WorldWideScience

Sample records for indium tantalum gold

  1. Non-destructive method for the analysis of gold(I) cyanide plating baths Complexometric determination of nickel and indium.

    Science.gov (United States)

    Pribil, R; Veselý, V

    1972-12-01

    A method is described for rapid determination of nickel and indium in gold(I) cyanide baths containing large amounts of citric acid and/or sodium citrate, without previous destruction of organic matter. Gold is removed by extraction with ethyl acetate. In one aliquot of the solution indium is masked with thioglycollic acid and nickel is precipitated with sodium diethyldithiocarbamate, extracted into chloroform, stripped into water and determined complexometrically. In a second aliquot indium and nickel are precipitated together with the same reagent and stripped into water, then nickel is masked with 1,10-phenanthroline, and indium is determined by direct titration with EDTA.

  2. Conflict minerals in the compute sector: estimating extent of tin, tantalum, tungsten, and gold use in ICT products.

    Science.gov (United States)

    Fitzpatrick, Colin; Olivetti, Elsa; Miller, Reed; Roth, Richard; Kirchain, Randolph

    2015-01-20

    Recent legislation has focused attention on the supply chains of tin, tungsten, tantalum, and gold (3TG), specifically those originating from the eastern part of the Democratic Republic of Congo. The unique properties of these so-called “conflict minerals” lead to their use in many products, ranging from medical devices to industrial cutting tools. This paper calculates per product use of 3TG in several information, communication, and technology (ICT) products such as desktops, servers, laptops, smart phones, and tablets. By scaling up individual product estimates to global shipment figures, this work estimates the influence of the ICT sector on 3TG mining in covered countries. The model estimates the upper bound of tin, tungsten, tantalum, and gold use within ICT products to be 2%, 0.1%, 15%, and 3% of the 2013 market share, respectively. This result is projected into the future (2018) based on the anticipated increase in ICT device production.

  3. Electrochemical synthesis of gold nanoparticles onto indium tin oxide glass and application in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yanling; Song Yan; Wang Yuan; Di Junwei, E-mail: djw@suda.edu.cn

    2011-07-29

    A simple one-step method for the electrochemical deposition of gold nanoparticles (GNPs) onto bare indium tin oxide film coated glass substrate without any template or surfactant was investigated. The effect of electrolysis conditions such as potential range, temperature, concentration and deposition cycles were examined. The connectivity of GNPs was analyzed by UV-Vis absorption spectroscopy and scanning electron microscopy. The nanoparticles were found to connect in pairs or to coalesce in larger numbers. The twin GNPs display a transverse and a longitudinal localized surface plasmon resonance (LSPR) band, which is similar to that of gold nanorods. The presence of longitudinal LSPR band correlates with high refractive index sensitivity. Conjugation of the twin-linked GNPs with albumin bovine serum-biotin was employed for the detection of streptavidin as a model based on the specific binding affinity in biotin/streptavidin pairs. The spectrophotometric sensor showed concentration-dependent binding for streptavidin.

  4. Comparison of the intracellular behavior of gold (Au) and indium (In) in testicle after their parenteral administration.

    Science.gov (United States)

    Maghraoui, Samira; Ayadi, Ahlem; Ben Ammar, Aouatef; Jaafoura, Mohamed Habib; Galle, Pierre; El Hili, Ali; Tekaya, Leila

    2013-06-01

    The subcellular behavior of several mineral elements was studied using modern techniques of observation like transmission electron microscopy and analysis like electron probe microanalysis and secondary ion mass spectrometry. In the present ultrastructural and analytical investigations, we undertake to compare the intracellular behavior of a heavy metal, gold, and a III-A group element, indium, on rat testicular tissues after their parenteral administrations. Our ultrastructural results showed that while gold was found only in the lysosomes of Leydig cells under electron dense needles, indium was observed as electron-dense deposits in the lysosomes of both Leydig and Sertoli cells. No ultrastructural modifications were observed in the testicular tissues of the control rats. The microanalytical study showed that gold was concentrated in lysosomes with sulfur as a sulfate crystalline structure whereas indium was concentrated in the same organelle as insoluble phosphate salt. These results demonstrated that testicular Leydig and Sertoli cells have the ability to selectively concentrate indium but gold was concentrated only in the first kind of cells. The mechanism implicated in this concentration phenomenon is a biochemical one involving intralysosomal hydrolytic enzymes, the acid phosphatase and the arylsulfatase. This mechanism occurs in order to protect the organism and to avoid the presence of toxic metals under soluble and free form.

  5. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    Energy Technology Data Exchange (ETDEWEB)

    Poleshchuk, O. K., E-mail: poleshch@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation); Branchadell, V. [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Ritter, R. A.; Fateev, A. V. [Tomsk State Pedagogical University (Russian Federation)

    2008-01-15

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  6. Superconductivity and mesoscopic physics in planar and cylindrical films of gold-indium alloy

    Science.gov (United States)

    Zadorozhny, Yuri Kostyantinovich

    Superconducting properties of planar and cylindrical thin films of Au 0.7In0.3 alloy have been investigated by electrical transport measurements at low temperature and in the presence of applied magnetic field. The films were grown on flat substrates and on insulating fibers of sub-micron diameter, respectively, by sequential deposition and interdiffusion of alternating gold and indium layers. The primary focus of the study was the effects of disorder, sample size, sample topology, and quantum interferences on the superconducting properties of these samples. Structural and compositional analysis and transport measurements were carried out, which showed that the films were granular, with varying local indium concentrations, apparently corresponding to several distinct alloy phases. This variation, in turn, led to the variation in the local amplitude of the superconducting order parameter, and in the local superconducting transition temperature (Tc). In planar films, the presence of disorder in the sample leads to a broad superconducting transition regime, typically with a gradual resistance drop at the onset of the transition, followed by a more abrupt one as the temperature is lowered. At the lowest temperatures in transition regime, deviations from the behavior expected in Kosterlitz-Thouless-Berezinskii (KTB) vortex-antivortex pair unbinding model were found in the I-V characteristics of the films. This deviation could originate from vortex-antivortex pair unbinding by quantum tunneling rather than thermal activation. Magnetoresistance oscillations in cylindrical Au0.7In 0.3 films at low temperatures were also studied. In the high-temperature part of the superconducting transition regime, the resistance oscillated with a period of h/2e in the unit of the enclosed magnetic flux, as expected for Little-Parks effect. Unlike the cylindrical samples discussed above, which were mechanically and thermally anchored, superconducting Au0.7In0.3 cylinders used in the early

  7. Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daodan; Hu, Tingting; Chen, Na [The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123 (China); Zhang, Wei, E-mail: zhangwei@cigit.ac.cn [Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Di, Junwei, E-mail: djw@suda.edu.cn [The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou 215123 (China)

    2014-05-01

    Highlights: • A reagentless, sensitive and selective optical sensor for detection of Hg(II) was developed. • Silver–gold nanocages were prepared on the transparent indium tin oxide coated glass surface. • The nanomaterials could act as optical sensing probe as well as reducing agent. • The plasmonic sensor could be used to detect mercury ions in field analysis. Abstract: We demonstrate the utilization of silver/gold nanocages (Ag/Au NCs) deposited onto transparent indium tin oxide (ITO) film glass as the basis of a reagentless, simple and inexpensive mercury probe. The localized surface plasmon resonance (LSPR) peak wavelength was located at ~800 nm. By utilizing the redox reaction between Hg²⁺ ions and Ag atoms that existed in Ag/Au NCs, the LSPR peak of Ag/Au NCs was blue-shifted. Thus, we develop an optical sensing probe for the detection of Hg²⁺ ions. The LSPR peak changes were lineally proportional to the concentration of Hg²⁺ ions over the range from 10 ppb to 0.5 ppm. The detection limit was ~5 ppb. This plasmonic probe shows good selectivity and high sensitivity. The proposed optical probe is successfully applied to the sensing of Hg²⁺ in real samples.

  8. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    Science.gov (United States)

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  9. Electrical conduction processes in as-deposited indium phthalocyanine chloride thin films using gold and aluminium electrode combination

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Mammen; Menon, C S; Unnikrishnan, N V [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala (India)

    2006-01-11

    Sandwich structures of the type (Au-InPcCl-Al) have been fabricated by successive vacuum deposition of indium phthalocyanine chloride (InPcCl) thin films and aluminium (Al) fingers onto Ohmic gold (Au) electrodes on glass substrates. Device characteristics of as-deposited Au/InPcCl/Al are obtained and found to show rectification properties. Current density-voltage characteristics under forward bias (aluminium electrode negative) are found to be due to Ohmic conduction at lower voltages. At higher voltages there is space charge limited conductivity (SCLC) controlled by an exponential trapping distribution above the valence edge. Transport properties of the material at ambient temperature have been obtained from the analysis of the samples in the Ohmic and SCLC regions. Under the reverse bias, Schottky emission is identified at lower voltages.

  10. Lack of nano size effect on electrochemistry of dopamine at a gold nanoparticle modified indium tin oxide electrode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Nanometer sized materials have been shown to possess excellent chemical and electrochemical catalytic properties.In this work,a gold nanoparticle (AuNP) modified indium tin oxide (ITO) electrode was employed for investigating its electro-catalytic property.AuNP was deposited on the 3-aminopropyltriethoxysilane (APTES) modified ITO electrode by self-assembly,and was characterized by scanning electron microscopy and cyclic voltammetry.Although the electrochemical reaction of dopamine was very sluggish on the ITO/APTES electrode,it was significantly enhanced after AuNP deposition.The cyclic voltammogram exhibited apparent dependence on the surface coverage of 11 nm AuNPs,which could be rationalized by different modes of mass diffusion.Among the different sizes of AuNP investigated,the lowest anodic peak potential was observed on 11 nm AuNP.However,the potential was still about 50 mV more positive than that obtained on a bulk gold electrode of similar geometry.It is therefore concluded that there is no nanometer size effect of AuNP modified ITO on the electrochemistry of dopamine.

  11. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu [Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, The University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Shi, Wenwu [Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, The University of Alabama, Tuscaloosa, AL 35487 (United States); Lattner, Andrew [NSF-REH, Northridge High School, Tuscaloosa, AL 35487 (United States)

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titania or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.

  12. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    Science.gov (United States)

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  13. The tantalum-cased tantalum capacitor

    Science.gov (United States)

    Moynihan, J. D.

    1977-01-01

    Tantalum-cased tantalum capacitors were tested with regard to temperature stability, capacitance ratio, surge current capabilities, shock, vibration, and thermal shock. They were found to be superior to the conventional wet slug tantalum capacitor cased in silver, since they are more resistant to sulfuric acid. The tantalum-cased tantalum capacitors are widely accepted for use in critical electronic equipment because of their excellent performance and reliability.

  14. Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor.

    Science.gov (United States)

    Hu, Tingting; Lin, Yuanyuan; Yan, Jilin; Di, Junwei

    2013-06-01

    Hollow gold nanoparticles (HGNs) deposited on the surface of transparent indium tin oxide (ITO) glass have been synthesized. The silver nanoparticles were firstly electrodeposited directly on the ITO surface as a template without any organic ligands or surfactants. Then these silver nanoparticles were taken as sacrificial templates and the HGNs were obtained by Galvanic replacement reaction between HAuCl4 solution and silver nanoparticles. The localized surface plasmon resonance (LSPR) peak of HGNs was located at near infrared region of ~800 nm, which was largely red-shifted as compared to silver nanoparticles as a template. Moreover, the refractive index sensitivity of HGNs was enhanced to 277 nm per refractive index unit, which was also much higher than that of silver nanoparticles deposited on ITO substrate. The "clean" surface of HGNs could be further functionalized by special biomolecules and applied to fabrication of LSPR biosensors. This approach provides a potential opportunity as LSPR biosensors for chemical or biological analysis especially on tissue and blood samples.

  15. Azide-derivatized gold nanosphere "clicked" to indium and zinc phthalocyanines for improved nonlinear optical limiting

    Science.gov (United States)

    Bankole, Owolabi M.; Nyokong, Tebello

    2017-05-01

    We report on the conjugation of azide-derivatized gold nanoparticles (AuNPs) to alkyne moieties of ZnPc and InPc via azide-alkyne Huisgen cycloaddition reaction to form phthalocyanines-AuNPs (MPc-AuNPs) conjugates. The detailed structural characterizations of the composites were in good agreement with the expected results. The nonlinear absorption coefficients and other nonlinear optical limiting parameters were almost two times larger for the conjugates compared to free phthalocyanines. We established direct relationship between improved photophysical characterizations and enhanced nonlinear effects of reverse saturable absorption mechanisms favoured by excited triplet absorption of the phthalocyanines in the presence of AuNPs. The combination of InPc with AuNPs resulted in the lowest limiting intensity value of 0.06 J/cm2, hence the best performance in terms of optical limiting.

  16. Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms.

    Science.gov (United States)

    Schmidt, Igor; Gad, Alaaeldin; Scholz, Gregor; Boht, Heidi; Martens, Michael; Schilling, Meinhard; Suryo Wasisto, Hutomo; Waag, Andreas; Schröder, Uwe

    2017-08-15

    Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but require transparent, highly conductive and biocompatible electrodes. Whereas indium tin oxide (ITO) is a well-known transparent conductive oxide, it is a non-ideal platform for biofilm growth. Here, a straightforward approach of surface modification of ITO anodes with gold (Au) is demonstrated, to enhance direct microbial biofilm cultivation on their surface and to improve the produced current densities. The trade-off between the electrode transmittance (critical for the underlying integrated sensors) and the enhanced growth of biofilms (crucial for direct monitoring) is studied. Au-modified ITO electrodes show a faster and reproducible biofilm growth with three times higher maximum current densities and about 6.9 times thicker biofilms compared to their unmodified ITO counterparts. The electrochemical analysis confirms the enhanced performance and the reversibility of the ITO/Au electrodes. The catalytic effect of Au on the ITO surface seems to be the key factor of the observed performance improvement since the changes in the electrode conductivity and their surface wettability are relatively small and in the range of ITO. An integrated platform for the ITO/Au transparent electrode with light-emitting diodes was fabricated and its feasibility for optical biofilm thickness monitoring is demonstrated. Such transparent electrodes with embedded catalytic metals can serve as multifunctional windows for biofilm diagnostic microchips. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Novel Method for Assessment of Polyethylene Liner Wear in Radiopaque Tantalum Acetabular Cups

    DEFF Research Database (Denmark)

    Troelsen, Anders; Greene, Meridith E; Ayers, David C

    2015-01-01

    Conventional radiostereometric analysis (RSA) for wear is not possible in patients with tantalum cups. We propose a novel method for wear analysis in tantalum cups. Wear was assessed by gold standard RSA and the novel method in total hip arthroplasty patients enrolled in a randomized controlled...... to the gold standard in titanium cups. The novel method offered accurate assessment and is a viable solution for assessment of wear in studies with tantalum cups....

  18. Infrared Response of Impurity Doped Silicon MOSFET’s (IRFET’S): Gold, Indium, and Gallium Doped and Applications

    Science.gov (United States)

    1976-11-01

    cooled to room temperature. The resulting gold concentration of approximately 2 x 10l5 cm-3 corresponds to the results of previous work with bulk silicon...on (100) orientation silicon p-type substrate of 1-2nScm resistivity and doped with a gold concentration of 2 x 101 cm 3 . The gate oxide of the MOSFET...intrinsic and highly resistive even at room temperature. As a consequence the gold-doped devices are of the type NI<NA, or have anI: impurity or gold

  19. Thin tantalum-silicon-oxygen/tantalum-silicon-nitrogen films as high-efficiency humidity diffusion barriers for solar cell encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, H. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)]. E-mail: Henning.Heuer@izfp-d.fraunhofer.de; Wenzel, C. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Herrmann, D. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Zentrum fuer Sonnenenergie-und Wasserstoff-Forschung (ZSW) Industriestrasse 6, 70565 Stuttgart (Germany); Huebner, R. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Leibniz Institut fuer Festkoerper-und Werkstoffforschung Dresden (IFW) Helmholtzstrasse 20, 01069, Dresden (Germany); Zhang, Z.L. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Max-Planck-Gesellschaft fuer Metallforschung (MPI) Heisenbergstrasse 3, 70569 Stuttgart (Germany); Bartha, J.W. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)

    2006-12-05

    Flexible thin-film solar cells require flexible encapsulation to protect the copper-indium-2 selenide (CIS) absorber layer from humidity and aggressive environmental influences. Tantalum-silicon-based diffusion barriers are currently a favorite material to prevent future semiconductor devices from copper diffusion. In this work tantalum-silicon-nitrogen (Ta-Si-N) and tantalum-silicon-oxygen (Ta-Si-O) films were investigated and optimized for thin-film solar cell encapsulation of next-generation flexible solar modules. CIS solar modules were coated with tantalum-based barrier layers. The performance of the thin-film barrier encapsulation was determined by measuring the remaining module efficiency after a 1000 h accelerated aging test. A significantly enhanced stability against humidity diffusion in comparison to non-encapsulated modules was reached with a reactively sputtered thin-film system consisting of 250 nm Ta-Si-O and 15 nm Ta-Si-N.

  20. Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajendra N., E-mail: rngcyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rana, Anoop Raj Singh [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Aziz, Md. Abdul; Oyama, Munetaka [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2011-05-05

    A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0 x 10{sup -9} mol L{sup -1} to 80.0 x 10{sup -9} mol L{sup -1} for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46 x 10{sup -10} mol L{sup -1} and 42 x 10{sup -10} mol L{sup -1} respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

  1. Packed bed carburization of tantalum and tantalum alloy

    Science.gov (United States)

    Lopez, Peter C.; Rodriguez, Patrick J.; Pereyra, Ramiro A.

    1999-01-01

    Packed bed carburization of a tantalum or tantalum alloy object. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries.

  2. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide.

    Science.gov (United States)

    Ahmadzadeh-Raji, Mojgan; Ghafar-Zadeh, Ebrahim; Amoabediny, Ghasem

    2016-07-12

    In this paper, a label-free aptamer based detection system (apta-DS) was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA) on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs) through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA) activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide)/N-hydroxysuccinimide (NHS). The cyclic voltammetry (CV) and chronopotentiometry (CP) methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO). In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study's results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.

  3. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh-Raji

    2016-07-01

    Full Text Available In this paper, a label-free aptamer based detection system (apta-DS was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide/N-hydroxysuccinimide (NHS. The cyclic voltammetry (CV and chronopotentiometry (CP methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO. In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study’s results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.

  4. Spallation modeling in tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, D.L.; Hixson, R.; Zurek, A.K.; Thissell, W.

    1997-09-01

    A gas gun plate impact spallation experiment has been performed on commercial purity rolled tantalum. The shock pressure achieved was about 7 Gpa and was sufficient to induce incipient spallation. The particle velocity was measured at the free surface of the spalled plate, and the spalled sample was recovered and examined metallographically using image analysis. The quantitative image analysis results are being used to develop a damage model. The model is micromechanically based and involves novel void growth and coalescence processes. The 1D characteristics code CHARADE has been used in a preliminary simulation of the VISAR free surface particle velocity record. Implications for ductile damage modeling will be discussed.

  5. Platelet-containing tantalum powders

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, E.K.

    1988-04-26

    A method of forming platelet tantalum powders is described comprising the steps of: (a) providing an ingot-derived precursor tantalum powder, and (b) ball-milling the precursor powder for a time sufficient to form a platelet powder having an average FSSS of less than about 2 micrometers, a Scott density not greater than about 30 g/in/sup 3/ and a BET surface area of at least about 0.7 in/sup 2//g.

  6. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  7. Synthesis and characterization of tantalum silsesquioxane complexes.

    Science.gov (United States)

    Guillo, Pascal; Fasulo, Meg E; Lipschutz, Michael I; Tilley, T Don

    2013-02-14

    Tantalum polyhedral oligosilsesquioxane (POSS) complexes have been synthesised and characterized. X-ray structures of these complexes revealed that the coordination number of the tantalum center greatly affects the cube-like silsesquioxane framework.

  8. Can porous tantalum be used to achieve ankle and subtalar arthrodesis?: a pilot study.

    Science.gov (United States)

    Frigg, Arno; Dougall, Hugh; Boyd, Steve; Nigg, Benno

    2010-01-01

    A structural graft often is needed to fill gaps during reconstructive procedures of the ankle and hindfoot. Autograft, the current gold standard, is limited in availability and configuration and is associated with donor-site morbidity in as much as 48%, whereas the alternative allograft carries risks of disease transmission and collapse. Trabecular metal (tantalum), with a healing rate similar to that of autograft, high stability, and no donor-site morbidity, has been used in surgery of the hip, knee, and spine. However, its use has not been documented in foot and ankle surgery. We retrospectively reviewed nine patients with complex foot and ankle arthrodeses using a tantalum spacer. Minimum followup was 1.9 years (average, 2 years; range, 1.9-2.4 years). Bone ingrowth into the tantalum was analyzed with micro-CT in three of the nine patients. All arthrodeses were fused clinically and radiographically at the 1- and 2 year followups and no complications occurred. The American Orthopaedic Foot and Ankle Society score increased from 32 to 74. The micro-CT showed bony trabeculae growing onto the tantalum. Our data suggest tantalum may be used as a structural graft option for ankle and subtalar arthrodesis. All nine of our patients achieved fusion and had no complications. Using tantalum obviated the need for harvesting of the iliac spine. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  9. World War II, tantalum, and the evolution of modern cranioplasty technique.

    Science.gov (United States)

    Flanigan, Patrick; Kshettry, Varun R; Benzel, Edward C

    2014-04-01

    Cranioplasty is a unique procedure with a rich history. Since ancient times, a diverse array of materials from coconut shells to gold plates has been used for the repair of cranial defects. More recently, World War II greatly increased the demand for cranioplasty procedures and renewed interest in the search for a suitable synthetic material for cranioprostheses. Experimental evidence revealed that tantalum was biologically inert to acid and oxidative stresses. In fact, the observation that tantalum did not absorb acid resulted in the metal being named after Tantalus, the Greek mythological figure who was condemned to a pool of water in the Underworld that would recede when he tried to take a drink. In clinical use, malleability facilitated a single-stage cosmetic repair of cranial defects. Tantalum became the preferred cranioplasty material for more than 1000 procedures performed during World War II. In fact, its use was rapidly adopted in the civilian population. During World War II and the heyday of tantalum cranioplasty, there was a rapid evolution in prosthesis implantation and fixation techniques significantly shaping how cranioplasties are performed today. Several years after the war, acrylic emerged as the cranioplasty material of choice. It had several clear advantages over its metallic counterparts. Titanium, which was less radiopaque and had a more optimal thermal conductivity profile (less thermally conductive), eventually supplanted tantalum as the most common metallic cranioplasty material. While tantalum cranioplasty was popular for only a decade, it represented a significant breakthrough in synthetic cranioplasty. The experiences of wartime neurosurgeons with tantalum cranioplasty played a pivotal role in the evolution of modern cranioplasty techniques and ultimately led to a heightened understanding of the necessary attributes of an ideal synthetic cranioplasty material. Indeed, the history of tantalum cranioplasty serves as a model for innovative

  10. Flake tantalum powder for manufacturing electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    HE Jilin; YANG Guoqi; PAN Luntao; LIU Hongdong; BAO Xifang

    2008-01-01

    The FTP200 flake tantalum powder was introduced.The microstructures of the powder with leaf-like primary particles having an average flakiness of 2 to 20 and porous agglomerated particles were observed.The chemical composition,physical properties,and electrical properties of the FTP200 powder were compared with those of the FTW300 nodular powder.The FTP200 powder is more sinter-resistant,and the surface area of the flake tantalum powder under sintering at high temperature has less loss than that of the nodular tantalum powder.The specific capacitance of the flake tantalum powder is higher than that of the nodular tantalum powder with the same surface area when anodized at high voltage,Thus,the flake tantalum powder is suitable for manufacturing tantalum solid electrolytic capacitors in the range of median and high (20-63 V) voltages.

  11. Niobium and tantalum: indispensable twins

    Science.gov (United States)

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  12. Additively manufactured porous tantalum implants

    NARCIS (Netherlands)

    Wauthle, Ruben; Van Der Stok, Johan; Yavari, Saber Amin; Van Humbeeck, Jan; Kruth, Jean Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-01-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of it

  13. Characterization of Tantalum Polymer Capacitors

    Science.gov (United States)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  14. Electrodeposition of indium

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.S.; Ahmed, A.I.; Madkour, L.H.

    Metallic indium was deposited from aqueous solutions of indium trichloride containing also, acetate, thiocyanate, chloride, iodide, sulphate, oxalate, ethanol, acetamide and citrate of sodium or potassium. The optimum conditions are: pH 2-5, current density 2-25 mA cm/sup -2/, temperature 30/sup O/C and metal ion concentration O.2 mol l/sup -1/. Deposits have been obtained on a platinum sheet cathode. Chemical analysis reveals that the purity of the indium is better than 99%. The rate of deposition is also determined. 15 refs.

  15. Ultra fine tantalum powder for advanced capacitors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Ultra fine tantalum and niobium powders are applicable in many areas of engineering. Of particular significance are high purity powders that are usable in production of high capacitance capacitors and superconductors.

  16. Ultra fine tantalum powder for advanced capacitors

    Institute of Scientific and Technical Information of China (English)

    Nebera; A.; Markusbkin; Yu.; Azarov; V.; Ermolaev; N.

    2005-01-01

    Ultra fine tantalum and niobium powders are applicable in many areas of engineering. Of particular significance are high purity powders that are usable in production of high capacitance capacitors and superconductors.……

  17. High charge, low leakage tantalum powders

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, E. K.; Manley Jr., R. V.; Rerat, C. F.

    1985-10-01

    Tantalum powders for electrolytic capacitors having improved electrical capacity and low direct current leakage characteristics are produced by the introduction of combinations of carbon, nitrogen and sulfur-containing materials.

  18. RF Sputtering of Gold Contacts On Niobium

    Science.gov (United States)

    Barr, D. W.

    1983-01-01

    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  19. Diffusion kinetics of nitrogen in tantalum during plasma-nitriding

    Institute of Scientific and Technical Information of China (English)

    张德元; 林勤; 曾卫军; 李放; 许兰萍; 付青峰

    2001-01-01

    The activation energies of nitrogen in tantalum on plasma nitriding conditions were calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The activation energy calculated is 148.873±0.390  kJ/mol. The depth increasing of nitriding layer with time follows square root relation. The nitriding process of tantalum is controlled by diffusion of nitrogen atoms in tantalum solid solution.

  20. Photoionization of an aluminum plasma by a tantalum X source

    Science.gov (United States)

    Renaudin, Patrick; Back, Christina A.; Chenais-Popovics, Claude; Audebert, Patrick; Geindre, Jean-Paul; Gauthier, Jean-Claude

    1991-05-01

    Photoionization of a helium like aliminum plasma is carried out by an external x-source. The laser beam used corresponds to the 3d to 4F transition level of tantalum. The experimental spectrum of tantalum is shown superimposed over the emission spectrum of aluminum on diagrammatic form. Good correspondence is seen between the 3d to 4F emissions of tantalum and helium like aluminum. Plasma pumping is obtained by exposure of a tantalum target to laser rays.

  1. Development of a recycling process for tantalum from capacitor scraps

    Science.gov (United States)

    Mineta, Kunio; Okabe, Toru H.

    2005-02-01

    A process based on oxidation treatment at elevated temperature, followed by mechanical separation and chemical treatment, was investigated to develop an effective process for recycling tantalum from capacitor scraps. By this process, tantalum oxide powder, free of SiO2 or other impurities, was recovered from capacitor scrap. Tantalum powder with 99 mass% purity was recovered by magnesiothermic reduction of the obtained tantalum oxide powder.

  2. Indium Sorption to Iron Oxides

    Science.gov (United States)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  3. Extraction of indium from indium-zinc concentrates

    Institute of Scientific and Technical Information of China (English)

    LI Shi-qing; TANG Mo-tang; HE Jing; YANG Sheng-hai; TANG Chao-bo; CHEN Yong-ming

    2006-01-01

    A new process for extracting indium from indium-zinc concentrates was proposed. The process can directly extract indium from removed copper solution by D2EHPA, and cancel the stage of removing iron in the traditional process because of using iron and part of zinc in the In-Zn concentrates for direct preparing high quality Mn-Zn soft magnetic ferrites. The technologies in the processes, such as leaching the neutral leached residues with high concentrated acid at high temperature, reduction ferric and removing copper, and extracting indium, were investigated. The results show that total recovery ratio of indium is increased from less than 70% in the traditional process to more than 95%. This process has the advantages of largely simplifying the procedure of indium extraction, zero draining off of iron residue and zero emitting of SO2. So this is a clean production process.

  4. Mechanical properties and constitutive relations for tantalum and tantalum alloys under high-rate deformation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.R.; Gray, G.T. III; Bingert, S.R. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1996-05-01

    Tantalum and its alloys have received increased interest as a model bcc metal and for defense-related applications. The stress-strain behavior of several tantalums, possessing varied compositions and manufacturing histories, and tantalum alloyed with tungsten, was investigated as a function of temperature from {minus}196 C to 1,000 C, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress for all the Ta-materials was found to be sensitive to the test temperature, the impurity and solute contents; however, the strain hardening remained very similar for various ``pure`` tantalums but increased with alloying. Powder-metallurgy (P/M) tantalum with various levels of oxygen content produced via different processing paths was also investigated. Similar mechanical properties compared to conventionally processed tantalums were achieved in the P/M Ta. This data suggests that the frequently observed inhomogeneities in the mechanical behavior of tantalum inherited from conventional processes can be overcome. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong, and the Mechanical Threshold Stress models were evaluated for all the Ta-based materials. Parameters were also fit for these models to a tantalum-bar material. Flow stresses of a Ta bar stock subjected to a large-strain deformation of {var_epsilon} = 1.85 via multiple upset forging were obtained. The capabilities and limitations of each model for large-strain applications are examined. The deformation mechanisms controlling high-rate plasticity in tantalum are revisited.

  5. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  6. Optical Properties of Indium Doeped ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Tsung-Shine Ko

    2015-01-01

    Full Text Available We report the synthesis of the ZnO nanowires (NWs with different indium concentrations by using the thermal evaporation method. The gold nanoparticles were used as the catalyst and were dispersed on the silicon wafer to facilitate the growth of the ZnO NWs. High resolution transmission electron microscopy confirms that the ZnO NWs growth relied on vapor-liquid-solid mechanism and energy dispersion spectrum detects the atomic percentages of indium in ZnO NWs. Scanning electron microscopy shows that the diameters of pure ZnO NWs range from 20 to 30 nm and the diameters of ZnO:In were increased to 50–80 nm with increasing indium doping level. X-ray diffraction results point out that the crystal quality of the ZnO NWs was worse with doping higher indium concentration. Photoluminescence (PL study of the ZnO NWs exhibited main photoemission at 380 nm due to the recombination of excitons in near-band-edge (NBE. In addition, PL results also indicate the slightly blue shift and PL intensity decreasing of NBE emission from the ZnO NWs with higher indium concentrations could be attributed to more donor-induced trap center generations.

  7. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    in a single 4 electron step. By electrolyses at a constant potential of - 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 °C coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied. Copyright © 2012 by The Electrochemical Society....

  8. Hafnium radioisotope recovery from irradiated tantalum

    Science.gov (United States)

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  9. Bone remodeling around cementless tantalum cups

    NARCIS (Netherlands)

    Grillo, J. -C.; Flecher, X.; Bouvenot, J.; Argenson, J. -N.

    2008-01-01

    Purpose of the study.-Most studies have reported a significant decrease in periacetabular bone stock one year after implantation of a cementless cup. The purpose of this work was to study the bone-implant interface of the tantalum cup using plain X-rays and dual-energy X-ray absorptiometry (DEXA). M

  10. Chemical mechanical polishing of tantalum and tantalum nitride

    Science.gov (United States)

    Janjam, Sathish Babu S. V.

    There is a continuing need in the semiconductor industry to clear residual copper (Cu) and planarize the tantalum (Ta)/tantalum nitride (TaN) barrier/etch stop layer with a higher removal rate using the technique of Chemical Mechanical Polishing (CMP). Obtaining high removal rates for Ta/TaN is very challenging as the films are very hard, and hence it is difficult to achieve high Ta/TaN removal rates by just relying on an increase in the mechanical forces (operating pressure) alone during CMP. Ta/TaN is an inert metal, therefore, obtaining high Ta/TaN removal rates by using chemical additives is also challenging. Not only Ta/TaN needs to be removed at a higher rate in the second step of polishing, but also remaining Cu should be cleared. It is important to search for novel chemicals that can form a thin film on the Ta/TaN surface which can be easily abraded by the polishing pad with very less pressure. In this work, oxalic and tartaric acids have been investigated as the complexing agents in slurries for Ta/TaN CMP. Oxalic and tartaric acids appear to be reactive with Ta in the presence of hydrogen peroxide. A dispersion of the Oxalic acid (OA)/Tartaric Acid (TA) - peroxide mixtures with silica (fumed/colloidal) can be used to achieve Ta removal rates that are ˜ 90 nm/min at pH between 3 to 6 by applying a down force of 6.3 psi, where as at a lower down force of 2 psi, a removal rate of ˜ 40 nm/min has been achieved at pH = 3. It was shown earlier that a high Cu removal rate can be obtained using OA-peroxide based slurries with/without the addition of abrasives at pH = 3 [1]. So, in the first step, Cu could be removed at high rates at pH = 3 and by changing the pH to 5 or 6, Ta/TaN can be removed as mentioned above. Hence these slurries could be used as "single dispersion slurries " that could be used for both the first and second steps of Cu CMP. During the second step (barrier layer polish), Cu removal rates are low but not low enough to minimize dishing with

  11. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  12. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  13. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  14. Solvent extraction of indium with aliquat 336S from malonate solution

    Energy Technology Data Exchange (ETDEWEB)

    Raghunatha Rao, R.; Khopkar, S.M. (Indian Inst. of Tech., Bombay. Dept. of Chemistry)

    1982-05-01

    Indium is quantitatively extracted with 4% Aliquat 336S in xylene from 0.01 M malonic acid buffered solution of pH 4.0-5.0. It is stripped with 0.5 M hydrochloric acid and determined spectrophotometrically with 4-(2-pyridylazo) resorcinol at 520 nm. It is possible to separate indium from alkali and alkaline earths, thallium(I), iron(II), silver, arsenic, yttrium, tin and lanthanons by selective sorption whereas cadmium, nickel, copper, cobalt, chromium(III), aluminium and manganese(II) form weak malonato complexes along with indium and hence are stripped before indium. The separation from bismuth, thallium(III), antimony, mercury(II), platinum(IV) and gold is carried out from 1 M hydrochloric acid, while gallium, titanium, scandium, vanadium and zirconium are separated in 4 M nitric acid. The separation of several anions is also reported.

  15. Tantalum oxide barrier in magnetic tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Guanghua Yu; Tingting Ren; Wei Ji; Jiao Teng; Fengwu Zhu

    2004-01-01

    Tantalum as an insulating barrier can take the place of Al in magnetic tunnel junctions (MTJs). Ta barriers in MTJs were fabricated by natural oxidation. X-ray photoelectron spectroscopy (XPS) was used to characterize the oxidation states of Ta barrier.The experimental results show that the chemical state of tantalum is pure Ta5+ and the thickness of the oxide is 1.3 nm. The unoxidized Ta in the barrier may chemically reacted with NiFe layer which is usually used in MTJs to form an intermetallic compound,NiTa2. A magnetic "dead layer" could be produced in the NiFe/Ta interface. The "dead layer" is likely to influence the spinning electron transport and the magnetoresistance effect.

  16. First Principles Force Field for Metallic Tantalum

    OpenAIRE

    Strachan, Alejandro; Cagin, Tahir; Gulseren, Oguz; Mukherjee, Sonali; Cohen, Ronald E.; Goddard III, William A.

    2002-01-01

    We propose a general strategy to develop accurate Force Fields (FF) for metallic systems derived from ab initio quantum mechanical (QM) calculations; we illustrate this approach for tantalum. As input data to the FF we use the linearized augmented plane wave method (LAPW) with the generalized gradient approximation (GGA) to calculate: (i) the zero temperature equation of state (EOS) of Ta for bcc, fcc, and hcp crystal structures for pressures up to ~500 GPa. (ii) Elastic constants. (iii) We u...

  17. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition

    Energy Technology Data Exchange (ETDEWEB)

    Bernoulli, D. [Laboratory for Nanometallurgy, Department of Materials, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (Switzerland); Müller, U. [EMPA, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Schwarzenberger, M. [Laboratory for Nanometallurgy, Department of Materials, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (Switzerland); Hauert, R. [EMPA, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Spolenak, R. [Laboratory for Nanometallurgy, Department of Materials, ETH-Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (Switzerland)

    2013-12-02

    Tantalum (Ta) and tantalum nitride thin films are highly important as diffusion barriers and adhesion layers in microelectronics and hard coatings for cutting tools. In this study, the effect of the underlying substrate on the phase formation of Ta and the influence of a changing N{sub 2}/Ar flow ratio on hardness, phase and composition of reactively formed tantalum nitride have been investigated. Ta is DC sputter deposited and forms β-Ta on amorphous diamond-like carbon and on the amorphous natural oxide layers of Ti and Si(100) while a 15 nm TaN seed layer results in the formation of α-Ta. The chemical composition of the topmost layers of a substrate influences the formation of α- and β-Ta. With increasing N{sub 2}/Ar flow ratios a transition from amorphous Ta-rich tantalum nitride over face-centered cubic tantalum nitride (fcc-TaN) to (100) textured fcc-TaN at flow ratios above 45% is observed. The hardness of the tantalum nitride thin film reaches a maximum at a flow ratio of 45%, followed by a decrease in hardness for higher N{sub 2}/Ar flow ratios. The increase in hardness is associated with a decrease in grain size and shows a stronger correlation for a Meyers and Ashworth relationship than for a Hall–Petch relationship. - Highlights: • Chemical composition of the substrate influences the phase of deposited Ta. • FCC-TaN seed layer leads to α-Ta on the natural oxide layers of Ti and Si(100). • Meyers and Ashworth relationship correlates stronger than Hall–Petch relationship.

  18. Chemical systems for electrochemical mechanical planarization of copper and tantalum films

    Science.gov (United States)

    Muthukumaran, Ashok Kumar

    Electro-Chemical Mechanical Planarization (ECMP) is a new and highly promising technology just reaching industrial application; investigation of chemistries, consumables, and tool/control approaches are needed to overcome technological limitations. Development of chemical formulations for ECMP presents several challenges. Unlike conventional CMP, formulations for ECMP may not need an oxidant. Organic additives, especially inhibitors used to control planarity (i.e. to protect recessed regions), need to be stable under applied anodic potential. To have a high current efficiency, the applied current should not induce decomposition of the formulations. In addition, to enable clearing of the copper film, the interactions between multiple exposed materials (barrier material as well as copper) must be considered. Development of a full sequence ECMP process would require the removal of the barrier layer as well. Chemical systems that exhibit a 1:1 selectivity between the barrier layer and copper would be ideal for the barrier removal step of ECMP. The main goal of this research is to investigate the chemistries suitable for ECMP of copper and tantalum films. Copper was electroplated onto the gold electrode of quartz crystals, and its dissolution/passivation behavior in hydroxylamine solutions was studied at different applied potential values. The dissolution rate of copper is pH dependent and exhibits a maximum in the vicinity of pH 6. Copper dissolution increases with respect to overpotential (eta) and dissolution rates as high as 6000 A/min have been obtained at overpotential of 750mV. While both benzotriazole (BTA) and salicylhydroxamic acid (SHA) serve as good inhibitors at lower overpotentials, their effectiveness decreases at higher overpotentials. A fundamental study was undertaken to evaluate the usefulness of a sulfonic acid based chemical system for the removal of tantalum under ECMP conditions. Tantalum as well as copper samples were polished at low pressures (

  19. Radiochemical separation of gold by amalgam exchange

    Science.gov (United States)

    Ruch, R.R.

    1970-01-01

    A rapid and simple method for the radiochemical separation of gold after neutron activation. The technique is based on treatment with a dilute indium-gold amalgam, both chemical reduction and isotopic exchange being involved. The counting efficiency for 198Au in small volumes of the amalgam is good. Few interferences occur and the method is applicable to clays, rocks, salts and metals. The possibility of determining silver, platinum and palladium by a similar method is mentioned. ?? 1970.

  20. The effect of Ti and ITO adhesion layers on gold split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2010-01-01

    Ultrathin adhesion layers serve a well-documented fabrication purpose while its influence on the optical properties of gold nanostructures is often neglected. Gold split-ring resonators are fabricated with two commonly used adhesion layers: titanium and indium tin oxide. When compared to all-gold...... with perturbative considerations....

  1. Conflict minerals from the Democratic Republic of the Congo: global tantalum processing plants, a critical part of the tantalum supply chain

    Science.gov (United States)

    Papp, John F.

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes mineral and metal supply chains to identify and describe major components of mineral and metal material flows from ore extraction, through intermediate forms, to a final product. Supply chain analyses may be used (1) to identify risks to the United States associated with the supply of critical and strategic minerals and metals and (2) to provide greater supply chain transparency so that policymakers have the fact-based information needed to formulate public policy. This fact sheet focuses on the post-mining/pre-consumer-product part of the tantalum supply chain. The USGS National Minerals Information Center (NMIC) has been asked by governmental and non-governmental organizations to provide information about tantalum, tin, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at identifying and removing the supply chain links between the trade in these minerals and civil unrest in the Democratic Republic of the Congo and adjacent countries.

  2. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...

  3. Tantalum: A strategic metal; Tantalo: Un metal estrategico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, G.; Lopez-Lopez, J.; Garcia-Yagues, M. R.

    2009-07-01

    In nature, the main source of tantalum is an isomorphous series of minerals containing oxides of tantalum, niobium, iron and manganese, which are collectively known as columbine-tantalite (coltan). Upgraded Ta{sub 2}O{sub 5}-containing tin slags are also used as a secondary source of tantalum. Coltan, either naturally occurring or synthetically produced as concentrates from tin slags, are digested with hydrofluoric and sulphuric acid at an elevated temperature. the aqueous solution of ta-Nb in hydrofluoric acid is extracted in several continuously operating mixer-settler systems or extraction columns with an organic solvent like methyl isobutyl ketone. The organic phase is then scrubbed with 6-15 N H{sub 2}SO{sub 4} to separate the niobium from the tantalum by selective stripping. The tantalum salt is extracted from the organic phase with water or diluted aqueous ammonium fluoride solution, the demands of the solid tantalum capacitor industry for high quality, high surface area tantalum powders have driven improvements in the sodium reduction of K{sub 2}TaF{sub 7}. The much-improved chemistry reflects the many modifications to the process put in place after 1990 and the subsequent improvements in the electrical quality as measured by the performance of tantalum capacitors. (Author) 5 refs.

