSH) was below normal. He was diagnosed with hyperthyroidism. Additional investigations revealed a low serum albumin level and chest infection, along with diffuse lung fibrosis. Within 1 month, he experienced significant weight loss, no hand tremors, intolerance of heat, and perspiration proneness. We recommended an HIV examination; subsequently, AIDS was diagnosed based on the laboratory parameters. This is the first reported case of hyperthyroidism caused by AIDS. AIDS may cause hyperthyroidism by immunization regulation with complex, atypical, and easily ignored symptoms. Although hyperthyroidism is rare in patients with AIDS, clinicians should be aware of this potential interaction and should carefully monitor thyroid function in HIV-positive patients.

  17. Markers of immune activation and apoptosis in endomyocardial biopsies of individuals with recent-onset dilated cardiomyopathy

    Czech Academy of Sciences Publication Activity Database

    Kubánek, M.; Sramko, M.; Malušková, J.; Chudíčková, Milada; Holáň, Vladimír; Kautzner, J.

    2013-01-01

    Roč. 34, č. 1 (2013), s. 211-211 ISSN 0195-668X. [Congress of the European-Society-of- Cardiology (ESC). 31.08.2013-,04.09.2013, Amsterdam] Institutional support: RVO:68378041 Keywords : dilated cardiomyopathy * immune activation and apoptosis Subject RIV: EC - Immunology

  18. Knowledge and misconceptions about immunizations among medical students, pediatric, and family medicine resident.

    Science.gov (United States)

    Tañón, Vilmarie; Borrero, Clarimar; Pedrogo, Yasmín

    2010-01-01

    Previous research has indicated that, despite being the most trusted source of health information, medical students, residents and other health related professionals lack accurate and current knowledge regarding immunization practices. To evaluate medical students and primary care resident knowledge about immunizations. Self-administered survey given to students from four medical schools, Pediatrics residents (2 training programs) and Family Medicine residents (2 programs). Data was analyzed using Statistix 8.0. One-way ANOVA test was used to compare means, and a p-value less than 0.05 was considered statistically significant. Participants (N=376) included 3rd (64%) and 4th (18%) year medical students and a homogenous distribution of 1st, 2nd and 3rd year residents. The mean percent of correct answers about immunizations was 61%. The participants showed poor knowledge about indications (62% correct answers), contraindications (46% correct answers) and myths (71% correct answers). Knowledge about immunizations correlated with higher levels of education (p immunizations followed by books (48%) and the internet (36%). They referred poor exposure to immunizations in clinical settings. Most medical students do not have the expected knowledge about immunization indications and contraindications. Residents were not proficient in immunization contraindications. Both groups had an adequate understanding about vaccination myths. Efforts towards ensuring adequate exposure to immunizations education during training years are needed in order to eliminate one of the barriers to adequate immunizations in children.

  19. Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection

    Science.gov (United States)

    O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.

    2015-01-01

    Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222

  20. A Study Of Universal Immunization Coverage During Last Five Years In Resettlement Colonies Of Delhi

    Directory of Open Access Journals (Sweden)

    Salhotra V S

    1999-01-01

    Full Text Available Research Question: Is there any difference in immunization coverage in resettlement colonies of Delhi during past five years? Objectives: 1. To study the immunization coverage levels of children over a period of five years. 2. To observe changes in the coverage levels of different years, if any. Study design: Cross-sectional study. Setting: Khichripur, Kalyanpuri, Kalyanpuri, Trilokpuri and Himmatpuri- four resettlement colonies of trans-Yamuna area of Delhi. Participants: 1500 children belonging to five age-groups i.e. birth-1 yr., 1-2 yrs., 2-3 yrs, and 4-5 yrs. Methods: Verification of child’s immunization from immunization card and interview of mother if immunization car was not available. Study period: May1997 to March1998 Results: Immunization with individual vaccines and immunization status of the children peaked in 1995-96 but started falling thereafter due to fall in ICE activities.

  1. A Bivariate Mixture Model for Natural Antibody Levels to Human Papillomavirus Types 16 and 18: Baseline Estimates for Monitoring the Herd Effects of Immunization.

    Directory of Open Access Journals (Sweden)

    Margaretha A Vink

    Full Text Available Post-vaccine monitoring programs for human papillomavirus (HPV have been introduced in many countries, but HPV serology is still an underutilized tool, partly owing to the weak antibody response to HPV infection. Changes in antibody levels among non-vaccinated individuals could be employed to monitor herd effects of immunization against HPV vaccine types 16 and 18, but inference requires an appropriate statistical model. The authors developed a four-component bivariate mixture model for jointly estimating vaccine-type seroprevalence from correlated antibody responses against HPV16 and -18 infections. This model takes account of the correlation between HPV16 and -18 antibody concentrations within subjects, caused e.g. by heterogeneity in exposure level and immune response. The model was fitted to HPV16 and -18 antibody concentrations as measured by a multiplex immunoassay in a large serological survey (3,875 females carried out in the Netherlands in 2006/2007, before the introduction of mass immunization. Parameters were estimated by Bayesian analysis. We used the deviance information criterion for model selection; performance of the preferred model was assessed through simulation. Our analysis uncovered elevated antibody concentrations in doubly as compared to singly seropositive individuals, and a strong clustering of HPV16 and -18 seropositivity, particularly around the age of sexual debut. The bivariate model resulted in a more reliable classification of singly and doubly seropositive individuals than achieved by a combination of two univariate models, and suggested a higher pre-vaccine HPV16 seroprevalence than previously estimated. The bivariate mixture model provides valuable baseline estimates of vaccine-type seroprevalence and may prove useful in seroepidemiologic assessment of the herd effects of HPV vaccination.

  2. [The liver and the immune system].

    Science.gov (United States)

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes

  3. Epidemic spreading and immunization strategy in multiplex networks

    Science.gov (United States)

    Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.

    2015-09-01

    A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.

  4. Effects of antiretroviral therapy on immunity in patients infected with HIV.

    Science.gov (United States)

    Feola, D J; Thornton, A C; Garvy, B A

    2006-01-01

    Drug therapy for human immunodeficiency virus (HIV) is highly effective in suppressing viral replication and restoring immune function in patients with HIV. However, this same treatment can also be associated with immunotoxicity. For example, zidovudine and various other antiretroviral agents are capable of causing bone marrow suppression. Agents used to treat opportunistic infections in these individuals, including ganciclovir, foscarnet, and sulfamethoxazole-trimethoprim, can cause additional hematotoxicity. Drug-drug interactions must also be considered and managed in order to control iatrogenic causes of immunotoxicity. In this review, we examine the normal immune response to HIV, and the benefits of antiretroviral therapy in prolonging immune function. We then discuss immune-related adverse effects of drugs used to treat HIV and the opportunistic infections that are common among these patients. Finally, we address in vitro, animal, and clinical evidence of toxicity associated with various combination use of these agents.

  5. Influence of Physical Activity and Nutrition on Obesity-Related Immune Function

    Directory of Open Access Journals (Sweden)

    Chun-Jung Huang

    2013-01-01

    Full Text Available Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation.

  6. Update on gene therapy of inherited immune deficiencies.

    Science.gov (United States)

    Engel, Barbara C; Kohn, Donald B; Podsakoff, Greg M

    2003-10-01

    Gene therapy has been under development as a way to correct inborn errors for many years. Recently, patients with two forms of inherited severe combined immunodeficiency (SCID), adenosine deaminase and X-linked, treated by three different clinical investigative teams, have shown significant immune reconstitution leading to protective immunity. These advances irrefutably prove the concept that hematopoietic progenitor cell gene therapy can ameliorate these diseases. However, due to proviral insertional oncogenesis, two individuals in one of the X-SCID studies developed T-cell leukemia more than two years after the gene transfer. Depending upon the results of long-term follow-up, the successes together with the side effects highlight the relative merits of this therapeutic approach.