  4. Compton profile of tantalum

    Indian Academy of Sciences (India)

    Thomas Varghese; K M Balakrishna; K Siddappa

    2003-03-01

    The Compton profile of tantalum (Ta) has been measured using IGP type coaxial photon detector. The target atoms were excited by means of 59.54 keV -rays from Am-241. The measurements were carried out on a high purity thin elemental foil. The data were recoreded in a 4 K multichannel analyzer. These data duly corrected for various effects are presented and compared with theoretical and measured values. Best agreement with experiment is found for the 5d36s2 electron configuration.

  5. Fracture of an uncemented tantalum patellar component

    Directory of Open Access Journals (Sweden)

    Nathan L. Grimm, MD

    2016-06-01

    Full Text Available A 62-year-old man presented with the acute, atraumatic onset of pain 3 years after uncemented right total knee arthroplasty. He complained of new mechanical locking with the knee held in extension on examination and unable to flex the knee. On the plain radiographs, the patellar component peg was fractured and the plate was dislocated. The knee was immobilized, and revision to a cemented 3-peg component was performed. Fracture of a single-peg, tantalum-backed uncemented patellar component has not been described. Clinical suspicion for this should be given in the setting of acute locking. We recommend revision with a cemented polyethylene component.

  6. Facile synthesis of efficient photocatalytic tantalum nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zheng; Wang, Jiangting; Hou, Jungang; Huang, Kai; Jiao, Shuqiang [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Hongmin, E-mail: hzhu@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-11-15

    Graphical abstract: Tantalum nitride nanoparticles as a visible-light-driven photocatalyst prepared by a novel homogeneously chemical reduction of tantalum pentachloride using sodium in liquid ammonia and the morphologies, visible-light photocatalytic properties and stability of tantalum nitride nanoparticles were investigated. Highlights: ► Tantalum nitride nanoparticles have been prepared by a homogeneously chemical reduction. ► The crystal structure of tantalum nitride was determined by Rietveld refinement and XRD patterns. ► The Tantalum nitride nanoparticle size was in the range of 20–50 nm. ► Much high photocatalytic activities of Ta{sub 3}N{sub 5} nanoparticles were obtained under visible-light irradiation. -- Abstract: Tantalum nitride nanoparticles, as visible-light photocatalysts were synthesized by a two-step homogeneously chemical reduction without any polymers and templates. The well-crystallized Ta{sub 3}N{sub 5} nanoparticles with a range of 20–50 nm in size have been characterized by a number of techniques, such as XRD, XPS, SEM, TEM, BET and UV–Vis spectrum. Most importantly, the Ta{sub 3}N{sub 5} nanoparticles with good stability exhibited higher photooxidation activities in the water splitting and degradation of methylene blue under visible light irradiation than bulk Ta{sub 3}N{sub 5} particles and commercial P25 TiO{sub 2}, demonstrating that Ta{sub 3}N{sub 5} nanoparticle is a promising candidate as a visible-light photocatalyst.

  7. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  8. Deformation mechanisms during compressive loading of tantalum and tantalum-2.5 weight percent tungsten

    Science.gov (United States)

    Kapoor, Rajeev

    In this study it was attempted to understand the deformation behavior of tantalum and tantalum alloyed with 2.5 weight % tungsten. Uniaxial compressive deformation was carried out on polycrystalline Ta, Ta-2.5%W, and single crystal Ta. Experiments were carried out for a range of strain rates (10sp{-4}/s to 3000/s), and for a range of temperatures (77K, 296K-1000K). During high strain rate adiabatic plastic deformation of Ta-2.5%W, the energy converted to heat was directly measured using an infra-red method, and indirectly, using the recovery Hopkinson bar technique. It was concluded that within experimental error close to 100% of the work is converted to heat. During high strain rate deformation, the internal dislocation structure of both Ta and Ta-2.5%W was found to be independent of testing temperature. Thus the flow stress could be separated into two types of components, one type which are strain rate - temperature dependent and the other type which are only strain dependent. However, at lower strain rates prominent dynamic strain aging is observed and the effect of strain is coupled with the strain rate - temperature effect. At these lower strain rates, the evolution of structure does depend on the applied strain rate and temperature. When deformed at liquid nitrogen temperature, tantalum twins even at strain rates as low as 0.001/s. In the high strain rate - room temperature regime no twinning is observed. With the addition of tungsten to tantalum, the temperature and strain rate sensitivity of flow stress reduces. In addition to this, twinning is inhibited and occurs only at high strain rates - liquid nitrogen temperatures. Experiments on single crystal tantalum carried out revealed that the temperature sensitivity of flow stress on the (211) (111) slip system is similar to that on the (101) (111) slip system. Further experiments carried out on single crystal tantalum to study latent hardening did show 10% latent hardening on the \\{211\\} intersecting slip

  9. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  10. Structure refinement for tantalum nitrides nanocrystals with various morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lianyun [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xue Yuan Road, Haidian District, Beijing 100083 (China); School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044 (China); Huang, Kai; Hou, Jungang [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xue Yuan Road, Haidian District, Beijing 100083 (China); Zhu, Hongmin, E-mail: hzhu@metall.ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xue Yuan Road, Haidian District, Beijing 100083 (China)

    2012-07-15

    Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{sup 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.

  11. Twinning anisotropy of tantalum during nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Saurav, E-mail: S.GOEL@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Beake, Ben [Micro Materials Limited, Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL (United Kingdom); Dalton Research Institute, Manchester Metropolitan University, Manchester, M15GD (United Kingdom); Chan, Chi-Wai [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom); Haque Faisal, Nadimul [School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ (United Kingdom); Dunne, Nicholas [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast, BT9 5AH (United Kingdom)

    2015-03-11

    Unlike other BCC metals, the plastic deformation of nanocrystalline Tantalum (Ta) during compression is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was investigated through simulation of displacement-controlled nanoindentation test using molecular dynamics (MD) simulation. MD data was found to correlate well with the experimental data in terms of surface topography and hardness measurements. The mechanism of the transport of material was identified due to the formation and motion of prismatic dislocations loops (edge dislocations) belonging to the 1/2〈111〉 type and 〈100〉 type Burgers vector family. Further analysis of crystal defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the theoretical shear strength of Ta (Shear modulus/2π~10.03 GPa) on the (010) orientation but was lower than it on the (110) and the (111) orientations. In light of this, the conventional lore of assuming the maximum shear stress being 0.465 times the mean contact pressure was found to break down at atomic scale.

  12. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  13. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  14. Gold Rush!

    Science.gov (United States)

    Brahier, Daniel J.

    1997-01-01

    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  15. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  16. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...... dielectric strength and the pinhole density for 0.5 μm thick films is below 3 cm-2...

  17. Preparation of tantalum carbide from an organometallic precursor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.P. [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Geoquimica. Lab. de Termodinamica e Reatores]. E-mail: carlson at ufrnet.ufrn.br; Favotto, C.; Satre, P.; L' Honore, A.; Roubin, M. [Universite du Toulon et de Var B.P. (France). Equipe der Materiaux a Finalite Specifique. Lab. de Physicochimie du Materiaux et du Milieu Marin]. E-mail: roubin at univ-tln.fr

    1999-03-01

    In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta{sub 2} O{sub 5} nH{sub 2}O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, Ta C, in the powder form at 1000 deg C. The natural sintering of Ta C powder in an inert atmosphere at 1400 deg C during 10 hours, under inert atmosphere made it possible to density the carbide to 96% of the theoretical value. (author)

  18. The Chemical Vapour Deposition of Tantalum - in long narrow channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki

    use as a construction material for process equipment, with the cheaper alternative being the construction of equipment from steel and then protecting it with a thin but efficacious layer of tantalum. Chemical Vapour Deposition (CVD) is chosen as the most effective process to apply thin corrosion...... protective layers of tantalum because of the process’ ability to coat complex geometries and its relative ease to control. This work focuses on studying the CVD of tantalum in long narrow channels with the view that the knowledge gained during the project can be used to optimise the commercial coating...... process that Tantaline A/S and Alfa Laval (Sweden) use to manufacture tantalum coated plate heat exchangers. Experiments are done by coating the inner side of long, thin stainless steel tubes in the temperature range of 700 – 950 °C and pressure range of 25 – 990 mbar while using different reactant...

  19. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  20. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  1. Tantalum cones and bone defects in revision total knee arthroplasty.

    Science.gov (United States)

    Boureau, F; Putman, S; Arnould, A; Dereudre, G; Migaud, H; Pasquier, G

    2015-04-01

    Management of bone loss is a major challenge in revision total knee arthroplasty (TKA). The development of preformed porous tantalum cones offers new possibilities, because they seem to have biological and mechanical qualities that facilitate osseointegration. Compared to the original procedure, when metaphyseal bone defects are too severe, a single tantalum cone may not be enough and we have developed a technique that could extend the indications for this cone in these cases. We used 2 cones to fill femoral bone defects in 7 patients. There were no complications due to wear of the tantalum cones. Radiological follow-up did show any migration or loosening. The short-term results confirm the interest of porous tantalum cones and suggest that they can be an alternative to allografts or megaprostheses in case of massive bone defects.

  2. Water erosion tests on a tantalum sample: A short communication

    Science.gov (United States)

    Caretta, O.; Davenne, T.; Densham, C. J.

    2017-08-01

    This paper reports results from an experiment exposing the hot isostatic pressed tantalum cladding of a tungsten spallation target sample to a 34 m/s water jet. The unpolished tantalum surface was placed under the jet for 4.5 months with a view to quantifying pitting and erosion. Micrographs and laser profilometry records of the sample surface taken before and after the experiment are reported here.

  3. Tantalum recycling from waste of electrical and electronic equipment

    Directory of Open Access Journals (Sweden)

    Piotrowicz Andrzej

    2016-01-01

    Full Text Available The possibility of tantalum recycling from waste of electrical and electronic equipment was investigated. Study was carried out using basic physical and chemical methods, ie. mechanical separation via crushing, leaching of silver layer in diluted HNO3, grinding and oxidation of anodes and thermic reduction with metallic reducing agent. A recovery rate of anodes was determined at 96%, and recycling efficiency of tantalum to pure form was determined more than 50%. Also was made mass balance.

  4. Corrosion behavior of tantalum and its nitride in alkali solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Deyuan; LIN Qin; FEI Qinyong; ZHAO Haomin; KANG Guangyu; GENG Man

    2003-01-01

    The corrosion behavior of tantalum and its nitrides in stirring NaOH solutions was researched by potenfiostatic method, cyclic voltammetry and XPS. The results showed that the corrosion products were composed of Ta2O5 and NaTaO3.The corrosion reaction formula of tantalum and its nitrides was written according to cyclic volt-ampere curves. The electric charge transfer coefficient and the electric charge transfer number were calculated.

  5. Indium Antimonide Nanowires: Synthesis and Properties

    Science.gov (United States)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  6. Forward modeling of shock-ramped tantalum

    Science.gov (United States)

    Brown, Justin L.; Carpenter, John H.; Seagle, Christopher T.

    2017-01-01

    Dynamic materials experiments on the Z-machine are beginning to reach a regime where traditional analysis techniques break down. Time dependent phenomena such as strength and phase transition kinetics often make the data obtained in these experiments difficult to interpret. We present an inverse analysis methodology to infer the equation of state (EOS) from velocimetry data in these types of experiments, building on recent advances in the propagation of uncertain EOS information through a hydrocode simulation. An example is given for a shock-ramp experiment in which tantalum was shock compressed to 40 GPa followed by a ramp to 80 GPa. The results are found to be consistent with isothermal compression and Hugoniot data in this regime.

  7. Tantalum Sheet for Superconductor Diffusion Barrier Applications

    Science.gov (United States)

    Mathaudhu, S. N.; Hartwig, K. T.; Barber, R. E.; Pyon, T.

    2006-03-01

    This report presents preliminary results of a project with the aim to fabricate fine-grained tantalum sheet having a uniform microstructure that co-deforms well with pure copper for superconductor diffusion barrier applications. Multi-pass equal channel angular extrusion (ECAE) was used to refine the microstructure of 25 mm square cross-section bars of Ta; rolling was used to convert the bars to 0.38 mm thick sheet. Cu-Ta co-deformation characteristics were evaluated by assembling and drawing experimental Cu-Ta composite wires, containing the ECAE processed sheets, to 0.83 mm diameter and metallographically examining the thinned 2-4 micron Ta layer. The ECAE processed Ta sheet co-deformed well with Cu, and was found to have a smaller recrystallized grain size, a narrower grain size distribution and a slightly higher hardness compared to commercial diffusion barrier grade Ta sheet. The favorable results encourage further work.

  8. Characterization of Tri-lab Tantalum Plate.

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, Thomas E.; Cerreta, Ellen K.; Deibler, Lisa Anne; Chen, Shu-Rong; Michael, Joseph R.

    2014-09-01

    This report provides a detailed characterization Tri-lab Tantalum (Ta) plate jointly purchased from HCStark Inc. by Sandia, Los Alamos and Lawrence Livermore National Laboratories. Data in this report was compiled from series of material and properties characterization experiments carried out at Sandia (SNL) and Los Alamos (LANL) Laboratories through a leveraged effort funded by the C2 campaign. Results include microstructure characterization detailing the crystallographic texture of the material and an increase in grain size near the end of the rolled plate. Mechanical properties evaluations include, compression cylinder, sub-scale tension specimen, micohardness and instrumented indentation testing. The plate was found to have vastly superior uniformity when compare with previously characterized wrought Ta material. Small but measurable variations in microstructure and properties were noted at the end, and at the top and bottom edges of the plate.

  9. Stopping power of C, O and Cl in tantalum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Barradas, Nuno P., E-mail: nunoni@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Bobadela LRS (Portugal); Laboratório de Engenharia Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao km 139.7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, Lisboa 1049-001 (Portugal); Fonseca, M. [Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829- 516 Caparica (Portugal); ISLA Campus Lisboa| Laureate International Universities, 1500-210 Lisboa (Portugal); Siketić, Z.; Bogdanović Radović, I. [Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb (Croatia)

    2014-08-01

    Highlights: •We measured the stopping power of C, O, and Cl in tantalum oxide. •A bulk sample method was used, with Bayesian inference data analysis. •Good agreement was found with SRIM2012 calculations. -- Abstract: Tantalum oxide is used in a variety of applications due to its high bandgap, high-K and high index of refraction. Unintentional impurities can change properties of tantalum oxide, and heavy ion elastic recoil detection is a method that can play a fundamental role in the quantification of those impurities. Furthermore, tantalum oxide is frequently part of the samples that also include other materials, which are often analysed with ion beam techniques. However, there are very few reported stopping power measurements for tantalum oxide, and data analysis relies not only on interpolation from a sparse data base but also on the Bragg rule. As is well known, the Bragg rule is often inaccurate for oxides, particularly when the difference in atomic numbers of the involved elements is very large as is case for Ta{sub 2}O{sub 5}. We have used a bulk method, previously developed by us and applied successfully to other systems, to determine experimentally the stopping power of tantalum oxide for three different ion types: C, O and Cl. In the present paper the results of our measurements and bulk method analysis are presented.

  10. Indium oxide thin film based ammonia gas and ethanol vapour sensor

    Indian Academy of Sciences (India)

    K K Makhija; Arabinda Ray; R M Patel; U B Trivedi; H N Kapse

    2005-02-01

    A sensor for ammonia gas and ethanol vapour has been fabricated using indium oxide thin film as sensing layer and indium tin oxide thin film encapsulated in poly(methyl methacrylate) (PMMA) as a miniature heater. For the fabrication of miniature heater indium tin oxide thin film was grown on special high temperature corning glass substrate by flash evaporation method. Gold was deposited on the film using thermal evaporation technique under high vacuum. The film was then annealed at 700 K for an hour. The thermocouple attached on sensing surface measures the appropriate operating temperature. The thin film gas sensor for ammonia was operated at different concentrations in the temperature range 323–493 K. At 473 K the sensitivity of the sensor was found to be saturate. The detrimental effect of humidity on ammonia sensing is removed by intermittent periodic heating of the sensor at the two temperatures 323K and 448 K, respectively. The indium oxide ethanol vapour sensor operated at fixed concentration of 400 ppm in the temperature range 293–393 K. Above 373 K, the sensor conductance was found to be saturate. With various thicknesses from 150–300 nm of indium oxide sensor there was no variation in the sensitivity measurements of ethanol vapour. The block diagram of circuits for detecting the ammonia gas and ethanol vapour has been included in this paper.

  11. [Three cases of indium lung].

    Science.gov (United States)

    Taguchi, Osamu; Chonan, Tatsuya

    2006-07-01

    The production of indium tin oxide (ITO) has been increasing during the past decade because of its use in liquid crystal and plasma display panels. Following the first report on lethal lung injury in a ITO worker in 2001, we began pulmonary check-ups for 115 workers in the plant in our capacity of industrial physicians of the plant. Hence, we report interstitial pulmonary disease in 3 workers who had engaged in wet-surface grinding of ITO for 8 to 12 years and had significant lung injuries. The serum indium level and serum concentration of KL-6 were significantly elevated in all 3 cases. One non-smoker case among them showed severe obstructive changes on spirometry and had an episode of repeated bilateral pneumothorax before and during the follow-up period. All 3 cases showed both interstitial and/or emphysematous changes on HRCT. It is suggested that inhaled indium compounds can cause a new and unique interstitial pulmonary disease.

  12. Analytical fingerprint for tantalum ores from African deposits

    Science.gov (United States)

    Melcher, F.; Graupner, T.; Sitnikova, M.; Oberthür, T.; Henjes-Kunst, F.; Gäbler, E.; Rantitsch, G.

    2009-04-01

    Illegal mining of gold, diamonds, copper, cobalt and, in the last decade, "coltan" has fuelled ongoing armed conflicts and civil war in a number of African countries. Following the United Nations initiative to fingerprint the origin of conflict materials and to develop a traceability system, our working group is investigating "coltan" (i.e. columbite-tantalite) mineralization especially in Africa, also within the wider framework of establishing certified trading chains (CTC). Special attention is directed towards samples from the main Ta-Nb-Sn provinces in Africa: DR Congo, Rwanda, Mozambique, Ethiopia, Egypt and Namibia. The following factors are taken into consideration in a methodological approach capable of distinguishing the origin of tantalum ores and concentrates with the utmost probability: (1) Quality and composition of coltan concentrates vary considerably. (2) Mineralogical and chemical compositions of Ta-Nb ores are extremely complex due to the wide range of the columbite-tantalite solid solution series and its ability to incorporate many additional elements. (3) Coltan concentrates may contain a number of other tantalum-bearing minerals besides columbite-tantalite. In our approach, coltan concentrates are analyzed in a step-by-step mode. State-of-the-art analytical tools employed are automated scanning electron microscopy (Mineral Liberation Analysis; MLA), electron microprobe analysis (major and trace elements), laser ablation-ICP-MS (trace elements, isotopes), and TIMS (U-Pb dating). Mineral assemblages in the ore concentrates, major and trace element concentration patterns, and zoning characteristics in the different pegmatites from Africa distinctly differ from each other. Chondrite-normalized REE distribution patterns vary significantly between columbite, tantalite, and microlite, and also relative to major element compositions of columbites. Some locations are characterized by low REE concentrations, others are highly enriched. Samples with

  13. Effect of sodium injection rate in reduction process on characteristics of tantalum powders

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The paper presents a research the effect of sodium injection rate in a melt containing potassium tantalum fluoride and a flux on morphology and characteristics of tantalum powders obtained by sodium reduction.

  14. International strategic minerals inventory summary report; niobium (columbium) and tantalum

    Science.gov (United States)

    Crockett, R.N.; Sutphin, D.M.

    1993-01-01

    Major world resources of niobium and tantalum are described in this summary report of information in the International Strategic Minerals Inventory (ISMI). ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, the United Kingdom, and the United States of America. Part I of this report presents an overview of the resources and potential supply of niobium and tantalum based on inventory information; Part II contains tables of both geologic and mineral-resource information and includes production data collected by ISMI participants. Niobium is used principally as an alloying element in special steels and superalloys, and tantalum is used mainly in electronics. Minerals in the columbite-tantalite series are principal ore minerals of niobium and tantalum. Pyrochlore is a principal source of niobium. These minerals are found in carbonatite, certain rocks in alkaline igneous complexes, pegmatite, and placer deposits. ISMI estimates show that there are over 7 million metric tons of niobium and almost 0.5 million metric tons of tantalum in known deposits, outside of China and the former Soviet Union, for which reliable estimates have been made. Brazilian deposits, followed by Canadian deposits, contain by far the largest source of niobium. Tantalum production is spread widely among several countries, and Brazil and Canada are the most significant of these producers. Brazil's position is further strengthened by potential byproduct columbite from tin mining. Present economically exploitable resources of niobium appear to be sufficient for the near future, but Brazil will continue to be the predominant world supplier of ferrocolumbium. Tantalum, a byproduct of tin production, has been captive to the fluctuations of that market, but resources in pegmatite in Canada and Australia make it likely that future increases in the present modest demand will be met.

  15. Critical Defense Materials: Government Collected Data Are Sufficiently Reliable to Assess Tantalum Availability

    Science.gov (United States)

    2016-03-01

    collection methods . For example, government data prepared by the United States Geological Survey (USGS) on tantalum production reports information on...mined at prevailing prices.4 Countries for which the USGS reported tantalum mine production in 2014 are Brazil , Burundi, China, Democratic Republic of...Data Are Sufficiently Reliable to Assess Tantalum Availability Why GAO Did This Study The United States relies on foreign mine production of tantalum

  16. The effect of Ti and ITO adhesion layers on gold split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2010-01-01

    Ultrathin adhesion layers serve a well-documented fabrication purpose while its influence on the optical properties of gold nanostructures is often neglected. Gold split-ring resonators are fabricated with two commonly used adhesion layers: titanium and indium tin oxide. When compared to all...

  17. Separation and Concentration of Indium from Leaching Solution Containing Indium, Antimony and Iron Ions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP-kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl3 solution is about 25~30 g/L.

  18. Tantalum strength model incorporating temperature, strain rate and pressure

    Science.gov (United States)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Pulsed laser deposition of tantalum pentoxide film

    Science.gov (United States)

    Zhang, J.-Y.; Boyd, I. W.

    We report thin tantalum pentoxide (Ta2O5) films grown on quartz and silicon substrates by the pulsed laser deposition (PLD) technique employing a Nd:YAG laser (wavelength λ=532 nm) in various O2 gas environments. The effect of oxygen pressure, substrate temperature, and annealing under UV irradiation using a 172-nm excimer lamp on the properties of the grown films has been studied. The optical properties determined by UV spectrophotometry were also found to be a sensitive function of oxygen pressure in the chamber. At an O2 pressure of 0.2 mbar and deposition temperatures between 400 and 500 °C, the refractive index of the films was around 2.18 which is very close to the bulk Ta2O5 value of 2.2, and an optical transmittance around 90% in the visible region of the spectrum was obtained. X-ray diffraction measurements showed that the as-deposited films were amorphous at temperatures below 500 °C and possessed an orthorhombic (β-Ta2O5) crystal structure at temperatures above 600 °C. The most significant result of the present study was that oxygen pressure could be used to control the composition and modulate optical band gap of the films. It was also found that UV annealing can significantly improve the optical and electrical properties of the films deposited at low oxygen pressures (<0.1 mbar).

  20. Geochemical Enirchment and Mineralization of Indium

    Institute of Scientific and Technical Information of China (English)

    张乾; 战新志; 等

    1998-01-01

    Indium occurs in a very dispersed manner in nature with enrichment of economic in terest rarely known.The highly dispersed nature of indium,among several other elements,has for a long time retarded our understanding of the regularities that control their mineralization,which in turn has hindered exploitation and application of these elements.Recent studies of ours show that no significant enrichment of indium can be recognized in various types of Pb-Zn sulphide deposits as well as in deposits of copper,iron and manganese,Indium Concentrations in ores of these deposits are generally below 10×10-6.In contrast,however,indium is found to be enriched to a significant extent in cassiterite-sulphide deposits and some tin-rich Pb-Zn polymetallic deposits.The average content of indium in these deposits can be over 100×10-6,and more than 90% of it is concentrated in sphalerite.Generally,these deposits may be considered as large paragenic deposits for indium and ,therefore,there must be some regularities that govern the geochemical enrichment of the so-called "dispersed element" indium.

  1. Process for Patterning Indium for Bump Bonding

    Science.gov (United States)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  2. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  3. Plasma-nitriding of tantalum at relatively low temperature

    Institute of Scientific and Technical Information of China (English)

    ZHANG Deyuan; LIN Qin; ZHAO Haomin; FEI Qinyong; GENG Man

    2004-01-01

    The combined quadratic orthogonal regression method of experiment design was employed to explore the effects of process parameters of plasma nitriding of tantalum such as total pressure, temperature and original hydrogen molar fraction on the hardness, roughness and structure of nitriding surfaces. The regression equations of hardness, roughness and structure were given according to the results of regression and statistic analysis. And the diffusion activation energy of nitrogen in tantalum on plasma nitriding conditions was calculated according to the experimental data of hardness of plasma-nitriding of tantalum vs time and temperature. The diffusion activation energy calculated belongs to (155.49 + 10.51)kJ/mol (783-983 K).

  4. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    Science.gov (United States)

    Teverovsky, Alexander

    2017-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  5. Fabrication of a tantalum-clad tungsten target for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.T., E-mail: atnelson@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); O' Toole, J.A.; Valicenti, R.A. [Accelerator Operations and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maloy, S.A. [Civilian Nuclear Program Office, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-12-15

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 Degree-Sign C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta{sub 2}O{sub 5} surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO{sub 2}, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  6. Fabrication of a tantalum-clad tungsten target for LANSCE

    Science.gov (United States)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  7. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  8. Wetting layer of copper on the tantalum (001) surface

    Science.gov (United States)

    Dupraz, Maxime; Poloni, Roberta; Ratter, Kitti; Rodney, David; De Santis, Maurizio; Gilles, Bruno; Beutier, Guillaume; Verdier, Marc

    2016-12-01

    The heteroepitaxial interface formed by copper deposited onto the tantalum (001) surface is studied by surface x-ray diffraction and ab initio calculations. The analysis of the crystal truncation rods reveals the presence of a wetting layer of copper made of two atomic planes pseudomorphic to the tantalum substrate, with the upper most atomic planes significantly deformed. These findings are in total agreement with the results of density-functional-theory calculations. The presence of the wetting layer confirms a Stranski-Krastanov growth mode and is thought to explain the extremely fast atomic diffusion of copper during the dewetting process in the solid state at high temperature.

  9. Complications associated with use of tantalum-mesh--covered implants.

    Science.gov (United States)

    Przybyla, V A; La Piana, F G

    1982-02-01

    In 1948, ophthalmologists started implanting plastic spheres partially covered with tantalum mesh (eg, the Valley Forge Implant) in anophthalmic sockets. Numerous patients have developed complications ten to 15 years after surgery: pain ("pinching" or "deep"), headache, heavy mucopurulent discharge and diffuse conjunctival inflammation, migration of the implant, thinning or erosion of tissues covering the implant (extrusion), and inability to wear an artificial eye. Management includes refabrication of the artificial eye and replacement of the implant with a dermis-fat graft or a silicone ball plus scleral graft. Tantalum-mesh--covered orbital implants should probably not be used.

  10. Diffusion of liquid uranium into foils of tantalum metal and tantalum-10 wt% tungsten alloy up to 1350/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Kuznietz, M.; Livne, Z.; Cotler, C.; Erez, G.

    1988-05-01

    Immersion experiments have been performed to investigate the diffusion of liquid uranium into 0.3 mm thick foils of tantalum metal and tantalum-10wt% tungsten alloy in the temperature range of 1160/sup 0/C to 1350/sup 0/C, for reaction times up to 20 h, in zirconia crucibles. The orginal and uranium-reacted foils have been studied microscopically (SEM-EDAX) and a multilayer structure is revealed in the reacted foils. Layers identified for tantalum immersed in uranium: Uranium-tantalum (U/Ta approx. = 1), precipitated columnar tantalum (< 1wt% U), inner uranium, and inner tantalum (with grown grains and uranium along grain boundaries). Layers identified for Ta-10wt% W alloy immersed in uranium: Uranium-tantalum (U/Ta approx. = 1, 0.3wt% W), precipitated tantalum (< 1wt% U, down to 1-2wt% W), and inner Escher-type grains of tantalum-tungsten (up to 18wt% W) and of uranium (< 2wt% Ta, < 0.4wt% W). A mechanism for the multilayer formation and the intrusion of liquid uranium into the solid foils is proposed and substantiated.

  11. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D., E-mail: daniel.cristea@unitbv.ro [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Cretu, N. [Electrical Engineering and Applied Physics Department, Transilvania University, 500036 Brasov (Romania); Borges, J. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Lopes, C.; Cunha, L. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Ion, V.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, “Photonic Processing of Advanced Materials” Group, PO Box MG-16, RO 77125 Magurele-Bucharest (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, 21 Avenue Jean Capelle, 69621 Villeurbanne cedex (France); Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania)

    2015-11-01

    Highlights: • Tantalum oxynitride thin films have been deposited by magnetron sputtering, in various configurations. • The rising of the reactive gases mixture flow has the consequence of a gradual increase in the non-metallic content in the films, which results in a 10 orders of magnitude resistivity domain. • The higher resistivity films exhibit dielectric constants up to 41 and quality factors up to 70. - Abstract: The main purpose of this work is to present and to interpret the change of electrical properties of Ta{sub x}N{sub y}O{sub z} thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N{sub 2} and O{sub 2}, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance Ta{sub x}N{sub y}O{sub z} films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric Ta{sub x}N{sub y}O{sub z} films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  12. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  13. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  14. 21 CFR 886.3100 - Ophthalmic tantalum clip.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic tantalum clip. 886.3100 Section 886.3100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... or temporarily to bring together the edges of a wound to aid healing or prevent bleeding from small...

  15. Fibronectin adsorption on tantalum: the influence of nanoroughness.

    Science.gov (United States)

    Hovgaard, Mads Bruun; Rechendorff, Kristian; Chevallier, Jacques; Foss, Morten; Besenbacher, Flemming

    2008-07-17

    The complex mechanisms of protein adsorption at the solid-liquid interface is of great importance in many research areas, including protein purification, biocompatibility of medical implants, biosensing, and biofouling. The protein adsorption process depends crucially on both the nanoscale chemistry and topography of the interface. Here, we investigate the adsorption of the cell-binding protein fibronectin on flat and nanometer scale rough tantalum oxide surfaces using ellipsometry and quartz crystal microbalance with dissipation (QCM-D). On the flat tantalum oxide surfaces, the interfacial protein spreading causes an increase in the rigidity and a decrease in the thickness of the adsorbed fibronectin layer with decreasing bulk protein concentration. For the tantalum oxide surfaces with well-controlled, stochastic nanometer scale roughness, similar concentration effects are observed for the rigidity of the fibronectin layer and saturated fibronectin uptake. However, we find that the nanorough tantalum oxide surfaces promote additional protein conformational changes, an effect especially apparent from the QCM-D signals, interpreted as an additional stiffening of the formed fibronectin layers.

  16. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  17. Electrochemical Study of Tantalum in Fluoride and Oxofluoride Melts

    DEFF Research Database (Denmark)

    Polyakova, L.; Polyakov, E.; Matthiesen, F.

    1994-01-01

    The electrochemical behavior of tantalum in the form of K2TaF7 in an LiF-NaF-KF eutectic melt has been studied by linear voltammetry in the temperature range of 560 to 815-degrees-C with and without additions of Na2O. An amperometric titration has been performed by measuring the heights of the ca...

  18. Corrosion properties of Ag-Au-Cu-Pd system alloys containing indium.

    Science.gov (United States)

    Hattori, Masayuki; Tokizaki, Teruhiko; Matsumoto, Michihiko; Oda, Yutaka

    2010-01-01

    In this study, the corrosion resistance of Ag-Au-Cu-Pd system alloys consisting of 5 or 10 mass% indium was evaluated. Levels of element release and tarnish were determined and electrochemical measurements performed. Results were compared with those for commercial silver-palladium-gold alloy. In terms of electrochemical behavior, the transpassive potential of these experimental alloys was 168-248mV. Experimental alloys with 25 mass% Au showed similar corrosion resistance to control gold-silver-palladium alloy. Amount of released elements was 14-130microg/cm(2) at 7 days, which is in the allowable range for dental alloys. Addition of indium to Ag-Au-Cu-10mass%Pd system alloys was effective in increasing resistance to tarnish and alloys containing 10 mass% of indium showed a minimal decrease in L(*) values after immersion. These findings indicate that 25Au-37.5Ag-15Cu-10Pd-2Zn-10In-0.5Ir alloy is applicable in dental practice.

  19. Multi-scale Modeling of Plasticity in Tantalum.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weinberger, Christopher [Drexel Univ., Philadelphia, PA (United States)

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  20. Phenomenological effets of tantalum incorporation into diamond films: Experimental and first principle studies

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Mahtab, E-mail: mahtabullah@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Rana, Anwar Manzoor; Ahmad, E. [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Raza, Rizwan [Department of Physics, COMSATS Institute of Information Technology, Lahore-54000 (Pakistan); Hussain, Fayyaz [Department of Physics, Bahauddin Zakariya University Multan (Pakistan); Hussain, Akhtar; Iqbal, Muhammad [Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2016-09-01

    Graphical abstract: - Highlights: • Fabrication of tantalum incorporated diamonds films using HFCVD technique. • Decrease in resistivity by increasing tantalum content in diamond thin films. • Electronic structure calculations of tantalum incorporated diamonds films through VASP code. • A rise of bond length and bond angles by addition of tantalum in the diamond lattice. • Confirmation of decrease of resistivity by adding tantalum due to creation of impurity states in the bandgap. - Abstract: Tantalum (Ta) incorporated diamond films are synthesized on silicon substrate by chemical vapor deposition under gas mixture of CH{sub 4} + H{sub 2}. Characterizations of the resulting films indicate that morphology and resistivity of as-grown diamond films are significantly influenced by the process parameters and the amount of tantalum incorporated in the diamond films. XRD plots reveal that diamond films are composed of TaC along with diamond for higher concentration of tantalum and Ta{sub 2}C phases for lower concentration of tantalum. EDS spectra confirms the existence of tantalum in the diamond films. Resistivity measurements illustrate a sudden fall of about two orders of magnitude by the addition of tantalum in the diamond films. Band structure of Ta-incorporated diamond has been investigated based on density functional theory (DFT) using VASP code. Band structure calculations lead to the semiconducting behavior of Ta-incorporated diamond films because of the creation of defects states inside the band gap extending towards conduction band minimum. Present DFT results support experimental trend of resistivity that with the incorporation of tantalum into diamond lattice causes a decrease in the resistivity of diamond films so that tantalum-incorporated diamond films behave like a good semiconductor.

  1. Quantification of indium in steel using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-04-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (/le/ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.).

  2. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa M.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  3. Nanocomposite tantalum-carbon-based films deposited by femtosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Benchikh, N. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Garrelie, F. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Wolski, K. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS - URA CNRS 5146, 158 cours Fauriel, 42023 Saint-Etienne, Cedex 02 (France); Donnet, C. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France)]. E-mail: Christophe.Donnet@univ-st-etienne.fr; Fillit, R.Y. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS - URA CNRS 5146, 158 cours Fauriel, 42023 Saint-Etienne, Cedex 02 (France); Rogemond, F. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Subtil, J.L. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Rouzaud, J.N. [Laboratoire de Geologie de l' Ecole Normale Superieure de Paris 24, rue Lhomond 75231-Paris Cedex 5 (France); Laval, J.Y. [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, 10 rue Vauquelin 75231-Paris Cedex 05 (France)

    2006-01-03

    Nanostructured coatings of metal (tantalum) containing diamond-like carbon (a-C:Ta) have been prepared by femtosecond pulsed laser deposition (PLD). The films, containing 15 at.% tantalum, have been deposited by ablating sequentially graphite and metallic tantalum in vacuum conditions with an amplified Ti:sapphire laser. The coatings have been investigated by X-ray photoelectron spectroscopy, grazing angle X-ray diffraction, energy filtered transmission electron microscopy, scanning and high resolution transmission electron microscopies. Evidence of metallic {alpha}-Ta and {beta}-Ta particles (diameter in the 100 nm range) and smaller quasi-amorphous tantalum clusters embedded in the carbonaceous matrix have been shown. A thin tantalum carbide interface between the carbon matrix and the top surface of the tantalum nodules has also been identified. The ability of femtosecond pulsed laser deposition to synthetize nanocomposite carbon-based films and to control their nanostructure is discussed.

  4. Carbochlorination kinetics of tantalum and niobium pentoxides

    Directory of Open Access Journals (Sweden)

    Allain, E.

    1999-08-01

    Full Text Available The carbochlorination kinetics of pure Nb2O5 and Ta2O5 by gas mixture (C12 + CO + N2 between 380 and 1,000 °C is studied. A calculation of the standard free energy of the carbochlorination reactions is made. A diagram of the phases stability is drawn. The influence of the gas flow, temperature and the pardal pressure of Cl2 and CO at temperatures below 650 °C on the reaction rate is studied. The apparent activation energy is approximately 75 and 110 kJ/mol for Nb2Os and Ta2O5, respectively. At temperatures above 650°C the Arrhenius diagram presents an anomaly which may be attributed to the decomposition of the COCl2 formed in situ. The apparent reaction order of the carbochlorination of these oxides against Cl2+CO is approximately 2. The carbochlorination rates of these oxides are much greater than those of chlorination by Cl2 + N2. The carbochlorination kinetics of tin furnace slag leaching concentrates containing tantalum and niobium compounds are also studied and compared with the carbochlorination kinetics of the pure oxides.

    En este trabajo se estudia la cinética de carbocloruración del Nb2O5 y del Ta2O5 por la mezcla de gases (Cl2 + CO + N2 entre 380 y 1000°C. Se hace un cálculo de la energía libre estándar de carbocloruración y se dibujan los diagramas de equilibrio de fases. Se estudia la influencia del flujo de gas, la temperatura y la presión parcial de Cl2 y CO a temperaturas por debajo de 650°C sobre la velocidad de reacción. La energía de activación es aproximadamente 75 y 110 kJ/mol para el Nb2O5 y el Ta2O5, respectivamente. A temperaturas por encima de 650°C, el diagrama de Arrhenius presenta una anomalía que puede ser atribuida a la

  5. Diffusion of liquid uranium into solid tantalum foils up to 1350C

    Energy Technology Data Exchange (ETDEWEB)

    Kuznietz, M.; Livne, Z.; Cotler, C.

    1986-01-01

    The diffusion of liquid uranium into solid foils, 0.3 mm thick, was investigated in the temperature range 1160-1350C, for reaction times up to 20 h. The tantalum foils were immersed in liquid uranium contained in zirconia crucibles. Uranium was found to cover the tantalum foils and climb upwards in amounts rising with reaction time and temperature. A scanning electron microscope study with microanalysis by EDAX revealed a multilayer structure. On the tantalum-foil surfaces, exposed to liquid uranium, layers form progressively inwards, under the outer uranium layers, in the following sequence: a uranium-tantalum layer (with a U:Ta ratio between 40:60 and 60:40) forms at 1160 C and 1185 C, and disappears completely at 1255 C; a columnar tantalum layer (containing <1W/O U); an inner uranium layer (at 1210 C and above); an inner tantalum-grain layer with uranium along grain boundaries (above 1210 C). The growth of the recrystallized columnar tantalum layer is related to the penetration of uranium as liquid into the solid tantalum foil. Cracks in this layer at 1300 C and above cause tears and failures in the tantalum.

  6. Contact Resistance of Tantalum Coatings in Fuel Cells and Electrolyzers using Acidic Electrolytes at Elevated Temperatures

    DEFF Research Database (Denmark)

    Jensen, Annemette Hindhede; Christensen, Erik; Barner, Jens H. Von

    2014-01-01

    Tantalum has so far been found to be the only construction material with sufficient corrosion resistance for high temperature polymer electrolyte membrane electrolyzers using acidic electrolytes above 100◦C. In this work the interfacial contact resistances of tantalum plates and tantalum coated...... stainless steel were found to be far below the US Department of Energy target value of 10mcm2. The good contact resistance of tantalum was demonstrated by simulating high temperature polymer electrolyte membrane electrolysis conditions by anodization performed in 85% phosphoric acid at 130◦C, followed...

  7. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  8. Corrosion resistance of high-performance materials titanium, tantalum, zirconium

    CERN Document Server

    2012-01-01

    Corrosion resistance is the property of a material to resist corrosion attack in a particular aggressive environment. Although titanium, tantalum and zirconium are not noble metals, they are the best choice whenever high corrosion resistance is required. The exceptionally good corrosion resistance of these high–performance metals and their alloys results from the formation of a very stable, dense, highly adherent, and self–healing protective oxide film on the metal surface. This naturally occurring oxide layer prevents chemical attack of the underlying metal surface. This behavior also means, however, that high corrosion resistance can be expected only under neutral or oxidizing conditions. Under reducing conditions, a lower resistance must be reckoned with. Only very few inorganic and organic substances are able to attack titanium, tantalum or zirconium at ambient temperature. As the extraordinary corrosion resistance is coupled with an excellent formability and weldability these materials are very valua...

  9. [Preparation and optical properties of tantalum tungsten bronze].

    Science.gov (United States)

    Mu, Wan-jun; Xie, Xiang; Li, Xing-liang; Zhang, Rui; Lü, Kai; Wei, Hong-yuan

    2015-01-01

    Tantalum tungsten bronze(TaxWO3)nanowires were successfully synthesized via hydrothermal method using TaCl5 and Na2WO4 . 2H20 as raw materials. The morphology, crystal structure and optical properties of synthesized products were characterized by means of XRD, TEM, SEM, UV-Vis and Raman technologies. The XRD results showed that TaxWO3 nanowire exhibited hexagonal structure. By increasing the doping content, the cell parameter was kept increasing gradually till Ta/W= 0. 04, then it remained almost constant. The UV-Vis diffraction spectrum analysis showed that the absorption peaks redshifted, the band gap energy decreased with increasing the doping content. The Raman peaks moved with a downshift, and the peak gradually became broader, which further proved the influence of the tantalum doping for tungsten oxide. The reactions of decomposing liquid rhodamine B solution showed that the nanosized TaxWO3 had a high photo-catalytic activity.

  10. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-07-15

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could be a promising procedure for improving the antibacterial properties for orthopedic and dental implants.

  11. In Situ Synthesis and Deposition of Gold Nanoparticles with Different Morphologies on Glass and ITO Substrate by Ultrasonic Spray Pyrolysis

    OpenAIRE

    María de la Garza; Israel López; Idalia Gómez

    2013-01-01

    Gold nanoparticles were synthesized and deposited in situ by ultrasonic spray pyrolysis on glass and indium tin oxide (ITO) substrates. This technique led to the formation of gold nanoparticles with different morphologies without the use of any capping agent. The gold nanoparticles deposited on glass substrate were obtained as nanospheres with an average particle size of 30 nm with some agglomerates; however, the nanoparticles deposited on ITO substrate were obtained with different morphologi...

  12. Plasticity In High Temperature Materials: Tantalum and Monazite

    Science.gov (United States)

    2014-03-12

    centered cu- bic tantalum, the methodology also demonstrated a relationship between dislocation mean free path length and GND density. A framework to...c) _ [110] x1 x2 F undeformed def orm ed ω3 x 1’ x 2’ (b) φ1=54.7° (110) [001] [110] _ x1 x2 S(1) S(2) S(3) _ _ (a) [110] [001] [110] (111)[101

  13. Analysis of bone ingrowth on a tantalum cup

    Directory of Open Access Journals (Sweden)

    D′Angelo F

    2008-01-01

    Full Text Available Background: Trabecular Metal (TM is a new highly porous material made of tantalum (Zimmer, Warsaw, Indiana, USA. Its three-dimensional structure is composed of a series of interconnected dodecahedron pores that are on average 550 μm in diameter. This size is considered optimal for bone ingrowth and is similar to trabecular bone. The elastic modulus of TM (3 GPa is more similar to that of cancellous (0,1-1,5 GPa or cortical (112-18 GPa bone and is significantly less similar to that of Titanium (110 GPa and Co-Cr alloys (220 GPa. These features enable bone apposition and remodeling. The purpose of the present study was to evaluate the histology of the bone-implant interface in a human specimen. Materials and Methods: A highly porous tantalum cup (Zimmer, Warsaw, Indiana, USA was removed for recurrent dislocations three years after implantation. In order to obtain a slice of the cup, two cuts were made on the centre using an Exakt cutting machine. Then the slice was embedded in a Technovit resin and a Hematoxylin-eosin stain was used to study the bone tissue. Bone ingrowth was calculated using a method based on simple calculations of planar geometry. Results: The histological evaluation of the periprosthetic tissues revealed a typical chronic inflammation with few particles of polyethylene that were birefringent using polarized light. The quantitative evaluation of bone ingrowth revealed that more than 95% of voids were filled with bone. Discussion: In the literature, a lot of studies focused on tantalum were carried on animal model. Up to now little information is available about the histology of the bone-tantalum interface in a human artificial joint. We had an opportunity to remove a well integrated cup hence this study. The histology confirmed the strong relationship between the structure of this material and bone. The morphometric analysis revealed a high percentage of bone ingrowth.

  14. Sodium Purification Device for Production of Tantalum Powder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the process of tantalum powder production it requires pure sodium to reduce potassium fluotantalate, thus the design of a sodium purification device is improved, later it is built and commissioned. The device includes sodium transportation tank, storage tank, filter, cold trap, final storage tank, metering tank, regulating valve, argon purification system, electric control panel and instrument. Industrial purity sodium is purified, the impurities in the sodium were reduced to very

  15. Fabrication and characterisation of suspended microstructures of tantalum

    OpenAIRE

    Al-Masha-al, Asa'ad; Cheung, Rebecca; Bunting, Andrew; Mastropaolo, Enrico

    2016-01-01

    An investigation of the influence of deposition and post-fabrication processes on the final mechanical structure of tantalum beams is reported in the present study. The final deflection profiles of doubly supported beams made from compressive and tensile-stressed films have been studied experimentally. An optimum finite element model has been developed to predict the buckling behaviour of the doubly supported beams by considering the boundary conditions in the form of a compressive stress and...

  16. Semimicrodetermination of combined tantalum and niobium with selenous acid

    Science.gov (United States)

    Grimaldi, F.S.; Schnepfe, M.

    1959-01-01

    Tantalum and niobium are separated and determined gravimetrically by precipitation with selenous acid from highly acidic solutions in the absence of complexing agents. Hydrogen peroxide is used in the preparation of the solution and later catalytically destroyed during digestion of the precipitate. From 0.2 to 30 mg., separately or in mixtures, of niobium or tantalum pentoxide can be separated from mixtures containing 100 mg. each of the oxides of scandium, yttrium, cerium, vanadium, molybdenum, iron, aluminum, tin, lead, and bismuth with a single precipitation; and from 30 mg. of titanium dioxide, and 50 mg. each of the oxides of antimony and thorium, when present separately, with three precipitations. At least 50 mg. of uranium(VI) oxide can be separated with a single precipitation when present alone; otherwise, three precipitations may be needed. Zirconium does not interfere when the tantalum and niobium contents of the sample are small, but in general, zirconium as well as tungsten interfere. The method is applied to the determination of the earth acids in tantaloniobate ores.

  17. Structural modification of tantalum crystal induced by nitrogen ion implantation

    Indian Academy of Sciences (India)

    A H RAMEZANI; M R HANTEHZADEH; M GHORANNEVISS; E DARABI

    2016-06-01

    This paper investigates the effect of nitrogen ion implantation on tantalum surface structure. In this experiment, nitrogen ions which had an energy of 30 keV and doses of $1 \\times 10^{17}$ to $10 \\times 10^{17}$ ions cm$^{−2}$ were used. X-ray diffraction analysis (XRD) was applied for both the metallic Ta substrate and the study of new structures that have been created through the nitrogen ion implantation. Atomic force microscopy (AFM) was also used tocheck the roughness variations prior to and also after the implantation phase. The experimental results show the formation of hexagonal tantalum nitride (TaN$_{0.43}$) in addition to the fact that by increasing the ion dose, the nitrogen atoms occupy more interstitial spaces in the target crystal. The nitride phase also seen for $3\\times 10^{17}$ and $5\\times 10^{17}$ ions cm$^{−2}$, while it disappeared for higher dose of $7\\times 10^{17}$ and $1\\times 10^{18}$ ions cm$^{−2}$. The FWHM of the dominant peak of tantalum nitride suggest the growth of the crystallite’s size, which is in agreement with the AFM results ofthe grains.

  18. Microstructures and phase transformations in interstitial alloys of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, U.

    1979-01-01

    The analysis of microstructures, phases, and possible ordering of interstitial solute atoms is fundamental to an understanding of the properties of metal-interstitial alloys in general. As evidenced by the controversies on phase transformations in the particular system tantalum--carbon, our understanding of this class of alloys is inferior to our knowledge of substitutional metal alloys. An experimental clarification of these controversies in tantalum was made. Using advanced techniques of electron microscopy and ultrahigh vacuum techology, an understanding of the microstructures and phase transformations in dilute interstitial tantalum--carbon alloys is developed. Through a number of control experiments, the role and sources of interstitial contamination in the alloy preparation (and under operating conditions) are revealed. It is demonstrated that all previously published work on the dilute interstitially ordered phase Ta/sub 64/C can be explained consistently in terms of ordering of the interstitial contaminants oxygen and hydrogen, leading to the formation of the phases Ta/sub 12/O and Ta/sub 2/H.

  19. Application of pyrolysis to recycling organics from waste tantalum capacitors.

    Science.gov (United States)

    Niu, Bo; Chen, Zhenyang; Xu, Zhenming

    2017-08-05

    Tantalum capacitors (TCs) are widely used in electronic appliances. The rapid replacement of electronic products results in generating large amounts of waste TCs (WTCs). WTCs, rich in valuable tantalum, are considered as high quality tantalum resources for recycling. However, environmental pollution will be caused if the organics of WTCs were not properly disposed. Therefore, effectively recycling the organics of WTCs is significant for recovering the valuable parts. This study proposed an argon (Ar) pyrolysis process to recycle the organics from WTCs. The organic decomposition kinetic was first analyzed by thermogravimetry. The results showed that the organics were decomposed in two major steps and the average activation energy was calculated to 234kJ/mol. Then, the suitable pyrolysis parameters were determined as 550°C, 30min and 100ml/min. The organics were effectively decomposed and converted to oils (mainly contained phenol homologs and benzene homologs) and gases (some hydrocarbon). These pyrolysis products could be reutilized as energy sources. Moreover, based on the products and bond energy theory, the pyrolysis mechanisms of the organics were also discussed. Finally, a reasonable technological process for products utilization was presented. This study contributes to the efficient recycling the organics before valuable material recovery from WTCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  1. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  2. Indium adhesion provides quantitative measure of surface cleanliness

    Science.gov (United States)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  3. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    Science.gov (United States)

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection.

  4. DISSOLUTION OF FISSILE MATERIALS CONTAINING TANTALUM METAL

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

    2007-05-29

    The dissolution of composite materials containing plutonium (Pu) and tantalum (Ta) metals is currently performed in Phase I of the HB-Line facility. The conditions for the present flowsheet are the dissolution of 500 g of Pu metal in the 15 L dissolver using a 4 M nitric acid (HNO{sub 3}) solution containing 0.2 M potassium fluoride (KF) at 95 C for 4-6 h.[1] The Ta metal, which is essentially insoluble in HNO{sub 3}/fluoride solutions, is rinsed with process water to remove residual acid, and then burned to destroy classified information. During the initial dissolution campaign, the total mass of Pu and Ta in the dissolver charge was limited to nominally 300 g. The reduced amount of Pu in the dissolver charge coupled with significant evaporation of solution during processing of several dissolver charges resulted in the precipitation of a fluoride salt contain Pu. Dissolution of the salt required the addition of aluminum nitrate (Al(NO{sub 3}){sub 3}) and a subsequent undesired 4 h heating cycle. As a result of this issue, HB-Line Engineering requested the Savannah River National Laboratory (SRNL) to optimize the dissolution flowsheet to reduce the cycle time, reduce the risk of precipitating solids, and obtain hydrogen (H{sub 2}) generation data at lower fluoride concentrations.[2] Using samples of the Pu/Ta composite material, we performed three experiments to demonstrate the dissolution of the Pu metal using HNO{sub 3} solutions containing 0.15 and 0.175 M KF. When 0.15 M KF was used in the dissolving solution, 95.5% of the Pu in the sample dissolved in approximately 6 h. The undissolved material included a small amount of Pu metal and plutonium oxide (PuO{sub 2}) solids. Complete dissolution of the metal would have likely occurred if the dissolution time had been extended. This assumption is based on the steady increase in the Pu concentration observed during the last several hours of the experiment. We attribute the formation of PuO{sub 2} to the complexation

  5. Indium-111 leukocyte scanning and fracture healing

    Energy Technology Data Exchange (ETDEWEB)

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. (Univ. of Texas Medical School, Houston (USA))

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  6. Preparation and characterization of mesoporous indium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi-zhe; CHENG Zhi-xuan; PAN Qing-yi; DONG Xiao-wen; ZHANG Jian-cheng; PAN Ling-li

    2009-01-01

    Indium oxide nanocrystals with mesoporous structure were successfully synthesized by using triblock copolymer as a template,and characterized by thermogravimetry-differential scanning calorimeter (TG-DSC),X-ray powder diffraction (XRD),high resolution transmission electron microscopy (HRTEM) and N2 adsorption.A high EO/PO ratio is thought to be the key point to prepare mesoporous In2O3.The results show that the average pore diameter of the products is 6 nm,the BET surface area is 54.78 m2/g,and the adsorbing pore volume is 0.345 cm3/g.After comparing with normal indium oxide nanoparticles by BET test,mesoporous indium oxide demonstrates a large difference in adsorbing pore volume and average pore diameters from normal ones.

  7. Growth characteristics and functional changes in rat chondrocytes cultured in porous tantalum in vitro

    Directory of Open Access Journals (Sweden)

    Ling ZHANG

    2014-08-01

    Full Text Available Objective To evaluate the growth characteristics and functional changes in rat chondrocytes cultured in porous tantalum in vitro. Methods The chondrocytes isolated from cartilage of 3-week old SD rats were cultured in vitro, then the 2nd passage cells were identified and implanted in porous tantalum scaffolds with a density of 1×106 cells/ml. The morphological characteristics of the chondrocytes cultured in porous tantalum were observed under inverted microscope, scanning electron microscope (SEM and transmission electron microscope (TEM, and the content of glycosaminoglycan (GAG in the chondrocytes was measured by chromatometry. Results The harvested cells were identified as chondrocytes by type Ⅱ collagen immunocytochemical staining, toluidine blue staining and safranin-O staining. Many chondrocytes adhering to the edge of porous tantalum were found by inverted microscope. Observation under SEM showed that chondrocytes spread well on the surface and distributed in the holes of porous tantalum, and they proliferated and secreted some extracellular matrixes. TEM observation showed that the ultrastructure of chondrocytes cultured in porous tantalum was similar to that of normal chondrocytes. Chromatometry determination showed that the chondrocytes in porous tantalum could secrete GAG continuously. Conclusion Porous tantalum is shown to have a satisfactory biocompatibility with chondrocytes in vitro, and may be used as a scaffold for cartilage tissue engineering. DOI: 10.11855/j.issn.0577-7402.2014.06.08

  8. Tantalum Coating of Steel, Copper, Aluminum, and Titanium by Thermal Chemical Vapor Deposition (CVD)

    DEFF Research Database (Denmark)

    Christensen, Erik; Bjerrum, Niels

    1998-01-01

    Tantalum coatings ranging from 0.5 to 120 mm has been deposited by CVD at 625-1000 C using tantalum pentachloride as precursor. Deposition rates range from 1 to 80mm/h and an activation energy of 103 kJ/mole is calculated. Well adhering deposits has been obtained on stainless steel, carbon steels...

  9. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mb...

  10. A biokinetic and dosimetric model for ionic indium in humans

    Science.gov (United States)

    Andersson, Martin; Mattsson, Sören; Johansson, Lennart; Leide-Svegborn, Sigrid

    2017-08-01

    This paper reviews biokinetic data for ionic indium, and proposes a biokinetic model for systemic indium in adult humans. The development of parameter values focuses on human data and indium in the form of ionic indium(III), as indium chloride and indium arsenide. The model presented for systemic indium is defined by five different pools: plasma, bone marrow, liver, kidneys and other soft tissues. The model is based on two subsystems: one corresponding to indium bound to transferrin and one where indium is transported back to the plasma, binds to red blood cell transferrin and is then excreted through the kidneys to the urinary bladder. Absorbed doses to several organs and the effective dose are calculated for 111In- and 113mIn-ions. The proposed biokinetic model is compared with previously published biokinetic indium models published by the ICRP. The absorbed doses are calculated using the ICRP/ICRU adult reference phantoms and the effective dose is estimated according to ICRP Publication 103. The effective doses for 111In and 113mIn are 0.25 mSv MBq-1 and 0.013 mSv MBq-1 respectively. The updated biokinetic and dosimetric models presented in this paper take into account human data and new animal data, which represent more detailed and presumably more accurate dosimetric data than that underlying previous models for indium.

  11. Interstitial pulmonary disorders in indium-processing workers.

    Science.gov (United States)

    Chonan, T; Taguchi, O; Omae, K

    2007-02-01

    The production of indium-tin oxide has increased, owing to the increased manufacture of liquid-crystal panels. It has been reported that interstitial pneumonia occurred in two indium-processing workers; therefore, the present study aimed to evaluate whether interstitial pulmonary disorders were prevalent among indium workers. The study was carried out in 108 male workers in the indium plant where the two interstitial pneumonia patients mentioned above were employed, and included high-resolution computed tomography (HRCT) of the lungs, pulmonary function tests and analysis of serum sialylated carbohydrate antigen KL-6 and the serum indium concentration. Significant interstitial changes were observed in 23 indium workers on HRCT and serum KL-6 was abnormally high (>500 U x mL(-1)) in 40 workers. Workers with serum indium concentrations in the highest quartile had significantly longer exposure periods, greater HRCT changes, lower diffusing capacity of the lung for carbon monoxide and higher KL-6 levels compared with those in the lowest quartile. The serum indium concentration was positively correlated with the KL-6 level and with the degree of HRCT changes. In conclusion, the results of the present study indicated that serum KL-6 and high-resolution computed tomography abnormalities were prevalent among indium workers and that these abnormalities increased with the indium burden, suggesting that inhaled indium could be a potential cause of occupational lung disease.

  12. Developmental toxicity of indium: embryotoxicity and teratogenicity in experimental animals.

    Science.gov (United States)

    Nakajima, Mikio; Usami, Makoto; Nakazawa, Ken; Arishima, Kazuyoshi; Yamamoto, Masako

    2008-12-01

    Indium, a precious metal classified in group 13 (IIIB) in the periodic table, has been used increasingly in the semiconductor industry. Because indium is a rare metal, technology for indium recycling from transparent conducting films for liquid crystal displays is desired, and its safety evaluation is becoming increasingly necessary. The developmental toxicity of indium in experimental animals was summarized. The intravenous or oral administration of indium to pregnant animals causes growth inhibition and the death of embryos in hamsters, rats, and mice. The intravenous administration of indium to pregnant animals causes embryonic or fetal malformation, mainly involving digit and tail deformities, in hamsters and rats. The oral administration of indium also induces fetal malformation in rats and rabbits, but requires higher doses. No teratogenicity has been observed in mice. Caudal hypoplasia, probably due to excessive cell loss by increased apoptosis in the tailbud, in the early postimplantation stage was considered to account for indium-induced tail malformation as a possible pathogenetic mechanism. Findings from in vitro experiments indicated that the embryotoxicity of indium could have direct effects on the conceptuses. Toxicokinetic studies showed that the embryonic exposure concentration was more critical than the exposure time regarding the embryotoxicity of indium. It is considered from these findings that the risk of the developmental toxicity of indium in humans is low, unless an accidentally high level of exposure or unknown toxic interaction occurs because of possible human exposure routes and levels (i.e. oral, very low-level exposure).

  13. Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos.

    Science.gov (United States)

    Usami, Makoto; Nakajima, Mikio; Mitsunaga, Katsuyoshi; Miyajima, Atsuko; Sunouchi, Momoko; Doi, Osamu

    2009-12-01

    Indium embryotoxicity was investigated by proteomic analysis with two-dimensional electrophoresis of rat embryos cultured from day 10.5 of gestation for 24h in the presence of 50 microM indium trichloride. In the embryo proper, indium increased quantity of several protein spots including those identified as serum albumin, phosphorylated cofilin 1, phosphorylated destrin and tyrosyl-tRNA synthetase. The increased serum albumin, derived from the culture medium composed of rat serum, may decrease the toxicity of indium. The increase of phosphorylated cofilin 1 might be involved in dysmorphogenicity of indium through perturbation of actin functions. In the yolk sac membrane, indium induced quantitative and qualitative changes in the protein spots. Proteins from appeared spots included stress proteins, and those from decreased or disappeared spots included serum proteins, glycolytic pathway enzymes and cytoskeletal proteins, indicating yolk sac dysfunction. Thus, several candidate proteins that might be involved in indium embryotoxicity were identified.

  14. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    Science.gov (United States)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  15. Sinterless Formation Of Contacts On Indium Phosphide

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  16. Spark plasma sintering of tantalum carbide and graphene reinforced tantalum carbide composites

    Science.gov (United States)

    Kalluri, Ajith Kumar

    Tantalum carbide (TaC), an ultra-high temperature ceramic (UHTC), is well known for its exceptional properties such as high hardness (15-19 GPa), melting point (3950 °C), elastic modulus (537 GPa), chemical resistance, and thermal shock resistance. To make TaC to be the future material for hypersonic vehicles, it is required to improve its thermal conductivity, strength, and fracture toughness. Researchers have previously reinforced TaC ceramic with carbides of silicon and boron as well as carbon nanotubes (CNTs), however, these reinforcements either undergo chemical changes or induce defects in the matrix during processing. In addition, these reinforcements exhibit a very minimal improvement in the properties. In the present work, we attempted to improve TaC fracture toughness by reinforcing with graphene nano-platelets (GNPs) and processing through spark plasma sintering at high temperature of 2000 °C, pressure of 70 MPa, and soaking time of 10 min. In addition, we investigated the active densification mechanism during SPS of TaC powder and the effect of ball milling time on mechanical properties of sintered TaC. A relative density of >96% was achieved using SPS of monolithic TaC (<3 μm). Ball milling improved the sintering kinetics and improved the mechanical properties (microhardness, bi-axial flexural strength, and indentation fracture toughness). Activation energy (100 kJ/mol) and stress exponent (1.2) were obtained using the analytical model developed for power-law creep. Grain boundary sliding is proposed as active densification mechanism based on these calculations. Reinforcing GNPs (2-6 vol.% ) in the TaC matrix improved relative density (99.8% for TaC-6 vol.% GNP). Also ˜150% and ˜180% increase in flexural strength and fracture toughness, respectively, was observed for TaC-6 vol.% GNP composite. The significant improvement in these properties is attributed to improved densification and toughening mechanisms such as sheet pull-out and crack

  17. Hydrous Tantalum Phosphates for Ion Exchange Purposes: A Systematic Study

    Directory of Open Access Journals (Sweden)

    M.L.C.P.da Silva

    2002-03-01

    Full Text Available This work describes two methods of preparation of hydrous tantalum phosphates and their characterization as ion exchangers. The hydrous metallic phosphate compounds were chemically and physically characterized by thermal gravimetric analysis, X-ray diffractometry and surface area measurements. By the first method, tantalum phosphate was prepared by alkaline fusion of Ta2O5 with an excess of K2CO3, followed by lixiviation of the tantalate fusion product with hot water, and precipitation with diluted H3PO4. Preparation II was performed using metallic Ta dissolved in concentrated HF/HNO3 acidic mixture followed by hydrolysis of fluortantalic acid intermediary and precipitation with diluted H3PO4. Both freshly prepared materials (I and II were exaustively refluxed with concentrated H3PO4, in its boiling point temperature, resulting respectively in Ta2O5. 2.1 H2O, (IR and Ta2O5. 1.3 H2O, (IIR. Characterization of the prepared products have presented the following values: surface area of 108.27 ± 2.80; 220.14 ± 2.67; 117.07 ± 5.25 and 141.61 ± 0.27 m².g-1 respectively for I, IR, II and IIR. All these materials were amorphous. The ion exchange behavior for all four hydrous tantalum phosphates was studied using Na+, K+ and Ba+2 as the exchanged species. The values for typical ion exchange capacity were 1.64; 1.23; 1.47 and 1.01 miliequivalent.g-1, respectively for I, IR, II and IIR products.

  18. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  19. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    Science.gov (United States)

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers.

  20. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    Science.gov (United States)

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  1. LASER Additive Manufacturing of Titanium-Tantalum Alloy Structured Interfaces for Modular Orthopedic Devices

    Science.gov (United States)

    Fuerst, Jacob; Medlin, Dana; Carter, Michael; Sears, James; Vander Voort, George

    2015-04-01

    Tantalum is recognized to have better biocompatibility and osseointegrative properties than other more commonly used orthopedic grade alloys. There are several novel methods that tantalum or tantalum-titanium could be used to augment orthopedic implants. A tantalum or tantalum-titanium alloy at the bone/implant or modular component interfaces would substantially increase the longevity and performance of modular devices. Bonding a functional tantalum coating to a titanium orthopedic device is inherently difficult because of the small difference between the melting temperature of tantalum, 3017°C, and the boiling point of titanium, 3287°C. LASER powder deposition (LPD) is a fusion operation using an Nd:YAG to melt a small volume of substrate into which metal powder is sprayed achieving high temperature with a high solidification rate. LPD of Ti-Ta onto a Ti-6Al-4V substrate produced both a solid surface and structured coating with a pore size in the optimal 350-500 μm range.

  2. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel

    Science.gov (United States)

    Chen, Jianguo; Liu, Chenxi; Liu, Yongchang; Yan, Biyu; Li, Huijun

    2016-10-01

    In order to explore the influence of tantalum content on the microstructure and mechanical properties of low carbon RAFM (reduced activation ferritic/martensitic) steels, three low carbon RAFM steels with different tantalum contents (0%, 0.027%, 0.073%) were designed. The precipitation behavior and effect of precipitates on the mechanical properties of the Low-C RAFM steel were investigated. The results indicate that increase of tantalum content causes decrease of the prior austenite grain size and the amount of M23C6 carbides precipitated along prior austenite grain boundaries and packet boundaries as well as increase of the amount of MX nano-sized particles within intragranular regions. The impact properties of low carbon RAFM steels are excellent regardless of the tantalum content. The impact properties and hardness are obviously improved by increasing tantalum content, which may be related to increase of the number of MX and decrease of M23C6. Furthermore, the tensile properties at elevated temperature below 600 °C are hardly changed with increase of tantalum content, yet those at 800 °C are improved with increasing tantalum content. This implies that MX carbides would be more important for tensile properties at higher temperature.

  3. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  4. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2013-01-01

    Neutron total cross sections of $^{197}$Au and $^\\text{nat}$Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent time structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and background conditions than found at other neutron sources.

  5. Synthesis and characterization of polyvinylpyrrolidine assisted tantalum pentoxide films

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Vaidyanathan; Ndiege, Nicholas; Seebauer, E.G. [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaignm, 600 S. Mathews, Urbana, IL-61801 (United States); Shannon, Mark A. [Department of Mechanical Engineering, University of Illinois at Urbana-Champaignm, 600 S. Mathews, Urbana, IL-61801 (United States); Masel, Richard I. [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaignm, 600 S. Mathews, Urbana, IL-61801 (United States)], E-mail: r-masel@uiuc.edu

    2008-06-02

    Micron thick tantalum pentoxide (Ta{sub 2}O{sub 5}) films have been proposed as thermal insulating layers in microchemical systems, but so far it has been difficult to deposit thick enough films over complex substrates. So far sol-gel films cracked upon heating whenever the film thicknesses were above 350 nm. A 350 nm thick film is too thin for effective insulation. Other techniques are not suitable for coating the complex structures associated with microchemical systems. In this paper we report sol-gel synthesis of 1.6 {mu}m thick tantalum pentoxide (Ta{sub 2}O{sub 5}) films. The films are almost crack free, and adhere to silicon surfaces even upon flashing to 900 deg. C. The key to the synthesis is the addition of Polyvinylpyrrolidine (PVP) to the sol. Films grown in the absence of PVP all show cracks upon calcination to 900 deg. C while few cracks are seen with PVP. X-ray diffraction and Fourier transform infra red analysis show that orthorhombic Ta{sub 2}O{sub 5} is formed in all cases. X-ray photoelectron spectroscopy shows the O:Ta ratio to be 2.8:1. This shows that sol-gel is a viable process for making the micron thick films of Ta{sub 2}O{sub 5} needed as insulators for microchemical systems.

  6. Dinitrogen dissociation on an isolated surface tantalum atom.

    Science.gov (United States)

    Avenier, P; Taoufik, M; Lesage, A; Solans-Monfort, X; Baudouin, A; de Mallmann, A; Veyre, L; Basset, J-M; Eisenstein, O; Emsley, L; Quadrelli, E A

    2007-08-24

    Both industrial and biochemical ammonia syntheses are thought to rely on the cooperation of multiple metals in breaking the strong triple bond of dinitrogen. Such multimetallic cooperation for dinitrogen cleavage is also the general rule for dinitrogen reductive cleavage with molecular systems and surfaces. We have observed cleavage of dinitrogen at 250 degrees C and atmospheric pressure by dihydrogen on isolated silica surface-supported tantalum(III) and tantalum(V) hydride centers [(identical with Si-O)2Ta(III)-H] and [(identical with Si-O)2Ta(V)H3], leading to the Ta(V) amido imido product [(identical with SiO)2Ta(=NH)(NH2)]: We assigned the product structure based on extensive characterization by infrared and solid-state nuclear magnetic resonance spectroscopy, isotopic labeling studies, and supporting data from x-ray absorption and theoretical simulations. Reaction intermediates revealed by in situ monitoring of the reaction with infrared spectroscopy support a mechanism highly distinct from those previously observed in enzymatic, organometallic, and heterogeneous N2 activating systems.

  7. Isolated Subtalar Distraction Arthrodesis Using Porous Tantalum: A Pilot Study.

    Science.gov (United States)

    Papadelis, Eustratios A; Karampinas, Panagiotis K; Kavroudakis, Eustratios; Vlamis, John; Polizois, Vasilios D; Pneumaticos, Spiros G

    2015-09-01

    During reconstructive procedures of the hindfoot, a structural graft is often needed to fill gaps. To eliminate donor site morbidity and limited availability of autografts, porous tantalum was used. Eighteen patients who underwent subtalar joint distraction arthrodesis by means of trabecular metal augment were reviewed retrospectively. The results were evaluated clinically, with the American Orthopaedic Foot & Ankle Society (AOFAS) score and the visual analog scale (VAS) for pain, and were assessed radiologically. The mean follow-up period was 18 months. Computed tomography showed sound fusion. There was a marked increase in AOFAS scores and a decrease in VAS scores. Arthrodesis was achieved in all cases with no major postoperative complications. Radiographically, there was a marked increase in all measured parameters (talocalcaneal angle, talocalcaneal height, talar declination angle), and the intraoperatively achieved correction was maintained at the last follow-up visit. Our data suggest that porous tantalum may be used as a structural graft option for subtalar arthrodesis. Level IV, retrospective case series. © The Author(s) 2015.

  8. Fabrication and characterisation of suspended microstructures of tantalum

    Science.gov (United States)

    Al-masha'al, A.; Mastropaolo, E.; Bunting, A.; Dunare, C.; Cheung, R.

    2017-01-01

    An investigation of the influence of deposition and post-fabrication processes on the final mechanical structure of tantalum beams is reported in the present study. The final deflection profiles of doubly supported beams made from compressive and tensile-stressed films have been studied experimentally. An optimum finite element model has been developed to predict the buckling behaviour of the doubly supported beams by considering the boundary conditions in the form of a compressive stress and an applied load. No matter which etch release method has been used, the initial stress state of the as-deposited films has been found to have a significant impact on the final deflection profile of the fabricated device. The compressive-stressed films have presented larger deflection in the final released beams than the tensile-stressed films. Taking into account the type of etch release methods, the beams that have been released in the dry etch release processes have been found to deform more vertically than those released in the wet-etch release method. Moreover, it has been found that the amplitude of vertical deflection increases with the increase of the beam length and thickness. The results indicate that optimum profiles of tantalum suspended structures can be obtained from the tensile-stressed films that have been released by the wet etching method with an aspect ratio of 1:48.

  9. Synergistic helium and deuterium blistering in tungsten–tantalum composites

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Mateus, R.; Catarino, N.; Franco, N. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Nunes, D. [CENIMAT-I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Carvalho, P.A. [Associação Euratom/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ICEMS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Hanada, K. [AIST, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, 305-8564 Ibaraki (Japan); Sârbu, C. [National Institute of Materials and Physics, 105bis Atomistilor street, 077125 Magurele-Ilfov (Romania); and others

    2013-11-15

    Abstruct: Tungsten–tantalum composites with 10 and 20 at.% Ta were prepared by ball milling W powder with Ta fibers and by consolidating the milled materials with spark plasma sintering. The composites were implanted at room temperature with He{sup +} (30 keV with a fluence 5 × 10{sup 21} at/m{sup 2}) and/or D{sup +} (15 keV with a fluence 5 × 10{sup 21} at/m{sup 2}) ion beams. The materials were studied by scanning and high-resolution transmission electron microscopy, both coupled with energy dispersive X-ray spectroscopy, and by X-ray diffraction, Rutherford backscattering spectrometry and nuclear reaction analysis. The microstructure observations revealed that the milling operation resulted in severe fragmentation of the Ta fibers. Furthermore, during the consolidation process the Ta phase acted as oxygen getter and reduced the W oxide present in the original material. The surface of the tungsten–tantalum composites implanted with D{sup +} remained essentially unaltered, while the materials implanted with He{sup +} evidenced blisters on the Ta-rich regions. D retention in the composites increased with He{sup +} pre-implantation.

  10. Thermotransport of hydrogen and deuterium in vanadium, niobium and tantalum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.F.

    1981-10-01

    Heats of transport have been determined for thermotransport of hydrogen and deuterium in pure vanadium, niobium and tantalum; in vanadium alloyed with either niobium, titanium or chromium; and in niobium-tantalum alloys. In all cases, thermotransport was toward colder regions and was significantly greater for deuterium than for hydrogen. A mass spectrometric technique was used to simultaneously measure heats of transport for hydrogen and deuterium in a single specimen containing both isotopes. This technique greatly increased the precision with which isotope effects in the heat of transport could be measured. The predominant effect of alloying was to dramatically increase thermotransport; however, thermotransport decreased as niobium was added to tantalum.

  11. Guidelines for the selection and application of tantalum electrolytic capacitors in highly reliable equipment

    Science.gov (United States)

    Holladay, A. M.

    1978-01-01

    Guidelines are given for the selection and application of three types of tantalum electrolytic capacitors in current use in the design of electrical and electronic circuits for space flight missions. In addition, the guidelines supplement requirements of existing military specifications used in the procurement of capacitors. A need exists for these guidelines to assist designers in preventing some of the recurring, serious problems experienced with tantalum electrolytic capacitors in the recent past. The three types of capacitors covered by these guidelines are; solid, wet foil, and tantalum cased wet slug.

  12. Sorption of indium (III) onto carbon nanotubes.

    Science.gov (United States)

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions.

  13. Recovery of indium and lead from lead bullion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Lead and indium were recovered by electrolysis and nonequilibrium solvent extraction process from lead bullion.The effects of current density,electrolytic period and circle amnant of electrolyte on the electrochemical dissolution of lead and indium were investigated.The effects of extraction phase ratio and mixing time on solvent extraction of indium and striping phase ratio and stripping stage on the loaded organic phase stripping were also investigated.The experimental results indicate that under optimum conditions,the purity of lead deposited on cathode is 98.5% and the deposit rate of lead is 99.9%,the dissolution rate of indium is 94.28%,the extraction rate of indium is 98.69%,the stripping rate of indium is almost 100%,and the impurity elements,such as Zn,Fe and Sn can be removed.

  14. Preparation for Ultra High Pure Indium Metal for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Shashwat V. Joshi

    2014-11-01

    Full Text Available Ultra high pure Indium metal is extensively used in optoelectronic devices. Indium and its alloys become potential candidates in aerospace, defense and communication sectors. Purification of Indium has been done by Instrolec-200 Refiner followed by Directional Melting/ Freezing and Solidification Systems. Major targeted impurities are Metallic impurities Ag, Al, As, Bi, Ca, Cu, Fe, Ga, Ge, Mg, Pb, Sb, Si, Sn, and Zn. Purified Indium is characterized by analytical techniques Inductively Coupled Plasma- Optical Emission Spectrophotometry and Inductively Coupled Plasma- Mass Spectrometry.

  15. InP (Indium Phosphide): Into the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  16. A STUDY OF THE GALLIC ACID COMPLEXES OF NIOBIUM, TANTALUM, TITANIUM, AND IRON,

    Science.gov (United States)

    The use of gallic acid in a spectrophotometric procecure for tantalum, niobium and other metals was investigated. The optical properties of Nb, Ta and several other metal chelates were explored. (Author)

  17. High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2

    Institute of Scientific and Technical Information of China (English)

    Santiago J. CartamiI-Bueno[1; Peter G. Steeneken[1; Frans D. Tichelaar[2; Efren Navarro-Moratalla[3; Warner J. Venstra[1; Ronald van Leeuwen[1; Eugenio Coronado[3; Herre S.J. van der Zant[1; Gary A. Steele[1; Andres Castellanos-Gomez[1

    2015-01-01

    Controlling the strain in two-dimensional (2D) materials is an interesting avenue to tailor the mechanical properties of nanoelectromechanical systems. Here, we demonstrate a technique to fabricate ultrathin tantalum oxide nanomechanical resonators with large stress by the laser oxidation of nano-drumhead resonators composed of tantalum diselenide (TaSe2), a layered 2D material belonging to the metal dichalcogenides. Before the study of their mechanical properties with a laser interferometer, we verified the oxidation and crystallinity of the freely suspended tantalum oxide using high-resolution electron microscopy. We demonstrate that the stress of tantalum oxide resonators increases by 140 MPa (with respect to pristine TaSe2 resonators), which causes an enhancement in the quality factor (14 times larger) and resonance frequency (9 times larger) of these resonators.

  18. Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings

    Science.gov (United States)

    Kumar, S.; Vidyasagar, V.; Jyothirmayi, A.; Joshi, S. V.

    2016-04-01

    The cold-spray technique is of significant interest to deposit refractory metals with relatively high melting point for a variety of demanding applications. In the present study, mechanical properties of cold-sprayed tantalum coatings heat treated at different temperatures were investigated using microtensile testing, scratch testing, and nanoindentation. The corrosion performance of heat-treated coatings was also evaluated in 1 M KOH solution, and potentiodynamic polarization as well as impedance spectroscopy studies were carried out. Assessment of structure-property correlations was attempted based on microstructure, porosity, and intersplat bonding state, together with mechanical and corrosion properties of the heat-treated cold-sprayed tantalum coatings. Coatings annealed at 1500 °C, which is very close to the recrystallization temperature of tantalum, were found to perform almost as bulk tantalum, with exciting implications for various applications.

  19. Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors.

    Science.gov (United States)

    Chen, Zhenyang; Niu, Bo; Zhang, Lingen; Xu, Zhenming

    2017-08-12

    Recycling rare metal tantalum from waste tantalum capacitors (WTCs) is significant to alleviate the shortage of tantalum resource. However, environmental problems will be caused if the organic materials from WTCs are improperly disposed. This study presented a promising vacuum pyrolysis technology to recycle the organic materials from WTCs. The organics removal rate could reach 94.32wt% according to TG results. The optimal parameters were determined as 425°C, 50Pa and 30min on the basis of response surface methodology (RSM). The oil yield and residual rate was 18.09wt% and 74.94wt%, respectively. All pyrolysis products can be recycled through a reasonable route. Besides, to deeply understand the pyrolysis process, the pyrolysis mechanism was also proposed based on the product and free radical theory. This paper provides an efficient process for recycling the organic material from WTCs, which can facilitate the following tantalum recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The development of fast tantalum foil targets for short-lived isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.R.J. E-mail: roger.bennett@rl.ac.uk; Bergmann, U.C.; Drumm, P.V.; Ravn, H

    2003-05-01

    The most recent developments of fast tantalum foil targets for short-lived isotopes are described and the performance of the targets at ISOLDE with beams of {sup 11}Li, {sup 12}Be and {sup 14}Be is given.

  1. Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures

    OpenAIRE

    Perkins, R. A.; Ramires, M. L. V.; Nieto de Castro, C. A.

    2000-01-01

    Absolute measurements of the thermal conductivity of a distilled and dried sample of toluene near saturation are reported. The transient hot-wire technique with an anodized tantalum hot wire was used. The thermal conductivities were measured at temperatures from 300 K to 550 K at different applied power levels to assess the uncertainty with which it is possible to measure liquid thermal conductivity over wide temperature ranges with an anodized tantalum wire. The wire resistance versus temper...

  2. Tunable structural color of anodic tantalum oxide films

    Institute of Scientific and Technical Information of China (English)

    Sheng Cui-Cui; Cai Yun-Yu; Dai En-Mei; Liang Chang-Hao

    2012-01-01

    Tantalum (Ta) oxide films with tunable structural color were fabricated easily using anodic oxidation.The structure,components,and surface valence states of the oxide filns were investigated by using gazing incidence X-ray diffractometry,X-ray photoelectron microscopy,and surface analytical techniques.Their thickness and optical properties were studied by using spectroscopic ellipsometry and total reflectance spectrum.Color was accurately defined using L*a*b* scale.The thickness of compact Ta2O5 films was linearly dependent on anodizing voltage.The film color was tunable by adjusting the anodic voltage.The difference in color appearance resulted from the interference behavior between the interfaces of air-oxide and oxide-metal.

  3. Subtrochanteric Fracture following Removal of a Porous Tantalum Implant

    Directory of Open Access Journals (Sweden)

    Derek F. Amanatullah

    2013-01-01

    Full Text Available Osteonecrosis of the hip accounts for about 10% of all total hip arthroplasty cases and presents a significant challenge for those patients with and without femoral head collapse. Subtrochanteric femur fractures have been reported with numerous types of proximal femoral implants. Care must be taken to avoid penetrating the lateral cortex of the proximal femur inferior to the distal border of the lesser trochanter. Core decompression requires a 3 mm to 20 mm defect in the lateral femoral cortex. Subtrochanteric femur fractures are a well-known complication of core decompression as well. We present a case of a subtrochanteric fracture following the removal of a porous tantalum implant.

  4. Effect of dilute tungsten alloying on the dynamic strength of tantalum under ramp compression

    Science.gov (United States)

    Alexander, C. S.; Brown, J. L.; Millett, J. C. F.; Whiteman, G.; Asay, J. R.; Bourne, N. K.