  7. Recommendations for pneumococcal immunization outside routine childhood immunization programs in Western Europe.

    Science.gov (United States)

    Castiglia, Paolo

    2014-10-01

    The global burden of pneumococcal diseases is high, with young children and adults≥50 years of age at highest risk of infection. Two types of vaccine are available for the prevention of pneumococcal diseases caused by specific Streptococcus pneumoniae serotypes: the pneumococcal polysaccharide vaccine (PPV23) and the pneumococcal conjugate vaccine (PCV7, PCV10, and PCV13). Despite pneumococcal immunization programs in adults and children, the burden in adults has remained high. Most European countries have national or local/regional vaccination recommendations. The objective of this review was to provide an overview of the government recommendations for pneumococcal vaccination outside routine childhood vaccination programs for 16 Western European countries as of August 2014. We found that recommendations for pneumococcal immunization across Europe are complex and vary greatly among countries in terms of age groups and risk groups recommended for vaccination, as well as which vaccine should be administered. Clarifying or simplifying these recommendations and improving their dissemination could help to increase pneumococcal vaccine uptake and decrease the high burden of pneumococcal diseases in adults, both through a direct effect of the vaccine and via a herd effect in unvaccinated individuals.

  8. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  9. Hemagglutinating virus of Japan envelope (HVJ-E) can enhance the immune responses of swine immunized with killed PRRSV vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhihong [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Quan [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Wang, Zaishi [China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Zhongqiu [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Veterinary Bureau, Ministry of Agriculture of the People' s Republic of China, Beijing 100125 (China); Guo, Pengju [Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangdong 510640 (China); Zhao, Deming, E-mail: zhaodm@cau.edu.cn [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We investigated the immunoadjuvant effects of HVJ-E on killed PRRSV vaccine. Black-Right-Pointing-Pointer HVJ-E enhanced the humoral and cellular responses of the piglets to PRRSV. Black-Right-Pointing-Pointer It is suggested that HVJ-E could be developed as a new-type adjuvant for mammals. -- Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically detrimental pig pathogen that causes significant losses for the pig industry. The immunostimulatory effects of hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy and the adjuvant efficacy of HVJ-E have been previously evaluated. The objective of this study was to investigate the adjuvant effects of HVJ-E on immunization with killed PRRSV vaccine, and to evaluate the protective effects of this immunization strategy against virulent PRRSV infection in piglets. Next, the PRRSV-specific antibody response, lymphocyte proliferation, PRRSV-specific IL-2, IL-10 and IFN-{gamma} production, and the overall protection efficacy were evaluated to assess the immune responses of the piglets. The results showed that the piglets inoculated simultaneously with killed PRRSV vaccine and HVJ-E had a significantly stronger immune response than those inoculated with killed PRRSV vaccine alone. Our results suggest that HVJ-E could be employed as an effective adjuvant to enhance the humoral and cellular responses of piglets to PRRSV.

  10. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Science.gov (United States)

    Kato, Kazuki; Ishii, Ryohei; Goto, Eiji; Ishitani, Ryuichiro; Tokunaga, Fuminori; Nureki, Osamu

    2013-01-01

    The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS) is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING), resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  11. Structural and functional analyses of DNA-sensing and immune activation by human cGAS.

    Directory of Open Access Journals (Sweden)

    Kazuki Kato

    Full Text Available The detection of cytosolic DNA, derived from pathogens or host cells, by cytosolic receptors is essential for appropriate host immune responses. Cyclic GMP-AMP synthase (cGAS is a newly identified cytosolic DNA receptor that produces cyclic GMP-AMP, which activates stimulator of interferon genes (STING, resulting in TBK1-IRF3 pathway activation followed by the production of type I interferons. Here we report the crystal structure of human cGAS. The structure revealed that a cluster of lysine and arginine residues forms the positively charged DNA binding surface of human cGAS, which is important for the STING-dependent immune activation. A structural comparison with other previously determined cGASs and our functional analyses suggested that a conserved zinc finger motif and a leucine residue on the DNA binding surface are crucial for the DNA-specific immune response of human cGAS, consistent with previous work. These structural features properly orient the DNA binding to cGAS, which is critical for DNA-induced cGAS activation and STING-dependent immune activation. Furthermore, we showed that the cGAS-induced activation of STING also involves the activation of the NF-κB and IRF3 pathways. Our results indicated that cGAS is a DNA sensor that efficiently activates the host immune system by inducing two distinct pathways.

  12. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  13. Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis.

    Directory of Open Access Journals (Sweden)

    Bo G Lindberg

    2018-03-01

    Full Text Available Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis despite a constantly changing microbial environment. Several regulatory factors have been described to participate in feedback responses to prevent aberrant immune activity. Little is, however, known about how transcriptional programs are directly tuned to efficiently adapt host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin (nub encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonistically regulate immune gene expression in Drosophila. Global transcriptional profiling of adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a strong transcriptional activator of a large set of immune genes. Further genetic analyses showed that Nub-PB is sufficient to drive expression both independently and in conjunction with nuclear factor kappa B (NF-κB, JNK and JAK/STAT pathways. Similar overexpression of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-overexpression normalized immune gene transcription, suggesting antagonistic activities. RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonistic regulation by the two isoforms and that both are necessary for normal immune gene transcription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless, flies quickly succumbed to the infection, suggesting a deleterious immune response. In line with this, prolonged overexpression promoted a proinflammatory signature in the gut with induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation. These findings highlight a novel regulatory mechanism of host-microbe interactions mediated by antagonistic

  14. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    Science.gov (United States)

    2013-10-01

    by the Regional Ministry of Education of Castilla-la Mancha, Spain, supported by the European Social Fund (ESF). We are thankful for the efforts...consistent with previous reports that aber rant activation of innate immune signals in MDS, including overcxpression of several TLRs (36) and loss...281: 1652- 1659. 14. Loiarro M, Set te C , Gallo G. Ciacc.i A, Fa nto N, et al. (2005) Peptide- media ted interference of T JR domain dimeri7.ation

  15. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket.

    Science.gov (United States)

    Kelly, C D; Neyer, A A; Gress, B E

    2014-02-01

    Individual fitness is expected to benefit from earlier maturation at a larger body size and higher body condition. However, poor nutritional quality or high prevalence of disease make this difficult because individuals either cannot acquire sufficient resources or must divert resources to other fitness-related traits such as immunity. Under such conditions, individuals are expected to mature later at a smaller body size and in poorer body condition. Moreover, the juvenile environment can also produce longer-term effects on adult fitness by causing shifts in resource allocation strategies that could alter investment in immune function and affect adult lifespan. We manipulated diet quality and immune status of juvenile Texas field crickets, Gryllus texensis, to investigate how poor developmental conditions affect sex-specific investment in fitness-related traits. As predicted, a poor juvenile diet was related to smaller mass and body size at eclosion in both sexes. However, our results also reveal sexually dimorphic responses to different facets of the rearing environment: female life history decisions are affected more by diet quality, whereas males are affected more by immune status. We suggest that females respond to decreased nutritional income because this threatens their ability to achieve a large adult body size, whereas male fitness is more dependent on reaching adulthood and so they invest in immunity and survival to eclosion. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  16. Immunity's fourth dimension: approaching the circadian-immune connection.

    Science.gov (United States)

    Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol

    2012-12-01

    The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Vaccines (immunizations) - overview

    Science.gov (United States)

    Vaccinations; Immunizations; Immunize; Vaccine shots; Prevention - vaccine ... of the vaccine. VACCINE SCHEDULE The recommended vaccination (immunization) schedule is updated every 12 months by the ...

  18. Immune disorders in anorexia

    Directory of Open Access Journals (Sweden)

    Sylwia Małgorzata Słotwińska

    2017-10-01

    Full Text Available Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  19. Alternative Immune Systems

    Directory of Open Access Journals (Sweden)

    Luis Fernando Cadavid Gutierrez

    2011-09-01

    Full Text Available The immune system in animals is a complex network of molecules, cells and tissues that coordinately maintain the physiological and genetic integrity of the organism. Traditionally, two classes of immunity have been considered, the innate immunity and the adaptive immunity. The former is ancestral, with limited variability and low discrimination. The latter is highly variable, specific and limited to jawed vertebrates. Adaptive immunity is based on antigen receptors that rearrange somatically to generate a nearly unlimited diversity of molecules. Likely, this mechanism of somatic recombination arose as a consequence of a horizontal transfer of transposons and transposases from bacterial genomes in the ancestor of jawed vertebrates. The recent discovery in jawless vertebrates and invertebrates of alternative adaptive immune mechanisms, suggests during evolution different animal groups have found alternative solutions to the problem of immune recognition.

  20. Analysis and comparison of immune reactivity in guinea-pigs immunized with equivalent numbers of normal or radiation-attenuated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Rogers, M.V.; McLaren, D.J.