    2015-06-01

    The strength of tantalum and tantalum alloys are of considerable interest due to their widespread use in both military and industrial applications. Previous work has shown that strength in these materials is tied to dislocation density and mobility within the microstructure. Accordingly, strength has been observed to increase with dilute alloying which serves to increase the dislocation density. In this study, we examine the effect of alloying on the strength of a dilute tantalum-tungsten alloy (2.5 weight percent W) under ramp compression. The strength of the alloy is measured using the ``self-consistent'' technique which examines the response under longitudinal unloading from peak compression. The results are compared to previous studies of pure tantalum and dilute tantalum-tungsten alloys under both shock and ramp compression and indicate strengthening of the alloy when compared to pure tantalum. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Black gold

    CERN Document Server

    Fletcher, MW

    2016-01-01

    Following the Yom Kippur war of October 1973, OPEC raises the price of oil by 70% along with a 5% reduction in oil production. Len Saunders a highly skilled and knowledgeable British engineer for Jaguar motors, is approached by the UK energy commission in the January of 1974 to create a new propulsion system; using a secret document from a German WW2 scientist, that they have come into possession of. Len Saunders sets to work on creating the holy grail of energy. Seven years later 1981, Haidar Farooq the Kuwait oil minister working at OPEC and head of a secret organisation named Black Gold bec

  6. Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes

    NARCIS (Netherlands)

    Schlatmann, A.R.; Floet, D.W.; Hilberer, A; Garten, F; Smulders, P.J M; Klapwijk, T.M; Hadziioannou, G

    1996-01-01

    We have found that polymer light-emitting diodes (LEDs) contain high concentrations of metal impurities prior to operation. Narrow peaks in the electroluminescence spectrum unambiguously demonstrate the presence of atomic indium and aluminum. Rutherford backscattering spectroscopy (RBS) and x-ray ph

  7. Going for Gold

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    While the international gold price in February hit the highest point in 25 years at $541.20 per ounce for futures delivery, a new gold rush is sweeping across China. According to the World Gold Council, the London-based gold marketing organization funded by leading global gold mining firms, the purchase of gold products in China grew by 9 percent in the first nine

  8. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  9. Selective separation of indium by iminodiacetic acid chelating resin

    Directory of Open Access Journals (Sweden)

    M. C. B. Fortes

    2007-06-01

    Full Text Available Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite®IRC748 (Rohm and Haas Co.-USA. High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite®IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5mol/dm³ sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite®IRC748.

  10. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  11. Fabrication, structure and mechanical properties of indium nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  12. Gold in Modern Economy

    Directory of Open Access Journals (Sweden)

    Boryshkevych Olena V.

    2014-01-01

    Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.

  13. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    Science.gov (United States)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  14. Clinical role of indium-111 antimyosin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, S.; Lahiri, A. (Northwich Park Hospital and Clinical Research Centre, Harrow (UK). Dept. of Cardiology Northwich Park Hospital and Clinical Research Centre, Harrow (UK). Div. of Cardiovascular Sciences)

    1991-11-01

    Myocyte necrosis occurs in ischaemic, inflammatory and toxic heart diseases and can be detected by indium 111 antimyosin imaging. This allows a non-invasive evaluation of the site, extent and quantitation of the severity of myocardial necrosis. Simultaneous imaging of perfusion in patients with myocardial infarction allows the differentiation of necrosed and perfused areas and the varying degrees of mismatch and overlap, which has prognostic significance. Indium 111 antimyosin imaging is useful in the assessment of patients with unstable angina and in those for whom the diagnosis of infarction or unstable angina is not clear. In suspected myocarditis, a positive scan indicates the necessity for endomyocardial biopsy to confirm inflammation, whereas a negative scan makes the diagnosis of myocarditis unlikely. Antimyosin imaging is not useful as a marker of rejection in the 1 year-post-transplant, but uptake after this period is associated with an increased rejection rate and is therefore an important tool in planning management strategies. Most patients on anthracycline treatment have demonstrable uptake, which is related to the cumulative dose and to the ejection fraction. Its role in this situation is as yet unclear. The use of new ligands and radioisotopes ({sup 99m}Tc) is likely to allow earlier imaging and produce improved quality. (orig.).

  15. Indium-111 platelet scintigraphy in carotid disease

    Energy Technology Data Exchange (ETDEWEB)

    Branchereau, A.; Bernard, P.J.; Ciosi, G.; Bazan, M.; de Laforte, C.; Elias, A.; Bouvier, J.L.

    1988-07-01

    Forty-five patients (35 men, 10 women) undergoing carotid surgery had Indium-111 platelet scintigraphy as part of their preoperative work-up. Imaging was performed within three hours after injection of the Indium-111. A second series of views was obtained 24 hours later and repeated at 24 hour intervals for two days. Of 54 scintigrams, 22 were positive and 32 negative. Positive results were defined as a twofold or more increase in local activity on a visualized carotid after 24 hours. The sensitivity of the method was 41%, intraoperatively, and the specificity, 100%. The low sensitivity places this method behind sonography and duplex-scanning for screening patients for surgery. We believe that indications for platelet scintigraphy are limited to: 1. Repeated transient ischemic attacks in the same territory with minimal lesions on arteriography and non-homogeneous plaque on duplex scan; 2. Symptomatic patients being treated medically as a possible argument for surgery; 3. Determining therapeutic policy for patients having experienced a transient ischemic attack with a coexisting intracardiac thrombus.

  16. Indium-bump-free antimonide superlattice membrane detectors on a silicon substrates

    Science.gov (United States)

    Zamiri, M.; Klein, B.; Schuler, T.; Myers, S.; Cavallo, F.; Krishna, S.

    2016-05-01

    We present an approach to realize antimonide based superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN based superlattice detectors are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxiallift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  17. Non-oxidative coupling reaction of methane to ethane and hydrogen catalyzed by the silica-supported tantalum hydride: ([triple bond]SiO)2Ta-H.

    Science.gov (United States)

    Soulivong, Daravong; Norsic, Sébastien; Taoufik, Mostafa; Copéret, Christophe; Thivolle-Cazat, Jean; Chakka, Sudhakar; Basset, Jean-Marie

    2008-04-16

    Silica-supported tantalum hydride, (SiO)2Ta-H (1), proves to be the first single-site catalyst for the direct non-oxidative coupling transformation of methane into ethane and hydrogen at moderate temperatures, with a high selectivity (>98%). The reaction likely involves the tantalum-methyl-methylidene species as a key intermediate, where the methyl ligand can migrate onto the tantalum-methylidene affording the tantalum-ethyl.

  18. Preparation of 5N high purified indium by the method of chemical purification-electrolysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The application of indium requires high purity indium as material. 5N high purity indium had been prepared by the method of a combination of chemically smelting and electrolysis. Smelting time was 10 min, the abstraction rate of cadmium was 80%-90% when used solution of I2-KI and glycerine to smelt indium. 4N metal indium was used as anode, high purity indium as cathode, In2(SO4)3-H2SO4 system as electrolyte, and In content is 100 g/L, pH 2-3 and current density 80-100 A/m2. The thallium was removed by smelting indium using 15% NH4Cl-glycerine solution for 20 min and tin by smelting indium using NaOH and NaNO3 for 20 min. The removed rate of tin was 60%.The product quality of indium reached national standard of 5N high purity indium.

  19. Deep-UV plasmonics of indium (Conference Presentation)

    Science.gov (United States)

    Kumamoto, Yasuaki; Saito, Yuika; Taguchi, Atsushi; Honda, Mitsuhiro; Kawata, Satoshi

    2016-09-01

    Deep-UV (DUV) plasmonics can expand the possibilities of DUV-based techniques (i.e. UV lithography, UV spectroscopy, UV imaging, UV disinfection). Here we present that indium is useful for research of DUV plasmonics. According to dielectric function, indium and aluminum are low-loss, DUV plasmonic metals, of which the imaginary parts are far smaller than those of other metals (i.e. rhodium, platinum) in the DUV range. Additionally, the real parts in the whole DUV range are close to but smaller than -2, allowing efficient generation of surface plasmon polaritons on an indium or aluminum nanosphere. In comparison to aluminum, indium provides a distinctive feature for fabricating DUV-resonant substrates. It is highly apt to form a grainy deposition film on a standard, optically transparent substrate (i.e. fused silica). The surface plasmon resonance wavelength becomes promptly tailored by simply varying the deposition thickness of the films, resulting in different grain sizes. Thus, we fabricated indium-coated substrates having different plasmon resonance wavelengths by varying the deposition thicknesses from 10 to 50 nm. DUV resonance Raman scattering of adenine molecules was best enhanced using the 25 nm deposition thickness substrates by the factor of 2. Furthermore, the FDTD calculation simulated the electromagnetic field enhancement over a grainy, indium-coated fused silica substrate. Both results indicate how indium plays an indispensable role in study of DUV plasmonics.

  20. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    Science.gov (United States)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  1. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  2. Synthesis of Coral-Like Tantalum Oxide Films via Anodization in Mixed Organic-Inorganic Electrolytes

    Science.gov (United States)

    Yu, Hongbin; Zhu, Suiyi; Yang, Xia; Wang, Xinhong; Sun, Hongwei; Huo, Mingxin

    2013-01-01

    We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two–electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%. PMID:23799106

  3. Synthesis of coral-like tantalum oxide films via anodization in mixed organic-inorganic electrolytes.

    Directory of Open Access Journals (Sweden)

    Hongbin Yu

    Full Text Available We report a simple method to fabricate nano-porous tantalum oxide films via anodization with Ta foils as the anode at room temperature. A mixture of ethylene glycol, phosphoric acid, NH4F and H2O was used as the electrolyte where the nano-porous tantalum oxide could be synthesized by anodizing a tantalum foil for 1 h at 20 V in a two-electrode configuration. The as-prepared porous film exhibited a continuous, uniform and coral-like morphology. The diameters of pores ranged from 30 nm to 50 nm. The pores interlaced each other and the depth was about 150 nm. After calcination, the as-synthesized amorphous tantalum oxide could be crystallized to the orthorhombic crystal system. As observed in photocatalytic experiments, the coral-like tantalum oxide exhibited a higher photocatalytic activity for the degradation of phenol than that with a compact surface morphology, and the elimination rate of phenol increased by 66.7%.

  4. High-efficiency indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  5. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ze Tang

    Full Text Available Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS, which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.

  6. Junction characteristics of indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Sheldon, P.; Ahrenkiel, R. K.; Hayes, R. E.; Russell, P. E.; Nottenburg, R. N.; Kazmerski, L. L.

    Efficient indium tin oxide (ITO)/p-InP solar cells have been fabricated. Typical uncorrected efficiencies range from 9-12 percent at AM1 intensities. It is shown that deposition of ITO causes a semi-insulating layer at the InP surface as determined by C-V measurements. The thickness of this layer is approximately 750 A. We believe that this high resistivity region is due to surface accumulation of Fe at the ITO/InP interface.

  7. Effect of aluminum on hydrogen absorption kinetics of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Taxak, Manju, E-mail: m.taxak@gmail.com; Krishnamurthy, Nagaiyar

    2015-02-25

    Highlights: • The hydrogen absorption kinetics in Ta–Al alloys is investigated for the first time. • The rate constant for hydrogen absorption increases with increasing temperature. • The three-dimensional diffusion is the rate-limiting step of hydrogen absorption in Ta–Al alloys. • The apparent activation energy for hydrogen absorption in Ta–Al alloys increases with increasing Al content. - Abstract: The isothermal hydrogen absorption kinetics of Ta{sub 1−z}Al{sub z} alloys (z = 0, 1, 1.6 and 2.4 atom%) has been investigated in the temperature range of 673–973 K. The reacted fractions of hydrogen as well as reaction rate constant have been determined from time dependent hydrogen absorption curves using pressure drop method. The variation in rate constant with respect to temperature has been observed for all the alloys. Three-dimensional diffusion processes seems to be the intrinsic rate limiting step of hydrogen absorption. The apparent activation energy of hydrogen absorption has been calculated using Arrhenius equation. With increasing aluminum concentration, the hydrogen absorption kinetics slows down. Consequently, the rate constant decreases and the apparent activation energy of hydrogen absorption increases. The apparent activation energy of hydrogen absorption increases from 53.7 to 57.7 kJ/mol with increasing Al concentration from 0 to 2.4 atom% in tantalum.

  8. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    Science.gov (United States)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  9. Laser-induced breakdown spectroscopy of tantalum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  10. Structure and phase composition of deposited tantalum-carbon films

    Science.gov (United States)

    Tuleushev, Yu. Zh.; Volodin, V. N.; Zhakanbaev, E. A.; Alimzhan, B.

    2016-08-01

    Ion plasma sputtering and the subsequent codeposition of ultrafine tantalum and carbon particles were used to prepare coatings with 4.6-71.5 at % C. Structural studies of the coatings showed the existence of carbon solid solutions in β Ta at carbon contents to 4.6 at %, carbon solid solutions in α Ta at carbon contents of 4.6-10.3 at %, and direct synthesis of TaC at carbon contents of 44.7-71.5 at %. During heat treatments to 700°C, the substantial concentration widening of regions of the existence of Ta2C and TaC was found. The lattice parameters of hexagonal Ta2C and fcc TaC carbides were determined for composition ranges of the existence of phases during heating to 700°C. Upon heating above 600°C, the progressive transition of quasiamorphous Ta2C carbide into the crystalline Ta2C carbide was found to take place. The possibility of applying the direct synthesis of TaC carbide in engineering was noted.

  11. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    Science.gov (United States)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  12. Phase Transformation in Tantalum under Extreme Laser Deformation

    Science.gov (United States)

    Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-10-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  13. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300 C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.

  14. Investigation of Tantalum Recycling by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Katia Vutova

    2016-11-01

    Full Text Available Investigations are carried out and obtained experimental and theoretical data for tantalum scrap recycling by electron beam melting (EBM is presented in this paper. Different thermal treatment process conditions are realized and results are discussed. A chemical analysis is performed and refining mechanisms for electron beam (EB refining of Ta are discussed. For the performed experiments the best purification of Ta (99.96 is obtained at 21.6 kW beam power for a melting time of 3 min. A statistical approach is applied for estimation of the material losses and the liquid pool characteristics based on experimentally-obtained data. The aim is to improve the EBM and choosing optimal process conditions, depending on the concrete characteristic requirements. Model-based quality optimization of electron beam melting and refining (EBMR processes of Ta is considered related to the optimization of the molten pool parameters, connected to the occurring refining processes, and to minimal material losses. Optimization of the process of EBM of Ta is based on overall criteria, giving compromised solutions, depending on the requirements concerning the quality of the performed products. The accumulated data, the obtained results, and the optimization statistical approach allow us to formulate requirements on the process parameters.

  15. Phase Transformation in Tantalum under Extreme Laser Deformation.

    Science.gov (United States)

    Lu, C-H; Hahn, E N; Remington, B A; Maddox, B R; Bringa, E M; Meyers, M A

    2015-10-19

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).

  16. Strontium adsorption on tantalum-doped hexagonal tungsten oxide.

    Science.gov (United States)

    Li, Xingliang; Mu, Wanjun; Xie, Xiang; Liu, Bijun; Tang, Hui; Zhou, Guanhong; Wei, Hongyuan; Jian, Yuan; Luo, Shunzhong

    2014-01-15

    Hexagonal tungsten oxide (hex-WO3) has the potential to separate (137)Cs and (90)Sr from nuclear power plant or fission (99)Mo production waste. This study aims to increase the capacity of hex-WO3 to adsorb Sr(2+). Ta-doped hex-WO3 was synthesized by the hydrothermal treatment of sodium tungstate dihydrate and tantalum chloride in concentrated HCl, in the presence of ammonium sulfate. Incorporating Ta into the WO3 framework caused the interlayer spacing to expand, and the band gap to shift to higher energy. The Sr(2+) adsorption capacity of Ta-doped hex-WO3 was significantly higher than that of hex-WO3. Sr(2+) adsorption reached equilibrium within 2h in acidic solution. Maximum Sr(2+) removal occurred at pH 4. Sr(2+) uptake by hex-WO3 was described better by the Freundlich model than by the Langmuir model. Sr(2+) adsorption on hex-WO3 was spontaneous under the studied conditions.

  17. Monte Carlo simulation of electron slowing down in indium

    Energy Technology Data Exchange (ETDEWEB)

    Rouabah, Z.; Hannachi, M. [Materials and Electronic Systems Laboratory (LMSE), University of Bordj Bou Arreridj, Bordj Bou Arreridj (Algeria); Champion, C. [Université de Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux-Gradignan, (CENBG), Gradignan (France); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Laboratory of Materials Physics and its Applications, University of M' sila, 28000 M' sila (Algeria)

    2015-07-15

    Highlights: • Electron scattering in indium targets. • Modeling of elastic cross-sections. • Monte Carlo simulation of low energy electrons. - Abstract: In the current study, we aim at simulating via a detailed Monte Carlo code, the electron penetration in a semi-infinite indium medium for incident energies ranging from 0.5 to 5 keV. Electron range, backscattering coefficients, mean penetration depths as well as stopping profiles are then reported. The results may be seen as the first predictions for low-energy electron penetration in indium target.

  18. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    Science.gov (United States)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-11-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.

  19. Nonlinear electronic transport behavior in Indium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Cloves G., E-mail: cloves@pucgoias.edu.br [Departamento de Fisica, Pontificia Universidade Catolica de Goias, CP 86, 74605-010 Goiania, Goias (Brazil)

    2012-11-15

    A theoretical study on the nonlinear transport of electrons and of the nonequilibrium temperature in n-doped Indium Nitride under influence of moderate to high electric fields (in this nonlinear domain) is presented. It is based on a nonlinear quantum kinetic theory which provides a description of the dissipative phenomena developing in the system. The electric current and the mobility in the steady state are obtained, and their dependence on the electric field strength and on the concentration (that is, a mobility dependent nonlinearly on field and concentration) is obtained and analyzed. -- Highlights: Black-Right-Pointing-Pointer We have reported on the topic of nonlinear transport (electron mobility) in n-doped InN. Black-Right-Pointing-Pointer The results evidence the presence of two distinctive regimes. Black-Right-Pointing-Pointer The dependence of the mobility on the electric field is manifested through of the relaxation times.

  20. Indium-carbon pairs in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G; Vianden, R [Helmholtz Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)

    2003-08-06

    The interactions of carbon with the probe nucleus {sup 111}In have been studied in germanium using the perturbed angular correlation method, which has the ability to detect the microscopic environments of the probe atom by means of the interaction of the nuclear moments of the probe with the surrounding electromagnetic fields. At high dose carbon implantation in germanium two complexes have been identified by their unique quadrupole interaction frequencies. An interaction frequency of {nu}{sub Q1} = 207(1) MHz ({eta} = 0.16(3)) appeared at annealing temperatures below 650 deg. C. Above 650 deg. C, it was replaced by a second interaction frequency of {nu}{sub Q2} 500(1) MHz ({eta} = 0). The frequencies are attributed to two different carbon-indium pairs. The orientation of the corresponding electric field gradients and the thermal stability of the defect complexes are studied.

  1. High quality factor indium oxide mechanical microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier [Department of Materials Physics, Faculty of Physics, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  2. Post-irradiation analysis of the tantalum container of an ISOLDE LBE target

    CERN Document Server

    Noah, E; Bruetsch, R; Catherall, R; Gavillet, D; Krbanjevic, J; Linder, H P; Martin, M; Neuhausen, J; Schumann, D; Stora, T; Zanini, L

    2012-01-01

    CERN-ISOLDE operates a range of oxides, carbides, refractory metal foils and liquid metal targets for the production of radioactive ion beams. Following irradiation with a pulsed beam of 1 GeV and 1.4 GeV protons at temperatures reaching 600 degrees C, the tantalum container of a liquid lead bismuth eutectic (LBE) target was examined. A thin layer of Pb/Bi was observed on the inner surface of the container. A sample of the surface prepared using the focused ion beam technique was investigated using SEM and EDX. Results show a higher concentration of bismuth at the interface with tantalum and micron-sized cracks in the tantalum filled with LBE. Implications of these results for the lifetime of the target container which has been known to fail under pulsed beam operation are discussed. (C) 2011 Elsevier B.V. All rights reserved.

  3. Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)

    Science.gov (United States)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  4. Influence of Electrolyte on ESR of Medium Voltage Wet Tantalum Capacitors

    Institute of Scientific and Technical Information of China (English)

    刘仲娥; 宋金荣; 陈晓静; 李忆莲; 桂娟

    2004-01-01

    In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducing Equivalent Series Resistance(ESR). According to the theory of depolarization in electrochemistry and the theory of cathode capacitance of electrolytic capacitor, different kinds of depolarisers are added separately into the foregone electrolyte. Then capacitors are assembled with tantalum cores dipped with the compounded electrolytes. The best depolariser and its concentration in the whole electrolyte could be selected according to the test results of the capacitance and ESR of the capacitors. The results of our experiment show that depolariser Fe2(SO4)3 used in working electrolyte of 100 V/100 μF wet tantalum capacitors can help to obtain lower ESR and higher capacitance at frequency from 0.1 kHz to 100 kHz.

  5. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  6. An exploration in mineral supply chain mapping using tantalum as an example

    Science.gov (United States)

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  7. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant

    DEFF Research Database (Denmark)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte

    2007-01-01

    the possibility of coating a biocompatible metal layer on top of the carbon fiber material, to improve its biological performance. Tantalum was chosen because of its bone compatibility, based on our previous studies. A novel spinal fusion cage was fabricated by applying a thin tantalum coating on the surface...... of carbon-carbon composite material through chemical vapor deposition. Mechanical and biological performance was tested in vitro and in vivo. Compress strength was found to be 4.9 kN (SD, 0.2). Fatigue test with 500,000 cycles was passed. In vitro radiological evaluation demonstrated good compatibility...... and newly formed bone. No inflammatory cells were found around the implant. Cages packed with two different graft materials (autograft and COLLOSS) achieved the same new bone formation. The present study proved that coating tantalum on top of the carbon-based implant is feasible, and good bone integration...

  8. Method of manufacturing tin-doped indium oxide nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form an indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.

  9. Recovering indium with sulfating roasting from copper-smelting ash

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A technology for recovering indium from Jinchuan copper-smelting ash was developed. Indium in the ash was first enriched to the leaching-slag in leaching process, and then recovered by sulfating roasting. The method included mixing the leaching-slag with sulfuric acid, making them into particles, roasting the mixture, and then leaching the calcine with hot water. Above 90% of indium in calcine could be dissolved into the leaching solution. The optimized conditions were determined as follows: the mass ratio of sulfuric acid to leaching slag was 0.1, the roasting time was about 1 to 1.5 h in the temperature range of 200-250 ℃, and the calcine was leached for 1 h with 5:1 of liquid/solid ratio at 60℃. Over 99% of indium in leaching solution was finally enriched by Zn substitution or sulfide precipitation.

  10. Optical properties of d.c. magneto sputtered tantalum and titanium nanostructure thin film metal hydrides

    Indian Academy of Sciences (India)

    M Singh; S Srivastava; S Agarwal; S Kumar; Y K Vijay

    2010-10-01

    Nanostructured thin films of tantalum and titanium were deposited on glass substrate using d.c. magnetron sputtering technique under the argon gas environment at a pressure of 0.1 mbar. Optical transmission and absorption studies were carried out for these samples with pressure of hydrogen. Large changes in both transmission and absorption on loading these films with hydrogen are accompanied by significant phase changes and electronic transformation. Optical photograph shows the colour variation after hydrogenation in case of tantalum film which may be used as decorative mirrors and hydrogen sensors. The hydrogen storage capability of thin films was confirmed by variation in optical properties.

  11. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ndiege, Nicholas [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (United States)], E-mail: ndiege@uiuc.edu; Subramanian, Vaidyanathan [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (United States)], E-mail: ravisv@unr.edu; Shannon, Mark A. [Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green street, Urbana, IL 61801 (United States)], E-mail: mshannon@uiuc.edu; Masel, Richard I. [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801 (United States)], E-mail: r-masel@uiuc.edu

    2008-10-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 {mu}m using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC{sub 2}H{sub 5}){sub 5}) vapor on the deposition surface.

  12. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 2

    Science.gov (United States)

    Ward, C. M.

    1975-01-01

    The application of tantalum capacitors in the Viking Lander includes dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function of extended periods of ripple current, and the existence of any memory characteristics are presented.

  13. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1

    Science.gov (United States)

    Watson, G. W.; Lasharr, J. C.; Shumaker, M. J.

    1974-01-01

    The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented.

  14. Recovery of indium from LCD screens of discarded cell phones.

    Science.gov (United States)

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4.

  15. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    Science.gov (United States)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  16. Study on indium leaching from mechanically activated hard zinc residue

    Directory of Open Access Journals (Sweden)

    Yao J.H.

    2011-01-01

    Full Text Available In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue were also investigated, respectively. It was found that temperature had an obvious effect on indium leaching rate. Two different kinetic models corresponding to reactions which are diffusion controlled, [1-(1- x1/3]2=kt and (1-2x/3-(1-x2/3=kt were used to describe the kinetics of indium leaching from unmilled sample and activated sample, respectively. Their activation energies were determined to be 17.89 kJ/mol (umilled and 11.65 kJ/mol (activated within the temperature range of 30°C to 90°C, which is characteristic for a diffusion controlled process. The values of activation energy demonstrated that the leaching reaction of indium became less sensitive to temperature after hard zinc residue mechanically activated by planetary mill.

  17. Indium-111 octreotide uptake in the surgical scar

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, B.; Bekis, R.; Durak, H.; Derebeck, E. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Nuclear Medicine; Sen, M. [Dokuz Eylul Univ., Izmir (Turkey). Dept. of Radiation Oncology

    1999-07-01

    Indium-111 octreotide uptake has been reported in various somatostatin receptor positive tumors, granulomas and autoimmune diseases in which activated leucocytes may play a role, subcutaneous cavernous hemangioma and angiofibroma. We present Indium-111 octreotide uptake in a surgical abdominal scar tissue 1.5 to 6 months after surgery in a patient who had been treated for recurrent carcinoid tumor in the rectosigmoid junction. Indium-111 octreotide uptake in a surgical scar may be related to the binding to somatostatin receptors in the activated lymphocytes and fibroblasts that is previously reported. (orig.) [German] In verschiedenen Somatostatinrezeptor-positiven Tumoren, Granulomen, bei Autoimmunerkrankungen, in denen aktivierte Leukozyten eine Rolle spielen, subcutanen kavernoesen Hammangiomen und Angiofibromen wurde ueber die Anreicherung von Indium-111-Oktreotid berichtet. Wir berichten ueber die Anreicherung von Indium-111-Oktreotid in einer chirurgischen Narbe ueber dem Abdomen nach 1,5 und 6 Monaten bei einem Patienten mit einem Rezidiv-Karzinoid im rektosigmoidalen Uebergang. Die Anreicherung von Indium-111-Oktreotid in chirurgischen Narbengewebe koennte in Zusammenhang stehen mit einer Bindung an Somatostationrezeptoren in aktivierten Lymphozyten und Fibroblasten, ueber die schon berichtet wurde. (orig.)

  18. Tantalum (oxy)nitrides nanotube arrays for the degradation of atrazine in vis-Fenton-like process.

    Science.gov (United States)

    Du, Yingxun; Zhao, Lu; Chang, Yuguang; Su, Yaling

    2012-07-30

    In order to overcome the limitation of the application of nanoparticles, tantalum (oxy)nitrides nanotube arrays on a Ta foil were synthesized and introduced in vis (visible light)-Fenton-like system to enhance the degradation of atrazine. At first, the anodization of tantalum foil in a mild electrolyte solution containing ethylene glycol and water (v:v=2:1) plus 0.5wt.% NH(4)F produced tantala nanotubes with an average diameter of 30nm and a length of approximately 1μm. Then the nitridation of tantala nanotube arrays resulted in the replacement of N atoms to O atoms to form tantalum (oxy)nitrides (TaON and Ta(3)N(5)), as testified by XRD and XPS analyses. The synthesized tantalum (oxy)nitrides nanotubes absorb well in the visible region up to 600nm. Under visible light, tantalum (oxy)nitrides nanotube arrays were catalytically active for Fe(3+) reduction. With tantalum (oxy)nitrides nanotube arrays, the degradation of atrazine and the formation of the intermediates in vis/Fe(3+)/H(2)O(2) system were significantly accelerated. This was explained by the higher concentration of Fe(2+) and thus the faster decomposition of H(2)O(2) with tantalum (oxy)nitrides nanotubes. In addition, tantalum (oxy)nitrides nanotubes exhibited stable performance during atrazine degradation for three runs. The good performance and stability of the tantalum (oxy)nitrides nanotubes film with the convenient separation, suggest that this film is a promising catalyst for vis-Fenton-like degradation.

  19. Growth of anisotropic gold nanostructures on conducting glass surfaces

    Indian Academy of Sciences (India)

    P R Sajanlal; T Pradeep

    2008-01-01

    In this paper, we describe a method for the growth of gold nanowires and nanoplates starting from a bilayer array of gold seeds, anchored on electrically conducting indium tin oxide (ITO) substrates. This is based on a seed-mediated growth approach, where the nanoparticles attached on the substrate through molecular linkages are converted to nanowires and nanoplates at certain cetyltrimethylammonium bromide (CTAB) concentration. Our modified approach can be used to make nanowires of several tens of micrometers length at a lower CTAB concentration of 0.1 M. The length of the nanowires can be varied by adjusting the time of the reaction. As the concentration of CTAB was increased to 0.25 M, the nanoparticles got converted to nanoplates. These Au nanoplates are (111) oriented and are aligned parallel to the substrate.

  20. Founder of Niobium-Tantalum Granite Deposit——Li Renke

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    Li Renke, Vice director of Nonferrous Metals Geological Research Institute of Guangxi, Senior Engineer, discovered a new type of niobium-tantalum granite deposit as his major contribution and made significant progress in ore exploration of this type of ore deposit.

  1. Effect of pH on the Electrochemical Behavior of Tantalum in Borate Buffer Solutions

    Science.gov (United States)

    Attarzadeh, F. R.; Attarzadeh, N.; Vafaeian, S.; Fattah-Alhosseini, A.

    2016-10-01

    In this research, various electrochemical methods were used to investigate the electrochemical behavior of tantalum in borate buffer solutions of various pH values, ranging from 9.0 to 6.5. Potentiodynamic polarization curves revealed that tantalum showed excellent passive behavior in borate buffer solutions. The potentiodynamic polarization and electrochemical impedance spectroscopy results showed that the passive film formed on tantalum offered its best protective behavior when the pH is 8.0, with the passivity undergoing a drastic change as the pH moved toward higher values. The semiconductive behavior of the passive films formed on tantalum was investigated by employing Mott-Schottky analysis in conjunction with a point defect model. The results indicated that the passive film exhibited n-type semiconductive behavior and that donor densities were in the range of 1.958-7.242 × 1020 cm-3. Moreover, this analysis showed that the donor density and flat band potential were quite sensitive to the pH.

  2. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina;

    2007-01-01

    the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...

  3. Transmittance and Refractive Index of the Lanthanum Strontium Aluminium Tantalum Oxide Crystal

    Institute of Scientific and Technical Information of China (English)

    HU Bo-Qing; WANG Xiao-Ming; ZHOU Tang; ZHAO Zong-Yuan; WU Xing; CHEN Xiao-Long

    2001-01-01

    The lanthanum strontium aluminium tantalum oxide (LSAT) crystal is grown by means of a floating or pulling method. Its optical transmittance, refractive indices in visible and near-infrared areas and its dispersion curve are reported. The transparence range of LSAT is from 0.45 to 4.2μm and its refractive index is 2.0244.

  4. Tantalum-modified Stellite 6 thick coatings : microstructure and mechanical performance

    NARCIS (Netherlands)

    Farnia, A.; Ghaini, F. Malek; Rao, J. C.; Ocelik, V.; De Hosson, J. Th. M.

    2013-01-01

    Thick Co-based coatings with different contents of tantalum were prepared by simultaneous powder feeding laser cladding technique on 304 stainless steel substrate, with the Ta wt% being 0, 2, 7 and 12. Laser processing was carried out with a continuous 3.3 kW Yt:YAG fiber laser. Microstructural obse

  5. Electrosynthesis of tantalum borides in oxygen-free and oxygen-containing fluoride melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Polyakov, E.G.; Makarova, O.V.;

    2001-01-01

    Results of electrosynthesis of tantalum borides in fluoride and oxyfluoride melts are compared. It is shown that the single-phase X-ray-amorphous micro-layered coatings form only in the latter case. Linear and square-wave voltammetry, complemented by X-ray diffraction analysis, IR spectroscopy...

  6. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  7. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  8. Design, Development, manufacture and qualification of wet-slug all-tantalum capacitors

    Science.gov (United States)

    Maher, R. H.

    1977-01-01

    Specifications and qualification tests data are presented for over eleven hundred T3 case all-tantalum capacitors encompassing four ratings. The finalized product has all the advantages of the silver cased wet and is capable of withstanding some reverse potential ac ripple current.

  9. Deformation of Cases in High Capacitance Value Wet Tantalum Capacitors under Environmental Stresses

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Internal gas pressure in hermetic wet tantalum capacitors is created by air, electrolyte vapor, and gas generated by electrochemical reactions at the electrodes. This pressure increases substantially with temperature and time of operation due to excessive leakage currents. Deformation of the case occurs when the internal pressure exceeds pressure of the environments and can raise significantly when a part operates in space. Contrary to the cylinder case wet tantalum capacitors that have external sealing by welding and internal sealing provided by the Teflon bushing and crimping of the case, no reliable internal sealing exists in the button case capacitors. Single seal design capacitors are used for high capacitance value wet tantalum capacitors manufactured per DLA L&M drawings #04003, 04005, and 10011, and require additional analysis to assure their reliable application in space systems. In this work, leakage currents and case deformation of button case capacitors were measured during different environmental test conditions. Recommendations for derating, screening and qualification testing are given. This work is a continuation of a series of NEPP reports related to quality and reliability of wet tantalum capacitors.

  10. Complex-Mediated Synthesis of Tantalum Oxyfluoride Hierarchical Nanostructures for Highly Efficient Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Xu, Leilei; Gong, Haotian; Deng, Li; Long, Fei; Gu, Yu; Guan, Jianguo

    2016-04-13

    In this work, we have, for the first time, developed a facile wet-chemical route to obtain a novel photocatalytic material of tantalum oxyfluoride hierarchical nanostructures composed of amorphous cores and single crystalline TaO2F nanorod shells (ACHNs) by regulating the one-step hydrothermal process of TaF5 in a mixed solution of isopropanol (i-PrOH) and H2O. In this approach, elaborately controlling the reaction temperature and volume ratio of i-PrOH and H2O enabled TaF5 to transform into intermediate coordination complex ions of [TaOF3·2F](2-) and [TaF7](2-), which subsequently produced tantalum oxyfluoride ACHNs via a secondary nucleation and growth due to a stepwise change in hydrolysis rates of the two complex ions. Because of the unique chemical composition, crystal structure and micromorphology, the as-prepared tantalum oxyfluoride ACHNs show a more negative flat band potential, an accelerated charge transfer, and a remarkable surface area of 152.4 m(2) g(-1) contributing to increased surface reaction sites. As a result, they exhibit a photocatalytic activity for hydrogen production up to 1.95 mmol h(-1) g(-1) under the illumination of a simulated solar light without any assistance of co-catalysts, indicating that the as-prepared tantalum oxyfluoride ACHNs are a novel promising photocatalytic material for hydrogen production.

  11. Electrosynthesis of tantalum borides in oxygen-free and oxygen-containing fluoride melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Polyakov, E.G.; Makarova, O.V.

    2001-01-01

    Results of electrosynthesis of tantalum borides in fluoride and oxyfluoride melts are compared. It is shown that the single-phase X-ray-amorphous micro-layered coatings form only in the latter case. Linear and square-wave voltammetry, complemented by X-ray diffraction analysis, IR spectroscopy...

  12. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  13. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  14. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces

    DEFF Research Database (Denmark)

    Justesen, Jørn; Lorentzen, M.; Andersen, L. K.

    2009-01-01

    It has been widely reported that surface morphology on the micrometer scale affects cell function as well as cell shape. In this study, we have systematically compared the influence of 13 topographically micropatterned tantalum surfaces on the temporal development of morphology, including spreadi...

  15. Separating the strengthening phase in nickel-cobalt alloys doped with tantalum

    Science.gov (United States)

    Shaipov, R. Kh.; Kerimov, E. Yu.; Slyusarenko, E. M.

    2017-02-01

    The hardness values of monophasic (fcc solid solution) and biphasic (fcc solid solution and separated phase) nickel-cobalt alloys doped with tantalum are determined using the Vickers method. Based on the resulting data, a composition-structure-hardness diagram is devised for the Co-Ni-Ta system.

  16. Tantalum (oxy)nitrides nanotube arrays for the degradation of atrazine in vis-Fenton-like process

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingxun, E-mail: yxdu@niglas.ac.cn [Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008 (China); Zhao, Lu [Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008 (China); Chang, Yuguang [School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang Univeristy, Nanjing 211171 (China); Su, Yaling [Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer Tantala nanotubes on a Ta foil were formed by anodization in a NH{sub 4}F-containing electrolyte. Black-Right-Pointing-Pointer Tantalum (oxy)nitrides nanotubes were active for Fe{sup 3+} reduction under visible light. Black-Right-Pointing-Pointer Atrazine degradation by {center_dot}OH was accelerated with tantalum (oxy)nitrides nanotubes. Black-Right-Pointing-Pointer Tantalum (oxy)nitrides nanotubes display stable performance for atrazine degradation. - Abstract: In order to overcome the limitation of the application of nanoparticles, tantalum (oxy)nitrides nanotube arrays on a Ta foil were synthesized and introduced in vis (visible light)-Fenton-like system to enhance the degradation of atrazine. At first, the anodization of tantalum foil in a mild electrolyte solution containing ethylene glycol and water (v:v = 2:1) plus 0.5 wt.% NH{sub 4}F produced tantala nanotubes with an average diameter of 30 nm and a length of approximately 1 {mu}m. Then the nitridation of tantala nanotube arrays resulted in the replacement of N atoms to O atoms to form tantalum (oxy)nitrides (TaON and Ta{sub 3}N{sub 5}), as testified by XRD and XPS analyses. The synthesized tantalum (oxy)nitrides nanotubes absorb well in the visible region up to 600 nm. Under visible light, tantalum (oxy)nitrides nanotube arrays were catalytically active for Fe{sup 3+} reduction. With tantalum (oxy)nitrides nanotube arrays, the degradation of atrazine and the formation of the intermediates in vis/Fe{sup 3+}/H{sub 2}O{sub 2} system were significantly accelerated. This was explained by the higher concentration of Fe{sup 2+} and thus the faster decomposition of H{sub 2}O{sub 2} with tantalum (oxy)nitrides nanotubes. In addition, tantalum (oxy)nitrides nanotubes exhibited stable performance during atrazine degradation for three runs. The good performance and stability of the tantalum (oxy)nitrides nanotubes film with the convenient separation, suggest that this film is

  17. Subnanometer Thin β-Indium Sulfide Nanosheets.

    Science.gov (United States)

    Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan

    2012-12-20

    Nanosheets are a peculiar kind of nanomaterials that are grown two-dimensionally over a micrometer in length and a few nanometers in thickness. Wide varieties of inorganic semiconductor nanosheets are already reported, but controlling the crystal growth and tuning their thickness within few atomic layers have not been yet explored. We investigate here the parameters that determine the thickness and the formation mechanism of subnanometer thin (two atomic layers) cubic indium sulfide (In2S3) nanosheets. Using appropriate reaction condition, the growth kinetics is monitored by controlling the decomposition rate of the single source precursor of In2S3 as a function of nucleation temperature. The variation in the thickness of the nanosheets along the polar [111] direction has been correlated with the rate of evolved H2S gas, which in turn depends on the rate of the precursor decomposition. In addition, it has been observed that the thickness of the In2S3 nanosheets is related to the nucleation temperature.

  18. Synthesis of NPN-Coordinated Tantalum Alkyl Complexes and Their Hydrogenolysis: Isolation of a Terminal Tantalum Hydride Incorporating a Doubly Cyclometalated NPN Scaffold.

    Science.gov (United States)

    Batke, Sonja; Sietzen, Malte; Wadepohl, Hubert; Ballmann, Joachim

    2017-05-01

    The closely related benzylene-linked diaminophosphines PhP(CH2C6H4-o-NHPh)2 (AH2) and PhP(C6H4-o-CH2NHXyl)2 (BH2 with Xyl = 3,5-Me2C6H3) were employed for the synthesis of tantalum(V) alkyls, which were then studied with respect to hydrogenolysis. In the case of AH2, the tantalum trimethyl complex [Ta(A)Me3] (1) and the tantalum hydrocarbyl complex [Ta(A)(CH2SiMe3)(η(2)-EtC≡CEt)] (2) were prepared from the ligand's dilithium salt (A)Li2(diox). Upon hydrogenolysis of 1 and 2, the formation of methane and SiMe4, respectively, was observed, but well-defined tantalum hydrides could not be detected. In the case of BH2, the cyclometalated species [Ta(B*)(NMe2)2] (3 with B* = κ(4)-N,P,N,C-(PhP(C6H4-o-CH2NXyl)(C6H4-o-CHNXyl))(3-)) was isolated and converted to the corresponding diiodo species [Ta(B*)I2] (4). Treatment of 4 with LiCH2SiMe3 resulted in the isolation of the corresponding dialkyl complex [Ta(B*)(CH2SiMe3)2] (5), which was converted to the doubly cyclometalated monoalkyl complexes [Ta(B**)(CH2SiMe3)(PMe3)] (6 with B** = κ(5)-C,N,P,N,C-(PhP(C6H4-o-CHNXyl)2)(4-)) and [Ta(B**)(CH2SiMe3)(dmpe)] (7) via reaction with PMe3 and dmpe, respectively. In contrast to 5 and 6, 7 was found to react cleanly with dihydrogen to afford the corresponding terminal tantalum(V) hydride [Ta(B**)(H)(dmpe)] (8). Upon reaction of 7 with D2, the deuteride [Ta(d2-B**)(D)(dmpe)] (9) was obtained and found to contain deuterium atoms in the methine positions of both tantalaaziridine subunits. The partially deuterated derivatives [Ta(B**)(D)(dmpe)] (10) and [Ta(d2-B**)(H)(dmpe)] (11) were generated via reaction of 8 and 9 with PhSiD3 and PhSiH3, respectively. Prior to the addition of gaseous D2 or H2, no H/D scrambling was observed in 10 or 11, indicating that the exchange of the methine positions proceeds via addition of D2 or H2 across the tantalaaziridine Ta-C bonds.