    1987-01-01

    Guinea-pigs immunized with equivalent numbers of normal or radiation-attenuated cercariae of Schistosoma mansoni develop close to complete resistance to reinfection at weeks 12 and 4.5 respectively. We here analyse and compare the immune responses induced by the two populations of cercariae. Both radiation-attenuated and normal parasites of S. mansoni elicited an extensive germinal centre response in guinea-pigs by week 4.5 post-immunization. The anti-parasite antibody titre and cytotoxic activity of serum from 4.5-week-vaccinated, or 4.5-week-infected guinea-pigs were approximately equal, but sera from 12-week-infected individuals had high titres of anti-parasite antibody, which promoted significant larvicidal activity in vitro. In all cases, larvicidal activity was mediated by the IgG 2 fraction of the immune serum. Lymphocyte transformation tests conducted on splenic lymphocytes from 4.5-week vaccinated guinea-pigs revealed maximal stimulation against cercarial, 2-week and 3-week worm antigens, whereas spleen cells from 4.5-week-infected guinea-pigs were maximally stimulated by cercarial and 6-week worm antigens. The splenic lymphocyte responses of 12-week infected animals were dramatic against antigens prepared from all life-stages of the parasite. (author)

  1. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    Directory of Open Access Journals (Sweden)

    Heli Salmela

    2015-07-01

    Full Text Available Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

  2. The twilight of immunity: emerging concepts in aging of the immune system.

    Science.gov (United States)

    Nikolich-Žugich, Janko

    2018-01-01

    Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.

  3. A Two-Phenotype Model of Immune Evasion by Cancer Cells

    NARCIS (Netherlands)

    Bayer, Péter; Brown, Joel; Stankova, Katerina

    2017-01-01

    We propose a model with two types of cancer cells differentiated by their defense mechanisms against the immune system. ``Selfish'' cancer cells develop defense mechanisms that benefit the individual cell, whereas ``cooperative'' cells deploy countermeasures that increase the chance of survival of

  4. Flight performance of western sandpipers, Calidris mauri, remains uncompromised when mounting an acute phase immune response.

    Science.gov (United States)

    Nebel, Silke; Buehler, Deborah M; MacMillan, Alexander; Guglielmo, Christopher G

    2013-07-15

    Migratory birds have been implicated in the spread of some zoonotic diseases, but how well infected individuals can fly remains poorly understood. We used western sandpipers, Calidris mauri, to experimentally test whether flight is affected when long-distance migrants are mounting an immune response and whether migrants maintain immune defences during a flight in a wind tunnel. We measured five indicators of innate immunity in 'flown-healthy' birds (flying in a wind tunnel without mounting an immune response), 'flown-sick' birds (flying while mounting an acute phase response, which is part of induced innate immunity), and a non-flying control group ('not-flown'). Voluntary flight duration did not differ between flown-healthy and flown-sick birds, indicating that mounting an acute phase response to simulated infection did not hamper an individual's ability to fly for up to 3 h. However, in comparison to not-flown birds, bacterial killing ability of plasma was significantly reduced after flight in flown-sick birds. In flown-healthy birds, voluntary flight duration was positively correlated with bacterial killing ability and baseline haptoglobin concentration of the blood plasma measured 1-3 weeks before experimental flights, suggesting that high quality birds had strong immune systems and greater flight capacity. Our findings indicate that flight performance is not diminished by prior immune challenge, but that flight while mounting an acute phase response negatively affects other aspects of immune function. These findings have important implications for our understanding of the transmission of avian diseases, as they suggest that birds can still migrate while fighting an infection.

  5. Organization of an optimal adaptive immune system

    Science.gov (United States)

    Walczak, Aleksandra; Mayer, Andreas; Balasubramanian, Vijay; Mora, Thierry

    The repertoire of lymphocyte receptors in the adaptive immune system protects organisms from a diverse set of pathogens. A well-adapted repertoire should be tuned to the pathogenic environment to reduce the cost of infections. I will discuss a general framework for predicting the optimal repertoire that minimizes the cost of infections contracted from a given distribution of pathogens. The theory predicts that the immune system will have more receptors for rare antigens than expected from the frequency of encounters and individuals exposed to the same infections will have sparse repertoires that are largely different, but nevertheless exploit cross-reactivity to provide the same coverage of antigens. I will show that the optimal repertoires can be reached by dynamics that describes the competitive binding of antigens by receptors, and selective amplification of stimulated receptors.

  6. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Science.gov (United States)

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  7. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    Science.gov (United States)

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  8. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    Science.gov (United States)

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  9. Condition-Dependent Trade-Off Between Weapon Size and Immunity in Males of the European Earwig.

    Science.gov (United States)

    Körner, Maximilian; Vogelweith, Fanny; Foitzik, Susanne; Meunier, Joël

    2017-08-11

    Investigating the expression of trade-offs between key life-history functions is central to our understanding of how these functions evolved and are maintained. However, detecting trade-offs can be challenging due to variation in resource availability, which masks trade-offs at the population level. Here, we investigated in the European earwig Forficula auricularia whether (1) weapon size trades off with three key immune parameters - hemocyte concentration, phenoloxidase and prophenoloxidase activity - and whether (2) expression and strength of these trade-offs depend on male body condition (body size) and/or change after an immune challenge. Our results partially confirmed condition dependent trade-offs between weapon size and immunity in male earwigs. Specifically, we found that after an immune challenge, weapon size trades off with hemocyte concentrations in low-condition, but not in good-condition males. Contrastingly, weapon size was independent of pre-challenge hemocyte concentration. We also found no trade-off between weapon size and phenoloxidase activity, independent of body condition and immune challenge. Overall, our study reveals that trade-offs with sexual traits may weaken or disappear in good-condition individuals. Given the importance of weapon size for male reproductive success, our results highlight how low-condition individuals may employ alternative life-history investment strategies to cope with resource limitation.

  10. Pattern dynamics of the reaction-diffusion immune system.

    Science.gov (United States)

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  11. Cortisol-dependent stress effects on cell distribution in healthy individuals and individuals suffering from chronic adrenal insufficiency.

    Science.gov (United States)

    Geiger, Ashley M; Pitts, Kenneth P; Feldkamp, Joachim; Kirschbaum, Clemens; Wolf, Jutta M

    2015-11-01

    Chronic adrenal insufficiency (CAI) is characterized by a lack of glucocorticoid and mineralocorticoid production due to destroyed adrenal cortex cells. However, elevated cortisol secretion is thought to be a central part in a well-orchestrated immune response to stress. This raises the question to what extent lack of cortisol in CAI affects stress-related changes in immune processes. To address this question, 28 CAI patients (20 females) and 18 healthy individuals (11 females) (age: 44.3 ± 8.4 years) were exposed to a psychosocial stress test (Trier Social Stress Test: TSST). Half the patients received a 0.03 mg/kg body weight injection of hydrocortisone (HC) post-TSST to mimic a healthy cortisol stress response. Catecholamines and immune cell composition were assessed in peripheral blood and free cortisol measured in saliva collected before and repeatedly after TSST. CAI patients showed norepinephrine (NE) stress responses similar to healthy participants, however, epinephrine (E) as well as cortisol levels were significantly lower. HC treatment post-TSST resulted in cortisol increases comparable to those observed in healthy participants (interaction effects--NE: F=1.05, p=.41; E: F=2.56, p=.045; cortisol: F=13.28, pcortisol's central involvement in post-stress lymphocyte migration from blood into immune-relevant body compartments. As such, future studies should investigate whether psychosocial stress exposure may put CAI patients at an increased health risk due to attenuated immune responses to pathogens. Copyright © 2015. Published by Elsevier Inc.

  12. Anti-gluten immune response following Toxoplasma gondii infection in mice.

    Directory of Open Access Journals (Sweden)

    Emily G Severance

    Full Text Available Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001. Activation of the complement system accompanied this immune response (p≤0.002-0.00001. Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009 indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders.

  13. HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses

    International Nuclear Information System (INIS)

    Rollman, Erik; Arnheim, Lisen; Collier, Brian; Oeberg, Daniel; Hall, Haakan; Klingstroem, Jonas; Dillner, Joakim; Pastrana, Diana V.; Buck, Chris B.; Hinkula, Jorma; Wahren, Britta; Schwartz, Stefan

    2004-01-01

    Introduction of point mutations in the 5' end of the human papillomavirus type 16 (HPV-16) L1 gene specifically inactivates negative regulatory RNA processing elements. DNA vaccination of C57Bl/6 mice with the mutated L1 gene resulted in improved immunogenicity for both neutralizing antibodies as well as for broad cellular immune responses. Previous reports on the activation of L1 by codon optimization may be explained by inactivation of the regulatory RNA elements. The modified HPV-16 L1 DNA that induced anti-HPV-16 immunity may be seen as a complementary approach to protein subunit immunization against papillomavirus

  14. The Role of the Immune System in Autism Spectrum Disorder.

    Science.gov (United States)

    Meltzer, Amory; Van de Water, Judy

    2017-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.

  15. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response.

    Directory of Open Access Journals (Sweden)

    Chin-An Yang

    2017-09-01

    Full Text Available Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined.In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment.Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment.

  16. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response.

    Science.gov (United States)

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien; Lin, Hung-Chih; Chang, Jan-Gowth

    2017-09-01

    Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 pinworm-infected) first and fourth grade primary school children in Taichung, Taiwan, for a gut microbiome study and an intestinal cytokine and SIgA analysis. In the pinworm-infected individuals, fecal samples were collected again at 2 weeks after administration of 100 mg mebendazole. Gut microbiota diversity increased after Enterobius infection, and it peaked after administration of mebendazole. At the phylum level, pinworm infection and mebendazole deworming were associated with a decreased relative abundance of Fusobacteria and an increased proportion of Actinobacteria. At the genus level, the relative abundance of the probiotic Bifidobacterium increased after enterobiasis and mebendazole treatment. The intestinal SIgA level was found to be lower in the pinworm-infected group, and was elevated in half of the mebendazole-treated group. A higher proportion of pre-treatment Salmonella spp. was associated with a non-increase in SIgA after mebendazole deworming treatment. Childhood exposure to pinworm plus mebendazole is associated with increased bacterial diversity, an increased abundance of Actinobacteria including the probiotic Bifidobacterium, and a decreased proportion of Fusobacteria. The gut SIgA level was lower in the pinworm-infected group, and was increased in half of the individuals after mebendazole deworming treatment.

  17. Immune-Mediated Damage Completes the Parabola: Cryptococcus neoformans Pathogenesis Can Reflect the Outcome of a Weak or Strong Immune Response

    Directory of Open Access Journals (Sweden)

    Liise-anne Pirofski

    2017-12-01

    Full Text Available Cryptococcosis occurs most frequently in immunocompromised individuals. This has led to the prevailing view that this disease is the result of weak immune responses that cannot control the fungus. However, increasingly, clinical and experimental studies have revealed that the host immune response can contribute to cryptococcal pathogenesis, including the recent study of L. M. Neal et al. (mBio 8:e01415-17, 2017, https://doi.org/10.1128/mBio.01415-17 that reports that CD4+ T cells mediate tissue damage in experimental murine cryptococcosis. This finding has fundamental implications for our understanding of the pathogenesis of cryptococcal disease; it helps explain why immunotherapy has been largely unsuccessful in treatment and provides insight into the paradoxical observation that HIV-associated cryptococcosis may have a better prognosis than cryptococcosis in those with no known immune impairment. The demonstration that host-mediated damage can drive cryptococcal disease provides proof of concept that the parabola put forth in the damage-response framework has the flexibility to depict complex and changing outcomes of host-microbe interaction.

  18. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  19. Childhood immunization

    Science.gov (United States)

    Romain, Sandra; Schillaci, Michael A.

    2009-01-01

    ABSTRACT OBJECTIVE To examine childhood immunization levels relative to the number of family physicians, pediatricians, and public health nurses in Ontario. DESIGN Retrospective comparative analysis of publicly available data on immunization coverage levels and the relative number of family physicians, pediatricians, and public health nurses. SETTING Ontario. PARTICIPANTS Seven-year-old children, family physicians, pediatricians, and public health nurses in Ontario. MAIN OUTCOME MEASURES The association between immunization coverage levels and the relative number of family physicians, pediatricians, and public health nurses. RESULTS We found correlations between immunization coverage levels and the relative number (ie, per 1000 Ontario residents) of family physicians (ρ = 0.60) and pediatricians (ρ = 0.70) and a lower correlation with the relative number of public health nurses (ρ = 0.40), although none of these correlations was significant. A comparison of temporal trends illustrated that variation in the relative number of family physicians and pediatricians in Ontario was associated with similar variation in immunization coverage levels. CONCLUSION Increasing the number of family physicians and pediatricians might help to boost access to immunizations and perhaps other components of cost-saving childhood preventive care. PMID:19910599

  20. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Maria Manuela Rosado

    2018-03-01

    Full Text Available In recent years, the effects of electromagnetic fields (EMFs on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.

  1. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice.

    Science.gov (United States)

    Nogueira, Raquel Tayar; Sahi, Vincent; Huang, Jing; Tsuji, Moriya

    2017-08-01

    Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Sculpting humoral immunity through dengue vaccination to enhance protective immunity

    Directory of Open Access Journals (Sweden)

    Wayne eCrill

    2012-11-01

    Full Text Available Dengue viruses (DENV are the most important mosquito transmitted viral pathogens infecting humans. DENV infection produces a spectrum of disease, most commonly causing a self-limiting flu-like illness known as dengue fever; yet with increased frequency, manifesting as life-threatening dengue hemorrhagic fever (DHF. Waning cross-protective immunity from any of the four dengue serotypes may enhance subsequent infection with another heterologous serotype to increase the probability of DHF. Decades of effort to develop dengue vaccines are reaching the finishing line with multiple candidates in clinical trials. Nevertheless, concerns remain that imbalanced immunity, due to the prolonged prime-boost schedules currently used in clinical trials, could leave some vaccinees temporarily unprotected or with increased susceptibility to enhanced disease. Here we develop a DENV serotype 1 (DENV-1 DNA vaccine with the immunodominant cross-reactive B cell epitopes associated with immune enhancement removed. We compare wild-type (WT with this cross-reactivity reduced (CRR vaccine and demonstrate that both vaccines are equally protective against lethal homologous DENV-1 challenge. Under conditions mimicking natural exposure prior to acquiring protective immunity, WT vaccinated mice enhanced a normally sub-lethal heterologous DENV-2 infection resulting in DHF-like disease and 95% mortality in AG129 mice. However, CRR vaccinated mice exhibited redirected serotype-specific and protective immunity, and significantly reduced morbidity and mortality not differing from naïve mice. Thus, we demonstrate in an in vivo DENV disease model, that non-protective vaccine-induced immunity can prime vaccinees for enhanced DHF-like disease and that CRR DNA immunization significantly reduces this potential vaccine safety concern. The sculpting of immune memory by the modified vaccine and resulting redirection of humoral immunity provide insight into DENV vaccine induced immune

  3. Pathogen entrapment by transglutaminase--a conserved early innate immune mechanism.

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2010-02-01

    Full Text Available Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG. Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or-as previously shown-the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.

  4. Asymptomatic infection in individuals from the municipality of Barcelos (Brazilian Amazon is not associated with the anti-Plasmodium falciparum glycosylphosphatidylinositol antibody response

    Directory of Open Access Journals (Sweden)

    Larissa Rodrigues Gomes

    2013-09-01

    Full Text Available Anti-glycosylphosphatidylinositol (GPI antibodies (Abs may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19 in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax.

  5. In vitro senescence of immune cells.

    Science.gov (United States)

    Effros, Rita B; Dagarag, Mirabelle; Valenzuela, Hector F

    2003-01-01

    Immune cells are eminently suitable model systems in which to address the possible role of replicative senescence during in vivo aging. Since there are more than 10(8) unique antigen specificities present within the total T lymphocyte population of each individual, the immune response to any single antigen requires massive clonal expansion of the small proportion of T cells whose receptors recognize that antigen. The Hayflick Limit may, therefore, constitute a barrier to effective immune function, at least for those T cells that encounter their specific antigen more than once over the life course. Application of the fibroblast replicative senescence model to the so-called cytotoxic or CD8 T cell, the class of T cells that controls viral infection and cancer, has revealed certain features in common with other cell types as well as several characteristics that are unique to T cells. One senescence-associated change that is T cell-specific is the complete loss of expression of the activation signaling surface molecule, CD28, an alteration that enabled the documentation of high proportions of senescent T cells in vivo. The T cell model has also provided the unique opportunity to analyze telomere dynamics in a cell type that has the ability to upregulate telomerase yet nevertheless undergoes senescence. The intimate involvement of the immune system in the control of pathogens and cancer as well as in modulation of bone homeostasis suggests that more extensive analysis of the full range of characteristics of senescent T cells may help elucidate a broad spectrum of age-associated physiological changes.