  19. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    Science.gov (United States)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  20. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume

    2010-10-04

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease in the global turnover. Conversely, cyclopentane induces no such selective poisoning. Hence, the active tantalum hydride sites that show greater resistance to oxygen poisoning correspond to the νTa-H bands of higher wavenumbers, particularly that at 1860cm-1. These active tantalum hydride sites should correspond to tris- or monohydride species relatively far from silica surface oxygen atoms. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  2. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    Science.gov (United States)

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  3. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  4. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Science.gov (United States)

    Sears, Jasmine; Gibson, Ricky; Gehl, Michael; Zandbergen, Sander; Keiffer, Patrick; Nader, Nima; Hendrickson, Joshua; Arnoult, Alexandre; Khitrova, Galina

    2017-05-01

    Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM) Energy Dispersive Spectroscopy (EDS). Several sizes of islands are examined, with larger islands exhibiting high (>94%) average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  5. Clinical roles in indium-111 octreotide scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Hain, S.F.; Roach, P.J [Royal North Shore Hospital, St Leonards, NSW (Australia). Department of Nuclear Medicine

    1997-12-01

    Full text: Octreotide is being increasingly used in the assessment of various tumour types, particularly those of neuroendocrine origin. It has even been proposed that octreotide scintigraphy should be used as the first localisation technique in such tumours. We present three cases which show different clinical roles for 111 In- octreotide scintigraphy in both evaluating the extent of disease and assessing likely response to somatostatin therapy. In the first case, a 55-year-old male presented with flushing, diarrhoea, weight loss and elevated urinary 5-HIM levels. Clinical examination showed left supraclavicular Iymphadenopathy and CT revealed only paraaortic Iymphadenopathy. In comparison, octreotide scintigraphy revealed much more extensive disease than noted on CT in both the abdomen and chest. Lesions were histologically confirmed as carcinoid tumour. In the second case, a 52-year-old male underwent scintigraphy for staging of small cell lung carcinoma. Similarly, more extensive disease was noted on octreotide scintigraphy than on CT scanning. In the third case, a 1 6-year-old female underwent debulking surgery for a growth hormone and prolactin producing pituitary tumour. The presence of somatostatin receptors was demonstrated by octreotide scintigraphy. This was performed to determine the potential response to somatostatin therapy which has been reported to reduce tumour size in these patients. These cases show a clinical role for {sup 111}In octreotide scintigraphy in the evaluation of disease extent in neuroendocrine tumours as well as some other tumour sub-types. In the first two cases described, scintigraphy revealed more extensive disease than CT scanning. Indium-111 octreotide can also be used to predict the response of such patients to somatostatin therapy

  6. Indium oxide inverse opal films synthesized by structure replication method

    Science.gov (United States)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  7. Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides

    Directory of Open Access Journals (Sweden)

    Malinovskaya Tatyana

    2017-01-01

    Full Text Available The results of investigations of the complex permittivity, diffuse-reflectance, and characteristics of crystal lattices of tin-doped indium and dysprosium oxides are presented. Using the methods of spectroscopy and X-ray diffraction analysis, it is shown that doping of indium oxide with tin results in a significant increase of the components of the indium oxide complex permittivity and an appearance of the plasma resonance in its diffuse-reflectance spectra. This indicates the appearance of charge carriers with the concentration of more than 1021 cm−3 in the materials. On the other hand, doping of the dysprosium oxide with the same amount of tin has no effect on its optical and electromagnetic properties.

  8. Preparation of Strontium Bismuth Tantalum (SBT) Fine Powder by Sol-Gel Process Using Bismuth Subnitrate as Bismuth Source

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Strontium bismuth tantalum (SBT) fine power was prepared by Sol-Gel method. Pentaethoxy tantalum, strontium acetate and bismuth subnitrate were used as raw materials, and were dissolved in proper order in ethylene glycol to form transparent sol. The mixed precursor was dried at 80°C and annealed at 800°C for 1 h. Crystallized nanometer sized SBT fine powder was obtained and characterized by XRD.

  9. 钽复合板设备制造技术%Fabrication Technology About Tantalum Composite Board Vessels

    Institute of Scientific and Technical Information of China (English)

    朱广前

    2012-01-01

    Bring forward methods about settling welding problems about the tantalum composite board vessels and cautions during the tantalum vessels welding and fabrication.%对钽材复合板焊接中容易出现的问题进行了详细介绍,并提出了钽材复合板热交换设备中常用的几种焊接接头形式.

  10. Sulfinylcalix[4]arene-impregnated amberlite XAD-7 resin for the separation of niobium(V) from tantalum(V).

    Science.gov (United States)

    Matsumiya, Hiroaki; Yasuno, Shizu; Iki, Nobuhiko; Miyano, Sotaro

    2005-10-07

    Amberlite XAD-7 resin was impregnated with p-tert-butylsulfinylcalix[4]arene. Niobium(V) was collected on the impregnated resin in yields of more than 90% around pH 5.4, whereas tantalum(V) was negligibly collected. The collected niobium(V) was desorbed with 9 M sulfuric acid nearly quantitatively, hence the separation of niobium(V) from tantalum(V) was successfully achieved.

  11. The Availability of Indium: The Present, Medium Term, and Long Term

    Energy Technology Data Exchange (ETDEWEB)

    Lokanc, Martin [Colorado School of Mines, Golden, CO (United States); Eggert, Roderick [Colorado School of Mines, Golden, CO (United States); Redlinger, Michael [Colorado School of Mines, Golden, CO (United States)

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  12. Growth and characterization of indium antimonide and gallium antimonide crystals

    Indian Academy of Sciences (India)

    N K Udayashankar; H L Bhat

    2001-10-01

    Indium antimonide and gallium antimonide were synthesized from the respective component elements using an indigenously fabricated synthesis unit. Bulk crystals of indium antimonide and gallium antimonide were grown using both the vertical and horizontal Bridgman techniques. Effect of ampoule shapes and diameters on the crystallinity and homogeneity was studied. The grown crystals were characterized using X-ray analysis, EDAX, chemical etching, Hall effect and conductivity measurements. In the case of gallium antimonide, effect of dopants (Te and In) on transport and photoluminescence properties was investigated.

  13. Study of electrical resistivity of lithium-indium thin films

    Science.gov (United States)

    Chandra, Gyanesh; Katyal, O. P.

    1984-12-01

    Experimental results are presented on the electrical resistivity of lithium-indium films. The resistivity has been studied as a function of temperature (150-300 K), thickness of the films (570-3300 Å) and concentration of Li (11.0-58.7 at. %). The resistivity is observed to be minimum for samples having a Li concentration of 25 and 50 at. %. In general, resistivity varies linearly with temperature but resistivity versus temperature plot shows two distinct regions which have different slopes, i.e., dρ/dT. The role of lithium in indium-lithium films is discussed.

  14. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... in silico methods are here proposed for apoptosis studies and for AMG studies.   Methods   MR - heating of high concentration micrometer gold and low concentration nano gold.   CSLM of ethidum bromide stained cell lines, with and witout gold and automated image processing.   AMG gold uptake study...

  15. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn [Binghamton Univ., NY (United States); Quackenbush, Nicholas F. [Binghamton Univ., NY (United States); Williams, Deborah S. [Binghamton Univ., NY (United States); Senger, Mikell [Binghamton Univ., NY (United States); Woicik, Joseph C. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); White, Bruce E. [Binghamton Univ., NY (United States); Piper, Louis F. [Binghamton Univ., NY (United States)

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  16. Deep subgap feature in amorphous indium gallium zinc oxide: Evidence against reduced indium

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, Shawn; Williams, Deborah S. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Quackenbush, Nicholas F.; Senger, Mikell [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States); Woicik, Joseph C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 (United States); White, Bruce E.; Piper, Louis F.J. [Materials Science and Engineering, Binghamton University, Binghamton, New York, 13902 (United States); Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, New York, 13902 (United States)

    2015-07-15

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. Despite the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. Here, we present evidence against In{sup +} lone pair active electrons as the origin of the deep subgap features. No In{sup +} species are observed, only In{sup 0} nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Indium Tin Oxide@Carbon Core–Shell Nanowire and Jagged Indium Tin Oxide Nanowire

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2010-01-01

    Full Text Available Abstract This paper reports two new indium tin oxide (ITO-based nanostructures, namely ITO@carbon core–shell nanowire and jagged ITO nanowire. The ITO@carbon core–shell nanowires (~50 nm in diameter, 1–5 μm in length, were prepared by a chemical vapor deposition process from commercial ITO nanoparticles. A carbon overlayer (~5–10 in thickness was observed around ITO nanowire core, which was in situ formed by the catalytic decomposition of acetylene gas. This carbon overlayer could be easily removed after calcination in air at an elevated temperature of 700°C, thus forming jagged ITO nanowires (~40–45 nm in diameter. The growth mechanisms of ITO@carbon core–shell nanowire and jagged ITO nanowire were also suggested.

  18. Platelet labelling with indium-hydroxypyridinone and indium-hydroxypyranone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, R.D. (Dept. of Clinical Haematology, University Coll. Medical School, London (United Kingdom)); Ellis, B.L. (Dept. of Pharmacy, Kings Coll., London (United Kingdom)); Hider, R.C. (Dept. of Pharmacy, Kings Coll., London (United Kingdom)); Porter, J.B. (Dept. of Clinical Haematology, University Coll. Medical School, London (United Kingdom))

    1994-10-01

    In order to identify new compounds which label platelets without affecting their function, three classes of metal chelating agents have been compared with oxine for their efficiency of indium-113m platelet labelling and for their short- and long-term effects on platelet function. The 3-hydroxypyridinones (both 2-ones and 4-ones) and 3-hydroxypyranones are bidentate chelators of trivalent metal ions that are neutrally charged in the metal-complexed form and hence gain access to cells readily. The hydroxypyranone ethylmaltol has been compared with the 3-hydroxypyridin-4-one CP94 and to its structurally related lipophilic analogue CP25 as well as with the 3-hydroxypyridin-2-one, CP02. The platelet labelling efficiencies with these ligands were between 75% and 95% of that obtained with oxine, following a 12-min incubation in saline. The optimal concentration for the hydroxypyridin-2-ones and hydroxypyridin-4-ones was approximately 10 [mu]M compared with 100 [mu]M for the hydroxypyranone ethylmaltol and 60 [mu]M for oxine. Oxine and tropolone were found to produce significant inhibition of platelet aggregation to collagen in short-term experiments (10 min) or in longer term (18 and 42 h) ex vivo platelet cultures respectively. By contrast, ethylmaltol had no such inhibitory effects at either time interval. The relatively hydrophilic hydroxypyridin-4-one CP94 showed no inhibitory effects on collagen-induced aggregation in short-term studies, unlike the more lipid-soluble derivative CP25. These results suggest that ethylmaltol and related pyranones may have advantages over oxine and tropolone as indium platelet labelling agents where it is important not to damage platelets by the labelling process itself. (orig.)

  19. The effects of tantalum on the microstructure of two polycrystalline nickel-base superalloys: B-1900 + Hf and MAR-M247

    Science.gov (United States)

    Janowski, G. M.; Heckel, R. W.; Pletka, B. J.

    1986-11-01

    Changes in the γ/γ'/carbide microstructure as a function of Ta content were studied in conventionally cast B-1900 + Hf and both conventionally cast and directionally solidified MAR-M247.* The effects of tantalum on the microstructure were found to be similar in both nickel-base superalloys. In particular, the γ' and carbide volume fractions increased approximately linearly with tantalum additions in both alloys. The γ' phase compositions did not change as tantalum additions were made with the exception of an increase in the tantalum level. Bulk tantalum additions increased the tantalum, chromium, and cobalt levels of the γ phase in both alloy series. The increase in the concentrations of the latter two elements was attributed to a decrease in the γ phase fraction with increasing bulk tantalum level and nearly constant γ' /γ partitioning ratios. It was demonstrated that the large increase in the γ ' volume fraction was a result of tantalum not affecting the partitioning ratios of the other alloying elements. The addition of tantalum led to a partial replacement of the hafnium in the MC carbides, although the degree of replacement was reduced by the solutionizing and aging heat treat-ment. In addition, chromium-rich M23C6 carbides formed as a result of MC carbide decomposition during heat treatment.

  20. Electrical-breakdown and electronic current of tantalum-tantalum oxide-aqueous electrolyte systems. [Ta sub 2 O sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, K.C.; Katyal, P. (Dept. of Chemistry, Maharshi Dayanand Univ., Rohtak (India))

    1991-06-30

    Breakdown voltage and electronic current data for barrier anodic tantalum oxide films in contact with aqueous electrolytes of various concentrations and compositions at 298 K have been obtained. The influence of electrolyte concentration on breakdown characteristics can be broadly explained in terms of the Ikonopisov electron avalanche breakdown model. Albella and coworkers' theory explains the effect of electrolyte concentration for our results more explicitly. Various parameters of the Albella theory have been evaluated, and their dependence on electrolyte concentration has been studied. The dependence of breakdown voltage on electrolyte concentration has also been discussed in the light of the theory of Di Quarto and coworkers. (orig.).

  1. Effect of Indium on the Superconducting Transition Temperature of Tin Telluride

    Science.gov (United States)

    Zhong, Ruidan; Schneeloch, John; Shi, Xiaoya; Li, Qiang; Tranquada, John; Gu, Genda

    2013-03-01

    Indium-doped tin telluride is one of the most appealing topological superconductors. We have grown a series of Sn1-xInxTe crystals with different indium concentrations (0.1 <=x <=1.0). The results show indium doping improves the superconducting transition temperature significantly and is highly related to the indium concentration. The maximum Tc of indium-doped tin telluride polycrystalline is 4.5K for x =0.4. Single crystals of Sn1-xInxTe were also grown by the floating zone method, and their magnetic properties were characterized.

  2. Self-catalyzed carbon plasma-assisted growth of tin-doped indium oxide nanostructures by the sputtering method

    Science.gov (United States)

    Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan

    2016-10-01

    In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.

  3. Highly conformal atomic layer deposition of tantalum oxide using alkylamide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, Dennis M.; Rouffignac, Philippe de; Smith, Amethyst; Gordon, Roy; Monsma, Douwe

    2003-10-22

    Atomic layer deposition of highly conformal films of tantalum oxide were studied using tantalum alkylamide precursors and water as the oxygen source. These films also exhibited a very high degree of conformality: 100% step coverage on vias with aspect ratios greater than 35. As deposited, the films were free of detectable impurities with the expected (2.5-1) oxygen to metal ratio and were smooth and amorphous. The films were completely uniform in thickness and composition over the length of the reactor used for depositions. Films were deposited at substrate temperatures from 50 to 350 deg. C from precursors that were vaporized at temperatures from 50 to 120 deg. C. As deposited, the films showed a dielectric constant of 28 and breakdown field consistently greater than 4.5 MV/cm.

  4. Electron-microscopic examination of the transition zone of aluminum-tantalum bimetallic joints (explosion welding)

    Science.gov (United States)

    Volkova, A. Yu.; Greenberg, B. A.; Ivanov, M. A.; Elkina, O. A.; Inozemtsev, A. V.; Plotnikov, A. V.; Patselov, A. M.; Kozhevnikov, V. E.

    2014-04-01

    A study of the structure of an aluminum-tantalum joint and a comparison of this structure with the structures of iron-silver and copper-tantalum joints have revealed the following processes of the interpenetration of the materials that occur during explosion welding: the formation of protrusions, the injection of particles of one material into the other, and the formation of zones of local melting. Regardless of the mutual solubility of the metals being welded, two types of fragmentation occur, i.e., (1) a granulating fragmentation (GF), which includes the formation, explosion-governed (EG) dispersion, and partial consolidation of particles, and (2) the fragmentation that is usually observed during severe plastic deformation. It is important that this traditional fragmentation is not accompanied by the formation and EG dispersion of particles. This feature allows one to easily distinguish these types of fragmentation (traditional and GF fragmentation).

  5. The list of tantalum lines for wavelengths calibration of the Hamilton echelle-spectrograph

    CERN Document Server

    Pakhomov, Yu V

    2015-01-01

    We present solution of the problem of wavelength calibration for Hamilton Echelle spectrograph using hollow cathode lamp, which was operated at Lick Observatory Shane telescope before June 9, 2011. The spectrum of the lamp claimed to be thorium-argon, contains, in addition to the lines of thorium and argon, a number of the unrecognized lines identified by us with tantalum. Using atomic data for measured lines of tantalum and thorium, we estimated the temperature of the gas in the lamp as T=3120+/-60 K. From the atomic line database VALD3 we selected all lines of TaI and TaII which can be seen in the spectrum of the lamp and compiled a list for the use in the processing of spectral observations. We note a limitation of the accuracy of calibration due to the influence of the hyperfine line splitting.

  6. Tantalum-Tungsten Oxide Thermite Composite Prepared by Sol-Gel Synthesis and Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O; Kuntz, J; Gash, A; Munir, Z

    2009-02-13

    Energetic composite powders consisting of sol-gel derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the sol-gel derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The sol-gel derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO{sub 3}) energetic composite was consolidated to a density of 9.17 g.cm{sup -3} or 93% relative density. In addition those parts were consolidated without significant pre-reaction of the constituents, thus the sample retained its stored chemical energy.

  7. Superconducting properties in tantalum decorated three-dimensional graphene and carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Cobaleda, Cayetano S. F., E-mail: ccobaleda@usal.es, E-mail: wpan@sandia.gov [Sandia National Laboratories, P.O. Box 5800, MS 1086, Albuquerque, New Mexico 87185 (United States); Laboratorio de Bajas Temperaturas, Universidad de Salamanca, E-37008 Salamanca (Spain); Xiao, Xiaoyin; Burckel, D. Bruce; Polsky, Ronen; Pan, W., E-mail: ccobaleda@usal.es, E-mail: wpan@sandia.gov [Sandia National Laboratories, P.O. Box 5800, MS 1086, Albuquerque, New Mexico 87185 (United States); Huang, Duanni [Sandia National Laboratories, P.O. Box 5800, MS 1086, Albuquerque, New Mexico 87185 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Diez, Enrique [Laboratorio de Bajas Temperaturas, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2014-08-04

    We present here the results on superconducting properties in tantalum thin films (100 nm thick) deposited on three-dimensional graphene (3DG) and carbon structures. A superconducting transition is observed in both composite thin films with a superconducting transition temperature of 1.2 K and 1.0 K, respectively. We have further measured the magnetoresistance at various temperatures and differential resistance dV/dI at different magnetic fields in these two composite thin films. In both samples, a much large critical magnetic field (∼2 T) is observed and this critical magnetic field shows linear temperature dependence. Finally, an anomalously large cooling effect was observed in the differential resistance measurements in our 3DG-tantalum device when the sample turns superconducting. Our results may have important implications in flexible superconducting electronic device applications.

  8. Development of advanced high strength tantalum base alloys. Part 2: Scale-up investigation

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.

    1970-01-01

    Three experimental tantalum alloy compositions containing 14-16% W, 1% Re, 0.7% Hf, 0.025% C or 0.015% C and 0.015% N were prepared as two inch diameter ingots by consumable electrode vacuum arc melting. The as-cast ingots were processed by extrusion and swaging to one inch and 0.4 inch diameter rod and evaluated. Excellent high temperature forging behavior was exhibited by all three compositions. Creep strength at 2000 F to 2400 F was enhanced by higher tungsten additions as well as substitution of nitrogen for carbon. Weldability of all three compositions was determined to be adequate. Room temperature ductility was retained in the advanced tantalum alloy compositions as well as a notched/unnotched strength ratio of 1.4 for a notched bar having a K sub t = 2.9.

  9. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  10. Simulation of tantalum nanocrystals under shock-wave loading: Dislocations and twinning

    Science.gov (United States)

    Tramontina, D. R.; Hahn, E. N.; Meyers, M. A.; Bringa, E. M.

    2017-01-01

    We simulate strong shock waves in nanocrystalline tantalum using atomistic molecular dynamics simulations, for particle velocities in the range 0.35-2.0 km s-1, which induce pressures in the range 20-195 GPa. Our simulations explore strain rates in the range 108 s-1 - 1010 s-1, and lead to a peak strength in the range 3-15 GPa. Nanocrystalline tantalum exposed to strong shock waves demonstrates deformation enabled by concomitant dislocations, twinning, and grain boundary activity at a variety of particle velocities. Twinning is observed for a mean grain size of 7 nm, starting at around 32 GPa, in disagreement with models which predict a Hall-Petch behavior for twinning, i.e. a twinning stress scaling with grain size d as d-0.5, and supporting the presence of an inverse Hall-Petch effect for twinning at small grain sizes.

  11. On-line separation of refractory hafnium and tantalum isotopes at the ISOCELE separator

    CERN Document Server

    Liang, C F; Obert, J; Paris, P; Putaux, J C

    1981-01-01

    By chemical evaporation technique, neutron deficient hafnium nuclei have been on-line separated at the ISOCELE facility, from the isobar rare-earth elements, in the metal-fluoride HfF/sub 3//sup +/ ion form. Half-lives of /sup 162-165/Hf have been measured. Similarly, tantalum has been selectively separated on the TaF/sub 4//sup +/ form. (4 refs) .

  12. Powder metallurgical processing and metal purity: A case for capacitor grade sintered tantalum

    Indian Academy of Sciences (India)

    G S Upadhyaya

    2005-07-01

    The paper reviews the role of sintered tantalum as volumetric efficient electrical capacitor. Powder characteristics and sintering aspects are discussed. The role of impurities in influencing the electrical properties has been described. Today’s driving force behind the Ta market is the use of surface mounted versions known as chip types, for applications requiring a wide range of operational temperature, such as automotive electronics.

  13. Simultaneous determination of trace niobium, tantalum and tungsten in ferrous and non-ferrous alloys.

    Science.gov (United States)

    Vassilaros, G L; Byrnes, C J

    1976-03-01

    A method is presented for the determination of niobium, tantalum and tungsten in steel and non-ferrous alloys, based on hydrolysis with sulphurous acid followed by X-ray fluorescence measurements. The limit of determination is about 0.002% and the standard deviation is 0.002 at the 0.05% level. Results below 0.01% by this method are only semiquantitative.

  14. Synthesis and characterization of five-coordinated indium amidinates

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Yasaman

    2016-07-29

    The focus of this work is synthesis, characterization and exploring the reactivity of new indium amidinate compounds of the type R{sub 2}InX (R = R''NCR'NR''; R' = Ph, R'' = SiMe{sub 3}, iPr, dipp; X = Br, Cl) with the coordination number of five and R{sub 3}In (R = Me{sub 3}SiNCPhNSiMe{sub 3}) with the coordination number of six. By using amidinates as chelating ligands the electron deficiency of indium atom will be resolved. Additionally, by using different substituents the study of the different synthesized indium amidinates has become possible. The selected method for the synthesis allows the carbodiimides to react with organolithium compounds to get the corresponding lithium amidinates. Afterwards the resulting lithium amidinates take part in transmetalation reactions with InBr{sub 3} and InCl{sub 3}. The study of the reactivity of indium amidinate complexes including nucleophilic reactions as well as their reduction were also examined. Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as well as elemental analysis has been applied to characterize the compounds.

  15. Degradation of a tantalum filament during the hot-wire CVD of silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oliphant, C.J. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Arendse, C.J., E-mail: cjarendse@uwc.ac.za [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Muller, T.F.G. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Jordaan, W.A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Knoesen, D. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2015-01-30

    Electron backscatter diffraction revealed that during the hot-wire deposition of silicon nitride, a tantalum filament partially transformed to some of its nitrides and silicides. The deposition of an encapsulating silicon nitride layer occurred at the cooler filament ends. Time-of-flight secondary ion mass spectroscopy disclosed the presence of hydrogen, nitrogen and silicon containing ions within the aged filament bulk. Hardness measurements revealed that the recrystallized tantalum core experienced significant hardening, whereas the silicides and nitrides were harder but more brittle. Crack growth, porosity and the different thermal expansion amongst the various phases are all enhanced at the hotter centre regions, which resulted in failure at these areas. - Highlights: • Tantalum filament degrades and fails during hot-wire CVD of silicon nitride thin films. • An encapsulating silicon nitride layer is deposited at the cooler ends. • Electron backscatter diffraction reveals Ta-silicides and -nitrides with a Ta core. • Filament failure occurs at hot centre regions due to different mechanical properties of Ta, its silicides and nitrides.

  16. Cross-current leaching of indium from end-of-life LCD panels.

    Science.gov (United States)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels.

  17. Gold in the Books

    Institute of Scientific and Technical Information of China (English)

    江河

    2002-01-01

    In the present Chinese market, more and more businessmen turn to the profit-making trade. Even some counters in the bookstores are selling gold rings, necklaces, bracelets, etc. One day a school teacher asked a store assistant,“Why are you selling gold in your bookstore?”

  18. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

    of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... value maximization forces the manager of high type to extract the gold.The implications are three-fold. First, all managers (except the lowest type) extract the gold too soon compared to the first-best policy of leaving the gold in the mine forever. Second, a manager of high type extracts the gold...... sooner than a manager of lower type. Third, a non-operating gold mine is valued as being of the lowest type in the pool and all else equal, high-asymmetri mines are valued lower than low-asymmetri mines. In a qualitative sense these results are robust with respect to different assumptions (re cost...

  19. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    Science.gov (United States)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  20. In Situ Synthesis and Deposition of Gold Nanoparticles with Different Morphologies on Glass and ITO Substrate by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    María de la Garza

    2013-01-01

    Full Text Available Gold nanoparticles were synthesized and deposited in situ by ultrasonic spray pyrolysis on glass and indium tin oxide (ITO substrates. This technique led to the formation of gold nanoparticles with different morphologies without the use of any capping agent. The gold nanoparticles deposited on glass substrate were obtained as nanospheres with an average particle size of 30 nm with some agglomerates; however, the nanoparticles deposited on ITO substrate were obtained with different morphologies, such as triangular nanoprisms, nanorods, nanocubes, and nanorhombus, with particle sizes between 40 and 100 nm. The ITO substrate influenced the morphology of the gold nanoparticles obtained due to changes in the deposition temperature, which also change the crystalline structure of the ITO film on the substrate.

  1. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    Science.gov (United States)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei

    2016-04-01

    This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.

  2. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Cross-current leaching of indium from end-of-life LCD panels

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Ubaldini, Stefano [Institute of Environmental Geology and Geoengineering IGAG, National Research Council, Via Salaria km 29300, 00015 Montelibretti, Rome (Italy); De Michelis, Ida [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Kopacek, Bernd [ISL Kopacek KG, Beckmanngasse 51, 1140 Wien (Austria); Vegliò, Francesco [Department of Industrial Engineering, Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, 67100, Zona industriale di Pile, L’Aquila (Italy); Beolchini, Francesca, E-mail: f.beolchini@univpm.it [Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  4. Spectroscopic study of the electrochemical behaviour of tantalum(V) chloride and oxochloride species in 1-butyl-1-methylpyrrolidinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Babushkina, Olga B., E-mail: olga.babushkina@cest.a [Centre in Electrochemical Surface Technology (CEST), Viktor Kaplan street 2, A-2700, Wiener Neustadt (Austria); Ekres, Silvia [Centre in Electrochemical Surface Technology (CEST), Viktor Kaplan street 2, A-2700, Wiener Neustadt (Austria)

    2010-12-30

    FTIR spectroscopy was used to identify the oxochloride species of tantalum(V) in ionic liquids and to confirm the correlations between their presence in electrolytes and the changes in the route of electrochemical reduction of tantalum(V). Electrochemical behaviour of the mixtures (x)1-butyl-1-methyl-pyrrolidinium chloride-(1 - x)TaCl{sub 5} at x = 0.80, 0.65, and 0.40 was investigated over the temperature range 90-160 {sup o}C with respect to the electrochemical deposition of tantalum and was discussed in terms of spectroscopic data. The mechanism of electrochemical reduction of tantalum(V) in the basic and acidic electrolytes depends strongly on the structure and composition of the electro active species of tantalum(V) defined by the molar composition of ionic liquids and on the competition between tantalum(V) chloride and oxochloride species. In the basic mixture at x = 0.80, with octahedral [TaCl{sub 6}]{sup -} ions as the electrochemically active species only the first reduction step Ta{sup 5+} {yields} Ta{sup 4+} at -0.31 V was observed. The competitive reduction of tantalum(V) oxochloride species occurs at more anodic potential (-0.01 V) than the reduction of the chloride complexes and can restrict the further reduction of tantalum(IV). In the basic ionic liquid at x = 0.65, the cyclic voltammograms exhibit reduction peaks at -0.31 V and -0.51 V attributed to the diffusion controlled process as [TaCl{sub 6}]{sup -} + e{sup -} {yields} [TaCl{sub 6}]{sup 2-} and [TaCl{sub 6}]{sup 2-} + e{sup -} {yields} [TaCl{sub 6}]{sup 3-}. The further irreversible reduction of tantalum(III) to metallic state may occur at -2.1 V. In the acidic ionic liquids, at x = 0.40 the electrochemical reduction of two species occurs, TaCl{sub 6}{sup -} and Ta{sub 2}Cl{sub 11}{sup -} and it is limited by two electron transfer for both of them at -0.3 V and -1.5 V, respectively.

  5. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Science.gov (United States)

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... be considered in any assay for quality of a gold filled, gold overlay and rolled gold plate industry...

  6. Novel hierarchical tantalum oxide-PDMS hybrid coating for medical implants: One pot synthesis, characterization and modulation of fibroblast proliferation.

    Science.gov (United States)

    Tran, Phong A; Fox, Kate; Tran, Nhiem

    2017-01-01

    Surface properties such as morphology, roughness and charge density have a strong influence on the interaction of biomaterials and cells. Hierarchical materials with a combination of micron/submicron and nanoscale features for coating of medical implants could therefore have significant potential to modulate cellular responses and eventually improve the performance of the implants. In this study, we report a simple, one pot wet chemistry preparation of a hybrid coating system with hierarchical surface structures consisting of polydimethylsiloxane (PDMS) and tantalum oxide. Medical grade, amine functional PDMS was mixed with tantalum ethoxide which subsequently formed Ta2O5in situ through hydrolysis and condensation during coating process. The coatings were characterized by SEM, EDS, XPS, confocal scanning microscopy, contact angle measurement and in vitro cell culture. Varying PDMS and tantalum ethoxide ratios resulted in coatings of different surface textures ranging from smooth to submicro- and nano-structured. Strikingly, hierarchical surfaces containing both microscale (1-1.5μm) and nanoscale (86-163nm) particles were found on coatings synthesized with 20% and 40% (v/v) tantalum ethoxide. The coatings were similar in term of hydrophobicity but showed different surface roughness and chemical composition. Importantly, higher cell proliferation was observed on hybrid surface with hierarchical structures compared to pure PDMS or pure tantalum oxide. The coating process is simple, versatile, carried out under ambient condition and requires no special equipment.

  7. Mechanical properties of tantalum-tungsten interlayer between tungsten tile and thimble to prevent helium leak from He-cooled divertor

    Science.gov (United States)

    Zhang, Pingping; Shen, Weiping; Zhou, Yanan; Zhang, Qingling

    2013-03-01

    The tungsten parts made of pure tungsten tile and dispersion strengthened tungsten thimble with 3 mm interlayer of tantalum-tungsten alloy are fabricated by Spark Plasmas Sintering (SPS). The process of SPS is that the temperature is raised to 1700 °C at a rate of 100 °C/min and kept for 3 min, under a constant pressure of 50MPa along the Z-axis. The mechanical properties of the interlayer with different percent of tantalum are measured. The results show that with increasing percent of tantalum, the hardness first increases and then decreases; and as the indentation on the sample is closer to dispersion strengthened tungsten, the value of Vickers hardness is much higher. The Vickers hardness of interlayer is the highest when the content of tantalum is 50% and the indentation is next to dispersion strengthened tungsten. Bending strength drops with increasing content of tantalum, when the content of tantalum is 100% the value of bending strength is the lowest. The fracture toughness is highest as the content of tantalum is 25%, the value is 9.89MPa•m1/2. The toughening tungsten-tantalum interlayer between tungsten tile and thimble would better prevent helium leak from He-cooled divertor for DEMO.

  8. Determination of trace elements in refined gold samples by inductively coupled plasma atomic emission spectrometry

    Directory of Open Access Journals (Sweden)

    Steharnik Mirjana

    2013-01-01

    Full Text Available This paper presents a method for determination the trace contents of silver, copper, iron, palladium, zinc and platinum in refined gold samples. Simultaneous inductively coupled plasma atomic emission spectrometer with radial torch position and cross flow nebulizer was used for determination. In order to compare the different calibration strategies, two sets of calibration standards were prepared. The first set was based on matrix matched calibration standards and the second was prepared without the addition of matrix material. Detection limits for matrix matching calibrations were higher for some elements than those without matrix matching. In addition, the internal standardization method was applied and experiments indicated that indium was the best option as internal standard. The obtained results for gold sample by matrix matching and matrix free calibrations were compared with the obtained results by standard addition method. The accuracy of the methods was tested performing recovery test. Recoveries for spiked sample were in the range of 90-115 %. The accuracy of the methods was also tested by analysis of certified reference material of high pure goldAuGHP1. The best results were achieved by matrix free calibration and standard addition method using indium as internal standard at wavelength of 230 nm. [Projekat Ministarstva nauke Republike Srbije, br. 34024: Development of Technologies for Recycling of Precious, Rare and Associated Metals from Solid Waste in Serbia to High Purity Products

  9. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  10. Oxygen-free atomic layer deposition of indium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  11. Tantalum acetabular augments in one-stage exchange of infected total hip arthroplasty: a case-control study.

    Science.gov (United States)

    Klatte, Till Orla; Kendoff, Daniel; Sabihi, Reza; Kamath, Atul F; Rueger, Johannes M; Gehrke, Thorsten

    2014-07-01

    During the one-stage exchange procedure for periprosthetic joint infection (PJI) after total hip arthroplasty (THA), acetabular defects challenge reconstructive options. Porous tantalum augments are an established tool for addressing acetabular destruction in aseptic cases, but their utility in septic exchange is unknown. This retrospective case-control study presents the initial results of tantalum augmentation during one-stage exchange for PJI. Primary endpoints were rates of re-infection and short-term complications associated with this technique. Study patients had no higher risk of re-infection with equivalent durability at early follow-up with a re-infection rate in both groups of 4%. In conclusion, tantalum augments are a viable option for addressing acetabular defects in one-stage exchange for septic THA. Further study is necessary to assess long-term durability when compared to traditional techniques for acetabular reconstruction.

  12. Porous tantalum uncemented acetabular shells in revision total hip replacement: two to four year clinical and radiographic results.

    Science.gov (United States)

    Kim, W Y; Greidanus, N V; Duncan, C P; Masri, B A; Garbuz, D S

    2008-01-01

    In cementless revision total hip arthroplasty (THA), achieving initial implant stability and maximising host bone contact is key to the success of reconstruction. Porous tantalum acetabular shells may represent an improvement from conventional porous coated uncemented cups in revision acetabular reconstruction associated with severe acetabular bone defects. We reviewed the results of 46 acetabular revisions with Paprosky 2 and 3 acetabular bone defects done with a hemispheric, tantalum acetabular shell and multiple supplementary screws. At a mean follow-up of 40 (24-51) months, one acetabular shell had been revised in a patient with a Paprosky 3B defect. Cementless acetabular revision with the tantalum acetabular shell demonstrated excellent early clinical and radiographic results and warrants further evaluation in revision acetabular reconstruction associated with severe acetabular bone defects.

  13. The effect of tantalum and carbon on the structure/properties of a single crystal nickel-base superalloy. M.S. Thesis. Final Report

    Science.gov (United States)

    Nguyen, H. C.

    1984-01-01

    The microstructure, phase chemistry, and creep and hot tensile properties were studied as a function of tantalum and carbon levels in Mar-M247 type single crystal alloys. Microstructural studies showed that several types of carbides (MC, M23C6 and M5C) are present in the normal carbon (0.10 wt % C) alloys after heat treatment. In general, the composition of the MC carbides changes from titanium rich to tantalum rich as the tantalum level in the alloy increases. Small M23C6 carbides are present in all alloys. Tungsten rich M6C carbides are also observed in the alloy containing no tantalum. No carbides are present in the low carbon (0.01 wt % C) alloy series. The morphology of gamma prime is observed to be sensitive to heat treatment and tantalum level in the alloy. Cuboidal gamma prime is present in all the as cast structures. After heat treatment, the gamma prime precipitates tend to have a more spheroidal like morphology, and this tendency increases as the tantalum level decreases. On prolonged aging, the gamma prime reverts back to a cuboidal morphology or under stress at high temperatures, forms a rafted structure. The weight fraction and lattice parameter of the spheroidal gamma prime increases with increasing tantalum content. Changes in the phase chemistry of the gamma prime matrix and gamma prime have also been analyzed using phase extraction techniques. The partitioning ratio decreases for tungsten and aluminum and increases for tantalum as the tantalum content increases for both alloy series; no significant changes occur in the partitioning ratios of the other alloying elements. A reduction in secondary creep rate and an increase in rupture time result from increasing the tantalum content and decreasing the carbon level.

  14. Prelude to Gold

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    FEMALE Chinese athletes Fu Mingxia and Wang Junxia recorded outstanding performances at 1996 Atlanta Olympic Games. Fu Mingxia won gold medals in both platform and springboard diving, and in so doing became the first double medal winner in Olympic diving since 1960. Wang Junxia, the holder of several world records in women’s long distance events, struggled against the odds and captured gold in the 5,000-meter event,

  15. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  16. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  17. Joining the Gold Rush

    Institute of Scientific and Technical Information of China (English)

    LIU BO

    2006-01-01

    @@ Flush with advanced technology and large amounts of capital, overseas mining firms are carving a place in the Chinese gold industry Dozens of Western mining companies, particularly those from Canada, are making the journey into the kind of remote corners in China that other overseas investors shy away from. What are they looking for? The answer is one of the most precious substances on the planet: gold.

  18. Light forces on an indium atonic beam; Lichtkraefte auf einen Indiumatomstrahl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeter, B.

    2007-07-01

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied.

  19. A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array

    OpenAIRE

    2011-01-01

    We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor c...

  20. Patterning Cells on Optically Transparent Indium Tin Oxide Electrodes

    OpenAIRE

    Shah, Sunny; Revzin, Alexander

    2007-01-01

    The ability to exercise precise spatial and temporal control over cell-surface interactions is an important prerequisite to the assembly of multi-cellular constructs serving as in vitro mimics of native tissues. In this study, photolithography and wet etching techniques were used to fabricate individually addressable indium tin oxide (ITO) electrodes on glass substrates. The glass substrates containing ITO microelectrodes were modified with poly(ethylene glycol) (PEG) silane to make them pr...

  1. Micropatterning of Proteins and Mammalian Cells on Indium Tin Oxide

    OpenAIRE

    Shah, Sunny S.; Howland, Michael C.; Chen, Li-Jung; Silangcruz, Jaime; Verkhoturov, Stanislav V.; Schweikert, Emile A.; Parikh, Atul N.; Revzin, Alexander

    2009-01-01

    This paper describes a novel surface engineering approach that combines oxygen plasma treatment and electrochemical activation to create micropatterned cocultures on indium tin oxide (ITO) substrates. In this approach, photoresist was patterned onto an ITO substrate modified with poly(ethylene) glycol (PEG) silane. The photoresist served as a stencil during exposure of the surface to oxygen plasma. Upon incubation with collagen (I) solution and removal of the photoresist, the ITO substrate co...

  2. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  3. Attempts at doping indium in MgB2

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2016-01-01

    Indium (In) doped MgB2 polycrystalline samples were prepared by solid-liquid phase reaction in Ar. After reaction at 800 °C, less than 1 at.% Mg was replaced by In in the MgB2 phase, without significant influence on its lattice parameters and only a slight decrease of its superconducting transition...... in both the doped and undoped samples....

  4. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin

    Directory of Open Access Journals (Sweden)

    Guo X

    2011-11-01

    Full Text Available Xinming Guo1,*, Muwan Chen1,2,*, Wenzhou Feng1,*, Jiabi Liang1, Huibin Zhao1, Lin Tian1, Hui Chao3, Xuenong Zou11Orthopaedic Research institute/Department of Orthopaedic Surgery, the First Affiliated Hospital and Department of Pharmacy, the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; 2Interdisciplinary Nanoscience Center (iNANO, Aarhus University, Denmark; 3Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering of Sun Yat-sen University, Guangzhou, People's Republic of China *The first three authors contributed equally to this work as co-first authorAbstract: Many studies in recent years have focused on surface engineering of implant materials in order to improve their biocompatibility and other performance. Porous tantalum implants have increasingly been used in implant surgeries, due to their biocompatibility, physical stability, and good mechanical strength. In this study we functionalized the porous tantalum implant for sustained drug delivery capability via electrostatic self-assembly of polyelectrolytes of hyaluronic acid, methylated collagen, and terpolymer on the surface of a porous tantalum implant. The anticancer drug doxorubicin was encapsulated into the multilayer copolymer membranes on the porous tantalum implants. Results showed the sustained released of doxorubicin from the functionalized porous tantalum implants for up to 1 month. The drug release solutions in 1 month all had inhibitory effects on the proliferation of chondrosarcoma cell line SW1353. These results suggest that this functionalized implant could be used in reconstructive surgery for the treatment of bone tumor as a local, sustained drug delivery system.Keywords: self-assembly, surface modification, tantalum, drug delivery system, doxorubicin, bone tumor

  5. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  6. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  7. Laser ablation synthesis of indium oxide nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Acacia, N. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Salita Sperone 31, I-98166 Messina (Italy); Barreca, F., E-mail: process@anmresearch.it [Advanced and Nano Materials Research s.r.l., Salita Sperone 31, I-98166 Messina (Italy); Barletta, E.; Spadaro, D.; Curro, G. [Advanced and Nano Materials Research s.r.l., Salita Sperone 31, I-98166 Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Salita Sperone 31, I-98166 Messina (Italy)

    2010-09-01

    Colloidal solutions of Indium oxide nanoparticles have been produced by means of laser ablation in liquids (LALs) technique by simply irradiating with a second harmonic (532 nm) Nd:YAG laser beam a metallic indium target immersed in distilled water and varying the laser fluence up to 10 J cm{sup -2} and the ablation time up to 120 min. At all the investigated fluences the vaporization process of the indium target is the dominant one. It produces a majority (>80%) of small size (<6 nm) nanoparticles, with a very limited content of larger ones (size between 10 and 20 nm). The amount of particles increases regularly with the ablation time, supporting the scalability of the production technique. The deposited nanoparticles stoichiometry has been verified by both X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-ray (EDX) analysis. Optical bandgap values of 3.70 eV were determined by UV-vis absorption measurements. All these results confirm the complete oxidation of the ablated material.