  6. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  7. Evaluation of low immunization coverage among the Amish population in rural Ohio.

    Science.gov (United States)

    Kettunen, Christine; Nemecek, John; Wenger, Olivia

    2017-06-01

    The Centers for Disease Control and Prevention's Morbidity and Mortality Weekly Review included childhood immunizations among the 10 great public health achievements in the United States in the 20th century. Despite this acknowledged success, childhood immunization rates continue to be much lower in select populations. Amish communities have persistently lower immunization rates. Recent outbreaks in Amish communities include a 2014 measles outbreak in Ohio, resulting in 368 cases reported. A recent outbreak of pertussis in an Amish community in Ohio resulted in the death of a 6-week-old Amish baby. A study was designed to determine the knowledge, beliefs, attitudes, and opinions of Amish parents relative to the immunization of Amish children. Data were collected through a questionnaire. Each potential participant was mailed a copy of a letter describing the proposed study. The questionnaire, a copy of the current immunization schedule, and a return stamped envelope were also included in the mailed packet. The study sample consisted of 84 Amish individuals who voluntarily filled out and returned questionnaires. The findings from the data analysis demonstrated that fear, especially concern over too many recommended immunizations and immunizations overwhelming the child's system, was the most frequent reported reasons for not having children immunized according to recommendations. Religious factors and access to care were not among reasons most reported. Designing an educational campaign for educating Amish parents on the risks and benefits of immunizations with focus on specific concerns may improve immunization rates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice

    Directory of Open Access Journals (Sweden)

    Qu Jianguo

    2011-01-01

    Full Text Available Abstract Background Rotavirus (RV is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6, as well as that of recombinant adenovirus expressing RV VP6 (rAd, in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP, VLP2/6 prime-rAd boost (VLP+rAd, rAd alone, and VLP alone. Results Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9% in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%, VLP alone (75%, or rAd alone (40% treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227 and IgA (r = 0.96137, P = 0.038663. Conclusions A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.

  9. Confusion in the Study of Immune Reconstitution Inflammatory Syndrome

    Directory of Open Access Journals (Sweden)

    Claudia Alvarado-de la Barrera

    2017-05-01

    Full Text Available As a consequence of late presentation for HIV care, a significant proportion of individuals develop immune reconstitution inflammatory syndrome (IRIS soon after initiation of antiretroviral therapy. Incidence, predictors, and models of pathogenesis of IRIS vary in the literature. Here we discuss factors that may contribute to this lack of consensus. We propose that different pathogens drive different types of IRIS and suggest that these clinical conditions should be studied individually and not grouped under the general heading of “IRIS.”

  10. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo.

    Science.gov (United States)

    Kobayashi, Yuka; Watanabe, Takeshi

    2016-01-01

    We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging.

  11. Gel-trapped lymphorganogenic chemokines trigger artificial tertiary lymphoid organs and mount adaptive immune responses in vivo

    Directory of Open Access Journals (Sweden)

    Takeshi Watanabe

    2016-08-01

    Full Text Available We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer- (LTo stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies including immune-senescence during aging.

  12. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  13. Assessing the impact of the Lebanese National Polio Immunization Campaign using a population-based computational model.

    Science.gov (United States)

    Alawieh, Ali; Sabra, Zahraa; Langley, E Farris; Bizri, Abdul Rahman; Hamadeh, Randa; Zaraket, Fadi A

    2017-11-25

    After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of infectious diseases even in the context of population migration.

  14. Assessing the impact of the Lebanese National Polio Immunization Campaign using a population-based computational model

    Directory of Open Access Journals (Sweden)

    Ali Alawieh

    2017-11-01

    Full Text Available Abstract Background After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Methods Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Results Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Conclusions Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of

  15. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  16. Immune System Quiz

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Quiz: Immune System KidsHealth / For Kids / Quiz: Immune System Print How much do you know about your immune system? Find out by taking this quiz! About Us ...

  17. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity

    OpenAIRE

    Bowen, David G.; Zen, Monica; Holz, Lauren; Davis, Thomas; McCaughan, Geoffrey W.; Bertolino, Patrick

    2004-01-01

    Hepatic immunobiology is paradoxical: although the liver possesses unusual tolerogenic properties, it is also the site of effective immune responses against multiple pathogens and subject to immune-mediated pathology. The mechanisms underlying this dichotomy remain unclear. Following previous work demonstrating that the liver may act as a site of primary T cell activation, we demonstrate here that the balance between immunity and tolerance in this organ is established by competition for prima...

  18. Impact of Enterobius vermicularis infection and mebendazole treatment on intestinal microbiota and host immune response

    OpenAIRE

    Yang, Chin-An; Liang, Chao; Lin, Chia-Li; Hsiao, Chiung-Tzu; Peng, Ching-Tien; Lin, Hung-Chih; Chang, Jan-Gowth

    2017-01-01

    Background Previous studies on the association of enterobiasis and chronic inflammatory diseases have revealed contradictory results. The interaction of Enterobius vermicularis infection in particular with gut microbiota and induced immune responses has never been thoroughly examined. Methodology/Findings In order to answer the question of whether exposure to pinworm and mebendazole can shift the intestinal microbial composition and immune responses, we recruited 109 (30 pinworm-negative, 79 ...

  19. Posttransplant Immune Activation: Innocent Bystander or Insidious Culprit of Posttransplant Accelerated Atherosclerosis.

    Science.gov (United States)

    Ducloux, Didier; Bamoulid, Jamal; Crepin, Thomas; Rebibou, Jean-Michel; Courivaud, Cecile; Saas, Philippe

    2017-09-01

    Cardiovascular disease is a major cause of morbidity, disability, and mortality in kidney transplant patients. Cumulative reports indicate that the excessive risk of cardiovascular events is not entirely explained by the increased prevalence of traditional cardiovascular risk factors. Atherosclerosis is a chronic inflammatory disease, and it has been postulated that posttransplant immune disturbances may explain the gap between the predicted and observed risks of cardiovascular events. Although concordant data suggest that innate immunity contributes to the posttransplant accelerated atherosclerosis, only few arguments plead for a role of adaptive immunity. We report and discuss here consistent data demonstrating that CD8 + T cell activation is a frequent posttransplant immune feature that may have pro-atherogenic effects. Expansion of exhausted/activated CD8 + T cells in kidney transplant recipients is stimulated by several factors including cytomegalovirus infections, lymphodepletive therapy (e.g., antithymocyte globulins), chronic allogeneic stimulation, and a past history of renal insufficiency. This is observed in the setting of decreased thymic activity, a process also found in elderly individuals and reflecting accelerated immune senescence.

  20. Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity.

    Science.gov (United States)

    Peng, Yujun; van Wersch, Rowan; Zhang, Yuelin

    2018-04-01

    Plants use diverse immune receptors to sense pathogen attacks. Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors localized on the plasma membrane leads to PAMP-triggered immunity (PTI). Detection of pathogen effectors by intracellular or plasma membrane-localized immune receptors results in effector-triggered immunity (ETI). Despite the large variations in the magnitude and duration of immune responses triggered by different PAMPs or pathogen effectors during PTI and ETI, plasma membrane-localized immune receptors activate similar downstream molecular events such as mitogen-activated protein kinase activation, oxidative burst, ion influx, and increased biosynthesis of plant defense hormones, indicating that defense signals initiated at the plasma membrane converge at later points. On the other hand, activation of ETI by immune receptors localized to the nucleus appears to be more directly associated with transcriptional regulation of defense gene expression. Here, we review recent progress in signal transductions downstream of different groups of plant immune receptors, highlighting the converging and diverging molecular events.

  1. Pandemics and immune memory in the noisy Penna model

    Science.gov (United States)

    Cebrat, Stanisław; Bonkowska, Katarzyna; Biecek, Przemysław

    2007-06-01

    In the noisy Penna model of ageing, instead of counting the number of defective loci which eventually kill an individual, the noise describing the health status of individuals is introduced. This white noise is composed of two components: the environmental one and the personal one. If the sum of both trespasses the limit set for the individuals homeodynamics the individual dies. The energy of personal fluctuations depends on the number of defective loci expressed in the individuals genome. Environmental fluctuations, the same for all individuals can include some signals, corresponding to the exposition to pathogens which could be dangerous for a fraction of the organisms. Personal noise and the component of random environmental fluctuations, when superimposed on the signal can be life threatening if they are stronger than the limit set for individuals homeodynamics. Nevertheless, some organisms survive the period of dangerous signal and they may remember the signal in the future, like antigens are remembered by our immune systems. Unfortunately, this memory weakens with time and, even worse, some additional defective genes are switched on during the ageing. If the same pathogens (signals) emerge during the lifespan of the population, a fraction of the population could remember it and could respond by increasing the resistance to it. Again, unfortunately for some individuals, their memory could be too weak and their own health status has worsened due to the accumulated mutations, they have to die. Though, a fraction of individuals can survive the pandemics due to the immune memory, but a fraction of population has no such a memory because they were born after the last pandemic or they didnt notice this pandemic. Our simple model, by implementing the noise instead of deterministic threshold of genetic defects, describes how the impact of pandemics on populations depends on the time which elapsed between the two incidents and how the different age groups of

  2. Immune regulation in gut and cord : opportunities for directing the immune system

    NARCIS (Netherlands)

    de Roock, S.