  8. Calibration of indium response functions in an Au-In-BSE system up to 800 MeV.

    Science.gov (United States)

    Wang, Zhonglu; Howell, Rebecca M; Burgett, Eric A; Kry, Stephen F; Hertel, Nolan E; Salehpour, Mohammad

    2010-06-01

    Calibration of the response functions of a gold (Au)-indium (In) dual foil Bonner sphere extended (BSE) system was described. The response of the In and Au foil of the system was calculated using MCNPX code with different activation cross-sectional libraries: (ACTL and ENDF VI for gold and ACTL and 532DOS2 for In). To verify and correct the calculated response functions the Bonner sphere set (BSS) was irradiated using (252)Cf and (241)AmBe sources of known neutron strengths for neutrons ranging from thermal to 20 MeV, and was irradiated at the 800-MeV neutron beam of the Los Alamos Neutron Science Center. The neutron spectrum of the 800 MeV beam was determined using time-of-flight (TOF) technique. We observed that the uncertainty of activation cross section in the resonance region can result in great uncertainty in the MCNPX-calculated response functions of activation foil-based BSS. The MCNPX-calculated response functions must be corrected using neutron sources of known spectrum and strength.

  9. Spectroscopic Investigation of Indium Halides as Substitutes of Mercury in Low Pressure Discharges for Lighting Applications

    OpenAIRE

    Briefi, Stefan

    2012-01-01

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociatio...

  10. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    Science.gov (United States)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  11. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  12. Use of a Tantalum Liner to Reduce Bore Erosion and Increase Muzzle Velocity in Two-Stage Light Gas Guns

    Science.gov (United States)

    Bogdanoff, David W.

    2015-01-01

    Muzzle velocities and gun erosion predicted by earlier numerical simulations of two stage light gas guns with steel gun tubes were in good agreement with experimental values. In a subsequent study, simulations of high performance shots were repeated with rhenium (Re) gun tubes. Large increases in muzzle velocity (2 - 4 km/sec) were predicted for Re tubes. In addition, the hydrogen-produced gun tube erosion was, in general, predicted to be zero with Re tubes. Tantalum (Ta) has some mechanical properties superior to those of Re. Tantalum has a lower modulus of elasticity than Re for better force transmission from the refractory metal liner to an underlying thick wall steel tube. Tantalum also has greater ductility than Re for better survivability during severe stress/strain cycles. Also, tantalum has been used as a coating or liner in military powder guns with encouraging results. Tantalum has, however, somewhat inferior thermal properties to those of rhenium, with a lower melting point and lower density and thermal conductivity. The present study was undertaken to see to what degree the muzzle velocity gains of rhenium gun tubes (over steel tubes) could be achieved with tantalum gun tubes. Nine high performance shots were modeled with a new version of our CFD gun code for steel, rhenium and tantalum gun tubes. For all except the highest velocity shot, the results with Ta tubes were nearly identical with those for Re tubes. Even for the highest velocity shot, the muzzle velocity gain over a steel tube using Ta was 82% of the gain obtained using Re. Thus, the somewhat inferior thermal properties of Ta (when compared to those of Re) translate into only very slightly poorer overall muzzle velocity performance. When this fact is combined with the superior mechanical properties of Ta and the encouraging performance of Ta liners/coatings in military powder guns, tantalum is to be preferred over Re as a liner/coating material for two stage light gas guns to increase muzzle

  13. Quasi-static Tensile and Compressive Behavior of Nanocrystalline Tantalum Based on Miniature Specimen Testing—Part II: Mechanical Properties

    Science.gov (United States)

    Ligda, J.; D'Antuono, D. Scotto; Taheri, M. L.; Schuster, B. E.; Wei, Q.

    2016-11-01

    In Part I of this work (this issue), we presented the microstructure of tantalum processed by high-pressure torsion (HPT). In this part, we will present results based on site-specific micro-mechanical testing. The experimental techniques were used due to the intrinsic microstructure gradient associated with HPT processing. The primary objective is to explore the grain size effect on the quasi-static mechanical properties of HPT processed tantalum with ultrafine grained (UFG, grain size d 100 nm) and nanocrystalline (NC, d body-centered cubic metals with UFG/NC microstructure tend to have localized shear band even under quasi-static uniaxial compression.

  14. Development of high temperature materials for solid propellant rocket nozzle applications. [tantalum carbides-tungsten fiber composites

    Science.gov (United States)

    Manning, C. R., Jr.; Honeycutt, L., III

    1974-01-01

    Evaluation of tantalum carbide-tungsten fiber composites has been completed as far as weight percent carbon additions and weight percent additions of tungsten fiber. Extensive studies were undertaken concerning Young's Modulus and fracture strength of this material. Also, in-depth analysis of the embrittling effects of the extra carbon additions on the tungsten fibers has been completed. The complete fabrication procedure for the tantalum carbide-tungsten fiber composites with extra carbon additions is given. Microprobe and metallographic studies showed the effect of extra carbon on the tungsten fibers, and evaluation of the thermal shock parameter fracture strength/Young's Modulus is included.

  15. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant.

    Science.gov (United States)

    Li, Haisheng; Zou, Xuenong; Woo, Charlotte; Ding, Ming; Lind, Martin; Bünger, Cody

    2007-04-01

    Implants of carbon fiber composite have been widely used in orthopedic and spinal surgeries. However, studies using carbon fiber-reinforced cages demonstrate frequent appearance of fibrous layer interposed between the implant and the surrounding bone. The aim of the present study was to test the possibility of coating a biocompatible metal layer on top of the carbon fiber material, to improve its biological performance. Tantalum was chosen because of its bone compatibility, based on our previous studies. A novel spinal fusion cage was fabricated by applying a thin tantalum coating on the surface of carbon-carbon composite material through chemical vapor deposition. Mechanical and biological performance was tested in vitro and in vivo. Compress strength was found to be 4.9 kN (SD, 0.2). Fatigue test with 500,000 cycles was passed. In vitro radiological evaluation demonstrated good compatibility with X-ray and CT scan examinations. In vivo test employed eight pigs weighing 50 kg each. Instrumented lumbar spine fusion of L3/4 and L4/5 with these cages was performed on each pig. After 3 months, excellent bone integration property was demonstrated by direct contact of the cage with the host bone and newly formed bone. No inflammatory cells were found around the implant. Cages packed with two different graft materials (autograft and COLLOSS) achieved the same new bone formation. The present study proved that coating tantalum on top of the carbon-based implant is feasible, and good bone integration could be achieved.

  16. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad

    2013-01-01

    Tantalum carbide and nitride nanocrystals were prepared through the reaction of a tantalum precursor with mesoporous graphitic (mpg)-C 3N4. The effects of the reaction temperature, the ratio of the Ta precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2 and NH3) on the resultant crystal phases and structures were investigated. The produced samples were characterized using powder X-ray diffraction (XRD), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, a temperature-programmed reaction with mass spectroscopy (MS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicate that the different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen when formed at different temperatures. The Ta3N5 phase with a Ta5+ oxidation state was solely obtained at 1023 K under a flow of ammonia, which gasified the C 3N4 template and was confirmed by detecting the decomposed gaseous products via MS. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C 3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen. The high C3N4/Ta precursor ratio generally resulted in high carbide content rather than a nitride one, consistent with the role of mpg-C3N4 as a carbon source. Electrochemical measurements revealed that the synthesized nanomaterials were consistently able to produce hydrogen under acidic conditions (pH 1). The obtained Tafel slope indicates that the rate-determining step is the Volmer discharge step, which is consistent with adsorbed hydrogen being weakly bound to the surface during electrocatalysis. © 2013 The Royal Society of Chemistry.

  17. Tantalum augments for Paprosky IIIA defects remain stable at midterm followup.

    Science.gov (United States)

    Del Gaizo, Daniel J; Kancherla, Vamsi; Sporer, Scott M; Paprosky, Wayne G

    2012-02-01

    Initial reports with short-term followup of porous tantalum acetabular components and augments for Paprosky IIIA acetabular defects demonstrate high hip scores, low rates of aseptic loosening, and low rates of complications. However, longer-term followup with a larger cohort is needed to determine the durability of these reconstructions. We therefore determined the functional scores, rates of aseptic loosening, and complications in patients with Paprosky IIIA acetabular defects treated with porous tantalum acetabular components and augments. We retrospectively reviewed 37 acetabular revisions in 36 patients (one patient with bilateral revisions) treated with a porous tantalum acetabular component and augment. All patients had defects classified as Type IIIa using the system of Paprosky et al. Harris hip scores were obtained and radiographic examination was performed before surgery and through most recent followup. The minimum followup was 26 months (mean, 60 months; range, 26-106 months). One patient developed aseptic loosening of the acetabular reconstruction requiring revision; seven other patients required further surgery for periprosthetic femoral fracture (two), acute infection (three), and recurrent dislocation (two). Thirty-five of 37 hips had no or occasional pain at final followup. Mean Harris hip scores improved from 33.0 preoperatively (range, 12.6-58.7) to 81.5 postoperatively (range, 27.0-99.8). Although the complication rate requiring further surgery was considerable, most patients with these reconstructions had pain relief and reasonable function with low rates of loosening at midterm followup. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  18. The effect of tantalum on the structure/properties of two polycrystalline nickel-base superalloys: B-1900 + Hf MAR-M247. M.S. Thesis, Final Report

    Science.gov (United States)

    Janowski, G. M.

    1985-01-01

    The microstructure, phase compositions, and phase fractions were studied in conventionally cast B-1900 + Hf and both conventionally cast and directionally solidified MAR-M247 as a function of tantalum concentration. The hot tensile and creep rupture properties of the solutionized and aged MAR-M247-type alloys were also determined as a function of tantalum level. The effects of tantalum on the microstructure and phase compositions of B-1900 + Hf and MAR-M247 (conventionally cast and directionally solidified) were found to be very similar. The addition of tantalum to the as cast and heat treated alloys was shown to cause the partial replacement of the Hf in the MC carbides by Ta, although the degree of replacement was decreased by the solutionizing and aging heat treatment. The gamma prime and minor phase fractions (primarily MC type carbides) both increased approximately linearly with tantalum concentration. The gamma prime phase compositions were relatively insensitive to tantalum variations with the exception of the tantalum and/or hafnium levels. Bulk tantalum additions increased the tantalum, chromium, and cobalt levels of the gamma phase in both alloy series. The increase in the concentrations of the latter two elements in the gamma phase was a result of the decrease in the gamma phase fraction with increasing bulk tantalum concentration and constant gamma/gamma prime partitioning ratio. Tantalum additions increased the yield stress and ultimate tensile strength of the directionally solidified MAR-M247 type alloys and had no significant effect on ductility.

  19. Effects of pressure and temperature on the yield strength of tantalum and rhenium

    Science.gov (United States)

    Crow, Joseph Allan

    The effects of pressure and temperature on the yield strength of tantalum and the effects of pressure on the yield strength of rhenium were investigated using ruby fluorescence. A new Raman system with a motorized stage and near diffraction limit was built to map 2-dimensionally, the pressures inside of a diamond anvil cell. The 2-dimensional data is used to create contour maps and surface plots of the pressures and calculate the pressure gradients induced in the samples. Using the Birch-Murnaghan equation of state, the final sample thickness, and the pressure gradients, the yield strength as a function of temperature and pressure are calculated.

  20. Effects of alloy composition in alleviating embrittlement problems associated with the tantalum alloy T-111

    Science.gov (United States)

    Stephens, J. R.

    1975-01-01

    The causes of aging embrittlement in T-111 (Ta-8W-2Hf) and the effect of alloy modification were investigated. Results show that T-111 possesses a critical combination of tungsten and hafnium that leads to loss in ductility at -196 C after aging near 1040 C. It was found that this occurs because tungsten enhances hafnium segregation to grain boundaries, which also leads to increased susceptibility to hydrogen embrittlement. Aging embrittlement was not observed in tantalum alloys with reduced tungsten or hafnium contents; most of the alloys studied have lower strengths than T-111 and exhibit susceptibility to hydrogen embrittlement.

  1. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  2. Tantalum oxide nanoscale resistive switching devices: TEM/EELS study (Presentation Recording)

    Science.gov (United States)

    Norris, Kate J.; Zhang, Jiaming; Merced-Grafals, Emmanuelle; Musunuru, Srinitya; Zhang, Max; Samuels, Katy; Yang, Jianhua J.; Kobayashi, Nobuhiko P.

    2015-08-01

    The field of non-volatile memory devices has been boosted by resistive switching, a reversible change in electrical resistance of a dielectric layer through the application of a voltage potential. Tantalum oxide being one of the leading candidates for the dielectric component of resistance switching devices was investigated in this study. 55nm TaOx devices in all states were compared through cross sectional TEM techniques including HRTEM, EELS, and EFTEM and will be discussed in this presentation. Based on the chemical and physical features found in the cross sectioned nanodevices we will discuss the switching mechanism of these nanoscale devices.

  3. Molecular functionalization of tantalum oxide surface towards development of apatite growth

    Science.gov (United States)

    Aubry, D.; Volcke, C.; Arnould, Ch.; Humbert, C.; Thiry, P. A.; Delhalle, J.; Mekhalif, Z.

    2009-02-01

    We have studied the apatite growth dynamics on tantalum oxide surfaces. This nucleation is obtained via an organosilane intermediate layer between the apatite and the substrate surface. Four organosilane layers (differing by their terminal functionality) were investigated. Their characterization with atomic force microscopy and other techniques such as X-ray photoelectron spectroscopy (XPS) and wetting measurements highlighted the influence of the organosilane terminal groups on the apatite growth rates. Results revealed that apatite is indeed growing faster on phosphate terminal groups than on the three other groups studied (vinyl, hydroxyl and carboxyl).

  4. Experimental investigation of resonance self-shielding and the Doppler effect in uranium and tantalum

    Science.gov (United States)

    Byoun, T. Y.; Block, R. C.; Semler, T. T.

    1972-01-01

    A series of average transmission and average self-indication ratio measurements were performed in order to investigate the temperature dependence of the resonance self-shielding effect in the unresolved resonance region of depleted uranium and tantalum. The measurements were carried out at 77 K, 295 K and approximately 1000 K with sample thicknesses varying from approximately 0.1 to 1.0 mean free path. The average resonance parameters as well as the temperature dependence were determined by using an analytical model which directly integrates over the resonance parameter distribution functions.

  5. Molecular functionalization of tantalum oxide surface towards development of apatite growth

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, D. [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Volcke, C. [Research Center in Physics of Matter and Radiation (PMR), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Arnould, Ch. [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Humbert, C.; Thiry, P.A. [Research Center in Physics of Matter and Radiation (PMR), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Delhalle, J. [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Z., E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2009-02-15

    We have studied the apatite growth dynamics on tantalum oxide surfaces. This nucleation is obtained via an organosilane intermediate layer between the apatite and the substrate surface. Four organosilane layers (differing by their terminal functionality) were investigated. Their characterization with atomic force microscopy and other techniques such as X-ray photoelectron spectroscopy (XPS) and wetting measurements highlighted the influence of the organosilane terminal groups on the apatite growth rates. Results revealed that apatite is indeed growing faster on phosphate terminal groups than on the three other groups studied (vinyl, hydroxyl and carboxyl).

  6. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  7. Tantalum films with well-controlled roughness grown by oblique incidence deposition

    Science.gov (United States)

    Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2005-08-01

    We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.

  8. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  9. Scalable standard optical sources in the VUV: Emissions from electron impact on metals. [tantalum and tungsten

    Science.gov (United States)

    Hughes, R.

    1980-01-01

    The use of electron impact on metals in the development of a compact optical standard lamp in the vacuum ultraviolet is described. Two different mechanisms are exploited, transition radiation and bremsstrahlung. Transition radiation will be used as a primary standard from 1200A to 3000A using 10 keV electron impact on tungsten. Bremsstrahlung will be used in the soft X-ray region below 1200A to less than 5A as an optical transfer standard from 4 keV electron impact on tantalum or tungsten.

  10. History and prospects of the application of porous tantalum in arthrodesis%多孔钽在关节融合中的历史与前景

    Institute of Scientific and Technical Information of China (English)

    赵阳; 李亮; 王志强

    2014-01-01

    Objective To review the characteristics of metal porous tantalum and its application in arthrodesis. Methods Recent literatures concerning the characteristics of porous tantalum and its application in arthrodesis were retrieved from China National Knowledge Internet ( CNKI ) and PubMed databases. Results Porous tantalum was a kind of metal with low elastic modulus, whose appearance was similar to that of cancellous bone. Recently, it had been widely applied in the orthopaedic ifeld, inluding hip replacement and knee replacement, spine surgery, bone graft substitutes and arthrodesis. Porous tantalum could be attached by a great quantity of bones and soft tissues quickly, with a high volumetric porosity of 70%-80%, good mechanical characteristics, biocompatibility and biological activity and excellent growth characteristics of bone and soft tissues. At present, satisfactory outcomes could be achieved in the clinical application of porous tantalum for hip and knee injuries. Furthermore, with the development of medicine, porous tantalum could be applied in the treatment of other joint injuries. Conclusions Good mechanical stability and early surgical outcomes can be obtained by porous tantalum material in arthrodesis.

  11. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  12. Studying tantalum-based high-κ dielectrics in terms of capacitance measurements

    Science.gov (United States)

    Stojanovska-Georgievska, L.

    2016-08-01

    The trend of rapid development of microelectronics towards nano-miniaturization dictates the inevitable introduction of dielectrics with high permittivity (high-κ dielectrics), as alternative material for replacing SiO2. Therefore, studying these materials in terms of their characteristics, especially in terms of reliability, is of great importance for proper design and manufacture of devices. In this paper, alteration of capacitance in different frequency regimes is used, in order to determine the overall behavior of the material. Samples investigated here are MOS structures containing nanoscale tantalum based dielectrics. Layers of pure Ta2O5, but also Hf and Ti doped tantalum pentoxide, i.e. Ta2O5:Hf and Ta2O5:Ti are studied here. All samples are considered as ultrathin oxide layers with thicknesses less than 15 nm, obtained by radio frequent sputtering on p-type silicon substrate. Measuring capacitive characteristics enables determination of several specific parameters of the structures. The obtained results for capacitance in accumulation, the thickness and time evolution of the interfacial SiO2 layer, values of flatband and threshold voltage, density of oxide charges, interfacial and border states, and reliability properties favor the possibilities for more intensive use of studied materials in new nanoelectronic technologies.

  13. Electronic properties of tantalum pentoxide polymorphs from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor 48109 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109 (United States); Lu, W. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor 48109 (United States); Kioupakis, E., E-mail: kioup@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor 48109 (United States)

    2014-11-17

    Tantalum pentoxide (Ta{sub 2}O{sub 5}) is extensively studied for its attractive properties in dielectric films, anti-reflection coatings, and resistive switching memory. Although various crystalline structures of tantalum pentoxide have been reported, its structural, electronic, and optical properties still remain a subject of research. We investigate the electronic and optical properties of crystalline and amorphous Ta{sub 2}O{sub 5} structures using first-principles calculations based on density functional theory and the GW method. The calculated band gaps of the crystalline structures are too small to explain the experimental measurements, but the amorphous structure exhibits a strong exciton binding energy and an optical band gap (∼4 eV) in agreement with experiment. We determine the atomic orbitals that constitute the conduction band for each polymorph and analyze the dependence of the band gap on the atomic geometry. Our results establish the connection between the underlying structure and the electronic and optical properties of Ta{sub 2}O{sub 5}.

  14. Measurement of the production of charged pions by protons on a tantalum target

    CERN Document Server

    Catanesi, M.G.; Edgecock, R.; Ellis, Malcolm; Robbins, S.; Soler, F.J.P.; Gossling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; Di Capua, E.; Vidal-Sitjed, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M.C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G.B.; Graulich, J.S.; Gregoire, G.; Bonesini, M.; De Min, A.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, N.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; Howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2007-01-01

    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment ($100 \\MeVc \\le p < 800 \\MeVc$ and $0.35 \\rad \\le \\theta <2.15 \\rad$) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results a...

  15. Measurement of the production of charged pions by protons on a tantalum target

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Robbins, S; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A V; Popov, B; Serdiouk, V; Tereshchenko, V V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Arce, P; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Gruber, P; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Pasternak, J; Chernyaev, E; Tsukerman7, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Campanelli, M; Morone, M C; Prior, G; Schroeter, R; Engel, R; Meurer, C; Kato, I; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grgoire, G; Bonesini, M; De Min, A; Ferri, F; Paganoni, M; Paleari, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Pattison, C; Zuber, K; Bobisut, F; Gibin, D; Guglielmi, Alberto M; Mezzetto, M; Dumarchez, J; Vannucci, F; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Buttar, C; Hodgson, P; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Santin, G; Burguet-Castell, J; Cervera-Villanueva, Anselmo; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M; Tornero, A

    2007-01-01

    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment ($100 \\MeVc \\le p < 800 \\MeVc$ and $0.35 \\rad \\le \\theta <2.15 \\rad$) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results a...

  16. Thermal Conductivity of Saturated Liquid Toluene by Use of Anodized Tantalum Hot Wires at High Temperatures.

    Science.gov (United States)

    Perkins, R A; Ramires, M L; Nieto de Castro, C A

    2000-01-01

    Absolute measurements of the thermal conductivity of a distilled and dried sample of toluene near saturation are reported. The transient hot-wire technique with an anodized tantalum hot wire was used. The thermal conductivities were measured at temperatures from 300 K to 550 K at different applied power levels to assess the uncertainty with which it is possible to measure liquid thermal conductivity over wide temperature ranges with an anodized tantalum wire. The wire resistance versus temperature was monitored throughout the measurements to study the stability of the wire calibration. The relative expanded uncertainty of the resulting data at the level of 2 standard deviations (coverage factor k = 2) is 0.5 % up to 480 K and 1.5 % between 480 K and 550 K, and is limited by drift in the wire calibration at temperatures above 450 K. Significant thermal-radiation effects are observed at the highest temperatures. The radiation-corrected results agree well with data from transient hot-wire measurements with bare platinum hot wires as well as with data derived from thermal diffusivities obtained using light-scattering techniques.

  17. Antibacterial properties and cytocompatibility of tantalum oxide coatings with different silver content

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Heng-Li [School of Dentistry, China Medical University, Taichung 404, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw; Chen, Hung-Jui; Chou, Yu-Kai [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Lai, Chih-Ho [School of Medicine, China Medical University, Taichung 404, Taiwan (China); Chen, Michael Y. C. [Division of Oral and Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan (China)

    2014-03-15

    Tantalum (Ta) oxides and their coatings have been proved to increase their applications in the biomedical fields by improving osseointegration and wear resistance. In this study, Ta oxide coatings containing different proportions of Ag are deposited on SS304 materials. A twin-gun magnetron sputtering system is used to deposit the tantalum oxide-Ag coating. In this study, Staphylococcus aureus, which exhibits physiological commensalism on the human skin, nares, and mucosal and oral areas, is chosen as the model for in vitro antibacterial analyses via a fluorescence staining method using Syto9. The cytocompatibility and adhesive morphology of human skin fibroblast cells (CCD-966SK) on the coatings are also determined by using the microculture tetrazolium assay. This study shows that Ta{sub 2}O{sub 5} and Ta{sub 2}O{sub 5}-Ag coatings with 12.5 at. % of Ag exhibit improved antibacterial effects against S. aureus and have good skin fibroblast cell cellular biocompatibility.

  18. Sheet resistance of alumina ceramic after high energy implantation of tantalum ions

    Energy Technology Data Exchange (ETDEWEB)

    Savkin, Konstantin P., E-mail: savkinkp@mail2000.ru [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Bugaev, Alexey S., E-mail: bugaev@opee.hcei.tsc.ru [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Nikolaev, Alexey G., E-mail: nik@opee.hcei.tsc.ru [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Oks, Efim M., E-mail: oks@opee.hcei.tsc.ru [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shandrikov, Maxim V., E-mail: shandrikov@opee.hcei.tsc.ru [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Yushkov, Georgy Yu., E-mail: gyushkov@mail.ru [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Tyunkov, Andrey V., E-mail: tyunkov@opee.hcei.tsc.ru [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, 634050 Tomsk (Russian Federation); Savruk, Elena V., E-mail: savruk@mail.ru [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2014-08-15

    Highlights: • Tantalum ions with the average energy about 145 keV were implanted in the surfaces of flat polycrystalline alumina samples. • The sheet resistance of implanted ceramic reduced after implantation with increasing of the implanted dose. • Normalized surface conductivity of treated alumina ceramic reduced only on 1% during 200 days after finishing the implantation process. • Creation of weak conducting layer on the surface of the ceramic insulator electric field strength of the flashover increases more than 25%. - Abstract: The results of investigation of the sheet resistance of alumina ceramic as a function of the fluence of implanted metal ions are presented. Tantalum ions with the average energy about 145 keV were used in experiments. Estimation of the sheet resistance was performed from analysis of volt–ampere characteristics by measuring the leakage current at a voltage between 100 V and several kilovolts, which was applied at a small area of the implanted surface. Energy dispersive X-ray analysis was used to determine composition of elements in the surface of the implanted ceramics. As a practical application of research results, it was shown that, after the creation of a weak conducting layer on the surface of the ceramic insulator, the electric field strength of the flashover increases by more than 25%.

  19. Tantalum (oxy)nitrides: preparation, characterisation and enhancement of photo-Fenton-like degradation of atrazine under visible light.

    Science.gov (United States)

    Du, Yingxun; Zhao, Lu; Su, Yaling

    2011-11-15

    Tantalum (oxy)nitrides were prepared by the nitridation of Ta(2)O(5) and were added to a photo-Fenton-like system to enhance Fe(3+) reduction and atrazine degradation under visible light. The samples were characterized by XRD, XPS, DRS and BET analyses. XPS analysis showed that the nitrogen content of the tantalum (oxy)nitride samples increased noticeably with the nitridation temperature and nitridation time but slightly with the flow rate of NH(3). XRD results showed Ta(2)O(5) was first converted to TaON and then to Ta(3)N(5) when the nitridation temperature increased. DRS analysis showed that the sample obtained at 800°C displayed the strongest absorption of visible light. However, the ability of the tantalum (oxy)nitrides to reduce Fe(3+) did not increase continuously with the nitrogen content. Sample 7 (700°C, [Formula: see text] , 6h) showed the highest level of photocatalytic activity for Fe(3+) reduction. This is because the photocatalytic activity of TaON for Fe(3+) reduction is higher than that of Ta(3)N(5). And a slight synergetic effect was observed between TaON and Ta(3)N(5). With the addition of sample 7, H(2)O(2) decomposition and atrazine degradation were significantly accelerated in a photo-Fenton-like system under visible light. The regenerated tantalum (oxy)nitrides catalyst displayed considerably stable performance for atrazine degradation.

  20. Structure of the transition zone and its influence on the strength of copper-tantalum joint (Explosion welding)

    Science.gov (United States)

    Greenberg, B. A.; Ivanov, M. A.; Rybin, V. V.; Elkina, O. A.; Patselov, A. M.; Antonova, O. V.; Inozemtsev, A. V.; Salishchev, G. A.; Kozhevnikov, V. E.

    2012-10-01

    The joint of copper and tantalum, metals without mutual solubility, formed by explosion welding is studied. The mechanism of the influence of mutual solubility on the structure of the transition zone is established. It is demonstrated that the interface contains heterogeneities, and their role in the strength of the materials joint is revealed. A microheterogeneous structure of the joint zones is detected.

  1. Extension of the lifetime of tantalum filaments in the hot-wire (Cat) 3 Chemical Vapor Deposition process

    CSIR Research Space (South Africa)

    Knoesen, D

    2008-01-01

    Full Text Available One of the prime components of a hot-wire (Cat) Chemical Vapor Deposition system is the filament used to pyro-catalytically crack the gases like silane. Burnt out tantalum filaments were studied to determine the possible improvement of lifetime...

  2. Tantalum coating on TiO{sub 2} nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Christine J.; Brammer, Karla S. [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Noh, Kunbae [Corporate Research Institute, Cheil Industries, Inc., Gocheon-Dong, Uiwang-Si, Gyeonggi-Do, 437-711 (Korea, Republic of); Johnston, Gary [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Jin, Sungho, E-mail: jin@ucsd.edu [Materials Science and Engineering, University of California at San Diego, La Jolla, CA 92093 (United States); Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093 (United States)

    2014-04-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO{sub 2}) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO{sub 2} nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO{sub 2} nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO{sub 2} nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface.

  3. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C. (Kyoto Univ. (Japan))

    1990-11-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis.

  4. Synthesis and Characterization of Chiral Organogallium and Indium Complexes with Salen Ligands

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several new chiral organogallium and indium complexes with chiral Salen (1 and 2) as anxciliary ligands have been synthesized and characterized by elemental analysis, IR, 1H NMR and Mass spectroscopy. For the gallium, mono and bimetallic complexes were obtained, whereas ring closure complexes of indium were obtained.

  5. Chemistry for oncotheranostic gold nanoparticles.

    Science.gov (United States)

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  6. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    OpenAIRE

    Subiramaniyam, N. P.; P. Thirunavukkarasu; Murali, K. R.

    2013-01-01

    Copper indium gallium selenide (CIGS) films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decre...

  7. Optical and photocatalytic properties of indium phosphide nanoneedles and nanotubes

    DEFF Research Database (Denmark)

    Yu, Yanlong; Yu, Cuiyan; Xu, Tao

    2017-01-01

    , and Ultraviolet-visible (UV–vis) spectroscopy. The room temperature photoluminescence (PL) measurements showed that the InP nanoneedles and nanotubes possessed a pronounced blue shift in contrast to the bulk counterpart, which was ascribed to the crystalline defects effect. Moreover, the InP nanotubes exhibited......Large scale indium phosphide (InP) nanoneedles and nanotubes were synthesized through a facile solvothermal reaction. The morphology and microstructure of the samples were analyzed by employing scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy...

  8. pp-Solar Neutrino Spectroscopy: Return of the Indium Detector

    OpenAIRE

    2001-01-01

    A new indium-loaded liquid scintillator (LS) with up to 15wt% In and high light output promises a breakthrough in the 25y old proposal for observing pp solar neutrinos (nue) by tagged nue capture in 115In. Intense background from the natural beta-decay of In, the single obstacle blocking this project till now, can be reduced by more than x100 with the new In-LS. Only non-In background remains, dramatically relaxing design criteria. Eight tons of In yields ~400 pp nue/y after analysis cuts. Wi...

  9. Recent progress in the determination of gallium, indium, and thallium

    Institute of Scientific and Technical Information of China (English)

    GAO Jinzhang

    2005-01-01

    This mini-review covers the literatures of the determination of gallium, indium, and thallium by instrumental analysis with computer-assisted searching over the period of 1994 to 2003. Some papers appearing in the early of 2004 are also included. Because the rapid progress in the instrument has been made, these new papers are prioritized in selection in the similar papers. The contents are considered to be separation and preconcentration, spectrophotometry, spectrofluorimetry, electroanalyses, atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and so forth.

  10. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same w

  11. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  12. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  13. Separation of Indium and Iron from Dilute Sulphate Solutions with a Phosphorous Mixer Extractant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The phosphorous mixer introduced could replace D2EHPA as an extractant applied in the extraction of indium. The extraction properties of the phosphorous mixer were studied. The influences of extractant concentration, organic/aqueous (O/A) phase ratio, equilibrium time, and pH value of the feed solutions on the extraction of indium and separation of indium-iron were investigated experimentally. Under the best operating conditions, more than 98% of indium was extracted through two-stage counter-current extraction. The optimizing condition of indium extraction is determined as follows: O/A = 1∶(9€?2) in volume ratio; 30% PPD in sulphonated kerosene; pH of the feed, about 0.6; equilibrium time, 3€? min. The extractant has good reusing and anti-aging properties.

  14. Analysis and calibration of transient enhanced diffusion for an indium impurity in a nanoscale semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Ha; Lee, Hoong-Joo [Sangmyung University, Chonan (Korea, Republic of)

    2005-02-15

    We developed a new systematic calibration procedure which was applied to the prediction of the diffusivity, the segregation, and transient enhanced diffusion (TED) of an indium impurity. The TED of the indium impurity was studied using four different experimental conditions. Although indium is susceptible to TED, rapid thermal annealing (RTA) is effective in suppressing the TED effect and maintaining a steep retrograde profile. Like boron impurities, the indium shows significant oxidation-enhanced diffusion in silicon and has segregation coefficients much less than 1 at the Si/SiO{sub 2} interface. In contrast to boron, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed procedure was validated by using secondary ion mass spectrometry (SIMS) data and by using the 0.13-{mu}m device characteristics, such as V{sub th} and I{sub dsat}, for which the differences between simulation and experiment less than 5 %.

  15. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets

    Science.gov (United States)

    Potts, Heidi; Morgan, Nicholas P.; Tütüncüoglu, Gözde; Friedl, Martin; Morral, Anna Fontcuberta i.

    2017-02-01

    The need for indium droplets to initiate self-catalyzed growth of InAs nanowires has been highly debated in the last few years. Here, we report on the use of indium droplets to tune the growth direction of self-catalyzed InAs nanowires. The indium droplets are formed in situ on InAs(Sb) stems. Their position is modified to promote growth in the or equivalent directions. We also show that indium droplets can be used for the fabrication of InSb insertions in InAsSb nanowires. Our results demonstrate that indium droplets can initiate growth of InAs nanostructures as well as provide added flexibility to nanowire growth, enabling the formation of kinks and heterostructures, and offer a new approach in the growth of defect-free crystals.

  16. Limitations of indium leukocyte imaging for the diagnosis of spine infections

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, J.L.; Brown, M.L.; McLeod, R.; Fitzgerald, R.H. Jr. (Mayo Clinic and Mayo Foundation, Rochester, MN (USA))

    1991-02-01

    The usefulness of indium-111 white blood cell (WBC) scintigraphy in the detection of spine sepsis was studied in 22 patients who had open or percutaneous biopsies for microbiologic diagnosis. The indium images in 18 patients with vertebral infection were falsely negative in 15 (83%) and truly positive in 3 (17%). All four patients with negative cultures and histology had true-negative scans. The indium-111 WBC imaging results yielded a sensitivity of 17%, a specificity of 100%, and an accuracy rate of 31%. Prior antibiotic therapy was correlated with a high incidence of false-negative scans and photon-deficient indium-111 WBC uptake. The usefulness of indium-111 WBC scintigraphy for the diagnosis of vertebral infection may be limited to those patients who have not been treated with antibiotics previously.

  17. Indium incorporation into InGaN: The role of the adlayer

    Science.gov (United States)

    Rossow, U.; Horenburg, P.; Ketzer, F.; Bremers, H.; Hangleiter, A.

    2017-04-01

    We study the incorporation processes of indium into group-III nitride layers under pulsed and continuous growth conditions by in-situ reflection measurements. We want to clarify which processes limit the incorporation of indium and lead to a degrading layer structure. The data are discussed in the context of the adlayer model proposed by theory [1], which is a liquid-like layer of group-III atoms on the surface. The adlayer is built-up by the incoming flux but the high vapor pressure of indium leads to a high desorption rate and therefore it is apparent in the data only for low growth temperatures. The data suggests that segregated indium on the surface and the environment also contribute to the indium incorporation process likely also via the adlayer.

  18. Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application

    Energy Technology Data Exchange (ETDEWEB)

    Ye Weichun; Wang Daoai; Zhang Hong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou Feng, E-mail: zhouf@ns.lzb.ac.c [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-02-15

    A functional biopolymer - polydopamine (Pdop) layer was easily modified on the surface of indium tin oxide substrates by spontaneous oxidative polymerization in a dopamine solution. The Pdop layer functions as a novel and promising protector for electrochemical growth of flowerlike gold nanostructures (AuNFs). Electrochemical investigations and SEM results demonstrate that Pdop coating is favored to rapid gold nucleation. The application of AuNFs in surface-enhanced Raman scattering is investigated by using rhodamine 6G as probe molecule. Its detection limit reaches as low as 10{sup -12} M. Pdop coating as a functional platform to prepare AuNFs is promising for potential applications in sensitive optical chemical sensors.

  19. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  20. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  1. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  2. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  3. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  4. Aiming for Gold

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Twenty-three years ago he claimed China’s first Olympic gold medal,with a win in the 50-meter pistol shooting competition.Now Xu Haifeng is leading the country’s modern pentathlon team in its bid for success at the Beijing Games

  5. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  6. Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Nam, Taewook; Park, Jusang [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Gatineau, Julien [Air Liquide Laboratories, 28 Wadai, Tsukuba 300-4247 (Japan); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2015-07-31

    We investigated the growth of indium oxide (In{sub 2}O{sub 3}) and indium-doped zinc oxide (In-doped ZnO, IZO) thin films synthesized using thermal atomic layer deposition with dimethylamino-dimethylindium as the precursor, while varying the In{sub 2}O{sub 3}/ZnO ratio. The IZO films were deposited using the supercycle method, and the doping concentration of these films was controlled by changing the In{sub 2}O{sub 3}/ZnO cycle ratio. The microstructural properties and chemical compositions of the films were analyzed using X-ray diffraction analysis and X-ray photoelectron spectroscopy. Further, the electrical properties of the IZO films, including their carrier concentration, mobility, and resistivity, were investigated through Hall measurements. The lowest resistivity (6.15 × 10{sup −2} Ω·cm) was exhibited by the IZO film. The highest carrier concentration and mobility exhibited by the IZO films grown at 300 °C were 4.4 × 10{sup 18} cm{sup −3} and 28.7 cm{sup 2}/V·s, respectively. - Highlights: • Indium oxide and In-doped ZnO (IZO) were deposited using thermal ALD with DMLDMIn. • In doped ZnO (IZO) was deposited using thermal ALD using supercycle method. • Properties of IZO were investigated as a function of doping concentration. • The lowest resistivity can be obtained at the maximum In solubility of ZnO.

  7. Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process

    Directory of Open Access Journals (Sweden)

    Satoru Yoshimura

    2017-06-01

    Full Text Available Indium nano-particle irradiations onto zeolite powders were carried out using a pulse arc plasma source system. X-ray photoelectron spectroscopic and scanning electron microscopic studies of an indium irradiated zeolite sample revealed that indium nano-particles were successfully deposited on the sample. Besides, the sample was found to be capable of catalyzing an organic chemical reaction (i.e., Friedel-Crafts alkylation. Then, we examined whether or not the catalytic ability depends on the irradiated indium dose, having established the optimal indium dose for inducing the catalytic effect.

  8. THE DEVELOPMENT OF 6.7% EFFICIENT COPPER ZINC INDIUM SELENIDE DEVICES FROM COPPER ZINC INDIUM SULFIDE NANOCRYSTAL INKS

    OpenAIRE

    Graeser, Brian Kemp

    2014-01-01

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2 )0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2 )0.5 (Zn(S,Se)) 0.5 layer with mic...

  9. Field-effect transistors based on cubic indium nitride.

    Science.gov (United States)

    Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2014-02-04

    Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics.

  10. Placental localization by scanning with indium 113m

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Wook; Choe, Yong Kyu; Choi, Byung Sook [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1972-09-15

    The application of radioactive tracers for placental localization has been introduced as the worthwhile diagnostic method in placenta previa. Recently {sup 113m}In has been applied as the broad spectrum agent for the visualization of various organs. The advantage of {sup 113m}In are a short half-life with 1.7 hours and no beta particle emission. During the period from May 1970 to August 1971, the placental scanning with {sup 113m}In was carried out at Yonsei Medical Center on 19 cases of Korean pregnant females who had painless vaginal bleeding with suspicious placenta previa or other placental lesions, clinically. Followings are the results of placental scanning with Indium-113m. 1) Eight cases out of 19 cases were suggested as placenta previa and the remaining 11 cases were turned out to be normal placental location. 2) Among these 8 case of positive scanning, placenta previa totalis was 6 cases, placental previa partialis was 1 case and placenta previa marginalis was also 1 case. 3) Among 11 cases of normal placental localization, right side placenta was 7 cases and left side, 4 cases. The placental scanning with Indium-113m is thought to be one of the simple, safe and rapid method with high accuracy for clinical diagnosis of the placenta previa and placental localization.

  11. Oxygen-free atomic layer deposition of indium sulfide.

    Science.gov (United States)

    McCarthy, Robert F; Weimer, Matthew S; Emery, Jonathan D; Hock, Adam S; Martinson, Alex B F

    2014-08-13

    Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.

  12. Mobility and carrier density in nanoporous indium tin oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Weissbon, Jaqueline; Gondorf, Andreas; Geller, Martin; Lorke, Axel [Fakultaet fuer Physik and CeNIDE, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Inhester, Martina; Prodi-Schwab, Anna; Adam, Dieter [Evonik Degussa GmbH, D-45772 Marl (Germany)

    2011-07-01

    Indium tin oxide (ITO) has become an indispensable material for a range of electronic devices. It is transparent in the entire visible range and electrically conducting, hence, a well suited material for transparent electrodes. An interesting possibility to realize transparent, conducting films without the use of vacuum techniques is the printing of dispersions containing ITO nanoparticles. We study here the charge carrier concentration and mobility of various nanoporous indium tin oxide (ITO) films, using Hall measurements and optical spectroscopy. For the carrier density inside the particles (2-4 . 10{sup 20} cm{sup -3}), the results of these complementary measurement techniques are in good agreement with each other and suggest that even in highly porous materials the common equations for the Hall resistance can be applied. However, for the mobilities in these layers the results differ very strongly: from 50 (cm{sup 2})/(Vs) in optical spectroscopy (which is comparable to bulk ITO) to 0.4 (cm{sup 2})/(Vs) in Hall measurements.This suggests that the mobility for electrical transport in nanoporous ITO films is strongly suppressed by scattering at interparticle boundaries.

  13. Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications

    Science.gov (United States)

    Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Krishnamoorthi, C.

    2016-10-01

    The optical and electrical properties are the two important dimensions of Indium oxide and its derivatives (indium tin oxide) and were well studied to understand the origin of wide electronic band gap and high electrical conductivity at room temperature. In2O3 and its derivatives find many applications in electronic and optoelectronic domains based on the above properties. The recent discovery of ferromagnetism in In2O3 at room temperature become a third dimension and lead to intensive research on enhancement of ferromagnetic strength by various means such as dopants and synthesis protocols and extrinsic parameters. The research lead to enormous experimental data and theoretical models proliferation over the past one decade with diverse insights into the origin of ferromagnetism in In2O3 based dilute magnetic semiconductors. The experimental data and theoretical models of ferromagnetism in In2O3 has been thoroughly surveyed in the literature and compiled all the data and presented for easy of understanding in this review. We have identified best chemical composition, geometry and synthesis protocols for strongest ferromagnetic strength and suitable theoretical model of magnetism has been presented in this review.

  14. Measurement of the Electron Affinities of Indium and Thallium

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. S.; Carpenter, D. L.; Covington, A. M.; Williams, W. W.; Kvale, T. J.; Seely, D. G.

    1999-03-20

    The electron affinities of indium and thallium were measured in separate experiments using the laser-photodetachment electron spectroscopy technique. The measurements were performed at the University of Nevada, Reno. Negative ion beams of both indium and thallium were extracted from a cesium-sputter negative ion source, and mass analyzed using a 90{sup o} bending magnet. The negative ion beam of interest was then crossed at 90{sup o} with a photon beam from a cw 25-Watt Ar{sup +} laser. The resulting photoelectrons were energy analyzed with a 160{sup o} spherical-sector spectrometer. The electron affinity of In({sup 2}P{sub 1/2}) was determined to be 0.404 {+-} 0.009 eV and the electron affinity of thallium was determined to be 0.377 {+-} 0.013 eV. The fine-structure splittings in the ground states of the negative ions were also determined. The experimental measurements will be compared to several recent theoretical predictions.

  15. Conductance through a helical state in an Indium antimonide nanowire.

    Science.gov (United States)

    Kammhuber, J; Cassidy, M C; Pei, F; Nowak, M P; Vuik, A; Gül, Ö; Car, D; Plissard, S R; Bakkers, E P A M; Wimmer, M; Kouwenhoven, L P

    2017-09-07

    The motion of an electron and its spin are generally not coupled. However in a one-dimensional material with strong spin-orbit interaction (SOI) a helical state may emerge at finite magnetic fields, where electrons of opposite spin will have opposite momentum. The existence of this helical state has applications for spin filtering and cooper pair splitter devices and is an essential ingredient for realizing topologically protected quantum computing using Majorana zero modes. Here, we report measurements of a quantum point contact in an indium antimonide nanowire. At magnetic fields exceeding 3 T, the 2 e (2)/h conductance plateau shows a re-entrant feature toward 1 e (2)/h which increases linearly in width with magnetic field. Rotating the magnetic field clearly attributes this experimental signature to SOI and by comparing our observations with a numerical model we extract a spin-orbit energy of approximately 6.5 meV, which is stronger than the spin-orbit energy obtained by other methods.Indium antimonide nanowires have large spin-orbit coupling, which can give rise to helical states that are an important part of proposals for topological quantum computing. Here the authors measure conductance through the helical states and extract a larger spin-orbit energy than obtained before.

  16. 电容器级钽粉关键技术与开发研究%The Key Technique and R & D of Capacitor Grade Tantalum Powder

    Institute of Scientific and Technical Information of China (English)

    何季麟; 张学清; 杨国启; 郑爱国

    2014-01-01

    This paper cites the characteristics of tantalum capacitors,applications and application characteristics of alu-minum capacitors and multilayer ceramic capacitors.It analyzes the new trends that the chip-based and miniaturization tantalum capacitors led capacitor grade tantalum powder to higher capacity.It describes the challenges of the demand for high reliability in high-voltage tantalum powder of aviation,aerospace and military field voltage capacitor to a higher volt-age and lower ESR direction.It reviews the application development process of the capacitor tantalum powder with high ca-pacitance tantalum powder,high voltage tantalum powder and medium voltage (flake)tantalum powder.It analyzes the performance,product grades and key technologies of high capacitance tantalum powder,high voltage tantalum powder and medium voltage(flake)tantalum powder by methods of the classical methods of potassium tantalum fluoride (K2TaF7)so-dium metal reduction,electron beam melting and ball milled production.For 30~80 kμFV/g tantalum powder,the influ-ence factors of withstand voltage performance have been analyzed.Finally,it presents new technologies,devices,prod-ucts morphology,performance,advantages and disadvantages of the high capacitance tantalum powder and high voltage technology.On the basis of capacitor grade tantalum powder,this paper points out sustainable development ideas of higher capacitance and higher voltage for tantalum capacitors.%引述了Ta电容器与Al电容器、多层陶瓷电容器相比突出的性能与应用特征,分析了Ta电容器片式化、小型化促进电容器级Ta粉高比容化发展的新趋势,叙述了航空、航天和军工领域对高压电容器高可靠性能的需求,以及对中高压Ta粉向更高电压、更低SER方向发展的引领,回顾了电容器用高比容Ta粉、中高压Ta粉发展应用进程,介绍了经典氟钽酸钾(K2 TaF7)金属Na还原法、电子束熔炼法、球磨片式化法生产的高

  17. Graphenated tantalum(IV) oxide and poly(4-styrene sulphonic acid)-doped polyaniline nanocomposite as cathode material in an electrochemical capacitor

    CSIR Research Space (South Africa)

    Njomo, N

    2014-05-01

    Full Text Available Nanostructured poly(4-styrene sulphonic acid) and tantalum (IV) oxide-doped polyaniline nanocomposite were synthesised and their electro-conductive properties were determined. The oxide was synthesized using a modified sol-gel method...

  18. Disposable amperometric immunosensor based on layer-by-layer electro-depositing of the nanogold particles, prussian blue-modified indium tin oxide for determination of -fetoprotein

    Indian Academy of Sciences (India)

    Yan Li; Wen-Bin Liang; Li-Chao Fang; Hui Huang; Jun Deng; Jun-Song Zheng

    2009-11-01

    In this paper, a novel disposable immunosensor for the detection of -fetoprotein (AFP) based on the Indium tin oxide (ITO) modified by the sequential electro-deposition of the nanogold particles (nano-Au) and prussian blue (PB) is described. The ITO is employed to reduce the cost, instead of expensive gold electrode, glassy carbon electrode or platinum electrode. The layer-by-layer (LBL) electro-deposition of the nano-Au, PB is used for blocking the possible leakage from the substrate electrode surface and to prevent shedding of composite membrane. Under optimal conditions, the proposed immunosensor displays a broad linear response to AFP, the working range being 0.25 to 300.0 ng mL-1 with a detection limit of 0.04 ng mL-1. The studied immunosensor exhibits high sensitivity, fast analytical time and good stability. The proposed methodology is potentially attractive for clinical immunoassays.

  19. Phase and structural states in the NiTi-based alloy surface layer formed by electron-ion-plasma methods using tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Neiman, Aleksei A., E-mail: nasa@ispms.tsc.ru; Lotkov, Aleksandr I.; Gudimova, Ekaterina Y. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, Ludmila L., E-mail: meisner2l@yahoo.com; Semin, Viktor O. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.

  20. [(≡SiO)TaV (=CH2)Cl2], the first tantalum methylidene species prepared and identified on the silica surface

    KAUST Repository

    Chen, Yin

    2013-11-01

    A novel surface tantalum methylidene [(≡SiO)TaV (=CH 2)Cl2] was obtained via thermal decomposition of the well-defined surface species [(≡SiO)TaVCl2Me 2]. This first surface tantalum methylidene ever synthesized has been fully characterized and the kinetics of the a-hydrogen abstraction reaction has also been investigated in the heterogeneous system. © 2013 Elsevier B.V. All rights reserved.

  1. Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum

    Science.gov (United States)

    Hahn, Eric N.; Germann, Timothy C.; Ravelo, Ramon J.; Hammerberg, James E.; Meyers, Marc A.

    2017-01-01

    Ductile tensile failure of tantalum is examined through large scale non-equilibrium molecular dynamics simulations. Several loading schemes including flyer plate impact, decaying shock loading via a frozen piston, and quasi-isentropic (constant strain-rate) expansion are employed to span tensile strain-rates of 108 to 1014 per second. Single crystals of orientation are specifically evaluated to eliminate grain boundary effects. Heterogeneous void nucleation occurs principally at the intersection of deformation twins in single crystals. At high strain rates, multiple spall events occur throughout the material and voids continue to nucleate until relaxation waves arrive from adjacent events. At ultra-high strain rates, those approaching or exceeding the atomic vibrational frequency, spall strength saturates near the maximum theoretical spall strength.

  2. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  3. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitial clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.

  4. Examination of the damage and failure response of tantalum and copper under varied shock loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bronkhorst, Curt A [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray Ill, George T [Los Alamos National Laboratory; Bourne, Neil [AWE-ALDERMASTON

    2010-12-16

    A number of plate impact experiments have been conducted on high purity polycrystalline tantalum and copper samples using graded flyer plate configurations to alter the loading profile. These experiments are designed in a way so that a broad range of damage regimes are probed. The results show that the nucleation of damage primarily occurs at the grain boundaries of the materials. This affords us the opportunity to propose a porosity damage nucleation criterion which begins to account for the length scales of the microstructure (grain size distribution) and the mechanical response of the grain boundary regions (failure stress distribution). This is done in the context of a G-T-N type model for the ductile damage and failure response of both the materials examined. The role of micro-inertial effects on the porosity growth process is also considered.

  5. Examination of the damage and failure response of tantalum and copper under varied shock loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bronkhorst, Curt A [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray Ill, George T [Los Alamos National Laboratory; Bourne, Neil [AWE-ALDERMASTON

    2010-12-16

    A number of plate impact experiments have been conducted on high purity polycrystalline tantalum and copper samples using graded flyer plate configurations to alter the loading profile. These experiments are designed in a way so that a broad range of damage regimes are probed. The results show that the nucleation of damage primarily occurs at the grain boundaries of the materials. This affords us the opportunity to propose a porosity damage nucleation criterion which begins to account for the length scales of the microstructure (grain size distribution) and the mechanical response of the grain boundary regions (failure stress distribution). This is done in the context of a G-T-N type model for the ductile damage and failure response of both the materials examined. The role of micro-inertial effects on the porosity growth process is also considered.

  6. Investigation and modeling of the anomalous yield point phenomenon in pure tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Colas, D. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Université de Bourgogne, 9 avenue Alain Savary, BP 17870, 21078 Dijon Cedex (France); CEA Valduc, 21120 Is-sur-Tille (France); Mines ParisTech, Centre des Matériaux, CNRS, UMR 7633, BP 87, 91003 Evry Cedex (France); Finot, E. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Université de Bourgogne, 9 avenue Alain Savary, BP 17870, 21078 Dijon Cedex (France); Flouriot, S. [CEA Valduc, 21120 Is-sur-Tille (France); Forest, S. [Mines ParisTech, Centre des Matériaux, CNRS, UMR 7633, BP 87, 91003 Evry Cedex (France); Mazière, M., E-mail: matthieu.maziere@mines-paristech.fr [Mines ParisTech, Centre des Matériaux, CNRS, UMR 7633, BP 87, 91003 Evry Cedex (France); Paris, T. [CEA Valduc, 21120 Is-sur-Tille (France)

    2014-10-06

    The monotonic and cyclic behavior of commercially pure tantalum has been investigated at room temperature, in order to capture and understand the occurrence of the anomalous yield point phenomenon. Interrupted tests have been performed, with strain reversals (tensile or compressive loading) after an aging period. The stress drop is attributed to the interactions between dislocations and solute atoms (oxygen) and its macroscopic occurrence is not systematically observed. InfraRed Thermography (IRT) measurements supported by Scanning Electron Microscopy (SEM) pictures of the polished gauge length of a specimen during an interrupted tensile test reveal the nucleation and propagation of a strain localization band. The KEMC (Kubin–Estrin–McCormick) phenomenological model accounting for strain aging has been identified for several loadings and strain rates at room temperature. Simulations on full specimen using the KEMC model do not show strain localization, because of the competition between viscosity and strain localization. However, a slight misalignment of the sample can promote strain localization.

  7. Thermodynamic and mechanical stabilities of tantalum nitride Ta2N3

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chao [Los Alamos National Laboratory; Lin, Zhijun [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

    2009-01-01

    We perform first-principles density functional calculations on a newly discovered tantalum nitride with an orthorhombic U{sub 2}S{sub 3} structure to assess its thermodynamic and mechanical stabilities. Our random search unveils a tetragonal Ta{sub 2}N{sub 3} structure that is energetically more favorable than an orthorhombic Ta{sub 2}N{sub 3} at zero pressure. We predict that the tetragonal Ta{sub 2}N{sub 3} transforms into the orthorhombic phase above a relatively low pressure of 7.7 GPa. Single-crystal elastic constant calculations reveal that orthorhombic Ta{sub 2}N{sub 3} is mechanically unstable because of a negative c{sub 66}. Our calculations suggest that minor oxygen substitution for nitrogen plays an important role in stabilizing the orthorhombic Ta{sub 2}N{sub 3} structure.

  8. Influence of Deposition Parameters on Surface Evolution of Sputtered Tantalum Thin Films

    Institute of Scientific and Technical Information of China (English)

    LUO Xiang-dong; LUO Chong-tai

    2008-01-01

    Tantalum thin films with different thicknesses varying from 50 nm to 600 nm were deposited on Si substrates by radio frequency magnetron sputtering as functions of deposition temperature(Ts) and bias voltage(Ub). Surface roughness and its dynamic evolution behavior were quantitatively investigated by using atomic force microscopy(AFM). With increasing Ts from 300 K to 600 K, surface roughness Rrms and dynamic exponent β decreases gradually. With the increase of Ub from 0 V to -150 V, Rrms and β first decrease and then increase. The dependence of Ts and Ub on the film surface evolution has been discussed in terms of surface diffusion, mound growth, and ion impinging effect.

  9. Oxidative Desulfurization of Dibenzothiophene Using Dawson Type Heteropoly Compounds/Tantalum as Catalyst

    OpenAIRE

    Mohadi, Risfidian; Teresia, Lusi; Fithri, Najma Annuria; Lesbani, Aldes; Hidayati, Nurlisa

    2016-01-01

    Catalyst (NH4)6[b-P2W18O62]/Ta has been synthesized by simple wet impregnation at 30-40 °C under atmospheric conditions using Dawson type polyoxometalate (NH4)6[b-P2W18O62] and tantalum. The catalyst was characterized by FTIR spectrophotometer, XRD, SEM, and N2 adsorption desorption methods. FTIR spectrum of (NH4)6[b-P2W18O62]/Ta showed that Dawson type polyoxometalate (NH4)6[b-P2W18O62] and Ta was successfully impregnated which was indicated by vibration spectrum at wavenumber of 900-1100 cm...

  10. Growth and characteristics of tantalum oxide thin films deposited using thermionic vacuum arc technology

    Science.gov (United States)

    Vladoiu, Rodica; Ciupina, Victor; Mandes, Aurelia; Dinca, Virginia; Prodan, Madalina; Musa, Geavit

    2010-11-01

    Tantalum pentoxide (Ta2O5) thin films were synthesized using thermionic vacuum arc (TVA) technology. TVA is an original deposition method using a combination of anodic arc and electron gun system for the growth of thin films from solid precursors under vacuum of 10-6 Torr. The properties of the deposited Ta2O5 thin films were investigated in terms of wettability, refractive index, morphology, and structure. The surface free energy was determined by means of surface energy evaluation system indicating a hydrophilic character and the refractive index was measured by Filmetrics F20 device. The morphology was determined from bright field transmission electron microscopy (TEM) image performed by Philips CM 120 ST TEM system. It exhibits nanoparticles of 3-6 nm diameter smoothly distributed. Selected area electron diffraction pattern revealed the contrast fringes given by complex polycrystalline particles included in the amorphous film. The measured fringes could be indexed using monoclinic structure of Ta2O5.

  11. Melting curves and structural properties of tantalum from the modified-Z method

    Science.gov (United States)

    Liu, C. M.; Xu, C.; Cheng, Y.; Chen, X. R.; Cai, L. C.

    2015-12-01

    The melting curves and structural properties of tantalum (Ta) are investigated by molecular dynamics simulations combining with potential model developed by Ravelo et al. [Phys. Rev. B 88, 134101 (2013)]. Before calculations, five potentials are systematically compared with their abilities of producing reasonable compressional and equilibrium mechanical properties of Ta. We have improved the modified-Z method introduced by Wang et al. [J. Appl. Phys. 114, 163514 (2013)] by increasing the sizes in Lx and Ly of the rectangular parallelepiped box (Lx = Ly ≪ Lz). The influences of size and aspect ratio of the simulation box to melting curves are also fully tested. The structural differences between solid and liquid are detected by number density and local-order parameters Q6. Moreover, the atoms' diffusion with simulation time, defects, and vacancies formations in the sample are all studied by comparing situations in solid, solid-liquid coexistence, and liquid state.

  12. Study of two tantalum Taylor impact specimens using experiments and stochastic polycrystal plasticity simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael R [Los Alamos National Laboratory

    2008-01-01

    We compare the experimentally obtained response of two cylindrical tantalum Taylor impact specimens. The first specimen is manufactured using a powder metallurgy (P/M) process with a random initial texture and relatively equiaxed crystals. The second is sectioned from a roundcorner square rolled (RCSR) rod with an asymmetric texture and elongated crystals. The deformed P/M specimen has an axisymmetric footprint while the deformed RCSR projectile has an eccentric footprint with distinct corners. Also, the two specimens experienced similar crystallographic texture evolution, though the RCSR specimen experienced greater plastic deformation. Our simulation predictions mimic the texture and deformation data measured from the P/M specimen. However, our RCSR specimen simulations over-predict the texture development and do not accurately predict the deformation, though the deformation prediction is improved when the texture is not allowed to evolve. We attribute this discrepancy to the elongated crystal morphology in the RCSR specimen which is not represented in our mean-field model.

  13. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  14. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yindong [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Bao, Chongyun, E-mail: cybao9933@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu (China); Wismeijer, Daniel [Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam and University of Amsterdam, Amsterdam (Netherlands); Wu, Gang, E-mail: g.wu@acta.nl [Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, VU University Amsterdam and University of Amsterdam, Amsterdam (Netherlands)

    2015-04-01

    More rapid restoration and more rigid functionality have been pursued for decades in the field of dental implantology. Under such motivation, porous tantalum has been recently introduced to design a novel type of dental implant. Porous tantalum bears interconnected porous structure with pore size ranging from 300 to 600 μm and a porosity of 75–85%. Its elastic modulus (1.3–10 GPa) more closely approximates that of natural cortical (12–18 GPa) and cancellous bone (0.1–0.5 GPa) in comparison with the most commonly used dental materials, such as titanium and titanium alloy (106–115 GPa). Porous tantalum is highly corrosion-resistant and biocompatible. It can significantly enhance the proliferation and differentiation of primary osteoblasts derived from elderly people than titanium. Porous tantalum can allow bone ingrowth and establish not only osseointegration but also osseoincorporation, which will significantly enhance the secondary stability of implants in bone tissue. In this review, we summarize the physicochemical, mechanical and biological properties of porous tantalum. We further discuss the performance of current tantalum dental implants and present the methodologies of surface modifications in order to improve their biological performance.

  15. Fabrication and characterization of powder metallurgy tantalum components prepared by high compaction pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmoo [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea. (Korea, Republic of); Lee, Dongju [Korea Atomic Energy Research Institute, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Hwang, Jaewon [Samsung Electronics, 129 Samsung-ro, Youngtong-gu, Suwon 16677 (Korea, Republic of); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Hong, Soon Hyung, E-mail: shhong@kaist.ac.kr [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2016-04-15

    The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sintered density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.

  16. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  17. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    Science.gov (United States)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  18. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Guo, Wenlong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Xu, Sheng [School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-10-30

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g{sup −1} at current density of 0.5 A g{sup −1}. The capacitance remains at about 84% after 1000 cycles at 10 A g{sup −1}. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  19. Clinical and radiographic evaluation of single tantalum dental implants: a prospective pilot clinical study

    Science.gov (United States)

    DE FRANCESCO, M.; GOBBATO, E.A.; NOCE, D.; CAVALLARI, F.; FIORETTI, A.

    2016-01-01

    SUMMARY Objective The aim of this prospective pilot clinical case series report was to evaluate, through a clinical and radiographic analysis, the peri-implant bone resorption of the tantalum dental implants (TMT) (Zimmer TMT, Parsippany, NJ, USA) one year after prosthetic rehabilitation. Methods Twenty tantalum dental implants were placed in both maxillas and mandibles of 20 patients. Patients were asked to attend a radiographic and clinical follow-up and their previous clinical records and X-rays were assessed. Bone levels were calculated by digitally measuring the distance from the implant shoulder to the first bone-to-implant on periapical radiographs taken at surgery and after 6 and 12 months of functioning. The Pearson correlation analysis was performed to assess it there was a correlation between the measurement of the marginal bone loss (MBL). The Anova Test with a post-hoc analysis using Bonferroni’s test was used to compare the three group (0, 6 months and 12 months). Results The mean total MBL for the group 0 months was 0.84 mm (SD 0.21), 6 months was 0.87 mm (SD 0.22) and for 12 months was 0.89 mm (SD 0.23). The values of the Pearson’s coefficients showed that the data measurement were positively correlated. The Anova test showed a statistically significant difference between the groups. Conclusion The statistically significant difference in marginal bone loss can be considered physiological. Within the limits of this study it can be concluded that TMT implants have an excellent bone crest’s stability, however, to have most accurate information, will be necessary extend the sample. PMID:28280531

  20. Dissolution Behavior of Indium in CaO-SiO2-Al2O3 Slag

    Science.gov (United States)

    Ko, Kyu Yeol; Park, Joo Hyun

    2011-12-01

    The solubility of indium in a molten CaO-SiO2-Al2O3 system was measured at 1773 K (1500 °C) to establish the dissolution mechanism of indium under a highly reducing atmosphere. The solubility of indium increases with increasing oxygen potential, whereas it decreases with increased activity of basic oxide. Therefore, a dissolution mechanism of indium can be constructed according to the following equation: {{In}}({{s}}) + 1/4{{O}}2 ({{g}}) = ({{In}}^{ + } ) + 1/2({{O}}^{2 - } ) The relationship between indium capacity and sulfide capacity shows a good correlation that is consistent with theoretical expectations. The enthalpy change of the indium dissolution reaction is negative, which indicates that the dissolution is an exothermic reaction. The heat of dissolution into high-silica melts is greater than that into low-silica melts. The solubility of indium is strongly dependent on the silica content. The activity coefficient, and thus the excess free energy of In2O, decreases linearly with increasing silica content, indicating that the In2O is believed to behave as a weak basic oxide in the current CaO-SiO2-Al2O3 ternary system under reducing conditions.

  1. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    Science.gov (United States)

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells.

  2. Spiky gold nanoshells.

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L; Park, So-Jung

    2010-12-21

    We report a high-yield synthetic method for a new type of metal nanostructure, spiky gold nanoshells, which combine the morphological characteristics of hollow metal nanoshells and nanorods. Our method utilizes block copolymer assemblies and polymer beads as templates for the growth of spiky nanoshells. Various shapes of spiky metal nanoshells were prepared in addition to spherical nanoshells by using block copolymer assemblies such as rod-like micelles, vesicles, and bilayers as templates. Furthermore, spiky gold shells encapsulating magnetic nanoparticles or quantum dots were prepared based on the ability of block copolymers to self-assemble with various types of nanoparticles and molecules. The capability to encapsulate other materials in the core, the shape tunability, and the highly structured surface of spiky nanoshells should benefit a range of imaging, sensing, and medical applications of metal nanostructures.

  3. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough......Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... the low energy radio frequencies. If the method is demonstrated to be feasible, next step is testing in cell line trials.   Confocal microscopy experiments on cells are very hard to do reliable and reproducible statistic on, due to the fact that that it’s user counting which makes the data. Automatic...

  4. The RHIC gold rush

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T. [Department of Physics, North Carolina State University (United States)

    2003-06-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  5. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  6. Film Ace Takes Gold

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    "Really, I never, never expected to win this," said Chinese director Jia Zhangke on hearing he had taken the top award for his movie Still Life (Sanxia Haoren) at the Venice Film Festival, on September 9. A surprise late entry, Still Life quickly emerged as the favorite and the Gold Lion was again hugged by Chinese. The well-known Chinese director Zhang Yimou won the same award back in 1999, for Not One Less-also a

  7. JUNK: rubbish to gold

    OpenAIRE

    Hanson, Maria

    2015-01-01

    JUNK: rubbish to gold is a playful exploration of community economies (exchange, giving, bartering, gathering, earning, harvesting); putting on display the process of creating the ‘work of art’. Co-created and co-curated by Jivan Astfalck, Laura Bradshaw-Heap and Rachel Darbourne and partnered with charities, who supplied JUNK jewellery. During a public performance 31 jewellers ‘gifted’ their skills, (re)constructing pieces selected from a mountain of JUNK creating reimagined artworks for the...

  8. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site....

  9. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions

    OpenAIRE

    Chen,Jiu-Xi; Liu,Miao-Chang; Yang,Xiao-Liang; Ding,Jin-Chang; Wu,Hua-Yue

    2008-01-01

    A variety of N-substituted pyrroles have been synthesized by reacting γ-diketones (R¹C(O)CH2CH2C(O)R²: R¹, R² = Me, Ph) with amines (RNH2: R=Alkyl, Aryl, TsNH) or diamines (1,6-diaminohexane and 1,2-diaminoethane) in the presence of indium tribromide, indium trichloride or indium trifluoromethanesulfonate at room temperature under solvent-free conditions. The experiment protocol features simple operations, and the products are isolated in high to excellent yields (81-98%).

  10. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  11. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions

    OpenAIRE

    Chen,Jiu-Xi; Liu,Miao-Chang; Yang, Xiao-Liang; Ding,Jin-Chang; Wu,Hua-Yue

    2008-01-01

    A variety of N-substituted pyrroles have been synthesized by reacting γ-diketones (R¹C(O)CH2CH2C(O)R²: R¹, R² = Me, Ph) with amines (RNH2: R=Alkyl, Aryl, TsNH) or diamines (1,6-diaminohexane and 1,2-diaminoethane) in the presence of indium tribromide, indium trichloride or indium trifluoromethanesulfonate at room temperature under solvent-free conditions. The experiment protocol features simple operations, and the products are isolated in high to excellent yields (81-98%).

  12. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition

    Indian Academy of Sciences (India)

    Benny Joseph; P K Manoj; V K Vaidyan

    2005-08-01

    The preparation of indium doped zinc oxide films is discussed. Variation of structural, electrical and optical properties of the films with zinc acetate concentration and indium concentration in the solution are investigated. XRD studies have shown a change in preferential orientation from (002) to (101) crystal plane with increase in indium dopant concentration. Films deposited at optimum conditions have a low resistivity of 1.33 × 10-4 m with 94% transmittance at 550 nm. SEM studies have shown smooth polycrystalline morphology of the films. Figure of merit is evaluated from electrical resistivity and transmittance data.

  13. Synthesis of indium tin oxide powder by solid-phase reaction with microwave heating

    OpenAIRE

    Fukui, Kunihiro; Kanayama, Keiji; Katoh, Manabu; Yamamoto, Tetsuya; Yoshida, Hideto

    2009-01-01

    Indium tin oxide (ITO) powder was synthesized from indium oxide and tin oxide powders by a solid-phase method using microwave heating and conventional heating methods. Microwave heating could reduce the treatment time necessary for the completion of the solid-phase reaction by 1/30. This decrease was attributed to an increase in the diffusion rate of Sn at the local heat spot in the indium oxide formed by microwave irradiation. However, microwave heating also decreased the amount of ITO produ...

  14. Investigation of gold as a material for thermal radiation shielding

    Science.gov (United States)

    Munshi, Amit Harenkumar

    CdS/CdTe thin film solar cells technology is one of the fastest growing carbon neutral energy sources in the world today. Manufacturing of CdS/CdTe solar modules is carried out at temperature in the range of 620350°C under a vacuum of 40 millitorr using a Heated Pocket Deposition (HPD) system in the materials engineering laboratory. Since this system operates in vacuum, majority of the heat loss is due to thermal radiation. The concept here is to conserve the heat by reflecting the infrared radiation back into the deposition system thus increasing the thermal efficiency. Various metals may be used but calculations show that using a Gold thin film mirror can effectively reflect almost 97% of the incident radiation, thus conserving energy required for the manufacturing process. However, a phenomenon called thermal grooving or island formation inhibits its use. Thermal grooving occurs when the stress concentration at the grain boundaries causes grain separation. This phenomenon is observed in thin gold films that are exposed to a temperature in excess of 350°C for over 3 to 5 hours. In this study, these films are exposed to temperature upto 620350°C for cycles as long as 200 hours. The goal of this research is to explore the solutions for elimination of the phenomenon of thermal grooving and thus extract maximum life out of these thin gold films for conservation of heat. After carefully exploring literature on past research and conducting experiments it was found that within the range of the films that were tested, a 2000 A350° film with a 150 A350° of Indium underlay showed the best performance after thermal annealing and testing.

  15. Gold-gold junction electrodes:the disconnection method.

    Science.gov (United States)

    Dale, Sara E C; Vuorema, Anne; Ashmore, Ellen M Y; Kasprzyk-Horden, Barbara; Sillanpää, Mika; Denuault, Guy; Marken, Frank

    2012-02-01

    The formation of gold-gold junction electrodes for application in electroanalysis is described here based on electro-deposition from a non-cyanide gold plating bath. Converging growth of two hemispherical gold deposits on two adjacent platinum microelectrodes (both 100 µm diameter in glass, ca. 45 µm gap) followed by careful etching in aqueous chloride solution was employed. During growth both gold hemispheres "connect" and during etching "disconnection" is evident in a drop in current. Gold-gold junctions with sub-micron gaps are formed and applied for the electroanalytical detection of sub-micromolar concentrations of hydroquinone in 0.1 M phosphate buffer pH 7 (E(rev) = 0.04 V vs. SCE) and sub-micromolar concentration of dopamine in 0.1 M phosphate buffer pH 7 (E(rev) = 0.14 V vs. SCE). The potential future uses in analysis and limitations of gold-gold junction electrodes are discussed.

  16. pp-Solar Neutrino Spectroscopy Return of the Indium Detector

    CERN Document Server

    Raghavan, R S

    2001-01-01

    A new indium-loaded liquid scintillator (LS) with up to 15wt% In and high light output promises a breakthrough in the 25y old proposal for observing pp solar neutrinos (nue) by tagged nue capture in 115In. Intense background from the natural beta-decay of In, the single obstacle blocking this project till now, can be reduced by more than x100 with the new In-LS. Only non-In background remains, dramatically relaxing design criteria. Eight tons of In yields ~400 pp nue/y after analysis cuts. With the lowest threshold yet, Q=118 keV, In is the most sensitive detector of the pp nue spectrum, the long sought touchstone for nue conversion.

  17. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    Science.gov (United States)

    Sumi, R.; Warrier, Anita R.; Vijayan, C.

    2014-01-01

    In this paper, we demonstrate a simple and efficient method for synthesis of β-indium sulphide (In2S3) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In2S3 nanoparticles show blue shift compared to bulk In2S3, indicating strong quantum size confinement effects. PL emission in the wavelength range 530-600 nm was recorded using a 488 nm line from an Ar+ laser as the excitation source.

  18. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  19. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    Directory of Open Access Journals (Sweden)

    N. P. Subiramaniyam

    2013-01-01

    Full Text Available Copper indium gallium selenide (CIGS films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decreased from 125 cm2V−1s−1 to 20.9 cm2V−1s−1, and carrier concentration decreased from 4.99 × 1017 cm−3 to 2.49 × 1016 cm−3 as the gallium concentration increased. Photosensitivity of the films increased linearly with intensity of illumination and with increase of applied voltage.

  20. Fractal characteristics of nanocrystalline indium and gallium sulfide particles

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, P.U., E-mail: psastry@barc.gov.i [Solid State Physics Division, Mumbai 400085 (India); Dutta, Dimple P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-11-13

    The structure of nano-sized powders of indium sulfide (In{sub 2}S{sub 3}) and gallium sulfide (Ga{sub 2}S{sub 3}), prepared by single source precursor route has been investigated by small angle X-ray scattering technique. The particle morphology shows interesting fractal nature. For In{sub 2}S{sub 3}, the nanoparticle aggregates show a mass fractal with fractal dimension 2.0 that increases with longer time of thermal treatment. Below the length scale of about 20 nm, the particles have a rough surface with a surface fractal dimension of 2.8. Unlike In{sub 2}S{sub 3}, structure of Ga{sub 2}S{sub 3} exhibits a single surface fractal over whole q-range of study. The estimated particle sizes are in range of 5-15 nm and the results are supported by transmission electron microscope.

  1. Attempts at doping indium in MgB2

    Science.gov (United States)

    Grivel, J.-C.

    2016-12-01

    Indium (In) doped MgB2 polycrystalline samples were prepared by solid-liquid phase reaction in Ar. After reaction at 800 °C, less than 1 at.% Mg was replaced by In in the MgB2 phase, without significant influence on its lattice parameters and only a slight decrease of its superconducting transition temperature. For all studied In concentrations in the nominal composition, the formation of InMg was evidenced by X-ray diffraction. The critical current density and accommodation field of the wires are decreased in the samples containing In. The flux pinning mechanism can be described by surface pinning in both the doped and undoped samples.

  2. Indium-111 labeled platelet deposition following transfemoral angiography

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, M.K.; Brennan, S.S.; Shanik, D.G.

    1986-01-01

    The incidence of thromboembolitic events in patients undergoing transfemoral angiography was examined using indium-111 labeled platelets. Twenty-seven patients received approximately 300 muCi of autologous labeled platelets at least 3 hours before angiography and were scanned with a gamma camera immediately before and after angiography. All patients were free of clinically obvious complications in the 1-2 day period after angiography. Our results showed evidence of platelet deposition at 21 sites other than the puncture site in 12 (44%) patients. Most platelet deposition (54%) occurred along the region between the puncture site and the aortic bifurcation; 24% occurred at sites not traversed by the catheter. At the puncture site itself, there was substantial platelet uptake in 44% of patients. This study indicates the need for further work in determining the most suitable catheter material and in assessing the efficacy of other measures such as anticoagulant or antiplatelet therapy.

  3. AC surface photovoltage of indium phosphide nanowire networks

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J.; Kobayashi, Nobuhiko P. [California Univ., Santa Cruz, CA (United States). Baskin School of Engineering; California Univ., Santa Cruz, CA (US). Nanostructured Energy Conversion Technology and Research (NECTAR); NASA Ames Research Center, Moffett Field, CA (United States). Advanced Studies Laboratories

    2012-06-15

    Surface photovoltage is used to study the dynamics of photogenerated carriers which are transported through a highly interconnected three-dimensional network of indium phosphide nanowires. Through the nanowire network charge transport is possible over distances far in excess of the nanowire lengths. Surface photovoltage was measured within a region 10.5-14.5 mm from the focus of the illumination, which was chopped at a range of frequencies from 15 Hz to 30 kHz. Carrier dynamics were modeled by approximating the nanowire network as a thin film, then fitted to experiment suggesting diffusion of electrons and holes at approximately 75% of the bulk value in InP but with significantly reduced built-in fields, presumably due to screening by nanowire surfaces. (orig.)

  4. Optical properties of indium phosphide nanowire ensembles at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lohn, Andrew J; Onishi, Takehiro; Kobayashi, Nobuhiko P [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California Santa Cruz-NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2010-09-03

    Ensembles that contain two types (zincblende and wurtzite) of indium phosphide nanowires grown on non-single crystalline surfaces were studied by micro-photoluminescence and micro-Raman spectroscopy at various low temperatures. The obtained spectra are discussed with the emphasis on the effects of differing lattice types, geometries, and crystallographic orientations present within an ensemble of nanowires grown on non-single crystalline surfaces. In the photoluminescence spectra, a typical Varshni dependence of band gap energy on temperature was observed for emissions from zincblende nanowires and in the high temperature regime energy transfer from excitonic transitions and band-edge transitions was identified. In contrast, the photoluminescence emissions associated with wurtzite nanowires were rather insensitive to temperature. Raman spectra were collected simultaneously from zincblende and wurtzite nanowires coexisting in an ensemble. Raman peaks of the wurtzite nanowires are interpreted as those related to the zincblende nanowires by a folding of the phonon dispersion.

  5. Indium Tin Oxide-Polyaniline Biosensor: Fabrication and Characterization

    Directory of Open Access Journals (Sweden)

    Daniel L. Grooms

    2007-07-01

    Full Text Available In this study, a novel indium tin oxide (ITO-polyaniline (Pani biosensor wasdesigned, fabricated, and characterized. Initial testing was conducted for the detection ofbovine viral diarrhea virus (BVDV. The biosensor design was based upon the specific natureof antibodies to capture the target virus, and the conductive properties of self-doped Pani totranslate the antibody-antigen binding into a quantifying signal. The first part of the study wasto assess the feasibility of the self-doped Pani to be incorporated into the biosensor design byevaluating its several parameters, such as conductivity, physical structure, thermogravimetricproperties, and antibody-binding properties. The second part of the paper highlights thefabrication of the ITO-Pani biosensor to detect the presence of bovine viral diarrhea virus(BVDV in pure culture. Although only BVDV culture was tested in this study, the biosensoris versatile for the detection of other pathogen of interest by changing the specificity of theantibodies.

  6. Recycle use of phosphorous mixer extractant to extract indium

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The stripping and regeneration of the loaded organic phase of phosphorous mixer extractant (PPD) were studied.The mixed solutions (3 mol/L HCl +2 mol/L ZnCl2) were used as the stripping agent and more than 99% of indium can bestripped after three-stage stripping when the volume ratio of organic phase to stripping agent is 1:1. The organic phase canbe recycled to use after regeneration with HCl. The parallel contrast experiments with D2EHPA (di-2-ethyl hexyl phospho-ric acid) were carried out under the same conditions. The results show that the mixer extractant has good reusability and thestripping and regeneration of PPD are superior to those of D2EHPA.

  7. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications.

    Science.gov (United States)

    Çelikbıçak, Ömür; Atakay, Mehmet; Güler, Ülkü; Salih, Bekir

    2013-08-07

    A new tantalum-based sol-gel material was synthesized using a unique sol-gel synthesis pathway by PEG incorporation into the sol-gel structure without performing a calcination step. This improved its chemical and physical properties for the high capacity and selective enrichment of phosphopeptides from protein digests in complex biological media. The specificity of the tantalum-based sol-gel material for phosphopeptides was evaluated and compared with tantalum(V) oxide (Ta2O5) in different phosphopeptide enrichment applications. The tantalum-based sol-gel and tantalum(V) oxide were characterized in detail using FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and also using a surface area and pore size analyzer. In the characterization studies, the surface morphology, pore volume, crystallinity of the materials and PEG incorporation into the sol-gel structure to produce a more hydrophilic material were successfully demonstrated. The X-ray diffractograms of the two different materials were compared and it was noted that the broad signals of the tantalum-based sol-gel clearly represented the amorphous structure of the sol-gel material, which was more likely to create enough surface area and to provide more accessible tantalum atoms for phosphopeptides to be easily adsorbed when compared with the neat and more crystalline structure of Ta2O5. Therefore, the phosphopeptide enrichment performance of the tantalum-based sol-gels was found to be remarkably higher than the more crystalline Ta2O5 in our studies. Phosphopeptides at femtomole levels could be selectively enriched using the tantalum-based sol-gel and detected with a higher signal-to-noise ratio by matrix-assisted laser desorption/ionization-mass spectrometer (MALDI-MS). Moreover, phosphopeptides in a tryptic digest of non-fat bovine milk as a complex real-world biological sample were retained with higher yield using a tantalum-based sol-gel. Additionally, the sol-gel material

  8. Quasi-static Tensile and Compressive Behavior of Nanocrystalline Tantalum Based on Miniature Specimen Testing—Part II: Mechanical Properties

    Science.gov (United States)

    Ligda, J.; D'Antuono, D. Scotto; Taheri, M. L.; Schuster, B. E.; Wei, Q.

    2016-09-01

    In Part I of this work (this issue), we presented the microstructure of tantalum processed by high-pressure torsion (HPT). In this part, we will present results based on site-specific micro-mechanical testing. The experimental techniques were used due to the intrinsic microstructure gradient associated with HPT processing. The primary objective is to explore the grain size effect on the quasi-static mechanical properties of HPT processed tantalum with ultrafine grained (UFG, grain size d 100 nm) and nanocrystalline (NC, d imaging microscopy (OIM) show that the shear bands form by grain rotation. Comparing d in these two regions to the mechanism proposed in the literature shows that reduced d in the shear banding region is more susceptible to localized shearing via grain rotation. This work unifies, or at least further substantiates, the notion that body-centered cubic metals with UFG/NC microstructure tend to have localized shear band even under quasi-static uniaxial compression.

  9. Layered tantalum oxynitride nanorod array carpets for efficient photoelectrochemical conversion of solar energy: experimental and DFT insights.

    Science.gov (United States)

    Allam, Nageh K; Shaheen, Basamat S; Hafez, Ahmed M

    2014-04-09

    Anodically fabricated tantalum oxide (Ta2O5) nanorod array carpets are converted into the corresponding tantalum oxynitride (TaON) through nitridation in an ammonia atmosphere. The measured optical bandgap energy of TaON is ∼2.3 eV, which is also confirmed via the density functional theory calculations. When used to photoelectrochemically split water (AM 1.5G illumination, 1 M KOH, and 0.6 V applied DC bias), the multilayer nanorod films show visible-light incident photon conversion efficiencies (IPCE) as high as 7.5%. The enhanced photochemical activity is discussed in terms of the ordered one-dimensional morphology as well as the electron effective mass in TaON and Ta2O5.

  10. Green Synthesis of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghorbani

    2015-03-01

    Full Text Available There is an increased interest in understanding the toxicity and rational design of gold nanoparticles for biomedical applications in recent years. In this study gold nanoparticles were synthesized using dextrose as a reducing agent. The gold nanoparticles displayed characteristic Surface Plasmon Resonance peak at around 550 nm having a mean particle size of 75±30 nm. In order to identify and analyze nanoparticles, UV–Vis spectroscopy, Scanning electron microscopy (SEM, and dynamic light scattering (DLS were used.

  11. Characterization of reliability of printed indium tin oxide thin films.

    Science.gov (United States)

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments.