    2012-01-01

    The gut is an important organ for the immune system. Microbes and immune cells interact directly or via epithelial cells. Both TH17 and Treg cells mature in this environment. The composition of the microbiota has an important influence on the immune homeostasis. Influencing the immune system via the

  3. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  4. Immunoediting: evidence of the multifaceted role of the immune system in self-metastatic tumor growth.

    Science.gov (United States)

    Enderling, Heiko; Hlatky, Lynn; Hahnfeldt, Philip

    2012-07-28

    The role of the immune system in tumor progression has been a subject for discussion for many decades. Numerous studies suggest that a low immune response might be beneficial, if not necessary, for tumor growth, and only a strong immune response can counter tumor growth and thus inhibit progression. We implement a cellular automaton model previously described that captures the dynamical interactions between the cancer stem and non-stem cell populations of a tumor through a process of self-metastasis. By overlaying on this model the diffusion of immune reactants into the tumor from a peripheral source to target cells, we simulate the process of immune-system-induced cell kill on tumor progression. A low cytotoxic immune reaction continuously kills cancer cells and, although at a low rate, thereby causes the liberation of space-constrained cancer stem cells to drive self-metastatic progression and continued tumor growth. With increasing immune system strength, however, tumor growth peaks, and then eventually falls below the intrinsic tumor sizes observed without an immune response. With this increasing immune response the number and proportion of cancer stem cells monotonically increases, implicating an additional unexpected consequence, that of cancer stem cell selection, to the immune response. Cancer stem cells and immune cytotoxicity alone are sufficient to explain the three-step "immunoediting" concept - the modulation of tumor growth through inhibition, selection and promotion.

  5. Cytokine regulation of immune tolerance

    OpenAIRE

    Wu, Jie; Xie, Aini; Chen, Wenhao

    2014-01-01

    The immune system provides defenses against invading pathogens while maintaining immune tolerance to self-antigens. This immune homeostasis is harmonized by the direct interactions between immune cells and the cytokine environment in which immune cells develop and function. Herein, we discuss three non-redundant paradigms by which cytokines maintain or break immune tolerance. We firstly describe how anti-inflammatory cytokines exert direct inhibitory effects on immune cells to enforce immune ...

  6. Early Development of the Gut Microbiota and Immune Health

    Directory of Open Access Journals (Sweden)

    M. Pilar Francino

    2014-09-01

    Full Text Available In recent years, the increase in human microbiome research brought about by the rapidly evolving “omic” technologies has established that the balance among the microbial groups present in the human gut, and their multipronged interactions with the host, are crucial for health. On the other hand, epidemiological and experimental support has also grown for the ‘early programming hypothesis’, according to which factors that act in utero and early in life program the risks for adverse health outcomes later on. The microbiota of the gut develops during infancy, in close interaction with immune development, and with extensive variability across individuals. It follows that the specific process of gut colonization and the microbe-host interactions established in an individual during this period have the potential to represent main determinants of life-long propensity to immune disease. Although much remains to be learnt on the progression of events by which the gut microbiota becomes established and initiates its intimate relationships with the host, and on the long-term repercussions of this process, recent works have advanced significatively in this direction.

  7. Littoral cell angioma of the spleen in a patient with previous pulmonary sarcoidosis: a TNF-α related pathogenesis?

    Directory of Open Access Journals (Sweden)

    Titze Ulf

    2011-09-01

    Full Text Available Abstract Background Littoral cell angioma (LCA is a rare vascular tumor of the spleen. Generally thought to be benign, additional cases of LCA with malignant features have been described. Thus, its malignant potential seems to vary and must be considered uncertain. The etiology remains unclear, but an immune dysregulation for the apparent association with malignancies of visceral organs or immune-mediated diseases has been proposed. Case Presentation We report a case of LCA in a 43-year old male patient who presented with a loss of appetite and intermittent upper abdominal pain. Computed tomography showed multiple hypoattenuating splenic lesions which were hyperechogenic on abdominal ultrasound. Lymphoma was presumed and splenectomy was performed. Pathological evaluation revealed LCA. Conclusions LCA is a rare, primary vascular neoplasm of the spleen that might etiologically be associated with immune dysregulation. In addition, it shows a striking association with synchronous or prior malignancies. With about one-third of the reported cases to date being co-existent with malignancies of visceral organs or immune-mediated diseases, this advocates for close follow-ups in all patients diagnosed with LCA. To our knowledge, this report is the first one of LCA associated with previous pulmonary sarcoidosis and hypothesizes a TNF-α related pathogenesis of this splenic tumor.

  8. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases

    DEFF Research Database (Denmark)

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L

    2016-01-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been...... in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated...

  9. Immunizations - diabetes

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000331.htm Immunizations - diabetes To use the sharing features on this page, please enable JavaScript. Immunizations (vaccines or vaccinations) help protect you from some ...

  10. Pan-Canadian assessment of pandemic immunization data collection: study methodology

    Directory of Open Access Journals (Sweden)

    Sikora Christopher A

    2010-06-01

    Full Text Available Abstract Background The collection of individual-level pandemic (H1N1 2009 influenza immunization data was considered important to facilitate optimal vaccine delivery and accurate assessment of vaccine coverage. These data are also critical for research aimed at evaluating the new vaccine's safety and effectiveness. Systems used to collect immunization data include manual approaches in which data are collected and retained on paper, electronic systems in which data are captured on computer at the point of vaccination and hybrid systems which are comprised of both computerized and manual data collection components. This study's objective was to compare the efficiencies and perceptions of data collection methods employed during Canada's pandemic (H1N1 2009 influenza vaccination campaign. Methods/Design A pan-Canadian observational study was conducted in a convenience sample of public health clinics and healthcare institutions during the H1N1 vaccination campaign in the fall of 2009. The study design consisted of three stages: Stage 1 involved passive observation of the site's layout, processes and client flow; Stage 2 entailed timing site staff on 20 clients through five core immunization tasks: i client registration, ii medical history collection, iii medical history review, iv vaccine administration record keeping and v preparation of proof of vaccine administration for the client; in Stage 3, site staff completed a questionnaire regarding perceived usability of the site's data collection approach. Before the national study began, a pilot study was conducted in three seasonal influenza vaccination sites in Ontario, to both test that the proposed methodology was logistically feasible and to determine inter-rater reliability in the measurements of the research staff. Comparative analyses will be conducted across the range of data collection methods with respect to time required to collect immunization data, number and type of individual-level data

  11. International consensus report on the investigation and management of primary immune thrombocytopenia

    NARCIS (Netherlands)

    Provan, Drew; Stasi, Roberto; Newland, Adrian C.; Blanchette, Victor S.; Bolton-Maggs, Paula; Bussel, James B.; Chong, Beng H.; Cines, Douglas B.; Gernsheimer, Terry B.; Godeau, Bertrand; Grainger, John; Greer, Ian; Hunt, Beverley J.; Imbach, Paul A.; Lyons, Gordon; McMillan, Robert; Rodeghiero, Francesco; Sanz, Miguel A.; Tarantino, Michael; Watson, Shirley; Young, Joan; Kuter, David J.

    2010-01-01

    Previously published guidelines for the diagnosis and management of primary immune thrombocytopenia (ITP) require updating largely due to the introduction of new classes of therapeutic agents, and a greater understanding of the disease pathophysiology. However, treatment-related decisions still

  12. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  13. Comparison of immunization rates of adults ages 65 years and older managed within two nurse practitioner-owned clinics with national immunization rates.