  12. Macro- and microscopic properties of strontium doped indium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaenko, Y. M.; Kuzovlev, Y. E.; Medvedev, Y. V.; Mezin, N. I. [Donetsk Institute for Physics and Technology, National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Fasel, C.; Gurlo, A.; Schlicker, L.; Bayer, T. J. M.; Genenko, Y. A. [Institute of Materials Science, Darmstadt University of Technology, 64287 Darmstadt (Germany)

    2014-07-28

    Solid state synthesis and physical mechanisms of electrical conductivity variation in polycrystalline, strontium doped indium oxide In{sub 2}O{sub 3}:(SrO){sub x} were investigated for materials with different doping levels at different temperatures (T = 20–300 °C) and ambient atmosphere content including humidity and low pressure. Gas sensing ability of these compounds as well as the sample resistance appeared to increase by 4 and 8 orders of the magnitude, respectively, with the doping level increase from zero up to x = 10%. The conductance variation due to doping is explained by two mechanisms: acceptor-like electrical activity of Sr as a point defect and appearance of an additional phase of SrIn{sub 2}O{sub 4}. An unusual property of high level (x = 10%) doped samples is a possibility of extraordinarily large and fast oxygen exchange with ambient atmosphere at not very high temperatures (100–200 °C). This peculiarity is explained by friable structure of crystallite surface. Friable structure provides relatively fast transition of samples from high to low resistive state at the expense of high conductance of the near surface layer of the grains. Microscopic study of the electro-diffusion process at the surface of oxygen deficient samples allowed estimation of the diffusion coefficient of oxygen vacancies in the friable surface layer at room temperature as 3 × 10{sup −13} cm{sup 2}/s, which is by one order of the magnitude smaller than that known for amorphous indium oxide films.

  13. Indium antimonide nanowires arrays for promising thermoelectric converters

    Directory of Open Access Journals (Sweden)

    Gorokh G. G.

    2015-02-01

    Full Text Available The authors have theoretically substantiated the possibility to create promising thermoelectric converters based on quantum wires. The calculations have shown that the use of quantum wires with lateral dimensions smaller than quantum confinement values and high concentration and mobility of electrons, can lead to a substantial cooling of one of the contacts up to tens of degrees and to the heating of the other. The technological methods of manufacturing of indium antimonide nanowires arrays with high aspect ratio of the nanowire diameters to their length in the modified nanoporous anodic alumina matrixes were developed and tested. The microstructure and composition of the formed nanostructures were investigated. The electron microscopy allowed establishing that within each pore nanowires are formed with diameters of 35 nm and a length of 35 microns (equal to the matrix thickness. The electron probe x-ray microanalysis has shown that the atomic ratio of indium and antimony in the semiconductor nanostructures amounted to 38,26% and 61,74%, respectively. The current-voltage measurement between the upper and lower contacts of Cu/InSb/Cu structure (1 mm2 has shown that at 2.82 V negative voltage at the emitter contact, current density is 129,8 A/cм2, and the collector contact is heated up to 75 degrees during 150 sec. Thus, the experimental results confirmed the theoretical findings that the quantum wire systems can be used to create thermoelectric devices, which can be widely applied in electronics, in particular, for cooling integrated circuits (processors, thermal controlling of the electrical circuits by changing voltage value.

  14. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region.

    Science.gov (United States)

    Fang, Xu; Mak, C L; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-08

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  10(21) cm(-3) with the lowest corresponding resistivity of 2.41  ×  10(-4) Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range.

  15. Vacuum brazing of alumina ceramic to titanium for biomedical implants using pure gold as the filler metal

    Science.gov (United States)

    Siddiqui, Mohammad S.

    One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 x 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the

  16. Other Oxides Pre-removed from Bangka Tin Slag to Produce a High Grade Tantalum and Niobium Oxides Concentrate

    Science.gov (United States)

    Permana, S.; Soedarsono, J. W.; Rustandi, A.; Maksum, A.

    2016-05-01

    Indonesia, as the second largest tin producer in the world, has a byproduct from the production of tin. This byproduct is in the forms of tin slag containing tantalum pentoxide (Ta2O5) and niobium pentoxide (Nb2O5). This study focuses on the recovery of tantalum pentoxide and niobium pentoxide from the tin slag. In the process, one part of the tin slag sample was sieved only (BTS), and the other was roasted at 900°C, water quenched and then sieved (BTS-RQS). Samples BTS and BTS-RQS were characterized by thermo gravimetric analysis (TGA) and X-ray flourence (XRF). One part of BTS-RQS sample was dissolved in hydrofluoric acid (HF) and the other was dissolved in hydrochloric acid (HCl), washed with distilled water, then dissolved into sodium hydroxide (NaOH). Each sample was characterized by using XRF. The BTS sample produced the highest recovery of 0.3807 and 0.6978% for Ta2O5 and Nb2O5, respectively, from the particle size of -1.00+0.71 and a fraction of 47.29%, while BTS-RQS produced the highest recovery of 0.3931 and 0.8994% for Ta2O5 and Nb2O5, respectively, on the particle size of -0.71+0350 and a fraction of 21%. BTS-RQS, dissolved with 8% hydro fluoride acid, yields tantalum pentoxide and niobium pentoxide with a ratio of 2.01 and 2.09, respectively. For the sample BTS-RQS dissolve first with 6M hydrochloric acid, washed with distilled water, then dissolved with sodium hydroxide 10M, the yield ratios are 1.60 and 1.84 for tantalum pentoxide and niobium pentoxide, respectively. In this study, it is found that the dissolution by using hydrofluoric acid 8% yields the best ratio.

  17. In situ production of tantalum carbide nanodispersoids in a copper matrix by reactive milling and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Manotas-Albor, Milton, E-mail: manotasm@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Km. 5 vía a Puerto Colombia, Barranquilla (Colombia); Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Vargas-Uscategui, Alejandro [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile); Palma, Rodrigo [Departamento de Ingeniería Mecánica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Tupper Av. 2069, Santiago (Chile)

    2014-06-15

    Highlights: • Tantalum carbide nanodispersoids were obtained in a copper matrix. • Nanodispersoids were obtained by means of reactive milling followed by hot extrusion. • Hexane was used as the liquid medium for the reactive mechanical alloying process. • Hexane provides the carbon (C) needed for the process. • The reaction of tantalum carbide formation takes place in the hot extrusion. - Abstract: This paper presents a study of the in situ production of tantalum carbide nanodispersoids in a copper matrix. The copper matrix composites were produced by means of reactive milling in hexane (C{sub 6}H{sub 14}) followed by hot extrusion. The composite materials were characterized by means of optical emission spectroscopy (OES), X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Vickers micro-hardness. The effect of milling time was analyzed in 10, 20 and 30 h in a composite with a nominal composition Cu–5 vol.% TaC. A systematic increase of the dislocations density and the carbon concentration were observed when the milling time was increased, whereas the crystallite size of the composite matrix decreased. The material milled for 30 h and hot-extruded showed a density of 9037 kg m{sup −3} (98.2% densification) and a softening resistance of 204 HV; however the latter value showed an abrupt drop after an annealing treatment at 923 K for 1 h. Finally, the TEM analysis showed the presence of tantalum carbide (Ta{sub 4}C{sub 3}) nanodispersoids.

  18. Effect of Surface Treatments on Anodic Oxide Film Growth and Electrochemical Properties of Tantalum used for Biomedical Applications

    OpenAIRE

    R.A. Silva; Silva, I. P.; Rondot, B.

    2006-01-01

    Abstract Self-expandable nitinol (nickel-titanium) alloys and 316L stainless steel are the most commonly used materials in the production of coronary stents. However, tantalum (Ta) has already been used to make stents for endovascular surgery and may constitute an alternative to other materials because of its better electrochemical performance, namely its higher corrosion resistance, as well as its radio-op...

  19. Sol-gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces.

    Science.gov (United States)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH)2). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger "tantalum capture agent" effect of phosphonic-modified nanotubes during the sol-gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests.

  20. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  1. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  2. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Chen, Minghui, E-mail: mhchen@imr.ac.cn [Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang, Lanlan; Liu, Li; Zhu, Shenglong [Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Fuhui [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China); Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Meng, Guozhe [Corrosion and Protection Laboratory, Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, Harbin 150001 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Effect of Y addition on oxidation of nanocrystalline coating is studied. • Y addition delays transformation of q-Al{sub 2}O{sub 3} to a-Al{sub 2}O{sub 3} during oxidation. • Y addition prevents scale rumpling. • Y segregates at grain boundaries of the nanocrystalline coating. • Y retards the transportation of Ta thus reduces its oxidation. - Abstract: The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al{sub 2}O{sub 3} to equilibrium α-Al{sub 2}O{sub 3} grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  3. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, Christelle; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)], E-mail: zineb.mekhalif@fundp.ac.be

    2008-07-20

    Titanium and its alloys are base materials used in the dental and orthopaedic fields owing to suitable intrinsic properties: good biocompatibility, high corrosion resistance and excellent mechanical properties. However, the bonding between titanium and bone tissue is not always strong enough and can become a critical problem. In this context, the two main objectives of this paper are the increase of the corrosion resistance and the improvement of the hydroxyapatite (HAp) growth. The surface modification considered here is achieved in three main steps and consists in the elaboration of different inorganic and organic coatings. The first step is the elaboration of electrodeposition of tantalum on the titanium oxide film of a titanium substrate. The second step is the modification of the tantalum oxide coating with organophosphonic acids. The last step is the nucleation and growth of HAP on the outermost layer of the system by immersion in a simulated body fluid. The hybrid coating tantalum oxide/organophosphonic acids/molecular layer is shown to be promising for orthopaedic implants.

  4. Selective extraction of tantalum fluoride in polyurethane foam; Sorcao seletiva de fluoreto de tantalo em espuma de poliuretano

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Elizabeth de M. Massena; Schwamback, Niomedes; Mantovano, Jose Luiz; Carvalho, Marcelo S. de [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2000-07-01

    The physico-chemical parameters for tantalum fluoride extraction on polyether polyurethane foam (PUF) were investigated focusing on its selective separation from sample matrices of fluoro complexes metals and direct determination on ground PUF by X-ray fluorescence (dispersive wavelength). Tantalum was quantitatively recovered from 0,5 mol/L hydrofluoric acid solution, after 40 minutes mechanical shaking, using batch procedure and 0,1 g PUF. The system allows the presence of sulfuric acid until 2,0 mol/L, shows distribution ratio (D) of about 3,2.10{sup 3}(L/Kg) and sorption capacity of 3,0 g Ta/ Kg EPU. At the optimized conditions analytical curve is linear up to 100{mu}g Ta; sample dilution until 0,3 L makes possible the metal determination with detection (3{sigma}) and quantification (10{sigma}) limits of 3 and 16 ppb, respectively. Ratios of 1:1000 tantalum to niobium, zirconium, uranium, tungsten, tin, iron, aluminium and manganese does not interfere. (author)

  5. Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials

    Directory of Open Access Journals (Sweden)

    Qingbo Sun

    2011-12-01

    Full Text Available Transition metal ions doped indium oxide nanomaterials were potentially used as a kind of diluted magnetic semiconductors in transparent spintronic devices. In this paper, the influences of Ni2+ doped contents and rhombohedral or cubic crystalline structures of indium oxide on magnetic properties were investigated. We found that the magnetic properties of Ni2+ doped indium oxide could be transferred from room temperature ferromagnetisms to paramagnetic properties with increments of doped contents. Moreover, the different crystalline structures of indium oxide also greatly affected the room temperature ferromagnetisms due to different lattice constants and almost had no effects on their paramagnetic properties. In addition, both the ferromagnetic and paramagnetic properties were demonstrated to be intrinsic and not caused by impurities.

  6. Hydrometallurgical Recovery of Indium from Flat-Panel Displays of Spent Liquid Crystal Televisions

    Science.gov (United States)

    Inoue, Katsutoshi; Alam, Shafiq

    2015-02-01

    A recovery process for indium from waste liquid crystal display panels was developed on the basis of hydrometallurgical technology. The powdered sample was leached with 3 M HCl to extract its various metal constituents (indium, aluminum, tin, etc.). The mutual separation and subsequent recovery of the dissolved metals was achieved using two column adsorption tests: The first column was packed with a porous resin impregnated with Aliquat 336, a commercially available solvent extraction reagent based on a quaternary ammonium compound, and the resin contained in the second column was impregnated with Cyanex 923, also a commercially available solvent extraction reagent based on trialkylphosphine oxide. In the first column, tin, iron, and zinc were removed from the leach liquor. In the second column, only indium was selectively recovered. The metal ions trapped in these columns were eluted with 0.1 M H2SO4, yielding a solution purified indium solution with a concentration 10 times that of the feed solution.

  7. Time-Resolved Photoluminescence Studies of Indium-Rich InGaN Alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-De; ZHU You-Zhang; YAN Guo-Jun; YUAN Jin-She; K.H.Kim; J.Y.Lin; H.X.Jiang

    2005-01-01

    @@ Time-resolved photoluminescence (PL) spectroscopy has be used to investigate indium-rich InGaN alloys grown on sapphire substrates by metal organic chemical vapor deposition. Photoluminescence measurement indicates two dominant emission lines originating from phase-separated high- and low-indium-content regions. Temperature and excitation intensity dependence of the two main emission lines in these InGaN alloys have been measured.Temperature and energy dependence of PL decay lifetime show clearly different decay behaviour for the two main lines. Our results show that photo-excited carriers are deeply localized in the high indium regions while photo-excited carriers can be transferred within the low-indium-content regions as well as to high-content regions.

  8. Indium bump array fabrication on small CMOS circuit for flip-chip bonding

    Institute of Scientific and Technical Information of China (English)

    Huang Yuyang; Zhang Yuxiang; Yin Zhizhen; Cui Guoxin; Liu H C; Bian Lifeng; Yang Hui; Zhang Yaohui

    2011-01-01

    We demonstrate a novel method for indium bump fabrication on a small CMOS circuit chip that is to be flip-chip bonded with a GaAs/AlGaAs multiple quantum well spatial light modulator.A chip holder with a via hole is used to coat the photoresist for indium bump lift-off.The 1000 μm-wide photoresist edge bead around the circuit chip can be reduced to less than 500μm,which ensures the integrity of the indium bump array.64 × 64 indium arrays with 20 μm-high,30 μm-diameter bumps are successfully formed on a 5 × 6.5 mm2 CMOS chip.

  9. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Science.gov (United States)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  10. Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique

    Indian Academy of Sciences (India)

    Girjesh Singh; S B Shrivastava; Deepti Jain; Swati Pandya; T Shripathi; V Ganesan

    2010-10-01

    We report the conducting and transparent In doped ZnO films fabricated by a homemade chemical spray pyrolysis system (CSPT). The effect of In concentration on the structural, morphological, electrical and optical properties have been studied. These films are found to show (0 0 2) preferential growth at low indium concentrations. An increase in In concentration causes a decrease in crystalline quality of films as confirmed by X-ray diffraction technique which leads to the introduction of defects in ZnO. Indium doping also significantly increased the electron concentrations, making the films heavily type. However, the crystallinity and surface roughness of the films decreases with increase in indium doping content likely as a result of the formation of smaller grain size, which is clearly displayed in AFM images. Typical optical transmittance values in the order of (80%) were obtained for all films. The lowest resistivity value of 0.045 -m was obtained for film with 5% indium doping.

  11. The effect of preparation method on the proton conductivity of indium doped tin pyrophosphates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Lie-Andersen, T.; Jensen, E. Pristed

    2015-01-01

    Indium doped tin pyrophosphates were prepared by three synthetic routes. A heterogeneous synthesis from metal oxides with excess phosphoric acid produces crystalline phosphate particles with a phosphorus rich amorphous phase along the grain boundaries. The amorphous phase prevents the agglomerati...

  12. Structural and electrical properties of sol-gel spin coated indium doped cadmium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rajammal, R. [Department of Physics, M.V.M Govt. Arts College for Women, Dindigul-624001 (India); Savarimuthu, E., E-mail: savari56@gmail.com; Arumugam, S., E-mail: savari56@gmail.com [Department of Physcis, Gandhigram Rural Institute, Gandhigram-624302 (India)

    2014-04-24

    The indium doped CdO thin films have been prepared by the sol-gel spin coating technique and the influence of indium doping concentration on the structural and electrical properties of the deposited films has been investigated. The indium doping concentration in the solution has been varied from 0-10 wt% insteps of 2wt%. A indium doping concentration of 6wt% has been found to be optimum for preparing the films and at this stage a minimum resistivity of 5.92×10{sup −4}Ω cm and a maximum carrier concentration of 1.20×10{sup 20}cm{sup −3} have been realized.

  13. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  14. Effect of fabrication conditions on the properties of indium tin oxide powders

    Institute of Scientific and Technical Information of China (English)

    Xie Wei

    2008-01-01

    This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity ε and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350℃ and Sn doping content 6~8wt% are determined. The application of ITO in the military camouflage field is proposed.

  15. Analysis of the relationship between the kink effect and the indium levels in MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hizem, N., E-mail: neila_tn2002@yahoo.fr [University of Monastir, Laboratory of Microelectronics and Instrumentation, Monastir 5019 (Tunisia); Fargi, A.; Kalboussi, A. [University of Monastir, Laboratory of Microelectronics and Instrumentation, Monastir 5019 (Tunisia); Souifi, A. [Institute of Nanotechnology of Lyon, 7 Avenue, Jean, Capelle, 69621 Villeurbanne Cedex (France)

    2013-12-01

    Graphical abstract: Low frequency (LF) output conductance dispersion analysis based on the Gain-Phase versus frequency biased in the saturation zone for V{sub ds} < V{sub kink} (where In is supposed to be inactive) is used to analyse the indium-related levels in nMOSFETs. -- Highlights: • We examine the effects of indium ion implantation on the channel of nMOSFETs. • The LF output conductance dispersion is used to characterise the nMOSFETs. • A kink effect is shown in the electrical characteristics of nMOSFETs. • We analyse the excess of the drain current in the kink zone. • A relationship is found between the kink effect and the In level. -- Abstract: In this work, we investigate the effects of indium ion implantation on the channel of nMOSFETs. Deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) measurements have been made on a series of indium doped silicon N{sup +}P structures and MOS capacitors. To analyse the indium-related levels in nMOSFETs, we used a low frequency (LF) output conductance dispersion analysis, which is based on the Gain-Phase versus frequency at different temperatures. These experiences show that the indium level when operated at low temperatures at which the majority of carriers freeze-out exhibit a kink effect. The effects of indium doping on the kink were studied using the variation of channel conductance g{sub d} and transconductance g{sub m} versus temperature in the kink zone. The excess drain current versus drain and gate voltage show the maximums of both conductance g{sub d} and transconductance g{sub m} at around T = 124 K when the indium level is activated.

  16. The structure of nickel and indium oxide thin films from EXAFS data

    Science.gov (United States)

    Bets, V.; Zamozdiks, T.; Lusis, A.; Purans, J.; Bausk, N.; Sheromov, M.

    1987-11-01

    The structure of nickel oxide and indium oxide doped by tin films prepared by reactive magnetron sputtering has been studied by the EXAFS method. It has been found that the nickel oxide thin film has a microcrystalline structure with significant disorder proved by the increase of the Debye-Waller factor and the sharp decrease of peak amplitudes. The indium oxide thin film has a noticeable structural disorder due to 8% tin dopping.

  17. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro.

    Science.gov (United States)

    Gwinn, William M; Qu, Wei; Shines, Cassandra J; Bousquet, Ronald W; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2013-10-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.

  18. Role of TBATB in nano indium oxide catalyzed C-S bond formation

    Science.gov (United States)

    Gogoi, Prasanta; Hazarika, Sukanya; Barman, Pranjit

    2015-09-01

    Nano sized indium oxide is found to be an efficient catalyst for the conversion of thiols to sulfides using Na2CO3 as base and TBATB as reagent in DMSO at 110 °C. Here in situ generation of bromo intermediate by TBATB takes place through indium surface. A variety of aryl sulfides can be synthesized in excellent yields from less reactive chlorides, boronic acids and thiols.

  19. Reaction Between Thin Gold Wires and Pb-Sn-In Solder (37.5%, 37.5%, 25%), Part A: The Radial Reaction Inside The Solder Mounds, Its Linear Reaction Model, Statistical Variation of Reaction Rate, and Induced Structural Changes In The Solder Mounds.

    Energy Technology Data Exchange (ETDEWEB)

    Siekhaus, W J

    2011-01-19

    Thermodynamics favors the reaction between indium and gold, since the heat of formation of AuIn{sub 2} is 6 kcal/mole, substantially larger than the heat of formation of any other possible reaction product. Thermodynamic equilibrium between gold and the elements in the solder mound is reached only when ALL gold is converted to AuIn{sub 2}. There are two aspects to this conversion: (A) the reaction WITHIN the solder mound (called here 'radial reaction') and (B) the reaction OUTSIDE the solder mound (called here 'axial reaction') and the transition from (A) to (B). The reaction between thin gold detonator wires and the In/Pb/Sn solder mound in older detonators has been looked at repeatedly. There are, in addition, two studies which look at the reaction between indium and gold in planar geometry. All data are shown in tables I to V. It is the objective of this section dealing with aspect (A), to combine all of these results into a reaction model and to use this reaction model to reliably and conservatively predict the gold-solder reaction rate of soldered gold bridge-wires as a function of storage temperature and time.

  20. Metallurgical progress of recovery indium from smelt residues%冶炼废渣中铟回收技术进展

    Institute of Scientific and Technical Information of China (English)

    饶兵; 戴惠新; 高利坤

    2016-01-01

    铟是一种重要的多用途战略金属,具有较高的工业应用价值,无独立可供开采的矿床,常伴生于铅锌等硫化矿中,主金属冶炼时富集于各类冶炼废渣中,使铟的回收存在工艺复杂、回收率低的问题。本文从铟精矿的制备开始,较为全面地综述了处理含铟冶炼废渣常用的冶金工艺及技术,重点分析总结了冶炼废渣铟浸出技术进展。根据处理手段的不同,渣中铟的回收技术分为直接酸浸法和预处理后浸出法等,其中直接酸浸包括常规酸浸法、热酸浸出法和氧化酸浸法,预处理浸出又可分为酸法预处理和碱法预处理两大类;而强化浸铟的最新研究及方法以物理法为主。传统的常规酸浸易于工业化,但铟回收率低,原料适应性差。热酸浸出环保问题严重。氧化酸浸和预处理后浸出,通过氧化或多种预处理强化浸铟,优势明显。新的实验室研究集中于酸浸协同多种物理强化浸铟效应,取得了较大进展。因此,未来需着力于研究酸浸联合多种强化方法,探索低成本、高效、环保的铟回收工艺。%As a scarce metal,indium plays a major role in high-tech industry,which has high values in industrial application. Indium reserve is only about a sixth of the gold reserve. Without independent field,pittance of indium is mixed with lead,zinc etc. In the process of main metal smelting,indium is enriched in all kinds of smelting slag according to the physical and chemical properties. At present, many raw materials for recovering indium are the abandoned zinc smelter slag and leaching residues. Because of the complex composition of smelting waste residues,the processes to extract indium from residues have long periods and low recovery rates. According to the different treatment methods,these processes are divided into direct acid leaching and acid leaching after pretreatment. Direct acid leaching includes

  1. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Farid, S.; Mukherjee, S.; Sarkar, K.; Mazouchi, M. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Stroscio, M. A. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Dutta, M., E-mail: dutta@uic.edu [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-11

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurements confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.

  2. Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads

    Energy Technology Data Exchange (ETDEWEB)

    Calagui, Mary Jane C. [College of Engineering, Cagayan State University, Cagayan Valley 3500 (Philippines); School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Senoro, Delia B. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Kan, Chi-Chuan [Institute of Hot Spring Industrial, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China); Salvacion, Jonathan W.L. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Futalan, Cybelle Morales [Operations Department, Frontier Oil Corporation, Makati City 1229 (Philippines); Wan, Meng-Wei, E-mail: peterwan@mail.chna.edu.tw [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China)

    2014-07-30

    Highlights: • A more acidic pH causes a decrease in adsorption capacity. • The kinetic data follow the pseudo-second order equation. • Equilibrium data correlated well with Langmuir isotherm. • Removal of indium is a spontaneous and endothermic process. - Abstract: Batch adsorption study was utilized in evaluating the potential suitability of chitosan-coated bentonite (CCB) as an adsorbent in the removal of indium ions from aqueous solution. The percentage (%) removal and adsorption capacity of indium(III) were examined as a function of solution pH, initial concentration, adsorbent dosage and temperature. The experimental data were fitted with several isotherm models, where the equilibrium data was best described by Langmuir isotherm. The mean energy (E) value was found in the range of 1–8 kJ/mol, indicating that the governing type of adsorption of indium(III) onto CCB is essentially physical. Thermodynamic parameters, including Gibbs free energy, enthalpy, and entropy indicated that the indium(III) ions adsorption onto CCB was feasible, spontaneous and endothermic in the temperature range of 278–318 K. The kinetics was evaluated utilizing the pseudo-first order and pseudo-second order model. The adsorption kinetics of indium(III) best fits the pseudo-second order (R{sup 2} > 0.99), which implies that chemical sorption as the rate-limiting step.

  3. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  4. Fabrication of anodized tantalum oxide integrated capacitors on singulated chips with active devices

    Science.gov (United States)

    Wasef, Mohammed Aziz

    The purpose of this project was to determine the feasibility and processability of fabricating anodized tantalum oxide integrated capacitors on singulated chips. Using high-resolution transparencies to pattern the metals during the photolithographic process, capacitors as large as 0.25 cm2 were fabricated successfully with the yield being higher for capacitors smaller than 0.1 cm2. Several capacitor designed were attempted and final designed was selected on the basis of ease of alignment and prevention of shorts. The next step in the project involved utilizing this design to fabricate capacitors on 2.2 mm by 2.2 mm silicon dummy chips. In order to accomplish this task, a support wafer technique was used. A silicon wafer with holes etched all the way through was attached to a non-etched silicon wafer to provide a base for the dummy chips that were placed in the holes of the support wafer, thus making the top of the chips co-planar with a wafer that could be put through standard wafer processing equipment. The chips were glued to the wafer using a thermoplastic as an adhesive. The design specified for this project called for five 100 pF capacitors and a single 50 pF capacitor. Since the chips had to be individually placed in the holes, all the masks used in the project had to be individually designed for reach run. The capacitors had a bottom plate thickness of 2500 A of tantalum which was anodized at 120 V and 0.5 mA/cm2 to an oxide thickness of 1920 A. The top plate was 2 mum of aluminum and the insulating ring around the bottom plate was made of 5 mum of benzocyclobutene. After fabrication, testing of the capacitors provided a yield of 97% for the 100 pF capacitors with average capacitance of 98.3 pF +/- 3.6 pF and 75% for the 50 pF capacitors with an average capacitance of 50 pF +/- 1.65 pF. The inductance of the capacitors was less than 20 pH and resistance was about 110 O. The resistance was brought down to 1 O when a 2 mum sublayer of aluminum was deposited

  5. Tantalum (oxy)nitrides: Preparation, characterisation and enhancement of photo-Fenton-like degradation of atrazine under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingxun, E-mail: yxdu@niglas.ac.cn [Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008 (China); Zhao, Lu; Su, Yaling [Nanjing Institute of Geography and Limnology, State Key Laboratory of Lake Science and Environment, Chinese Academy of Sciences, Nanjing 210008 (China)

    2011-11-15

    Highlights: {yields} The photocatalytic activity of TaON for Fe{sup 3+} reduction is higher than that of Ta{sub 3}N{sub 5}. {yields} Atrazine degradation was accelerated significantly by tantalum (oxy)nitrides sample. {yields} The regenerated catalyst displays considerably stable performance for atrazine degradation. - Abstract: Tantalum (oxy)nitrides were prepared by the nitridation of Ta{sub 2}O{sub 5} and were added to a photo-Fenton-like system to enhance Fe{sup 3+} reduction and atrazine degradation under visible light. The samples were characterized by XRD, XPS, DRS and BET analyses. XPS analysis showed that the nitrogen content of the tantalum (oxy)nitride samples increased noticeably with the nitridation temperature and nitridation time but slightly with the flow rate of NH{sub 3}. XRD results showed Ta{sub 2}O{sub 5} was first converted to TaON and then to Ta{sub 3}N{sub 5} when the nitridation temperature increased. DRS analysis showed that the sample obtained at 800 {sup o}C displayed the strongest absorption of visible light. However, the ability of the tantalum (oxy)nitrides to reduce Fe{sup 3+} did not increase continuously with the nitrogen content. Sample 7 (700 {sup o}C, Q{sub NH{sub 3}}=0.3L/min, 6 h) showed the highest level of photocatalytic activity for Fe{sup 3+} reduction. This is because the photocatalytic activity of TaON for Fe{sup 3+} reduction is higher than that of Ta{sub 3}N{sub 5}. And a slight synergetic effect was observed between TaON and Ta{sub 3}N{sub 5}. With the addition of sample 7, H{sub 2}O{sub 2} decomposition and atrazine degradation were significantly accelerated in a photo-Fenton-like system under visible light. The regenerated tantalum (oxy)nitrides catalyst displayed considerably stable performance for atrazine degradation.

  6. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature

    Science.gov (United States)

    Timofeev, A.; Migdisov, Art. A.; Williams-Jones, A. E.

    2017-01-01

    The solubility of Ta2O5 (solid) and the speciation of tantalum in HF-bearing aqueous solutions have been determined at temperatures of 100-250 °C and vapour-saturated water pressure. Tantalum is transported as the species Ta(OH)50 at low HF concentration and pH ∼1-3. At higher HF concentration, tantalum mobility is controlled by the species TaF3(OH)3- and TaF50; the presence of TaF50 is only evident at ⩽150 °C. Equilibrium constants range from -17.4 ± 0.45 to -16.4 ± 0.12 for the formation of Ta(OH)50 from crystalline Ta2O5 and from -8.24 ± 0.64 to -8.55 ± 0.68 for the formation of TaF3(OH)3- at 100 and 250 °C, respectively. For TaF50, they were determined to be 0.13 at 100 °C and -0.35 at 150 °C. In many respects, the behaviour of tantalum in acidic fluoride-bearing solutions is similar to that of niobium. The solubility of Ta2O5 (solid) is not dependent on HF concentration in fluoride-poor fluids, but rises rapidly at higher HF concentration. However, at the conditions of our experiments, namely a pH of ∼2, temperature up to 250 °C, and a wide range of HF concentrations, Ta2O5 (solid) solubility is almost invariably lower than that of Nb2O5 (solid). Modelling of Nb and Ta leaching confirmed the preferential mobility of niobium under most conditions expected in natural fluoride-rich hydrothermal systems. This modelling also demonstrated that both niobium and tantalum are rapidly deposited upon removal of fluoride from an acidic brine. As a result of hydrothermal alteration, the Nb/Ta ratios of secondary minerals may increase relative to those of the primary mineral, or remain largely unaffected, depending on the pH of the fluid.

  7. Indium recovery from acidic aqueous solutions by solvent extraction with D2EHPA: a statistical approach to the experimental design

    Directory of Open Access Journals (Sweden)

    Fortes M.C.B.

    2003-01-01

    Full Text Available This experimental work presents the optimization results of obtaining a high indium concentration solution and minimum iron poisoning by solvent extraction with D2EHPA solubilized in isoparaffin and exxsol. The variables studied in the extraction step were D2EHPA concentration, acidity of the aqueous phase and time of contact between phases. Different hydrochloric and sulfuric acid concentrations were studied for the stripping step. The optimum experimental conditions resulted in a solution with 99% indium extraction and less than 4% iron. The construction of a McCabe-Thiele diagram indicated two theoretical countercurrent stages for indium extraction and at least six stages for indium stripping. Finally, the influence of associated metals found in typical sulfate leach liquors from zinc plants was studied. Under the experimental conditions for maximum indium extraction, 96% indium extraction was obtained, iron extraction was about 4% and no Ga, Cu and Zn were co-extracted.

  8. Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies.

    Science.gov (United States)

    White, Sarah Jane O; Shine, James P

    2016-12-01

    The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.

  9. Gold electrodes from recordable CDs

    Science.gov (United States)

    Angnes; Richter; Augelli; Kume

    2000-11-01

    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  10. Apparatus for Precise Indium-Bump Bonding of Microchips

    Science.gov (United States)

    Wild, Larry; Mulder, Jerry; Alvarado, Nicholas

    2005-01-01

    An improved apparatus has been designed and built for use in precise positioning and pressing of a microchip onto a substrate (which could, optionally, be another microchip) for the purpose of indium-bump bonding. The apparatus (see figure) includes the following: A stereomicroscope, A stage for precise positioning of the microchip in rotation angle (theta) about the nominally vertical pressing axis and in translation along two nominally horizontal coordinate axes (x and y), and An actuator system that causes a bonding tip to press the microchip against the substrate with a precisely controlled force. In operation, the microscope and the stage are used to position the microchip under the bonding tip and to align the indium bumps on the chip and the substrate, then the actuator system is used to apply a prescribed bonding force for a prescribed time. The improved apparatus supplants a partly similar prior apparatus that operated with less precision and repeatability, producing inconsistent and unreliable bonds. Results of the use of the prior apparatus included broken microchips, uneven bonds, and bonds characterized, variously, by overcompression or undercompression. In that apparatus, the bonding force was generated and controlled by use of a micrometer head positioned over the center of a spring-loaded scale, and the force was applied to the microchip via the scale, which was equipped for digital readout of the force. The inconsistency of results was attributed to the following causes: It was not possible to control the bonding force with sufficient precision or repeatability. Particularly troublesome was the inability to control the force at levels less than the weight of 150 g. Excessive compliance in the spring-loaded scale, combined with deviations from parallelarity of the substrate and bonding-tip surfaces, gave rise to nonuniformity in the pressure applied to the microchip, thereby generating excessive stresses and deformations in the microchip. In the

  11. Determination of niobium, tantalum, and uranium in tantalite-columbite ores by X-ray fluorescence spectrometry; Application de la spectrometrie de fluorescence de rayos X a la determination de niobium, tantale et uranium dans niobiotantalites

    Energy Technology Data Exchange (ETDEWEB)

    Latorre, O.; Bermudez Polonio, J.

    1964-07-01

    A simple and quick procedure is carried out to determine niobium, tantalum and uranium employing the internal standard technique; zinc as internal standard for tantalum and molybdenum for niobium and uranium were selected. Some inter element effects were studied and the ratios. (Author)

  12. [Health effects of solar cell component material. Toxicity of indium compounds to laboratory animals determined by intratracheal instillations].

    Science.gov (United States)

    Tanaka, Akiyo; Hirata, Miyuki

    2013-01-01

    Owing to the increasing interest being paid to the issue of the global environment, the production of solar cells has increased rapidly in recent years. Copper indium gallium diselenide (CIGS) is a new efficient thin film used in some types of solar cell. Indium is a constitutive element of CIGS thin-film solar cells. It was thought that indium compounds were not harmful until the beginning of the 1990s because there was little information regarding the adverse health effects on humans or animals arising from exposure to indium compounds. After the mid-1990s, data became available indicating that indium compounds can be toxic to animals. In animal studies, it has been clearly demonstrated that indium compounds cause pulmonary toxicity and that the dissolution of indium compounds in the lungs is considerably slow, as shown by repeated intratracheal instillations in experimental animals. Thus, it is necessary to pay much greater attention to human exposure to indium compounds, and precautions against possible exposure to indium compounds are paramount with regard to health management.

  13. The impact of substrate properties and thermal annealing on tantalum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, M., E-mail: michaela_grosser@yahoo.de [Chair of Micromechanics, Microfluidics/Microactuators, Saarland University, 66123 Saarbruecken (Germany); Muench, M.; Seidel, H. [Chair of Micromechanics, Microfluidics/Microactuators, Saarland University, 66123 Saarbruecken (Germany); Bienert, C.; Roosen, A. [Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 5, D-91058 Erlangen (Germany); Schmid, U. [Department for Microsystems Technology, Institute of Sensor and Actuator Systems, Vienna University of Technology, Floragasse 7, 1040 Vienna (Austria)

    2012-01-15

    In this study film properties of sputter-deposited tantalum nitride (TaN{sub x}) thin layers are investigated focusing on the impact of substrate properties, varying nitrogen content for film synthetization as well as post-deposition annealings in the temperature range up to 500 Degree-Sign C. For comparison, these investigations are done on low temperature co-fired ceramics and on silicon based substrates whereas the latter approach ensures defined and well-known surface properties. Furthermore, results on the phase evolution with high temperature annealings are presented showing a transformation of Ta{sub 4}N to Ta{sub 2}N in the temperature range between 350 Degree-Sign C and 500 Degree-Sign C. With increasing nitrogen content (i.e. nitrogen flow during film deposition) in the TaN{sub x} layers the topography shows first an increase in surface roughness, next a range where a smoothing of the surface characteristics is observed, and finally buckling and the existence of grain agglomerates. All these analyses are further evaluated with electrical measurements on the film resistivity and on the oxidation behaviour to gain deeper insight into material parameters relevant for micromachined devices which are operated under harsh environmental conditions.

  14. Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs)

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, T., E-mail: Thomas.Niendorf@iwt.tu-freiberg.de [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Germany); Krooß, P. [Lehrstuhl für Werkstoffkunde (Materials Science), University of Paderborn, 33098 Paderborn (Germany); Batyrsina, E. [Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen (Germany); Paulsen, A.; Motemani, Y.; Ludwig, A.; Buenconsejo, P.; Frenzel, J.; Eggeler, G. [Institut für Werkstoffe, Ruhr-Universität Bochum, 44801 Bochum (Germany); Maier, H.J. [Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen (Germany)

    2015-01-03

    Due to their high work output and good mechanical properties, actuators made from shape memory alloys (SMAs) are used in numerous applications. Unfortunately, SMAs such as nickel–titanium (Ni–Ti) can only be employed at temperatures up to about 100 °C. Lately, high-temperature shape memory alloys (HT SMAs) have been introduced to overcome this limitation. Ternary systems based on Ni–Ti have been intensively characterized and alloys are available that can operate at elevated temperatures. However, these alloys either contain substantial amounts of expensive noble elements like platinum and palladium, or the materials are brittle. The titanium–tantalum (Ti–Ta) system has been developed to overcome these issues. Binary Ti–Ta provides relatively high M{sub S} temperature combined with excellent workability, but it suffers from fast cyclic degradation. By alloying with third elements this drawback can be overcome: The ternary Ti–Ta–Al alloy shows overall promising properties as will be shown in the present work. In-situ thermo-mechanical cycling experiments were conducted and allowed for evaluation of the factors affecting the functional and structural fatigue of this alloy. Functional fatigue is dominated by ω-phase evolution, while structural fatigue is triggered by an interplay of ω-phase induced embrittlement and deformation constraints imposed by unsuitable texture. In addition, a concept for fatigue life extension proposed very recently for binary Ti–Ta, is demonstrated to be also applicable for the ternary Ti–Ta–Al.

  15. Bounds on the Rate Dependent Plastic Flow of Tantalum up to 75 GPa

    Science.gov (United States)

    Reed, Bryan; Patterson, Reed; Kumar, Mukul

    2013-06-01

    We report improvements in a general thermodynamics-based velocimetry analysis method designed to extract strength and plastic-flow information from shock and ramp compression experiments. The method allows extraction of thermodynamic histories, including deviatoric stress and plastic strain, including nonsteady rate-dependent features. The improved method includes free-surface corrections for pullback waves, reduced noise sensitivity, and application to pressures of 75 GPa and higher. Specifically, we show results for shock waves in tantalum, including bounds on the plastic flow behavior at strain rates exceeding 1e7/s.The deviatoric stress appears to be almost entirely dependent on strain rate, with very little pressure dependence.The deviatoric stress in the post-shock plateau state appears to be very small at higher pressures, calling into question the value of considering strength as a steady- state pressure-dependent quantity. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Design and development of a tantalum foil target for the production of high intensity radioactive beams

    CERN Document Server

    Densham, Cristopher John

    2000-01-01

    The design and development of a high power target and ion source for the production of Radioactive Beams at intensities approaching two orders of magnitude greater than currently possible is presented. This was a key aim of the RIST experiment, designed to utilise the proton synchrotron of the ISIS facility at Rutherford Appleton laboratory, Chilton, Oxfordshire, where an 800 MeV proton beam is available at currents of up to 200 mu A. A number of different target designs were considered and analysed, and high temperature power dissipation tests were conducted. This culminated in the manufacture of a diffusion bonded structure comprising 6000 separate tantalum foil discs and spacer washers. The target was installed in the RIST facility, and thermal tests using electron beam heating demonstrated that the target was capable of dissipating 24 kW by thermal radiation, at the desired temperature of 2000 deg C. This is equivalent to running with the 800 MeV ISIS proton beam at a current of 100 mu A. A smaller diamet...

  17. Optical reflectivity and hardness improvement of hafnium nitride films via tantalum alloying

    Science.gov (United States)

    Gu, Zhiqing; Huang, Haihua; Zhang, Sam; Wang, Xiaoyi; Gao, Jing; Zhao, Lei; Zheng, Weitao; Hu, Chaoquan

    2016-12-01

    It is found that incorporation of tantalum in a hafnium nitride film induces a tunable optical reflectivity and improves the hardness. The underlying mechanism can be illustrated by a combination of experiments and first-principles calculations. It is shown that the evolution of optical reflectivity and the increase in hardness arise from the formation of Hf1-xTaxN solid solutions and the resulting changes in the electronic structure. The increase in infrared reflectance originates from the increase in concentration of free electrons (n) because Ta (d3s2) has one more valence electron than Hf (d2s2). The sharp blue-shift in cutoff wavelength is attributed to the increase in n and the appearance of t2g → eg interband absorption. These results suggest that alloying of a second transition metal renders an effective avenue to improve simultaneously the optical and mechanical properties of transition metal nitride films. This opens up a door in preparing high-reflectance yet hard films.

  18. Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.

    Science.gov (United States)

    Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri

    2015-03-25

    This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.

  19. The impact of substrate properties and thermal annealing on tantalum nitride thin films

    Science.gov (United States)

    Grosser, M.; Münch, M.; Seidel, H.; Bienert, C.; Roosen, A.; Schmid, U.

    2012-01-01

    In this study film properties of sputter-deposited tantalum nitride (TaNx) thin layers are investigated focusing on the impact of substrate properties, varying nitrogen content for film synthetization as well as post-deposition annealings in the temperature range up to 500 °C. For comparison, these investigations are done on low temperature co-fired ceramics and on silicon based substrates whereas the latter approach ensures defined and well-known surface properties. Furthermore, results on the phase evolution with high temperature annealings are presented showing a transformation of Ta4N to Ta2N in the temperature range between 350 °C and 500 °C. With increasing nitrogen content (i.e. nitrogen flow during film deposition) in the TaNx layers the topography shows first an increase in surface roughness, next a range where a smoothing of the surface characteristics is observed, and finally buckling and the existence of grain agglomerates. All these analyses are further evaluated with electrical measurements on the film resistivity and on the oxidation behaviour to gain deeper insight into material parameters relevant for micromachined devices which are operated under harsh environmental conditions.

  20. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.