    Science.gov (United States)

    Wright, Wendy L; Morrell, Elise; Lee, Jennie; Cuellar, Norma Graciela; White, Patricia

    2017-07-01

    Adults ages ≥65 years are at increased risk for infectious diseases. Ensuring these individuals are fully vaccinated is imperative. The purpose of this study was to assess the immunization rates of adults ages ≥65 years managed by nurse practitioners (NPs) and compare the results with national immunization rates and Healthy People 2020 goals. A convenience sample of adults ages ≥65 years was obtained from two NP-managed clinics. The vaccine records of each subject were reviewed for documentation of having received five vaccines (tetanus, diphtheria, and pertussis; influenza; pneumococcal polysaccharide vaccine 23; pneumococcal conjugate vaccine 13; and herpes zoster vaccine). One hundred and fifty females (70.8%) and 62 males (29.2%) met inclusion criteria. NP-managed patients had higher immunization rates than the national averages across all five major vaccines. The herpes zoster vaccination rates exceeded the recommendations from Healthy People 2020 whereas pneumococcal and influenza rates were below. The stocking of vaccines within the NP-managed clinics, direct billing to Medicare for Part D vaccines, and previsit care planning likely contributed to the high vaccination rates. These high immunization rates in patients managed by NPs provide support for the important role that NPs play in the care of older adults. ©2017 American Association of Nurse Practitioners.

  14. Contextual generalized trust and immunization against the 2009 A(H1N1 pandemic in the American states: A multilevel approach

    Directory of Open Access Journals (Sweden)

    Björn Rönnerstrand

    2016-12-01

    Full Text Available The aim of the study was to investigate the association between contextual generalized trust and individual-level 2009 A(H1N1 pandemic immunization acceptance. A second aim was to investigate whether knowledge about the A(H1N1 pandemic mediated the association between contextual generalized trust and A(H1N1 immunization acceptance. Data from the National 2009 H1N1 Flu Survey was used. To capture contextual generalized trust, data comes from an aggregation of surveys measuring generalized trust in the American states. To investigate the association between contextual generalized trust and immunization acceptance, while taking potential individual-level confounders into account, multilevel logistic regression was used. The investigation showed contextual generalized trust to be significantly associated with immunization acceptance. However, controlling for knowledge about the A(H1N1 pandemic did not substantially affect the association between contextual generalized trust and immunization acceptance. In conclusion, contextual state-level generalized trust was associated with A(H1N1 immunization, but knowledge about A(H1N1 was not mediating this association. Keywords: Generalized trust, Social capital, Immunization, A(H1N1 pandemic, American states

  15. IMMUNOPATHOLOGIC SYNDROMES: IMMUNE AUTOAGGRESSION DISEASES, PATHOLOGIC TOLERANCE, «TRANSPLANT AGAINST HOST» REACTIONS

    Directory of Open Access Journals (Sweden)

    P.F. Litvitsky

    2007-01-01

    Full Text Available This publication is the fourth and last in the series of the brief lectures devoted to the role of the system, exercising the immunobiological supervision over the individual and continuous antigenic contents of the body both in normal conditions and in the event of the pathology. It reviews the etiology, pathogenesis and main manifestations of the immune auto aggression diseases, pathologic tolerance and «transplant against host» reactions.Key words: immune auto aggression, idiotype, antigenic mimicry, tolerance, «transplant against host» reactions.

  16. VPS9a activates the Rab5 GTPase ARA7 to confer distinct pre- and postinvasive plant innate immunity

    DEFF Research Database (Denmark)

    Nielsen, Mads Eggert; Jürgens, Gerd; Thordal-Christensen, Hans

    2017-01-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly...... (Blumeria graminis f. sp hordei) in Arabidopsis thaliana. Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material...

  17. 76 FR 12117 - Call for Comments on the Draft Report of the Adult Immunization Working Group to the National...

    Science.gov (United States)

    2011-03-04

    ... matters related to program responsibilities. The Assistant Secretary for Health (ASH) has been designated... adult immunization coverage levels.'' The Adult Immunization Working Group (AIWG) of NVAC has developed a draft report and recommendations for the consideration of the NVAC. Individuals and organizations...

  18. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  19. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Childhood Immunization

    Science.gov (United States)

    ... lowest levels in history, thanks to years of immunization. Children must get at least some vaccines before ... child provide protection for many years, adults need immunizations too. Centers for Disease Control and Prevention

  1. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  2. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  3. The immune modifying effects of amino acids on gut-associated lymphoid tissue.

    Science.gov (United States)

    Ruth, Megan R; Field, Catherine J

    2013-07-30

    The intestine and the gut-associated lymphoid tissue (GALT) are essential components of whole body immune defense, protecting the body from foreign antigens and pathogens, while allowing tolerance to commensal bacteria and dietary antigens. The requirement for protein to support the immune system is well established. Less is known regarding the immune modifying properties of individual amino acids, particularly on the GALT. Both oral and parenteral feeding studies have established convincing evidence that not only the total protein intake, but the availability of specific dietary amino acids (in particular glutamine, glutamate, and arginine, and perhaps methionine, cysteine and threonine) are essential to optimizing the immune functions of the intestine and the proximal resident immune cells. These amino acids each have unique properties that include, maintaining the integrity, growth and function of the intestine, as well as normalizing inflammatory cytokine secretion and improving T-lymphocyte numbers, specific T cell functions, and the secretion of IgA by lamina propria cells. Our understanding of this area has come from studies that have supplemented single amino acids to a mixed protein diet and measuring the effect on specific immune parameters. Future studies should be designed using amino acid mixtures that target a number of specific functions of GALT in order to optimize immune function in domestic animals and humans during critical periods of development and various disease states.

  4. Global and local targeted immunization in networks with community structure

    International Nuclear Information System (INIS)

    Yan, Shu; Tang, Shaoting; Pei, Sen; Zheng, Zhiming; Fang, Wenyi

    2015-01-01

    Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases. (paper)

  5. Communication in crisis situations in the process of immunization.

    Science.gov (United States)

    Ravlija, Jelena; Vasilj, Ivan

    2012-09-01

    Immunization is one of the most effective medical interventions in the prevention of the disease and represents the easiest and most cost-effective investment in health. The strategy of controlling contagious diseases that can be prevented through immunization has a long tradition in B&H. Mandatory immunizations are administered against ten diseases. Although the development of new technologies, the efforts of the pharmaceutical industry, the development of new vaccines provides better vaccines in terms of greater safety and effectiveness it should be pointed out that no vaccine is "absolutely effective and safe", and it will not achieve the immune response in 100% vaccinated, also there are possible side effects and unexpected reactions that could occur. Vaccination is often a media issue because previously unnoticed local, isolated events-side effects and complications of vaccination are now accompanied by media attention as there are now numerous and fast communication channels (internet, e-mail, TV1 etc.) and media evolved from being less "controlled" to more "commercial". Doubt in benefit of vaccination is growing even among health professionals who are expected to provide up-to-date, understandable information, and issue information about immunization benefits and potential risks. It is therefore important for health professionals to be well informed, to be a good source of authoritative, scientific and reasonable advice, and to speak openly about the benefits and risks of vaccination so that consumers fully understand both possible outcomes of vaccination. This takes communication skills, particularly in crisis situations connected with vaccination. Health professionals are thus faced with a changing attitude toward importance of immunization in the social climate where risk is less tolerated than ever before.

  6. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV. PMID:26909355

  7. Evaluation of the Immunization Program in the Federation of Bosnia and Herzegovina - Possible Modalities for Improvement.

    Science.gov (United States)

    Husic, Fuad; Jatic, Zaim; Joguncic, Anes; Sporisevic, Lutvo

    2018-03-01

    Immunization is a lifelong preventive activity that helps prevent/reduce disease, prevent/ reduce mortality and prevent disability from specific infectious diseases. Authors of this paper researched the WHO extended program of mandatory immunization of children from birth to the age of 18 years and analyzed how it has been implemented in the Federation of Bosnia and Herzegovina (FB&H), because the guidelines of the specialist physician societies on immunization of adults, elderly people and risk groups of the population are missing. The paper presents the basic characteristics of the immunization program in the FB&H and the world, points to the most frequent problems that the doctor practitioner has in carrying out immunization, and also presents possible modalities of improving immunization. It is pointed out the need to develop the national guidelines and individual immunization booklets, introduction of electronic registration of immunization, and continuous education of health professionals of all profiles, population, educators, teachers and harmonious partnership relations of health workers, population, social entities and the media with the aim of achieving an appropriate lifelong vaccination.

  8. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  9. CMV immune evasion and manipulation of the immune system with aging.

    Science.gov (United States)

    Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R

    2017-06-01

    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to

  10. The link between immunity and life history traits in scleractinian corals

    Directory of Open Access Journals (Sweden)

    Jorge H. Pinzón C.

    2014-10-01

    Full Text Available Immunity is an important biological trait that influences the survival of individuals and the fitness of a species. Immune defenses are costly and likely compete for energy with other life-history traits, such as reproduction and growth, affecting the overall fitness of a species. Competition among these traits in scleractinian corals could influence the dynamics and structural integrity of coral reef communities. Due to variability in biological traits within populations and across species, it is likely that coral colonies within population/species adjust their immune system to the available resources. In corals, the innate immune system is composed of various pathways. The immune system components can be assessed in the absence (constitutive levels and/or presence of stressors/pathogens (immune response. Comparisons of the constitutive levels of three immune pathways (melanin synthesis, antioxidant and antimicrobial of closely related species of Scleractinian corals allowed to determine the link between immunity and reproduction and colony growth. First, we explored differences in constitutive immunity among closely related coral species of the genus Meandrina with different reproductive patterns (gonochoric vs. hermaphrodite. We then compared fast-growing branching vs. slow-growing massive Porites to test co-variation between constitutive immunity and growth rates and morphology in corals. Results indicate that there seems to be a relationship between constitutive immunity and sexual pattern with gonochoric species showing significantly higher levels of immunity than hermaphrodites. Therefore, gonochoric species maybe better suited to resist infections and overcome stressors. Constitutive immunity varied in relation with growth rates and colony morphology, but each species showed contrasting trends within the studied immune pathways. Fast-growing branching species appear to invest more in relatively low cost pathways of the immune system than

  11. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  12. THE IMPACT OF PERSISTENT HERPESVIRUS INFECTION ON IMMUNITY AND VACCINATION RESPONSE

    Directory of Open Access Journals (Sweden)

    Volyanskiy AYu

    2016-09-01

    lethal bacterial infections by prolonged macrophage activation and IFNγ secretion. Little is known about the potential benefits of herpesvirus latency in humans. The effect of CMV on vaccine responses is controversial. It is well known that vaccine responses is reduced in aging populations. CMV accelerates immune aging and may further reduce the response to vaccination. In fact, some studies show a negative effect of CMV while others showed no difference in CMV+ vs CMV− in older individuals. Conversely, in young individuals, a negative association between the CMV antibody titer and the response to the influenza vaccine has been found. Also, a negative association between the CMV antibody titer and the response to the influenza vaccine was found in young individuals. But, according to another results CMV enhances the immune responses of younger individuals to influenza vaccination. In summary, the hypothesis that CMV virus accelerates immunosenescence and decreases vaccination response is controversial. Moreover, CMV infection may enhance the immune responses in children and young individuals. Vaccinations can induce the aberrant immune response of CFS. But the available data do not support the CFS impact on the vaccination response. In conclusion, the host-persistent herpesviruses infection history is likely to play a significant role in the immune system response to vaccination.

  13. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata

    Directory of Open Access Journals (Sweden)

    Anaïs Portet

    2018-05-01

    Full Text Available Insect thioester-containing protein (iTEP is the most recently defined group among the thioester-containing protein (TEP superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins and schistosome parasite mucins (SmPoMuc. To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first

  14. Impact of Pharmacist Immunization Authority on Seasonal Influenza Immunization Rates Across States.

    Science.gov (United States)

    Drozd, Edward M; Miller, Laura; Johnsrud, Michael

    2017-08-01

    The goal of this study was to investigate the impact on immunization rates of policy changes that allowed pharmacists to administer influenza immunizations across the United States. Influenza immunization rates across states were compared before and after policy changes permitting pharmacists to administer influenza immunizations. The study used Behavioral Risk Factor Surveillance System (BRFSS) survey data on influenza immunization rates between 2003 and 2013. Logistic regression models were constructed and incorporated adjustments for the complex sample design of the BRFSS to predict the likelihood of a person receiving an influenza immunization based on various patient health, demographic, and access to care factors. Overall, as states moved to allow pharmacists to administer influenza immunizations, the odds that an adult resident received an influenza immunization rose, with the effect increasing over time. The average percentage of people receiving influenza immunizations in states was 35.1%, rising from 32.2% in 2003 to 40.3% in 2013. The policy changes were associated with a long-term increase of 2.2% to 7.6% in the number of adults aged 25 to 59 years receiving an influenza immunization (largest for those aged 35-39 years) and no significant change for those younger or older. These findings suggest that pharmacies and other nontraditional settings may offer accessible venues for patients when implementing other public health initiatives. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  16. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  17. Haemophilus influenzae type f meningitis in a previously healthy boy

    DEFF Research Database (Denmark)

    Ronit, Andreas; Berg, Ronan M G; Bruunsgaard, Helle

    2013-01-01

    Non-serotype b strains of Haemophilus influenzae are extremely rare causes of acute bacterial meningitis in immunocompetent individuals. We report a case of acute bacterial meningitis in a 14-year-old boy, who was previously healthy and had been immunised against H influenzae serotype b (Hib...

  18. Persistent viral infections and immune aging.

    Science.gov (United States)

    Brunner, Stefan; Herndler-Brandstetter, Dietmar; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2011-07-01

    Immunosenescence comprises a set of dynamic changes occurring to both, the innate as well as the adaptive immune system that accompany human aging and result in complex manifestations of still poorly defined deficiencies in the elderly population. One of the most prominent alterations during aging is the continuous involution of the thymus gland which is almost complete by the age of 50. Consequently, the output of naïve T cells is greatly diminished in elderly individuals which puts pressure on homeostatic forces to maintain a steady T cell pool for most of adulthood. In a great proportion of the human population, this fragile balance is challenged by persistent viral infections, especially Cytomegalovirus (CMV), that oblige certain T cell clones to monoclonally expand repeatedly over a lifetime which then occupy space within the T cell pool. Eventually, these inflated memory T cell clones become exhausted and their extensive accumulation accelerates the age-dependent decline of the diversity of the T cell pool. As a consequence, infectious diseases are more frequent and severe in elderly persons and immunological protection following vaccination is reduced. This review therefore aims to shed light on how various types of persistent viral infections, especially CMV, influence the aging of the immune system and highlight potential measures to prevent the age-related decline in immune function. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Inhibition of the immune response to experimental fresh osteoarticular allografts

    International Nuclear Information System (INIS)

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. III; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M.

    1989-01-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  20. Immunization coverage among Hispanic ancestry, 2003 National Immunization Survey.

    Science.gov (United States)

    Darling, Natalie J; Barker, Lawrence E; Shefer, Abigail M; Chu, Susan Y

    2005-12-01

    The Hispanic population is increasing and heterogeneous (Hispanic refers to persons of Spanish, Hispanic, or Latino descent). The objective was to examine immunization rates among Hispanic ancestry for the 4:3:1:3:3 series (> or = 4 doses diphtheria, tetanus toxoids, and pertussis vaccine; > or = 3 doses poliovirus vaccine; > or = 1 doses measles-containing vaccine; > or = 3 doses Haemophilus influenzae type b vaccine; and > or = 3 doses hepatitis B vaccine). The National Immunization Survey measures immunization coverage among 19- to 35-month-old U.S. children. Coverage was compared from combined 2001-2003 data among Hispanics and non-Hispanic whites using t-tests, and among Hispanic ancestry using a chi-square test. Hispanics were categorized as Mexican, Mexican American, Central American, South American, Puerto Rican, Cuban, Spanish Caribbean (primarily Dominican Republic), other, and multiple ancestry. Children of Hispanic ancestry increased from 21% in 1999 to 25% in 2003. These Hispanic children were less well immunized than non-Hispanic whites (77.0%, +/-2.1% [95% confidence interval] compared to 82.5%, +/-1.1% (95% CI) > in 2003). Immunization coverage did not vary significantly among Hispanics of varying ancestries (p=0.26); however, there was substantial geographic variability. In some areas, immunization coverage among Hispanics was significantly higher than non-Hispanic whites. Hispanic children were less well immunized than non-Hispanic whites; however, coverage varied notably by geographic area. Although a chi-square test found no significant differences in coverage among Hispanic ancestries, the range of coverage, 79.2%, +/-5.1% for Cuban Americans to 72.1%, +/-2.4% for Mexican descent, may suggest a need for improved and more localized monitoring among Hispanic communities.